xref: /openbmc/linux/drivers/scsi/sd.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  *      sd.c Copyright (C) 1992 Drew Eckhardt
3  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4  *
5  *      Linux scsi disk driver
6  *              Initial versions: Drew Eckhardt
7  *              Subsequent revisions: Eric Youngdale
8  *	Modification history:
9  *       - Drew Eckhardt <drew@colorado.edu> original
10  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11  *         outstanding request, and other enhancements.
12  *         Support loadable low-level scsi drivers.
13  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14  *         eight major numbers.
15  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17  *	   sd_init and cleanups.
18  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
19  *	   not being read in sd_open. Fix problem where removable media
20  *	   could be ejected after sd_open.
21  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24  *	   Support 32k/1M disks.
25  *
26  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
27  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
31  *	Note: when the logging level is set by the user, it must be greater
32  *	than the level indicated above to trigger output.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/pm_runtime.h>
54 #include <asm/uaccess.h>
55 #include <asm/unaligned.h>
56 
57 #include <scsi/scsi.h>
58 #include <scsi/scsi_cmnd.h>
59 #include <scsi/scsi_dbg.h>
60 #include <scsi/scsi_device.h>
61 #include <scsi/scsi_driver.h>
62 #include <scsi/scsi_eh.h>
63 #include <scsi/scsi_host.h>
64 #include <scsi/scsi_ioctl.h>
65 #include <scsi/scsicam.h>
66 
67 #include "sd.h"
68 #include "scsi_priv.h"
69 #include "scsi_logging.h"
70 
71 MODULE_AUTHOR("Eric Youngdale");
72 MODULE_DESCRIPTION("SCSI disk (sd) driver");
73 MODULE_LICENSE("GPL");
74 
75 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
76 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
91 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
92 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
93 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
94 
95 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
96 #define SD_MINORS	16
97 #else
98 #define SD_MINORS	0
99 #endif
100 
101 static void sd_config_discard(struct scsi_disk *, unsigned int);
102 static void sd_config_write_same(struct scsi_disk *);
103 static int  sd_revalidate_disk(struct gendisk *);
104 static void sd_unlock_native_capacity(struct gendisk *disk);
105 static int  sd_probe(struct device *);
106 static int  sd_remove(struct device *);
107 static void sd_shutdown(struct device *);
108 static int sd_suspend_system(struct device *);
109 static int sd_suspend_runtime(struct device *);
110 static int sd_resume(struct device *);
111 static void sd_rescan(struct device *);
112 static int sd_init_command(struct scsi_cmnd *SCpnt);
113 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
114 static int sd_done(struct scsi_cmnd *);
115 static int sd_eh_action(struct scsi_cmnd *, int);
116 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
117 static void scsi_disk_release(struct device *cdev);
118 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
119 static void sd_print_result(const struct scsi_disk *, const char *, int);
120 
121 static DEFINE_SPINLOCK(sd_index_lock);
122 static DEFINE_IDA(sd_index_ida);
123 
124 /* This semaphore is used to mediate the 0->1 reference get in the
125  * face of object destruction (i.e. we can't allow a get on an
126  * object after last put) */
127 static DEFINE_MUTEX(sd_ref_mutex);
128 
129 static struct kmem_cache *sd_cdb_cache;
130 static mempool_t *sd_cdb_pool;
131 
132 static const char *sd_cache_types[] = {
133 	"write through", "none", "write back",
134 	"write back, no read (daft)"
135 };
136 
137 static void sd_set_flush_flag(struct scsi_disk *sdkp)
138 {
139 	unsigned flush = 0;
140 
141 	if (sdkp->WCE) {
142 		flush |= REQ_FLUSH;
143 		if (sdkp->DPOFUA)
144 			flush |= REQ_FUA;
145 	}
146 
147 	blk_queue_flush(sdkp->disk->queue, flush);
148 }
149 
150 static ssize_t
151 cache_type_store(struct device *dev, struct device_attribute *attr,
152 		 const char *buf, size_t count)
153 {
154 	int i, ct = -1, rcd, wce, sp;
155 	struct scsi_disk *sdkp = to_scsi_disk(dev);
156 	struct scsi_device *sdp = sdkp->device;
157 	char buffer[64];
158 	char *buffer_data;
159 	struct scsi_mode_data data;
160 	struct scsi_sense_hdr sshdr;
161 	static const char temp[] = "temporary ";
162 	int len;
163 
164 	if (sdp->type != TYPE_DISK)
165 		/* no cache control on RBC devices; theoretically they
166 		 * can do it, but there's probably so many exceptions
167 		 * it's not worth the risk */
168 		return -EINVAL;
169 
170 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
171 		buf += sizeof(temp) - 1;
172 		sdkp->cache_override = 1;
173 	} else {
174 		sdkp->cache_override = 0;
175 	}
176 
177 	for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) {
178 		len = strlen(sd_cache_types[i]);
179 		if (strncmp(sd_cache_types[i], buf, len) == 0 &&
180 		    buf[len] == '\n') {
181 			ct = i;
182 			break;
183 		}
184 	}
185 	if (ct < 0)
186 		return -EINVAL;
187 	rcd = ct & 0x01 ? 1 : 0;
188 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
189 
190 	if (sdkp->cache_override) {
191 		sdkp->WCE = wce;
192 		sdkp->RCD = rcd;
193 		sd_set_flush_flag(sdkp);
194 		return count;
195 	}
196 
197 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
198 			    SD_MAX_RETRIES, &data, NULL))
199 		return -EINVAL;
200 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
201 		  data.block_descriptor_length);
202 	buffer_data = buffer + data.header_length +
203 		data.block_descriptor_length;
204 	buffer_data[2] &= ~0x05;
205 	buffer_data[2] |= wce << 2 | rcd;
206 	sp = buffer_data[0] & 0x80 ? 1 : 0;
207 
208 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
209 			     SD_MAX_RETRIES, &data, &sshdr)) {
210 		if (scsi_sense_valid(&sshdr))
211 			sd_print_sense_hdr(sdkp, &sshdr);
212 		return -EINVAL;
213 	}
214 	revalidate_disk(sdkp->disk);
215 	return count;
216 }
217 
218 static ssize_t
219 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
220 		       char *buf)
221 {
222 	struct scsi_disk *sdkp = to_scsi_disk(dev);
223 	struct scsi_device *sdp = sdkp->device;
224 
225 	return snprintf(buf, 20, "%u\n", sdp->manage_start_stop);
226 }
227 
228 static ssize_t
229 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
230 			const char *buf, size_t count)
231 {
232 	struct scsi_disk *sdkp = to_scsi_disk(dev);
233 	struct scsi_device *sdp = sdkp->device;
234 
235 	if (!capable(CAP_SYS_ADMIN))
236 		return -EACCES;
237 
238 	sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
239 
240 	return count;
241 }
242 static DEVICE_ATTR_RW(manage_start_stop);
243 
244 static ssize_t
245 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
246 {
247 	struct scsi_disk *sdkp = to_scsi_disk(dev);
248 
249 	return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart);
250 }
251 
252 static ssize_t
253 allow_restart_store(struct device *dev, struct device_attribute *attr,
254 		    const char *buf, size_t count)
255 {
256 	struct scsi_disk *sdkp = to_scsi_disk(dev);
257 	struct scsi_device *sdp = sdkp->device;
258 
259 	if (!capable(CAP_SYS_ADMIN))
260 		return -EACCES;
261 
262 	if (sdp->type != TYPE_DISK)
263 		return -EINVAL;
264 
265 	sdp->allow_restart = simple_strtoul(buf, NULL, 10);
266 
267 	return count;
268 }
269 static DEVICE_ATTR_RW(allow_restart);
270 
271 static ssize_t
272 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
273 {
274 	struct scsi_disk *sdkp = to_scsi_disk(dev);
275 	int ct = sdkp->RCD + 2*sdkp->WCE;
276 
277 	return snprintf(buf, 40, "%s\n", sd_cache_types[ct]);
278 }
279 static DEVICE_ATTR_RW(cache_type);
280 
281 static ssize_t
282 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
283 {
284 	struct scsi_disk *sdkp = to_scsi_disk(dev);
285 
286 	return snprintf(buf, 20, "%u\n", sdkp->DPOFUA);
287 }
288 static DEVICE_ATTR_RO(FUA);
289 
290 static ssize_t
291 protection_type_show(struct device *dev, struct device_attribute *attr,
292 		     char *buf)
293 {
294 	struct scsi_disk *sdkp = to_scsi_disk(dev);
295 
296 	return snprintf(buf, 20, "%u\n", sdkp->protection_type);
297 }
298 
299 static ssize_t
300 protection_type_store(struct device *dev, struct device_attribute *attr,
301 		      const char *buf, size_t count)
302 {
303 	struct scsi_disk *sdkp = to_scsi_disk(dev);
304 	unsigned int val;
305 	int err;
306 
307 	if (!capable(CAP_SYS_ADMIN))
308 		return -EACCES;
309 
310 	err = kstrtouint(buf, 10, &val);
311 
312 	if (err)
313 		return err;
314 
315 	if (val >= 0 && val <= SD_DIF_TYPE3_PROTECTION)
316 		sdkp->protection_type = val;
317 
318 	return count;
319 }
320 static DEVICE_ATTR_RW(protection_type);
321 
322 static ssize_t
323 protection_mode_show(struct device *dev, struct device_attribute *attr,
324 		     char *buf)
325 {
326 	struct scsi_disk *sdkp = to_scsi_disk(dev);
327 	struct scsi_device *sdp = sdkp->device;
328 	unsigned int dif, dix;
329 
330 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
331 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
332 
333 	if (!dix && scsi_host_dix_capable(sdp->host, SD_DIF_TYPE0_PROTECTION)) {
334 		dif = 0;
335 		dix = 1;
336 	}
337 
338 	if (!dif && !dix)
339 		return snprintf(buf, 20, "none\n");
340 
341 	return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif);
342 }
343 static DEVICE_ATTR_RO(protection_mode);
344 
345 static ssize_t
346 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
347 {
348 	struct scsi_disk *sdkp = to_scsi_disk(dev);
349 
350 	return snprintf(buf, 20, "%u\n", sdkp->ATO);
351 }
352 static DEVICE_ATTR_RO(app_tag_own);
353 
354 static ssize_t
355 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
356 		       char *buf)
357 {
358 	struct scsi_disk *sdkp = to_scsi_disk(dev);
359 
360 	return snprintf(buf, 20, "%u\n", sdkp->lbpme);
361 }
362 static DEVICE_ATTR_RO(thin_provisioning);
363 
364 static const char *lbp_mode[] = {
365 	[SD_LBP_FULL]		= "full",
366 	[SD_LBP_UNMAP]		= "unmap",
367 	[SD_LBP_WS16]		= "writesame_16",
368 	[SD_LBP_WS10]		= "writesame_10",
369 	[SD_LBP_ZERO]		= "writesame_zero",
370 	[SD_LBP_DISABLE]	= "disabled",
371 };
372 
373 static ssize_t
374 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
375 		       char *buf)
376 {
377 	struct scsi_disk *sdkp = to_scsi_disk(dev);
378 
379 	return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]);
380 }
381 
382 static ssize_t
383 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
384 			const char *buf, size_t count)
385 {
386 	struct scsi_disk *sdkp = to_scsi_disk(dev);
387 	struct scsi_device *sdp = sdkp->device;
388 
389 	if (!capable(CAP_SYS_ADMIN))
390 		return -EACCES;
391 
392 	if (sdp->type != TYPE_DISK)
393 		return -EINVAL;
394 
395 	if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20))
396 		sd_config_discard(sdkp, SD_LBP_UNMAP);
397 	else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20))
398 		sd_config_discard(sdkp, SD_LBP_WS16);
399 	else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20))
400 		sd_config_discard(sdkp, SD_LBP_WS10);
401 	else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20))
402 		sd_config_discard(sdkp, SD_LBP_ZERO);
403 	else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20))
404 		sd_config_discard(sdkp, SD_LBP_DISABLE);
405 	else
406 		return -EINVAL;
407 
408 	return count;
409 }
410 static DEVICE_ATTR_RW(provisioning_mode);
411 
412 static ssize_t
413 max_medium_access_timeouts_show(struct device *dev,
414 				struct device_attribute *attr, char *buf)
415 {
416 	struct scsi_disk *sdkp = to_scsi_disk(dev);
417 
418 	return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts);
419 }
420 
421 static ssize_t
422 max_medium_access_timeouts_store(struct device *dev,
423 				 struct device_attribute *attr, const char *buf,
424 				 size_t count)
425 {
426 	struct scsi_disk *sdkp = to_scsi_disk(dev);
427 	int err;
428 
429 	if (!capable(CAP_SYS_ADMIN))
430 		return -EACCES;
431 
432 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
433 
434 	return err ? err : count;
435 }
436 static DEVICE_ATTR_RW(max_medium_access_timeouts);
437 
438 static ssize_t
439 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
440 			   char *buf)
441 {
442 	struct scsi_disk *sdkp = to_scsi_disk(dev);
443 
444 	return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks);
445 }
446 
447 static ssize_t
448 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
449 			    const char *buf, size_t count)
450 {
451 	struct scsi_disk *sdkp = to_scsi_disk(dev);
452 	struct scsi_device *sdp = sdkp->device;
453 	unsigned long max;
454 	int err;
455 
456 	if (!capable(CAP_SYS_ADMIN))
457 		return -EACCES;
458 
459 	if (sdp->type != TYPE_DISK)
460 		return -EINVAL;
461 
462 	err = kstrtoul(buf, 10, &max);
463 
464 	if (err)
465 		return err;
466 
467 	if (max == 0)
468 		sdp->no_write_same = 1;
469 	else if (max <= SD_MAX_WS16_BLOCKS) {
470 		sdp->no_write_same = 0;
471 		sdkp->max_ws_blocks = max;
472 	}
473 
474 	sd_config_write_same(sdkp);
475 
476 	return count;
477 }
478 static DEVICE_ATTR_RW(max_write_same_blocks);
479 
480 static struct attribute *sd_disk_attrs[] = {
481 	&dev_attr_cache_type.attr,
482 	&dev_attr_FUA.attr,
483 	&dev_attr_allow_restart.attr,
484 	&dev_attr_manage_start_stop.attr,
485 	&dev_attr_protection_type.attr,
486 	&dev_attr_protection_mode.attr,
487 	&dev_attr_app_tag_own.attr,
488 	&dev_attr_thin_provisioning.attr,
489 	&dev_attr_provisioning_mode.attr,
490 	&dev_attr_max_write_same_blocks.attr,
491 	&dev_attr_max_medium_access_timeouts.attr,
492 	NULL,
493 };
494 ATTRIBUTE_GROUPS(sd_disk);
495 
496 static struct class sd_disk_class = {
497 	.name		= "scsi_disk",
498 	.owner		= THIS_MODULE,
499 	.dev_release	= scsi_disk_release,
500 	.dev_groups	= sd_disk_groups,
501 };
502 
503 static const struct dev_pm_ops sd_pm_ops = {
504 	.suspend		= sd_suspend_system,
505 	.resume			= sd_resume,
506 	.poweroff		= sd_suspend_system,
507 	.restore		= sd_resume,
508 	.runtime_suspend	= sd_suspend_runtime,
509 	.runtime_resume		= sd_resume,
510 };
511 
512 static struct scsi_driver sd_template = {
513 	.gendrv = {
514 		.name		= "sd",
515 		.owner		= THIS_MODULE,
516 		.probe		= sd_probe,
517 		.remove		= sd_remove,
518 		.shutdown	= sd_shutdown,
519 		.pm		= &sd_pm_ops,
520 	},
521 	.rescan			= sd_rescan,
522 	.init_command		= sd_init_command,
523 	.uninit_command		= sd_uninit_command,
524 	.done			= sd_done,
525 	.eh_action		= sd_eh_action,
526 };
527 
528 /*
529  * Dummy kobj_map->probe function.
530  * The default ->probe function will call modprobe, which is
531  * pointless as this module is already loaded.
532  */
533 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
534 {
535 	return NULL;
536 }
537 
538 /*
539  * Device no to disk mapping:
540  *
541  *       major         disc2     disc  p1
542  *   |............|.............|....|....| <- dev_t
543  *    31        20 19          8 7  4 3  0
544  *
545  * Inside a major, we have 16k disks, however mapped non-
546  * contiguously. The first 16 disks are for major0, the next
547  * ones with major1, ... Disk 256 is for major0 again, disk 272
548  * for major1, ...
549  * As we stay compatible with our numbering scheme, we can reuse
550  * the well-know SCSI majors 8, 65--71, 136--143.
551  */
552 static int sd_major(int major_idx)
553 {
554 	switch (major_idx) {
555 	case 0:
556 		return SCSI_DISK0_MAJOR;
557 	case 1 ... 7:
558 		return SCSI_DISK1_MAJOR + major_idx - 1;
559 	case 8 ... 15:
560 		return SCSI_DISK8_MAJOR + major_idx - 8;
561 	default:
562 		BUG();
563 		return 0;	/* shut up gcc */
564 	}
565 }
566 
567 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
568 {
569 	struct scsi_disk *sdkp = NULL;
570 
571 	mutex_lock(&sd_ref_mutex);
572 
573 	if (disk->private_data) {
574 		sdkp = scsi_disk(disk);
575 		if (scsi_device_get(sdkp->device) == 0)
576 			get_device(&sdkp->dev);
577 		else
578 			sdkp = NULL;
579 	}
580 	mutex_unlock(&sd_ref_mutex);
581 	return sdkp;
582 }
583 
584 static void scsi_disk_put(struct scsi_disk *sdkp)
585 {
586 	struct scsi_device *sdev = sdkp->device;
587 
588 	mutex_lock(&sd_ref_mutex);
589 	put_device(&sdkp->dev);
590 	scsi_device_put(sdev);
591 	mutex_unlock(&sd_ref_mutex);
592 }
593 
594 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
595 					   unsigned int dix, unsigned int dif)
596 {
597 	struct bio *bio = scmd->request->bio;
598 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
599 	unsigned int protect = 0;
600 
601 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
602 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
603 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
604 
605 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
606 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
607 	}
608 
609 	if (dif != SD_DIF_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
610 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
611 
612 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
613 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
614 	}
615 
616 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
617 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
618 
619 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
620 			protect = 3 << 5;	/* Disable target PI checking */
621 		else
622 			protect = 1 << 5;	/* Enable target PI checking */
623 	}
624 
625 	scsi_set_prot_op(scmd, prot_op);
626 	scsi_set_prot_type(scmd, dif);
627 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
628 
629 	return protect;
630 }
631 
632 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
633 {
634 	struct request_queue *q = sdkp->disk->queue;
635 	unsigned int logical_block_size = sdkp->device->sector_size;
636 	unsigned int max_blocks = 0;
637 
638 	q->limits.discard_zeroes_data = 0;
639 	q->limits.discard_alignment = sdkp->unmap_alignment *
640 		logical_block_size;
641 	q->limits.discard_granularity =
642 		max(sdkp->physical_block_size,
643 		    sdkp->unmap_granularity * logical_block_size);
644 
645 	sdkp->provisioning_mode = mode;
646 
647 	switch (mode) {
648 
649 	case SD_LBP_DISABLE:
650 		blk_queue_max_discard_sectors(q, 0);
651 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
652 		return;
653 
654 	case SD_LBP_UNMAP:
655 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
656 					  (u32)SD_MAX_WS16_BLOCKS);
657 		break;
658 
659 	case SD_LBP_WS16:
660 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
661 					  (u32)SD_MAX_WS16_BLOCKS);
662 		q->limits.discard_zeroes_data = sdkp->lbprz;
663 		break;
664 
665 	case SD_LBP_WS10:
666 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
667 					  (u32)SD_MAX_WS10_BLOCKS);
668 		q->limits.discard_zeroes_data = sdkp->lbprz;
669 		break;
670 
671 	case SD_LBP_ZERO:
672 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
673 					  (u32)SD_MAX_WS10_BLOCKS);
674 		q->limits.discard_zeroes_data = 1;
675 		break;
676 	}
677 
678 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
679 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
680 }
681 
682 /**
683  * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device
684  * @sdp: scsi device to operate one
685  * @rq: Request to prepare
686  *
687  * Will issue either UNMAP or WRITE SAME(16) depending on preference
688  * indicated by target device.
689  **/
690 static int sd_setup_discard_cmnd(struct scsi_cmnd *cmd)
691 {
692 	struct request *rq = cmd->request;
693 	struct scsi_device *sdp = cmd->device;
694 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
695 	sector_t sector = blk_rq_pos(rq);
696 	unsigned int nr_sectors = blk_rq_sectors(rq);
697 	unsigned int nr_bytes = blk_rq_bytes(rq);
698 	unsigned int len;
699 	int ret;
700 	char *buf;
701 	struct page *page;
702 
703 	sector >>= ilog2(sdp->sector_size) - 9;
704 	nr_sectors >>= ilog2(sdp->sector_size) - 9;
705 
706 	page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
707 	if (!page)
708 		return BLKPREP_DEFER;
709 
710 	switch (sdkp->provisioning_mode) {
711 	case SD_LBP_UNMAP:
712 		buf = page_address(page);
713 
714 		cmd->cmd_len = 10;
715 		cmd->cmnd[0] = UNMAP;
716 		cmd->cmnd[8] = 24;
717 
718 		put_unaligned_be16(6 + 16, &buf[0]);
719 		put_unaligned_be16(16, &buf[2]);
720 		put_unaligned_be64(sector, &buf[8]);
721 		put_unaligned_be32(nr_sectors, &buf[16]);
722 
723 		len = 24;
724 		break;
725 
726 	case SD_LBP_WS16:
727 		cmd->cmd_len = 16;
728 		cmd->cmnd[0] = WRITE_SAME_16;
729 		cmd->cmnd[1] = 0x8; /* UNMAP */
730 		put_unaligned_be64(sector, &cmd->cmnd[2]);
731 		put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
732 
733 		len = sdkp->device->sector_size;
734 		break;
735 
736 	case SD_LBP_WS10:
737 	case SD_LBP_ZERO:
738 		cmd->cmd_len = 10;
739 		cmd->cmnd[0] = WRITE_SAME;
740 		if (sdkp->provisioning_mode == SD_LBP_WS10)
741 			cmd->cmnd[1] = 0x8; /* UNMAP */
742 		put_unaligned_be32(sector, &cmd->cmnd[2]);
743 		put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
744 
745 		len = sdkp->device->sector_size;
746 		break;
747 
748 	default:
749 		ret = BLKPREP_KILL;
750 		goto out;
751 	}
752 
753 	rq->completion_data = page;
754 	rq->timeout = SD_TIMEOUT;
755 
756 	cmd->transfersize = len;
757 	cmd->allowed = SD_MAX_RETRIES;
758 
759 	/*
760 	 * Initially __data_len is set to the amount of data that needs to be
761 	 * transferred to the target. This amount depends on whether WRITE SAME
762 	 * or UNMAP is being used. After the scatterlist has been mapped by
763 	 * scsi_init_io() we set __data_len to the size of the area to be
764 	 * discarded on disk. This allows us to report completion on the full
765 	 * amount of blocks described by the request.
766 	 */
767 	blk_add_request_payload(rq, page, len);
768 	ret = scsi_init_io(cmd);
769 	rq->__data_len = nr_bytes;
770 
771 out:
772 	if (ret != BLKPREP_OK)
773 		__free_page(page);
774 	return ret;
775 }
776 
777 static void sd_config_write_same(struct scsi_disk *sdkp)
778 {
779 	struct request_queue *q = sdkp->disk->queue;
780 	unsigned int logical_block_size = sdkp->device->sector_size;
781 
782 	if (sdkp->device->no_write_same) {
783 		sdkp->max_ws_blocks = 0;
784 		goto out;
785 	}
786 
787 	/* Some devices can not handle block counts above 0xffff despite
788 	 * supporting WRITE SAME(16). Consequently we default to 64k
789 	 * blocks per I/O unless the device explicitly advertises a
790 	 * bigger limit.
791 	 */
792 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
793 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
794 						   (u32)SD_MAX_WS16_BLOCKS);
795 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
796 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
797 						   (u32)SD_MAX_WS10_BLOCKS);
798 	else {
799 		sdkp->device->no_write_same = 1;
800 		sdkp->max_ws_blocks = 0;
801 	}
802 
803 out:
804 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
805 					 (logical_block_size >> 9));
806 }
807 
808 /**
809  * sd_setup_write_same_cmnd - write the same data to multiple blocks
810  * @cmd: command to prepare
811  *
812  * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on
813  * preference indicated by target device.
814  **/
815 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
816 {
817 	struct request *rq = cmd->request;
818 	struct scsi_device *sdp = cmd->device;
819 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
820 	struct bio *bio = rq->bio;
821 	sector_t sector = blk_rq_pos(rq);
822 	unsigned int nr_sectors = blk_rq_sectors(rq);
823 	unsigned int nr_bytes = blk_rq_bytes(rq);
824 	int ret;
825 
826 	if (sdkp->device->no_write_same)
827 		return BLKPREP_KILL;
828 
829 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
830 
831 	sector >>= ilog2(sdp->sector_size) - 9;
832 	nr_sectors >>= ilog2(sdp->sector_size) - 9;
833 
834 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
835 
836 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
837 		cmd->cmd_len = 16;
838 		cmd->cmnd[0] = WRITE_SAME_16;
839 		put_unaligned_be64(sector, &cmd->cmnd[2]);
840 		put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
841 	} else {
842 		cmd->cmd_len = 10;
843 		cmd->cmnd[0] = WRITE_SAME;
844 		put_unaligned_be32(sector, &cmd->cmnd[2]);
845 		put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
846 	}
847 
848 	cmd->transfersize = sdp->sector_size;
849 	cmd->allowed = SD_MAX_RETRIES;
850 
851 	/*
852 	 * For WRITE_SAME the data transferred in the DATA IN buffer is
853 	 * different from the amount of data actually written to the target.
854 	 *
855 	 * We set up __data_len to the amount of data transferred from the
856 	 * DATA IN buffer so that blk_rq_map_sg set up the proper S/G list
857 	 * to transfer a single sector of data first, but then reset it to
858 	 * the amount of data to be written right after so that the I/O path
859 	 * knows how much to actually write.
860 	 */
861 	rq->__data_len = sdp->sector_size;
862 	ret = scsi_init_io(cmd);
863 	rq->__data_len = nr_bytes;
864 	return ret;
865 }
866 
867 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
868 {
869 	struct request *rq = cmd->request;
870 
871 	/* flush requests don't perform I/O, zero the S/G table */
872 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
873 
874 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
875 	cmd->cmd_len = 10;
876 	cmd->transfersize = 0;
877 	cmd->allowed = SD_MAX_RETRIES;
878 
879 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
880 	return BLKPREP_OK;
881 }
882 
883 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
884 {
885 	struct request *rq = SCpnt->request;
886 	struct scsi_device *sdp = SCpnt->device;
887 	struct gendisk *disk = rq->rq_disk;
888 	struct scsi_disk *sdkp;
889 	sector_t block = blk_rq_pos(rq);
890 	sector_t threshold;
891 	unsigned int this_count = blk_rq_sectors(rq);
892 	unsigned int dif, dix;
893 	int ret;
894 	unsigned char protect;
895 
896 	ret = scsi_init_io(SCpnt);
897 	if (ret != BLKPREP_OK)
898 		goto out;
899 	SCpnt = rq->special;
900 	sdkp = scsi_disk(disk);
901 
902 	/* from here on until we're complete, any goto out
903 	 * is used for a killable error condition */
904 	ret = BLKPREP_KILL;
905 
906 	SCSI_LOG_HLQUEUE(1,
907 		scmd_printk(KERN_INFO, SCpnt,
908 			"%s: block=%llu, count=%d\n",
909 			__func__, (unsigned long long)block, this_count));
910 
911 	if (!sdp || !scsi_device_online(sdp) ||
912 	    block + blk_rq_sectors(rq) > get_capacity(disk)) {
913 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
914 						"Finishing %u sectors\n",
915 						blk_rq_sectors(rq)));
916 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
917 						"Retry with 0x%p\n", SCpnt));
918 		goto out;
919 	}
920 
921 	if (sdp->changed) {
922 		/*
923 		 * quietly refuse to do anything to a changed disc until
924 		 * the changed bit has been reset
925 		 */
926 		/* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
927 		goto out;
928 	}
929 
930 	/*
931 	 * Some SD card readers can't handle multi-sector accesses which touch
932 	 * the last one or two hardware sectors.  Split accesses as needed.
933 	 */
934 	threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
935 		(sdp->sector_size / 512);
936 
937 	if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
938 		if (block < threshold) {
939 			/* Access up to the threshold but not beyond */
940 			this_count = threshold - block;
941 		} else {
942 			/* Access only a single hardware sector */
943 			this_count = sdp->sector_size / 512;
944 		}
945 	}
946 
947 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
948 					(unsigned long long)block));
949 
950 	/*
951 	 * If we have a 1K hardware sectorsize, prevent access to single
952 	 * 512 byte sectors.  In theory we could handle this - in fact
953 	 * the scsi cdrom driver must be able to handle this because
954 	 * we typically use 1K blocksizes, and cdroms typically have
955 	 * 2K hardware sectorsizes.  Of course, things are simpler
956 	 * with the cdrom, since it is read-only.  For performance
957 	 * reasons, the filesystems should be able to handle this
958 	 * and not force the scsi disk driver to use bounce buffers
959 	 * for this.
960 	 */
961 	if (sdp->sector_size == 1024) {
962 		if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
963 			scmd_printk(KERN_ERR, SCpnt,
964 				    "Bad block number requested\n");
965 			goto out;
966 		} else {
967 			block = block >> 1;
968 			this_count = this_count >> 1;
969 		}
970 	}
971 	if (sdp->sector_size == 2048) {
972 		if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
973 			scmd_printk(KERN_ERR, SCpnt,
974 				    "Bad block number requested\n");
975 			goto out;
976 		} else {
977 			block = block >> 2;
978 			this_count = this_count >> 2;
979 		}
980 	}
981 	if (sdp->sector_size == 4096) {
982 		if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
983 			scmd_printk(KERN_ERR, SCpnt,
984 				    "Bad block number requested\n");
985 			goto out;
986 		} else {
987 			block = block >> 3;
988 			this_count = this_count >> 3;
989 		}
990 	}
991 	if (rq_data_dir(rq) == WRITE) {
992 		SCpnt->cmnd[0] = WRITE_6;
993 
994 		if (blk_integrity_rq(rq))
995 			sd_dif_prepare(SCpnt);
996 
997 	} else if (rq_data_dir(rq) == READ) {
998 		SCpnt->cmnd[0] = READ_6;
999 	} else {
1000 		scmd_printk(KERN_ERR, SCpnt, "Unknown command %llx\n", (unsigned long long) rq->cmd_flags);
1001 		goto out;
1002 	}
1003 
1004 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1005 					"%s %d/%u 512 byte blocks.\n",
1006 					(rq_data_dir(rq) == WRITE) ?
1007 					"writing" : "reading", this_count,
1008 					blk_rq_sectors(rq)));
1009 
1010 	dix = scsi_prot_sg_count(SCpnt);
1011 	dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1012 
1013 	if (dif || dix)
1014 		protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1015 	else
1016 		protect = 0;
1017 
1018 	if (protect && sdkp->protection_type == SD_DIF_TYPE2_PROTECTION) {
1019 		SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1020 
1021 		if (unlikely(SCpnt->cmnd == NULL)) {
1022 			ret = BLKPREP_DEFER;
1023 			goto out;
1024 		}
1025 
1026 		SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1027 		memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1028 		SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1029 		SCpnt->cmnd[7] = 0x18;
1030 		SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1031 		SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1032 
1033 		/* LBA */
1034 		SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1035 		SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1036 		SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1037 		SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1038 		SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1039 		SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1040 		SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1041 		SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1042 
1043 		/* Expected Indirect LBA */
1044 		SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1045 		SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1046 		SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1047 		SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1048 
1049 		/* Transfer length */
1050 		SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1051 		SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1052 		SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1053 		SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1054 	} else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1055 		SCpnt->cmnd[0] += READ_16 - READ_6;
1056 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1057 		SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1058 		SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1059 		SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1060 		SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1061 		SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1062 		SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1063 		SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1064 		SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1065 		SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1066 		SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1067 		SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1068 		SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1069 		SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1070 	} else if ((this_count > 0xff) || (block > 0x1fffff) ||
1071 		   scsi_device_protection(SCpnt->device) ||
1072 		   SCpnt->device->use_10_for_rw) {
1073 		SCpnt->cmnd[0] += READ_10 - READ_6;
1074 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1075 		SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1076 		SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1077 		SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1078 		SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1079 		SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1080 		SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1081 		SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1082 	} else {
1083 		if (unlikely(rq->cmd_flags & REQ_FUA)) {
1084 			/*
1085 			 * This happens only if this drive failed
1086 			 * 10byte rw command with ILLEGAL_REQUEST
1087 			 * during operation and thus turned off
1088 			 * use_10_for_rw.
1089 			 */
1090 			scmd_printk(KERN_ERR, SCpnt,
1091 				    "FUA write on READ/WRITE(6) drive\n");
1092 			goto out;
1093 		}
1094 
1095 		SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1096 		SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1097 		SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1098 		SCpnt->cmnd[4] = (unsigned char) this_count;
1099 		SCpnt->cmnd[5] = 0;
1100 	}
1101 	SCpnt->sdb.length = this_count * sdp->sector_size;
1102 
1103 	/*
1104 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1105 	 * host adapter, it's safe to assume that we can at least transfer
1106 	 * this many bytes between each connect / disconnect.
1107 	 */
1108 	SCpnt->transfersize = sdp->sector_size;
1109 	SCpnt->underflow = this_count << 9;
1110 	SCpnt->allowed = SD_MAX_RETRIES;
1111 
1112 	/*
1113 	 * This indicates that the command is ready from our end to be
1114 	 * queued.
1115 	 */
1116 	ret = BLKPREP_OK;
1117  out:
1118 	return ret;
1119 }
1120 
1121 static int sd_init_command(struct scsi_cmnd *cmd)
1122 {
1123 	struct request *rq = cmd->request;
1124 
1125 	if (rq->cmd_flags & REQ_DISCARD)
1126 		return sd_setup_discard_cmnd(cmd);
1127 	else if (rq->cmd_flags & REQ_WRITE_SAME)
1128 		return sd_setup_write_same_cmnd(cmd);
1129 	else if (rq->cmd_flags & REQ_FLUSH)
1130 		return sd_setup_flush_cmnd(cmd);
1131 	else
1132 		return sd_setup_read_write_cmnd(cmd);
1133 }
1134 
1135 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1136 {
1137 	struct request *rq = SCpnt->request;
1138 
1139 	if (rq->cmd_flags & REQ_DISCARD)
1140 		__free_page(rq->completion_data);
1141 
1142 	if (SCpnt->cmnd != rq->cmd) {
1143 		mempool_free(SCpnt->cmnd, sd_cdb_pool);
1144 		SCpnt->cmnd = NULL;
1145 		SCpnt->cmd_len = 0;
1146 	}
1147 }
1148 
1149 /**
1150  *	sd_open - open a scsi disk device
1151  *	@inode: only i_rdev member may be used
1152  *	@filp: only f_mode and f_flags may be used
1153  *
1154  *	Returns 0 if successful. Returns a negated errno value in case
1155  *	of error.
1156  *
1157  *	Note: This can be called from a user context (e.g. fsck(1) )
1158  *	or from within the kernel (e.g. as a result of a mount(1) ).
1159  *	In the latter case @inode and @filp carry an abridged amount
1160  *	of information as noted above.
1161  *
1162  *	Locking: called with bdev->bd_mutex held.
1163  **/
1164 static int sd_open(struct block_device *bdev, fmode_t mode)
1165 {
1166 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1167 	struct scsi_device *sdev;
1168 	int retval;
1169 
1170 	if (!sdkp)
1171 		return -ENXIO;
1172 
1173 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1174 
1175 	sdev = sdkp->device;
1176 
1177 	/*
1178 	 * If the device is in error recovery, wait until it is done.
1179 	 * If the device is offline, then disallow any access to it.
1180 	 */
1181 	retval = -ENXIO;
1182 	if (!scsi_block_when_processing_errors(sdev))
1183 		goto error_out;
1184 
1185 	if (sdev->removable || sdkp->write_prot)
1186 		check_disk_change(bdev);
1187 
1188 	/*
1189 	 * If the drive is empty, just let the open fail.
1190 	 */
1191 	retval = -ENOMEDIUM;
1192 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1193 		goto error_out;
1194 
1195 	/*
1196 	 * If the device has the write protect tab set, have the open fail
1197 	 * if the user expects to be able to write to the thing.
1198 	 */
1199 	retval = -EROFS;
1200 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1201 		goto error_out;
1202 
1203 	/*
1204 	 * It is possible that the disk changing stuff resulted in
1205 	 * the device being taken offline.  If this is the case,
1206 	 * report this to the user, and don't pretend that the
1207 	 * open actually succeeded.
1208 	 */
1209 	retval = -ENXIO;
1210 	if (!scsi_device_online(sdev))
1211 		goto error_out;
1212 
1213 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1214 		if (scsi_block_when_processing_errors(sdev))
1215 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1216 	}
1217 
1218 	return 0;
1219 
1220 error_out:
1221 	scsi_disk_put(sdkp);
1222 	return retval;
1223 }
1224 
1225 /**
1226  *	sd_release - invoked when the (last) close(2) is called on this
1227  *	scsi disk.
1228  *	@inode: only i_rdev member may be used
1229  *	@filp: only f_mode and f_flags may be used
1230  *
1231  *	Returns 0.
1232  *
1233  *	Note: may block (uninterruptible) if error recovery is underway
1234  *	on this disk.
1235  *
1236  *	Locking: called with bdev->bd_mutex held.
1237  **/
1238 static void sd_release(struct gendisk *disk, fmode_t mode)
1239 {
1240 	struct scsi_disk *sdkp = scsi_disk(disk);
1241 	struct scsi_device *sdev = sdkp->device;
1242 
1243 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1244 
1245 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1246 		if (scsi_block_when_processing_errors(sdev))
1247 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1248 	}
1249 
1250 	/*
1251 	 * XXX and what if there are packets in flight and this close()
1252 	 * XXX is followed by a "rmmod sd_mod"?
1253 	 */
1254 
1255 	scsi_disk_put(sdkp);
1256 }
1257 
1258 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1259 {
1260 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1261 	struct scsi_device *sdp = sdkp->device;
1262 	struct Scsi_Host *host = sdp->host;
1263 	int diskinfo[4];
1264 
1265 	/* default to most commonly used values */
1266         diskinfo[0] = 0x40;	/* 1 << 6 */
1267        	diskinfo[1] = 0x20;	/* 1 << 5 */
1268        	diskinfo[2] = sdkp->capacity >> 11;
1269 
1270 	/* override with calculated, extended default, or driver values */
1271 	if (host->hostt->bios_param)
1272 		host->hostt->bios_param(sdp, bdev, sdkp->capacity, diskinfo);
1273 	else
1274 		scsicam_bios_param(bdev, sdkp->capacity, diskinfo);
1275 
1276 	geo->heads = diskinfo[0];
1277 	geo->sectors = diskinfo[1];
1278 	geo->cylinders = diskinfo[2];
1279 	return 0;
1280 }
1281 
1282 /**
1283  *	sd_ioctl - process an ioctl
1284  *	@inode: only i_rdev/i_bdev members may be used
1285  *	@filp: only f_mode and f_flags may be used
1286  *	@cmd: ioctl command number
1287  *	@arg: this is third argument given to ioctl(2) system call.
1288  *	Often contains a pointer.
1289  *
1290  *	Returns 0 if successful (some ioctls return positive numbers on
1291  *	success as well). Returns a negated errno value in case of error.
1292  *
1293  *	Note: most ioctls are forward onto the block subsystem or further
1294  *	down in the scsi subsystem.
1295  **/
1296 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1297 		    unsigned int cmd, unsigned long arg)
1298 {
1299 	struct gendisk *disk = bdev->bd_disk;
1300 	struct scsi_disk *sdkp = scsi_disk(disk);
1301 	struct scsi_device *sdp = sdkp->device;
1302 	void __user *p = (void __user *)arg;
1303 	int error;
1304 
1305 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1306 				    "cmd=0x%x\n", disk->disk_name, cmd));
1307 
1308 	error = scsi_verify_blk_ioctl(bdev, cmd);
1309 	if (error < 0)
1310 		return error;
1311 
1312 	/*
1313 	 * If we are in the middle of error recovery, don't let anyone
1314 	 * else try and use this device.  Also, if error recovery fails, it
1315 	 * may try and take the device offline, in which case all further
1316 	 * access to the device is prohibited.
1317 	 */
1318 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1319 			(mode & FMODE_NDELAY) != 0);
1320 	if (error)
1321 		goto out;
1322 
1323 	/*
1324 	 * Send SCSI addressing ioctls directly to mid level, send other
1325 	 * ioctls to block level and then onto mid level if they can't be
1326 	 * resolved.
1327 	 */
1328 	switch (cmd) {
1329 		case SCSI_IOCTL_GET_IDLUN:
1330 		case SCSI_IOCTL_GET_BUS_NUMBER:
1331 			error = scsi_ioctl(sdp, cmd, p);
1332 			break;
1333 		default:
1334 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1335 			if (error != -ENOTTY)
1336 				break;
1337 			error = scsi_ioctl(sdp, cmd, p);
1338 			break;
1339 	}
1340 out:
1341 	return error;
1342 }
1343 
1344 static void set_media_not_present(struct scsi_disk *sdkp)
1345 {
1346 	if (sdkp->media_present)
1347 		sdkp->device->changed = 1;
1348 
1349 	if (sdkp->device->removable) {
1350 		sdkp->media_present = 0;
1351 		sdkp->capacity = 0;
1352 	}
1353 }
1354 
1355 static int media_not_present(struct scsi_disk *sdkp,
1356 			     struct scsi_sense_hdr *sshdr)
1357 {
1358 	if (!scsi_sense_valid(sshdr))
1359 		return 0;
1360 
1361 	/* not invoked for commands that could return deferred errors */
1362 	switch (sshdr->sense_key) {
1363 	case UNIT_ATTENTION:
1364 	case NOT_READY:
1365 		/* medium not present */
1366 		if (sshdr->asc == 0x3A) {
1367 			set_media_not_present(sdkp);
1368 			return 1;
1369 		}
1370 	}
1371 	return 0;
1372 }
1373 
1374 /**
1375  *	sd_check_events - check media events
1376  *	@disk: kernel device descriptor
1377  *	@clearing: disk events currently being cleared
1378  *
1379  *	Returns mask of DISK_EVENT_*.
1380  *
1381  *	Note: this function is invoked from the block subsystem.
1382  **/
1383 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1384 {
1385 	struct scsi_disk *sdkp = scsi_disk(disk);
1386 	struct scsi_device *sdp = sdkp->device;
1387 	struct scsi_sense_hdr *sshdr = NULL;
1388 	int retval;
1389 
1390 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1391 
1392 	/*
1393 	 * If the device is offline, don't send any commands - just pretend as
1394 	 * if the command failed.  If the device ever comes back online, we
1395 	 * can deal with it then.  It is only because of unrecoverable errors
1396 	 * that we would ever take a device offline in the first place.
1397 	 */
1398 	if (!scsi_device_online(sdp)) {
1399 		set_media_not_present(sdkp);
1400 		goto out;
1401 	}
1402 
1403 	/*
1404 	 * Using TEST_UNIT_READY enables differentiation between drive with
1405 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1406 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1407 	 *
1408 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1409 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1410 	 * sd_revalidate() is called.
1411 	 */
1412 	retval = -ENODEV;
1413 
1414 	if (scsi_block_when_processing_errors(sdp)) {
1415 		sshdr  = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1416 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1417 					      sshdr);
1418 	}
1419 
1420 	/* failed to execute TUR, assume media not present */
1421 	if (host_byte(retval)) {
1422 		set_media_not_present(sdkp);
1423 		goto out;
1424 	}
1425 
1426 	if (media_not_present(sdkp, sshdr))
1427 		goto out;
1428 
1429 	/*
1430 	 * For removable scsi disk we have to recognise the presence
1431 	 * of a disk in the drive.
1432 	 */
1433 	if (!sdkp->media_present)
1434 		sdp->changed = 1;
1435 	sdkp->media_present = 1;
1436 out:
1437 	/*
1438 	 * sdp->changed is set under the following conditions:
1439 	 *
1440 	 *	Medium present state has changed in either direction.
1441 	 *	Device has indicated UNIT_ATTENTION.
1442 	 */
1443 	kfree(sshdr);
1444 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1445 	sdp->changed = 0;
1446 	return retval;
1447 }
1448 
1449 static int sd_sync_cache(struct scsi_disk *sdkp)
1450 {
1451 	int retries, res;
1452 	struct scsi_device *sdp = sdkp->device;
1453 	const int timeout = sdp->request_queue->rq_timeout
1454 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1455 	struct scsi_sense_hdr sshdr;
1456 
1457 	if (!scsi_device_online(sdp))
1458 		return -ENODEV;
1459 
1460 	for (retries = 3; retries > 0; --retries) {
1461 		unsigned char cmd[10] = { 0 };
1462 
1463 		cmd[0] = SYNCHRONIZE_CACHE;
1464 		/*
1465 		 * Leave the rest of the command zero to indicate
1466 		 * flush everything.
1467 		 */
1468 		res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0,
1469 					     &sshdr, timeout, SD_MAX_RETRIES,
1470 					     NULL, REQ_PM);
1471 		if (res == 0)
1472 			break;
1473 	}
1474 
1475 	if (res) {
1476 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1477 
1478 		if (driver_byte(res) & DRIVER_SENSE)
1479 			sd_print_sense_hdr(sdkp, &sshdr);
1480 		/* we need to evaluate the error return  */
1481 		if (scsi_sense_valid(&sshdr) &&
1482 			(sshdr.asc == 0x3a ||	/* medium not present */
1483 			 sshdr.asc == 0x20))	/* invalid command */
1484 				/* this is no error here */
1485 				return 0;
1486 
1487 		switch (host_byte(res)) {
1488 		/* ignore errors due to racing a disconnection */
1489 		case DID_BAD_TARGET:
1490 		case DID_NO_CONNECT:
1491 			return 0;
1492 		/* signal the upper layer it might try again */
1493 		case DID_BUS_BUSY:
1494 		case DID_IMM_RETRY:
1495 		case DID_REQUEUE:
1496 		case DID_SOFT_ERROR:
1497 			return -EBUSY;
1498 		default:
1499 			return -EIO;
1500 		}
1501 	}
1502 	return 0;
1503 }
1504 
1505 static void sd_rescan(struct device *dev)
1506 {
1507 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1508 
1509 	revalidate_disk(sdkp->disk);
1510 }
1511 
1512 
1513 #ifdef CONFIG_COMPAT
1514 /*
1515  * This gets directly called from VFS. When the ioctl
1516  * is not recognized we go back to the other translation paths.
1517  */
1518 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1519 			   unsigned int cmd, unsigned long arg)
1520 {
1521 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1522 	int error;
1523 
1524 	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1525 			(mode & FMODE_NDELAY) != 0);
1526 	if (error)
1527 		return error;
1528 
1529 	/*
1530 	 * Let the static ioctl translation table take care of it.
1531 	 */
1532 	if (!sdev->host->hostt->compat_ioctl)
1533 		return -ENOIOCTLCMD;
1534 	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1535 }
1536 #endif
1537 
1538 static const struct block_device_operations sd_fops = {
1539 	.owner			= THIS_MODULE,
1540 	.open			= sd_open,
1541 	.release		= sd_release,
1542 	.ioctl			= sd_ioctl,
1543 	.getgeo			= sd_getgeo,
1544 #ifdef CONFIG_COMPAT
1545 	.compat_ioctl		= sd_compat_ioctl,
1546 #endif
1547 	.check_events		= sd_check_events,
1548 	.revalidate_disk	= sd_revalidate_disk,
1549 	.unlock_native_capacity	= sd_unlock_native_capacity,
1550 };
1551 
1552 /**
1553  *	sd_eh_action - error handling callback
1554  *	@scmd:		sd-issued command that has failed
1555  *	@eh_disp:	The recovery disposition suggested by the midlayer
1556  *
1557  *	This function is called by the SCSI midlayer upon completion of an
1558  *	error test command (currently TEST UNIT READY). The result of sending
1559  *	the eh command is passed in eh_disp.  We're looking for devices that
1560  *	fail medium access commands but are OK with non access commands like
1561  *	test unit ready (so wrongly see the device as having a successful
1562  *	recovery)
1563  **/
1564 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1565 {
1566 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1567 
1568 	if (!scsi_device_online(scmd->device) ||
1569 	    !scsi_medium_access_command(scmd) ||
1570 	    host_byte(scmd->result) != DID_TIME_OUT ||
1571 	    eh_disp != SUCCESS)
1572 		return eh_disp;
1573 
1574 	/*
1575 	 * The device has timed out executing a medium access command.
1576 	 * However, the TEST UNIT READY command sent during error
1577 	 * handling completed successfully. Either the device is in the
1578 	 * process of recovering or has it suffered an internal failure
1579 	 * that prevents access to the storage medium.
1580 	 */
1581 	sdkp->medium_access_timed_out++;
1582 
1583 	/*
1584 	 * If the device keeps failing read/write commands but TEST UNIT
1585 	 * READY always completes successfully we assume that medium
1586 	 * access is no longer possible and take the device offline.
1587 	 */
1588 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1589 		scmd_printk(KERN_ERR, scmd,
1590 			    "Medium access timeout failure. Offlining disk!\n");
1591 		scsi_device_set_state(scmd->device, SDEV_OFFLINE);
1592 
1593 		return FAILED;
1594 	}
1595 
1596 	return eh_disp;
1597 }
1598 
1599 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1600 {
1601 	u64 start_lba = blk_rq_pos(scmd->request);
1602 	u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512);
1603 	u64 factor = scmd->device->sector_size / 512;
1604 	u64 bad_lba;
1605 	int info_valid;
1606 	/*
1607 	 * resid is optional but mostly filled in.  When it's unused,
1608 	 * its value is zero, so we assume the whole buffer transferred
1609 	 */
1610 	unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1611 	unsigned int good_bytes;
1612 
1613 	if (scmd->request->cmd_type != REQ_TYPE_FS)
1614 		return 0;
1615 
1616 	info_valid = scsi_get_sense_info_fld(scmd->sense_buffer,
1617 					     SCSI_SENSE_BUFFERSIZE,
1618 					     &bad_lba);
1619 	if (!info_valid)
1620 		return 0;
1621 
1622 	if (scsi_bufflen(scmd) <= scmd->device->sector_size)
1623 		return 0;
1624 
1625 	/* be careful ... don't want any overflows */
1626 	do_div(start_lba, factor);
1627 	do_div(end_lba, factor);
1628 
1629 	/* The bad lba was reported incorrectly, we have no idea where
1630 	 * the error is.
1631 	 */
1632 	if (bad_lba < start_lba  || bad_lba >= end_lba)
1633 		return 0;
1634 
1635 	/* This computation should always be done in terms of
1636 	 * the resolution of the device's medium.
1637 	 */
1638 	good_bytes = (bad_lba - start_lba) * scmd->device->sector_size;
1639 	return min(good_bytes, transferred);
1640 }
1641 
1642 /**
1643  *	sd_done - bottom half handler: called when the lower level
1644  *	driver has completed (successfully or otherwise) a scsi command.
1645  *	@SCpnt: mid-level's per command structure.
1646  *
1647  *	Note: potentially run from within an ISR. Must not block.
1648  **/
1649 static int sd_done(struct scsi_cmnd *SCpnt)
1650 {
1651 	int result = SCpnt->result;
1652 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1653 	struct scsi_sense_hdr sshdr;
1654 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1655 	struct request *req = SCpnt->request;
1656 	int sense_valid = 0;
1657 	int sense_deferred = 0;
1658 	unsigned char op = SCpnt->cmnd[0];
1659 	unsigned char unmap = SCpnt->cmnd[1] & 8;
1660 
1661 	if (req->cmd_flags & REQ_DISCARD || req->cmd_flags & REQ_WRITE_SAME) {
1662 		if (!result) {
1663 			good_bytes = blk_rq_bytes(req);
1664 			scsi_set_resid(SCpnt, 0);
1665 		} else {
1666 			good_bytes = 0;
1667 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1668 		}
1669 	}
1670 
1671 	if (result) {
1672 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1673 		if (sense_valid)
1674 			sense_deferred = scsi_sense_is_deferred(&sshdr);
1675 	}
1676 	sdkp->medium_access_timed_out = 0;
1677 
1678 	if (driver_byte(result) != DRIVER_SENSE &&
1679 	    (!sense_valid || sense_deferred))
1680 		goto out;
1681 
1682 	switch (sshdr.sense_key) {
1683 	case HARDWARE_ERROR:
1684 	case MEDIUM_ERROR:
1685 		good_bytes = sd_completed_bytes(SCpnt);
1686 		break;
1687 	case RECOVERED_ERROR:
1688 		good_bytes = scsi_bufflen(SCpnt);
1689 		break;
1690 	case NO_SENSE:
1691 		/* This indicates a false check condition, so ignore it.  An
1692 		 * unknown amount of data was transferred so treat it as an
1693 		 * error.
1694 		 */
1695 		SCpnt->result = 0;
1696 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1697 		break;
1698 	case ABORTED_COMMAND:
1699 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
1700 			good_bytes = sd_completed_bytes(SCpnt);
1701 		break;
1702 	case ILLEGAL_REQUEST:
1703 		if (sshdr.asc == 0x10)  /* DIX: Host detected corruption */
1704 			good_bytes = sd_completed_bytes(SCpnt);
1705 		/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
1706 		if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
1707 			switch (op) {
1708 			case UNMAP:
1709 				sd_config_discard(sdkp, SD_LBP_DISABLE);
1710 				break;
1711 			case WRITE_SAME_16:
1712 			case WRITE_SAME:
1713 				if (unmap)
1714 					sd_config_discard(sdkp, SD_LBP_DISABLE);
1715 				else {
1716 					sdkp->device->no_write_same = 1;
1717 					sd_config_write_same(sdkp);
1718 
1719 					good_bytes = 0;
1720 					req->__data_len = blk_rq_bytes(req);
1721 					req->cmd_flags |= REQ_QUIET;
1722 				}
1723 			}
1724 		}
1725 		break;
1726 	default:
1727 		break;
1728 	}
1729  out:
1730 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
1731 					   "sd_done: completed %d of %d bytes\n",
1732 					   good_bytes, scsi_bufflen(SCpnt)));
1733 
1734 	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
1735 		sd_dif_complete(SCpnt, good_bytes);
1736 
1737 	return good_bytes;
1738 }
1739 
1740 /*
1741  * spinup disk - called only in sd_revalidate_disk()
1742  */
1743 static void
1744 sd_spinup_disk(struct scsi_disk *sdkp)
1745 {
1746 	unsigned char cmd[10];
1747 	unsigned long spintime_expire = 0;
1748 	int retries, spintime;
1749 	unsigned int the_result;
1750 	struct scsi_sense_hdr sshdr;
1751 	int sense_valid = 0;
1752 
1753 	spintime = 0;
1754 
1755 	/* Spin up drives, as required.  Only do this at boot time */
1756 	/* Spinup needs to be done for module loads too. */
1757 	do {
1758 		retries = 0;
1759 
1760 		do {
1761 			cmd[0] = TEST_UNIT_READY;
1762 			memset((void *) &cmd[1], 0, 9);
1763 
1764 			the_result = scsi_execute_req(sdkp->device, cmd,
1765 						      DMA_NONE, NULL, 0,
1766 						      &sshdr, SD_TIMEOUT,
1767 						      SD_MAX_RETRIES, NULL);
1768 
1769 			/*
1770 			 * If the drive has indicated to us that it
1771 			 * doesn't have any media in it, don't bother
1772 			 * with any more polling.
1773 			 */
1774 			if (media_not_present(sdkp, &sshdr))
1775 				return;
1776 
1777 			if (the_result)
1778 				sense_valid = scsi_sense_valid(&sshdr);
1779 			retries++;
1780 		} while (retries < 3 &&
1781 			 (!scsi_status_is_good(the_result) ||
1782 			  ((driver_byte(the_result) & DRIVER_SENSE) &&
1783 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
1784 
1785 		if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
1786 			/* no sense, TUR either succeeded or failed
1787 			 * with a status error */
1788 			if(!spintime && !scsi_status_is_good(the_result)) {
1789 				sd_print_result(sdkp, "Test Unit Ready failed",
1790 						the_result);
1791 			}
1792 			break;
1793 		}
1794 
1795 		/*
1796 		 * The device does not want the automatic start to be issued.
1797 		 */
1798 		if (sdkp->device->no_start_on_add)
1799 			break;
1800 
1801 		if (sense_valid && sshdr.sense_key == NOT_READY) {
1802 			if (sshdr.asc == 4 && sshdr.ascq == 3)
1803 				break;	/* manual intervention required */
1804 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
1805 				break;	/* standby */
1806 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
1807 				break;	/* unavailable */
1808 			/*
1809 			 * Issue command to spin up drive when not ready
1810 			 */
1811 			if (!spintime) {
1812 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
1813 				cmd[0] = START_STOP;
1814 				cmd[1] = 1;	/* Return immediately */
1815 				memset((void *) &cmd[2], 0, 8);
1816 				cmd[4] = 1;	/* Start spin cycle */
1817 				if (sdkp->device->start_stop_pwr_cond)
1818 					cmd[4] |= 1 << 4;
1819 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
1820 						 NULL, 0, &sshdr,
1821 						 SD_TIMEOUT, SD_MAX_RETRIES,
1822 						 NULL);
1823 				spintime_expire = jiffies + 100 * HZ;
1824 				spintime = 1;
1825 			}
1826 			/* Wait 1 second for next try */
1827 			msleep(1000);
1828 			printk(".");
1829 
1830 		/*
1831 		 * Wait for USB flash devices with slow firmware.
1832 		 * Yes, this sense key/ASC combination shouldn't
1833 		 * occur here.  It's characteristic of these devices.
1834 		 */
1835 		} else if (sense_valid &&
1836 				sshdr.sense_key == UNIT_ATTENTION &&
1837 				sshdr.asc == 0x28) {
1838 			if (!spintime) {
1839 				spintime_expire = jiffies + 5 * HZ;
1840 				spintime = 1;
1841 			}
1842 			/* Wait 1 second for next try */
1843 			msleep(1000);
1844 		} else {
1845 			/* we don't understand the sense code, so it's
1846 			 * probably pointless to loop */
1847 			if(!spintime) {
1848 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
1849 				sd_print_sense_hdr(sdkp, &sshdr);
1850 			}
1851 			break;
1852 		}
1853 
1854 	} while (spintime && time_before_eq(jiffies, spintime_expire));
1855 
1856 	if (spintime) {
1857 		if (scsi_status_is_good(the_result))
1858 			printk("ready\n");
1859 		else
1860 			printk("not responding...\n");
1861 	}
1862 }
1863 
1864 
1865 /*
1866  * Determine whether disk supports Data Integrity Field.
1867  */
1868 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
1869 {
1870 	struct scsi_device *sdp = sdkp->device;
1871 	u8 type;
1872 	int ret = 0;
1873 
1874 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
1875 		return ret;
1876 
1877 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
1878 
1879 	if (type > SD_DIF_TYPE3_PROTECTION)
1880 		ret = -ENODEV;
1881 	else if (scsi_host_dif_capable(sdp->host, type))
1882 		ret = 1;
1883 
1884 	if (sdkp->first_scan || type != sdkp->protection_type)
1885 		switch (ret) {
1886 		case -ENODEV:
1887 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
1888 				  " protection type %u. Disabling disk!\n",
1889 				  type);
1890 			break;
1891 		case 1:
1892 			sd_printk(KERN_NOTICE, sdkp,
1893 				  "Enabling DIF Type %u protection\n", type);
1894 			break;
1895 		case 0:
1896 			sd_printk(KERN_NOTICE, sdkp,
1897 				  "Disabling DIF Type %u protection\n", type);
1898 			break;
1899 		}
1900 
1901 	sdkp->protection_type = type;
1902 
1903 	return ret;
1904 }
1905 
1906 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
1907 			struct scsi_sense_hdr *sshdr, int sense_valid,
1908 			int the_result)
1909 {
1910 	if (driver_byte(the_result) & DRIVER_SENSE)
1911 		sd_print_sense_hdr(sdkp, sshdr);
1912 	else
1913 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
1914 
1915 	/*
1916 	 * Set dirty bit for removable devices if not ready -
1917 	 * sometimes drives will not report this properly.
1918 	 */
1919 	if (sdp->removable &&
1920 	    sense_valid && sshdr->sense_key == NOT_READY)
1921 		set_media_not_present(sdkp);
1922 
1923 	/*
1924 	 * We used to set media_present to 0 here to indicate no media
1925 	 * in the drive, but some drives fail read capacity even with
1926 	 * media present, so we can't do that.
1927 	 */
1928 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
1929 }
1930 
1931 #define RC16_LEN 32
1932 #if RC16_LEN > SD_BUF_SIZE
1933 #error RC16_LEN must not be more than SD_BUF_SIZE
1934 #endif
1935 
1936 #define READ_CAPACITY_RETRIES_ON_RESET	10
1937 
1938 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
1939 						unsigned char *buffer)
1940 {
1941 	unsigned char cmd[16];
1942 	struct scsi_sense_hdr sshdr;
1943 	int sense_valid = 0;
1944 	int the_result;
1945 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
1946 	unsigned int alignment;
1947 	unsigned long long lba;
1948 	unsigned sector_size;
1949 
1950 	if (sdp->no_read_capacity_16)
1951 		return -EINVAL;
1952 
1953 	do {
1954 		memset(cmd, 0, 16);
1955 		cmd[0] = SERVICE_ACTION_IN_16;
1956 		cmd[1] = SAI_READ_CAPACITY_16;
1957 		cmd[13] = RC16_LEN;
1958 		memset(buffer, 0, RC16_LEN);
1959 
1960 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
1961 					buffer, RC16_LEN, &sshdr,
1962 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1963 
1964 		if (media_not_present(sdkp, &sshdr))
1965 			return -ENODEV;
1966 
1967 		if (the_result) {
1968 			sense_valid = scsi_sense_valid(&sshdr);
1969 			if (sense_valid &&
1970 			    sshdr.sense_key == ILLEGAL_REQUEST &&
1971 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
1972 			    sshdr.ascq == 0x00)
1973 				/* Invalid Command Operation Code or
1974 				 * Invalid Field in CDB, just retry
1975 				 * silently with RC10 */
1976 				return -EINVAL;
1977 			if (sense_valid &&
1978 			    sshdr.sense_key == UNIT_ATTENTION &&
1979 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
1980 				/* Device reset might occur several times,
1981 				 * give it one more chance */
1982 				if (--reset_retries > 0)
1983 					continue;
1984 		}
1985 		retries--;
1986 
1987 	} while (the_result && retries);
1988 
1989 	if (the_result) {
1990 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
1991 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
1992 		return -EINVAL;
1993 	}
1994 
1995 	sector_size = get_unaligned_be32(&buffer[8]);
1996 	lba = get_unaligned_be64(&buffer[0]);
1997 
1998 	if (sd_read_protection_type(sdkp, buffer) < 0) {
1999 		sdkp->capacity = 0;
2000 		return -ENODEV;
2001 	}
2002 
2003 	if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) {
2004 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2005 			"kernel compiled with support for large block "
2006 			"devices.\n");
2007 		sdkp->capacity = 0;
2008 		return -EOVERFLOW;
2009 	}
2010 
2011 	/* Logical blocks per physical block exponent */
2012 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2013 
2014 	/* Lowest aligned logical block */
2015 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2016 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2017 	if (alignment && sdkp->first_scan)
2018 		sd_printk(KERN_NOTICE, sdkp,
2019 			  "physical block alignment offset: %u\n", alignment);
2020 
2021 	if (buffer[14] & 0x80) { /* LBPME */
2022 		sdkp->lbpme = 1;
2023 
2024 		if (buffer[14] & 0x40) /* LBPRZ */
2025 			sdkp->lbprz = 1;
2026 
2027 		sd_config_discard(sdkp, SD_LBP_WS16);
2028 	}
2029 
2030 	sdkp->capacity = lba + 1;
2031 	return sector_size;
2032 }
2033 
2034 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2035 						unsigned char *buffer)
2036 {
2037 	unsigned char cmd[16];
2038 	struct scsi_sense_hdr sshdr;
2039 	int sense_valid = 0;
2040 	int the_result;
2041 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2042 	sector_t lba;
2043 	unsigned sector_size;
2044 
2045 	do {
2046 		cmd[0] = READ_CAPACITY;
2047 		memset(&cmd[1], 0, 9);
2048 		memset(buffer, 0, 8);
2049 
2050 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2051 					buffer, 8, &sshdr,
2052 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2053 
2054 		if (media_not_present(sdkp, &sshdr))
2055 			return -ENODEV;
2056 
2057 		if (the_result) {
2058 			sense_valid = scsi_sense_valid(&sshdr);
2059 			if (sense_valid &&
2060 			    sshdr.sense_key == UNIT_ATTENTION &&
2061 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2062 				/* Device reset might occur several times,
2063 				 * give it one more chance */
2064 				if (--reset_retries > 0)
2065 					continue;
2066 		}
2067 		retries--;
2068 
2069 	} while (the_result && retries);
2070 
2071 	if (the_result) {
2072 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2073 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2074 		return -EINVAL;
2075 	}
2076 
2077 	sector_size = get_unaligned_be32(&buffer[4]);
2078 	lba = get_unaligned_be32(&buffer[0]);
2079 
2080 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2081 		/* Some buggy (usb cardreader) devices return an lba of
2082 		   0xffffffff when the want to report a size of 0 (with
2083 		   which they really mean no media is present) */
2084 		sdkp->capacity = 0;
2085 		sdkp->physical_block_size = sector_size;
2086 		return sector_size;
2087 	}
2088 
2089 	if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) {
2090 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2091 			"kernel compiled with support for large block "
2092 			"devices.\n");
2093 		sdkp->capacity = 0;
2094 		return -EOVERFLOW;
2095 	}
2096 
2097 	sdkp->capacity = lba + 1;
2098 	sdkp->physical_block_size = sector_size;
2099 	return sector_size;
2100 }
2101 
2102 static int sd_try_rc16_first(struct scsi_device *sdp)
2103 {
2104 	if (sdp->host->max_cmd_len < 16)
2105 		return 0;
2106 	if (sdp->try_rc_10_first)
2107 		return 0;
2108 	if (sdp->scsi_level > SCSI_SPC_2)
2109 		return 1;
2110 	if (scsi_device_protection(sdp))
2111 		return 1;
2112 	return 0;
2113 }
2114 
2115 /*
2116  * read disk capacity
2117  */
2118 static void
2119 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2120 {
2121 	int sector_size;
2122 	struct scsi_device *sdp = sdkp->device;
2123 	sector_t old_capacity = sdkp->capacity;
2124 
2125 	if (sd_try_rc16_first(sdp)) {
2126 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2127 		if (sector_size == -EOVERFLOW)
2128 			goto got_data;
2129 		if (sector_size == -ENODEV)
2130 			return;
2131 		if (sector_size < 0)
2132 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2133 		if (sector_size < 0)
2134 			return;
2135 	} else {
2136 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2137 		if (sector_size == -EOVERFLOW)
2138 			goto got_data;
2139 		if (sector_size < 0)
2140 			return;
2141 		if ((sizeof(sdkp->capacity) > 4) &&
2142 		    (sdkp->capacity > 0xffffffffULL)) {
2143 			int old_sector_size = sector_size;
2144 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2145 					"Trying to use READ CAPACITY(16).\n");
2146 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2147 			if (sector_size < 0) {
2148 				sd_printk(KERN_NOTICE, sdkp,
2149 					"Using 0xffffffff as device size\n");
2150 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2151 				sector_size = old_sector_size;
2152 				goto got_data;
2153 			}
2154 		}
2155 	}
2156 
2157 	/* Some devices are known to return the total number of blocks,
2158 	 * not the highest block number.  Some devices have versions
2159 	 * which do this and others which do not.  Some devices we might
2160 	 * suspect of doing this but we don't know for certain.
2161 	 *
2162 	 * If we know the reported capacity is wrong, decrement it.  If
2163 	 * we can only guess, then assume the number of blocks is even
2164 	 * (usually true but not always) and err on the side of lowering
2165 	 * the capacity.
2166 	 */
2167 	if (sdp->fix_capacity ||
2168 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2169 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2170 				"from its reported value: %llu\n",
2171 				(unsigned long long) sdkp->capacity);
2172 		--sdkp->capacity;
2173 	}
2174 
2175 got_data:
2176 	if (sector_size == 0) {
2177 		sector_size = 512;
2178 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2179 			  "assuming 512.\n");
2180 	}
2181 
2182 	if (sector_size != 512 &&
2183 	    sector_size != 1024 &&
2184 	    sector_size != 2048 &&
2185 	    sector_size != 4096) {
2186 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2187 			  sector_size);
2188 		/*
2189 		 * The user might want to re-format the drive with
2190 		 * a supported sectorsize.  Once this happens, it
2191 		 * would be relatively trivial to set the thing up.
2192 		 * For this reason, we leave the thing in the table.
2193 		 */
2194 		sdkp->capacity = 0;
2195 		/*
2196 		 * set a bogus sector size so the normal read/write
2197 		 * logic in the block layer will eventually refuse any
2198 		 * request on this device without tripping over power
2199 		 * of two sector size assumptions
2200 		 */
2201 		sector_size = 512;
2202 	}
2203 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2204 
2205 	{
2206 		char cap_str_2[10], cap_str_10[10];
2207 
2208 		string_get_size(sdkp->capacity, sector_size,
2209 				STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2210 		string_get_size(sdkp->capacity, sector_size,
2211 				STRING_UNITS_10, cap_str_10,
2212 				sizeof(cap_str_10));
2213 
2214 		if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2215 			sd_printk(KERN_NOTICE, sdkp,
2216 				  "%llu %d-byte logical blocks: (%s/%s)\n",
2217 				  (unsigned long long)sdkp->capacity,
2218 				  sector_size, cap_str_10, cap_str_2);
2219 
2220 			if (sdkp->physical_block_size != sector_size)
2221 				sd_printk(KERN_NOTICE, sdkp,
2222 					  "%u-byte physical blocks\n",
2223 					  sdkp->physical_block_size);
2224 		}
2225 	}
2226 
2227 	if (sdkp->capacity > 0xffffffff) {
2228 		sdp->use_16_for_rw = 1;
2229 		sdkp->max_xfer_blocks = SD_MAX_XFER_BLOCKS;
2230 	} else
2231 		sdkp->max_xfer_blocks = SD_DEF_XFER_BLOCKS;
2232 
2233 	/* Rescale capacity to 512-byte units */
2234 	if (sector_size == 4096)
2235 		sdkp->capacity <<= 3;
2236 	else if (sector_size == 2048)
2237 		sdkp->capacity <<= 2;
2238 	else if (sector_size == 1024)
2239 		sdkp->capacity <<= 1;
2240 
2241 	blk_queue_physical_block_size(sdp->request_queue,
2242 				      sdkp->physical_block_size);
2243 	sdkp->device->sector_size = sector_size;
2244 }
2245 
2246 /* called with buffer of length 512 */
2247 static inline int
2248 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2249 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2250 		 struct scsi_sense_hdr *sshdr)
2251 {
2252 	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2253 			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2254 			       sshdr);
2255 }
2256 
2257 /*
2258  * read write protect setting, if possible - called only in sd_revalidate_disk()
2259  * called with buffer of length SD_BUF_SIZE
2260  */
2261 static void
2262 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2263 {
2264 	int res;
2265 	struct scsi_device *sdp = sdkp->device;
2266 	struct scsi_mode_data data;
2267 	int old_wp = sdkp->write_prot;
2268 
2269 	set_disk_ro(sdkp->disk, 0);
2270 	if (sdp->skip_ms_page_3f) {
2271 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2272 		return;
2273 	}
2274 
2275 	if (sdp->use_192_bytes_for_3f) {
2276 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2277 	} else {
2278 		/*
2279 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2280 		 * We have to start carefully: some devices hang if we ask
2281 		 * for more than is available.
2282 		 */
2283 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2284 
2285 		/*
2286 		 * Second attempt: ask for page 0 When only page 0 is
2287 		 * implemented, a request for page 3F may return Sense Key
2288 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2289 		 * CDB.
2290 		 */
2291 		if (!scsi_status_is_good(res))
2292 			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2293 
2294 		/*
2295 		 * Third attempt: ask 255 bytes, as we did earlier.
2296 		 */
2297 		if (!scsi_status_is_good(res))
2298 			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2299 					       &data, NULL);
2300 	}
2301 
2302 	if (!scsi_status_is_good(res)) {
2303 		sd_first_printk(KERN_WARNING, sdkp,
2304 			  "Test WP failed, assume Write Enabled\n");
2305 	} else {
2306 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2307 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2308 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2309 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2310 				  sdkp->write_prot ? "on" : "off");
2311 			sd_printk(KERN_DEBUG, sdkp,
2312 				  "Mode Sense: %02x %02x %02x %02x\n",
2313 				  buffer[0], buffer[1], buffer[2], buffer[3]);
2314 		}
2315 	}
2316 }
2317 
2318 /*
2319  * sd_read_cache_type - called only from sd_revalidate_disk()
2320  * called with buffer of length SD_BUF_SIZE
2321  */
2322 static void
2323 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2324 {
2325 	int len = 0, res;
2326 	struct scsi_device *sdp = sdkp->device;
2327 
2328 	int dbd;
2329 	int modepage;
2330 	int first_len;
2331 	struct scsi_mode_data data;
2332 	struct scsi_sense_hdr sshdr;
2333 	int old_wce = sdkp->WCE;
2334 	int old_rcd = sdkp->RCD;
2335 	int old_dpofua = sdkp->DPOFUA;
2336 
2337 
2338 	if (sdkp->cache_override)
2339 		return;
2340 
2341 	first_len = 4;
2342 	if (sdp->skip_ms_page_8) {
2343 		if (sdp->type == TYPE_RBC)
2344 			goto defaults;
2345 		else {
2346 			if (sdp->skip_ms_page_3f)
2347 				goto defaults;
2348 			modepage = 0x3F;
2349 			if (sdp->use_192_bytes_for_3f)
2350 				first_len = 192;
2351 			dbd = 0;
2352 		}
2353 	} else if (sdp->type == TYPE_RBC) {
2354 		modepage = 6;
2355 		dbd = 8;
2356 	} else {
2357 		modepage = 8;
2358 		dbd = 0;
2359 	}
2360 
2361 	/* cautiously ask */
2362 	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2363 			&data, &sshdr);
2364 
2365 	if (!scsi_status_is_good(res))
2366 		goto bad_sense;
2367 
2368 	if (!data.header_length) {
2369 		modepage = 6;
2370 		first_len = 0;
2371 		sd_first_printk(KERN_ERR, sdkp,
2372 				"Missing header in MODE_SENSE response\n");
2373 	}
2374 
2375 	/* that went OK, now ask for the proper length */
2376 	len = data.length;
2377 
2378 	/*
2379 	 * We're only interested in the first three bytes, actually.
2380 	 * But the data cache page is defined for the first 20.
2381 	 */
2382 	if (len < 3)
2383 		goto bad_sense;
2384 	else if (len > SD_BUF_SIZE) {
2385 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2386 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2387 		len = SD_BUF_SIZE;
2388 	}
2389 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2390 		len = 192;
2391 
2392 	/* Get the data */
2393 	if (len > first_len)
2394 		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2395 				&data, &sshdr);
2396 
2397 	if (scsi_status_is_good(res)) {
2398 		int offset = data.header_length + data.block_descriptor_length;
2399 
2400 		while (offset < len) {
2401 			u8 page_code = buffer[offset] & 0x3F;
2402 			u8 spf       = buffer[offset] & 0x40;
2403 
2404 			if (page_code == 8 || page_code == 6) {
2405 				/* We're interested only in the first 3 bytes.
2406 				 */
2407 				if (len - offset <= 2) {
2408 					sd_first_printk(KERN_ERR, sdkp,
2409 						"Incomplete mode parameter "
2410 							"data\n");
2411 					goto defaults;
2412 				} else {
2413 					modepage = page_code;
2414 					goto Page_found;
2415 				}
2416 			} else {
2417 				/* Go to the next page */
2418 				if (spf && len - offset > 3)
2419 					offset += 4 + (buffer[offset+2] << 8) +
2420 						buffer[offset+3];
2421 				else if (!spf && len - offset > 1)
2422 					offset += 2 + buffer[offset+1];
2423 				else {
2424 					sd_first_printk(KERN_ERR, sdkp,
2425 							"Incomplete mode "
2426 							"parameter data\n");
2427 					goto defaults;
2428 				}
2429 			}
2430 		}
2431 
2432 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2433 		goto defaults;
2434 
2435 	Page_found:
2436 		if (modepage == 8) {
2437 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2438 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2439 		} else {
2440 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2441 			sdkp->RCD = 0;
2442 		}
2443 
2444 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2445 		if (sdp->broken_fua) {
2446 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2447 			sdkp->DPOFUA = 0;
2448 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) {
2449 			sd_first_printk(KERN_NOTICE, sdkp,
2450 				  "Uses READ/WRITE(6), disabling FUA\n");
2451 			sdkp->DPOFUA = 0;
2452 		}
2453 
2454 		/* No cache flush allowed for write protected devices */
2455 		if (sdkp->WCE && sdkp->write_prot)
2456 			sdkp->WCE = 0;
2457 
2458 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2459 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2460 			sd_printk(KERN_NOTICE, sdkp,
2461 				  "Write cache: %s, read cache: %s, %s\n",
2462 				  sdkp->WCE ? "enabled" : "disabled",
2463 				  sdkp->RCD ? "disabled" : "enabled",
2464 				  sdkp->DPOFUA ? "supports DPO and FUA"
2465 				  : "doesn't support DPO or FUA");
2466 
2467 		return;
2468 	}
2469 
2470 bad_sense:
2471 	if (scsi_sense_valid(&sshdr) &&
2472 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2473 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2474 		/* Invalid field in CDB */
2475 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2476 	else
2477 		sd_first_printk(KERN_ERR, sdkp,
2478 				"Asking for cache data failed\n");
2479 
2480 defaults:
2481 	if (sdp->wce_default_on) {
2482 		sd_first_printk(KERN_NOTICE, sdkp,
2483 				"Assuming drive cache: write back\n");
2484 		sdkp->WCE = 1;
2485 	} else {
2486 		sd_first_printk(KERN_ERR, sdkp,
2487 				"Assuming drive cache: write through\n");
2488 		sdkp->WCE = 0;
2489 	}
2490 	sdkp->RCD = 0;
2491 	sdkp->DPOFUA = 0;
2492 }
2493 
2494 /*
2495  * The ATO bit indicates whether the DIF application tag is available
2496  * for use by the operating system.
2497  */
2498 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2499 {
2500 	int res, offset;
2501 	struct scsi_device *sdp = sdkp->device;
2502 	struct scsi_mode_data data;
2503 	struct scsi_sense_hdr sshdr;
2504 
2505 	if (sdp->type != TYPE_DISK)
2506 		return;
2507 
2508 	if (sdkp->protection_type == 0)
2509 		return;
2510 
2511 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2512 			      SD_MAX_RETRIES, &data, &sshdr);
2513 
2514 	if (!scsi_status_is_good(res) || !data.header_length ||
2515 	    data.length < 6) {
2516 		sd_first_printk(KERN_WARNING, sdkp,
2517 			  "getting Control mode page failed, assume no ATO\n");
2518 
2519 		if (scsi_sense_valid(&sshdr))
2520 			sd_print_sense_hdr(sdkp, &sshdr);
2521 
2522 		return;
2523 	}
2524 
2525 	offset = data.header_length + data.block_descriptor_length;
2526 
2527 	if ((buffer[offset] & 0x3f) != 0x0a) {
2528 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2529 		return;
2530 	}
2531 
2532 	if ((buffer[offset + 5] & 0x80) == 0)
2533 		return;
2534 
2535 	sdkp->ATO = 1;
2536 
2537 	return;
2538 }
2539 
2540 /**
2541  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2542  * @disk: disk to query
2543  */
2544 static void sd_read_block_limits(struct scsi_disk *sdkp)
2545 {
2546 	unsigned int sector_sz = sdkp->device->sector_size;
2547 	const int vpd_len = 64;
2548 	u32 max_xfer_length;
2549 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2550 
2551 	if (!buffer ||
2552 	    /* Block Limits VPD */
2553 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2554 		goto out;
2555 
2556 	max_xfer_length = get_unaligned_be32(&buffer[8]);
2557 	if (max_xfer_length)
2558 		sdkp->max_xfer_blocks = max_xfer_length;
2559 
2560 	blk_queue_io_min(sdkp->disk->queue,
2561 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2562 	blk_queue_io_opt(sdkp->disk->queue,
2563 			 get_unaligned_be32(&buffer[12]) * sector_sz);
2564 
2565 	if (buffer[3] == 0x3c) {
2566 		unsigned int lba_count, desc_count;
2567 
2568 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2569 
2570 		if (!sdkp->lbpme)
2571 			goto out;
2572 
2573 		lba_count = get_unaligned_be32(&buffer[20]);
2574 		desc_count = get_unaligned_be32(&buffer[24]);
2575 
2576 		if (lba_count && desc_count)
2577 			sdkp->max_unmap_blocks = lba_count;
2578 
2579 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2580 
2581 		if (buffer[32] & 0x80)
2582 			sdkp->unmap_alignment =
2583 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2584 
2585 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2586 
2587 			if (sdkp->max_unmap_blocks)
2588 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2589 			else
2590 				sd_config_discard(sdkp, SD_LBP_WS16);
2591 
2592 		} else {	/* LBP VPD page tells us what to use */
2593 			if (sdkp->lbpu && sdkp->max_unmap_blocks && !sdkp->lbprz)
2594 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2595 			else if (sdkp->lbpws)
2596 				sd_config_discard(sdkp, SD_LBP_WS16);
2597 			else if (sdkp->lbpws10)
2598 				sd_config_discard(sdkp, SD_LBP_WS10);
2599 			else if (sdkp->lbpu && sdkp->max_unmap_blocks)
2600 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2601 			else
2602 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2603 		}
2604 	}
2605 
2606  out:
2607 	kfree(buffer);
2608 }
2609 
2610 /**
2611  * sd_read_block_characteristics - Query block dev. characteristics
2612  * @disk: disk to query
2613  */
2614 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2615 {
2616 	unsigned char *buffer;
2617 	u16 rot;
2618 	const int vpd_len = 64;
2619 
2620 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2621 
2622 	if (!buffer ||
2623 	    /* Block Device Characteristics VPD */
2624 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2625 		goto out;
2626 
2627 	rot = get_unaligned_be16(&buffer[4]);
2628 
2629 	if (rot == 1) {
2630 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, sdkp->disk->queue);
2631 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, sdkp->disk->queue);
2632 	}
2633 
2634  out:
2635 	kfree(buffer);
2636 }
2637 
2638 /**
2639  * sd_read_block_provisioning - Query provisioning VPD page
2640  * @disk: disk to query
2641  */
2642 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2643 {
2644 	unsigned char *buffer;
2645 	const int vpd_len = 8;
2646 
2647 	if (sdkp->lbpme == 0)
2648 		return;
2649 
2650 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2651 
2652 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2653 		goto out;
2654 
2655 	sdkp->lbpvpd	= 1;
2656 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
2657 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
2658 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
2659 
2660  out:
2661 	kfree(buffer);
2662 }
2663 
2664 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2665 {
2666 	struct scsi_device *sdev = sdkp->device;
2667 
2668 	if (sdev->host->no_write_same) {
2669 		sdev->no_write_same = 1;
2670 
2671 		return;
2672 	}
2673 
2674 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2675 		/* too large values might cause issues with arcmsr */
2676 		int vpd_buf_len = 64;
2677 
2678 		sdev->no_report_opcodes = 1;
2679 
2680 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
2681 		 * CODES is unsupported and the device has an ATA
2682 		 * Information VPD page (SAT).
2683 		 */
2684 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
2685 			sdev->no_write_same = 1;
2686 	}
2687 
2688 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
2689 		sdkp->ws16 = 1;
2690 
2691 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
2692 		sdkp->ws10 = 1;
2693 }
2694 
2695 static int sd_try_extended_inquiry(struct scsi_device *sdp)
2696 {
2697 	/* Attempt VPD inquiry if the device blacklist explicitly calls
2698 	 * for it.
2699 	 */
2700 	if (sdp->try_vpd_pages)
2701 		return 1;
2702 	/*
2703 	 * Although VPD inquiries can go to SCSI-2 type devices,
2704 	 * some USB ones crash on receiving them, and the pages
2705 	 * we currently ask for are for SPC-3 and beyond
2706 	 */
2707 	if (sdp->scsi_level > SCSI_SPC_2 && !sdp->skip_vpd_pages)
2708 		return 1;
2709 	return 0;
2710 }
2711 
2712 /**
2713  *	sd_revalidate_disk - called the first time a new disk is seen,
2714  *	performs disk spin up, read_capacity, etc.
2715  *	@disk: struct gendisk we care about
2716  **/
2717 static int sd_revalidate_disk(struct gendisk *disk)
2718 {
2719 	struct scsi_disk *sdkp = scsi_disk(disk);
2720 	struct scsi_device *sdp = sdkp->device;
2721 	unsigned char *buffer;
2722 	unsigned int max_xfer;
2723 
2724 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
2725 				      "sd_revalidate_disk\n"));
2726 
2727 	/*
2728 	 * If the device is offline, don't try and read capacity or any
2729 	 * of the other niceties.
2730 	 */
2731 	if (!scsi_device_online(sdp))
2732 		goto out;
2733 
2734 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
2735 	if (!buffer) {
2736 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
2737 			  "allocation failure.\n");
2738 		goto out;
2739 	}
2740 
2741 	sd_spinup_disk(sdkp);
2742 
2743 	/*
2744 	 * Without media there is no reason to ask; moreover, some devices
2745 	 * react badly if we do.
2746 	 */
2747 	if (sdkp->media_present) {
2748 		sd_read_capacity(sdkp, buffer);
2749 
2750 		if (sd_try_extended_inquiry(sdp)) {
2751 			sd_read_block_provisioning(sdkp);
2752 			sd_read_block_limits(sdkp);
2753 			sd_read_block_characteristics(sdkp);
2754 		}
2755 
2756 		sd_read_write_protect_flag(sdkp, buffer);
2757 		sd_read_cache_type(sdkp, buffer);
2758 		sd_read_app_tag_own(sdkp, buffer);
2759 		sd_read_write_same(sdkp, buffer);
2760 	}
2761 
2762 	sdkp->first_scan = 0;
2763 
2764 	/*
2765 	 * We now have all cache related info, determine how we deal
2766 	 * with flush requests.
2767 	 */
2768 	sd_set_flush_flag(sdkp);
2769 
2770 	max_xfer = sdkp->max_xfer_blocks;
2771 	max_xfer <<= ilog2(sdp->sector_size) - 9;
2772 
2773 	sdkp->disk->queue->limits.max_sectors =
2774 		min_not_zero(queue_max_hw_sectors(sdkp->disk->queue), max_xfer);
2775 
2776 	set_capacity(disk, sdkp->capacity);
2777 	sd_config_write_same(sdkp);
2778 	kfree(buffer);
2779 
2780  out:
2781 	return 0;
2782 }
2783 
2784 /**
2785  *	sd_unlock_native_capacity - unlock native capacity
2786  *	@disk: struct gendisk to set capacity for
2787  *
2788  *	Block layer calls this function if it detects that partitions
2789  *	on @disk reach beyond the end of the device.  If the SCSI host
2790  *	implements ->unlock_native_capacity() method, it's invoked to
2791  *	give it a chance to adjust the device capacity.
2792  *
2793  *	CONTEXT:
2794  *	Defined by block layer.  Might sleep.
2795  */
2796 static void sd_unlock_native_capacity(struct gendisk *disk)
2797 {
2798 	struct scsi_device *sdev = scsi_disk(disk)->device;
2799 
2800 	if (sdev->host->hostt->unlock_native_capacity)
2801 		sdev->host->hostt->unlock_native_capacity(sdev);
2802 }
2803 
2804 /**
2805  *	sd_format_disk_name - format disk name
2806  *	@prefix: name prefix - ie. "sd" for SCSI disks
2807  *	@index: index of the disk to format name for
2808  *	@buf: output buffer
2809  *	@buflen: length of the output buffer
2810  *
2811  *	SCSI disk names starts at sda.  The 26th device is sdz and the
2812  *	27th is sdaa.  The last one for two lettered suffix is sdzz
2813  *	which is followed by sdaaa.
2814  *
2815  *	This is basically 26 base counting with one extra 'nil' entry
2816  *	at the beginning from the second digit on and can be
2817  *	determined using similar method as 26 base conversion with the
2818  *	index shifted -1 after each digit is computed.
2819  *
2820  *	CONTEXT:
2821  *	Don't care.
2822  *
2823  *	RETURNS:
2824  *	0 on success, -errno on failure.
2825  */
2826 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
2827 {
2828 	const int base = 'z' - 'a' + 1;
2829 	char *begin = buf + strlen(prefix);
2830 	char *end = buf + buflen;
2831 	char *p;
2832 	int unit;
2833 
2834 	p = end - 1;
2835 	*p = '\0';
2836 	unit = base;
2837 	do {
2838 		if (p == begin)
2839 			return -EINVAL;
2840 		*--p = 'a' + (index % unit);
2841 		index = (index / unit) - 1;
2842 	} while (index >= 0);
2843 
2844 	memmove(begin, p, end - p);
2845 	memcpy(buf, prefix, strlen(prefix));
2846 
2847 	return 0;
2848 }
2849 
2850 /*
2851  * The asynchronous part of sd_probe
2852  */
2853 static void sd_probe_async(void *data, async_cookie_t cookie)
2854 {
2855 	struct scsi_disk *sdkp = data;
2856 	struct scsi_device *sdp;
2857 	struct gendisk *gd;
2858 	u32 index;
2859 	struct device *dev;
2860 
2861 	sdp = sdkp->device;
2862 	gd = sdkp->disk;
2863 	index = sdkp->index;
2864 	dev = &sdp->sdev_gendev;
2865 
2866 	gd->major = sd_major((index & 0xf0) >> 4);
2867 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
2868 	gd->minors = SD_MINORS;
2869 
2870 	gd->fops = &sd_fops;
2871 	gd->private_data = &sdkp->driver;
2872 	gd->queue = sdkp->device->request_queue;
2873 
2874 	/* defaults, until the device tells us otherwise */
2875 	sdp->sector_size = 512;
2876 	sdkp->capacity = 0;
2877 	sdkp->media_present = 1;
2878 	sdkp->write_prot = 0;
2879 	sdkp->cache_override = 0;
2880 	sdkp->WCE = 0;
2881 	sdkp->RCD = 0;
2882 	sdkp->ATO = 0;
2883 	sdkp->first_scan = 1;
2884 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
2885 
2886 	sd_revalidate_disk(gd);
2887 
2888 	gd->driverfs_dev = &sdp->sdev_gendev;
2889 	gd->flags = GENHD_FL_EXT_DEVT;
2890 	if (sdp->removable) {
2891 		gd->flags |= GENHD_FL_REMOVABLE;
2892 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
2893 	}
2894 
2895 	blk_pm_runtime_init(sdp->request_queue, dev);
2896 	add_disk(gd);
2897 	if (sdkp->capacity)
2898 		sd_dif_config_host(sdkp);
2899 
2900 	sd_revalidate_disk(gd);
2901 
2902 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
2903 		  sdp->removable ? "removable " : "");
2904 	scsi_autopm_put_device(sdp);
2905 	put_device(&sdkp->dev);
2906 }
2907 
2908 /**
2909  *	sd_probe - called during driver initialization and whenever a
2910  *	new scsi device is attached to the system. It is called once
2911  *	for each scsi device (not just disks) present.
2912  *	@dev: pointer to device object
2913  *
2914  *	Returns 0 if successful (or not interested in this scsi device
2915  *	(e.g. scanner)); 1 when there is an error.
2916  *
2917  *	Note: this function is invoked from the scsi mid-level.
2918  *	This function sets up the mapping between a given
2919  *	<host,channel,id,lun> (found in sdp) and new device name
2920  *	(e.g. /dev/sda). More precisely it is the block device major
2921  *	and minor number that is chosen here.
2922  *
2923  *	Assume sd_probe is not re-entrant (for time being)
2924  *	Also think about sd_probe() and sd_remove() running coincidentally.
2925  **/
2926 static int sd_probe(struct device *dev)
2927 {
2928 	struct scsi_device *sdp = to_scsi_device(dev);
2929 	struct scsi_disk *sdkp;
2930 	struct gendisk *gd;
2931 	int index;
2932 	int error;
2933 
2934 	scsi_autopm_get_device(sdp);
2935 	error = -ENODEV;
2936 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_MOD && sdp->type != TYPE_RBC)
2937 		goto out;
2938 
2939 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
2940 					"sd_probe\n"));
2941 
2942 	error = -ENOMEM;
2943 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
2944 	if (!sdkp)
2945 		goto out;
2946 
2947 	gd = alloc_disk(SD_MINORS);
2948 	if (!gd)
2949 		goto out_free;
2950 
2951 	do {
2952 		if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
2953 			goto out_put;
2954 
2955 		spin_lock(&sd_index_lock);
2956 		error = ida_get_new(&sd_index_ida, &index);
2957 		spin_unlock(&sd_index_lock);
2958 	} while (error == -EAGAIN);
2959 
2960 	if (error) {
2961 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
2962 		goto out_put;
2963 	}
2964 
2965 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
2966 	if (error) {
2967 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
2968 		goto out_free_index;
2969 	}
2970 
2971 	sdkp->device = sdp;
2972 	sdkp->driver = &sd_template;
2973 	sdkp->disk = gd;
2974 	sdkp->index = index;
2975 	atomic_set(&sdkp->openers, 0);
2976 	atomic_set(&sdkp->device->ioerr_cnt, 0);
2977 
2978 	if (!sdp->request_queue->rq_timeout) {
2979 		if (sdp->type != TYPE_MOD)
2980 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
2981 		else
2982 			blk_queue_rq_timeout(sdp->request_queue,
2983 					     SD_MOD_TIMEOUT);
2984 	}
2985 
2986 	device_initialize(&sdkp->dev);
2987 	sdkp->dev.parent = dev;
2988 	sdkp->dev.class = &sd_disk_class;
2989 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
2990 
2991 	error = device_add(&sdkp->dev);
2992 	if (error)
2993 		goto out_free_index;
2994 
2995 	get_device(dev);
2996 	dev_set_drvdata(dev, sdkp);
2997 
2998 	get_device(&sdkp->dev);	/* prevent release before async_schedule */
2999 	async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3000 
3001 	return 0;
3002 
3003  out_free_index:
3004 	spin_lock(&sd_index_lock);
3005 	ida_remove(&sd_index_ida, index);
3006 	spin_unlock(&sd_index_lock);
3007  out_put:
3008 	put_disk(gd);
3009  out_free:
3010 	kfree(sdkp);
3011  out:
3012 	scsi_autopm_put_device(sdp);
3013 	return error;
3014 }
3015 
3016 /**
3017  *	sd_remove - called whenever a scsi disk (previously recognized by
3018  *	sd_probe) is detached from the system. It is called (potentially
3019  *	multiple times) during sd module unload.
3020  *	@sdp: pointer to mid level scsi device object
3021  *
3022  *	Note: this function is invoked from the scsi mid-level.
3023  *	This function potentially frees up a device name (e.g. /dev/sdc)
3024  *	that could be re-used by a subsequent sd_probe().
3025  *	This function is not called when the built-in sd driver is "exit-ed".
3026  **/
3027 static int sd_remove(struct device *dev)
3028 {
3029 	struct scsi_disk *sdkp;
3030 	dev_t devt;
3031 
3032 	sdkp = dev_get_drvdata(dev);
3033 	devt = disk_devt(sdkp->disk);
3034 	scsi_autopm_get_device(sdkp->device);
3035 
3036 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3037 	async_synchronize_full_domain(&scsi_sd_probe_domain);
3038 	device_del(&sdkp->dev);
3039 	del_gendisk(sdkp->disk);
3040 	sd_shutdown(dev);
3041 
3042 	blk_register_region(devt, SD_MINORS, NULL,
3043 			    sd_default_probe, NULL, NULL);
3044 
3045 	mutex_lock(&sd_ref_mutex);
3046 	dev_set_drvdata(dev, NULL);
3047 	put_device(&sdkp->dev);
3048 	mutex_unlock(&sd_ref_mutex);
3049 
3050 	return 0;
3051 }
3052 
3053 /**
3054  *	scsi_disk_release - Called to free the scsi_disk structure
3055  *	@dev: pointer to embedded class device
3056  *
3057  *	sd_ref_mutex must be held entering this routine.  Because it is
3058  *	called on last put, you should always use the scsi_disk_get()
3059  *	scsi_disk_put() helpers which manipulate the semaphore directly
3060  *	and never do a direct put_device.
3061  **/
3062 static void scsi_disk_release(struct device *dev)
3063 {
3064 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3065 	struct gendisk *disk = sdkp->disk;
3066 
3067 	spin_lock(&sd_index_lock);
3068 	ida_remove(&sd_index_ida, sdkp->index);
3069 	spin_unlock(&sd_index_lock);
3070 
3071 	blk_integrity_unregister(disk);
3072 	disk->private_data = NULL;
3073 	put_disk(disk);
3074 	put_device(&sdkp->device->sdev_gendev);
3075 
3076 	kfree(sdkp);
3077 }
3078 
3079 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3080 {
3081 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3082 	struct scsi_sense_hdr sshdr;
3083 	struct scsi_device *sdp = sdkp->device;
3084 	int res;
3085 
3086 	if (start)
3087 		cmd[4] |= 1;	/* START */
3088 
3089 	if (sdp->start_stop_pwr_cond)
3090 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3091 
3092 	if (!scsi_device_online(sdp))
3093 		return -ENODEV;
3094 
3095 	res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr,
3096 			       SD_TIMEOUT, SD_MAX_RETRIES, NULL, REQ_PM);
3097 	if (res) {
3098 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3099 		if (driver_byte(res) & DRIVER_SENSE)
3100 			sd_print_sense_hdr(sdkp, &sshdr);
3101 		if (scsi_sense_valid(&sshdr) &&
3102 			/* 0x3a is medium not present */
3103 			sshdr.asc == 0x3a)
3104 			res = 0;
3105 	}
3106 
3107 	/* SCSI error codes must not go to the generic layer */
3108 	if (res)
3109 		return -EIO;
3110 
3111 	return 0;
3112 }
3113 
3114 /*
3115  * Send a SYNCHRONIZE CACHE instruction down to the device through
3116  * the normal SCSI command structure.  Wait for the command to
3117  * complete.
3118  */
3119 static void sd_shutdown(struct device *dev)
3120 {
3121 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3122 
3123 	if (!sdkp)
3124 		return;         /* this can happen */
3125 
3126 	if (pm_runtime_suspended(dev))
3127 		return;
3128 
3129 	if (sdkp->WCE && sdkp->media_present) {
3130 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3131 		sd_sync_cache(sdkp);
3132 	}
3133 
3134 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3135 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3136 		sd_start_stop_device(sdkp, 0);
3137 	}
3138 }
3139 
3140 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3141 {
3142 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3143 	int ret = 0;
3144 
3145 	if (!sdkp)
3146 		return 0;	/* this can happen */
3147 
3148 	if (sdkp->WCE && sdkp->media_present) {
3149 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3150 		ret = sd_sync_cache(sdkp);
3151 		if (ret) {
3152 			/* ignore OFFLINE device */
3153 			if (ret == -ENODEV)
3154 				ret = 0;
3155 			goto done;
3156 		}
3157 	}
3158 
3159 	if (sdkp->device->manage_start_stop) {
3160 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3161 		/* an error is not worth aborting a system sleep */
3162 		ret = sd_start_stop_device(sdkp, 0);
3163 		if (ignore_stop_errors)
3164 			ret = 0;
3165 	}
3166 
3167 done:
3168 	return ret;
3169 }
3170 
3171 static int sd_suspend_system(struct device *dev)
3172 {
3173 	return sd_suspend_common(dev, true);
3174 }
3175 
3176 static int sd_suspend_runtime(struct device *dev)
3177 {
3178 	return sd_suspend_common(dev, false);
3179 }
3180 
3181 static int sd_resume(struct device *dev)
3182 {
3183 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3184 
3185 	if (!sdkp->device->manage_start_stop)
3186 		return 0;
3187 
3188 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3189 	return sd_start_stop_device(sdkp, 1);
3190 }
3191 
3192 /**
3193  *	init_sd - entry point for this driver (both when built in or when
3194  *	a module).
3195  *
3196  *	Note: this function registers this driver with the scsi mid-level.
3197  **/
3198 static int __init init_sd(void)
3199 {
3200 	int majors = 0, i, err;
3201 
3202 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3203 
3204 	for (i = 0; i < SD_MAJORS; i++) {
3205 		if (register_blkdev(sd_major(i), "sd") != 0)
3206 			continue;
3207 		majors++;
3208 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3209 				    sd_default_probe, NULL, NULL);
3210 	}
3211 
3212 	if (!majors)
3213 		return -ENODEV;
3214 
3215 	err = class_register(&sd_disk_class);
3216 	if (err)
3217 		goto err_out;
3218 
3219 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3220 					 0, 0, NULL);
3221 	if (!sd_cdb_cache) {
3222 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3223 		err = -ENOMEM;
3224 		goto err_out_class;
3225 	}
3226 
3227 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3228 	if (!sd_cdb_pool) {
3229 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3230 		err = -ENOMEM;
3231 		goto err_out_cache;
3232 	}
3233 
3234 	err = scsi_register_driver(&sd_template.gendrv);
3235 	if (err)
3236 		goto err_out_driver;
3237 
3238 	return 0;
3239 
3240 err_out_driver:
3241 	mempool_destroy(sd_cdb_pool);
3242 
3243 err_out_cache:
3244 	kmem_cache_destroy(sd_cdb_cache);
3245 
3246 err_out_class:
3247 	class_unregister(&sd_disk_class);
3248 err_out:
3249 	for (i = 0; i < SD_MAJORS; i++)
3250 		unregister_blkdev(sd_major(i), "sd");
3251 	return err;
3252 }
3253 
3254 /**
3255  *	exit_sd - exit point for this driver (when it is a module).
3256  *
3257  *	Note: this function unregisters this driver from the scsi mid-level.
3258  **/
3259 static void __exit exit_sd(void)
3260 {
3261 	int i;
3262 
3263 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3264 
3265 	scsi_unregister_driver(&sd_template.gendrv);
3266 	mempool_destroy(sd_cdb_pool);
3267 	kmem_cache_destroy(sd_cdb_cache);
3268 
3269 	class_unregister(&sd_disk_class);
3270 
3271 	for (i = 0; i < SD_MAJORS; i++) {
3272 		blk_unregister_region(sd_major(i), SD_MINORS);
3273 		unregister_blkdev(sd_major(i), "sd");
3274 	}
3275 }
3276 
3277 module_init(init_sd);
3278 module_exit(exit_sd);
3279 
3280 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3281 			       struct scsi_sense_hdr *sshdr)
3282 {
3283 	scsi_print_sense_hdr(sdkp->device,
3284 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3285 }
3286 
3287 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3288 			    int result)
3289 {
3290 	const char *hb_string = scsi_hostbyte_string(result);
3291 	const char *db_string = scsi_driverbyte_string(result);
3292 
3293 	if (hb_string || db_string)
3294 		sd_printk(KERN_INFO, sdkp,
3295 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3296 			  hb_string ? hb_string : "invalid",
3297 			  db_string ? db_string : "invalid");
3298 	else
3299 		sd_printk(KERN_INFO, sdkp,
3300 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3301 			  msg, host_byte(result), driver_byte(result));
3302 }
3303 
3304