1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/major.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 71 #include "sd.h" 72 #include "scsi_priv.h" 73 #include "scsi_logging.h" 74 75 MODULE_AUTHOR("Eric Youngdale"); 76 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 77 MODULE_LICENSE("GPL"); 78 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 99 100 #define SD_MINORS 16 101 102 static void sd_config_discard(struct scsi_disk *, unsigned int); 103 static void sd_config_write_same(struct scsi_disk *); 104 static int sd_revalidate_disk(struct gendisk *); 105 static void sd_unlock_native_capacity(struct gendisk *disk); 106 static int sd_probe(struct device *); 107 static int sd_remove(struct device *); 108 static void sd_shutdown(struct device *); 109 static int sd_suspend_system(struct device *); 110 static int sd_suspend_runtime(struct device *); 111 static int sd_resume_system(struct device *); 112 static int sd_resume_runtime(struct device *); 113 static void sd_rescan(struct device *); 114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 115 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 116 static int sd_done(struct scsi_cmnd *); 117 static void sd_eh_reset(struct scsi_cmnd *); 118 static int sd_eh_action(struct scsi_cmnd *, int); 119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 120 static void scsi_disk_release(struct device *cdev); 121 122 static DEFINE_IDA(sd_index_ida); 123 124 static struct kmem_cache *sd_cdb_cache; 125 static mempool_t *sd_page_pool; 126 static struct lock_class_key sd_bio_compl_lkclass; 127 128 static const char *sd_cache_types[] = { 129 "write through", "none", "write back", 130 "write back, no read (daft)" 131 }; 132 133 static void sd_set_flush_flag(struct scsi_disk *sdkp) 134 { 135 bool wc = false, fua = false; 136 137 if (sdkp->WCE) { 138 wc = true; 139 if (sdkp->DPOFUA) 140 fua = true; 141 } 142 143 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 144 } 145 146 static ssize_t 147 cache_type_store(struct device *dev, struct device_attribute *attr, 148 const char *buf, size_t count) 149 { 150 int ct, rcd, wce, sp; 151 struct scsi_disk *sdkp = to_scsi_disk(dev); 152 struct scsi_device *sdp = sdkp->device; 153 char buffer[64]; 154 char *buffer_data; 155 struct scsi_mode_data data; 156 struct scsi_sense_hdr sshdr; 157 static const char temp[] = "temporary "; 158 int len; 159 160 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 161 /* no cache control on RBC devices; theoretically they 162 * can do it, but there's probably so many exceptions 163 * it's not worth the risk */ 164 return -EINVAL; 165 166 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 167 buf += sizeof(temp) - 1; 168 sdkp->cache_override = 1; 169 } else { 170 sdkp->cache_override = 0; 171 } 172 173 ct = sysfs_match_string(sd_cache_types, buf); 174 if (ct < 0) 175 return -EINVAL; 176 177 rcd = ct & 0x01 ? 1 : 0; 178 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 179 180 if (sdkp->cache_override) { 181 sdkp->WCE = wce; 182 sdkp->RCD = rcd; 183 sd_set_flush_flag(sdkp); 184 return count; 185 } 186 187 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 188 sdkp->max_retries, &data, NULL)) 189 return -EINVAL; 190 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 191 data.block_descriptor_length); 192 buffer_data = buffer + data.header_length + 193 data.block_descriptor_length; 194 buffer_data[2] &= ~0x05; 195 buffer_data[2] |= wce << 2 | rcd; 196 sp = buffer_data[0] & 0x80 ? 1 : 0; 197 buffer_data[0] &= ~0x80; 198 199 /* 200 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 201 * received mode parameter buffer before doing MODE SELECT. 202 */ 203 data.device_specific = 0; 204 205 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 206 sdkp->max_retries, &data, &sshdr)) { 207 if (scsi_sense_valid(&sshdr)) 208 sd_print_sense_hdr(sdkp, &sshdr); 209 return -EINVAL; 210 } 211 sd_revalidate_disk(sdkp->disk); 212 return count; 213 } 214 215 static ssize_t 216 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 217 char *buf) 218 { 219 struct scsi_disk *sdkp = to_scsi_disk(dev); 220 struct scsi_device *sdp = sdkp->device; 221 222 return sprintf(buf, "%u\n", sdp->manage_start_stop); 223 } 224 225 static ssize_t 226 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 227 const char *buf, size_t count) 228 { 229 struct scsi_disk *sdkp = to_scsi_disk(dev); 230 struct scsi_device *sdp = sdkp->device; 231 bool v; 232 233 if (!capable(CAP_SYS_ADMIN)) 234 return -EACCES; 235 236 if (kstrtobool(buf, &v)) 237 return -EINVAL; 238 239 sdp->manage_start_stop = v; 240 241 return count; 242 } 243 static DEVICE_ATTR_RW(manage_start_stop); 244 245 static ssize_t 246 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 247 { 248 struct scsi_disk *sdkp = to_scsi_disk(dev); 249 250 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 251 } 252 253 static ssize_t 254 allow_restart_store(struct device *dev, struct device_attribute *attr, 255 const char *buf, size_t count) 256 { 257 bool v; 258 struct scsi_disk *sdkp = to_scsi_disk(dev); 259 struct scsi_device *sdp = sdkp->device; 260 261 if (!capable(CAP_SYS_ADMIN)) 262 return -EACCES; 263 264 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 265 return -EINVAL; 266 267 if (kstrtobool(buf, &v)) 268 return -EINVAL; 269 270 sdp->allow_restart = v; 271 272 return count; 273 } 274 static DEVICE_ATTR_RW(allow_restart); 275 276 static ssize_t 277 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 278 { 279 struct scsi_disk *sdkp = to_scsi_disk(dev); 280 int ct = sdkp->RCD + 2*sdkp->WCE; 281 282 return sprintf(buf, "%s\n", sd_cache_types[ct]); 283 } 284 static DEVICE_ATTR_RW(cache_type); 285 286 static ssize_t 287 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 288 { 289 struct scsi_disk *sdkp = to_scsi_disk(dev); 290 291 return sprintf(buf, "%u\n", sdkp->DPOFUA); 292 } 293 static DEVICE_ATTR_RO(FUA); 294 295 static ssize_t 296 protection_type_show(struct device *dev, struct device_attribute *attr, 297 char *buf) 298 { 299 struct scsi_disk *sdkp = to_scsi_disk(dev); 300 301 return sprintf(buf, "%u\n", sdkp->protection_type); 302 } 303 304 static ssize_t 305 protection_type_store(struct device *dev, struct device_attribute *attr, 306 const char *buf, size_t count) 307 { 308 struct scsi_disk *sdkp = to_scsi_disk(dev); 309 unsigned int val; 310 int err; 311 312 if (!capable(CAP_SYS_ADMIN)) 313 return -EACCES; 314 315 err = kstrtouint(buf, 10, &val); 316 317 if (err) 318 return err; 319 320 if (val <= T10_PI_TYPE3_PROTECTION) 321 sdkp->protection_type = val; 322 323 return count; 324 } 325 static DEVICE_ATTR_RW(protection_type); 326 327 static ssize_t 328 protection_mode_show(struct device *dev, struct device_attribute *attr, 329 char *buf) 330 { 331 struct scsi_disk *sdkp = to_scsi_disk(dev); 332 struct scsi_device *sdp = sdkp->device; 333 unsigned int dif, dix; 334 335 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 336 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 337 338 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 339 dif = 0; 340 dix = 1; 341 } 342 343 if (!dif && !dix) 344 return sprintf(buf, "none\n"); 345 346 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 347 } 348 static DEVICE_ATTR_RO(protection_mode); 349 350 static ssize_t 351 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 352 { 353 struct scsi_disk *sdkp = to_scsi_disk(dev); 354 355 return sprintf(buf, "%u\n", sdkp->ATO); 356 } 357 static DEVICE_ATTR_RO(app_tag_own); 358 359 static ssize_t 360 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 361 char *buf) 362 { 363 struct scsi_disk *sdkp = to_scsi_disk(dev); 364 365 return sprintf(buf, "%u\n", sdkp->lbpme); 366 } 367 static DEVICE_ATTR_RO(thin_provisioning); 368 369 /* sysfs_match_string() requires dense arrays */ 370 static const char *lbp_mode[] = { 371 [SD_LBP_FULL] = "full", 372 [SD_LBP_UNMAP] = "unmap", 373 [SD_LBP_WS16] = "writesame_16", 374 [SD_LBP_WS10] = "writesame_10", 375 [SD_LBP_ZERO] = "writesame_zero", 376 [SD_LBP_DISABLE] = "disabled", 377 }; 378 379 static ssize_t 380 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 381 char *buf) 382 { 383 struct scsi_disk *sdkp = to_scsi_disk(dev); 384 385 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 386 } 387 388 static ssize_t 389 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 390 const char *buf, size_t count) 391 { 392 struct scsi_disk *sdkp = to_scsi_disk(dev); 393 struct scsi_device *sdp = sdkp->device; 394 int mode; 395 396 if (!capable(CAP_SYS_ADMIN)) 397 return -EACCES; 398 399 if (sd_is_zoned(sdkp)) { 400 sd_config_discard(sdkp, SD_LBP_DISABLE); 401 return count; 402 } 403 404 if (sdp->type != TYPE_DISK) 405 return -EINVAL; 406 407 mode = sysfs_match_string(lbp_mode, buf); 408 if (mode < 0) 409 return -EINVAL; 410 411 sd_config_discard(sdkp, mode); 412 413 return count; 414 } 415 static DEVICE_ATTR_RW(provisioning_mode); 416 417 /* sysfs_match_string() requires dense arrays */ 418 static const char *zeroing_mode[] = { 419 [SD_ZERO_WRITE] = "write", 420 [SD_ZERO_WS] = "writesame", 421 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 422 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 423 }; 424 425 static ssize_t 426 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 427 char *buf) 428 { 429 struct scsi_disk *sdkp = to_scsi_disk(dev); 430 431 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 432 } 433 434 static ssize_t 435 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 436 const char *buf, size_t count) 437 { 438 struct scsi_disk *sdkp = to_scsi_disk(dev); 439 int mode; 440 441 if (!capable(CAP_SYS_ADMIN)) 442 return -EACCES; 443 444 mode = sysfs_match_string(zeroing_mode, buf); 445 if (mode < 0) 446 return -EINVAL; 447 448 sdkp->zeroing_mode = mode; 449 450 return count; 451 } 452 static DEVICE_ATTR_RW(zeroing_mode); 453 454 static ssize_t 455 max_medium_access_timeouts_show(struct device *dev, 456 struct device_attribute *attr, char *buf) 457 { 458 struct scsi_disk *sdkp = to_scsi_disk(dev); 459 460 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 461 } 462 463 static ssize_t 464 max_medium_access_timeouts_store(struct device *dev, 465 struct device_attribute *attr, const char *buf, 466 size_t count) 467 { 468 struct scsi_disk *sdkp = to_scsi_disk(dev); 469 int err; 470 471 if (!capable(CAP_SYS_ADMIN)) 472 return -EACCES; 473 474 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 475 476 return err ? err : count; 477 } 478 static DEVICE_ATTR_RW(max_medium_access_timeouts); 479 480 static ssize_t 481 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 482 char *buf) 483 { 484 struct scsi_disk *sdkp = to_scsi_disk(dev); 485 486 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 487 } 488 489 static ssize_t 490 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 491 const char *buf, size_t count) 492 { 493 struct scsi_disk *sdkp = to_scsi_disk(dev); 494 struct scsi_device *sdp = sdkp->device; 495 unsigned long max; 496 int err; 497 498 if (!capable(CAP_SYS_ADMIN)) 499 return -EACCES; 500 501 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 502 return -EINVAL; 503 504 err = kstrtoul(buf, 10, &max); 505 506 if (err) 507 return err; 508 509 if (max == 0) 510 sdp->no_write_same = 1; 511 else if (max <= SD_MAX_WS16_BLOCKS) { 512 sdp->no_write_same = 0; 513 sdkp->max_ws_blocks = max; 514 } 515 516 sd_config_write_same(sdkp); 517 518 return count; 519 } 520 static DEVICE_ATTR_RW(max_write_same_blocks); 521 522 static ssize_t 523 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 524 { 525 struct scsi_disk *sdkp = to_scsi_disk(dev); 526 527 if (sdkp->device->type == TYPE_ZBC) 528 return sprintf(buf, "host-managed\n"); 529 if (sdkp->zoned == 1) 530 return sprintf(buf, "host-aware\n"); 531 if (sdkp->zoned == 2) 532 return sprintf(buf, "drive-managed\n"); 533 return sprintf(buf, "none\n"); 534 } 535 static DEVICE_ATTR_RO(zoned_cap); 536 537 static ssize_t 538 max_retries_store(struct device *dev, struct device_attribute *attr, 539 const char *buf, size_t count) 540 { 541 struct scsi_disk *sdkp = to_scsi_disk(dev); 542 struct scsi_device *sdev = sdkp->device; 543 int retries, err; 544 545 err = kstrtoint(buf, 10, &retries); 546 if (err) 547 return err; 548 549 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 550 sdkp->max_retries = retries; 551 return count; 552 } 553 554 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 555 SD_MAX_RETRIES); 556 return -EINVAL; 557 } 558 559 static ssize_t 560 max_retries_show(struct device *dev, struct device_attribute *attr, 561 char *buf) 562 { 563 struct scsi_disk *sdkp = to_scsi_disk(dev); 564 565 return sprintf(buf, "%d\n", sdkp->max_retries); 566 } 567 568 static DEVICE_ATTR_RW(max_retries); 569 570 static struct attribute *sd_disk_attrs[] = { 571 &dev_attr_cache_type.attr, 572 &dev_attr_FUA.attr, 573 &dev_attr_allow_restart.attr, 574 &dev_attr_manage_start_stop.attr, 575 &dev_attr_protection_type.attr, 576 &dev_attr_protection_mode.attr, 577 &dev_attr_app_tag_own.attr, 578 &dev_attr_thin_provisioning.attr, 579 &dev_attr_provisioning_mode.attr, 580 &dev_attr_zeroing_mode.attr, 581 &dev_attr_max_write_same_blocks.attr, 582 &dev_attr_max_medium_access_timeouts.attr, 583 &dev_attr_zoned_cap.attr, 584 &dev_attr_max_retries.attr, 585 NULL, 586 }; 587 ATTRIBUTE_GROUPS(sd_disk); 588 589 static struct class sd_disk_class = { 590 .name = "scsi_disk", 591 .owner = THIS_MODULE, 592 .dev_release = scsi_disk_release, 593 .dev_groups = sd_disk_groups, 594 }; 595 596 static const struct dev_pm_ops sd_pm_ops = { 597 .suspend = sd_suspend_system, 598 .resume = sd_resume_system, 599 .poweroff = sd_suspend_system, 600 .restore = sd_resume_system, 601 .runtime_suspend = sd_suspend_runtime, 602 .runtime_resume = sd_resume_runtime, 603 }; 604 605 static struct scsi_driver sd_template = { 606 .gendrv = { 607 .name = "sd", 608 .owner = THIS_MODULE, 609 .probe = sd_probe, 610 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 611 .remove = sd_remove, 612 .shutdown = sd_shutdown, 613 .pm = &sd_pm_ops, 614 }, 615 .rescan = sd_rescan, 616 .init_command = sd_init_command, 617 .uninit_command = sd_uninit_command, 618 .done = sd_done, 619 .eh_action = sd_eh_action, 620 .eh_reset = sd_eh_reset, 621 }; 622 623 /* 624 * Don't request a new module, as that could deadlock in multipath 625 * environment. 626 */ 627 static void sd_default_probe(dev_t devt) 628 { 629 } 630 631 /* 632 * Device no to disk mapping: 633 * 634 * major disc2 disc p1 635 * |............|.............|....|....| <- dev_t 636 * 31 20 19 8 7 4 3 0 637 * 638 * Inside a major, we have 16k disks, however mapped non- 639 * contiguously. The first 16 disks are for major0, the next 640 * ones with major1, ... Disk 256 is for major0 again, disk 272 641 * for major1, ... 642 * As we stay compatible with our numbering scheme, we can reuse 643 * the well-know SCSI majors 8, 65--71, 136--143. 644 */ 645 static int sd_major(int major_idx) 646 { 647 switch (major_idx) { 648 case 0: 649 return SCSI_DISK0_MAJOR; 650 case 1 ... 7: 651 return SCSI_DISK1_MAJOR + major_idx - 1; 652 case 8 ... 15: 653 return SCSI_DISK8_MAJOR + major_idx - 8; 654 default: 655 BUG(); 656 return 0; /* shut up gcc */ 657 } 658 } 659 660 #ifdef CONFIG_BLK_SED_OPAL 661 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 662 size_t len, bool send) 663 { 664 struct scsi_disk *sdkp = data; 665 struct scsi_device *sdev = sdkp->device; 666 u8 cdb[12] = { 0, }; 667 int ret; 668 669 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 670 cdb[1] = secp; 671 put_unaligned_be16(spsp, &cdb[2]); 672 put_unaligned_be32(len, &cdb[6]); 673 674 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 675 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0, 676 RQF_PM, NULL); 677 return ret <= 0 ? ret : -EIO; 678 } 679 #endif /* CONFIG_BLK_SED_OPAL */ 680 681 /* 682 * Look up the DIX operation based on whether the command is read or 683 * write and whether dix and dif are enabled. 684 */ 685 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 686 { 687 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 688 static const unsigned int ops[] = { /* wrt dix dif */ 689 SCSI_PROT_NORMAL, /* 0 0 0 */ 690 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 691 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 692 SCSI_PROT_READ_PASS, /* 0 1 1 */ 693 SCSI_PROT_NORMAL, /* 1 0 0 */ 694 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 695 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 696 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 697 }; 698 699 return ops[write << 2 | dix << 1 | dif]; 700 } 701 702 /* 703 * Returns a mask of the protection flags that are valid for a given DIX 704 * operation. 705 */ 706 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 707 { 708 static const unsigned int flag_mask[] = { 709 [SCSI_PROT_NORMAL] = 0, 710 711 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 712 SCSI_PROT_GUARD_CHECK | 713 SCSI_PROT_REF_CHECK | 714 SCSI_PROT_REF_INCREMENT, 715 716 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 717 SCSI_PROT_IP_CHECKSUM, 718 719 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 720 SCSI_PROT_GUARD_CHECK | 721 SCSI_PROT_REF_CHECK | 722 SCSI_PROT_REF_INCREMENT | 723 SCSI_PROT_IP_CHECKSUM, 724 725 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 726 SCSI_PROT_REF_INCREMENT, 727 728 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 729 SCSI_PROT_REF_CHECK | 730 SCSI_PROT_REF_INCREMENT | 731 SCSI_PROT_IP_CHECKSUM, 732 733 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 734 SCSI_PROT_GUARD_CHECK | 735 SCSI_PROT_REF_CHECK | 736 SCSI_PROT_REF_INCREMENT | 737 SCSI_PROT_IP_CHECKSUM, 738 }; 739 740 return flag_mask[prot_op]; 741 } 742 743 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 744 unsigned int dix, unsigned int dif) 745 { 746 struct request *rq = scsi_cmd_to_rq(scmd); 747 struct bio *bio = rq->bio; 748 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 749 unsigned int protect = 0; 750 751 if (dix) { /* DIX Type 0, 1, 2, 3 */ 752 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 753 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 754 755 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 756 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 757 } 758 759 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 760 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 761 762 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 763 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 764 } 765 766 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 767 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 768 769 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 770 protect = 3 << 5; /* Disable target PI checking */ 771 else 772 protect = 1 << 5; /* Enable target PI checking */ 773 } 774 775 scsi_set_prot_op(scmd, prot_op); 776 scsi_set_prot_type(scmd, dif); 777 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 778 779 return protect; 780 } 781 782 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 783 { 784 struct request_queue *q = sdkp->disk->queue; 785 unsigned int logical_block_size = sdkp->device->sector_size; 786 unsigned int max_blocks = 0; 787 788 q->limits.discard_alignment = 789 sdkp->unmap_alignment * logical_block_size; 790 q->limits.discard_granularity = 791 max(sdkp->physical_block_size, 792 sdkp->unmap_granularity * logical_block_size); 793 sdkp->provisioning_mode = mode; 794 795 switch (mode) { 796 797 case SD_LBP_FULL: 798 case SD_LBP_DISABLE: 799 blk_queue_max_discard_sectors(q, 0); 800 return; 801 802 case SD_LBP_UNMAP: 803 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 804 (u32)SD_MAX_WS16_BLOCKS); 805 break; 806 807 case SD_LBP_WS16: 808 if (sdkp->device->unmap_limit_for_ws) 809 max_blocks = sdkp->max_unmap_blocks; 810 else 811 max_blocks = sdkp->max_ws_blocks; 812 813 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 814 break; 815 816 case SD_LBP_WS10: 817 if (sdkp->device->unmap_limit_for_ws) 818 max_blocks = sdkp->max_unmap_blocks; 819 else 820 max_blocks = sdkp->max_ws_blocks; 821 822 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 823 break; 824 825 case SD_LBP_ZERO: 826 max_blocks = min_not_zero(sdkp->max_ws_blocks, 827 (u32)SD_MAX_WS10_BLOCKS); 828 break; 829 } 830 831 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 832 } 833 834 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 835 { 836 struct scsi_device *sdp = cmd->device; 837 struct request *rq = scsi_cmd_to_rq(cmd); 838 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 839 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 840 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 841 unsigned int data_len = 24; 842 char *buf; 843 844 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 845 if (!rq->special_vec.bv_page) 846 return BLK_STS_RESOURCE; 847 clear_highpage(rq->special_vec.bv_page); 848 rq->special_vec.bv_offset = 0; 849 rq->special_vec.bv_len = data_len; 850 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 851 852 cmd->cmd_len = 10; 853 cmd->cmnd[0] = UNMAP; 854 cmd->cmnd[8] = 24; 855 856 buf = bvec_virt(&rq->special_vec); 857 put_unaligned_be16(6 + 16, &buf[0]); 858 put_unaligned_be16(16, &buf[2]); 859 put_unaligned_be64(lba, &buf[8]); 860 put_unaligned_be32(nr_blocks, &buf[16]); 861 862 cmd->allowed = sdkp->max_retries; 863 cmd->transfersize = data_len; 864 rq->timeout = SD_TIMEOUT; 865 866 return scsi_alloc_sgtables(cmd); 867 } 868 869 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 870 bool unmap) 871 { 872 struct scsi_device *sdp = cmd->device; 873 struct request *rq = scsi_cmd_to_rq(cmd); 874 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 875 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 876 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 877 u32 data_len = sdp->sector_size; 878 879 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 880 if (!rq->special_vec.bv_page) 881 return BLK_STS_RESOURCE; 882 clear_highpage(rq->special_vec.bv_page); 883 rq->special_vec.bv_offset = 0; 884 rq->special_vec.bv_len = data_len; 885 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 886 887 cmd->cmd_len = 16; 888 cmd->cmnd[0] = WRITE_SAME_16; 889 if (unmap) 890 cmd->cmnd[1] = 0x8; /* UNMAP */ 891 put_unaligned_be64(lba, &cmd->cmnd[2]); 892 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 893 894 cmd->allowed = sdkp->max_retries; 895 cmd->transfersize = data_len; 896 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 897 898 return scsi_alloc_sgtables(cmd); 899 } 900 901 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 902 bool unmap) 903 { 904 struct scsi_device *sdp = cmd->device; 905 struct request *rq = scsi_cmd_to_rq(cmd); 906 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 907 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 908 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 909 u32 data_len = sdp->sector_size; 910 911 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 912 if (!rq->special_vec.bv_page) 913 return BLK_STS_RESOURCE; 914 clear_highpage(rq->special_vec.bv_page); 915 rq->special_vec.bv_offset = 0; 916 rq->special_vec.bv_len = data_len; 917 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 918 919 cmd->cmd_len = 10; 920 cmd->cmnd[0] = WRITE_SAME; 921 if (unmap) 922 cmd->cmnd[1] = 0x8; /* UNMAP */ 923 put_unaligned_be32(lba, &cmd->cmnd[2]); 924 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 925 926 cmd->allowed = sdkp->max_retries; 927 cmd->transfersize = data_len; 928 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 929 930 return scsi_alloc_sgtables(cmd); 931 } 932 933 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 934 { 935 struct request *rq = scsi_cmd_to_rq(cmd); 936 struct scsi_device *sdp = cmd->device; 937 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 938 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 939 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 940 941 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 942 switch (sdkp->zeroing_mode) { 943 case SD_ZERO_WS16_UNMAP: 944 return sd_setup_write_same16_cmnd(cmd, true); 945 case SD_ZERO_WS10_UNMAP: 946 return sd_setup_write_same10_cmnd(cmd, true); 947 } 948 } 949 950 if (sdp->no_write_same) { 951 rq->rq_flags |= RQF_QUIET; 952 return BLK_STS_TARGET; 953 } 954 955 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 956 return sd_setup_write_same16_cmnd(cmd, false); 957 958 return sd_setup_write_same10_cmnd(cmd, false); 959 } 960 961 static void sd_config_write_same(struct scsi_disk *sdkp) 962 { 963 struct request_queue *q = sdkp->disk->queue; 964 unsigned int logical_block_size = sdkp->device->sector_size; 965 966 if (sdkp->device->no_write_same) { 967 sdkp->max_ws_blocks = 0; 968 goto out; 969 } 970 971 /* Some devices can not handle block counts above 0xffff despite 972 * supporting WRITE SAME(16). Consequently we default to 64k 973 * blocks per I/O unless the device explicitly advertises a 974 * bigger limit. 975 */ 976 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 977 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 978 (u32)SD_MAX_WS16_BLOCKS); 979 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 980 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 981 (u32)SD_MAX_WS10_BLOCKS); 982 else { 983 sdkp->device->no_write_same = 1; 984 sdkp->max_ws_blocks = 0; 985 } 986 987 if (sdkp->lbprz && sdkp->lbpws) 988 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 989 else if (sdkp->lbprz && sdkp->lbpws10) 990 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 991 else if (sdkp->max_ws_blocks) 992 sdkp->zeroing_mode = SD_ZERO_WS; 993 else 994 sdkp->zeroing_mode = SD_ZERO_WRITE; 995 996 if (sdkp->max_ws_blocks && 997 sdkp->physical_block_size > logical_block_size) { 998 /* 999 * Reporting a maximum number of blocks that is not aligned 1000 * on the device physical size would cause a large write same 1001 * request to be split into physically unaligned chunks by 1002 * __blkdev_issue_write_zeroes() even if the caller of this 1003 * functions took care to align the large request. So make sure 1004 * the maximum reported is aligned to the device physical block 1005 * size. This is only an optional optimization for regular 1006 * disks, but this is mandatory to avoid failure of large write 1007 * same requests directed at sequential write required zones of 1008 * host-managed ZBC disks. 1009 */ 1010 sdkp->max_ws_blocks = 1011 round_down(sdkp->max_ws_blocks, 1012 bytes_to_logical(sdkp->device, 1013 sdkp->physical_block_size)); 1014 } 1015 1016 out: 1017 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1018 (logical_block_size >> 9)); 1019 } 1020 1021 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1022 { 1023 struct request *rq = scsi_cmd_to_rq(cmd); 1024 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1025 1026 /* flush requests don't perform I/O, zero the S/G table */ 1027 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1028 1029 if (cmd->device->use_16_for_sync) { 1030 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16; 1031 cmd->cmd_len = 16; 1032 } else { 1033 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1034 cmd->cmd_len = 10; 1035 } 1036 cmd->transfersize = 0; 1037 cmd->allowed = sdkp->max_retries; 1038 1039 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1040 return BLK_STS_OK; 1041 } 1042 1043 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1044 sector_t lba, unsigned int nr_blocks, 1045 unsigned char flags) 1046 { 1047 cmd->cmd_len = SD_EXT_CDB_SIZE; 1048 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1049 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1050 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1051 cmd->cmnd[10] = flags; 1052 put_unaligned_be64(lba, &cmd->cmnd[12]); 1053 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1054 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1055 1056 return BLK_STS_OK; 1057 } 1058 1059 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1060 sector_t lba, unsigned int nr_blocks, 1061 unsigned char flags) 1062 { 1063 cmd->cmd_len = 16; 1064 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1065 cmd->cmnd[1] = flags; 1066 cmd->cmnd[14] = 0; 1067 cmd->cmnd[15] = 0; 1068 put_unaligned_be64(lba, &cmd->cmnd[2]); 1069 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1070 1071 return BLK_STS_OK; 1072 } 1073 1074 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1075 sector_t lba, unsigned int nr_blocks, 1076 unsigned char flags) 1077 { 1078 cmd->cmd_len = 10; 1079 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1080 cmd->cmnd[1] = flags; 1081 cmd->cmnd[6] = 0; 1082 cmd->cmnd[9] = 0; 1083 put_unaligned_be32(lba, &cmd->cmnd[2]); 1084 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1085 1086 return BLK_STS_OK; 1087 } 1088 1089 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1090 sector_t lba, unsigned int nr_blocks, 1091 unsigned char flags) 1092 { 1093 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1094 if (WARN_ON_ONCE(nr_blocks == 0)) 1095 return BLK_STS_IOERR; 1096 1097 if (unlikely(flags & 0x8)) { 1098 /* 1099 * This happens only if this drive failed 10byte rw 1100 * command with ILLEGAL_REQUEST during operation and 1101 * thus turned off use_10_for_rw. 1102 */ 1103 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1104 return BLK_STS_IOERR; 1105 } 1106 1107 cmd->cmd_len = 6; 1108 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1109 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1110 cmd->cmnd[2] = (lba >> 8) & 0xff; 1111 cmd->cmnd[3] = lba & 0xff; 1112 cmd->cmnd[4] = nr_blocks; 1113 cmd->cmnd[5] = 0; 1114 1115 return BLK_STS_OK; 1116 } 1117 1118 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1119 { 1120 struct request *rq = scsi_cmd_to_rq(cmd); 1121 struct scsi_device *sdp = cmd->device; 1122 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1123 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1124 sector_t threshold; 1125 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1126 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1127 bool write = rq_data_dir(rq) == WRITE; 1128 unsigned char protect, fua; 1129 blk_status_t ret; 1130 unsigned int dif; 1131 bool dix; 1132 1133 ret = scsi_alloc_sgtables(cmd); 1134 if (ret != BLK_STS_OK) 1135 return ret; 1136 1137 ret = BLK_STS_IOERR; 1138 if (!scsi_device_online(sdp) || sdp->changed) { 1139 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1140 goto fail; 1141 } 1142 1143 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1144 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1145 goto fail; 1146 } 1147 1148 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1149 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1150 goto fail; 1151 } 1152 1153 /* 1154 * Some SD card readers can't handle accesses which touch the 1155 * last one or two logical blocks. Split accesses as needed. 1156 */ 1157 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1158 1159 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1160 if (lba < threshold) { 1161 /* Access up to the threshold but not beyond */ 1162 nr_blocks = threshold - lba; 1163 } else { 1164 /* Access only a single logical block */ 1165 nr_blocks = 1; 1166 } 1167 } 1168 1169 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1170 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1171 if (ret) 1172 goto fail; 1173 } 1174 1175 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1176 dix = scsi_prot_sg_count(cmd); 1177 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1178 1179 if (dif || dix) 1180 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1181 else 1182 protect = 0; 1183 1184 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1185 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1186 protect | fua); 1187 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1188 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1189 protect | fua); 1190 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1191 sdp->use_10_for_rw || protect) { 1192 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1193 protect | fua); 1194 } else { 1195 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1196 protect | fua); 1197 } 1198 1199 if (unlikely(ret != BLK_STS_OK)) 1200 goto fail; 1201 1202 /* 1203 * We shouldn't disconnect in the middle of a sector, so with a dumb 1204 * host adapter, it's safe to assume that we can at least transfer 1205 * this many bytes between each connect / disconnect. 1206 */ 1207 cmd->transfersize = sdp->sector_size; 1208 cmd->underflow = nr_blocks << 9; 1209 cmd->allowed = sdkp->max_retries; 1210 cmd->sdb.length = nr_blocks * sdp->sector_size; 1211 1212 SCSI_LOG_HLQUEUE(1, 1213 scmd_printk(KERN_INFO, cmd, 1214 "%s: block=%llu, count=%d\n", __func__, 1215 (unsigned long long)blk_rq_pos(rq), 1216 blk_rq_sectors(rq))); 1217 SCSI_LOG_HLQUEUE(2, 1218 scmd_printk(KERN_INFO, cmd, 1219 "%s %d/%u 512 byte blocks.\n", 1220 write ? "writing" : "reading", nr_blocks, 1221 blk_rq_sectors(rq))); 1222 1223 /* 1224 * This indicates that the command is ready from our end to be queued. 1225 */ 1226 return BLK_STS_OK; 1227 fail: 1228 scsi_free_sgtables(cmd); 1229 return ret; 1230 } 1231 1232 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1233 { 1234 struct request *rq = scsi_cmd_to_rq(cmd); 1235 1236 switch (req_op(rq)) { 1237 case REQ_OP_DISCARD: 1238 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1239 case SD_LBP_UNMAP: 1240 return sd_setup_unmap_cmnd(cmd); 1241 case SD_LBP_WS16: 1242 return sd_setup_write_same16_cmnd(cmd, true); 1243 case SD_LBP_WS10: 1244 return sd_setup_write_same10_cmnd(cmd, true); 1245 case SD_LBP_ZERO: 1246 return sd_setup_write_same10_cmnd(cmd, false); 1247 default: 1248 return BLK_STS_TARGET; 1249 } 1250 case REQ_OP_WRITE_ZEROES: 1251 return sd_setup_write_zeroes_cmnd(cmd); 1252 case REQ_OP_FLUSH: 1253 return sd_setup_flush_cmnd(cmd); 1254 case REQ_OP_READ: 1255 case REQ_OP_WRITE: 1256 case REQ_OP_ZONE_APPEND: 1257 return sd_setup_read_write_cmnd(cmd); 1258 case REQ_OP_ZONE_RESET: 1259 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1260 false); 1261 case REQ_OP_ZONE_RESET_ALL: 1262 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1263 true); 1264 case REQ_OP_ZONE_OPEN: 1265 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1266 case REQ_OP_ZONE_CLOSE: 1267 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1268 case REQ_OP_ZONE_FINISH: 1269 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1270 default: 1271 WARN_ON_ONCE(1); 1272 return BLK_STS_NOTSUPP; 1273 } 1274 } 1275 1276 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1277 { 1278 struct request *rq = scsi_cmd_to_rq(SCpnt); 1279 1280 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1281 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1282 } 1283 1284 static bool sd_need_revalidate(struct block_device *bdev, 1285 struct scsi_disk *sdkp) 1286 { 1287 if (sdkp->device->removable || sdkp->write_prot) { 1288 if (bdev_check_media_change(bdev)) 1289 return true; 1290 } 1291 1292 /* 1293 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1294 * nothing to do with partitions, BLKRRPART is used to force a full 1295 * revalidate after things like a format for historical reasons. 1296 */ 1297 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 1298 } 1299 1300 /** 1301 * sd_open - open a scsi disk device 1302 * @bdev: Block device of the scsi disk to open 1303 * @mode: FMODE_* mask 1304 * 1305 * Returns 0 if successful. Returns a negated errno value in case 1306 * of error. 1307 * 1308 * Note: This can be called from a user context (e.g. fsck(1) ) 1309 * or from within the kernel (e.g. as a result of a mount(1) ). 1310 * In the latter case @inode and @filp carry an abridged amount 1311 * of information as noted above. 1312 * 1313 * Locking: called with bdev->bd_disk->open_mutex held. 1314 **/ 1315 static int sd_open(struct block_device *bdev, fmode_t mode) 1316 { 1317 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1318 struct scsi_device *sdev = sdkp->device; 1319 int retval; 1320 1321 if (scsi_device_get(sdev)) 1322 return -ENXIO; 1323 1324 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1325 1326 /* 1327 * If the device is in error recovery, wait until it is done. 1328 * If the device is offline, then disallow any access to it. 1329 */ 1330 retval = -ENXIO; 1331 if (!scsi_block_when_processing_errors(sdev)) 1332 goto error_out; 1333 1334 if (sd_need_revalidate(bdev, sdkp)) 1335 sd_revalidate_disk(bdev->bd_disk); 1336 1337 /* 1338 * If the drive is empty, just let the open fail. 1339 */ 1340 retval = -ENOMEDIUM; 1341 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1342 goto error_out; 1343 1344 /* 1345 * If the device has the write protect tab set, have the open fail 1346 * if the user expects to be able to write to the thing. 1347 */ 1348 retval = -EROFS; 1349 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1350 goto error_out; 1351 1352 /* 1353 * It is possible that the disk changing stuff resulted in 1354 * the device being taken offline. If this is the case, 1355 * report this to the user, and don't pretend that the 1356 * open actually succeeded. 1357 */ 1358 retval = -ENXIO; 1359 if (!scsi_device_online(sdev)) 1360 goto error_out; 1361 1362 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1363 if (scsi_block_when_processing_errors(sdev)) 1364 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1365 } 1366 1367 return 0; 1368 1369 error_out: 1370 scsi_device_put(sdev); 1371 return retval; 1372 } 1373 1374 /** 1375 * sd_release - invoked when the (last) close(2) is called on this 1376 * scsi disk. 1377 * @disk: disk to release 1378 * @mode: FMODE_* mask 1379 * 1380 * Returns 0. 1381 * 1382 * Note: may block (uninterruptible) if error recovery is underway 1383 * on this disk. 1384 * 1385 * Locking: called with bdev->bd_disk->open_mutex held. 1386 **/ 1387 static void sd_release(struct gendisk *disk, fmode_t mode) 1388 { 1389 struct scsi_disk *sdkp = scsi_disk(disk); 1390 struct scsi_device *sdev = sdkp->device; 1391 1392 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1393 1394 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1395 if (scsi_block_when_processing_errors(sdev)) 1396 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1397 } 1398 1399 scsi_device_put(sdev); 1400 } 1401 1402 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1403 { 1404 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1405 struct scsi_device *sdp = sdkp->device; 1406 struct Scsi_Host *host = sdp->host; 1407 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1408 int diskinfo[4]; 1409 1410 /* default to most commonly used values */ 1411 diskinfo[0] = 0x40; /* 1 << 6 */ 1412 diskinfo[1] = 0x20; /* 1 << 5 */ 1413 diskinfo[2] = capacity >> 11; 1414 1415 /* override with calculated, extended default, or driver values */ 1416 if (host->hostt->bios_param) 1417 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1418 else 1419 scsicam_bios_param(bdev, capacity, diskinfo); 1420 1421 geo->heads = diskinfo[0]; 1422 geo->sectors = diskinfo[1]; 1423 geo->cylinders = diskinfo[2]; 1424 return 0; 1425 } 1426 1427 /** 1428 * sd_ioctl - process an ioctl 1429 * @bdev: target block device 1430 * @mode: FMODE_* mask 1431 * @cmd: ioctl command number 1432 * @arg: this is third argument given to ioctl(2) system call. 1433 * Often contains a pointer. 1434 * 1435 * Returns 0 if successful (some ioctls return positive numbers on 1436 * success as well). Returns a negated errno value in case of error. 1437 * 1438 * Note: most ioctls are forward onto the block subsystem or further 1439 * down in the scsi subsystem. 1440 **/ 1441 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1442 unsigned int cmd, unsigned long arg) 1443 { 1444 struct gendisk *disk = bdev->bd_disk; 1445 struct scsi_disk *sdkp = scsi_disk(disk); 1446 struct scsi_device *sdp = sdkp->device; 1447 void __user *p = (void __user *)arg; 1448 int error; 1449 1450 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1451 "cmd=0x%x\n", disk->disk_name, cmd)); 1452 1453 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1454 return -ENOIOCTLCMD; 1455 1456 /* 1457 * If we are in the middle of error recovery, don't let anyone 1458 * else try and use this device. Also, if error recovery fails, it 1459 * may try and take the device offline, in which case all further 1460 * access to the device is prohibited. 1461 */ 1462 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1463 (mode & FMODE_NDELAY) != 0); 1464 if (error) 1465 return error; 1466 1467 if (is_sed_ioctl(cmd)) 1468 return sed_ioctl(sdkp->opal_dev, cmd, p); 1469 return scsi_ioctl(sdp, mode, cmd, p); 1470 } 1471 1472 static void set_media_not_present(struct scsi_disk *sdkp) 1473 { 1474 if (sdkp->media_present) 1475 sdkp->device->changed = 1; 1476 1477 if (sdkp->device->removable) { 1478 sdkp->media_present = 0; 1479 sdkp->capacity = 0; 1480 } 1481 } 1482 1483 static int media_not_present(struct scsi_disk *sdkp, 1484 struct scsi_sense_hdr *sshdr) 1485 { 1486 if (!scsi_sense_valid(sshdr)) 1487 return 0; 1488 1489 /* not invoked for commands that could return deferred errors */ 1490 switch (sshdr->sense_key) { 1491 case UNIT_ATTENTION: 1492 case NOT_READY: 1493 /* medium not present */ 1494 if (sshdr->asc == 0x3A) { 1495 set_media_not_present(sdkp); 1496 return 1; 1497 } 1498 } 1499 return 0; 1500 } 1501 1502 /** 1503 * sd_check_events - check media events 1504 * @disk: kernel device descriptor 1505 * @clearing: disk events currently being cleared 1506 * 1507 * Returns mask of DISK_EVENT_*. 1508 * 1509 * Note: this function is invoked from the block subsystem. 1510 **/ 1511 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1512 { 1513 struct scsi_disk *sdkp = disk->private_data; 1514 struct scsi_device *sdp; 1515 int retval; 1516 bool disk_changed; 1517 1518 if (!sdkp) 1519 return 0; 1520 1521 sdp = sdkp->device; 1522 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1523 1524 /* 1525 * If the device is offline, don't send any commands - just pretend as 1526 * if the command failed. If the device ever comes back online, we 1527 * can deal with it then. It is only because of unrecoverable errors 1528 * that we would ever take a device offline in the first place. 1529 */ 1530 if (!scsi_device_online(sdp)) { 1531 set_media_not_present(sdkp); 1532 goto out; 1533 } 1534 1535 /* 1536 * Using TEST_UNIT_READY enables differentiation between drive with 1537 * no cartridge loaded - NOT READY, drive with changed cartridge - 1538 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1539 * 1540 * Drives that auto spin down. eg iomega jaz 1G, will be started 1541 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1542 * sd_revalidate() is called. 1543 */ 1544 if (scsi_block_when_processing_errors(sdp)) { 1545 struct scsi_sense_hdr sshdr = { 0, }; 1546 1547 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1548 &sshdr); 1549 1550 /* failed to execute TUR, assume media not present */ 1551 if (retval < 0 || host_byte(retval)) { 1552 set_media_not_present(sdkp); 1553 goto out; 1554 } 1555 1556 if (media_not_present(sdkp, &sshdr)) 1557 goto out; 1558 } 1559 1560 /* 1561 * For removable scsi disk we have to recognise the presence 1562 * of a disk in the drive. 1563 */ 1564 if (!sdkp->media_present) 1565 sdp->changed = 1; 1566 sdkp->media_present = 1; 1567 out: 1568 /* 1569 * sdp->changed is set under the following conditions: 1570 * 1571 * Medium present state has changed in either direction. 1572 * Device has indicated UNIT_ATTENTION. 1573 */ 1574 disk_changed = sdp->changed; 1575 sdp->changed = 0; 1576 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1577 } 1578 1579 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1580 { 1581 int retries, res; 1582 struct scsi_device *sdp = sdkp->device; 1583 const int timeout = sdp->request_queue->rq_timeout 1584 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1585 struct scsi_sense_hdr my_sshdr; 1586 1587 if (!scsi_device_online(sdp)) 1588 return -ENODEV; 1589 1590 /* caller might not be interested in sense, but we need it */ 1591 if (!sshdr) 1592 sshdr = &my_sshdr; 1593 1594 for (retries = 3; retries > 0; --retries) { 1595 unsigned char cmd[16] = { 0 }; 1596 1597 if (sdp->use_16_for_sync) 1598 cmd[0] = SYNCHRONIZE_CACHE_16; 1599 else 1600 cmd[0] = SYNCHRONIZE_CACHE; 1601 /* 1602 * Leave the rest of the command zero to indicate 1603 * flush everything. 1604 */ 1605 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1606 timeout, sdkp->max_retries, 0, RQF_PM, NULL); 1607 if (res == 0) 1608 break; 1609 } 1610 1611 if (res) { 1612 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1613 1614 if (res < 0) 1615 return res; 1616 1617 if (scsi_status_is_check_condition(res) && 1618 scsi_sense_valid(sshdr)) { 1619 sd_print_sense_hdr(sdkp, sshdr); 1620 1621 /* we need to evaluate the error return */ 1622 if (sshdr->asc == 0x3a || /* medium not present */ 1623 sshdr->asc == 0x20 || /* invalid command */ 1624 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1625 /* this is no error here */ 1626 return 0; 1627 } 1628 1629 switch (host_byte(res)) { 1630 /* ignore errors due to racing a disconnection */ 1631 case DID_BAD_TARGET: 1632 case DID_NO_CONNECT: 1633 return 0; 1634 /* signal the upper layer it might try again */ 1635 case DID_BUS_BUSY: 1636 case DID_IMM_RETRY: 1637 case DID_REQUEUE: 1638 case DID_SOFT_ERROR: 1639 return -EBUSY; 1640 default: 1641 return -EIO; 1642 } 1643 } 1644 return 0; 1645 } 1646 1647 static void sd_rescan(struct device *dev) 1648 { 1649 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1650 1651 sd_revalidate_disk(sdkp->disk); 1652 } 1653 1654 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1655 enum blk_unique_id type) 1656 { 1657 struct scsi_device *sdev = scsi_disk(disk)->device; 1658 const struct scsi_vpd *vpd; 1659 const unsigned char *d; 1660 int ret = -ENXIO, len; 1661 1662 rcu_read_lock(); 1663 vpd = rcu_dereference(sdev->vpd_pg83); 1664 if (!vpd) 1665 goto out_unlock; 1666 1667 ret = -EINVAL; 1668 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1669 /* we only care about designators with LU association */ 1670 if (((d[1] >> 4) & 0x3) != 0x00) 1671 continue; 1672 if ((d[1] & 0xf) != type) 1673 continue; 1674 1675 /* 1676 * Only exit early if a 16-byte descriptor was found. Otherwise 1677 * keep looking as one with more entropy might still show up. 1678 */ 1679 len = d[3]; 1680 if (len != 8 && len != 12 && len != 16) 1681 continue; 1682 ret = len; 1683 memcpy(id, d + 4, len); 1684 if (len == 16) 1685 break; 1686 } 1687 out_unlock: 1688 rcu_read_unlock(); 1689 return ret; 1690 } 1691 1692 static char sd_pr_type(enum pr_type type) 1693 { 1694 switch (type) { 1695 case PR_WRITE_EXCLUSIVE: 1696 return 0x01; 1697 case PR_EXCLUSIVE_ACCESS: 1698 return 0x03; 1699 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1700 return 0x05; 1701 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1702 return 0x06; 1703 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1704 return 0x07; 1705 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1706 return 0x08; 1707 default: 1708 return 0; 1709 } 1710 }; 1711 1712 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result) 1713 { 1714 switch (host_byte(result)) { 1715 case DID_TRANSPORT_MARGINAL: 1716 case DID_TRANSPORT_DISRUPTED: 1717 case DID_BUS_BUSY: 1718 return PR_STS_RETRY_PATH_FAILURE; 1719 case DID_NO_CONNECT: 1720 return PR_STS_PATH_FAILED; 1721 case DID_TRANSPORT_FAILFAST: 1722 return PR_STS_PATH_FAST_FAILED; 1723 } 1724 1725 switch (status_byte(result)) { 1726 case SAM_STAT_RESERVATION_CONFLICT: 1727 return PR_STS_RESERVATION_CONFLICT; 1728 case SAM_STAT_CHECK_CONDITION: 1729 if (!scsi_sense_valid(sshdr)) 1730 return PR_STS_IOERR; 1731 1732 if (sshdr->sense_key == ILLEGAL_REQUEST && 1733 (sshdr->asc == 0x26 || sshdr->asc == 0x24)) 1734 return -EINVAL; 1735 1736 fallthrough; 1737 default: 1738 return PR_STS_IOERR; 1739 } 1740 } 1741 1742 static int sd_pr_command(struct block_device *bdev, u8 sa, 1743 u64 key, u64 sa_key, u8 type, u8 flags) 1744 { 1745 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1746 struct scsi_device *sdev = sdkp->device; 1747 struct scsi_sense_hdr sshdr; 1748 int result; 1749 u8 cmd[16] = { 0, }; 1750 u8 data[24] = { 0, }; 1751 1752 cmd[0] = PERSISTENT_RESERVE_OUT; 1753 cmd[1] = sa; 1754 cmd[2] = type; 1755 put_unaligned_be32(sizeof(data), &cmd[5]); 1756 1757 put_unaligned_be64(key, &data[0]); 1758 put_unaligned_be64(sa_key, &data[8]); 1759 data[20] = flags; 1760 1761 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1762 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL); 1763 1764 if (scsi_status_is_check_condition(result) && 1765 scsi_sense_valid(&sshdr)) { 1766 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1767 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1768 } 1769 1770 if (result <= 0) 1771 return result; 1772 1773 return sd_scsi_to_pr_err(&sshdr, result); 1774 } 1775 1776 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1777 u32 flags) 1778 { 1779 if (flags & ~PR_FL_IGNORE_KEY) 1780 return -EOPNOTSUPP; 1781 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1782 old_key, new_key, 0, 1783 (1 << 0) /* APTPL */); 1784 } 1785 1786 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1787 u32 flags) 1788 { 1789 if (flags) 1790 return -EOPNOTSUPP; 1791 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1792 } 1793 1794 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1795 { 1796 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1797 } 1798 1799 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1800 enum pr_type type, bool abort) 1801 { 1802 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1803 sd_pr_type(type), 0); 1804 } 1805 1806 static int sd_pr_clear(struct block_device *bdev, u64 key) 1807 { 1808 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1809 } 1810 1811 static const struct pr_ops sd_pr_ops = { 1812 .pr_register = sd_pr_register, 1813 .pr_reserve = sd_pr_reserve, 1814 .pr_release = sd_pr_release, 1815 .pr_preempt = sd_pr_preempt, 1816 .pr_clear = sd_pr_clear, 1817 }; 1818 1819 static void scsi_disk_free_disk(struct gendisk *disk) 1820 { 1821 struct scsi_disk *sdkp = scsi_disk(disk); 1822 1823 put_device(&sdkp->disk_dev); 1824 } 1825 1826 static const struct block_device_operations sd_fops = { 1827 .owner = THIS_MODULE, 1828 .open = sd_open, 1829 .release = sd_release, 1830 .ioctl = sd_ioctl, 1831 .getgeo = sd_getgeo, 1832 .compat_ioctl = blkdev_compat_ptr_ioctl, 1833 .check_events = sd_check_events, 1834 .unlock_native_capacity = sd_unlock_native_capacity, 1835 .report_zones = sd_zbc_report_zones, 1836 .get_unique_id = sd_get_unique_id, 1837 .free_disk = scsi_disk_free_disk, 1838 .pr_ops = &sd_pr_ops, 1839 }; 1840 1841 /** 1842 * sd_eh_reset - reset error handling callback 1843 * @scmd: sd-issued command that has failed 1844 * 1845 * This function is called by the SCSI midlayer before starting 1846 * SCSI EH. When counting medium access failures we have to be 1847 * careful to register it only only once per device and SCSI EH run; 1848 * there might be several timed out commands which will cause the 1849 * 'max_medium_access_timeouts' counter to trigger after the first 1850 * SCSI EH run already and set the device to offline. 1851 * So this function resets the internal counter before starting SCSI EH. 1852 **/ 1853 static void sd_eh_reset(struct scsi_cmnd *scmd) 1854 { 1855 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1856 1857 /* New SCSI EH run, reset gate variable */ 1858 sdkp->ignore_medium_access_errors = false; 1859 } 1860 1861 /** 1862 * sd_eh_action - error handling callback 1863 * @scmd: sd-issued command that has failed 1864 * @eh_disp: The recovery disposition suggested by the midlayer 1865 * 1866 * This function is called by the SCSI midlayer upon completion of an 1867 * error test command (currently TEST UNIT READY). The result of sending 1868 * the eh command is passed in eh_disp. We're looking for devices that 1869 * fail medium access commands but are OK with non access commands like 1870 * test unit ready (so wrongly see the device as having a successful 1871 * recovery) 1872 **/ 1873 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1874 { 1875 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1876 struct scsi_device *sdev = scmd->device; 1877 1878 if (!scsi_device_online(sdev) || 1879 !scsi_medium_access_command(scmd) || 1880 host_byte(scmd->result) != DID_TIME_OUT || 1881 eh_disp != SUCCESS) 1882 return eh_disp; 1883 1884 /* 1885 * The device has timed out executing a medium access command. 1886 * However, the TEST UNIT READY command sent during error 1887 * handling completed successfully. Either the device is in the 1888 * process of recovering or has it suffered an internal failure 1889 * that prevents access to the storage medium. 1890 */ 1891 if (!sdkp->ignore_medium_access_errors) { 1892 sdkp->medium_access_timed_out++; 1893 sdkp->ignore_medium_access_errors = true; 1894 } 1895 1896 /* 1897 * If the device keeps failing read/write commands but TEST UNIT 1898 * READY always completes successfully we assume that medium 1899 * access is no longer possible and take the device offline. 1900 */ 1901 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1902 scmd_printk(KERN_ERR, scmd, 1903 "Medium access timeout failure. Offlining disk!\n"); 1904 mutex_lock(&sdev->state_mutex); 1905 scsi_device_set_state(sdev, SDEV_OFFLINE); 1906 mutex_unlock(&sdev->state_mutex); 1907 1908 return SUCCESS; 1909 } 1910 1911 return eh_disp; 1912 } 1913 1914 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1915 { 1916 struct request *req = scsi_cmd_to_rq(scmd); 1917 struct scsi_device *sdev = scmd->device; 1918 unsigned int transferred, good_bytes; 1919 u64 start_lba, end_lba, bad_lba; 1920 1921 /* 1922 * Some commands have a payload smaller than the device logical 1923 * block size (e.g. INQUIRY on a 4K disk). 1924 */ 1925 if (scsi_bufflen(scmd) <= sdev->sector_size) 1926 return 0; 1927 1928 /* Check if we have a 'bad_lba' information */ 1929 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1930 SCSI_SENSE_BUFFERSIZE, 1931 &bad_lba)) 1932 return 0; 1933 1934 /* 1935 * If the bad lba was reported incorrectly, we have no idea where 1936 * the error is. 1937 */ 1938 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1939 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1940 if (bad_lba < start_lba || bad_lba >= end_lba) 1941 return 0; 1942 1943 /* 1944 * resid is optional but mostly filled in. When it's unused, 1945 * its value is zero, so we assume the whole buffer transferred 1946 */ 1947 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1948 1949 /* This computation should always be done in terms of the 1950 * resolution of the device's medium. 1951 */ 1952 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1953 1954 return min(good_bytes, transferred); 1955 } 1956 1957 /** 1958 * sd_done - bottom half handler: called when the lower level 1959 * driver has completed (successfully or otherwise) a scsi command. 1960 * @SCpnt: mid-level's per command structure. 1961 * 1962 * Note: potentially run from within an ISR. Must not block. 1963 **/ 1964 static int sd_done(struct scsi_cmnd *SCpnt) 1965 { 1966 int result = SCpnt->result; 1967 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1968 unsigned int sector_size = SCpnt->device->sector_size; 1969 unsigned int resid; 1970 struct scsi_sense_hdr sshdr; 1971 struct request *req = scsi_cmd_to_rq(SCpnt); 1972 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 1973 int sense_valid = 0; 1974 int sense_deferred = 0; 1975 1976 switch (req_op(req)) { 1977 case REQ_OP_DISCARD: 1978 case REQ_OP_WRITE_ZEROES: 1979 case REQ_OP_ZONE_RESET: 1980 case REQ_OP_ZONE_RESET_ALL: 1981 case REQ_OP_ZONE_OPEN: 1982 case REQ_OP_ZONE_CLOSE: 1983 case REQ_OP_ZONE_FINISH: 1984 if (!result) { 1985 good_bytes = blk_rq_bytes(req); 1986 scsi_set_resid(SCpnt, 0); 1987 } else { 1988 good_bytes = 0; 1989 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1990 } 1991 break; 1992 default: 1993 /* 1994 * In case of bogus fw or device, we could end up having 1995 * an unaligned partial completion. Check this here and force 1996 * alignment. 1997 */ 1998 resid = scsi_get_resid(SCpnt); 1999 if (resid & (sector_size - 1)) { 2000 sd_printk(KERN_INFO, sdkp, 2001 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2002 resid, sector_size); 2003 scsi_print_command(SCpnt); 2004 resid = min(scsi_bufflen(SCpnt), 2005 round_up(resid, sector_size)); 2006 scsi_set_resid(SCpnt, resid); 2007 } 2008 } 2009 2010 if (result) { 2011 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2012 if (sense_valid) 2013 sense_deferred = scsi_sense_is_deferred(&sshdr); 2014 } 2015 sdkp->medium_access_timed_out = 0; 2016 2017 if (!scsi_status_is_check_condition(result) && 2018 (!sense_valid || sense_deferred)) 2019 goto out; 2020 2021 switch (sshdr.sense_key) { 2022 case HARDWARE_ERROR: 2023 case MEDIUM_ERROR: 2024 good_bytes = sd_completed_bytes(SCpnt); 2025 break; 2026 case RECOVERED_ERROR: 2027 good_bytes = scsi_bufflen(SCpnt); 2028 break; 2029 case NO_SENSE: 2030 /* This indicates a false check condition, so ignore it. An 2031 * unknown amount of data was transferred so treat it as an 2032 * error. 2033 */ 2034 SCpnt->result = 0; 2035 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2036 break; 2037 case ABORTED_COMMAND: 2038 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2039 good_bytes = sd_completed_bytes(SCpnt); 2040 break; 2041 case ILLEGAL_REQUEST: 2042 switch (sshdr.asc) { 2043 case 0x10: /* DIX: Host detected corruption */ 2044 good_bytes = sd_completed_bytes(SCpnt); 2045 break; 2046 case 0x20: /* INVALID COMMAND OPCODE */ 2047 case 0x24: /* INVALID FIELD IN CDB */ 2048 switch (SCpnt->cmnd[0]) { 2049 case UNMAP: 2050 sd_config_discard(sdkp, SD_LBP_DISABLE); 2051 break; 2052 case WRITE_SAME_16: 2053 case WRITE_SAME: 2054 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2055 sd_config_discard(sdkp, SD_LBP_DISABLE); 2056 } else { 2057 sdkp->device->no_write_same = 1; 2058 sd_config_write_same(sdkp); 2059 req->rq_flags |= RQF_QUIET; 2060 } 2061 break; 2062 } 2063 } 2064 break; 2065 default: 2066 break; 2067 } 2068 2069 out: 2070 if (sd_is_zoned(sdkp)) 2071 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2072 2073 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2074 "sd_done: completed %d of %d bytes\n", 2075 good_bytes, scsi_bufflen(SCpnt))); 2076 2077 return good_bytes; 2078 } 2079 2080 /* 2081 * spinup disk - called only in sd_revalidate_disk() 2082 */ 2083 static void 2084 sd_spinup_disk(struct scsi_disk *sdkp) 2085 { 2086 unsigned char cmd[10]; 2087 unsigned long spintime_expire = 0; 2088 int retries, spintime; 2089 unsigned int the_result; 2090 struct scsi_sense_hdr sshdr; 2091 int sense_valid = 0; 2092 2093 spintime = 0; 2094 2095 /* Spin up drives, as required. Only do this at boot time */ 2096 /* Spinup needs to be done for module loads too. */ 2097 do { 2098 retries = 0; 2099 2100 do { 2101 bool media_was_present = sdkp->media_present; 2102 2103 cmd[0] = TEST_UNIT_READY; 2104 memset((void *) &cmd[1], 0, 9); 2105 2106 the_result = scsi_execute_req(sdkp->device, cmd, 2107 DMA_NONE, NULL, 0, 2108 &sshdr, SD_TIMEOUT, 2109 sdkp->max_retries, NULL); 2110 2111 /* 2112 * If the drive has indicated to us that it 2113 * doesn't have any media in it, don't bother 2114 * with any more polling. 2115 */ 2116 if (media_not_present(sdkp, &sshdr)) { 2117 if (media_was_present) 2118 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); 2119 return; 2120 } 2121 2122 if (the_result) 2123 sense_valid = scsi_sense_valid(&sshdr); 2124 retries++; 2125 } while (retries < 3 && 2126 (!scsi_status_is_good(the_result) || 2127 (scsi_status_is_check_condition(the_result) && 2128 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2129 2130 if (!scsi_status_is_check_condition(the_result)) { 2131 /* no sense, TUR either succeeded or failed 2132 * with a status error */ 2133 if(!spintime && !scsi_status_is_good(the_result)) { 2134 sd_print_result(sdkp, "Test Unit Ready failed", 2135 the_result); 2136 } 2137 break; 2138 } 2139 2140 /* 2141 * The device does not want the automatic start to be issued. 2142 */ 2143 if (sdkp->device->no_start_on_add) 2144 break; 2145 2146 if (sense_valid && sshdr.sense_key == NOT_READY) { 2147 if (sshdr.asc == 4 && sshdr.ascq == 3) 2148 break; /* manual intervention required */ 2149 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2150 break; /* standby */ 2151 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2152 break; /* unavailable */ 2153 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2154 break; /* sanitize in progress */ 2155 /* 2156 * Issue command to spin up drive when not ready 2157 */ 2158 if (!spintime) { 2159 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2160 cmd[0] = START_STOP; 2161 cmd[1] = 1; /* Return immediately */ 2162 memset((void *) &cmd[2], 0, 8); 2163 cmd[4] = 1; /* Start spin cycle */ 2164 if (sdkp->device->start_stop_pwr_cond) 2165 cmd[4] |= 1 << 4; 2166 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2167 NULL, 0, &sshdr, 2168 SD_TIMEOUT, sdkp->max_retries, 2169 NULL); 2170 spintime_expire = jiffies + 100 * HZ; 2171 spintime = 1; 2172 } 2173 /* Wait 1 second for next try */ 2174 msleep(1000); 2175 printk(KERN_CONT "."); 2176 2177 /* 2178 * Wait for USB flash devices with slow firmware. 2179 * Yes, this sense key/ASC combination shouldn't 2180 * occur here. It's characteristic of these devices. 2181 */ 2182 } else if (sense_valid && 2183 sshdr.sense_key == UNIT_ATTENTION && 2184 sshdr.asc == 0x28) { 2185 if (!spintime) { 2186 spintime_expire = jiffies + 5 * HZ; 2187 spintime = 1; 2188 } 2189 /* Wait 1 second for next try */ 2190 msleep(1000); 2191 } else { 2192 /* we don't understand the sense code, so it's 2193 * probably pointless to loop */ 2194 if(!spintime) { 2195 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2196 sd_print_sense_hdr(sdkp, &sshdr); 2197 } 2198 break; 2199 } 2200 2201 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2202 2203 if (spintime) { 2204 if (scsi_status_is_good(the_result)) 2205 printk(KERN_CONT "ready\n"); 2206 else 2207 printk(KERN_CONT "not responding...\n"); 2208 } 2209 } 2210 2211 /* 2212 * Determine whether disk supports Data Integrity Field. 2213 */ 2214 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2215 { 2216 struct scsi_device *sdp = sdkp->device; 2217 u8 type; 2218 2219 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2220 sdkp->protection_type = 0; 2221 return 0; 2222 } 2223 2224 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2225 2226 if (type > T10_PI_TYPE3_PROTECTION) { 2227 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2228 " protection type %u. Disabling disk!\n", 2229 type); 2230 sdkp->protection_type = 0; 2231 return -ENODEV; 2232 } 2233 2234 sdkp->protection_type = type; 2235 2236 return 0; 2237 } 2238 2239 static void sd_config_protection(struct scsi_disk *sdkp) 2240 { 2241 struct scsi_device *sdp = sdkp->device; 2242 2243 if (!sdkp->first_scan) 2244 return; 2245 2246 sd_dif_config_host(sdkp); 2247 2248 if (!sdkp->protection_type) 2249 return; 2250 2251 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2252 sd_printk(KERN_NOTICE, sdkp, 2253 "Disabling DIF Type %u protection\n", 2254 sdkp->protection_type); 2255 sdkp->protection_type = 0; 2256 } 2257 2258 sd_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2259 sdkp->protection_type); 2260 } 2261 2262 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2263 struct scsi_sense_hdr *sshdr, int sense_valid, 2264 int the_result) 2265 { 2266 if (sense_valid) 2267 sd_print_sense_hdr(sdkp, sshdr); 2268 else 2269 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2270 2271 /* 2272 * Set dirty bit for removable devices if not ready - 2273 * sometimes drives will not report this properly. 2274 */ 2275 if (sdp->removable && 2276 sense_valid && sshdr->sense_key == NOT_READY) 2277 set_media_not_present(sdkp); 2278 2279 /* 2280 * We used to set media_present to 0 here to indicate no media 2281 * in the drive, but some drives fail read capacity even with 2282 * media present, so we can't do that. 2283 */ 2284 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2285 } 2286 2287 #define RC16_LEN 32 2288 #if RC16_LEN > SD_BUF_SIZE 2289 #error RC16_LEN must not be more than SD_BUF_SIZE 2290 #endif 2291 2292 #define READ_CAPACITY_RETRIES_ON_RESET 10 2293 2294 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2295 unsigned char *buffer) 2296 { 2297 unsigned char cmd[16]; 2298 struct scsi_sense_hdr sshdr; 2299 int sense_valid = 0; 2300 int the_result; 2301 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2302 unsigned int alignment; 2303 unsigned long long lba; 2304 unsigned sector_size; 2305 2306 if (sdp->no_read_capacity_16) 2307 return -EINVAL; 2308 2309 do { 2310 memset(cmd, 0, 16); 2311 cmd[0] = SERVICE_ACTION_IN_16; 2312 cmd[1] = SAI_READ_CAPACITY_16; 2313 cmd[13] = RC16_LEN; 2314 memset(buffer, 0, RC16_LEN); 2315 2316 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2317 buffer, RC16_LEN, &sshdr, 2318 SD_TIMEOUT, sdkp->max_retries, NULL); 2319 2320 if (media_not_present(sdkp, &sshdr)) 2321 return -ENODEV; 2322 2323 if (the_result > 0) { 2324 sense_valid = scsi_sense_valid(&sshdr); 2325 if (sense_valid && 2326 sshdr.sense_key == ILLEGAL_REQUEST && 2327 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2328 sshdr.ascq == 0x00) 2329 /* Invalid Command Operation Code or 2330 * Invalid Field in CDB, just retry 2331 * silently with RC10 */ 2332 return -EINVAL; 2333 if (sense_valid && 2334 sshdr.sense_key == UNIT_ATTENTION && 2335 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2336 /* Device reset might occur several times, 2337 * give it one more chance */ 2338 if (--reset_retries > 0) 2339 continue; 2340 } 2341 retries--; 2342 2343 } while (the_result && retries); 2344 2345 if (the_result) { 2346 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2347 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2348 return -EINVAL; 2349 } 2350 2351 sector_size = get_unaligned_be32(&buffer[8]); 2352 lba = get_unaligned_be64(&buffer[0]); 2353 2354 if (sd_read_protection_type(sdkp, buffer) < 0) { 2355 sdkp->capacity = 0; 2356 return -ENODEV; 2357 } 2358 2359 /* Logical blocks per physical block exponent */ 2360 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2361 2362 /* RC basis */ 2363 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2364 2365 /* Lowest aligned logical block */ 2366 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2367 blk_queue_alignment_offset(sdp->request_queue, alignment); 2368 if (alignment && sdkp->first_scan) 2369 sd_printk(KERN_NOTICE, sdkp, 2370 "physical block alignment offset: %u\n", alignment); 2371 2372 if (buffer[14] & 0x80) { /* LBPME */ 2373 sdkp->lbpme = 1; 2374 2375 if (buffer[14] & 0x40) /* LBPRZ */ 2376 sdkp->lbprz = 1; 2377 2378 sd_config_discard(sdkp, SD_LBP_WS16); 2379 } 2380 2381 sdkp->capacity = lba + 1; 2382 return sector_size; 2383 } 2384 2385 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2386 unsigned char *buffer) 2387 { 2388 unsigned char cmd[16]; 2389 struct scsi_sense_hdr sshdr; 2390 int sense_valid = 0; 2391 int the_result; 2392 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2393 sector_t lba; 2394 unsigned sector_size; 2395 2396 do { 2397 cmd[0] = READ_CAPACITY; 2398 memset(&cmd[1], 0, 9); 2399 memset(buffer, 0, 8); 2400 2401 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2402 buffer, 8, &sshdr, 2403 SD_TIMEOUT, sdkp->max_retries, NULL); 2404 2405 if (media_not_present(sdkp, &sshdr)) 2406 return -ENODEV; 2407 2408 if (the_result > 0) { 2409 sense_valid = scsi_sense_valid(&sshdr); 2410 if (sense_valid && 2411 sshdr.sense_key == UNIT_ATTENTION && 2412 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2413 /* Device reset might occur several times, 2414 * give it one more chance */ 2415 if (--reset_retries > 0) 2416 continue; 2417 } 2418 retries--; 2419 2420 } while (the_result && retries); 2421 2422 if (the_result) { 2423 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2424 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2425 return -EINVAL; 2426 } 2427 2428 sector_size = get_unaligned_be32(&buffer[4]); 2429 lba = get_unaligned_be32(&buffer[0]); 2430 2431 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2432 /* Some buggy (usb cardreader) devices return an lba of 2433 0xffffffff when the want to report a size of 0 (with 2434 which they really mean no media is present) */ 2435 sdkp->capacity = 0; 2436 sdkp->physical_block_size = sector_size; 2437 return sector_size; 2438 } 2439 2440 sdkp->capacity = lba + 1; 2441 sdkp->physical_block_size = sector_size; 2442 return sector_size; 2443 } 2444 2445 static int sd_try_rc16_first(struct scsi_device *sdp) 2446 { 2447 if (sdp->host->max_cmd_len < 16) 2448 return 0; 2449 if (sdp->try_rc_10_first) 2450 return 0; 2451 if (sdp->scsi_level > SCSI_SPC_2) 2452 return 1; 2453 if (scsi_device_protection(sdp)) 2454 return 1; 2455 return 0; 2456 } 2457 2458 /* 2459 * read disk capacity 2460 */ 2461 static void 2462 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2463 { 2464 int sector_size; 2465 struct scsi_device *sdp = sdkp->device; 2466 2467 if (sd_try_rc16_first(sdp)) { 2468 sector_size = read_capacity_16(sdkp, sdp, buffer); 2469 if (sector_size == -EOVERFLOW) 2470 goto got_data; 2471 if (sector_size == -ENODEV) 2472 return; 2473 if (sector_size < 0) 2474 sector_size = read_capacity_10(sdkp, sdp, buffer); 2475 if (sector_size < 0) 2476 return; 2477 } else { 2478 sector_size = read_capacity_10(sdkp, sdp, buffer); 2479 if (sector_size == -EOVERFLOW) 2480 goto got_data; 2481 if (sector_size < 0) 2482 return; 2483 if ((sizeof(sdkp->capacity) > 4) && 2484 (sdkp->capacity > 0xffffffffULL)) { 2485 int old_sector_size = sector_size; 2486 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2487 "Trying to use READ CAPACITY(16).\n"); 2488 sector_size = read_capacity_16(sdkp, sdp, buffer); 2489 if (sector_size < 0) { 2490 sd_printk(KERN_NOTICE, sdkp, 2491 "Using 0xffffffff as device size\n"); 2492 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2493 sector_size = old_sector_size; 2494 goto got_data; 2495 } 2496 /* Remember that READ CAPACITY(16) succeeded */ 2497 sdp->try_rc_10_first = 0; 2498 } 2499 } 2500 2501 /* Some devices are known to return the total number of blocks, 2502 * not the highest block number. Some devices have versions 2503 * which do this and others which do not. Some devices we might 2504 * suspect of doing this but we don't know for certain. 2505 * 2506 * If we know the reported capacity is wrong, decrement it. If 2507 * we can only guess, then assume the number of blocks is even 2508 * (usually true but not always) and err on the side of lowering 2509 * the capacity. 2510 */ 2511 if (sdp->fix_capacity || 2512 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2513 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2514 "from its reported value: %llu\n", 2515 (unsigned long long) sdkp->capacity); 2516 --sdkp->capacity; 2517 } 2518 2519 got_data: 2520 if (sector_size == 0) { 2521 sector_size = 512; 2522 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2523 "assuming 512.\n"); 2524 } 2525 2526 if (sector_size != 512 && 2527 sector_size != 1024 && 2528 sector_size != 2048 && 2529 sector_size != 4096) { 2530 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2531 sector_size); 2532 /* 2533 * The user might want to re-format the drive with 2534 * a supported sectorsize. Once this happens, it 2535 * would be relatively trivial to set the thing up. 2536 * For this reason, we leave the thing in the table. 2537 */ 2538 sdkp->capacity = 0; 2539 /* 2540 * set a bogus sector size so the normal read/write 2541 * logic in the block layer will eventually refuse any 2542 * request on this device without tripping over power 2543 * of two sector size assumptions 2544 */ 2545 sector_size = 512; 2546 } 2547 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2548 blk_queue_physical_block_size(sdp->request_queue, 2549 sdkp->physical_block_size); 2550 sdkp->device->sector_size = sector_size; 2551 2552 if (sdkp->capacity > 0xffffffff) 2553 sdp->use_16_for_rw = 1; 2554 2555 } 2556 2557 /* 2558 * Print disk capacity 2559 */ 2560 static void 2561 sd_print_capacity(struct scsi_disk *sdkp, 2562 sector_t old_capacity) 2563 { 2564 int sector_size = sdkp->device->sector_size; 2565 char cap_str_2[10], cap_str_10[10]; 2566 2567 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2568 return; 2569 2570 string_get_size(sdkp->capacity, sector_size, 2571 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2572 string_get_size(sdkp->capacity, sector_size, 2573 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2574 2575 sd_printk(KERN_NOTICE, sdkp, 2576 "%llu %d-byte logical blocks: (%s/%s)\n", 2577 (unsigned long long)sdkp->capacity, 2578 sector_size, cap_str_10, cap_str_2); 2579 2580 if (sdkp->physical_block_size != sector_size) 2581 sd_printk(KERN_NOTICE, sdkp, 2582 "%u-byte physical blocks\n", 2583 sdkp->physical_block_size); 2584 } 2585 2586 /* called with buffer of length 512 */ 2587 static inline int 2588 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2589 unsigned char *buffer, int len, struct scsi_mode_data *data, 2590 struct scsi_sense_hdr *sshdr) 2591 { 2592 /* 2593 * If we must use MODE SENSE(10), make sure that the buffer length 2594 * is at least 8 bytes so that the mode sense header fits. 2595 */ 2596 if (sdkp->device->use_10_for_ms && len < 8) 2597 len = 8; 2598 2599 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2600 SD_TIMEOUT, sdkp->max_retries, data, 2601 sshdr); 2602 } 2603 2604 /* 2605 * read write protect setting, if possible - called only in sd_revalidate_disk() 2606 * called with buffer of length SD_BUF_SIZE 2607 */ 2608 static void 2609 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2610 { 2611 int res; 2612 struct scsi_device *sdp = sdkp->device; 2613 struct scsi_mode_data data; 2614 int old_wp = sdkp->write_prot; 2615 2616 set_disk_ro(sdkp->disk, 0); 2617 if (sdp->skip_ms_page_3f) { 2618 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2619 return; 2620 } 2621 2622 if (sdp->use_192_bytes_for_3f) { 2623 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2624 } else { 2625 /* 2626 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2627 * We have to start carefully: some devices hang if we ask 2628 * for more than is available. 2629 */ 2630 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2631 2632 /* 2633 * Second attempt: ask for page 0 When only page 0 is 2634 * implemented, a request for page 3F may return Sense Key 2635 * 5: Illegal Request, Sense Code 24: Invalid field in 2636 * CDB. 2637 */ 2638 if (res < 0) 2639 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2640 2641 /* 2642 * Third attempt: ask 255 bytes, as we did earlier. 2643 */ 2644 if (res < 0) 2645 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2646 &data, NULL); 2647 } 2648 2649 if (res < 0) { 2650 sd_first_printk(KERN_WARNING, sdkp, 2651 "Test WP failed, assume Write Enabled\n"); 2652 } else { 2653 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2654 set_disk_ro(sdkp->disk, sdkp->write_prot); 2655 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2656 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2657 sdkp->write_prot ? "on" : "off"); 2658 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2659 } 2660 } 2661 } 2662 2663 /* 2664 * sd_read_cache_type - called only from sd_revalidate_disk() 2665 * called with buffer of length SD_BUF_SIZE 2666 */ 2667 static void 2668 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2669 { 2670 int len = 0, res; 2671 struct scsi_device *sdp = sdkp->device; 2672 2673 int dbd; 2674 int modepage; 2675 int first_len; 2676 struct scsi_mode_data data; 2677 struct scsi_sense_hdr sshdr; 2678 int old_wce = sdkp->WCE; 2679 int old_rcd = sdkp->RCD; 2680 int old_dpofua = sdkp->DPOFUA; 2681 2682 2683 if (sdkp->cache_override) 2684 return; 2685 2686 first_len = 4; 2687 if (sdp->skip_ms_page_8) { 2688 if (sdp->type == TYPE_RBC) 2689 goto defaults; 2690 else { 2691 if (sdp->skip_ms_page_3f) 2692 goto defaults; 2693 modepage = 0x3F; 2694 if (sdp->use_192_bytes_for_3f) 2695 first_len = 192; 2696 dbd = 0; 2697 } 2698 } else if (sdp->type == TYPE_RBC) { 2699 modepage = 6; 2700 dbd = 8; 2701 } else { 2702 modepage = 8; 2703 dbd = 0; 2704 } 2705 2706 /* cautiously ask */ 2707 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2708 &data, &sshdr); 2709 2710 if (res < 0) 2711 goto bad_sense; 2712 2713 if (!data.header_length) { 2714 modepage = 6; 2715 first_len = 0; 2716 sd_first_printk(KERN_ERR, sdkp, 2717 "Missing header in MODE_SENSE response\n"); 2718 } 2719 2720 /* that went OK, now ask for the proper length */ 2721 len = data.length; 2722 2723 /* 2724 * We're only interested in the first three bytes, actually. 2725 * But the data cache page is defined for the first 20. 2726 */ 2727 if (len < 3) 2728 goto bad_sense; 2729 else if (len > SD_BUF_SIZE) { 2730 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2731 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2732 len = SD_BUF_SIZE; 2733 } 2734 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2735 len = 192; 2736 2737 /* Get the data */ 2738 if (len > first_len) 2739 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2740 &data, &sshdr); 2741 2742 if (!res) { 2743 int offset = data.header_length + data.block_descriptor_length; 2744 2745 while (offset < len) { 2746 u8 page_code = buffer[offset] & 0x3F; 2747 u8 spf = buffer[offset] & 0x40; 2748 2749 if (page_code == 8 || page_code == 6) { 2750 /* We're interested only in the first 3 bytes. 2751 */ 2752 if (len - offset <= 2) { 2753 sd_first_printk(KERN_ERR, sdkp, 2754 "Incomplete mode parameter " 2755 "data\n"); 2756 goto defaults; 2757 } else { 2758 modepage = page_code; 2759 goto Page_found; 2760 } 2761 } else { 2762 /* Go to the next page */ 2763 if (spf && len - offset > 3) 2764 offset += 4 + (buffer[offset+2] << 8) + 2765 buffer[offset+3]; 2766 else if (!spf && len - offset > 1) 2767 offset += 2 + buffer[offset+1]; 2768 else { 2769 sd_first_printk(KERN_ERR, sdkp, 2770 "Incomplete mode " 2771 "parameter data\n"); 2772 goto defaults; 2773 } 2774 } 2775 } 2776 2777 sd_first_printk(KERN_WARNING, sdkp, 2778 "No Caching mode page found\n"); 2779 goto defaults; 2780 2781 Page_found: 2782 if (modepage == 8) { 2783 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2784 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2785 } else { 2786 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2787 sdkp->RCD = 0; 2788 } 2789 2790 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2791 if (sdp->broken_fua) { 2792 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2793 sdkp->DPOFUA = 0; 2794 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2795 !sdkp->device->use_16_for_rw) { 2796 sd_first_printk(KERN_NOTICE, sdkp, 2797 "Uses READ/WRITE(6), disabling FUA\n"); 2798 sdkp->DPOFUA = 0; 2799 } 2800 2801 /* No cache flush allowed for write protected devices */ 2802 if (sdkp->WCE && sdkp->write_prot) 2803 sdkp->WCE = 0; 2804 2805 if (sdkp->first_scan || old_wce != sdkp->WCE || 2806 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2807 sd_printk(KERN_NOTICE, sdkp, 2808 "Write cache: %s, read cache: %s, %s\n", 2809 sdkp->WCE ? "enabled" : "disabled", 2810 sdkp->RCD ? "disabled" : "enabled", 2811 sdkp->DPOFUA ? "supports DPO and FUA" 2812 : "doesn't support DPO or FUA"); 2813 2814 return; 2815 } 2816 2817 bad_sense: 2818 if (scsi_sense_valid(&sshdr) && 2819 sshdr.sense_key == ILLEGAL_REQUEST && 2820 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2821 /* Invalid field in CDB */ 2822 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2823 else 2824 sd_first_printk(KERN_ERR, sdkp, 2825 "Asking for cache data failed\n"); 2826 2827 defaults: 2828 if (sdp->wce_default_on) { 2829 sd_first_printk(KERN_NOTICE, sdkp, 2830 "Assuming drive cache: write back\n"); 2831 sdkp->WCE = 1; 2832 } else { 2833 sd_first_printk(KERN_WARNING, sdkp, 2834 "Assuming drive cache: write through\n"); 2835 sdkp->WCE = 0; 2836 } 2837 sdkp->RCD = 0; 2838 sdkp->DPOFUA = 0; 2839 } 2840 2841 /* 2842 * The ATO bit indicates whether the DIF application tag is available 2843 * for use by the operating system. 2844 */ 2845 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2846 { 2847 int res, offset; 2848 struct scsi_device *sdp = sdkp->device; 2849 struct scsi_mode_data data; 2850 struct scsi_sense_hdr sshdr; 2851 2852 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2853 return; 2854 2855 if (sdkp->protection_type == 0) 2856 return; 2857 2858 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2859 sdkp->max_retries, &data, &sshdr); 2860 2861 if (res < 0 || !data.header_length || 2862 data.length < 6) { 2863 sd_first_printk(KERN_WARNING, sdkp, 2864 "getting Control mode page failed, assume no ATO\n"); 2865 2866 if (scsi_sense_valid(&sshdr)) 2867 sd_print_sense_hdr(sdkp, &sshdr); 2868 2869 return; 2870 } 2871 2872 offset = data.header_length + data.block_descriptor_length; 2873 2874 if ((buffer[offset] & 0x3f) != 0x0a) { 2875 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2876 return; 2877 } 2878 2879 if ((buffer[offset + 5] & 0x80) == 0) 2880 return; 2881 2882 sdkp->ATO = 1; 2883 2884 return; 2885 } 2886 2887 /** 2888 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2889 * @sdkp: disk to query 2890 */ 2891 static void sd_read_block_limits(struct scsi_disk *sdkp) 2892 { 2893 struct scsi_vpd *vpd; 2894 2895 rcu_read_lock(); 2896 2897 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 2898 if (!vpd || vpd->len < 16) 2899 goto out; 2900 2901 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 2902 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 2903 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 2904 2905 if (vpd->len >= 64) { 2906 unsigned int lba_count, desc_count; 2907 2908 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 2909 2910 if (!sdkp->lbpme) 2911 goto out; 2912 2913 lba_count = get_unaligned_be32(&vpd->data[20]); 2914 desc_count = get_unaligned_be32(&vpd->data[24]); 2915 2916 if (lba_count && desc_count) 2917 sdkp->max_unmap_blocks = lba_count; 2918 2919 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 2920 2921 if (vpd->data[32] & 0x80) 2922 sdkp->unmap_alignment = 2923 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 2924 2925 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2926 2927 if (sdkp->max_unmap_blocks) 2928 sd_config_discard(sdkp, SD_LBP_UNMAP); 2929 else 2930 sd_config_discard(sdkp, SD_LBP_WS16); 2931 2932 } else { /* LBP VPD page tells us what to use */ 2933 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2934 sd_config_discard(sdkp, SD_LBP_UNMAP); 2935 else if (sdkp->lbpws) 2936 sd_config_discard(sdkp, SD_LBP_WS16); 2937 else if (sdkp->lbpws10) 2938 sd_config_discard(sdkp, SD_LBP_WS10); 2939 else 2940 sd_config_discard(sdkp, SD_LBP_DISABLE); 2941 } 2942 } 2943 2944 out: 2945 rcu_read_unlock(); 2946 } 2947 2948 /** 2949 * sd_read_block_characteristics - Query block dev. characteristics 2950 * @sdkp: disk to query 2951 */ 2952 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2953 { 2954 struct request_queue *q = sdkp->disk->queue; 2955 struct scsi_vpd *vpd; 2956 u16 rot; 2957 u8 zoned; 2958 2959 rcu_read_lock(); 2960 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 2961 2962 if (!vpd || vpd->len < 8) { 2963 rcu_read_unlock(); 2964 return; 2965 } 2966 2967 rot = get_unaligned_be16(&vpd->data[4]); 2968 zoned = (vpd->data[8] >> 4) & 3; 2969 rcu_read_unlock(); 2970 2971 if (rot == 1) { 2972 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2973 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2974 } 2975 2976 if (sdkp->device->type == TYPE_ZBC) { 2977 /* Host-managed */ 2978 disk_set_zoned(sdkp->disk, BLK_ZONED_HM); 2979 } else { 2980 sdkp->zoned = zoned; 2981 if (sdkp->zoned == 1) { 2982 /* Host-aware */ 2983 disk_set_zoned(sdkp->disk, BLK_ZONED_HA); 2984 } else { 2985 /* Regular disk or drive managed disk */ 2986 disk_set_zoned(sdkp->disk, BLK_ZONED_NONE); 2987 } 2988 } 2989 2990 if (!sdkp->first_scan) 2991 return; 2992 2993 if (blk_queue_is_zoned(q)) { 2994 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2995 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2996 } else { 2997 if (sdkp->zoned == 1) 2998 sd_printk(KERN_NOTICE, sdkp, 2999 "Host-aware SMR disk used as regular disk\n"); 3000 else if (sdkp->zoned == 2) 3001 sd_printk(KERN_NOTICE, sdkp, 3002 "Drive-managed SMR disk\n"); 3003 } 3004 } 3005 3006 /** 3007 * sd_read_block_provisioning - Query provisioning VPD page 3008 * @sdkp: disk to query 3009 */ 3010 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3011 { 3012 struct scsi_vpd *vpd; 3013 3014 if (sdkp->lbpme == 0) 3015 return; 3016 3017 rcu_read_lock(); 3018 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 3019 3020 if (!vpd || vpd->len < 8) { 3021 rcu_read_unlock(); 3022 return; 3023 } 3024 3025 sdkp->lbpvpd = 1; 3026 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 3027 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 3028 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 3029 rcu_read_unlock(); 3030 } 3031 3032 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3033 { 3034 struct scsi_device *sdev = sdkp->device; 3035 3036 if (sdev->host->no_write_same) { 3037 sdev->no_write_same = 1; 3038 3039 return; 3040 } 3041 3042 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3043 struct scsi_vpd *vpd; 3044 3045 sdev->no_report_opcodes = 1; 3046 3047 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3048 * CODES is unsupported and the device has an ATA 3049 * Information VPD page (SAT). 3050 */ 3051 rcu_read_lock(); 3052 vpd = rcu_dereference(sdev->vpd_pg89); 3053 if (vpd) 3054 sdev->no_write_same = 1; 3055 rcu_read_unlock(); 3056 } 3057 3058 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3059 sdkp->ws16 = 1; 3060 3061 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3062 sdkp->ws10 = 1; 3063 } 3064 3065 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3066 { 3067 struct scsi_device *sdev = sdkp->device; 3068 3069 if (!sdev->security_supported) 3070 return; 3071 3072 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3073 SECURITY_PROTOCOL_IN) == 1 && 3074 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3075 SECURITY_PROTOCOL_OUT) == 1) 3076 sdkp->security = 1; 3077 } 3078 3079 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3080 { 3081 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3082 } 3083 3084 /** 3085 * sd_read_cpr - Query concurrent positioning ranges 3086 * @sdkp: disk to query 3087 */ 3088 static void sd_read_cpr(struct scsi_disk *sdkp) 3089 { 3090 struct blk_independent_access_ranges *iars = NULL; 3091 unsigned char *buffer = NULL; 3092 unsigned int nr_cpr = 0; 3093 int i, vpd_len, buf_len = SD_BUF_SIZE; 3094 u8 *desc; 3095 3096 /* 3097 * We need to have the capacity set first for the block layer to be 3098 * able to check the ranges. 3099 */ 3100 if (sdkp->first_scan) 3101 return; 3102 3103 if (!sdkp->capacity) 3104 goto out; 3105 3106 /* 3107 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3108 * leading to a maximum page size of 64 + 256*32 bytes. 3109 */ 3110 buf_len = 64 + 256*32; 3111 buffer = kmalloc(buf_len, GFP_KERNEL); 3112 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3113 goto out; 3114 3115 /* We must have at least a 64B header and one 32B range descriptor */ 3116 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3117 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3118 sd_printk(KERN_ERR, sdkp, 3119 "Invalid Concurrent Positioning Ranges VPD page\n"); 3120 goto out; 3121 } 3122 3123 nr_cpr = (vpd_len - 64) / 32; 3124 if (nr_cpr == 1) { 3125 nr_cpr = 0; 3126 goto out; 3127 } 3128 3129 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3130 if (!iars) { 3131 nr_cpr = 0; 3132 goto out; 3133 } 3134 3135 desc = &buffer[64]; 3136 for (i = 0; i < nr_cpr; i++, desc += 32) { 3137 if (desc[0] != i) { 3138 sd_printk(KERN_ERR, sdkp, 3139 "Invalid Concurrent Positioning Range number\n"); 3140 nr_cpr = 0; 3141 break; 3142 } 3143 3144 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3145 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3146 } 3147 3148 out: 3149 disk_set_independent_access_ranges(sdkp->disk, iars); 3150 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3151 sd_printk(KERN_NOTICE, sdkp, 3152 "%u concurrent positioning ranges\n", nr_cpr); 3153 sdkp->nr_actuators = nr_cpr; 3154 } 3155 3156 kfree(buffer); 3157 } 3158 3159 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3160 { 3161 struct scsi_device *sdp = sdkp->device; 3162 unsigned int min_xfer_bytes = 3163 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3164 3165 if (sdkp->min_xfer_blocks == 0) 3166 return false; 3167 3168 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3169 sd_first_printk(KERN_WARNING, sdkp, 3170 "Preferred minimum I/O size %u bytes not a " \ 3171 "multiple of physical block size (%u bytes)\n", 3172 min_xfer_bytes, sdkp->physical_block_size); 3173 sdkp->min_xfer_blocks = 0; 3174 return false; 3175 } 3176 3177 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3178 min_xfer_bytes); 3179 return true; 3180 } 3181 3182 /* 3183 * Determine the device's preferred I/O size for reads and writes 3184 * unless the reported value is unreasonably small, large, not a 3185 * multiple of the physical block size, or simply garbage. 3186 */ 3187 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3188 unsigned int dev_max) 3189 { 3190 struct scsi_device *sdp = sdkp->device; 3191 unsigned int opt_xfer_bytes = 3192 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3193 unsigned int min_xfer_bytes = 3194 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3195 3196 if (sdkp->opt_xfer_blocks == 0) 3197 return false; 3198 3199 if (sdkp->opt_xfer_blocks > dev_max) { 3200 sd_first_printk(KERN_WARNING, sdkp, 3201 "Optimal transfer size %u logical blocks " \ 3202 "> dev_max (%u logical blocks)\n", 3203 sdkp->opt_xfer_blocks, dev_max); 3204 return false; 3205 } 3206 3207 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3208 sd_first_printk(KERN_WARNING, sdkp, 3209 "Optimal transfer size %u logical blocks " \ 3210 "> sd driver limit (%u logical blocks)\n", 3211 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3212 return false; 3213 } 3214 3215 if (opt_xfer_bytes < PAGE_SIZE) { 3216 sd_first_printk(KERN_WARNING, sdkp, 3217 "Optimal transfer size %u bytes < " \ 3218 "PAGE_SIZE (%u bytes)\n", 3219 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3220 return false; 3221 } 3222 3223 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3224 sd_first_printk(KERN_WARNING, sdkp, 3225 "Optimal transfer size %u bytes not a " \ 3226 "multiple of preferred minimum block " \ 3227 "size (%u bytes)\n", 3228 opt_xfer_bytes, min_xfer_bytes); 3229 return false; 3230 } 3231 3232 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3233 sd_first_printk(KERN_WARNING, sdkp, 3234 "Optimal transfer size %u bytes not a " \ 3235 "multiple of physical block size (%u bytes)\n", 3236 opt_xfer_bytes, sdkp->physical_block_size); 3237 return false; 3238 } 3239 3240 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3241 opt_xfer_bytes); 3242 return true; 3243 } 3244 3245 /** 3246 * sd_revalidate_disk - called the first time a new disk is seen, 3247 * performs disk spin up, read_capacity, etc. 3248 * @disk: struct gendisk we care about 3249 **/ 3250 static int sd_revalidate_disk(struct gendisk *disk) 3251 { 3252 struct scsi_disk *sdkp = scsi_disk(disk); 3253 struct scsi_device *sdp = sdkp->device; 3254 struct request_queue *q = sdkp->disk->queue; 3255 sector_t old_capacity = sdkp->capacity; 3256 unsigned char *buffer; 3257 unsigned int dev_max, rw_max; 3258 3259 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3260 "sd_revalidate_disk\n")); 3261 3262 /* 3263 * If the device is offline, don't try and read capacity or any 3264 * of the other niceties. 3265 */ 3266 if (!scsi_device_online(sdp)) 3267 goto out; 3268 3269 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3270 if (!buffer) { 3271 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3272 "allocation failure.\n"); 3273 goto out; 3274 } 3275 3276 sd_spinup_disk(sdkp); 3277 3278 /* 3279 * Without media there is no reason to ask; moreover, some devices 3280 * react badly if we do. 3281 */ 3282 if (sdkp->media_present) { 3283 sd_read_capacity(sdkp, buffer); 3284 3285 /* 3286 * set the default to rotational. All non-rotational devices 3287 * support the block characteristics VPD page, which will 3288 * cause this to be updated correctly and any device which 3289 * doesn't support it should be treated as rotational. 3290 */ 3291 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3292 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3293 3294 if (scsi_device_supports_vpd(sdp)) { 3295 sd_read_block_provisioning(sdkp); 3296 sd_read_block_limits(sdkp); 3297 sd_read_block_characteristics(sdkp); 3298 sd_zbc_read_zones(sdkp, buffer); 3299 sd_read_cpr(sdkp); 3300 } 3301 3302 sd_print_capacity(sdkp, old_capacity); 3303 3304 sd_read_write_protect_flag(sdkp, buffer); 3305 sd_read_cache_type(sdkp, buffer); 3306 sd_read_app_tag_own(sdkp, buffer); 3307 sd_read_write_same(sdkp, buffer); 3308 sd_read_security(sdkp, buffer); 3309 sd_config_protection(sdkp); 3310 } 3311 3312 /* 3313 * We now have all cache related info, determine how we deal 3314 * with flush requests. 3315 */ 3316 sd_set_flush_flag(sdkp); 3317 3318 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3319 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3320 3321 /* Some devices report a maximum block count for READ/WRITE requests. */ 3322 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3323 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3324 3325 if (sd_validate_min_xfer_size(sdkp)) 3326 blk_queue_io_min(sdkp->disk->queue, 3327 logical_to_bytes(sdp, sdkp->min_xfer_blocks)); 3328 else 3329 blk_queue_io_min(sdkp->disk->queue, 0); 3330 3331 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3332 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3333 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3334 } else { 3335 q->limits.io_opt = 0; 3336 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3337 (sector_t)BLK_DEF_MAX_SECTORS); 3338 } 3339 3340 /* 3341 * Limit default to SCSI host optimal sector limit if set. There may be 3342 * an impact on performance for when the size of a request exceeds this 3343 * host limit. 3344 */ 3345 rw_max = min_not_zero(rw_max, sdp->host->opt_sectors); 3346 3347 /* Do not exceed controller limit */ 3348 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3349 3350 /* 3351 * Only update max_sectors if previously unset or if the current value 3352 * exceeds the capabilities of the hardware. 3353 */ 3354 if (sdkp->first_scan || 3355 q->limits.max_sectors > q->limits.max_dev_sectors || 3356 q->limits.max_sectors > q->limits.max_hw_sectors) 3357 q->limits.max_sectors = rw_max; 3358 3359 sdkp->first_scan = 0; 3360 3361 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3362 sd_config_write_same(sdkp); 3363 kfree(buffer); 3364 3365 /* 3366 * For a zoned drive, revalidating the zones can be done only once 3367 * the gendisk capacity is set. So if this fails, set back the gendisk 3368 * capacity to 0. 3369 */ 3370 if (sd_zbc_revalidate_zones(sdkp)) 3371 set_capacity_and_notify(disk, 0); 3372 3373 out: 3374 return 0; 3375 } 3376 3377 /** 3378 * sd_unlock_native_capacity - unlock native capacity 3379 * @disk: struct gendisk to set capacity for 3380 * 3381 * Block layer calls this function if it detects that partitions 3382 * on @disk reach beyond the end of the device. If the SCSI host 3383 * implements ->unlock_native_capacity() method, it's invoked to 3384 * give it a chance to adjust the device capacity. 3385 * 3386 * CONTEXT: 3387 * Defined by block layer. Might sleep. 3388 */ 3389 static void sd_unlock_native_capacity(struct gendisk *disk) 3390 { 3391 struct scsi_device *sdev = scsi_disk(disk)->device; 3392 3393 if (sdev->host->hostt->unlock_native_capacity) 3394 sdev->host->hostt->unlock_native_capacity(sdev); 3395 } 3396 3397 /** 3398 * sd_format_disk_name - format disk name 3399 * @prefix: name prefix - ie. "sd" for SCSI disks 3400 * @index: index of the disk to format name for 3401 * @buf: output buffer 3402 * @buflen: length of the output buffer 3403 * 3404 * SCSI disk names starts at sda. The 26th device is sdz and the 3405 * 27th is sdaa. The last one for two lettered suffix is sdzz 3406 * which is followed by sdaaa. 3407 * 3408 * This is basically 26 base counting with one extra 'nil' entry 3409 * at the beginning from the second digit on and can be 3410 * determined using similar method as 26 base conversion with the 3411 * index shifted -1 after each digit is computed. 3412 * 3413 * CONTEXT: 3414 * Don't care. 3415 * 3416 * RETURNS: 3417 * 0 on success, -errno on failure. 3418 */ 3419 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3420 { 3421 const int base = 'z' - 'a' + 1; 3422 char *begin = buf + strlen(prefix); 3423 char *end = buf + buflen; 3424 char *p; 3425 int unit; 3426 3427 p = end - 1; 3428 *p = '\0'; 3429 unit = base; 3430 do { 3431 if (p == begin) 3432 return -EINVAL; 3433 *--p = 'a' + (index % unit); 3434 index = (index / unit) - 1; 3435 } while (index >= 0); 3436 3437 memmove(begin, p, end - p); 3438 memcpy(buf, prefix, strlen(prefix)); 3439 3440 return 0; 3441 } 3442 3443 /** 3444 * sd_probe - called during driver initialization and whenever a 3445 * new scsi device is attached to the system. It is called once 3446 * for each scsi device (not just disks) present. 3447 * @dev: pointer to device object 3448 * 3449 * Returns 0 if successful (or not interested in this scsi device 3450 * (e.g. scanner)); 1 when there is an error. 3451 * 3452 * Note: this function is invoked from the scsi mid-level. 3453 * This function sets up the mapping between a given 3454 * <host,channel,id,lun> (found in sdp) and new device name 3455 * (e.g. /dev/sda). More precisely it is the block device major 3456 * and minor number that is chosen here. 3457 * 3458 * Assume sd_probe is not re-entrant (for time being) 3459 * Also think about sd_probe() and sd_remove() running coincidentally. 3460 **/ 3461 static int sd_probe(struct device *dev) 3462 { 3463 struct scsi_device *sdp = to_scsi_device(dev); 3464 struct scsi_disk *sdkp; 3465 struct gendisk *gd; 3466 int index; 3467 int error; 3468 3469 scsi_autopm_get_device(sdp); 3470 error = -ENODEV; 3471 if (sdp->type != TYPE_DISK && 3472 sdp->type != TYPE_ZBC && 3473 sdp->type != TYPE_MOD && 3474 sdp->type != TYPE_RBC) 3475 goto out; 3476 3477 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3478 sdev_printk(KERN_WARNING, sdp, 3479 "Unsupported ZBC host-managed device.\n"); 3480 goto out; 3481 } 3482 3483 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3484 "sd_probe\n")); 3485 3486 error = -ENOMEM; 3487 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3488 if (!sdkp) 3489 goto out; 3490 3491 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue, 3492 &sd_bio_compl_lkclass); 3493 if (!gd) 3494 goto out_free; 3495 3496 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3497 if (index < 0) { 3498 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3499 goto out_put; 3500 } 3501 3502 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3503 if (error) { 3504 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3505 goto out_free_index; 3506 } 3507 3508 sdkp->device = sdp; 3509 sdkp->disk = gd; 3510 sdkp->index = index; 3511 sdkp->max_retries = SD_MAX_RETRIES; 3512 atomic_set(&sdkp->openers, 0); 3513 atomic_set(&sdkp->device->ioerr_cnt, 0); 3514 3515 if (!sdp->request_queue->rq_timeout) { 3516 if (sdp->type != TYPE_MOD) 3517 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3518 else 3519 blk_queue_rq_timeout(sdp->request_queue, 3520 SD_MOD_TIMEOUT); 3521 } 3522 3523 device_initialize(&sdkp->disk_dev); 3524 sdkp->disk_dev.parent = get_device(dev); 3525 sdkp->disk_dev.class = &sd_disk_class; 3526 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3527 3528 error = device_add(&sdkp->disk_dev); 3529 if (error) { 3530 put_device(&sdkp->disk_dev); 3531 goto out; 3532 } 3533 3534 dev_set_drvdata(dev, sdkp); 3535 3536 gd->major = sd_major((index & 0xf0) >> 4); 3537 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3538 gd->minors = SD_MINORS; 3539 3540 gd->fops = &sd_fops; 3541 gd->private_data = sdkp; 3542 3543 /* defaults, until the device tells us otherwise */ 3544 sdp->sector_size = 512; 3545 sdkp->capacity = 0; 3546 sdkp->media_present = 1; 3547 sdkp->write_prot = 0; 3548 sdkp->cache_override = 0; 3549 sdkp->WCE = 0; 3550 sdkp->RCD = 0; 3551 sdkp->ATO = 0; 3552 sdkp->first_scan = 1; 3553 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3554 3555 sd_revalidate_disk(gd); 3556 3557 if (sdp->removable) { 3558 gd->flags |= GENHD_FL_REMOVABLE; 3559 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3560 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3561 } 3562 3563 blk_pm_runtime_init(sdp->request_queue, dev); 3564 if (sdp->rpm_autosuspend) { 3565 pm_runtime_set_autosuspend_delay(dev, 3566 sdp->host->hostt->rpm_autosuspend_delay); 3567 } 3568 3569 error = device_add_disk(dev, gd, NULL); 3570 if (error) { 3571 put_device(&sdkp->disk_dev); 3572 put_disk(gd); 3573 goto out; 3574 } 3575 3576 if (sdkp->security) { 3577 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3578 if (sdkp->opal_dev) 3579 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3580 } 3581 3582 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3583 sdp->removable ? "removable " : ""); 3584 scsi_autopm_put_device(sdp); 3585 3586 return 0; 3587 3588 out_free_index: 3589 ida_free(&sd_index_ida, index); 3590 out_put: 3591 put_disk(gd); 3592 out_free: 3593 kfree(sdkp); 3594 out: 3595 scsi_autopm_put_device(sdp); 3596 return error; 3597 } 3598 3599 /** 3600 * sd_remove - called whenever a scsi disk (previously recognized by 3601 * sd_probe) is detached from the system. It is called (potentially 3602 * multiple times) during sd module unload. 3603 * @dev: pointer to device object 3604 * 3605 * Note: this function is invoked from the scsi mid-level. 3606 * This function potentially frees up a device name (e.g. /dev/sdc) 3607 * that could be re-used by a subsequent sd_probe(). 3608 * This function is not called when the built-in sd driver is "exit-ed". 3609 **/ 3610 static int sd_remove(struct device *dev) 3611 { 3612 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3613 3614 scsi_autopm_get_device(sdkp->device); 3615 3616 device_del(&sdkp->disk_dev); 3617 del_gendisk(sdkp->disk); 3618 sd_shutdown(dev); 3619 3620 put_disk(sdkp->disk); 3621 return 0; 3622 } 3623 3624 static void scsi_disk_release(struct device *dev) 3625 { 3626 struct scsi_disk *sdkp = to_scsi_disk(dev); 3627 3628 ida_free(&sd_index_ida, sdkp->index); 3629 sd_zbc_free_zone_info(sdkp); 3630 put_device(&sdkp->device->sdev_gendev); 3631 free_opal_dev(sdkp->opal_dev); 3632 3633 kfree(sdkp); 3634 } 3635 3636 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3637 { 3638 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3639 struct scsi_sense_hdr sshdr; 3640 struct scsi_device *sdp = sdkp->device; 3641 int res; 3642 3643 if (start) 3644 cmd[4] |= 1; /* START */ 3645 3646 if (sdp->start_stop_pwr_cond) 3647 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3648 3649 if (!scsi_device_online(sdp)) 3650 return -ENODEV; 3651 3652 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3653 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL); 3654 if (res) { 3655 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3656 if (res > 0 && scsi_sense_valid(&sshdr)) { 3657 sd_print_sense_hdr(sdkp, &sshdr); 3658 /* 0x3a is medium not present */ 3659 if (sshdr.asc == 0x3a) 3660 res = 0; 3661 } 3662 } 3663 3664 /* SCSI error codes must not go to the generic layer */ 3665 if (res) 3666 return -EIO; 3667 3668 return 0; 3669 } 3670 3671 /* 3672 * Send a SYNCHRONIZE CACHE instruction down to the device through 3673 * the normal SCSI command structure. Wait for the command to 3674 * complete. 3675 */ 3676 static void sd_shutdown(struct device *dev) 3677 { 3678 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3679 3680 if (!sdkp) 3681 return; /* this can happen */ 3682 3683 if (pm_runtime_suspended(dev)) 3684 return; 3685 3686 if (sdkp->WCE && sdkp->media_present) { 3687 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3688 sd_sync_cache(sdkp, NULL); 3689 } 3690 3691 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3692 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3693 sd_start_stop_device(sdkp, 0); 3694 } 3695 } 3696 3697 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3698 { 3699 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3700 struct scsi_sense_hdr sshdr; 3701 int ret = 0; 3702 3703 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3704 return 0; 3705 3706 if (sdkp->WCE && sdkp->media_present) { 3707 if (!sdkp->device->silence_suspend) 3708 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3709 ret = sd_sync_cache(sdkp, &sshdr); 3710 3711 if (ret) { 3712 /* ignore OFFLINE device */ 3713 if (ret == -ENODEV) 3714 return 0; 3715 3716 if (!scsi_sense_valid(&sshdr) || 3717 sshdr.sense_key != ILLEGAL_REQUEST) 3718 return ret; 3719 3720 /* 3721 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3722 * doesn't support sync. There's not much to do and 3723 * suspend shouldn't fail. 3724 */ 3725 ret = 0; 3726 } 3727 } 3728 3729 if (sdkp->device->manage_start_stop) { 3730 if (!sdkp->device->silence_suspend) 3731 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3732 /* an error is not worth aborting a system sleep */ 3733 ret = sd_start_stop_device(sdkp, 0); 3734 if (ignore_stop_errors) 3735 ret = 0; 3736 } 3737 3738 return ret; 3739 } 3740 3741 static int sd_suspend_system(struct device *dev) 3742 { 3743 if (pm_runtime_suspended(dev)) 3744 return 0; 3745 3746 return sd_suspend_common(dev, true); 3747 } 3748 3749 static int sd_suspend_runtime(struct device *dev) 3750 { 3751 return sd_suspend_common(dev, false); 3752 } 3753 3754 static int sd_resume(struct device *dev) 3755 { 3756 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3757 int ret; 3758 3759 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3760 return 0; 3761 3762 if (!sdkp->device->manage_start_stop) 3763 return 0; 3764 3765 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3766 ret = sd_start_stop_device(sdkp, 1); 3767 if (!ret) 3768 opal_unlock_from_suspend(sdkp->opal_dev); 3769 return ret; 3770 } 3771 3772 static int sd_resume_system(struct device *dev) 3773 { 3774 if (pm_runtime_suspended(dev)) 3775 return 0; 3776 3777 return sd_resume(dev); 3778 } 3779 3780 static int sd_resume_runtime(struct device *dev) 3781 { 3782 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3783 struct scsi_device *sdp; 3784 3785 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3786 return 0; 3787 3788 sdp = sdkp->device; 3789 3790 if (sdp->ignore_media_change) { 3791 /* clear the device's sense data */ 3792 static const u8 cmd[10] = { REQUEST_SENSE }; 3793 3794 if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, 3795 NULL, sdp->request_queue->rq_timeout, 1, 0, 3796 RQF_PM, NULL)) 3797 sd_printk(KERN_NOTICE, sdkp, 3798 "Failed to clear sense data\n"); 3799 } 3800 3801 return sd_resume(dev); 3802 } 3803 3804 /** 3805 * init_sd - entry point for this driver (both when built in or when 3806 * a module). 3807 * 3808 * Note: this function registers this driver with the scsi mid-level. 3809 **/ 3810 static int __init init_sd(void) 3811 { 3812 int majors = 0, i, err; 3813 3814 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3815 3816 for (i = 0; i < SD_MAJORS; i++) { 3817 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3818 continue; 3819 majors++; 3820 } 3821 3822 if (!majors) 3823 return -ENODEV; 3824 3825 err = class_register(&sd_disk_class); 3826 if (err) 3827 goto err_out; 3828 3829 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3830 0, 0, NULL); 3831 if (!sd_cdb_cache) { 3832 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3833 err = -ENOMEM; 3834 goto err_out_class; 3835 } 3836 3837 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3838 if (!sd_page_pool) { 3839 printk(KERN_ERR "sd: can't init discard page pool\n"); 3840 err = -ENOMEM; 3841 goto err_out_cache; 3842 } 3843 3844 err = scsi_register_driver(&sd_template.gendrv); 3845 if (err) 3846 goto err_out_driver; 3847 3848 return 0; 3849 3850 err_out_driver: 3851 mempool_destroy(sd_page_pool); 3852 3853 err_out_cache: 3854 kmem_cache_destroy(sd_cdb_cache); 3855 3856 err_out_class: 3857 class_unregister(&sd_disk_class); 3858 err_out: 3859 for (i = 0; i < SD_MAJORS; i++) 3860 unregister_blkdev(sd_major(i), "sd"); 3861 return err; 3862 } 3863 3864 /** 3865 * exit_sd - exit point for this driver (when it is a module). 3866 * 3867 * Note: this function unregisters this driver from the scsi mid-level. 3868 **/ 3869 static void __exit exit_sd(void) 3870 { 3871 int i; 3872 3873 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3874 3875 scsi_unregister_driver(&sd_template.gendrv); 3876 mempool_destroy(sd_page_pool); 3877 kmem_cache_destroy(sd_cdb_cache); 3878 3879 class_unregister(&sd_disk_class); 3880 3881 for (i = 0; i < SD_MAJORS; i++) 3882 unregister_blkdev(sd_major(i), "sd"); 3883 } 3884 3885 module_init(init_sd); 3886 module_exit(exit_sd); 3887 3888 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3889 { 3890 scsi_print_sense_hdr(sdkp->device, 3891 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3892 } 3893 3894 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3895 { 3896 const char *hb_string = scsi_hostbyte_string(result); 3897 3898 if (hb_string) 3899 sd_printk(KERN_INFO, sdkp, 3900 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3901 hb_string ? hb_string : "invalid", 3902 "DRIVER_OK"); 3903 else 3904 sd_printk(KERN_INFO, sdkp, 3905 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 3906 msg, host_byte(result), "DRIVER_OK"); 3907 } 3908