xref: /openbmc/linux/drivers/scsi/sd.c (revision c5b483d5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/major.h>
52 #include <linux/mutex.h>
53 #include <linux/string_helpers.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61 
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71 
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75 
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79 
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100 
101 #define SD_MINORS	16
102 
103 static void sd_config_discard(struct scsi_disk *, unsigned int);
104 static void sd_config_write_same(struct scsi_disk *);
105 static int  sd_revalidate_disk(struct gendisk *);
106 static void sd_unlock_native_capacity(struct gendisk *disk);
107 static int  sd_probe(struct device *);
108 static int  sd_remove(struct device *);
109 static void sd_shutdown(struct device *);
110 static int sd_suspend_system(struct device *);
111 static int sd_suspend_runtime(struct device *);
112 static int sd_resume_system(struct device *);
113 static int sd_resume_runtime(struct device *);
114 static void sd_rescan(struct device *);
115 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
116 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
117 static int sd_done(struct scsi_cmnd *);
118 static void sd_eh_reset(struct scsi_cmnd *);
119 static int sd_eh_action(struct scsi_cmnd *, int);
120 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
121 static void scsi_disk_release(struct device *cdev);
122 
123 static DEFINE_IDA(sd_index_ida);
124 
125 /* This semaphore is used to mediate the 0->1 reference get in the
126  * face of object destruction (i.e. we can't allow a get on an
127  * object after last put) */
128 static DEFINE_MUTEX(sd_ref_mutex);
129 
130 static struct kmem_cache *sd_cdb_cache;
131 static mempool_t *sd_cdb_pool;
132 static mempool_t *sd_page_pool;
133 static struct lock_class_key sd_bio_compl_lkclass;
134 
135 static const char *sd_cache_types[] = {
136 	"write through", "none", "write back",
137 	"write back, no read (daft)"
138 };
139 
140 static void sd_set_flush_flag(struct scsi_disk *sdkp)
141 {
142 	bool wc = false, fua = false;
143 
144 	if (sdkp->WCE) {
145 		wc = true;
146 		if (sdkp->DPOFUA)
147 			fua = true;
148 	}
149 
150 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
151 }
152 
153 static ssize_t
154 cache_type_store(struct device *dev, struct device_attribute *attr,
155 		 const char *buf, size_t count)
156 {
157 	int ct, rcd, wce, sp;
158 	struct scsi_disk *sdkp = to_scsi_disk(dev);
159 	struct scsi_device *sdp = sdkp->device;
160 	char buffer[64];
161 	char *buffer_data;
162 	struct scsi_mode_data data;
163 	struct scsi_sense_hdr sshdr;
164 	static const char temp[] = "temporary ";
165 	int len;
166 
167 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
168 		/* no cache control on RBC devices; theoretically they
169 		 * can do it, but there's probably so many exceptions
170 		 * it's not worth the risk */
171 		return -EINVAL;
172 
173 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
174 		buf += sizeof(temp) - 1;
175 		sdkp->cache_override = 1;
176 	} else {
177 		sdkp->cache_override = 0;
178 	}
179 
180 	ct = sysfs_match_string(sd_cache_types, buf);
181 	if (ct < 0)
182 		return -EINVAL;
183 
184 	rcd = ct & 0x01 ? 1 : 0;
185 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
186 
187 	if (sdkp->cache_override) {
188 		sdkp->WCE = wce;
189 		sdkp->RCD = rcd;
190 		sd_set_flush_flag(sdkp);
191 		return count;
192 	}
193 
194 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
195 			    sdkp->max_retries, &data, NULL))
196 		return -EINVAL;
197 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
198 		  data.block_descriptor_length);
199 	buffer_data = buffer + data.header_length +
200 		data.block_descriptor_length;
201 	buffer_data[2] &= ~0x05;
202 	buffer_data[2] |= wce << 2 | rcd;
203 	sp = buffer_data[0] & 0x80 ? 1 : 0;
204 	buffer_data[0] &= ~0x80;
205 
206 	/*
207 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
208 	 * received mode parameter buffer before doing MODE SELECT.
209 	 */
210 	data.device_specific = 0;
211 
212 	if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
213 			     sdkp->max_retries, &data, &sshdr)) {
214 		if (scsi_sense_valid(&sshdr))
215 			sd_print_sense_hdr(sdkp, &sshdr);
216 		return -EINVAL;
217 	}
218 	sd_revalidate_disk(sdkp->disk);
219 	return count;
220 }
221 
222 static ssize_t
223 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
224 		       char *buf)
225 {
226 	struct scsi_disk *sdkp = to_scsi_disk(dev);
227 	struct scsi_device *sdp = sdkp->device;
228 
229 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
230 }
231 
232 static ssize_t
233 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
234 			const char *buf, size_t count)
235 {
236 	struct scsi_disk *sdkp = to_scsi_disk(dev);
237 	struct scsi_device *sdp = sdkp->device;
238 	bool v;
239 
240 	if (!capable(CAP_SYS_ADMIN))
241 		return -EACCES;
242 
243 	if (kstrtobool(buf, &v))
244 		return -EINVAL;
245 
246 	sdp->manage_start_stop = v;
247 
248 	return count;
249 }
250 static DEVICE_ATTR_RW(manage_start_stop);
251 
252 static ssize_t
253 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
254 {
255 	struct scsi_disk *sdkp = to_scsi_disk(dev);
256 
257 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
258 }
259 
260 static ssize_t
261 allow_restart_store(struct device *dev, struct device_attribute *attr,
262 		    const char *buf, size_t count)
263 {
264 	bool v;
265 	struct scsi_disk *sdkp = to_scsi_disk(dev);
266 	struct scsi_device *sdp = sdkp->device;
267 
268 	if (!capable(CAP_SYS_ADMIN))
269 		return -EACCES;
270 
271 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
272 		return -EINVAL;
273 
274 	if (kstrtobool(buf, &v))
275 		return -EINVAL;
276 
277 	sdp->allow_restart = v;
278 
279 	return count;
280 }
281 static DEVICE_ATTR_RW(allow_restart);
282 
283 static ssize_t
284 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
285 {
286 	struct scsi_disk *sdkp = to_scsi_disk(dev);
287 	int ct = sdkp->RCD + 2*sdkp->WCE;
288 
289 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
290 }
291 static DEVICE_ATTR_RW(cache_type);
292 
293 static ssize_t
294 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
295 {
296 	struct scsi_disk *sdkp = to_scsi_disk(dev);
297 
298 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
299 }
300 static DEVICE_ATTR_RO(FUA);
301 
302 static ssize_t
303 protection_type_show(struct device *dev, struct device_attribute *attr,
304 		     char *buf)
305 {
306 	struct scsi_disk *sdkp = to_scsi_disk(dev);
307 
308 	return sprintf(buf, "%u\n", sdkp->protection_type);
309 }
310 
311 static ssize_t
312 protection_type_store(struct device *dev, struct device_attribute *attr,
313 		      const char *buf, size_t count)
314 {
315 	struct scsi_disk *sdkp = to_scsi_disk(dev);
316 	unsigned int val;
317 	int err;
318 
319 	if (!capable(CAP_SYS_ADMIN))
320 		return -EACCES;
321 
322 	err = kstrtouint(buf, 10, &val);
323 
324 	if (err)
325 		return err;
326 
327 	if (val <= T10_PI_TYPE3_PROTECTION)
328 		sdkp->protection_type = val;
329 
330 	return count;
331 }
332 static DEVICE_ATTR_RW(protection_type);
333 
334 static ssize_t
335 protection_mode_show(struct device *dev, struct device_attribute *attr,
336 		     char *buf)
337 {
338 	struct scsi_disk *sdkp = to_scsi_disk(dev);
339 	struct scsi_device *sdp = sdkp->device;
340 	unsigned int dif, dix;
341 
342 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
343 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
344 
345 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
346 		dif = 0;
347 		dix = 1;
348 	}
349 
350 	if (!dif && !dix)
351 		return sprintf(buf, "none\n");
352 
353 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
354 }
355 static DEVICE_ATTR_RO(protection_mode);
356 
357 static ssize_t
358 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
359 {
360 	struct scsi_disk *sdkp = to_scsi_disk(dev);
361 
362 	return sprintf(buf, "%u\n", sdkp->ATO);
363 }
364 static DEVICE_ATTR_RO(app_tag_own);
365 
366 static ssize_t
367 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
368 		       char *buf)
369 {
370 	struct scsi_disk *sdkp = to_scsi_disk(dev);
371 
372 	return sprintf(buf, "%u\n", sdkp->lbpme);
373 }
374 static DEVICE_ATTR_RO(thin_provisioning);
375 
376 /* sysfs_match_string() requires dense arrays */
377 static const char *lbp_mode[] = {
378 	[SD_LBP_FULL]		= "full",
379 	[SD_LBP_UNMAP]		= "unmap",
380 	[SD_LBP_WS16]		= "writesame_16",
381 	[SD_LBP_WS10]		= "writesame_10",
382 	[SD_LBP_ZERO]		= "writesame_zero",
383 	[SD_LBP_DISABLE]	= "disabled",
384 };
385 
386 static ssize_t
387 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
388 		       char *buf)
389 {
390 	struct scsi_disk *sdkp = to_scsi_disk(dev);
391 
392 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
393 }
394 
395 static ssize_t
396 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
397 			const char *buf, size_t count)
398 {
399 	struct scsi_disk *sdkp = to_scsi_disk(dev);
400 	struct scsi_device *sdp = sdkp->device;
401 	int mode;
402 
403 	if (!capable(CAP_SYS_ADMIN))
404 		return -EACCES;
405 
406 	if (sd_is_zoned(sdkp)) {
407 		sd_config_discard(sdkp, SD_LBP_DISABLE);
408 		return count;
409 	}
410 
411 	if (sdp->type != TYPE_DISK)
412 		return -EINVAL;
413 
414 	mode = sysfs_match_string(lbp_mode, buf);
415 	if (mode < 0)
416 		return -EINVAL;
417 
418 	sd_config_discard(sdkp, mode);
419 
420 	return count;
421 }
422 static DEVICE_ATTR_RW(provisioning_mode);
423 
424 /* sysfs_match_string() requires dense arrays */
425 static const char *zeroing_mode[] = {
426 	[SD_ZERO_WRITE]		= "write",
427 	[SD_ZERO_WS]		= "writesame",
428 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
429 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
430 };
431 
432 static ssize_t
433 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
434 		  char *buf)
435 {
436 	struct scsi_disk *sdkp = to_scsi_disk(dev);
437 
438 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
439 }
440 
441 static ssize_t
442 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
443 		   const char *buf, size_t count)
444 {
445 	struct scsi_disk *sdkp = to_scsi_disk(dev);
446 	int mode;
447 
448 	if (!capable(CAP_SYS_ADMIN))
449 		return -EACCES;
450 
451 	mode = sysfs_match_string(zeroing_mode, buf);
452 	if (mode < 0)
453 		return -EINVAL;
454 
455 	sdkp->zeroing_mode = mode;
456 
457 	return count;
458 }
459 static DEVICE_ATTR_RW(zeroing_mode);
460 
461 static ssize_t
462 max_medium_access_timeouts_show(struct device *dev,
463 				struct device_attribute *attr, char *buf)
464 {
465 	struct scsi_disk *sdkp = to_scsi_disk(dev);
466 
467 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
468 }
469 
470 static ssize_t
471 max_medium_access_timeouts_store(struct device *dev,
472 				 struct device_attribute *attr, const char *buf,
473 				 size_t count)
474 {
475 	struct scsi_disk *sdkp = to_scsi_disk(dev);
476 	int err;
477 
478 	if (!capable(CAP_SYS_ADMIN))
479 		return -EACCES;
480 
481 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
482 
483 	return err ? err : count;
484 }
485 static DEVICE_ATTR_RW(max_medium_access_timeouts);
486 
487 static ssize_t
488 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
489 			   char *buf)
490 {
491 	struct scsi_disk *sdkp = to_scsi_disk(dev);
492 
493 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
494 }
495 
496 static ssize_t
497 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
498 			    const char *buf, size_t count)
499 {
500 	struct scsi_disk *sdkp = to_scsi_disk(dev);
501 	struct scsi_device *sdp = sdkp->device;
502 	unsigned long max;
503 	int err;
504 
505 	if (!capable(CAP_SYS_ADMIN))
506 		return -EACCES;
507 
508 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
509 		return -EINVAL;
510 
511 	err = kstrtoul(buf, 10, &max);
512 
513 	if (err)
514 		return err;
515 
516 	if (max == 0)
517 		sdp->no_write_same = 1;
518 	else if (max <= SD_MAX_WS16_BLOCKS) {
519 		sdp->no_write_same = 0;
520 		sdkp->max_ws_blocks = max;
521 	}
522 
523 	sd_config_write_same(sdkp);
524 
525 	return count;
526 }
527 static DEVICE_ATTR_RW(max_write_same_blocks);
528 
529 static ssize_t
530 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
531 {
532 	struct scsi_disk *sdkp = to_scsi_disk(dev);
533 
534 	if (sdkp->device->type == TYPE_ZBC)
535 		return sprintf(buf, "host-managed\n");
536 	if (sdkp->zoned == 1)
537 		return sprintf(buf, "host-aware\n");
538 	if (sdkp->zoned == 2)
539 		return sprintf(buf, "drive-managed\n");
540 	return sprintf(buf, "none\n");
541 }
542 static DEVICE_ATTR_RO(zoned_cap);
543 
544 static ssize_t
545 max_retries_store(struct device *dev, struct device_attribute *attr,
546 		  const char *buf, size_t count)
547 {
548 	struct scsi_disk *sdkp = to_scsi_disk(dev);
549 	struct scsi_device *sdev = sdkp->device;
550 	int retries, err;
551 
552 	err = kstrtoint(buf, 10, &retries);
553 	if (err)
554 		return err;
555 
556 	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
557 		sdkp->max_retries = retries;
558 		return count;
559 	}
560 
561 	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
562 		    SD_MAX_RETRIES);
563 	return -EINVAL;
564 }
565 
566 static ssize_t
567 max_retries_show(struct device *dev, struct device_attribute *attr,
568 		 char *buf)
569 {
570 	struct scsi_disk *sdkp = to_scsi_disk(dev);
571 
572 	return sprintf(buf, "%d\n", sdkp->max_retries);
573 }
574 
575 static DEVICE_ATTR_RW(max_retries);
576 
577 static struct attribute *sd_disk_attrs[] = {
578 	&dev_attr_cache_type.attr,
579 	&dev_attr_FUA.attr,
580 	&dev_attr_allow_restart.attr,
581 	&dev_attr_manage_start_stop.attr,
582 	&dev_attr_protection_type.attr,
583 	&dev_attr_protection_mode.attr,
584 	&dev_attr_app_tag_own.attr,
585 	&dev_attr_thin_provisioning.attr,
586 	&dev_attr_provisioning_mode.attr,
587 	&dev_attr_zeroing_mode.attr,
588 	&dev_attr_max_write_same_blocks.attr,
589 	&dev_attr_max_medium_access_timeouts.attr,
590 	&dev_attr_zoned_cap.attr,
591 	&dev_attr_max_retries.attr,
592 	NULL,
593 };
594 ATTRIBUTE_GROUPS(sd_disk);
595 
596 static struct class sd_disk_class = {
597 	.name		= "scsi_disk",
598 	.owner		= THIS_MODULE,
599 	.dev_release	= scsi_disk_release,
600 	.dev_groups	= sd_disk_groups,
601 };
602 
603 static const struct dev_pm_ops sd_pm_ops = {
604 	.suspend		= sd_suspend_system,
605 	.resume			= sd_resume_system,
606 	.poweroff		= sd_suspend_system,
607 	.restore		= sd_resume_system,
608 	.runtime_suspend	= sd_suspend_runtime,
609 	.runtime_resume		= sd_resume_runtime,
610 };
611 
612 static struct scsi_driver sd_template = {
613 	.gendrv = {
614 		.name		= "sd",
615 		.owner		= THIS_MODULE,
616 		.probe		= sd_probe,
617 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
618 		.remove		= sd_remove,
619 		.shutdown	= sd_shutdown,
620 		.pm		= &sd_pm_ops,
621 	},
622 	.rescan			= sd_rescan,
623 	.init_command		= sd_init_command,
624 	.uninit_command		= sd_uninit_command,
625 	.done			= sd_done,
626 	.eh_action		= sd_eh_action,
627 	.eh_reset		= sd_eh_reset,
628 };
629 
630 /*
631  * Don't request a new module, as that could deadlock in multipath
632  * environment.
633  */
634 static void sd_default_probe(dev_t devt)
635 {
636 }
637 
638 /*
639  * Device no to disk mapping:
640  *
641  *       major         disc2     disc  p1
642  *   |............|.............|....|....| <- dev_t
643  *    31        20 19          8 7  4 3  0
644  *
645  * Inside a major, we have 16k disks, however mapped non-
646  * contiguously. The first 16 disks are for major0, the next
647  * ones with major1, ... Disk 256 is for major0 again, disk 272
648  * for major1, ...
649  * As we stay compatible with our numbering scheme, we can reuse
650  * the well-know SCSI majors 8, 65--71, 136--143.
651  */
652 static int sd_major(int major_idx)
653 {
654 	switch (major_idx) {
655 	case 0:
656 		return SCSI_DISK0_MAJOR;
657 	case 1 ... 7:
658 		return SCSI_DISK1_MAJOR + major_idx - 1;
659 	case 8 ... 15:
660 		return SCSI_DISK8_MAJOR + major_idx - 8;
661 	default:
662 		BUG();
663 		return 0;	/* shut up gcc */
664 	}
665 }
666 
667 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
668 {
669 	struct scsi_disk *sdkp = NULL;
670 
671 	mutex_lock(&sd_ref_mutex);
672 
673 	if (disk->private_data) {
674 		sdkp = scsi_disk(disk);
675 		if (scsi_device_get(sdkp->device) == 0)
676 			get_device(&sdkp->dev);
677 		else
678 			sdkp = NULL;
679 	}
680 	mutex_unlock(&sd_ref_mutex);
681 	return sdkp;
682 }
683 
684 static void scsi_disk_put(struct scsi_disk *sdkp)
685 {
686 	struct scsi_device *sdev = sdkp->device;
687 
688 	mutex_lock(&sd_ref_mutex);
689 	put_device(&sdkp->dev);
690 	scsi_device_put(sdev);
691 	mutex_unlock(&sd_ref_mutex);
692 }
693 
694 #ifdef CONFIG_BLK_SED_OPAL
695 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
696 		size_t len, bool send)
697 {
698 	struct scsi_disk *sdkp = data;
699 	struct scsi_device *sdev = sdkp->device;
700 	u8 cdb[12] = { 0, };
701 	int ret;
702 
703 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
704 	cdb[1] = secp;
705 	put_unaligned_be16(spsp, &cdb[2]);
706 	put_unaligned_be32(len, &cdb[6]);
707 
708 	ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
709 		buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0,
710 		RQF_PM, NULL);
711 	return ret <= 0 ? ret : -EIO;
712 }
713 #endif /* CONFIG_BLK_SED_OPAL */
714 
715 /*
716  * Look up the DIX operation based on whether the command is read or
717  * write and whether dix and dif are enabled.
718  */
719 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
720 {
721 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
722 	static const unsigned int ops[] = {	/* wrt dix dif */
723 		SCSI_PROT_NORMAL,		/*  0	0   0  */
724 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
725 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
726 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
727 		SCSI_PROT_NORMAL,		/*  1	0   0  */
728 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
729 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
730 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
731 	};
732 
733 	return ops[write << 2 | dix << 1 | dif];
734 }
735 
736 /*
737  * Returns a mask of the protection flags that are valid for a given DIX
738  * operation.
739  */
740 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
741 {
742 	static const unsigned int flag_mask[] = {
743 		[SCSI_PROT_NORMAL]		= 0,
744 
745 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
746 						  SCSI_PROT_GUARD_CHECK |
747 						  SCSI_PROT_REF_CHECK |
748 						  SCSI_PROT_REF_INCREMENT,
749 
750 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
751 						  SCSI_PROT_IP_CHECKSUM,
752 
753 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
754 						  SCSI_PROT_GUARD_CHECK |
755 						  SCSI_PROT_REF_CHECK |
756 						  SCSI_PROT_REF_INCREMENT |
757 						  SCSI_PROT_IP_CHECKSUM,
758 
759 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
760 						  SCSI_PROT_REF_INCREMENT,
761 
762 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
763 						  SCSI_PROT_REF_CHECK |
764 						  SCSI_PROT_REF_INCREMENT |
765 						  SCSI_PROT_IP_CHECKSUM,
766 
767 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
768 						  SCSI_PROT_GUARD_CHECK |
769 						  SCSI_PROT_REF_CHECK |
770 						  SCSI_PROT_REF_INCREMENT |
771 						  SCSI_PROT_IP_CHECKSUM,
772 	};
773 
774 	return flag_mask[prot_op];
775 }
776 
777 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
778 					   unsigned int dix, unsigned int dif)
779 {
780 	struct request *rq = scsi_cmd_to_rq(scmd);
781 	struct bio *bio = rq->bio;
782 	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
783 	unsigned int protect = 0;
784 
785 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
786 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
787 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
788 
789 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
790 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
791 	}
792 
793 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
794 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
795 
796 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
797 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
798 	}
799 
800 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
801 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
802 
803 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
804 			protect = 3 << 5;	/* Disable target PI checking */
805 		else
806 			protect = 1 << 5;	/* Enable target PI checking */
807 	}
808 
809 	scsi_set_prot_op(scmd, prot_op);
810 	scsi_set_prot_type(scmd, dif);
811 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
812 
813 	return protect;
814 }
815 
816 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
817 {
818 	struct request_queue *q = sdkp->disk->queue;
819 	unsigned int logical_block_size = sdkp->device->sector_size;
820 	unsigned int max_blocks = 0;
821 
822 	q->limits.discard_alignment =
823 		sdkp->unmap_alignment * logical_block_size;
824 	q->limits.discard_granularity =
825 		max(sdkp->physical_block_size,
826 		    sdkp->unmap_granularity * logical_block_size);
827 	sdkp->provisioning_mode = mode;
828 
829 	switch (mode) {
830 
831 	case SD_LBP_FULL:
832 	case SD_LBP_DISABLE:
833 		blk_queue_max_discard_sectors(q, 0);
834 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
835 		return;
836 
837 	case SD_LBP_UNMAP:
838 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
839 					  (u32)SD_MAX_WS16_BLOCKS);
840 		break;
841 
842 	case SD_LBP_WS16:
843 		if (sdkp->device->unmap_limit_for_ws)
844 			max_blocks = sdkp->max_unmap_blocks;
845 		else
846 			max_blocks = sdkp->max_ws_blocks;
847 
848 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
849 		break;
850 
851 	case SD_LBP_WS10:
852 		if (sdkp->device->unmap_limit_for_ws)
853 			max_blocks = sdkp->max_unmap_blocks;
854 		else
855 			max_blocks = sdkp->max_ws_blocks;
856 
857 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
858 		break;
859 
860 	case SD_LBP_ZERO:
861 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
862 					  (u32)SD_MAX_WS10_BLOCKS);
863 		break;
864 	}
865 
866 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
867 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
868 }
869 
870 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
871 {
872 	struct scsi_device *sdp = cmd->device;
873 	struct request *rq = scsi_cmd_to_rq(cmd);
874 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
875 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
876 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
877 	unsigned int data_len = 24;
878 	char *buf;
879 
880 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
881 	if (!rq->special_vec.bv_page)
882 		return BLK_STS_RESOURCE;
883 	clear_highpage(rq->special_vec.bv_page);
884 	rq->special_vec.bv_offset = 0;
885 	rq->special_vec.bv_len = data_len;
886 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
887 
888 	cmd->cmd_len = 10;
889 	cmd->cmnd[0] = UNMAP;
890 	cmd->cmnd[8] = 24;
891 
892 	buf = bvec_virt(&rq->special_vec);
893 	put_unaligned_be16(6 + 16, &buf[0]);
894 	put_unaligned_be16(16, &buf[2]);
895 	put_unaligned_be64(lba, &buf[8]);
896 	put_unaligned_be32(nr_blocks, &buf[16]);
897 
898 	cmd->allowed = sdkp->max_retries;
899 	cmd->transfersize = data_len;
900 	rq->timeout = SD_TIMEOUT;
901 
902 	return scsi_alloc_sgtables(cmd);
903 }
904 
905 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
906 		bool unmap)
907 {
908 	struct scsi_device *sdp = cmd->device;
909 	struct request *rq = scsi_cmd_to_rq(cmd);
910 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
911 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
912 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
913 	u32 data_len = sdp->sector_size;
914 
915 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
916 	if (!rq->special_vec.bv_page)
917 		return BLK_STS_RESOURCE;
918 	clear_highpage(rq->special_vec.bv_page);
919 	rq->special_vec.bv_offset = 0;
920 	rq->special_vec.bv_len = data_len;
921 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
922 
923 	cmd->cmd_len = 16;
924 	cmd->cmnd[0] = WRITE_SAME_16;
925 	if (unmap)
926 		cmd->cmnd[1] = 0x8; /* UNMAP */
927 	put_unaligned_be64(lba, &cmd->cmnd[2]);
928 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
929 
930 	cmd->allowed = sdkp->max_retries;
931 	cmd->transfersize = data_len;
932 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
933 
934 	return scsi_alloc_sgtables(cmd);
935 }
936 
937 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
938 		bool unmap)
939 {
940 	struct scsi_device *sdp = cmd->device;
941 	struct request *rq = scsi_cmd_to_rq(cmd);
942 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
943 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
944 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
945 	u32 data_len = sdp->sector_size;
946 
947 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
948 	if (!rq->special_vec.bv_page)
949 		return BLK_STS_RESOURCE;
950 	clear_highpage(rq->special_vec.bv_page);
951 	rq->special_vec.bv_offset = 0;
952 	rq->special_vec.bv_len = data_len;
953 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
954 
955 	cmd->cmd_len = 10;
956 	cmd->cmnd[0] = WRITE_SAME;
957 	if (unmap)
958 		cmd->cmnd[1] = 0x8; /* UNMAP */
959 	put_unaligned_be32(lba, &cmd->cmnd[2]);
960 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
961 
962 	cmd->allowed = sdkp->max_retries;
963 	cmd->transfersize = data_len;
964 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
965 
966 	return scsi_alloc_sgtables(cmd);
967 }
968 
969 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
970 {
971 	struct request *rq = scsi_cmd_to_rq(cmd);
972 	struct scsi_device *sdp = cmd->device;
973 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
974 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
975 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
976 
977 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
978 		switch (sdkp->zeroing_mode) {
979 		case SD_ZERO_WS16_UNMAP:
980 			return sd_setup_write_same16_cmnd(cmd, true);
981 		case SD_ZERO_WS10_UNMAP:
982 			return sd_setup_write_same10_cmnd(cmd, true);
983 		}
984 	}
985 
986 	if (sdp->no_write_same) {
987 		rq->rq_flags |= RQF_QUIET;
988 		return BLK_STS_TARGET;
989 	}
990 
991 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
992 		return sd_setup_write_same16_cmnd(cmd, false);
993 
994 	return sd_setup_write_same10_cmnd(cmd, false);
995 }
996 
997 static void sd_config_write_same(struct scsi_disk *sdkp)
998 {
999 	struct request_queue *q = sdkp->disk->queue;
1000 	unsigned int logical_block_size = sdkp->device->sector_size;
1001 
1002 	if (sdkp->device->no_write_same) {
1003 		sdkp->max_ws_blocks = 0;
1004 		goto out;
1005 	}
1006 
1007 	/* Some devices can not handle block counts above 0xffff despite
1008 	 * supporting WRITE SAME(16). Consequently we default to 64k
1009 	 * blocks per I/O unless the device explicitly advertises a
1010 	 * bigger limit.
1011 	 */
1012 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1013 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1014 						   (u32)SD_MAX_WS16_BLOCKS);
1015 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1016 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1017 						   (u32)SD_MAX_WS10_BLOCKS);
1018 	else {
1019 		sdkp->device->no_write_same = 1;
1020 		sdkp->max_ws_blocks = 0;
1021 	}
1022 
1023 	if (sdkp->lbprz && sdkp->lbpws)
1024 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1025 	else if (sdkp->lbprz && sdkp->lbpws10)
1026 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1027 	else if (sdkp->max_ws_blocks)
1028 		sdkp->zeroing_mode = SD_ZERO_WS;
1029 	else
1030 		sdkp->zeroing_mode = SD_ZERO_WRITE;
1031 
1032 	if (sdkp->max_ws_blocks &&
1033 	    sdkp->physical_block_size > logical_block_size) {
1034 		/*
1035 		 * Reporting a maximum number of blocks that is not aligned
1036 		 * on the device physical size would cause a large write same
1037 		 * request to be split into physically unaligned chunks by
1038 		 * __blkdev_issue_write_zeroes() even if the caller of this
1039 		 * functions took care to align the large request. So make sure
1040 		 * the maximum reported is aligned to the device physical block
1041 		 * size. This is only an optional optimization for regular
1042 		 * disks, but this is mandatory to avoid failure of large write
1043 		 * same requests directed at sequential write required zones of
1044 		 * host-managed ZBC disks.
1045 		 */
1046 		sdkp->max_ws_blocks =
1047 			round_down(sdkp->max_ws_blocks,
1048 				   bytes_to_logical(sdkp->device,
1049 						    sdkp->physical_block_size));
1050 	}
1051 
1052 out:
1053 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1054 					 (logical_block_size >> 9));
1055 }
1056 
1057 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1058 {
1059 	struct request *rq = scsi_cmd_to_rq(cmd);
1060 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1061 
1062 	/* flush requests don't perform I/O, zero the S/G table */
1063 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1064 
1065 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1066 	cmd->cmd_len = 10;
1067 	cmd->transfersize = 0;
1068 	cmd->allowed = sdkp->max_retries;
1069 
1070 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1071 	return BLK_STS_OK;
1072 }
1073 
1074 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1075 				       sector_t lba, unsigned int nr_blocks,
1076 				       unsigned char flags)
1077 {
1078 	cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1079 	if (unlikely(cmd->cmnd == NULL))
1080 		return BLK_STS_RESOURCE;
1081 
1082 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1083 	memset(cmd->cmnd, 0, cmd->cmd_len);
1084 
1085 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1086 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1087 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1088 	cmd->cmnd[10] = flags;
1089 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1090 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1091 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1092 
1093 	return BLK_STS_OK;
1094 }
1095 
1096 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1097 				       sector_t lba, unsigned int nr_blocks,
1098 				       unsigned char flags)
1099 {
1100 	cmd->cmd_len  = 16;
1101 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1102 	cmd->cmnd[1]  = flags;
1103 	cmd->cmnd[14] = 0;
1104 	cmd->cmnd[15] = 0;
1105 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1106 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1107 
1108 	return BLK_STS_OK;
1109 }
1110 
1111 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1112 				       sector_t lba, unsigned int nr_blocks,
1113 				       unsigned char flags)
1114 {
1115 	cmd->cmd_len = 10;
1116 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1117 	cmd->cmnd[1] = flags;
1118 	cmd->cmnd[6] = 0;
1119 	cmd->cmnd[9] = 0;
1120 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1121 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1122 
1123 	return BLK_STS_OK;
1124 }
1125 
1126 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1127 				      sector_t lba, unsigned int nr_blocks,
1128 				      unsigned char flags)
1129 {
1130 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1131 	if (WARN_ON_ONCE(nr_blocks == 0))
1132 		return BLK_STS_IOERR;
1133 
1134 	if (unlikely(flags & 0x8)) {
1135 		/*
1136 		 * This happens only if this drive failed 10byte rw
1137 		 * command with ILLEGAL_REQUEST during operation and
1138 		 * thus turned off use_10_for_rw.
1139 		 */
1140 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1141 		return BLK_STS_IOERR;
1142 	}
1143 
1144 	cmd->cmd_len = 6;
1145 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1146 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1147 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1148 	cmd->cmnd[3] = lba & 0xff;
1149 	cmd->cmnd[4] = nr_blocks;
1150 	cmd->cmnd[5] = 0;
1151 
1152 	return BLK_STS_OK;
1153 }
1154 
1155 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1156 {
1157 	struct request *rq = scsi_cmd_to_rq(cmd);
1158 	struct scsi_device *sdp = cmd->device;
1159 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1160 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1161 	sector_t threshold;
1162 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1163 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1164 	bool write = rq_data_dir(rq) == WRITE;
1165 	unsigned char protect, fua;
1166 	blk_status_t ret;
1167 	unsigned int dif;
1168 	bool dix;
1169 
1170 	ret = scsi_alloc_sgtables(cmd);
1171 	if (ret != BLK_STS_OK)
1172 		return ret;
1173 
1174 	ret = BLK_STS_IOERR;
1175 	if (!scsi_device_online(sdp) || sdp->changed) {
1176 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1177 		goto fail;
1178 	}
1179 
1180 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1181 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1182 		goto fail;
1183 	}
1184 
1185 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1186 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1187 		goto fail;
1188 	}
1189 
1190 	/*
1191 	 * Some SD card readers can't handle accesses which touch the
1192 	 * last one or two logical blocks. Split accesses as needed.
1193 	 */
1194 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1195 
1196 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1197 		if (lba < threshold) {
1198 			/* Access up to the threshold but not beyond */
1199 			nr_blocks = threshold - lba;
1200 		} else {
1201 			/* Access only a single logical block */
1202 			nr_blocks = 1;
1203 		}
1204 	}
1205 
1206 	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1207 		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1208 		if (ret)
1209 			goto fail;
1210 	}
1211 
1212 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1213 	dix = scsi_prot_sg_count(cmd);
1214 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1215 
1216 	if (dif || dix)
1217 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1218 	else
1219 		protect = 0;
1220 
1221 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1222 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1223 					 protect | fua);
1224 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1225 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1226 					 protect | fua);
1227 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1228 		   sdp->use_10_for_rw || protect) {
1229 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1230 					 protect | fua);
1231 	} else {
1232 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1233 					protect | fua);
1234 	}
1235 
1236 	if (unlikely(ret != BLK_STS_OK))
1237 		goto fail;
1238 
1239 	/*
1240 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1241 	 * host adapter, it's safe to assume that we can at least transfer
1242 	 * this many bytes between each connect / disconnect.
1243 	 */
1244 	cmd->transfersize = sdp->sector_size;
1245 	cmd->underflow = nr_blocks << 9;
1246 	cmd->allowed = sdkp->max_retries;
1247 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1248 
1249 	SCSI_LOG_HLQUEUE(1,
1250 			 scmd_printk(KERN_INFO, cmd,
1251 				     "%s: block=%llu, count=%d\n", __func__,
1252 				     (unsigned long long)blk_rq_pos(rq),
1253 				     blk_rq_sectors(rq)));
1254 	SCSI_LOG_HLQUEUE(2,
1255 			 scmd_printk(KERN_INFO, cmd,
1256 				     "%s %d/%u 512 byte blocks.\n",
1257 				     write ? "writing" : "reading", nr_blocks,
1258 				     blk_rq_sectors(rq)));
1259 
1260 	/*
1261 	 * This indicates that the command is ready from our end to be queued.
1262 	 */
1263 	return BLK_STS_OK;
1264 fail:
1265 	scsi_free_sgtables(cmd);
1266 	return ret;
1267 }
1268 
1269 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1270 {
1271 	struct request *rq = scsi_cmd_to_rq(cmd);
1272 
1273 	switch (req_op(rq)) {
1274 	case REQ_OP_DISCARD:
1275 		switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1276 		case SD_LBP_UNMAP:
1277 			return sd_setup_unmap_cmnd(cmd);
1278 		case SD_LBP_WS16:
1279 			return sd_setup_write_same16_cmnd(cmd, true);
1280 		case SD_LBP_WS10:
1281 			return sd_setup_write_same10_cmnd(cmd, true);
1282 		case SD_LBP_ZERO:
1283 			return sd_setup_write_same10_cmnd(cmd, false);
1284 		default:
1285 			return BLK_STS_TARGET;
1286 		}
1287 	case REQ_OP_WRITE_ZEROES:
1288 		return sd_setup_write_zeroes_cmnd(cmd);
1289 	case REQ_OP_FLUSH:
1290 		return sd_setup_flush_cmnd(cmd);
1291 	case REQ_OP_READ:
1292 	case REQ_OP_WRITE:
1293 	case REQ_OP_ZONE_APPEND:
1294 		return sd_setup_read_write_cmnd(cmd);
1295 	case REQ_OP_ZONE_RESET:
1296 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1297 						   false);
1298 	case REQ_OP_ZONE_RESET_ALL:
1299 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1300 						   true);
1301 	case REQ_OP_ZONE_OPEN:
1302 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1303 	case REQ_OP_ZONE_CLOSE:
1304 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1305 	case REQ_OP_ZONE_FINISH:
1306 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1307 	default:
1308 		WARN_ON_ONCE(1);
1309 		return BLK_STS_NOTSUPP;
1310 	}
1311 }
1312 
1313 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1314 {
1315 	struct request *rq = scsi_cmd_to_rq(SCpnt);
1316 	u8 *cmnd;
1317 
1318 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1319 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1320 
1321 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1322 		cmnd = SCpnt->cmnd;
1323 		SCpnt->cmnd = NULL;
1324 		SCpnt->cmd_len = 0;
1325 		mempool_free(cmnd, sd_cdb_pool);
1326 	}
1327 }
1328 
1329 static bool sd_need_revalidate(struct block_device *bdev,
1330 		struct scsi_disk *sdkp)
1331 {
1332 	if (sdkp->device->removable || sdkp->write_prot) {
1333 		if (bdev_check_media_change(bdev))
1334 			return true;
1335 	}
1336 
1337 	/*
1338 	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1339 	 * nothing to do with partitions, BLKRRPART is used to force a full
1340 	 * revalidate after things like a format for historical reasons.
1341 	 */
1342 	return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1343 }
1344 
1345 /**
1346  *	sd_open - open a scsi disk device
1347  *	@bdev: Block device of the scsi disk to open
1348  *	@mode: FMODE_* mask
1349  *
1350  *	Returns 0 if successful. Returns a negated errno value in case
1351  *	of error.
1352  *
1353  *	Note: This can be called from a user context (e.g. fsck(1) )
1354  *	or from within the kernel (e.g. as a result of a mount(1) ).
1355  *	In the latter case @inode and @filp carry an abridged amount
1356  *	of information as noted above.
1357  *
1358  *	Locking: called with bdev->bd_disk->open_mutex held.
1359  **/
1360 static int sd_open(struct block_device *bdev, fmode_t mode)
1361 {
1362 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1363 	struct scsi_device *sdev;
1364 	int retval;
1365 
1366 	if (!sdkp)
1367 		return -ENXIO;
1368 
1369 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1370 
1371 	sdev = sdkp->device;
1372 
1373 	/*
1374 	 * If the device is in error recovery, wait until it is done.
1375 	 * If the device is offline, then disallow any access to it.
1376 	 */
1377 	retval = -ENXIO;
1378 	if (!scsi_block_when_processing_errors(sdev))
1379 		goto error_out;
1380 
1381 	if (sd_need_revalidate(bdev, sdkp))
1382 		sd_revalidate_disk(bdev->bd_disk);
1383 
1384 	/*
1385 	 * If the drive is empty, just let the open fail.
1386 	 */
1387 	retval = -ENOMEDIUM;
1388 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1389 		goto error_out;
1390 
1391 	/*
1392 	 * If the device has the write protect tab set, have the open fail
1393 	 * if the user expects to be able to write to the thing.
1394 	 */
1395 	retval = -EROFS;
1396 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1397 		goto error_out;
1398 
1399 	/*
1400 	 * It is possible that the disk changing stuff resulted in
1401 	 * the device being taken offline.  If this is the case,
1402 	 * report this to the user, and don't pretend that the
1403 	 * open actually succeeded.
1404 	 */
1405 	retval = -ENXIO;
1406 	if (!scsi_device_online(sdev))
1407 		goto error_out;
1408 
1409 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1410 		if (scsi_block_when_processing_errors(sdev))
1411 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1412 	}
1413 
1414 	return 0;
1415 
1416 error_out:
1417 	scsi_disk_put(sdkp);
1418 	return retval;
1419 }
1420 
1421 /**
1422  *	sd_release - invoked when the (last) close(2) is called on this
1423  *	scsi disk.
1424  *	@disk: disk to release
1425  *	@mode: FMODE_* mask
1426  *
1427  *	Returns 0.
1428  *
1429  *	Note: may block (uninterruptible) if error recovery is underway
1430  *	on this disk.
1431  *
1432  *	Locking: called with bdev->bd_disk->open_mutex held.
1433  **/
1434 static void sd_release(struct gendisk *disk, fmode_t mode)
1435 {
1436 	struct scsi_disk *sdkp = scsi_disk(disk);
1437 	struct scsi_device *sdev = sdkp->device;
1438 
1439 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1440 
1441 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1442 		if (scsi_block_when_processing_errors(sdev))
1443 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1444 	}
1445 
1446 	scsi_disk_put(sdkp);
1447 }
1448 
1449 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1450 {
1451 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1452 	struct scsi_device *sdp = sdkp->device;
1453 	struct Scsi_Host *host = sdp->host;
1454 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1455 	int diskinfo[4];
1456 
1457 	/* default to most commonly used values */
1458 	diskinfo[0] = 0x40;	/* 1 << 6 */
1459 	diskinfo[1] = 0x20;	/* 1 << 5 */
1460 	diskinfo[2] = capacity >> 11;
1461 
1462 	/* override with calculated, extended default, or driver values */
1463 	if (host->hostt->bios_param)
1464 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1465 	else
1466 		scsicam_bios_param(bdev, capacity, diskinfo);
1467 
1468 	geo->heads = diskinfo[0];
1469 	geo->sectors = diskinfo[1];
1470 	geo->cylinders = diskinfo[2];
1471 	return 0;
1472 }
1473 
1474 /**
1475  *	sd_ioctl - process an ioctl
1476  *	@bdev: target block device
1477  *	@mode: FMODE_* mask
1478  *	@cmd: ioctl command number
1479  *	@arg: this is third argument given to ioctl(2) system call.
1480  *	Often contains a pointer.
1481  *
1482  *	Returns 0 if successful (some ioctls return positive numbers on
1483  *	success as well). Returns a negated errno value in case of error.
1484  *
1485  *	Note: most ioctls are forward onto the block subsystem or further
1486  *	down in the scsi subsystem.
1487  **/
1488 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1489 		    unsigned int cmd, unsigned long arg)
1490 {
1491 	struct gendisk *disk = bdev->bd_disk;
1492 	struct scsi_disk *sdkp = scsi_disk(disk);
1493 	struct scsi_device *sdp = sdkp->device;
1494 	void __user *p = (void __user *)arg;
1495 	int error;
1496 
1497 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1498 				    "cmd=0x%x\n", disk->disk_name, cmd));
1499 
1500 	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1501 		return -ENOIOCTLCMD;
1502 
1503 	/*
1504 	 * If we are in the middle of error recovery, don't let anyone
1505 	 * else try and use this device.  Also, if error recovery fails, it
1506 	 * may try and take the device offline, in which case all further
1507 	 * access to the device is prohibited.
1508 	 */
1509 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1510 			(mode & FMODE_NDELAY) != 0);
1511 	if (error)
1512 		return error;
1513 
1514 	if (is_sed_ioctl(cmd))
1515 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1516 	return scsi_ioctl(sdp, mode, cmd, p);
1517 }
1518 
1519 static void set_media_not_present(struct scsi_disk *sdkp)
1520 {
1521 	if (sdkp->media_present)
1522 		sdkp->device->changed = 1;
1523 
1524 	if (sdkp->device->removable) {
1525 		sdkp->media_present = 0;
1526 		sdkp->capacity = 0;
1527 	}
1528 }
1529 
1530 static int media_not_present(struct scsi_disk *sdkp,
1531 			     struct scsi_sense_hdr *sshdr)
1532 {
1533 	if (!scsi_sense_valid(sshdr))
1534 		return 0;
1535 
1536 	/* not invoked for commands that could return deferred errors */
1537 	switch (sshdr->sense_key) {
1538 	case UNIT_ATTENTION:
1539 	case NOT_READY:
1540 		/* medium not present */
1541 		if (sshdr->asc == 0x3A) {
1542 			set_media_not_present(sdkp);
1543 			return 1;
1544 		}
1545 	}
1546 	return 0;
1547 }
1548 
1549 /**
1550  *	sd_check_events - check media events
1551  *	@disk: kernel device descriptor
1552  *	@clearing: disk events currently being cleared
1553  *
1554  *	Returns mask of DISK_EVENT_*.
1555  *
1556  *	Note: this function is invoked from the block subsystem.
1557  **/
1558 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1559 {
1560 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1561 	struct scsi_device *sdp;
1562 	int retval;
1563 	bool disk_changed;
1564 
1565 	if (!sdkp)
1566 		return 0;
1567 
1568 	sdp = sdkp->device;
1569 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1570 
1571 	/*
1572 	 * If the device is offline, don't send any commands - just pretend as
1573 	 * if the command failed.  If the device ever comes back online, we
1574 	 * can deal with it then.  It is only because of unrecoverable errors
1575 	 * that we would ever take a device offline in the first place.
1576 	 */
1577 	if (!scsi_device_online(sdp)) {
1578 		set_media_not_present(sdkp);
1579 		goto out;
1580 	}
1581 
1582 	/*
1583 	 * Using TEST_UNIT_READY enables differentiation between drive with
1584 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1585 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1586 	 *
1587 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1588 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1589 	 * sd_revalidate() is called.
1590 	 */
1591 	if (scsi_block_when_processing_errors(sdp)) {
1592 		struct scsi_sense_hdr sshdr = { 0, };
1593 
1594 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1595 					      &sshdr);
1596 
1597 		/* failed to execute TUR, assume media not present */
1598 		if (retval < 0 || host_byte(retval)) {
1599 			set_media_not_present(sdkp);
1600 			goto out;
1601 		}
1602 
1603 		if (media_not_present(sdkp, &sshdr))
1604 			goto out;
1605 	}
1606 
1607 	/*
1608 	 * For removable scsi disk we have to recognise the presence
1609 	 * of a disk in the drive.
1610 	 */
1611 	if (!sdkp->media_present)
1612 		sdp->changed = 1;
1613 	sdkp->media_present = 1;
1614 out:
1615 	/*
1616 	 * sdp->changed is set under the following conditions:
1617 	 *
1618 	 *	Medium present state has changed in either direction.
1619 	 *	Device has indicated UNIT_ATTENTION.
1620 	 */
1621 	disk_changed = sdp->changed;
1622 	sdp->changed = 0;
1623 	scsi_disk_put(sdkp);
1624 	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1625 }
1626 
1627 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1628 {
1629 	int retries, res;
1630 	struct scsi_device *sdp = sdkp->device;
1631 	const int timeout = sdp->request_queue->rq_timeout
1632 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1633 	struct scsi_sense_hdr my_sshdr;
1634 
1635 	if (!scsi_device_online(sdp))
1636 		return -ENODEV;
1637 
1638 	/* caller might not be interested in sense, but we need it */
1639 	if (!sshdr)
1640 		sshdr = &my_sshdr;
1641 
1642 	for (retries = 3; retries > 0; --retries) {
1643 		unsigned char cmd[10] = { 0 };
1644 
1645 		cmd[0] = SYNCHRONIZE_CACHE;
1646 		/*
1647 		 * Leave the rest of the command zero to indicate
1648 		 * flush everything.
1649 		 */
1650 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1651 				timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1652 		if (res == 0)
1653 			break;
1654 	}
1655 
1656 	if (res) {
1657 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1658 
1659 		if (res < 0)
1660 			return res;
1661 
1662 		if (scsi_status_is_check_condition(res) &&
1663 		    scsi_sense_valid(sshdr)) {
1664 			sd_print_sense_hdr(sdkp, sshdr);
1665 
1666 			/* we need to evaluate the error return  */
1667 			if (sshdr->asc == 0x3a ||	/* medium not present */
1668 			    sshdr->asc == 0x20 ||	/* invalid command */
1669 			    (sshdr->asc == 0x74 && sshdr->ascq == 0x71))	/* drive is password locked */
1670 				/* this is no error here */
1671 				return 0;
1672 		}
1673 
1674 		switch (host_byte(res)) {
1675 		/* ignore errors due to racing a disconnection */
1676 		case DID_BAD_TARGET:
1677 		case DID_NO_CONNECT:
1678 			return 0;
1679 		/* signal the upper layer it might try again */
1680 		case DID_BUS_BUSY:
1681 		case DID_IMM_RETRY:
1682 		case DID_REQUEUE:
1683 		case DID_SOFT_ERROR:
1684 			return -EBUSY;
1685 		default:
1686 			return -EIO;
1687 		}
1688 	}
1689 	return 0;
1690 }
1691 
1692 static void sd_rescan(struct device *dev)
1693 {
1694 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1695 
1696 	sd_revalidate_disk(sdkp->disk);
1697 }
1698 
1699 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1700 		enum blk_unique_id type)
1701 {
1702 	struct scsi_device *sdev = scsi_disk(disk)->device;
1703 	const struct scsi_vpd *vpd;
1704 	const unsigned char *d;
1705 	int ret = -ENXIO, len;
1706 
1707 	rcu_read_lock();
1708 	vpd = rcu_dereference(sdev->vpd_pg83);
1709 	if (!vpd)
1710 		goto out_unlock;
1711 
1712 	ret = -EINVAL;
1713 	for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1714 		/* we only care about designators with LU association */
1715 		if (((d[1] >> 4) & 0x3) != 0x00)
1716 			continue;
1717 		if ((d[1] & 0xf) != type)
1718 			continue;
1719 
1720 		/*
1721 		 * Only exit early if a 16-byte descriptor was found.  Otherwise
1722 		 * keep looking as one with more entropy might still show up.
1723 		 */
1724 		len = d[3];
1725 		if (len != 8 && len != 12 && len != 16)
1726 			continue;
1727 		ret = len;
1728 		memcpy(id, d + 4, len);
1729 		if (len == 16)
1730 			break;
1731 	}
1732 out_unlock:
1733 	rcu_read_unlock();
1734 	return ret;
1735 }
1736 
1737 static char sd_pr_type(enum pr_type type)
1738 {
1739 	switch (type) {
1740 	case PR_WRITE_EXCLUSIVE:
1741 		return 0x01;
1742 	case PR_EXCLUSIVE_ACCESS:
1743 		return 0x03;
1744 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1745 		return 0x05;
1746 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1747 		return 0x06;
1748 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1749 		return 0x07;
1750 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1751 		return 0x08;
1752 	default:
1753 		return 0;
1754 	}
1755 };
1756 
1757 static int sd_pr_command(struct block_device *bdev, u8 sa,
1758 		u64 key, u64 sa_key, u8 type, u8 flags)
1759 {
1760 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1761 	struct scsi_device *sdev = sdkp->device;
1762 	struct scsi_sense_hdr sshdr;
1763 	int result;
1764 	u8 cmd[16] = { 0, };
1765 	u8 data[24] = { 0, };
1766 
1767 	cmd[0] = PERSISTENT_RESERVE_OUT;
1768 	cmd[1] = sa;
1769 	cmd[2] = type;
1770 	put_unaligned_be32(sizeof(data), &cmd[5]);
1771 
1772 	put_unaligned_be64(key, &data[0]);
1773 	put_unaligned_be64(sa_key, &data[8]);
1774 	data[20] = flags;
1775 
1776 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1777 			&sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1778 
1779 	if (scsi_status_is_check_condition(result) &&
1780 	    scsi_sense_valid(&sshdr)) {
1781 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1782 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1783 	}
1784 
1785 	return result;
1786 }
1787 
1788 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1789 		u32 flags)
1790 {
1791 	if (flags & ~PR_FL_IGNORE_KEY)
1792 		return -EOPNOTSUPP;
1793 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1794 			old_key, new_key, 0,
1795 			(1 << 0) /* APTPL */);
1796 }
1797 
1798 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1799 		u32 flags)
1800 {
1801 	if (flags)
1802 		return -EOPNOTSUPP;
1803 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1804 }
1805 
1806 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1807 {
1808 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1809 }
1810 
1811 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1812 		enum pr_type type, bool abort)
1813 {
1814 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1815 			     sd_pr_type(type), 0);
1816 }
1817 
1818 static int sd_pr_clear(struct block_device *bdev, u64 key)
1819 {
1820 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1821 }
1822 
1823 static const struct pr_ops sd_pr_ops = {
1824 	.pr_register	= sd_pr_register,
1825 	.pr_reserve	= sd_pr_reserve,
1826 	.pr_release	= sd_pr_release,
1827 	.pr_preempt	= sd_pr_preempt,
1828 	.pr_clear	= sd_pr_clear,
1829 };
1830 
1831 static const struct block_device_operations sd_fops = {
1832 	.owner			= THIS_MODULE,
1833 	.open			= sd_open,
1834 	.release		= sd_release,
1835 	.ioctl			= sd_ioctl,
1836 	.getgeo			= sd_getgeo,
1837 	.compat_ioctl		= blkdev_compat_ptr_ioctl,
1838 	.check_events		= sd_check_events,
1839 	.unlock_native_capacity	= sd_unlock_native_capacity,
1840 	.report_zones		= sd_zbc_report_zones,
1841 	.get_unique_id		= sd_get_unique_id,
1842 	.pr_ops			= &sd_pr_ops,
1843 };
1844 
1845 /**
1846  *	sd_eh_reset - reset error handling callback
1847  *	@scmd:		sd-issued command that has failed
1848  *
1849  *	This function is called by the SCSI midlayer before starting
1850  *	SCSI EH. When counting medium access failures we have to be
1851  *	careful to register it only only once per device and SCSI EH run;
1852  *	there might be several timed out commands which will cause the
1853  *	'max_medium_access_timeouts' counter to trigger after the first
1854  *	SCSI EH run already and set the device to offline.
1855  *	So this function resets the internal counter before starting SCSI EH.
1856  **/
1857 static void sd_eh_reset(struct scsi_cmnd *scmd)
1858 {
1859 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1860 
1861 	/* New SCSI EH run, reset gate variable */
1862 	sdkp->ignore_medium_access_errors = false;
1863 }
1864 
1865 /**
1866  *	sd_eh_action - error handling callback
1867  *	@scmd:		sd-issued command that has failed
1868  *	@eh_disp:	The recovery disposition suggested by the midlayer
1869  *
1870  *	This function is called by the SCSI midlayer upon completion of an
1871  *	error test command (currently TEST UNIT READY). The result of sending
1872  *	the eh command is passed in eh_disp.  We're looking for devices that
1873  *	fail medium access commands but are OK with non access commands like
1874  *	test unit ready (so wrongly see the device as having a successful
1875  *	recovery)
1876  **/
1877 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1878 {
1879 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1880 	struct scsi_device *sdev = scmd->device;
1881 
1882 	if (!scsi_device_online(sdev) ||
1883 	    !scsi_medium_access_command(scmd) ||
1884 	    host_byte(scmd->result) != DID_TIME_OUT ||
1885 	    eh_disp != SUCCESS)
1886 		return eh_disp;
1887 
1888 	/*
1889 	 * The device has timed out executing a medium access command.
1890 	 * However, the TEST UNIT READY command sent during error
1891 	 * handling completed successfully. Either the device is in the
1892 	 * process of recovering or has it suffered an internal failure
1893 	 * that prevents access to the storage medium.
1894 	 */
1895 	if (!sdkp->ignore_medium_access_errors) {
1896 		sdkp->medium_access_timed_out++;
1897 		sdkp->ignore_medium_access_errors = true;
1898 	}
1899 
1900 	/*
1901 	 * If the device keeps failing read/write commands but TEST UNIT
1902 	 * READY always completes successfully we assume that medium
1903 	 * access is no longer possible and take the device offline.
1904 	 */
1905 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1906 		scmd_printk(KERN_ERR, scmd,
1907 			    "Medium access timeout failure. Offlining disk!\n");
1908 		mutex_lock(&sdev->state_mutex);
1909 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1910 		mutex_unlock(&sdev->state_mutex);
1911 
1912 		return SUCCESS;
1913 	}
1914 
1915 	return eh_disp;
1916 }
1917 
1918 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1919 {
1920 	struct request *req = scsi_cmd_to_rq(scmd);
1921 	struct scsi_device *sdev = scmd->device;
1922 	unsigned int transferred, good_bytes;
1923 	u64 start_lba, end_lba, bad_lba;
1924 
1925 	/*
1926 	 * Some commands have a payload smaller than the device logical
1927 	 * block size (e.g. INQUIRY on a 4K disk).
1928 	 */
1929 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1930 		return 0;
1931 
1932 	/* Check if we have a 'bad_lba' information */
1933 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1934 				     SCSI_SENSE_BUFFERSIZE,
1935 				     &bad_lba))
1936 		return 0;
1937 
1938 	/*
1939 	 * If the bad lba was reported incorrectly, we have no idea where
1940 	 * the error is.
1941 	 */
1942 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1943 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1944 	if (bad_lba < start_lba || bad_lba >= end_lba)
1945 		return 0;
1946 
1947 	/*
1948 	 * resid is optional but mostly filled in.  When it's unused,
1949 	 * its value is zero, so we assume the whole buffer transferred
1950 	 */
1951 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1952 
1953 	/* This computation should always be done in terms of the
1954 	 * resolution of the device's medium.
1955 	 */
1956 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1957 
1958 	return min(good_bytes, transferred);
1959 }
1960 
1961 /**
1962  *	sd_done - bottom half handler: called when the lower level
1963  *	driver has completed (successfully or otherwise) a scsi command.
1964  *	@SCpnt: mid-level's per command structure.
1965  *
1966  *	Note: potentially run from within an ISR. Must not block.
1967  **/
1968 static int sd_done(struct scsi_cmnd *SCpnt)
1969 {
1970 	int result = SCpnt->result;
1971 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1972 	unsigned int sector_size = SCpnt->device->sector_size;
1973 	unsigned int resid;
1974 	struct scsi_sense_hdr sshdr;
1975 	struct request *req = scsi_cmd_to_rq(SCpnt);
1976 	struct scsi_disk *sdkp = scsi_disk(req->q->disk);
1977 	int sense_valid = 0;
1978 	int sense_deferred = 0;
1979 
1980 	switch (req_op(req)) {
1981 	case REQ_OP_DISCARD:
1982 	case REQ_OP_WRITE_ZEROES:
1983 	case REQ_OP_ZONE_RESET:
1984 	case REQ_OP_ZONE_RESET_ALL:
1985 	case REQ_OP_ZONE_OPEN:
1986 	case REQ_OP_ZONE_CLOSE:
1987 	case REQ_OP_ZONE_FINISH:
1988 		if (!result) {
1989 			good_bytes = blk_rq_bytes(req);
1990 			scsi_set_resid(SCpnt, 0);
1991 		} else {
1992 			good_bytes = 0;
1993 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1994 		}
1995 		break;
1996 	default:
1997 		/*
1998 		 * In case of bogus fw or device, we could end up having
1999 		 * an unaligned partial completion. Check this here and force
2000 		 * alignment.
2001 		 */
2002 		resid = scsi_get_resid(SCpnt);
2003 		if (resid & (sector_size - 1)) {
2004 			sd_printk(KERN_INFO, sdkp,
2005 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2006 				resid, sector_size);
2007 			scsi_print_command(SCpnt);
2008 			resid = min(scsi_bufflen(SCpnt),
2009 				    round_up(resid, sector_size));
2010 			scsi_set_resid(SCpnt, resid);
2011 		}
2012 	}
2013 
2014 	if (result) {
2015 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2016 		if (sense_valid)
2017 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2018 	}
2019 	sdkp->medium_access_timed_out = 0;
2020 
2021 	if (!scsi_status_is_check_condition(result) &&
2022 	    (!sense_valid || sense_deferred))
2023 		goto out;
2024 
2025 	switch (sshdr.sense_key) {
2026 	case HARDWARE_ERROR:
2027 	case MEDIUM_ERROR:
2028 		good_bytes = sd_completed_bytes(SCpnt);
2029 		break;
2030 	case RECOVERED_ERROR:
2031 		good_bytes = scsi_bufflen(SCpnt);
2032 		break;
2033 	case NO_SENSE:
2034 		/* This indicates a false check condition, so ignore it.  An
2035 		 * unknown amount of data was transferred so treat it as an
2036 		 * error.
2037 		 */
2038 		SCpnt->result = 0;
2039 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2040 		break;
2041 	case ABORTED_COMMAND:
2042 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2043 			good_bytes = sd_completed_bytes(SCpnt);
2044 		break;
2045 	case ILLEGAL_REQUEST:
2046 		switch (sshdr.asc) {
2047 		case 0x10:	/* DIX: Host detected corruption */
2048 			good_bytes = sd_completed_bytes(SCpnt);
2049 			break;
2050 		case 0x20:	/* INVALID COMMAND OPCODE */
2051 		case 0x24:	/* INVALID FIELD IN CDB */
2052 			switch (SCpnt->cmnd[0]) {
2053 			case UNMAP:
2054 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2055 				break;
2056 			case WRITE_SAME_16:
2057 			case WRITE_SAME:
2058 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2059 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2060 				} else {
2061 					sdkp->device->no_write_same = 1;
2062 					sd_config_write_same(sdkp);
2063 					req->rq_flags |= RQF_QUIET;
2064 				}
2065 				break;
2066 			}
2067 		}
2068 		break;
2069 	default:
2070 		break;
2071 	}
2072 
2073  out:
2074 	if (sd_is_zoned(sdkp))
2075 		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2076 
2077 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2078 					   "sd_done: completed %d of %d bytes\n",
2079 					   good_bytes, scsi_bufflen(SCpnt)));
2080 
2081 	return good_bytes;
2082 }
2083 
2084 /*
2085  * spinup disk - called only in sd_revalidate_disk()
2086  */
2087 static void
2088 sd_spinup_disk(struct scsi_disk *sdkp)
2089 {
2090 	unsigned char cmd[10];
2091 	unsigned long spintime_expire = 0;
2092 	int retries, spintime;
2093 	unsigned int the_result;
2094 	struct scsi_sense_hdr sshdr;
2095 	int sense_valid = 0;
2096 
2097 	spintime = 0;
2098 
2099 	/* Spin up drives, as required.  Only do this at boot time */
2100 	/* Spinup needs to be done for module loads too. */
2101 	do {
2102 		retries = 0;
2103 
2104 		do {
2105 			bool media_was_present = sdkp->media_present;
2106 
2107 			cmd[0] = TEST_UNIT_READY;
2108 			memset((void *) &cmd[1], 0, 9);
2109 
2110 			the_result = scsi_execute_req(sdkp->device, cmd,
2111 						      DMA_NONE, NULL, 0,
2112 						      &sshdr, SD_TIMEOUT,
2113 						      sdkp->max_retries, NULL);
2114 
2115 			/*
2116 			 * If the drive has indicated to us that it
2117 			 * doesn't have any media in it, don't bother
2118 			 * with any more polling.
2119 			 */
2120 			if (media_not_present(sdkp, &sshdr)) {
2121 				if (media_was_present)
2122 					sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2123 				return;
2124 			}
2125 
2126 			if (the_result)
2127 				sense_valid = scsi_sense_valid(&sshdr);
2128 			retries++;
2129 		} while (retries < 3 &&
2130 			 (!scsi_status_is_good(the_result) ||
2131 			  (scsi_status_is_check_condition(the_result) &&
2132 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2133 
2134 		if (!scsi_status_is_check_condition(the_result)) {
2135 			/* no sense, TUR either succeeded or failed
2136 			 * with a status error */
2137 			if(!spintime && !scsi_status_is_good(the_result)) {
2138 				sd_print_result(sdkp, "Test Unit Ready failed",
2139 						the_result);
2140 			}
2141 			break;
2142 		}
2143 
2144 		/*
2145 		 * The device does not want the automatic start to be issued.
2146 		 */
2147 		if (sdkp->device->no_start_on_add)
2148 			break;
2149 
2150 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2151 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2152 				break;	/* manual intervention required */
2153 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2154 				break;	/* standby */
2155 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2156 				break;	/* unavailable */
2157 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2158 				break;	/* sanitize in progress */
2159 			/*
2160 			 * Issue command to spin up drive when not ready
2161 			 */
2162 			if (!spintime) {
2163 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2164 				cmd[0] = START_STOP;
2165 				cmd[1] = 1;	/* Return immediately */
2166 				memset((void *) &cmd[2], 0, 8);
2167 				cmd[4] = 1;	/* Start spin cycle */
2168 				if (sdkp->device->start_stop_pwr_cond)
2169 					cmd[4] |= 1 << 4;
2170 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2171 						 NULL, 0, &sshdr,
2172 						 SD_TIMEOUT, sdkp->max_retries,
2173 						 NULL);
2174 				spintime_expire = jiffies + 100 * HZ;
2175 				spintime = 1;
2176 			}
2177 			/* Wait 1 second for next try */
2178 			msleep(1000);
2179 			printk(KERN_CONT ".");
2180 
2181 		/*
2182 		 * Wait for USB flash devices with slow firmware.
2183 		 * Yes, this sense key/ASC combination shouldn't
2184 		 * occur here.  It's characteristic of these devices.
2185 		 */
2186 		} else if (sense_valid &&
2187 				sshdr.sense_key == UNIT_ATTENTION &&
2188 				sshdr.asc == 0x28) {
2189 			if (!spintime) {
2190 				spintime_expire = jiffies + 5 * HZ;
2191 				spintime = 1;
2192 			}
2193 			/* Wait 1 second for next try */
2194 			msleep(1000);
2195 		} else {
2196 			/* we don't understand the sense code, so it's
2197 			 * probably pointless to loop */
2198 			if(!spintime) {
2199 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2200 				sd_print_sense_hdr(sdkp, &sshdr);
2201 			}
2202 			break;
2203 		}
2204 
2205 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2206 
2207 	if (spintime) {
2208 		if (scsi_status_is_good(the_result))
2209 			printk(KERN_CONT "ready\n");
2210 		else
2211 			printk(KERN_CONT "not responding...\n");
2212 	}
2213 }
2214 
2215 /*
2216  * Determine whether disk supports Data Integrity Field.
2217  */
2218 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2219 {
2220 	struct scsi_device *sdp = sdkp->device;
2221 	u8 type;
2222 	int ret = 0;
2223 
2224 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2225 		sdkp->protection_type = 0;
2226 		return ret;
2227 	}
2228 
2229 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2230 
2231 	if (type > T10_PI_TYPE3_PROTECTION)
2232 		ret = -ENODEV;
2233 	else if (scsi_host_dif_capable(sdp->host, type))
2234 		ret = 1;
2235 
2236 	if (sdkp->first_scan || type != sdkp->protection_type)
2237 		switch (ret) {
2238 		case -ENODEV:
2239 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2240 				  " protection type %u. Disabling disk!\n",
2241 				  type);
2242 			break;
2243 		case 1:
2244 			sd_printk(KERN_NOTICE, sdkp,
2245 				  "Enabling DIF Type %u protection\n", type);
2246 			break;
2247 		case 0:
2248 			sd_printk(KERN_NOTICE, sdkp,
2249 				  "Disabling DIF Type %u protection\n", type);
2250 			break;
2251 		}
2252 
2253 	sdkp->protection_type = type;
2254 
2255 	return ret;
2256 }
2257 
2258 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2259 			struct scsi_sense_hdr *sshdr, int sense_valid,
2260 			int the_result)
2261 {
2262 	if (sense_valid)
2263 		sd_print_sense_hdr(sdkp, sshdr);
2264 	else
2265 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2266 
2267 	/*
2268 	 * Set dirty bit for removable devices if not ready -
2269 	 * sometimes drives will not report this properly.
2270 	 */
2271 	if (sdp->removable &&
2272 	    sense_valid && sshdr->sense_key == NOT_READY)
2273 		set_media_not_present(sdkp);
2274 
2275 	/*
2276 	 * We used to set media_present to 0 here to indicate no media
2277 	 * in the drive, but some drives fail read capacity even with
2278 	 * media present, so we can't do that.
2279 	 */
2280 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2281 }
2282 
2283 #define RC16_LEN 32
2284 #if RC16_LEN > SD_BUF_SIZE
2285 #error RC16_LEN must not be more than SD_BUF_SIZE
2286 #endif
2287 
2288 #define READ_CAPACITY_RETRIES_ON_RESET	10
2289 
2290 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2291 						unsigned char *buffer)
2292 {
2293 	unsigned char cmd[16];
2294 	struct scsi_sense_hdr sshdr;
2295 	int sense_valid = 0;
2296 	int the_result;
2297 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2298 	unsigned int alignment;
2299 	unsigned long long lba;
2300 	unsigned sector_size;
2301 
2302 	if (sdp->no_read_capacity_16)
2303 		return -EINVAL;
2304 
2305 	do {
2306 		memset(cmd, 0, 16);
2307 		cmd[0] = SERVICE_ACTION_IN_16;
2308 		cmd[1] = SAI_READ_CAPACITY_16;
2309 		cmd[13] = RC16_LEN;
2310 		memset(buffer, 0, RC16_LEN);
2311 
2312 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2313 					buffer, RC16_LEN, &sshdr,
2314 					SD_TIMEOUT, sdkp->max_retries, NULL);
2315 
2316 		if (media_not_present(sdkp, &sshdr))
2317 			return -ENODEV;
2318 
2319 		if (the_result > 0) {
2320 			sense_valid = scsi_sense_valid(&sshdr);
2321 			if (sense_valid &&
2322 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2323 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2324 			    sshdr.ascq == 0x00)
2325 				/* Invalid Command Operation Code or
2326 				 * Invalid Field in CDB, just retry
2327 				 * silently with RC10 */
2328 				return -EINVAL;
2329 			if (sense_valid &&
2330 			    sshdr.sense_key == UNIT_ATTENTION &&
2331 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2332 				/* Device reset might occur several times,
2333 				 * give it one more chance */
2334 				if (--reset_retries > 0)
2335 					continue;
2336 		}
2337 		retries--;
2338 
2339 	} while (the_result && retries);
2340 
2341 	if (the_result) {
2342 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2343 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2344 		return -EINVAL;
2345 	}
2346 
2347 	sector_size = get_unaligned_be32(&buffer[8]);
2348 	lba = get_unaligned_be64(&buffer[0]);
2349 
2350 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2351 		sdkp->capacity = 0;
2352 		return -ENODEV;
2353 	}
2354 
2355 	/* Logical blocks per physical block exponent */
2356 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2357 
2358 	/* RC basis */
2359 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2360 
2361 	/* Lowest aligned logical block */
2362 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2363 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2364 	if (alignment && sdkp->first_scan)
2365 		sd_printk(KERN_NOTICE, sdkp,
2366 			  "physical block alignment offset: %u\n", alignment);
2367 
2368 	if (buffer[14] & 0x80) { /* LBPME */
2369 		sdkp->lbpme = 1;
2370 
2371 		if (buffer[14] & 0x40) /* LBPRZ */
2372 			sdkp->lbprz = 1;
2373 
2374 		sd_config_discard(sdkp, SD_LBP_WS16);
2375 	}
2376 
2377 	sdkp->capacity = lba + 1;
2378 	return sector_size;
2379 }
2380 
2381 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2382 						unsigned char *buffer)
2383 {
2384 	unsigned char cmd[16];
2385 	struct scsi_sense_hdr sshdr;
2386 	int sense_valid = 0;
2387 	int the_result;
2388 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2389 	sector_t lba;
2390 	unsigned sector_size;
2391 
2392 	do {
2393 		cmd[0] = READ_CAPACITY;
2394 		memset(&cmd[1], 0, 9);
2395 		memset(buffer, 0, 8);
2396 
2397 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2398 					buffer, 8, &sshdr,
2399 					SD_TIMEOUT, sdkp->max_retries, NULL);
2400 
2401 		if (media_not_present(sdkp, &sshdr))
2402 			return -ENODEV;
2403 
2404 		if (the_result > 0) {
2405 			sense_valid = scsi_sense_valid(&sshdr);
2406 			if (sense_valid &&
2407 			    sshdr.sense_key == UNIT_ATTENTION &&
2408 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2409 				/* Device reset might occur several times,
2410 				 * give it one more chance */
2411 				if (--reset_retries > 0)
2412 					continue;
2413 		}
2414 		retries--;
2415 
2416 	} while (the_result && retries);
2417 
2418 	if (the_result) {
2419 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2420 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2421 		return -EINVAL;
2422 	}
2423 
2424 	sector_size = get_unaligned_be32(&buffer[4]);
2425 	lba = get_unaligned_be32(&buffer[0]);
2426 
2427 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2428 		/* Some buggy (usb cardreader) devices return an lba of
2429 		   0xffffffff when the want to report a size of 0 (with
2430 		   which they really mean no media is present) */
2431 		sdkp->capacity = 0;
2432 		sdkp->physical_block_size = sector_size;
2433 		return sector_size;
2434 	}
2435 
2436 	sdkp->capacity = lba + 1;
2437 	sdkp->physical_block_size = sector_size;
2438 	return sector_size;
2439 }
2440 
2441 static int sd_try_rc16_first(struct scsi_device *sdp)
2442 {
2443 	if (sdp->host->max_cmd_len < 16)
2444 		return 0;
2445 	if (sdp->try_rc_10_first)
2446 		return 0;
2447 	if (sdp->scsi_level > SCSI_SPC_2)
2448 		return 1;
2449 	if (scsi_device_protection(sdp))
2450 		return 1;
2451 	return 0;
2452 }
2453 
2454 /*
2455  * read disk capacity
2456  */
2457 static void
2458 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2459 {
2460 	int sector_size;
2461 	struct scsi_device *sdp = sdkp->device;
2462 
2463 	if (sd_try_rc16_first(sdp)) {
2464 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2465 		if (sector_size == -EOVERFLOW)
2466 			goto got_data;
2467 		if (sector_size == -ENODEV)
2468 			return;
2469 		if (sector_size < 0)
2470 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2471 		if (sector_size < 0)
2472 			return;
2473 	} else {
2474 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2475 		if (sector_size == -EOVERFLOW)
2476 			goto got_data;
2477 		if (sector_size < 0)
2478 			return;
2479 		if ((sizeof(sdkp->capacity) > 4) &&
2480 		    (sdkp->capacity > 0xffffffffULL)) {
2481 			int old_sector_size = sector_size;
2482 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2483 					"Trying to use READ CAPACITY(16).\n");
2484 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2485 			if (sector_size < 0) {
2486 				sd_printk(KERN_NOTICE, sdkp,
2487 					"Using 0xffffffff as device size\n");
2488 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2489 				sector_size = old_sector_size;
2490 				goto got_data;
2491 			}
2492 			/* Remember that READ CAPACITY(16) succeeded */
2493 			sdp->try_rc_10_first = 0;
2494 		}
2495 	}
2496 
2497 	/* Some devices are known to return the total number of blocks,
2498 	 * not the highest block number.  Some devices have versions
2499 	 * which do this and others which do not.  Some devices we might
2500 	 * suspect of doing this but we don't know for certain.
2501 	 *
2502 	 * If we know the reported capacity is wrong, decrement it.  If
2503 	 * we can only guess, then assume the number of blocks is even
2504 	 * (usually true but not always) and err on the side of lowering
2505 	 * the capacity.
2506 	 */
2507 	if (sdp->fix_capacity ||
2508 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2509 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2510 				"from its reported value: %llu\n",
2511 				(unsigned long long) sdkp->capacity);
2512 		--sdkp->capacity;
2513 	}
2514 
2515 got_data:
2516 	if (sector_size == 0) {
2517 		sector_size = 512;
2518 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2519 			  "assuming 512.\n");
2520 	}
2521 
2522 	if (sector_size != 512 &&
2523 	    sector_size != 1024 &&
2524 	    sector_size != 2048 &&
2525 	    sector_size != 4096) {
2526 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2527 			  sector_size);
2528 		/*
2529 		 * The user might want to re-format the drive with
2530 		 * a supported sectorsize.  Once this happens, it
2531 		 * would be relatively trivial to set the thing up.
2532 		 * For this reason, we leave the thing in the table.
2533 		 */
2534 		sdkp->capacity = 0;
2535 		/*
2536 		 * set a bogus sector size so the normal read/write
2537 		 * logic in the block layer will eventually refuse any
2538 		 * request on this device without tripping over power
2539 		 * of two sector size assumptions
2540 		 */
2541 		sector_size = 512;
2542 	}
2543 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2544 	blk_queue_physical_block_size(sdp->request_queue,
2545 				      sdkp->physical_block_size);
2546 	sdkp->device->sector_size = sector_size;
2547 
2548 	if (sdkp->capacity > 0xffffffff)
2549 		sdp->use_16_for_rw = 1;
2550 
2551 }
2552 
2553 /*
2554  * Print disk capacity
2555  */
2556 static void
2557 sd_print_capacity(struct scsi_disk *sdkp,
2558 		  sector_t old_capacity)
2559 {
2560 	int sector_size = sdkp->device->sector_size;
2561 	char cap_str_2[10], cap_str_10[10];
2562 
2563 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2564 		return;
2565 
2566 	string_get_size(sdkp->capacity, sector_size,
2567 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2568 	string_get_size(sdkp->capacity, sector_size,
2569 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2570 
2571 	sd_printk(KERN_NOTICE, sdkp,
2572 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2573 		  (unsigned long long)sdkp->capacity,
2574 		  sector_size, cap_str_10, cap_str_2);
2575 
2576 	if (sdkp->physical_block_size != sector_size)
2577 		sd_printk(KERN_NOTICE, sdkp,
2578 			  "%u-byte physical blocks\n",
2579 			  sdkp->physical_block_size);
2580 }
2581 
2582 /* called with buffer of length 512 */
2583 static inline int
2584 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2585 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2586 		 struct scsi_sense_hdr *sshdr)
2587 {
2588 	/*
2589 	 * If we must use MODE SENSE(10), make sure that the buffer length
2590 	 * is at least 8 bytes so that the mode sense header fits.
2591 	 */
2592 	if (sdkp->device->use_10_for_ms && len < 8)
2593 		len = 8;
2594 
2595 	return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2596 			       SD_TIMEOUT, sdkp->max_retries, data,
2597 			       sshdr);
2598 }
2599 
2600 /*
2601  * read write protect setting, if possible - called only in sd_revalidate_disk()
2602  * called with buffer of length SD_BUF_SIZE
2603  */
2604 static void
2605 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2606 {
2607 	int res;
2608 	struct scsi_device *sdp = sdkp->device;
2609 	struct scsi_mode_data data;
2610 	int old_wp = sdkp->write_prot;
2611 
2612 	set_disk_ro(sdkp->disk, 0);
2613 	if (sdp->skip_ms_page_3f) {
2614 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2615 		return;
2616 	}
2617 
2618 	if (sdp->use_192_bytes_for_3f) {
2619 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2620 	} else {
2621 		/*
2622 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2623 		 * We have to start carefully: some devices hang if we ask
2624 		 * for more than is available.
2625 		 */
2626 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2627 
2628 		/*
2629 		 * Second attempt: ask for page 0 When only page 0 is
2630 		 * implemented, a request for page 3F may return Sense Key
2631 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2632 		 * CDB.
2633 		 */
2634 		if (res < 0)
2635 			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2636 
2637 		/*
2638 		 * Third attempt: ask 255 bytes, as we did earlier.
2639 		 */
2640 		if (res < 0)
2641 			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2642 					       &data, NULL);
2643 	}
2644 
2645 	if (res < 0) {
2646 		sd_first_printk(KERN_WARNING, sdkp,
2647 			  "Test WP failed, assume Write Enabled\n");
2648 	} else {
2649 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2650 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2651 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2652 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2653 				  sdkp->write_prot ? "on" : "off");
2654 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2655 		}
2656 	}
2657 }
2658 
2659 /*
2660  * sd_read_cache_type - called only from sd_revalidate_disk()
2661  * called with buffer of length SD_BUF_SIZE
2662  */
2663 static void
2664 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2665 {
2666 	int len = 0, res;
2667 	struct scsi_device *sdp = sdkp->device;
2668 
2669 	int dbd;
2670 	int modepage;
2671 	int first_len;
2672 	struct scsi_mode_data data;
2673 	struct scsi_sense_hdr sshdr;
2674 	int old_wce = sdkp->WCE;
2675 	int old_rcd = sdkp->RCD;
2676 	int old_dpofua = sdkp->DPOFUA;
2677 
2678 
2679 	if (sdkp->cache_override)
2680 		return;
2681 
2682 	first_len = 4;
2683 	if (sdp->skip_ms_page_8) {
2684 		if (sdp->type == TYPE_RBC)
2685 			goto defaults;
2686 		else {
2687 			if (sdp->skip_ms_page_3f)
2688 				goto defaults;
2689 			modepage = 0x3F;
2690 			if (sdp->use_192_bytes_for_3f)
2691 				first_len = 192;
2692 			dbd = 0;
2693 		}
2694 	} else if (sdp->type == TYPE_RBC) {
2695 		modepage = 6;
2696 		dbd = 8;
2697 	} else {
2698 		modepage = 8;
2699 		dbd = 0;
2700 	}
2701 
2702 	/* cautiously ask */
2703 	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2704 			&data, &sshdr);
2705 
2706 	if (res < 0)
2707 		goto bad_sense;
2708 
2709 	if (!data.header_length) {
2710 		modepage = 6;
2711 		first_len = 0;
2712 		sd_first_printk(KERN_ERR, sdkp,
2713 				"Missing header in MODE_SENSE response\n");
2714 	}
2715 
2716 	/* that went OK, now ask for the proper length */
2717 	len = data.length;
2718 
2719 	/*
2720 	 * We're only interested in the first three bytes, actually.
2721 	 * But the data cache page is defined for the first 20.
2722 	 */
2723 	if (len < 3)
2724 		goto bad_sense;
2725 	else if (len > SD_BUF_SIZE) {
2726 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2727 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2728 		len = SD_BUF_SIZE;
2729 	}
2730 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2731 		len = 192;
2732 
2733 	/* Get the data */
2734 	if (len > first_len)
2735 		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2736 				&data, &sshdr);
2737 
2738 	if (!res) {
2739 		int offset = data.header_length + data.block_descriptor_length;
2740 
2741 		while (offset < len) {
2742 			u8 page_code = buffer[offset] & 0x3F;
2743 			u8 spf       = buffer[offset] & 0x40;
2744 
2745 			if (page_code == 8 || page_code == 6) {
2746 				/* We're interested only in the first 3 bytes.
2747 				 */
2748 				if (len - offset <= 2) {
2749 					sd_first_printk(KERN_ERR, sdkp,
2750 						"Incomplete mode parameter "
2751 							"data\n");
2752 					goto defaults;
2753 				} else {
2754 					modepage = page_code;
2755 					goto Page_found;
2756 				}
2757 			} else {
2758 				/* Go to the next page */
2759 				if (spf && len - offset > 3)
2760 					offset += 4 + (buffer[offset+2] << 8) +
2761 						buffer[offset+3];
2762 				else if (!spf && len - offset > 1)
2763 					offset += 2 + buffer[offset+1];
2764 				else {
2765 					sd_first_printk(KERN_ERR, sdkp,
2766 							"Incomplete mode "
2767 							"parameter data\n");
2768 					goto defaults;
2769 				}
2770 			}
2771 		}
2772 
2773 		sd_first_printk(KERN_WARNING, sdkp,
2774 				"No Caching mode page found\n");
2775 		goto defaults;
2776 
2777 	Page_found:
2778 		if (modepage == 8) {
2779 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2780 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2781 		} else {
2782 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2783 			sdkp->RCD = 0;
2784 		}
2785 
2786 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2787 		if (sdp->broken_fua) {
2788 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2789 			sdkp->DPOFUA = 0;
2790 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2791 			   !sdkp->device->use_16_for_rw) {
2792 			sd_first_printk(KERN_NOTICE, sdkp,
2793 				  "Uses READ/WRITE(6), disabling FUA\n");
2794 			sdkp->DPOFUA = 0;
2795 		}
2796 
2797 		/* No cache flush allowed for write protected devices */
2798 		if (sdkp->WCE && sdkp->write_prot)
2799 			sdkp->WCE = 0;
2800 
2801 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2802 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2803 			sd_printk(KERN_NOTICE, sdkp,
2804 				  "Write cache: %s, read cache: %s, %s\n",
2805 				  sdkp->WCE ? "enabled" : "disabled",
2806 				  sdkp->RCD ? "disabled" : "enabled",
2807 				  sdkp->DPOFUA ? "supports DPO and FUA"
2808 				  : "doesn't support DPO or FUA");
2809 
2810 		return;
2811 	}
2812 
2813 bad_sense:
2814 	if (scsi_sense_valid(&sshdr) &&
2815 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2816 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2817 		/* Invalid field in CDB */
2818 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2819 	else
2820 		sd_first_printk(KERN_ERR, sdkp,
2821 				"Asking for cache data failed\n");
2822 
2823 defaults:
2824 	if (sdp->wce_default_on) {
2825 		sd_first_printk(KERN_NOTICE, sdkp,
2826 				"Assuming drive cache: write back\n");
2827 		sdkp->WCE = 1;
2828 	} else {
2829 		sd_first_printk(KERN_WARNING, sdkp,
2830 				"Assuming drive cache: write through\n");
2831 		sdkp->WCE = 0;
2832 	}
2833 	sdkp->RCD = 0;
2834 	sdkp->DPOFUA = 0;
2835 }
2836 
2837 /*
2838  * The ATO bit indicates whether the DIF application tag is available
2839  * for use by the operating system.
2840  */
2841 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2842 {
2843 	int res, offset;
2844 	struct scsi_device *sdp = sdkp->device;
2845 	struct scsi_mode_data data;
2846 	struct scsi_sense_hdr sshdr;
2847 
2848 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2849 		return;
2850 
2851 	if (sdkp->protection_type == 0)
2852 		return;
2853 
2854 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2855 			      sdkp->max_retries, &data, &sshdr);
2856 
2857 	if (res < 0 || !data.header_length ||
2858 	    data.length < 6) {
2859 		sd_first_printk(KERN_WARNING, sdkp,
2860 			  "getting Control mode page failed, assume no ATO\n");
2861 
2862 		if (scsi_sense_valid(&sshdr))
2863 			sd_print_sense_hdr(sdkp, &sshdr);
2864 
2865 		return;
2866 	}
2867 
2868 	offset = data.header_length + data.block_descriptor_length;
2869 
2870 	if ((buffer[offset] & 0x3f) != 0x0a) {
2871 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2872 		return;
2873 	}
2874 
2875 	if ((buffer[offset + 5] & 0x80) == 0)
2876 		return;
2877 
2878 	sdkp->ATO = 1;
2879 
2880 	return;
2881 }
2882 
2883 /**
2884  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2885  * @sdkp: disk to query
2886  */
2887 static void sd_read_block_limits(struct scsi_disk *sdkp)
2888 {
2889 	unsigned int sector_sz = sdkp->device->sector_size;
2890 	const int vpd_len = 64;
2891 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2892 
2893 	if (!buffer ||
2894 	    /* Block Limits VPD */
2895 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2896 		goto out;
2897 
2898 	blk_queue_io_min(sdkp->disk->queue,
2899 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2900 
2901 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2902 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2903 
2904 	if (buffer[3] == 0x3c) {
2905 		unsigned int lba_count, desc_count;
2906 
2907 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2908 
2909 		if (!sdkp->lbpme)
2910 			goto out;
2911 
2912 		lba_count = get_unaligned_be32(&buffer[20]);
2913 		desc_count = get_unaligned_be32(&buffer[24]);
2914 
2915 		if (lba_count && desc_count)
2916 			sdkp->max_unmap_blocks = lba_count;
2917 
2918 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2919 
2920 		if (buffer[32] & 0x80)
2921 			sdkp->unmap_alignment =
2922 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2923 
2924 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2925 
2926 			if (sdkp->max_unmap_blocks)
2927 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2928 			else
2929 				sd_config_discard(sdkp, SD_LBP_WS16);
2930 
2931 		} else {	/* LBP VPD page tells us what to use */
2932 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2933 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2934 			else if (sdkp->lbpws)
2935 				sd_config_discard(sdkp, SD_LBP_WS16);
2936 			else if (sdkp->lbpws10)
2937 				sd_config_discard(sdkp, SD_LBP_WS10);
2938 			else
2939 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2940 		}
2941 	}
2942 
2943  out:
2944 	kfree(buffer);
2945 }
2946 
2947 /**
2948  * sd_read_block_characteristics - Query block dev. characteristics
2949  * @sdkp: disk to query
2950  */
2951 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2952 {
2953 	struct request_queue *q = sdkp->disk->queue;
2954 	unsigned char *buffer;
2955 	u16 rot;
2956 	const int vpd_len = 64;
2957 
2958 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2959 
2960 	if (!buffer ||
2961 	    /* Block Device Characteristics VPD */
2962 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2963 		goto out;
2964 
2965 	rot = get_unaligned_be16(&buffer[4]);
2966 
2967 	if (rot == 1) {
2968 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2969 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2970 	}
2971 
2972 	if (sdkp->device->type == TYPE_ZBC) {
2973 		/* Host-managed */
2974 		blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM);
2975 	} else {
2976 		sdkp->zoned = (buffer[8] >> 4) & 3;
2977 		if (sdkp->zoned == 1) {
2978 			/* Host-aware */
2979 			blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA);
2980 		} else {
2981 			/* Regular disk or drive managed disk */
2982 			blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE);
2983 		}
2984 	}
2985 
2986 	if (!sdkp->first_scan)
2987 		goto out;
2988 
2989 	if (blk_queue_is_zoned(q)) {
2990 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2991 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2992 	} else {
2993 		if (sdkp->zoned == 1)
2994 			sd_printk(KERN_NOTICE, sdkp,
2995 				  "Host-aware SMR disk used as regular disk\n");
2996 		else if (sdkp->zoned == 2)
2997 			sd_printk(KERN_NOTICE, sdkp,
2998 				  "Drive-managed SMR disk\n");
2999 	}
3000 
3001  out:
3002 	kfree(buffer);
3003 }
3004 
3005 /**
3006  * sd_read_block_provisioning - Query provisioning VPD page
3007  * @sdkp: disk to query
3008  */
3009 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3010 {
3011 	unsigned char *buffer;
3012 	const int vpd_len = 8;
3013 
3014 	if (sdkp->lbpme == 0)
3015 		return;
3016 
3017 	buffer = kmalloc(vpd_len, GFP_KERNEL);
3018 
3019 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3020 		goto out;
3021 
3022 	sdkp->lbpvpd	= 1;
3023 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
3024 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
3025 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
3026 
3027  out:
3028 	kfree(buffer);
3029 }
3030 
3031 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3032 {
3033 	struct scsi_device *sdev = sdkp->device;
3034 
3035 	if (sdev->host->no_write_same) {
3036 		sdev->no_write_same = 1;
3037 
3038 		return;
3039 	}
3040 
3041 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3042 		/* too large values might cause issues with arcmsr */
3043 		int vpd_buf_len = 64;
3044 
3045 		sdev->no_report_opcodes = 1;
3046 
3047 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3048 		 * CODES is unsupported and the device has an ATA
3049 		 * Information VPD page (SAT).
3050 		 */
3051 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3052 			sdev->no_write_same = 1;
3053 	}
3054 
3055 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3056 		sdkp->ws16 = 1;
3057 
3058 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3059 		sdkp->ws10 = 1;
3060 }
3061 
3062 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3063 {
3064 	struct scsi_device *sdev = sdkp->device;
3065 
3066 	if (!sdev->security_supported)
3067 		return;
3068 
3069 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3070 			SECURITY_PROTOCOL_IN) == 1 &&
3071 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3072 			SECURITY_PROTOCOL_OUT) == 1)
3073 		sdkp->security = 1;
3074 }
3075 
3076 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3077 {
3078 	return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3079 }
3080 
3081 /**
3082  * sd_read_cpr - Query concurrent positioning ranges
3083  * @sdkp:	disk to query
3084  */
3085 static void sd_read_cpr(struct scsi_disk *sdkp)
3086 {
3087 	struct blk_independent_access_ranges *iars = NULL;
3088 	unsigned char *buffer = NULL;
3089 	unsigned int nr_cpr = 0;
3090 	int i, vpd_len, buf_len = SD_BUF_SIZE;
3091 	u8 *desc;
3092 
3093 	/*
3094 	 * We need to have the capacity set first for the block layer to be
3095 	 * able to check the ranges.
3096 	 */
3097 	if (sdkp->first_scan)
3098 		return;
3099 
3100 	if (!sdkp->capacity)
3101 		goto out;
3102 
3103 	/*
3104 	 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3105 	 * leading to a maximum page size of 64 + 256*32 bytes.
3106 	 */
3107 	buf_len = 64 + 256*32;
3108 	buffer = kmalloc(buf_len, GFP_KERNEL);
3109 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3110 		goto out;
3111 
3112 	/* We must have at least a 64B header and one 32B range descriptor */
3113 	vpd_len = get_unaligned_be16(&buffer[2]) + 3;
3114 	if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3115 		sd_printk(KERN_ERR, sdkp,
3116 			  "Invalid Concurrent Positioning Ranges VPD page\n");
3117 		goto out;
3118 	}
3119 
3120 	nr_cpr = (vpd_len - 64) / 32;
3121 	if (nr_cpr == 1) {
3122 		nr_cpr = 0;
3123 		goto out;
3124 	}
3125 
3126 	iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3127 	if (!iars) {
3128 		nr_cpr = 0;
3129 		goto out;
3130 	}
3131 
3132 	desc = &buffer[64];
3133 	for (i = 0; i < nr_cpr; i++, desc += 32) {
3134 		if (desc[0] != i) {
3135 			sd_printk(KERN_ERR, sdkp,
3136 				"Invalid Concurrent Positioning Range number\n");
3137 			nr_cpr = 0;
3138 			break;
3139 		}
3140 
3141 		iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3142 		iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3143 	}
3144 
3145 out:
3146 	disk_set_independent_access_ranges(sdkp->disk, iars);
3147 	if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3148 		sd_printk(KERN_NOTICE, sdkp,
3149 			  "%u concurrent positioning ranges\n", nr_cpr);
3150 		sdkp->nr_actuators = nr_cpr;
3151 	}
3152 
3153 	kfree(buffer);
3154 }
3155 
3156 /*
3157  * Determine the device's preferred I/O size for reads and writes
3158  * unless the reported value is unreasonably small, large, not a
3159  * multiple of the physical block size, or simply garbage.
3160  */
3161 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3162 				      unsigned int dev_max)
3163 {
3164 	struct scsi_device *sdp = sdkp->device;
3165 	unsigned int opt_xfer_bytes =
3166 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3167 
3168 	if (sdkp->opt_xfer_blocks == 0)
3169 		return false;
3170 
3171 	if (sdkp->opt_xfer_blocks > dev_max) {
3172 		sd_first_printk(KERN_WARNING, sdkp,
3173 				"Optimal transfer size %u logical blocks " \
3174 				"> dev_max (%u logical blocks)\n",
3175 				sdkp->opt_xfer_blocks, dev_max);
3176 		return false;
3177 	}
3178 
3179 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3180 		sd_first_printk(KERN_WARNING, sdkp,
3181 				"Optimal transfer size %u logical blocks " \
3182 				"> sd driver limit (%u logical blocks)\n",
3183 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3184 		return false;
3185 	}
3186 
3187 	if (opt_xfer_bytes < PAGE_SIZE) {
3188 		sd_first_printk(KERN_WARNING, sdkp,
3189 				"Optimal transfer size %u bytes < " \
3190 				"PAGE_SIZE (%u bytes)\n",
3191 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3192 		return false;
3193 	}
3194 
3195 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3196 		sd_first_printk(KERN_WARNING, sdkp,
3197 				"Optimal transfer size %u bytes not a " \
3198 				"multiple of physical block size (%u bytes)\n",
3199 				opt_xfer_bytes, sdkp->physical_block_size);
3200 		return false;
3201 	}
3202 
3203 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3204 			opt_xfer_bytes);
3205 	return true;
3206 }
3207 
3208 /**
3209  *	sd_revalidate_disk - called the first time a new disk is seen,
3210  *	performs disk spin up, read_capacity, etc.
3211  *	@disk: struct gendisk we care about
3212  **/
3213 static int sd_revalidate_disk(struct gendisk *disk)
3214 {
3215 	struct scsi_disk *sdkp = scsi_disk(disk);
3216 	struct scsi_device *sdp = sdkp->device;
3217 	struct request_queue *q = sdkp->disk->queue;
3218 	sector_t old_capacity = sdkp->capacity;
3219 	unsigned char *buffer;
3220 	unsigned int dev_max, rw_max;
3221 
3222 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3223 				      "sd_revalidate_disk\n"));
3224 
3225 	/*
3226 	 * If the device is offline, don't try and read capacity or any
3227 	 * of the other niceties.
3228 	 */
3229 	if (!scsi_device_online(sdp))
3230 		goto out;
3231 
3232 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3233 	if (!buffer) {
3234 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3235 			  "allocation failure.\n");
3236 		goto out;
3237 	}
3238 
3239 	sd_spinup_disk(sdkp);
3240 
3241 	/*
3242 	 * Without media there is no reason to ask; moreover, some devices
3243 	 * react badly if we do.
3244 	 */
3245 	if (sdkp->media_present) {
3246 		sd_read_capacity(sdkp, buffer);
3247 
3248 		/*
3249 		 * set the default to rotational.  All non-rotational devices
3250 		 * support the block characteristics VPD page, which will
3251 		 * cause this to be updated correctly and any device which
3252 		 * doesn't support it should be treated as rotational.
3253 		 */
3254 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3255 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3256 
3257 		if (scsi_device_supports_vpd(sdp)) {
3258 			sd_read_block_provisioning(sdkp);
3259 			sd_read_block_limits(sdkp);
3260 			sd_read_block_characteristics(sdkp);
3261 			sd_zbc_read_zones(sdkp, buffer);
3262 		}
3263 
3264 		sd_print_capacity(sdkp, old_capacity);
3265 
3266 		sd_read_write_protect_flag(sdkp, buffer);
3267 		sd_read_cache_type(sdkp, buffer);
3268 		sd_read_app_tag_own(sdkp, buffer);
3269 		sd_read_write_same(sdkp, buffer);
3270 		sd_read_security(sdkp, buffer);
3271 		sd_read_cpr(sdkp);
3272 	}
3273 
3274 	/*
3275 	 * We now have all cache related info, determine how we deal
3276 	 * with flush requests.
3277 	 */
3278 	sd_set_flush_flag(sdkp);
3279 
3280 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3281 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3282 
3283 	/* Some devices report a maximum block count for READ/WRITE requests. */
3284 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3285 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3286 
3287 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3288 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3289 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3290 	} else {
3291 		q->limits.io_opt = 0;
3292 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3293 				      (sector_t)BLK_DEF_MAX_SECTORS);
3294 	}
3295 
3296 	/* Do not exceed controller limit */
3297 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3298 
3299 	/*
3300 	 * Only update max_sectors if previously unset or if the current value
3301 	 * exceeds the capabilities of the hardware.
3302 	 */
3303 	if (sdkp->first_scan ||
3304 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3305 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3306 		q->limits.max_sectors = rw_max;
3307 
3308 	sdkp->first_scan = 0;
3309 
3310 	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3311 	sd_config_write_same(sdkp);
3312 	kfree(buffer);
3313 
3314 	/*
3315 	 * For a zoned drive, revalidating the zones can be done only once
3316 	 * the gendisk capacity is set. So if this fails, set back the gendisk
3317 	 * capacity to 0.
3318 	 */
3319 	if (sd_zbc_revalidate_zones(sdkp))
3320 		set_capacity_and_notify(disk, 0);
3321 
3322  out:
3323 	return 0;
3324 }
3325 
3326 /**
3327  *	sd_unlock_native_capacity - unlock native capacity
3328  *	@disk: struct gendisk to set capacity for
3329  *
3330  *	Block layer calls this function if it detects that partitions
3331  *	on @disk reach beyond the end of the device.  If the SCSI host
3332  *	implements ->unlock_native_capacity() method, it's invoked to
3333  *	give it a chance to adjust the device capacity.
3334  *
3335  *	CONTEXT:
3336  *	Defined by block layer.  Might sleep.
3337  */
3338 static void sd_unlock_native_capacity(struct gendisk *disk)
3339 {
3340 	struct scsi_device *sdev = scsi_disk(disk)->device;
3341 
3342 	if (sdev->host->hostt->unlock_native_capacity)
3343 		sdev->host->hostt->unlock_native_capacity(sdev);
3344 }
3345 
3346 /**
3347  *	sd_format_disk_name - format disk name
3348  *	@prefix: name prefix - ie. "sd" for SCSI disks
3349  *	@index: index of the disk to format name for
3350  *	@buf: output buffer
3351  *	@buflen: length of the output buffer
3352  *
3353  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3354  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3355  *	which is followed by sdaaa.
3356  *
3357  *	This is basically 26 base counting with one extra 'nil' entry
3358  *	at the beginning from the second digit on and can be
3359  *	determined using similar method as 26 base conversion with the
3360  *	index shifted -1 after each digit is computed.
3361  *
3362  *	CONTEXT:
3363  *	Don't care.
3364  *
3365  *	RETURNS:
3366  *	0 on success, -errno on failure.
3367  */
3368 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3369 {
3370 	const int base = 'z' - 'a' + 1;
3371 	char *begin = buf + strlen(prefix);
3372 	char *end = buf + buflen;
3373 	char *p;
3374 	int unit;
3375 
3376 	p = end - 1;
3377 	*p = '\0';
3378 	unit = base;
3379 	do {
3380 		if (p == begin)
3381 			return -EINVAL;
3382 		*--p = 'a' + (index % unit);
3383 		index = (index / unit) - 1;
3384 	} while (index >= 0);
3385 
3386 	memmove(begin, p, end - p);
3387 	memcpy(buf, prefix, strlen(prefix));
3388 
3389 	return 0;
3390 }
3391 
3392 /**
3393  *	sd_probe - called during driver initialization and whenever a
3394  *	new scsi device is attached to the system. It is called once
3395  *	for each scsi device (not just disks) present.
3396  *	@dev: pointer to device object
3397  *
3398  *	Returns 0 if successful (or not interested in this scsi device
3399  *	(e.g. scanner)); 1 when there is an error.
3400  *
3401  *	Note: this function is invoked from the scsi mid-level.
3402  *	This function sets up the mapping between a given
3403  *	<host,channel,id,lun> (found in sdp) and new device name
3404  *	(e.g. /dev/sda). More precisely it is the block device major
3405  *	and minor number that is chosen here.
3406  *
3407  *	Assume sd_probe is not re-entrant (for time being)
3408  *	Also think about sd_probe() and sd_remove() running coincidentally.
3409  **/
3410 static int sd_probe(struct device *dev)
3411 {
3412 	struct scsi_device *sdp = to_scsi_device(dev);
3413 	struct scsi_disk *sdkp;
3414 	struct gendisk *gd;
3415 	int index;
3416 	int error;
3417 
3418 	scsi_autopm_get_device(sdp);
3419 	error = -ENODEV;
3420 	if (sdp->type != TYPE_DISK &&
3421 	    sdp->type != TYPE_ZBC &&
3422 	    sdp->type != TYPE_MOD &&
3423 	    sdp->type != TYPE_RBC)
3424 		goto out;
3425 
3426 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3427 		sdev_printk(KERN_WARNING, sdp,
3428 			    "Unsupported ZBC host-managed device.\n");
3429 		goto out;
3430 	}
3431 
3432 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3433 					"sd_probe\n"));
3434 
3435 	error = -ENOMEM;
3436 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3437 	if (!sdkp)
3438 		goto out;
3439 
3440 	gd = __alloc_disk_node(sdp->request_queue, NUMA_NO_NODE,
3441 			       &sd_bio_compl_lkclass);
3442 	if (!gd)
3443 		goto out_free;
3444 
3445 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3446 	if (index < 0) {
3447 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3448 		goto out_put;
3449 	}
3450 
3451 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3452 	if (error) {
3453 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3454 		goto out_free_index;
3455 	}
3456 
3457 	sdkp->device = sdp;
3458 	sdkp->driver = &sd_template;
3459 	sdkp->disk = gd;
3460 	sdkp->index = index;
3461 	sdkp->max_retries = SD_MAX_RETRIES;
3462 	atomic_set(&sdkp->openers, 0);
3463 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3464 
3465 	if (!sdp->request_queue->rq_timeout) {
3466 		if (sdp->type != TYPE_MOD)
3467 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3468 		else
3469 			blk_queue_rq_timeout(sdp->request_queue,
3470 					     SD_MOD_TIMEOUT);
3471 	}
3472 
3473 	device_initialize(&sdkp->dev);
3474 	sdkp->dev.parent = get_device(dev);
3475 	sdkp->dev.class = &sd_disk_class;
3476 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3477 
3478 	error = device_add(&sdkp->dev);
3479 	if (error) {
3480 		put_device(&sdkp->dev);
3481 		goto out;
3482 	}
3483 
3484 	dev_set_drvdata(dev, sdkp);
3485 
3486 	gd->major = sd_major((index & 0xf0) >> 4);
3487 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3488 	gd->minors = SD_MINORS;
3489 
3490 	gd->fops = &sd_fops;
3491 	gd->private_data = &sdkp->driver;
3492 
3493 	/* defaults, until the device tells us otherwise */
3494 	sdp->sector_size = 512;
3495 	sdkp->capacity = 0;
3496 	sdkp->media_present = 1;
3497 	sdkp->write_prot = 0;
3498 	sdkp->cache_override = 0;
3499 	sdkp->WCE = 0;
3500 	sdkp->RCD = 0;
3501 	sdkp->ATO = 0;
3502 	sdkp->first_scan = 1;
3503 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3504 
3505 	sd_revalidate_disk(gd);
3506 
3507 	if (sdp->removable) {
3508 		gd->flags |= GENHD_FL_REMOVABLE;
3509 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3510 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3511 	}
3512 
3513 	blk_pm_runtime_init(sdp->request_queue, dev);
3514 	if (sdp->rpm_autosuspend) {
3515 		pm_runtime_set_autosuspend_delay(dev,
3516 			sdp->host->hostt->rpm_autosuspend_delay);
3517 	}
3518 
3519 	error = device_add_disk(dev, gd, NULL);
3520 	if (error) {
3521 		put_device(&sdkp->dev);
3522 		goto out;
3523 	}
3524 
3525 	if (sdkp->capacity)
3526 		sd_dif_config_host(sdkp);
3527 
3528 	sd_revalidate_disk(gd);
3529 
3530 	if (sdkp->security) {
3531 		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3532 		if (sdkp->opal_dev)
3533 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3534 	}
3535 
3536 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3537 		  sdp->removable ? "removable " : "");
3538 	scsi_autopm_put_device(sdp);
3539 
3540 	return 0;
3541 
3542  out_free_index:
3543 	ida_free(&sd_index_ida, index);
3544  out_put:
3545 	put_disk(gd);
3546  out_free:
3547 	sd_zbc_release_disk(sdkp);
3548 	kfree(sdkp);
3549  out:
3550 	scsi_autopm_put_device(sdp);
3551 	return error;
3552 }
3553 
3554 /**
3555  *	sd_remove - called whenever a scsi disk (previously recognized by
3556  *	sd_probe) is detached from the system. It is called (potentially
3557  *	multiple times) during sd module unload.
3558  *	@dev: pointer to device object
3559  *
3560  *	Note: this function is invoked from the scsi mid-level.
3561  *	This function potentially frees up a device name (e.g. /dev/sdc)
3562  *	that could be re-used by a subsequent sd_probe().
3563  *	This function is not called when the built-in sd driver is "exit-ed".
3564  **/
3565 static int sd_remove(struct device *dev)
3566 {
3567 	struct scsi_disk *sdkp;
3568 
3569 	sdkp = dev_get_drvdata(dev);
3570 	scsi_autopm_get_device(sdkp->device);
3571 
3572 	device_del(&sdkp->dev);
3573 	del_gendisk(sdkp->disk);
3574 	sd_shutdown(dev);
3575 
3576 	free_opal_dev(sdkp->opal_dev);
3577 
3578 	mutex_lock(&sd_ref_mutex);
3579 	dev_set_drvdata(dev, NULL);
3580 	put_device(&sdkp->dev);
3581 	mutex_unlock(&sd_ref_mutex);
3582 
3583 	return 0;
3584 }
3585 
3586 /**
3587  *	scsi_disk_release - Called to free the scsi_disk structure
3588  *	@dev: pointer to embedded class device
3589  *
3590  *	sd_ref_mutex must be held entering this routine.  Because it is
3591  *	called on last put, you should always use the scsi_disk_get()
3592  *	scsi_disk_put() helpers which manipulate the semaphore directly
3593  *	and never do a direct put_device.
3594  **/
3595 static void scsi_disk_release(struct device *dev)
3596 {
3597 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3598 	struct gendisk *disk = sdkp->disk;
3599 	struct request_queue *q = disk->queue;
3600 
3601 	ida_free(&sd_index_ida, sdkp->index);
3602 
3603 	/*
3604 	 * Wait until all requests that are in progress have completed.
3605 	 * This is necessary to avoid that e.g. scsi_end_request() crashes
3606 	 * due to clearing the disk->private_data pointer. Wait from inside
3607 	 * scsi_disk_release() instead of from sd_release() to avoid that
3608 	 * freezing and unfreezing the request queue affects user space I/O
3609 	 * in case multiple processes open a /dev/sd... node concurrently.
3610 	 */
3611 	blk_mq_freeze_queue(q);
3612 	blk_mq_unfreeze_queue(q);
3613 
3614 	disk->private_data = NULL;
3615 	put_disk(disk);
3616 	put_device(&sdkp->device->sdev_gendev);
3617 
3618 	sd_zbc_release_disk(sdkp);
3619 
3620 	kfree(sdkp);
3621 }
3622 
3623 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3624 {
3625 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3626 	struct scsi_sense_hdr sshdr;
3627 	struct scsi_device *sdp = sdkp->device;
3628 	int res;
3629 
3630 	if (start)
3631 		cmd[4] |= 1;	/* START */
3632 
3633 	if (sdp->start_stop_pwr_cond)
3634 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3635 
3636 	if (!scsi_device_online(sdp))
3637 		return -ENODEV;
3638 
3639 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3640 			SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3641 	if (res) {
3642 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3643 		if (res > 0 && scsi_sense_valid(&sshdr)) {
3644 			sd_print_sense_hdr(sdkp, &sshdr);
3645 			/* 0x3a is medium not present */
3646 			if (sshdr.asc == 0x3a)
3647 				res = 0;
3648 		}
3649 	}
3650 
3651 	/* SCSI error codes must not go to the generic layer */
3652 	if (res)
3653 		return -EIO;
3654 
3655 	return 0;
3656 }
3657 
3658 /*
3659  * Send a SYNCHRONIZE CACHE instruction down to the device through
3660  * the normal SCSI command structure.  Wait for the command to
3661  * complete.
3662  */
3663 static void sd_shutdown(struct device *dev)
3664 {
3665 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3666 
3667 	if (!sdkp)
3668 		return;         /* this can happen */
3669 
3670 	if (pm_runtime_suspended(dev))
3671 		return;
3672 
3673 	if (sdkp->WCE && sdkp->media_present) {
3674 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3675 		sd_sync_cache(sdkp, NULL);
3676 	}
3677 
3678 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3679 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3680 		sd_start_stop_device(sdkp, 0);
3681 	}
3682 }
3683 
3684 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3685 {
3686 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3687 	struct scsi_sense_hdr sshdr;
3688 	int ret = 0;
3689 
3690 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3691 		return 0;
3692 
3693 	if (sdkp->WCE && sdkp->media_present) {
3694 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3695 		ret = sd_sync_cache(sdkp, &sshdr);
3696 
3697 		if (ret) {
3698 			/* ignore OFFLINE device */
3699 			if (ret == -ENODEV)
3700 				return 0;
3701 
3702 			if (!scsi_sense_valid(&sshdr) ||
3703 			    sshdr.sense_key != ILLEGAL_REQUEST)
3704 				return ret;
3705 
3706 			/*
3707 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3708 			 * doesn't support sync. There's not much to do and
3709 			 * suspend shouldn't fail.
3710 			 */
3711 			ret = 0;
3712 		}
3713 	}
3714 
3715 	if (sdkp->device->manage_start_stop) {
3716 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3717 		/* an error is not worth aborting a system sleep */
3718 		ret = sd_start_stop_device(sdkp, 0);
3719 		if (ignore_stop_errors)
3720 			ret = 0;
3721 	}
3722 
3723 	return ret;
3724 }
3725 
3726 static int sd_suspend_system(struct device *dev)
3727 {
3728 	if (pm_runtime_suspended(dev))
3729 		return 0;
3730 
3731 	return sd_suspend_common(dev, true);
3732 }
3733 
3734 static int sd_suspend_runtime(struct device *dev)
3735 {
3736 	return sd_suspend_common(dev, false);
3737 }
3738 
3739 static int sd_resume(struct device *dev)
3740 {
3741 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3742 	int ret;
3743 
3744 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3745 		return 0;
3746 
3747 	if (!sdkp->device->manage_start_stop)
3748 		return 0;
3749 
3750 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3751 	ret = sd_start_stop_device(sdkp, 1);
3752 	if (!ret)
3753 		opal_unlock_from_suspend(sdkp->opal_dev);
3754 	return ret;
3755 }
3756 
3757 static int sd_resume_system(struct device *dev)
3758 {
3759 	if (pm_runtime_suspended(dev))
3760 		return 0;
3761 
3762 	return sd_resume(dev);
3763 }
3764 
3765 static int sd_resume_runtime(struct device *dev)
3766 {
3767 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3768 	struct scsi_device *sdp;
3769 
3770 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3771 		return 0;
3772 
3773 	sdp = sdkp->device;
3774 
3775 	if (sdp->ignore_media_change) {
3776 		/* clear the device's sense data */
3777 		static const u8 cmd[10] = { REQUEST_SENSE };
3778 
3779 		if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL,
3780 				 NULL, sdp->request_queue->rq_timeout, 1, 0,
3781 				 RQF_PM, NULL))
3782 			sd_printk(KERN_NOTICE, sdkp,
3783 				  "Failed to clear sense data\n");
3784 	}
3785 
3786 	return sd_resume(dev);
3787 }
3788 
3789 /**
3790  *	init_sd - entry point for this driver (both when built in or when
3791  *	a module).
3792  *
3793  *	Note: this function registers this driver with the scsi mid-level.
3794  **/
3795 static int __init init_sd(void)
3796 {
3797 	int majors = 0, i, err;
3798 
3799 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3800 
3801 	for (i = 0; i < SD_MAJORS; i++) {
3802 		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3803 			continue;
3804 		majors++;
3805 	}
3806 
3807 	if (!majors)
3808 		return -ENODEV;
3809 
3810 	err = class_register(&sd_disk_class);
3811 	if (err)
3812 		goto err_out;
3813 
3814 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3815 					 0, 0, NULL);
3816 	if (!sd_cdb_cache) {
3817 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3818 		err = -ENOMEM;
3819 		goto err_out_class;
3820 	}
3821 
3822 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3823 	if (!sd_cdb_pool) {
3824 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3825 		err = -ENOMEM;
3826 		goto err_out_cache;
3827 	}
3828 
3829 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3830 	if (!sd_page_pool) {
3831 		printk(KERN_ERR "sd: can't init discard page pool\n");
3832 		err = -ENOMEM;
3833 		goto err_out_ppool;
3834 	}
3835 
3836 	err = scsi_register_driver(&sd_template.gendrv);
3837 	if (err)
3838 		goto err_out_driver;
3839 
3840 	return 0;
3841 
3842 err_out_driver:
3843 	mempool_destroy(sd_page_pool);
3844 
3845 err_out_ppool:
3846 	mempool_destroy(sd_cdb_pool);
3847 
3848 err_out_cache:
3849 	kmem_cache_destroy(sd_cdb_cache);
3850 
3851 err_out_class:
3852 	class_unregister(&sd_disk_class);
3853 err_out:
3854 	for (i = 0; i < SD_MAJORS; i++)
3855 		unregister_blkdev(sd_major(i), "sd");
3856 	return err;
3857 }
3858 
3859 /**
3860  *	exit_sd - exit point for this driver (when it is a module).
3861  *
3862  *	Note: this function unregisters this driver from the scsi mid-level.
3863  **/
3864 static void __exit exit_sd(void)
3865 {
3866 	int i;
3867 
3868 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3869 
3870 	scsi_unregister_driver(&sd_template.gendrv);
3871 	mempool_destroy(sd_cdb_pool);
3872 	mempool_destroy(sd_page_pool);
3873 	kmem_cache_destroy(sd_cdb_cache);
3874 
3875 	class_unregister(&sd_disk_class);
3876 
3877 	for (i = 0; i < SD_MAJORS; i++)
3878 		unregister_blkdev(sd_major(i), "sd");
3879 }
3880 
3881 module_init(init_sd);
3882 module_exit(exit_sd);
3883 
3884 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3885 {
3886 	scsi_print_sense_hdr(sdkp->device,
3887 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3888 }
3889 
3890 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3891 {
3892 	const char *hb_string = scsi_hostbyte_string(result);
3893 
3894 	if (hb_string)
3895 		sd_printk(KERN_INFO, sdkp,
3896 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3897 			  hb_string ? hb_string : "invalid",
3898 			  "DRIVER_OK");
3899 	else
3900 		sd_printk(KERN_INFO, sdkp,
3901 			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3902 			  msg, host_byte(result), "DRIVER_OK");
3903 }
3904