xref: /openbmc/linux/drivers/scsi/sd.c (revision c127f98ba9aba1818a6ca3a1da5a24653a10d966)
1 /*
2  *      sd.c Copyright (C) 1992 Drew Eckhardt
3  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4  *
5  *      Linux scsi disk driver
6  *              Initial versions: Drew Eckhardt
7  *              Subsequent revisions: Eric Youngdale
8  *	Modification history:
9  *       - Drew Eckhardt <drew@colorado.edu> original
10  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11  *         outstanding request, and other enhancements.
12  *         Support loadable low-level scsi drivers.
13  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14  *         eight major numbers.
15  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17  *	   sd_init and cleanups.
18  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
19  *	   not being read in sd_open. Fix problem where removable media
20  *	   could be ejected after sd_open.
21  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24  *	   Support 32k/1M disks.
25  *
26  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
27  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
31  *	Note: when the logging level is set by the user, it must be greater
32  *	than the level indicated above to trigger output.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/sed-opal.h>
54 #include <linux/pm_runtime.h>
55 #include <linux/pr.h>
56 #include <linux/t10-pi.h>
57 #include <linux/uaccess.h>
58 #include <asm/unaligned.h>
59 
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_dbg.h>
63 #include <scsi/scsi_device.h>
64 #include <scsi/scsi_driver.h>
65 #include <scsi/scsi_eh.h>
66 #include <scsi/scsi_host.h>
67 #include <scsi/scsi_ioctl.h>
68 #include <scsi/scsicam.h>
69 
70 #include "sd.h"
71 #include "scsi_priv.h"
72 #include "scsi_logging.h"
73 
74 MODULE_AUTHOR("Eric Youngdale");
75 MODULE_DESCRIPTION("SCSI disk (sd) driver");
76 MODULE_LICENSE("GPL");
77 
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
98 
99 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
100 #define SD_MINORS	16
101 #else
102 #define SD_MINORS	0
103 #endif
104 
105 static void sd_config_discard(struct scsi_disk *, unsigned int);
106 static void sd_config_write_same(struct scsi_disk *);
107 static int  sd_revalidate_disk(struct gendisk *);
108 static void sd_unlock_native_capacity(struct gendisk *disk);
109 static int  sd_probe(struct device *);
110 static int  sd_remove(struct device *);
111 static void sd_shutdown(struct device *);
112 static int sd_suspend_system(struct device *);
113 static int sd_suspend_runtime(struct device *);
114 static int sd_resume(struct device *);
115 static void sd_rescan(struct device *);
116 static int sd_init_command(struct scsi_cmnd *SCpnt);
117 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
118 static int sd_done(struct scsi_cmnd *);
119 static void sd_eh_reset(struct scsi_cmnd *);
120 static int sd_eh_action(struct scsi_cmnd *, int);
121 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
122 static void scsi_disk_release(struct device *cdev);
123 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
124 static void sd_print_result(const struct scsi_disk *, const char *, int);
125 
126 static DEFINE_SPINLOCK(sd_index_lock);
127 static DEFINE_IDA(sd_index_ida);
128 
129 /* This semaphore is used to mediate the 0->1 reference get in the
130  * face of object destruction (i.e. we can't allow a get on an
131  * object after last put) */
132 static DEFINE_MUTEX(sd_ref_mutex);
133 
134 static struct kmem_cache *sd_cdb_cache;
135 static mempool_t *sd_cdb_pool;
136 
137 static const char *sd_cache_types[] = {
138 	"write through", "none", "write back",
139 	"write back, no read (daft)"
140 };
141 
142 static void sd_set_flush_flag(struct scsi_disk *sdkp)
143 {
144 	bool wc = false, fua = false;
145 
146 	if (sdkp->WCE) {
147 		wc = true;
148 		if (sdkp->DPOFUA)
149 			fua = true;
150 	}
151 
152 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
153 }
154 
155 static ssize_t
156 cache_type_store(struct device *dev, struct device_attribute *attr,
157 		 const char *buf, size_t count)
158 {
159 	int ct, rcd, wce, sp;
160 	struct scsi_disk *sdkp = to_scsi_disk(dev);
161 	struct scsi_device *sdp = sdkp->device;
162 	char buffer[64];
163 	char *buffer_data;
164 	struct scsi_mode_data data;
165 	struct scsi_sense_hdr sshdr;
166 	static const char temp[] = "temporary ";
167 	int len;
168 
169 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
170 		/* no cache control on RBC devices; theoretically they
171 		 * can do it, but there's probably so many exceptions
172 		 * it's not worth the risk */
173 		return -EINVAL;
174 
175 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
176 		buf += sizeof(temp) - 1;
177 		sdkp->cache_override = 1;
178 	} else {
179 		sdkp->cache_override = 0;
180 	}
181 
182 	ct = sysfs_match_string(sd_cache_types, buf);
183 	if (ct < 0)
184 		return -EINVAL;
185 
186 	rcd = ct & 0x01 ? 1 : 0;
187 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
188 
189 	if (sdkp->cache_override) {
190 		sdkp->WCE = wce;
191 		sdkp->RCD = rcd;
192 		sd_set_flush_flag(sdkp);
193 		return count;
194 	}
195 
196 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
197 			    SD_MAX_RETRIES, &data, NULL))
198 		return -EINVAL;
199 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
200 		  data.block_descriptor_length);
201 	buffer_data = buffer + data.header_length +
202 		data.block_descriptor_length;
203 	buffer_data[2] &= ~0x05;
204 	buffer_data[2] |= wce << 2 | rcd;
205 	sp = buffer_data[0] & 0x80 ? 1 : 0;
206 	buffer_data[0] &= ~0x80;
207 
208 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
209 			     SD_MAX_RETRIES, &data, &sshdr)) {
210 		if (scsi_sense_valid(&sshdr))
211 			sd_print_sense_hdr(sdkp, &sshdr);
212 		return -EINVAL;
213 	}
214 	revalidate_disk(sdkp->disk);
215 	return count;
216 }
217 
218 static ssize_t
219 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
220 		       char *buf)
221 {
222 	struct scsi_disk *sdkp = to_scsi_disk(dev);
223 	struct scsi_device *sdp = sdkp->device;
224 
225 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
226 }
227 
228 static ssize_t
229 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
230 			const char *buf, size_t count)
231 {
232 	struct scsi_disk *sdkp = to_scsi_disk(dev);
233 	struct scsi_device *sdp = sdkp->device;
234 	bool v;
235 
236 	if (!capable(CAP_SYS_ADMIN))
237 		return -EACCES;
238 
239 	if (kstrtobool(buf, &v))
240 		return -EINVAL;
241 
242 	sdp->manage_start_stop = v;
243 
244 	return count;
245 }
246 static DEVICE_ATTR_RW(manage_start_stop);
247 
248 static ssize_t
249 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
250 {
251 	struct scsi_disk *sdkp = to_scsi_disk(dev);
252 
253 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
254 }
255 
256 static ssize_t
257 allow_restart_store(struct device *dev, struct device_attribute *attr,
258 		    const char *buf, size_t count)
259 {
260 	bool v;
261 	struct scsi_disk *sdkp = to_scsi_disk(dev);
262 	struct scsi_device *sdp = sdkp->device;
263 
264 	if (!capable(CAP_SYS_ADMIN))
265 		return -EACCES;
266 
267 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
268 		return -EINVAL;
269 
270 	if (kstrtobool(buf, &v))
271 		return -EINVAL;
272 
273 	sdp->allow_restart = v;
274 
275 	return count;
276 }
277 static DEVICE_ATTR_RW(allow_restart);
278 
279 static ssize_t
280 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
281 {
282 	struct scsi_disk *sdkp = to_scsi_disk(dev);
283 	int ct = sdkp->RCD + 2*sdkp->WCE;
284 
285 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
286 }
287 static DEVICE_ATTR_RW(cache_type);
288 
289 static ssize_t
290 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
291 {
292 	struct scsi_disk *sdkp = to_scsi_disk(dev);
293 
294 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
295 }
296 static DEVICE_ATTR_RO(FUA);
297 
298 static ssize_t
299 protection_type_show(struct device *dev, struct device_attribute *attr,
300 		     char *buf)
301 {
302 	struct scsi_disk *sdkp = to_scsi_disk(dev);
303 
304 	return sprintf(buf, "%u\n", sdkp->protection_type);
305 }
306 
307 static ssize_t
308 protection_type_store(struct device *dev, struct device_attribute *attr,
309 		      const char *buf, size_t count)
310 {
311 	struct scsi_disk *sdkp = to_scsi_disk(dev);
312 	unsigned int val;
313 	int err;
314 
315 	if (!capable(CAP_SYS_ADMIN))
316 		return -EACCES;
317 
318 	err = kstrtouint(buf, 10, &val);
319 
320 	if (err)
321 		return err;
322 
323 	if (val <= T10_PI_TYPE3_PROTECTION)
324 		sdkp->protection_type = val;
325 
326 	return count;
327 }
328 static DEVICE_ATTR_RW(protection_type);
329 
330 static ssize_t
331 protection_mode_show(struct device *dev, struct device_attribute *attr,
332 		     char *buf)
333 {
334 	struct scsi_disk *sdkp = to_scsi_disk(dev);
335 	struct scsi_device *sdp = sdkp->device;
336 	unsigned int dif, dix;
337 
338 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
339 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
340 
341 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
342 		dif = 0;
343 		dix = 1;
344 	}
345 
346 	if (!dif && !dix)
347 		return sprintf(buf, "none\n");
348 
349 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
350 }
351 static DEVICE_ATTR_RO(protection_mode);
352 
353 static ssize_t
354 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
355 {
356 	struct scsi_disk *sdkp = to_scsi_disk(dev);
357 
358 	return sprintf(buf, "%u\n", sdkp->ATO);
359 }
360 static DEVICE_ATTR_RO(app_tag_own);
361 
362 static ssize_t
363 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
364 		       char *buf)
365 {
366 	struct scsi_disk *sdkp = to_scsi_disk(dev);
367 
368 	return sprintf(buf, "%u\n", sdkp->lbpme);
369 }
370 static DEVICE_ATTR_RO(thin_provisioning);
371 
372 /* sysfs_match_string() requires dense arrays */
373 static const char *lbp_mode[] = {
374 	[SD_LBP_FULL]		= "full",
375 	[SD_LBP_UNMAP]		= "unmap",
376 	[SD_LBP_WS16]		= "writesame_16",
377 	[SD_LBP_WS10]		= "writesame_10",
378 	[SD_LBP_ZERO]		= "writesame_zero",
379 	[SD_LBP_DISABLE]	= "disabled",
380 };
381 
382 static ssize_t
383 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
384 		       char *buf)
385 {
386 	struct scsi_disk *sdkp = to_scsi_disk(dev);
387 
388 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
389 }
390 
391 static ssize_t
392 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
393 			const char *buf, size_t count)
394 {
395 	struct scsi_disk *sdkp = to_scsi_disk(dev);
396 	struct scsi_device *sdp = sdkp->device;
397 	int mode;
398 
399 	if (!capable(CAP_SYS_ADMIN))
400 		return -EACCES;
401 
402 	if (sd_is_zoned(sdkp)) {
403 		sd_config_discard(sdkp, SD_LBP_DISABLE);
404 		return count;
405 	}
406 
407 	if (sdp->type != TYPE_DISK)
408 		return -EINVAL;
409 
410 	mode = sysfs_match_string(lbp_mode, buf);
411 	if (mode < 0)
412 		return -EINVAL;
413 
414 	sd_config_discard(sdkp, mode);
415 
416 	return count;
417 }
418 static DEVICE_ATTR_RW(provisioning_mode);
419 
420 /* sysfs_match_string() requires dense arrays */
421 static const char *zeroing_mode[] = {
422 	[SD_ZERO_WRITE]		= "write",
423 	[SD_ZERO_WS]		= "writesame",
424 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
425 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
426 };
427 
428 static ssize_t
429 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
430 		  char *buf)
431 {
432 	struct scsi_disk *sdkp = to_scsi_disk(dev);
433 
434 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
435 }
436 
437 static ssize_t
438 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
439 		   const char *buf, size_t count)
440 {
441 	struct scsi_disk *sdkp = to_scsi_disk(dev);
442 	int mode;
443 
444 	if (!capable(CAP_SYS_ADMIN))
445 		return -EACCES;
446 
447 	mode = sysfs_match_string(zeroing_mode, buf);
448 	if (mode < 0)
449 		return -EINVAL;
450 
451 	sdkp->zeroing_mode = mode;
452 
453 	return count;
454 }
455 static DEVICE_ATTR_RW(zeroing_mode);
456 
457 static ssize_t
458 max_medium_access_timeouts_show(struct device *dev,
459 				struct device_attribute *attr, char *buf)
460 {
461 	struct scsi_disk *sdkp = to_scsi_disk(dev);
462 
463 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
464 }
465 
466 static ssize_t
467 max_medium_access_timeouts_store(struct device *dev,
468 				 struct device_attribute *attr, const char *buf,
469 				 size_t count)
470 {
471 	struct scsi_disk *sdkp = to_scsi_disk(dev);
472 	int err;
473 
474 	if (!capable(CAP_SYS_ADMIN))
475 		return -EACCES;
476 
477 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
478 
479 	return err ? err : count;
480 }
481 static DEVICE_ATTR_RW(max_medium_access_timeouts);
482 
483 static ssize_t
484 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
485 			   char *buf)
486 {
487 	struct scsi_disk *sdkp = to_scsi_disk(dev);
488 
489 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
490 }
491 
492 static ssize_t
493 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
494 			    const char *buf, size_t count)
495 {
496 	struct scsi_disk *sdkp = to_scsi_disk(dev);
497 	struct scsi_device *sdp = sdkp->device;
498 	unsigned long max;
499 	int err;
500 
501 	if (!capable(CAP_SYS_ADMIN))
502 		return -EACCES;
503 
504 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
505 		return -EINVAL;
506 
507 	err = kstrtoul(buf, 10, &max);
508 
509 	if (err)
510 		return err;
511 
512 	if (max == 0)
513 		sdp->no_write_same = 1;
514 	else if (max <= SD_MAX_WS16_BLOCKS) {
515 		sdp->no_write_same = 0;
516 		sdkp->max_ws_blocks = max;
517 	}
518 
519 	sd_config_write_same(sdkp);
520 
521 	return count;
522 }
523 static DEVICE_ATTR_RW(max_write_same_blocks);
524 
525 static struct attribute *sd_disk_attrs[] = {
526 	&dev_attr_cache_type.attr,
527 	&dev_attr_FUA.attr,
528 	&dev_attr_allow_restart.attr,
529 	&dev_attr_manage_start_stop.attr,
530 	&dev_attr_protection_type.attr,
531 	&dev_attr_protection_mode.attr,
532 	&dev_attr_app_tag_own.attr,
533 	&dev_attr_thin_provisioning.attr,
534 	&dev_attr_provisioning_mode.attr,
535 	&dev_attr_zeroing_mode.attr,
536 	&dev_attr_max_write_same_blocks.attr,
537 	&dev_attr_max_medium_access_timeouts.attr,
538 	NULL,
539 };
540 ATTRIBUTE_GROUPS(sd_disk);
541 
542 static struct class sd_disk_class = {
543 	.name		= "scsi_disk",
544 	.owner		= THIS_MODULE,
545 	.dev_release	= scsi_disk_release,
546 	.dev_groups	= sd_disk_groups,
547 };
548 
549 static const struct dev_pm_ops sd_pm_ops = {
550 	.suspend		= sd_suspend_system,
551 	.resume			= sd_resume,
552 	.poweroff		= sd_suspend_system,
553 	.restore		= sd_resume,
554 	.runtime_suspend	= sd_suspend_runtime,
555 	.runtime_resume		= sd_resume,
556 };
557 
558 static struct scsi_driver sd_template = {
559 	.gendrv = {
560 		.name		= "sd",
561 		.owner		= THIS_MODULE,
562 		.probe		= sd_probe,
563 		.remove		= sd_remove,
564 		.shutdown	= sd_shutdown,
565 		.pm		= &sd_pm_ops,
566 	},
567 	.rescan			= sd_rescan,
568 	.init_command		= sd_init_command,
569 	.uninit_command		= sd_uninit_command,
570 	.done			= sd_done,
571 	.eh_action		= sd_eh_action,
572 	.eh_reset		= sd_eh_reset,
573 };
574 
575 /*
576  * Dummy kobj_map->probe function.
577  * The default ->probe function will call modprobe, which is
578  * pointless as this module is already loaded.
579  */
580 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
581 {
582 	return NULL;
583 }
584 
585 /*
586  * Device no to disk mapping:
587  *
588  *       major         disc2     disc  p1
589  *   |............|.............|....|....| <- dev_t
590  *    31        20 19          8 7  4 3  0
591  *
592  * Inside a major, we have 16k disks, however mapped non-
593  * contiguously. The first 16 disks are for major0, the next
594  * ones with major1, ... Disk 256 is for major0 again, disk 272
595  * for major1, ...
596  * As we stay compatible with our numbering scheme, we can reuse
597  * the well-know SCSI majors 8, 65--71, 136--143.
598  */
599 static int sd_major(int major_idx)
600 {
601 	switch (major_idx) {
602 	case 0:
603 		return SCSI_DISK0_MAJOR;
604 	case 1 ... 7:
605 		return SCSI_DISK1_MAJOR + major_idx - 1;
606 	case 8 ... 15:
607 		return SCSI_DISK8_MAJOR + major_idx - 8;
608 	default:
609 		BUG();
610 		return 0;	/* shut up gcc */
611 	}
612 }
613 
614 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
615 {
616 	struct scsi_disk *sdkp = NULL;
617 
618 	mutex_lock(&sd_ref_mutex);
619 
620 	if (disk->private_data) {
621 		sdkp = scsi_disk(disk);
622 		if (scsi_device_get(sdkp->device) == 0)
623 			get_device(&sdkp->dev);
624 		else
625 			sdkp = NULL;
626 	}
627 	mutex_unlock(&sd_ref_mutex);
628 	return sdkp;
629 }
630 
631 static void scsi_disk_put(struct scsi_disk *sdkp)
632 {
633 	struct scsi_device *sdev = sdkp->device;
634 
635 	mutex_lock(&sd_ref_mutex);
636 	put_device(&sdkp->dev);
637 	scsi_device_put(sdev);
638 	mutex_unlock(&sd_ref_mutex);
639 }
640 
641 #ifdef CONFIG_BLK_SED_OPAL
642 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
643 		size_t len, bool send)
644 {
645 	struct scsi_device *sdev = data;
646 	u8 cdb[12] = { 0, };
647 	int ret;
648 
649 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
650 	cdb[1] = secp;
651 	put_unaligned_be16(spsp, &cdb[2]);
652 	put_unaligned_be32(len, &cdb[6]);
653 
654 	ret = scsi_execute_req(sdev, cdb,
655 			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
656 			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
657 	return ret <= 0 ? ret : -EIO;
658 }
659 #endif /* CONFIG_BLK_SED_OPAL */
660 
661 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
662 					   unsigned int dix, unsigned int dif)
663 {
664 	struct bio *bio = scmd->request->bio;
665 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
666 	unsigned int protect = 0;
667 
668 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
669 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
670 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
671 
672 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
673 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
674 	}
675 
676 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
677 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
678 
679 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
680 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
681 	}
682 
683 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
684 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
685 
686 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
687 			protect = 3 << 5;	/* Disable target PI checking */
688 		else
689 			protect = 1 << 5;	/* Enable target PI checking */
690 	}
691 
692 	scsi_set_prot_op(scmd, prot_op);
693 	scsi_set_prot_type(scmd, dif);
694 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
695 
696 	return protect;
697 }
698 
699 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
700 {
701 	struct request_queue *q = sdkp->disk->queue;
702 	unsigned int logical_block_size = sdkp->device->sector_size;
703 	unsigned int max_blocks = 0;
704 
705 	q->limits.discard_alignment =
706 		sdkp->unmap_alignment * logical_block_size;
707 	q->limits.discard_granularity =
708 		max(sdkp->physical_block_size,
709 		    sdkp->unmap_granularity * logical_block_size);
710 	sdkp->provisioning_mode = mode;
711 
712 	switch (mode) {
713 
714 	case SD_LBP_FULL:
715 	case SD_LBP_DISABLE:
716 		blk_queue_max_discard_sectors(q, 0);
717 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
718 		return;
719 
720 	case SD_LBP_UNMAP:
721 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
722 					  (u32)SD_MAX_WS16_BLOCKS);
723 		break;
724 
725 	case SD_LBP_WS16:
726 		if (sdkp->device->unmap_limit_for_ws)
727 			max_blocks = sdkp->max_unmap_blocks;
728 		else
729 			max_blocks = sdkp->max_ws_blocks;
730 
731 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
732 		break;
733 
734 	case SD_LBP_WS10:
735 		if (sdkp->device->unmap_limit_for_ws)
736 			max_blocks = sdkp->max_unmap_blocks;
737 		else
738 			max_blocks = sdkp->max_ws_blocks;
739 
740 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
741 		break;
742 
743 	case SD_LBP_ZERO:
744 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
745 					  (u32)SD_MAX_WS10_BLOCKS);
746 		break;
747 	}
748 
749 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
750 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
751 }
752 
753 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
754 {
755 	struct scsi_device *sdp = cmd->device;
756 	struct request *rq = cmd->request;
757 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
758 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
759 	unsigned int data_len = 24;
760 	char *buf;
761 
762 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
763 	if (!rq->special_vec.bv_page)
764 		return BLKPREP_DEFER;
765 	rq->special_vec.bv_offset = 0;
766 	rq->special_vec.bv_len = data_len;
767 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
768 
769 	cmd->cmd_len = 10;
770 	cmd->cmnd[0] = UNMAP;
771 	cmd->cmnd[8] = 24;
772 
773 	buf = page_address(rq->special_vec.bv_page);
774 	put_unaligned_be16(6 + 16, &buf[0]);
775 	put_unaligned_be16(16, &buf[2]);
776 	put_unaligned_be64(sector, &buf[8]);
777 	put_unaligned_be32(nr_sectors, &buf[16]);
778 
779 	cmd->allowed = SD_MAX_RETRIES;
780 	cmd->transfersize = data_len;
781 	rq->timeout = SD_TIMEOUT;
782 	scsi_req(rq)->resid_len = data_len;
783 
784 	return scsi_init_io(cmd);
785 }
786 
787 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap)
788 {
789 	struct scsi_device *sdp = cmd->device;
790 	struct request *rq = cmd->request;
791 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
792 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
793 	u32 data_len = sdp->sector_size;
794 
795 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
796 	if (!rq->special_vec.bv_page)
797 		return BLKPREP_DEFER;
798 	rq->special_vec.bv_offset = 0;
799 	rq->special_vec.bv_len = data_len;
800 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
801 
802 	cmd->cmd_len = 16;
803 	cmd->cmnd[0] = WRITE_SAME_16;
804 	if (unmap)
805 		cmd->cmnd[1] = 0x8; /* UNMAP */
806 	put_unaligned_be64(sector, &cmd->cmnd[2]);
807 	put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
808 
809 	cmd->allowed = SD_MAX_RETRIES;
810 	cmd->transfersize = data_len;
811 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
812 	scsi_req(rq)->resid_len = data_len;
813 
814 	return scsi_init_io(cmd);
815 }
816 
817 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap)
818 {
819 	struct scsi_device *sdp = cmd->device;
820 	struct request *rq = cmd->request;
821 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
822 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
823 	u32 data_len = sdp->sector_size;
824 
825 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
826 	if (!rq->special_vec.bv_page)
827 		return BLKPREP_DEFER;
828 	rq->special_vec.bv_offset = 0;
829 	rq->special_vec.bv_len = data_len;
830 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
831 
832 	cmd->cmd_len = 10;
833 	cmd->cmnd[0] = WRITE_SAME;
834 	if (unmap)
835 		cmd->cmnd[1] = 0x8; /* UNMAP */
836 	put_unaligned_be32(sector, &cmd->cmnd[2]);
837 	put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
838 
839 	cmd->allowed = SD_MAX_RETRIES;
840 	cmd->transfersize = data_len;
841 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
842 	scsi_req(rq)->resid_len = data_len;
843 
844 	return scsi_init_io(cmd);
845 }
846 
847 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
848 {
849 	struct request *rq = cmd->request;
850 	struct scsi_device *sdp = cmd->device;
851 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
852 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
853 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
854 	int ret;
855 
856 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
857 		switch (sdkp->zeroing_mode) {
858 		case SD_ZERO_WS16_UNMAP:
859 			ret = sd_setup_write_same16_cmnd(cmd, true);
860 			goto out;
861 		case SD_ZERO_WS10_UNMAP:
862 			ret = sd_setup_write_same10_cmnd(cmd, true);
863 			goto out;
864 		}
865 	}
866 
867 	if (sdp->no_write_same)
868 		return BLKPREP_INVALID;
869 
870 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
871 		ret = sd_setup_write_same16_cmnd(cmd, false);
872 	else
873 		ret = sd_setup_write_same10_cmnd(cmd, false);
874 
875 out:
876 	if (sd_is_zoned(sdkp) && ret == BLKPREP_OK)
877 		return sd_zbc_write_lock_zone(cmd);
878 
879 	return ret;
880 }
881 
882 static void sd_config_write_same(struct scsi_disk *sdkp)
883 {
884 	struct request_queue *q = sdkp->disk->queue;
885 	unsigned int logical_block_size = sdkp->device->sector_size;
886 
887 	if (sdkp->device->no_write_same) {
888 		sdkp->max_ws_blocks = 0;
889 		goto out;
890 	}
891 
892 	/* Some devices can not handle block counts above 0xffff despite
893 	 * supporting WRITE SAME(16). Consequently we default to 64k
894 	 * blocks per I/O unless the device explicitly advertises a
895 	 * bigger limit.
896 	 */
897 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
898 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
899 						   (u32)SD_MAX_WS16_BLOCKS);
900 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
901 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
902 						   (u32)SD_MAX_WS10_BLOCKS);
903 	else {
904 		sdkp->device->no_write_same = 1;
905 		sdkp->max_ws_blocks = 0;
906 	}
907 
908 	if (sdkp->lbprz && sdkp->lbpws)
909 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
910 	else if (sdkp->lbprz && sdkp->lbpws10)
911 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
912 	else if (sdkp->max_ws_blocks)
913 		sdkp->zeroing_mode = SD_ZERO_WS;
914 	else
915 		sdkp->zeroing_mode = SD_ZERO_WRITE;
916 
917 	if (sdkp->max_ws_blocks &&
918 	    sdkp->physical_block_size > logical_block_size) {
919 		/*
920 		 * Reporting a maximum number of blocks that is not aligned
921 		 * on the device physical size would cause a large write same
922 		 * request to be split into physically unaligned chunks by
923 		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
924 		 * even if the caller of these functions took care to align the
925 		 * large request. So make sure the maximum reported is aligned
926 		 * to the device physical block size. This is only an optional
927 		 * optimization for regular disks, but this is mandatory to
928 		 * avoid failure of large write same requests directed at
929 		 * sequential write required zones of host-managed ZBC disks.
930 		 */
931 		sdkp->max_ws_blocks =
932 			round_down(sdkp->max_ws_blocks,
933 				   bytes_to_logical(sdkp->device,
934 						    sdkp->physical_block_size));
935 	}
936 
937 out:
938 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
939 					 (logical_block_size >> 9));
940 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
941 					 (logical_block_size >> 9));
942 }
943 
944 /**
945  * sd_setup_write_same_cmnd - write the same data to multiple blocks
946  * @cmd: command to prepare
947  *
948  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
949  * the preference indicated by the target device.
950  **/
951 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
952 {
953 	struct request *rq = cmd->request;
954 	struct scsi_device *sdp = cmd->device;
955 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
956 	struct bio *bio = rq->bio;
957 	sector_t sector = blk_rq_pos(rq);
958 	unsigned int nr_sectors = blk_rq_sectors(rq);
959 	unsigned int nr_bytes = blk_rq_bytes(rq);
960 	int ret;
961 
962 	if (sdkp->device->no_write_same)
963 		return BLKPREP_INVALID;
964 
965 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
966 
967 	if (sd_is_zoned(sdkp)) {
968 		ret = sd_zbc_write_lock_zone(cmd);
969 		if (ret != BLKPREP_OK)
970 			return ret;
971 	}
972 
973 	sector >>= ilog2(sdp->sector_size) - 9;
974 	nr_sectors >>= ilog2(sdp->sector_size) - 9;
975 
976 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
977 
978 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
979 		cmd->cmd_len = 16;
980 		cmd->cmnd[0] = WRITE_SAME_16;
981 		put_unaligned_be64(sector, &cmd->cmnd[2]);
982 		put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
983 	} else {
984 		cmd->cmd_len = 10;
985 		cmd->cmnd[0] = WRITE_SAME;
986 		put_unaligned_be32(sector, &cmd->cmnd[2]);
987 		put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
988 	}
989 
990 	cmd->transfersize = sdp->sector_size;
991 	cmd->allowed = SD_MAX_RETRIES;
992 
993 	/*
994 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
995 	 * different from the amount of data actually written to the target.
996 	 *
997 	 * We set up __data_len to the amount of data transferred via the
998 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
999 	 * to transfer a single sector of data first, but then reset it to
1000 	 * the amount of data to be written right after so that the I/O path
1001 	 * knows how much to actually write.
1002 	 */
1003 	rq->__data_len = sdp->sector_size;
1004 	ret = scsi_init_io(cmd);
1005 	rq->__data_len = nr_bytes;
1006 
1007 	if (sd_is_zoned(sdkp) && ret != BLKPREP_OK)
1008 		sd_zbc_write_unlock_zone(cmd);
1009 
1010 	return ret;
1011 }
1012 
1013 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1014 {
1015 	struct request *rq = cmd->request;
1016 
1017 	/* flush requests don't perform I/O, zero the S/G table */
1018 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1019 
1020 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1021 	cmd->cmd_len = 10;
1022 	cmd->transfersize = 0;
1023 	cmd->allowed = SD_MAX_RETRIES;
1024 
1025 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1026 	return BLKPREP_OK;
1027 }
1028 
1029 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
1030 {
1031 	struct request *rq = SCpnt->request;
1032 	struct scsi_device *sdp = SCpnt->device;
1033 	struct gendisk *disk = rq->rq_disk;
1034 	struct scsi_disk *sdkp = scsi_disk(disk);
1035 	sector_t block = blk_rq_pos(rq);
1036 	sector_t threshold;
1037 	unsigned int this_count = blk_rq_sectors(rq);
1038 	unsigned int dif, dix;
1039 	bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE;
1040 	int ret;
1041 	unsigned char protect;
1042 
1043 	if (zoned_write) {
1044 		ret = sd_zbc_write_lock_zone(SCpnt);
1045 		if (ret != BLKPREP_OK)
1046 			return ret;
1047 	}
1048 
1049 	ret = scsi_init_io(SCpnt);
1050 	if (ret != BLKPREP_OK)
1051 		goto out;
1052 	WARN_ON_ONCE(SCpnt != rq->special);
1053 
1054 	/* from here on until we're complete, any goto out
1055 	 * is used for a killable error condition */
1056 	ret = BLKPREP_KILL;
1057 
1058 	SCSI_LOG_HLQUEUE(1,
1059 		scmd_printk(KERN_INFO, SCpnt,
1060 			"%s: block=%llu, count=%d\n",
1061 			__func__, (unsigned long long)block, this_count));
1062 
1063 	if (!sdp || !scsi_device_online(sdp) ||
1064 	    block + blk_rq_sectors(rq) > get_capacity(disk)) {
1065 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1066 						"Finishing %u sectors\n",
1067 						blk_rq_sectors(rq)));
1068 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1069 						"Retry with 0x%p\n", SCpnt));
1070 		goto out;
1071 	}
1072 
1073 	if (sdp->changed) {
1074 		/*
1075 		 * quietly refuse to do anything to a changed disc until
1076 		 * the changed bit has been reset
1077 		 */
1078 		/* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1079 		goto out;
1080 	}
1081 
1082 	/*
1083 	 * Some SD card readers can't handle multi-sector accesses which touch
1084 	 * the last one or two hardware sectors.  Split accesses as needed.
1085 	 */
1086 	threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1087 		(sdp->sector_size / 512);
1088 
1089 	if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1090 		if (block < threshold) {
1091 			/* Access up to the threshold but not beyond */
1092 			this_count = threshold - block;
1093 		} else {
1094 			/* Access only a single hardware sector */
1095 			this_count = sdp->sector_size / 512;
1096 		}
1097 	}
1098 
1099 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1100 					(unsigned long long)block));
1101 
1102 	/*
1103 	 * If we have a 1K hardware sectorsize, prevent access to single
1104 	 * 512 byte sectors.  In theory we could handle this - in fact
1105 	 * the scsi cdrom driver must be able to handle this because
1106 	 * we typically use 1K blocksizes, and cdroms typically have
1107 	 * 2K hardware sectorsizes.  Of course, things are simpler
1108 	 * with the cdrom, since it is read-only.  For performance
1109 	 * reasons, the filesystems should be able to handle this
1110 	 * and not force the scsi disk driver to use bounce buffers
1111 	 * for this.
1112 	 */
1113 	if (sdp->sector_size == 1024) {
1114 		if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1115 			scmd_printk(KERN_ERR, SCpnt,
1116 				    "Bad block number requested\n");
1117 			goto out;
1118 		} else {
1119 			block = block >> 1;
1120 			this_count = this_count >> 1;
1121 		}
1122 	}
1123 	if (sdp->sector_size == 2048) {
1124 		if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1125 			scmd_printk(KERN_ERR, SCpnt,
1126 				    "Bad block number requested\n");
1127 			goto out;
1128 		} else {
1129 			block = block >> 2;
1130 			this_count = this_count >> 2;
1131 		}
1132 	}
1133 	if (sdp->sector_size == 4096) {
1134 		if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1135 			scmd_printk(KERN_ERR, SCpnt,
1136 				    "Bad block number requested\n");
1137 			goto out;
1138 		} else {
1139 			block = block >> 3;
1140 			this_count = this_count >> 3;
1141 		}
1142 	}
1143 	if (rq_data_dir(rq) == WRITE) {
1144 		SCpnt->cmnd[0] = WRITE_6;
1145 
1146 		if (blk_integrity_rq(rq))
1147 			sd_dif_prepare(SCpnt);
1148 
1149 	} else if (rq_data_dir(rq) == READ) {
1150 		SCpnt->cmnd[0] = READ_6;
1151 	} else {
1152 		scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1153 		goto out;
1154 	}
1155 
1156 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1157 					"%s %d/%u 512 byte blocks.\n",
1158 					(rq_data_dir(rq) == WRITE) ?
1159 					"writing" : "reading", this_count,
1160 					blk_rq_sectors(rq)));
1161 
1162 	dix = scsi_prot_sg_count(SCpnt);
1163 	dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1164 
1165 	if (dif || dix)
1166 		protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1167 	else
1168 		protect = 0;
1169 
1170 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1171 		SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1172 
1173 		if (unlikely(SCpnt->cmnd == NULL)) {
1174 			ret = BLKPREP_DEFER;
1175 			goto out;
1176 		}
1177 
1178 		SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1179 		memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1180 		SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1181 		SCpnt->cmnd[7] = 0x18;
1182 		SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1183 		SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1184 
1185 		/* LBA */
1186 		SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1187 		SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1188 		SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1189 		SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1190 		SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1191 		SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1192 		SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1193 		SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1194 
1195 		/* Expected Indirect LBA */
1196 		SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1197 		SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1198 		SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1199 		SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1200 
1201 		/* Transfer length */
1202 		SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1203 		SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1204 		SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1205 		SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1206 	} else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1207 		SCpnt->cmnd[0] += READ_16 - READ_6;
1208 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1209 		SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1210 		SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1211 		SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1212 		SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1213 		SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1214 		SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1215 		SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1216 		SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1217 		SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1218 		SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1219 		SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1220 		SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1221 		SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1222 	} else if ((this_count > 0xff) || (block > 0x1fffff) ||
1223 		   scsi_device_protection(SCpnt->device) ||
1224 		   SCpnt->device->use_10_for_rw) {
1225 		SCpnt->cmnd[0] += READ_10 - READ_6;
1226 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1227 		SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1228 		SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1229 		SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1230 		SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1231 		SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1232 		SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1233 		SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1234 	} else {
1235 		if (unlikely(rq->cmd_flags & REQ_FUA)) {
1236 			/*
1237 			 * This happens only if this drive failed
1238 			 * 10byte rw command with ILLEGAL_REQUEST
1239 			 * during operation and thus turned off
1240 			 * use_10_for_rw.
1241 			 */
1242 			scmd_printk(KERN_ERR, SCpnt,
1243 				    "FUA write on READ/WRITE(6) drive\n");
1244 			goto out;
1245 		}
1246 
1247 		SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1248 		SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1249 		SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1250 		SCpnt->cmnd[4] = (unsigned char) this_count;
1251 		SCpnt->cmnd[5] = 0;
1252 	}
1253 	SCpnt->sdb.length = this_count * sdp->sector_size;
1254 
1255 	/*
1256 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1257 	 * host adapter, it's safe to assume that we can at least transfer
1258 	 * this many bytes between each connect / disconnect.
1259 	 */
1260 	SCpnt->transfersize = sdp->sector_size;
1261 	SCpnt->underflow = this_count << 9;
1262 	SCpnt->allowed = SD_MAX_RETRIES;
1263 
1264 	/*
1265 	 * This indicates that the command is ready from our end to be
1266 	 * queued.
1267 	 */
1268 	ret = BLKPREP_OK;
1269  out:
1270 	if (zoned_write && ret != BLKPREP_OK)
1271 		sd_zbc_write_unlock_zone(SCpnt);
1272 
1273 	return ret;
1274 }
1275 
1276 static int sd_init_command(struct scsi_cmnd *cmd)
1277 {
1278 	struct request *rq = cmd->request;
1279 
1280 	switch (req_op(rq)) {
1281 	case REQ_OP_DISCARD:
1282 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1283 		case SD_LBP_UNMAP:
1284 			return sd_setup_unmap_cmnd(cmd);
1285 		case SD_LBP_WS16:
1286 			return sd_setup_write_same16_cmnd(cmd, true);
1287 		case SD_LBP_WS10:
1288 			return sd_setup_write_same10_cmnd(cmd, true);
1289 		case SD_LBP_ZERO:
1290 			return sd_setup_write_same10_cmnd(cmd, false);
1291 		default:
1292 			return BLKPREP_INVALID;
1293 		}
1294 	case REQ_OP_WRITE_ZEROES:
1295 		return sd_setup_write_zeroes_cmnd(cmd);
1296 	case REQ_OP_WRITE_SAME:
1297 		return sd_setup_write_same_cmnd(cmd);
1298 	case REQ_OP_FLUSH:
1299 		return sd_setup_flush_cmnd(cmd);
1300 	case REQ_OP_READ:
1301 	case REQ_OP_WRITE:
1302 		return sd_setup_read_write_cmnd(cmd);
1303 	case REQ_OP_ZONE_REPORT:
1304 		return sd_zbc_setup_report_cmnd(cmd);
1305 	case REQ_OP_ZONE_RESET:
1306 		return sd_zbc_setup_reset_cmnd(cmd);
1307 	default:
1308 		BUG();
1309 	}
1310 }
1311 
1312 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1313 {
1314 	struct request *rq = SCpnt->request;
1315 	u8 *cmnd;
1316 
1317 	if (SCpnt->flags & SCMD_ZONE_WRITE_LOCK)
1318 		sd_zbc_write_unlock_zone(SCpnt);
1319 
1320 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1321 		__free_page(rq->special_vec.bv_page);
1322 
1323 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1324 		cmnd = SCpnt->cmnd;
1325 		SCpnt->cmnd = NULL;
1326 		SCpnt->cmd_len = 0;
1327 		mempool_free(cmnd, sd_cdb_pool);
1328 	}
1329 }
1330 
1331 /**
1332  *	sd_open - open a scsi disk device
1333  *	@bdev: Block device of the scsi disk to open
1334  *	@mode: FMODE_* mask
1335  *
1336  *	Returns 0 if successful. Returns a negated errno value in case
1337  *	of error.
1338  *
1339  *	Note: This can be called from a user context (e.g. fsck(1) )
1340  *	or from within the kernel (e.g. as a result of a mount(1) ).
1341  *	In the latter case @inode and @filp carry an abridged amount
1342  *	of information as noted above.
1343  *
1344  *	Locking: called with bdev->bd_mutex held.
1345  **/
1346 static int sd_open(struct block_device *bdev, fmode_t mode)
1347 {
1348 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1349 	struct scsi_device *sdev;
1350 	int retval;
1351 
1352 	if (!sdkp)
1353 		return -ENXIO;
1354 
1355 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1356 
1357 	sdev = sdkp->device;
1358 
1359 	/*
1360 	 * If the device is in error recovery, wait until it is done.
1361 	 * If the device is offline, then disallow any access to it.
1362 	 */
1363 	retval = -ENXIO;
1364 	if (!scsi_block_when_processing_errors(sdev))
1365 		goto error_out;
1366 
1367 	if (sdev->removable || sdkp->write_prot)
1368 		check_disk_change(bdev);
1369 
1370 	/*
1371 	 * If the drive is empty, just let the open fail.
1372 	 */
1373 	retval = -ENOMEDIUM;
1374 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1375 		goto error_out;
1376 
1377 	/*
1378 	 * If the device has the write protect tab set, have the open fail
1379 	 * if the user expects to be able to write to the thing.
1380 	 */
1381 	retval = -EROFS;
1382 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1383 		goto error_out;
1384 
1385 	/*
1386 	 * It is possible that the disk changing stuff resulted in
1387 	 * the device being taken offline.  If this is the case,
1388 	 * report this to the user, and don't pretend that the
1389 	 * open actually succeeded.
1390 	 */
1391 	retval = -ENXIO;
1392 	if (!scsi_device_online(sdev))
1393 		goto error_out;
1394 
1395 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1396 		if (scsi_block_when_processing_errors(sdev))
1397 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1398 	}
1399 
1400 	return 0;
1401 
1402 error_out:
1403 	scsi_disk_put(sdkp);
1404 	return retval;
1405 }
1406 
1407 /**
1408  *	sd_release - invoked when the (last) close(2) is called on this
1409  *	scsi disk.
1410  *	@disk: disk to release
1411  *	@mode: FMODE_* mask
1412  *
1413  *	Returns 0.
1414  *
1415  *	Note: may block (uninterruptible) if error recovery is underway
1416  *	on this disk.
1417  *
1418  *	Locking: called with bdev->bd_mutex held.
1419  **/
1420 static void sd_release(struct gendisk *disk, fmode_t mode)
1421 {
1422 	struct scsi_disk *sdkp = scsi_disk(disk);
1423 	struct scsi_device *sdev = sdkp->device;
1424 
1425 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1426 
1427 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1428 		if (scsi_block_when_processing_errors(sdev))
1429 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1430 	}
1431 
1432 	/*
1433 	 * XXX and what if there are packets in flight and this close()
1434 	 * XXX is followed by a "rmmod sd_mod"?
1435 	 */
1436 
1437 	scsi_disk_put(sdkp);
1438 }
1439 
1440 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1441 {
1442 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1443 	struct scsi_device *sdp = sdkp->device;
1444 	struct Scsi_Host *host = sdp->host;
1445 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1446 	int diskinfo[4];
1447 
1448 	/* default to most commonly used values */
1449 	diskinfo[0] = 0x40;	/* 1 << 6 */
1450 	diskinfo[1] = 0x20;	/* 1 << 5 */
1451 	diskinfo[2] = capacity >> 11;
1452 
1453 	/* override with calculated, extended default, or driver values */
1454 	if (host->hostt->bios_param)
1455 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1456 	else
1457 		scsicam_bios_param(bdev, capacity, diskinfo);
1458 
1459 	geo->heads = diskinfo[0];
1460 	geo->sectors = diskinfo[1];
1461 	geo->cylinders = diskinfo[2];
1462 	return 0;
1463 }
1464 
1465 /**
1466  *	sd_ioctl - process an ioctl
1467  *	@bdev: target block device
1468  *	@mode: FMODE_* mask
1469  *	@cmd: ioctl command number
1470  *	@arg: this is third argument given to ioctl(2) system call.
1471  *	Often contains a pointer.
1472  *
1473  *	Returns 0 if successful (some ioctls return positive numbers on
1474  *	success as well). Returns a negated errno value in case of error.
1475  *
1476  *	Note: most ioctls are forward onto the block subsystem or further
1477  *	down in the scsi subsystem.
1478  **/
1479 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1480 		    unsigned int cmd, unsigned long arg)
1481 {
1482 	struct gendisk *disk = bdev->bd_disk;
1483 	struct scsi_disk *sdkp = scsi_disk(disk);
1484 	struct scsi_device *sdp = sdkp->device;
1485 	void __user *p = (void __user *)arg;
1486 	int error;
1487 
1488 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1489 				    "cmd=0x%x\n", disk->disk_name, cmd));
1490 
1491 	error = scsi_verify_blk_ioctl(bdev, cmd);
1492 	if (error < 0)
1493 		return error;
1494 
1495 	/*
1496 	 * If we are in the middle of error recovery, don't let anyone
1497 	 * else try and use this device.  Also, if error recovery fails, it
1498 	 * may try and take the device offline, in which case all further
1499 	 * access to the device is prohibited.
1500 	 */
1501 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1502 			(mode & FMODE_NDELAY) != 0);
1503 	if (error)
1504 		goto out;
1505 
1506 	if (is_sed_ioctl(cmd))
1507 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1508 
1509 	/*
1510 	 * Send SCSI addressing ioctls directly to mid level, send other
1511 	 * ioctls to block level and then onto mid level if they can't be
1512 	 * resolved.
1513 	 */
1514 	switch (cmd) {
1515 		case SCSI_IOCTL_GET_IDLUN:
1516 		case SCSI_IOCTL_GET_BUS_NUMBER:
1517 			error = scsi_ioctl(sdp, cmd, p);
1518 			break;
1519 		default:
1520 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1521 			if (error != -ENOTTY)
1522 				break;
1523 			error = scsi_ioctl(sdp, cmd, p);
1524 			break;
1525 	}
1526 out:
1527 	return error;
1528 }
1529 
1530 static void set_media_not_present(struct scsi_disk *sdkp)
1531 {
1532 	if (sdkp->media_present)
1533 		sdkp->device->changed = 1;
1534 
1535 	if (sdkp->device->removable) {
1536 		sdkp->media_present = 0;
1537 		sdkp->capacity = 0;
1538 	}
1539 }
1540 
1541 static int media_not_present(struct scsi_disk *sdkp,
1542 			     struct scsi_sense_hdr *sshdr)
1543 {
1544 	if (!scsi_sense_valid(sshdr))
1545 		return 0;
1546 
1547 	/* not invoked for commands that could return deferred errors */
1548 	switch (sshdr->sense_key) {
1549 	case UNIT_ATTENTION:
1550 	case NOT_READY:
1551 		/* medium not present */
1552 		if (sshdr->asc == 0x3A) {
1553 			set_media_not_present(sdkp);
1554 			return 1;
1555 		}
1556 	}
1557 	return 0;
1558 }
1559 
1560 /**
1561  *	sd_check_events - check media events
1562  *	@disk: kernel device descriptor
1563  *	@clearing: disk events currently being cleared
1564  *
1565  *	Returns mask of DISK_EVENT_*.
1566  *
1567  *	Note: this function is invoked from the block subsystem.
1568  **/
1569 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1570 {
1571 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1572 	struct scsi_device *sdp;
1573 	int retval;
1574 
1575 	if (!sdkp)
1576 		return 0;
1577 
1578 	sdp = sdkp->device;
1579 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1580 
1581 	/*
1582 	 * If the device is offline, don't send any commands - just pretend as
1583 	 * if the command failed.  If the device ever comes back online, we
1584 	 * can deal with it then.  It is only because of unrecoverable errors
1585 	 * that we would ever take a device offline in the first place.
1586 	 */
1587 	if (!scsi_device_online(sdp)) {
1588 		set_media_not_present(sdkp);
1589 		goto out;
1590 	}
1591 
1592 	/*
1593 	 * Using TEST_UNIT_READY enables differentiation between drive with
1594 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1595 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1596 	 *
1597 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1598 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1599 	 * sd_revalidate() is called.
1600 	 */
1601 	if (scsi_block_when_processing_errors(sdp)) {
1602 		struct scsi_sense_hdr sshdr = { 0, };
1603 
1604 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1605 					      &sshdr);
1606 
1607 		/* failed to execute TUR, assume media not present */
1608 		if (host_byte(retval)) {
1609 			set_media_not_present(sdkp);
1610 			goto out;
1611 		}
1612 
1613 		if (media_not_present(sdkp, &sshdr))
1614 			goto out;
1615 	}
1616 
1617 	/*
1618 	 * For removable scsi disk we have to recognise the presence
1619 	 * of a disk in the drive.
1620 	 */
1621 	if (!sdkp->media_present)
1622 		sdp->changed = 1;
1623 	sdkp->media_present = 1;
1624 out:
1625 	/*
1626 	 * sdp->changed is set under the following conditions:
1627 	 *
1628 	 *	Medium present state has changed in either direction.
1629 	 *	Device has indicated UNIT_ATTENTION.
1630 	 */
1631 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1632 	sdp->changed = 0;
1633 	scsi_disk_put(sdkp);
1634 	return retval;
1635 }
1636 
1637 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1638 {
1639 	int retries, res;
1640 	struct scsi_device *sdp = sdkp->device;
1641 	const int timeout = sdp->request_queue->rq_timeout
1642 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1643 	struct scsi_sense_hdr my_sshdr;
1644 
1645 	if (!scsi_device_online(sdp))
1646 		return -ENODEV;
1647 
1648 	/* caller might not be interested in sense, but we need it */
1649 	if (!sshdr)
1650 		sshdr = &my_sshdr;
1651 
1652 	for (retries = 3; retries > 0; --retries) {
1653 		unsigned char cmd[10] = { 0 };
1654 
1655 		cmd[0] = SYNCHRONIZE_CACHE;
1656 		/*
1657 		 * Leave the rest of the command zero to indicate
1658 		 * flush everything.
1659 		 */
1660 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1661 				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1662 		if (res == 0)
1663 			break;
1664 	}
1665 
1666 	if (res) {
1667 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1668 
1669 		if (driver_byte(res) & DRIVER_SENSE)
1670 			sd_print_sense_hdr(sdkp, sshdr);
1671 
1672 		/* we need to evaluate the error return  */
1673 		if (scsi_sense_valid(sshdr) &&
1674 			(sshdr->asc == 0x3a ||	/* medium not present */
1675 			 sshdr->asc == 0x20))	/* invalid command */
1676 				/* this is no error here */
1677 				return 0;
1678 
1679 		switch (host_byte(res)) {
1680 		/* ignore errors due to racing a disconnection */
1681 		case DID_BAD_TARGET:
1682 		case DID_NO_CONNECT:
1683 			return 0;
1684 		/* signal the upper layer it might try again */
1685 		case DID_BUS_BUSY:
1686 		case DID_IMM_RETRY:
1687 		case DID_REQUEUE:
1688 		case DID_SOFT_ERROR:
1689 			return -EBUSY;
1690 		default:
1691 			return -EIO;
1692 		}
1693 	}
1694 	return 0;
1695 }
1696 
1697 static void sd_rescan(struct device *dev)
1698 {
1699 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1700 
1701 	revalidate_disk(sdkp->disk);
1702 }
1703 
1704 
1705 #ifdef CONFIG_COMPAT
1706 /*
1707  * This gets directly called from VFS. When the ioctl
1708  * is not recognized we go back to the other translation paths.
1709  */
1710 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1711 			   unsigned int cmd, unsigned long arg)
1712 {
1713 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1714 	int error;
1715 
1716 	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1717 			(mode & FMODE_NDELAY) != 0);
1718 	if (error)
1719 		return error;
1720 
1721 	/*
1722 	 * Let the static ioctl translation table take care of it.
1723 	 */
1724 	if (!sdev->host->hostt->compat_ioctl)
1725 		return -ENOIOCTLCMD;
1726 	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1727 }
1728 #endif
1729 
1730 static char sd_pr_type(enum pr_type type)
1731 {
1732 	switch (type) {
1733 	case PR_WRITE_EXCLUSIVE:
1734 		return 0x01;
1735 	case PR_EXCLUSIVE_ACCESS:
1736 		return 0x03;
1737 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1738 		return 0x05;
1739 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1740 		return 0x06;
1741 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1742 		return 0x07;
1743 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1744 		return 0x08;
1745 	default:
1746 		return 0;
1747 	}
1748 };
1749 
1750 static int sd_pr_command(struct block_device *bdev, u8 sa,
1751 		u64 key, u64 sa_key, u8 type, u8 flags)
1752 {
1753 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1754 	struct scsi_sense_hdr sshdr;
1755 	int result;
1756 	u8 cmd[16] = { 0, };
1757 	u8 data[24] = { 0, };
1758 
1759 	cmd[0] = PERSISTENT_RESERVE_OUT;
1760 	cmd[1] = sa;
1761 	cmd[2] = type;
1762 	put_unaligned_be32(sizeof(data), &cmd[5]);
1763 
1764 	put_unaligned_be64(key, &data[0]);
1765 	put_unaligned_be64(sa_key, &data[8]);
1766 	data[20] = flags;
1767 
1768 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1769 			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1770 
1771 	if ((driver_byte(result) & DRIVER_SENSE) &&
1772 	    (scsi_sense_valid(&sshdr))) {
1773 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1774 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1775 	}
1776 
1777 	return result;
1778 }
1779 
1780 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1781 		u32 flags)
1782 {
1783 	if (flags & ~PR_FL_IGNORE_KEY)
1784 		return -EOPNOTSUPP;
1785 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1786 			old_key, new_key, 0,
1787 			(1 << 0) /* APTPL */);
1788 }
1789 
1790 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1791 		u32 flags)
1792 {
1793 	if (flags)
1794 		return -EOPNOTSUPP;
1795 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1796 }
1797 
1798 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1799 {
1800 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1801 }
1802 
1803 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1804 		enum pr_type type, bool abort)
1805 {
1806 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1807 			     sd_pr_type(type), 0);
1808 }
1809 
1810 static int sd_pr_clear(struct block_device *bdev, u64 key)
1811 {
1812 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1813 }
1814 
1815 static const struct pr_ops sd_pr_ops = {
1816 	.pr_register	= sd_pr_register,
1817 	.pr_reserve	= sd_pr_reserve,
1818 	.pr_release	= sd_pr_release,
1819 	.pr_preempt	= sd_pr_preempt,
1820 	.pr_clear	= sd_pr_clear,
1821 };
1822 
1823 static const struct block_device_operations sd_fops = {
1824 	.owner			= THIS_MODULE,
1825 	.open			= sd_open,
1826 	.release		= sd_release,
1827 	.ioctl			= sd_ioctl,
1828 	.getgeo			= sd_getgeo,
1829 #ifdef CONFIG_COMPAT
1830 	.compat_ioctl		= sd_compat_ioctl,
1831 #endif
1832 	.check_events		= sd_check_events,
1833 	.revalidate_disk	= sd_revalidate_disk,
1834 	.unlock_native_capacity	= sd_unlock_native_capacity,
1835 	.pr_ops			= &sd_pr_ops,
1836 };
1837 
1838 /**
1839  *	sd_eh_reset - reset error handling callback
1840  *	@scmd:		sd-issued command that has failed
1841  *
1842  *	This function is called by the SCSI midlayer before starting
1843  *	SCSI EH. When counting medium access failures we have to be
1844  *	careful to register it only only once per device and SCSI EH run;
1845  *	there might be several timed out commands which will cause the
1846  *	'max_medium_access_timeouts' counter to trigger after the first
1847  *	SCSI EH run already and set the device to offline.
1848  *	So this function resets the internal counter before starting SCSI EH.
1849  **/
1850 static void sd_eh_reset(struct scsi_cmnd *scmd)
1851 {
1852 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1853 
1854 	/* New SCSI EH run, reset gate variable */
1855 	sdkp->ignore_medium_access_errors = false;
1856 }
1857 
1858 /**
1859  *	sd_eh_action - error handling callback
1860  *	@scmd:		sd-issued command that has failed
1861  *	@eh_disp:	The recovery disposition suggested by the midlayer
1862  *
1863  *	This function is called by the SCSI midlayer upon completion of an
1864  *	error test command (currently TEST UNIT READY). The result of sending
1865  *	the eh command is passed in eh_disp.  We're looking for devices that
1866  *	fail medium access commands but are OK with non access commands like
1867  *	test unit ready (so wrongly see the device as having a successful
1868  *	recovery)
1869  **/
1870 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1871 {
1872 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1873 	struct scsi_device *sdev = scmd->device;
1874 
1875 	if (!scsi_device_online(sdev) ||
1876 	    !scsi_medium_access_command(scmd) ||
1877 	    host_byte(scmd->result) != DID_TIME_OUT ||
1878 	    eh_disp != SUCCESS)
1879 		return eh_disp;
1880 
1881 	/*
1882 	 * The device has timed out executing a medium access command.
1883 	 * However, the TEST UNIT READY command sent during error
1884 	 * handling completed successfully. Either the device is in the
1885 	 * process of recovering or has it suffered an internal failure
1886 	 * that prevents access to the storage medium.
1887 	 */
1888 	if (!sdkp->ignore_medium_access_errors) {
1889 		sdkp->medium_access_timed_out++;
1890 		sdkp->ignore_medium_access_errors = true;
1891 	}
1892 
1893 	/*
1894 	 * If the device keeps failing read/write commands but TEST UNIT
1895 	 * READY always completes successfully we assume that medium
1896 	 * access is no longer possible and take the device offline.
1897 	 */
1898 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1899 		scmd_printk(KERN_ERR, scmd,
1900 			    "Medium access timeout failure. Offlining disk!\n");
1901 		mutex_lock(&sdev->state_mutex);
1902 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1903 		mutex_unlock(&sdev->state_mutex);
1904 
1905 		return SUCCESS;
1906 	}
1907 
1908 	return eh_disp;
1909 }
1910 
1911 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1912 {
1913 	struct request *req = scmd->request;
1914 	struct scsi_device *sdev = scmd->device;
1915 	unsigned int transferred, good_bytes;
1916 	u64 start_lba, end_lba, bad_lba;
1917 
1918 	/*
1919 	 * Some commands have a payload smaller than the device logical
1920 	 * block size (e.g. INQUIRY on a 4K disk).
1921 	 */
1922 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1923 		return 0;
1924 
1925 	/* Check if we have a 'bad_lba' information */
1926 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1927 				     SCSI_SENSE_BUFFERSIZE,
1928 				     &bad_lba))
1929 		return 0;
1930 
1931 	/*
1932 	 * If the bad lba was reported incorrectly, we have no idea where
1933 	 * the error is.
1934 	 */
1935 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1936 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1937 	if (bad_lba < start_lba || bad_lba >= end_lba)
1938 		return 0;
1939 
1940 	/*
1941 	 * resid is optional but mostly filled in.  When it's unused,
1942 	 * its value is zero, so we assume the whole buffer transferred
1943 	 */
1944 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1945 
1946 	/* This computation should always be done in terms of the
1947 	 * resolution of the device's medium.
1948 	 */
1949 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1950 
1951 	return min(good_bytes, transferred);
1952 }
1953 
1954 /**
1955  *	sd_done - bottom half handler: called when the lower level
1956  *	driver has completed (successfully or otherwise) a scsi command.
1957  *	@SCpnt: mid-level's per command structure.
1958  *
1959  *	Note: potentially run from within an ISR. Must not block.
1960  **/
1961 static int sd_done(struct scsi_cmnd *SCpnt)
1962 {
1963 	int result = SCpnt->result;
1964 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1965 	unsigned int sector_size = SCpnt->device->sector_size;
1966 	unsigned int resid;
1967 	struct scsi_sense_hdr sshdr;
1968 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1969 	struct request *req = SCpnt->request;
1970 	int sense_valid = 0;
1971 	int sense_deferred = 0;
1972 
1973 	switch (req_op(req)) {
1974 	case REQ_OP_DISCARD:
1975 	case REQ_OP_WRITE_ZEROES:
1976 	case REQ_OP_WRITE_SAME:
1977 	case REQ_OP_ZONE_RESET:
1978 		if (!result) {
1979 			good_bytes = blk_rq_bytes(req);
1980 			scsi_set_resid(SCpnt, 0);
1981 		} else {
1982 			good_bytes = 0;
1983 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1984 		}
1985 		break;
1986 	case REQ_OP_ZONE_REPORT:
1987 		if (!result) {
1988 			good_bytes = scsi_bufflen(SCpnt)
1989 				- scsi_get_resid(SCpnt);
1990 			scsi_set_resid(SCpnt, 0);
1991 		} else {
1992 			good_bytes = 0;
1993 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1994 		}
1995 		break;
1996 	default:
1997 		/*
1998 		 * In case of bogus fw or device, we could end up having
1999 		 * an unaligned partial completion. Check this here and force
2000 		 * alignment.
2001 		 */
2002 		resid = scsi_get_resid(SCpnt);
2003 		if (resid & (sector_size - 1)) {
2004 			sd_printk(KERN_INFO, sdkp,
2005 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2006 				resid, sector_size);
2007 			resid = min(scsi_bufflen(SCpnt),
2008 				    round_up(resid, sector_size));
2009 			scsi_set_resid(SCpnt, resid);
2010 		}
2011 	}
2012 
2013 	if (result) {
2014 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2015 		if (sense_valid)
2016 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2017 	}
2018 	sdkp->medium_access_timed_out = 0;
2019 
2020 	if (driver_byte(result) != DRIVER_SENSE &&
2021 	    (!sense_valid || sense_deferred))
2022 		goto out;
2023 
2024 	switch (sshdr.sense_key) {
2025 	case HARDWARE_ERROR:
2026 	case MEDIUM_ERROR:
2027 		good_bytes = sd_completed_bytes(SCpnt);
2028 		break;
2029 	case RECOVERED_ERROR:
2030 		good_bytes = scsi_bufflen(SCpnt);
2031 		break;
2032 	case NO_SENSE:
2033 		/* This indicates a false check condition, so ignore it.  An
2034 		 * unknown amount of data was transferred so treat it as an
2035 		 * error.
2036 		 */
2037 		SCpnt->result = 0;
2038 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2039 		break;
2040 	case ABORTED_COMMAND:
2041 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2042 			good_bytes = sd_completed_bytes(SCpnt);
2043 		break;
2044 	case ILLEGAL_REQUEST:
2045 		switch (sshdr.asc) {
2046 		case 0x10:	/* DIX: Host detected corruption */
2047 			good_bytes = sd_completed_bytes(SCpnt);
2048 			break;
2049 		case 0x20:	/* INVALID COMMAND OPCODE */
2050 		case 0x24:	/* INVALID FIELD IN CDB */
2051 			switch (SCpnt->cmnd[0]) {
2052 			case UNMAP:
2053 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2054 				break;
2055 			case WRITE_SAME_16:
2056 			case WRITE_SAME:
2057 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2058 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2059 				} else {
2060 					sdkp->device->no_write_same = 1;
2061 					sd_config_write_same(sdkp);
2062 					req->__data_len = blk_rq_bytes(req);
2063 					req->rq_flags |= RQF_QUIET;
2064 				}
2065 				break;
2066 			}
2067 		}
2068 		break;
2069 	default:
2070 		break;
2071 	}
2072 
2073  out:
2074 	if (sd_is_zoned(sdkp))
2075 		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2076 
2077 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2078 					   "sd_done: completed %d of %d bytes\n",
2079 					   good_bytes, scsi_bufflen(SCpnt)));
2080 
2081 	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
2082 		sd_dif_complete(SCpnt, good_bytes);
2083 
2084 	return good_bytes;
2085 }
2086 
2087 /*
2088  * spinup disk - called only in sd_revalidate_disk()
2089  */
2090 static void
2091 sd_spinup_disk(struct scsi_disk *sdkp)
2092 {
2093 	unsigned char cmd[10];
2094 	unsigned long spintime_expire = 0;
2095 	int retries, spintime;
2096 	unsigned int the_result;
2097 	struct scsi_sense_hdr sshdr;
2098 	int sense_valid = 0;
2099 
2100 	spintime = 0;
2101 
2102 	/* Spin up drives, as required.  Only do this at boot time */
2103 	/* Spinup needs to be done for module loads too. */
2104 	do {
2105 		retries = 0;
2106 
2107 		do {
2108 			cmd[0] = TEST_UNIT_READY;
2109 			memset((void *) &cmd[1], 0, 9);
2110 
2111 			the_result = scsi_execute_req(sdkp->device, cmd,
2112 						      DMA_NONE, NULL, 0,
2113 						      &sshdr, SD_TIMEOUT,
2114 						      SD_MAX_RETRIES, NULL);
2115 
2116 			/*
2117 			 * If the drive has indicated to us that it
2118 			 * doesn't have any media in it, don't bother
2119 			 * with any more polling.
2120 			 */
2121 			if (media_not_present(sdkp, &sshdr))
2122 				return;
2123 
2124 			if (the_result)
2125 				sense_valid = scsi_sense_valid(&sshdr);
2126 			retries++;
2127 		} while (retries < 3 &&
2128 			 (!scsi_status_is_good(the_result) ||
2129 			  ((driver_byte(the_result) & DRIVER_SENSE) &&
2130 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2131 
2132 		if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
2133 			/* no sense, TUR either succeeded or failed
2134 			 * with a status error */
2135 			if(!spintime && !scsi_status_is_good(the_result)) {
2136 				sd_print_result(sdkp, "Test Unit Ready failed",
2137 						the_result);
2138 			}
2139 			break;
2140 		}
2141 
2142 		/*
2143 		 * The device does not want the automatic start to be issued.
2144 		 */
2145 		if (sdkp->device->no_start_on_add)
2146 			break;
2147 
2148 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2149 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2150 				break;	/* manual intervention required */
2151 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2152 				break;	/* standby */
2153 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2154 				break;	/* unavailable */
2155 			/*
2156 			 * Issue command to spin up drive when not ready
2157 			 */
2158 			if (!spintime) {
2159 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2160 				cmd[0] = START_STOP;
2161 				cmd[1] = 1;	/* Return immediately */
2162 				memset((void *) &cmd[2], 0, 8);
2163 				cmd[4] = 1;	/* Start spin cycle */
2164 				if (sdkp->device->start_stop_pwr_cond)
2165 					cmd[4] |= 1 << 4;
2166 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2167 						 NULL, 0, &sshdr,
2168 						 SD_TIMEOUT, SD_MAX_RETRIES,
2169 						 NULL);
2170 				spintime_expire = jiffies + 100 * HZ;
2171 				spintime = 1;
2172 			}
2173 			/* Wait 1 second for next try */
2174 			msleep(1000);
2175 			printk(".");
2176 
2177 		/*
2178 		 * Wait for USB flash devices with slow firmware.
2179 		 * Yes, this sense key/ASC combination shouldn't
2180 		 * occur here.  It's characteristic of these devices.
2181 		 */
2182 		} else if (sense_valid &&
2183 				sshdr.sense_key == UNIT_ATTENTION &&
2184 				sshdr.asc == 0x28) {
2185 			if (!spintime) {
2186 				spintime_expire = jiffies + 5 * HZ;
2187 				spintime = 1;
2188 			}
2189 			/* Wait 1 second for next try */
2190 			msleep(1000);
2191 		} else {
2192 			/* we don't understand the sense code, so it's
2193 			 * probably pointless to loop */
2194 			if(!spintime) {
2195 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2196 				sd_print_sense_hdr(sdkp, &sshdr);
2197 			}
2198 			break;
2199 		}
2200 
2201 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2202 
2203 	if (spintime) {
2204 		if (scsi_status_is_good(the_result))
2205 			printk("ready\n");
2206 		else
2207 			printk("not responding...\n");
2208 	}
2209 }
2210 
2211 /*
2212  * Determine whether disk supports Data Integrity Field.
2213  */
2214 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2215 {
2216 	struct scsi_device *sdp = sdkp->device;
2217 	u8 type;
2218 	int ret = 0;
2219 
2220 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2221 		return ret;
2222 
2223 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2224 
2225 	if (type > T10_PI_TYPE3_PROTECTION)
2226 		ret = -ENODEV;
2227 	else if (scsi_host_dif_capable(sdp->host, type))
2228 		ret = 1;
2229 
2230 	if (sdkp->first_scan || type != sdkp->protection_type)
2231 		switch (ret) {
2232 		case -ENODEV:
2233 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2234 				  " protection type %u. Disabling disk!\n",
2235 				  type);
2236 			break;
2237 		case 1:
2238 			sd_printk(KERN_NOTICE, sdkp,
2239 				  "Enabling DIF Type %u protection\n", type);
2240 			break;
2241 		case 0:
2242 			sd_printk(KERN_NOTICE, sdkp,
2243 				  "Disabling DIF Type %u protection\n", type);
2244 			break;
2245 		}
2246 
2247 	sdkp->protection_type = type;
2248 
2249 	return ret;
2250 }
2251 
2252 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2253 			struct scsi_sense_hdr *sshdr, int sense_valid,
2254 			int the_result)
2255 {
2256 	if (driver_byte(the_result) & DRIVER_SENSE)
2257 		sd_print_sense_hdr(sdkp, sshdr);
2258 	else
2259 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2260 
2261 	/*
2262 	 * Set dirty bit for removable devices if not ready -
2263 	 * sometimes drives will not report this properly.
2264 	 */
2265 	if (sdp->removable &&
2266 	    sense_valid && sshdr->sense_key == NOT_READY)
2267 		set_media_not_present(sdkp);
2268 
2269 	/*
2270 	 * We used to set media_present to 0 here to indicate no media
2271 	 * in the drive, but some drives fail read capacity even with
2272 	 * media present, so we can't do that.
2273 	 */
2274 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2275 }
2276 
2277 #define RC16_LEN 32
2278 #if RC16_LEN > SD_BUF_SIZE
2279 #error RC16_LEN must not be more than SD_BUF_SIZE
2280 #endif
2281 
2282 #define READ_CAPACITY_RETRIES_ON_RESET	10
2283 
2284 /*
2285  * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2286  * and the reported logical block size is bigger than 512 bytes. Note
2287  * that last_sector is a u64 and therefore logical_to_sectors() is not
2288  * applicable.
2289  */
2290 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2291 {
2292 	u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2293 
2294 	if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2295 		return false;
2296 
2297 	return true;
2298 }
2299 
2300 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2301 						unsigned char *buffer)
2302 {
2303 	unsigned char cmd[16];
2304 	struct scsi_sense_hdr sshdr;
2305 	int sense_valid = 0;
2306 	int the_result;
2307 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2308 	unsigned int alignment;
2309 	unsigned long long lba;
2310 	unsigned sector_size;
2311 
2312 	if (sdp->no_read_capacity_16)
2313 		return -EINVAL;
2314 
2315 	do {
2316 		memset(cmd, 0, 16);
2317 		cmd[0] = SERVICE_ACTION_IN_16;
2318 		cmd[1] = SAI_READ_CAPACITY_16;
2319 		cmd[13] = RC16_LEN;
2320 		memset(buffer, 0, RC16_LEN);
2321 
2322 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2323 					buffer, RC16_LEN, &sshdr,
2324 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2325 
2326 		if (media_not_present(sdkp, &sshdr))
2327 			return -ENODEV;
2328 
2329 		if (the_result) {
2330 			sense_valid = scsi_sense_valid(&sshdr);
2331 			if (sense_valid &&
2332 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2333 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2334 			    sshdr.ascq == 0x00)
2335 				/* Invalid Command Operation Code or
2336 				 * Invalid Field in CDB, just retry
2337 				 * silently with RC10 */
2338 				return -EINVAL;
2339 			if (sense_valid &&
2340 			    sshdr.sense_key == UNIT_ATTENTION &&
2341 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2342 				/* Device reset might occur several times,
2343 				 * give it one more chance */
2344 				if (--reset_retries > 0)
2345 					continue;
2346 		}
2347 		retries--;
2348 
2349 	} while (the_result && retries);
2350 
2351 	if (the_result) {
2352 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2353 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2354 		return -EINVAL;
2355 	}
2356 
2357 	sector_size = get_unaligned_be32(&buffer[8]);
2358 	lba = get_unaligned_be64(&buffer[0]);
2359 
2360 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2361 		sdkp->capacity = 0;
2362 		return -ENODEV;
2363 	}
2364 
2365 	if (!sd_addressable_capacity(lba, sector_size)) {
2366 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2367 			"kernel compiled with support for large block "
2368 			"devices.\n");
2369 		sdkp->capacity = 0;
2370 		return -EOVERFLOW;
2371 	}
2372 
2373 	/* Logical blocks per physical block exponent */
2374 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2375 
2376 	/* RC basis */
2377 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2378 
2379 	/* Lowest aligned logical block */
2380 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2381 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2382 	if (alignment && sdkp->first_scan)
2383 		sd_printk(KERN_NOTICE, sdkp,
2384 			  "physical block alignment offset: %u\n", alignment);
2385 
2386 	if (buffer[14] & 0x80) { /* LBPME */
2387 		sdkp->lbpme = 1;
2388 
2389 		if (buffer[14] & 0x40) /* LBPRZ */
2390 			sdkp->lbprz = 1;
2391 
2392 		sd_config_discard(sdkp, SD_LBP_WS16);
2393 	}
2394 
2395 	sdkp->capacity = lba + 1;
2396 	return sector_size;
2397 }
2398 
2399 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2400 						unsigned char *buffer)
2401 {
2402 	unsigned char cmd[16];
2403 	struct scsi_sense_hdr sshdr;
2404 	int sense_valid = 0;
2405 	int the_result;
2406 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2407 	sector_t lba;
2408 	unsigned sector_size;
2409 
2410 	do {
2411 		cmd[0] = READ_CAPACITY;
2412 		memset(&cmd[1], 0, 9);
2413 		memset(buffer, 0, 8);
2414 
2415 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2416 					buffer, 8, &sshdr,
2417 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2418 
2419 		if (media_not_present(sdkp, &sshdr))
2420 			return -ENODEV;
2421 
2422 		if (the_result) {
2423 			sense_valid = scsi_sense_valid(&sshdr);
2424 			if (sense_valid &&
2425 			    sshdr.sense_key == UNIT_ATTENTION &&
2426 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2427 				/* Device reset might occur several times,
2428 				 * give it one more chance */
2429 				if (--reset_retries > 0)
2430 					continue;
2431 		}
2432 		retries--;
2433 
2434 	} while (the_result && retries);
2435 
2436 	if (the_result) {
2437 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2438 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2439 		return -EINVAL;
2440 	}
2441 
2442 	sector_size = get_unaligned_be32(&buffer[4]);
2443 	lba = get_unaligned_be32(&buffer[0]);
2444 
2445 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2446 		/* Some buggy (usb cardreader) devices return an lba of
2447 		   0xffffffff when the want to report a size of 0 (with
2448 		   which they really mean no media is present) */
2449 		sdkp->capacity = 0;
2450 		sdkp->physical_block_size = sector_size;
2451 		return sector_size;
2452 	}
2453 
2454 	if (!sd_addressable_capacity(lba, sector_size)) {
2455 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2456 			"kernel compiled with support for large block "
2457 			"devices.\n");
2458 		sdkp->capacity = 0;
2459 		return -EOVERFLOW;
2460 	}
2461 
2462 	sdkp->capacity = lba + 1;
2463 	sdkp->physical_block_size = sector_size;
2464 	return sector_size;
2465 }
2466 
2467 static int sd_try_rc16_first(struct scsi_device *sdp)
2468 {
2469 	if (sdp->host->max_cmd_len < 16)
2470 		return 0;
2471 	if (sdp->try_rc_10_first)
2472 		return 0;
2473 	if (sdp->scsi_level > SCSI_SPC_2)
2474 		return 1;
2475 	if (scsi_device_protection(sdp))
2476 		return 1;
2477 	return 0;
2478 }
2479 
2480 /*
2481  * read disk capacity
2482  */
2483 static void
2484 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2485 {
2486 	int sector_size;
2487 	struct scsi_device *sdp = sdkp->device;
2488 
2489 	if (sd_try_rc16_first(sdp)) {
2490 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2491 		if (sector_size == -EOVERFLOW)
2492 			goto got_data;
2493 		if (sector_size == -ENODEV)
2494 			return;
2495 		if (sector_size < 0)
2496 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2497 		if (sector_size < 0)
2498 			return;
2499 	} else {
2500 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2501 		if (sector_size == -EOVERFLOW)
2502 			goto got_data;
2503 		if (sector_size < 0)
2504 			return;
2505 		if ((sizeof(sdkp->capacity) > 4) &&
2506 		    (sdkp->capacity > 0xffffffffULL)) {
2507 			int old_sector_size = sector_size;
2508 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2509 					"Trying to use READ CAPACITY(16).\n");
2510 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2511 			if (sector_size < 0) {
2512 				sd_printk(KERN_NOTICE, sdkp,
2513 					"Using 0xffffffff as device size\n");
2514 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2515 				sector_size = old_sector_size;
2516 				goto got_data;
2517 			}
2518 		}
2519 	}
2520 
2521 	/* Some devices are known to return the total number of blocks,
2522 	 * not the highest block number.  Some devices have versions
2523 	 * which do this and others which do not.  Some devices we might
2524 	 * suspect of doing this but we don't know for certain.
2525 	 *
2526 	 * If we know the reported capacity is wrong, decrement it.  If
2527 	 * we can only guess, then assume the number of blocks is even
2528 	 * (usually true but not always) and err on the side of lowering
2529 	 * the capacity.
2530 	 */
2531 	if (sdp->fix_capacity ||
2532 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2533 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2534 				"from its reported value: %llu\n",
2535 				(unsigned long long) sdkp->capacity);
2536 		--sdkp->capacity;
2537 	}
2538 
2539 got_data:
2540 	if (sector_size == 0) {
2541 		sector_size = 512;
2542 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2543 			  "assuming 512.\n");
2544 	}
2545 
2546 	if (sector_size != 512 &&
2547 	    sector_size != 1024 &&
2548 	    sector_size != 2048 &&
2549 	    sector_size != 4096) {
2550 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2551 			  sector_size);
2552 		/*
2553 		 * The user might want to re-format the drive with
2554 		 * a supported sectorsize.  Once this happens, it
2555 		 * would be relatively trivial to set the thing up.
2556 		 * For this reason, we leave the thing in the table.
2557 		 */
2558 		sdkp->capacity = 0;
2559 		/*
2560 		 * set a bogus sector size so the normal read/write
2561 		 * logic in the block layer will eventually refuse any
2562 		 * request on this device without tripping over power
2563 		 * of two sector size assumptions
2564 		 */
2565 		sector_size = 512;
2566 	}
2567 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2568 	blk_queue_physical_block_size(sdp->request_queue,
2569 				      sdkp->physical_block_size);
2570 	sdkp->device->sector_size = sector_size;
2571 
2572 	if (sdkp->capacity > 0xffffffff)
2573 		sdp->use_16_for_rw = 1;
2574 
2575 }
2576 
2577 /*
2578  * Print disk capacity
2579  */
2580 static void
2581 sd_print_capacity(struct scsi_disk *sdkp,
2582 		  sector_t old_capacity)
2583 {
2584 	int sector_size = sdkp->device->sector_size;
2585 	char cap_str_2[10], cap_str_10[10];
2586 
2587 	string_get_size(sdkp->capacity, sector_size,
2588 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2589 	string_get_size(sdkp->capacity, sector_size,
2590 			STRING_UNITS_10, cap_str_10,
2591 			sizeof(cap_str_10));
2592 
2593 	if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2594 		sd_printk(KERN_NOTICE, sdkp,
2595 			  "%llu %d-byte logical blocks: (%s/%s)\n",
2596 			  (unsigned long long)sdkp->capacity,
2597 			  sector_size, cap_str_10, cap_str_2);
2598 
2599 		if (sdkp->physical_block_size != sector_size)
2600 			sd_printk(KERN_NOTICE, sdkp,
2601 				  "%u-byte physical blocks\n",
2602 				  sdkp->physical_block_size);
2603 
2604 		sd_zbc_print_zones(sdkp);
2605 	}
2606 }
2607 
2608 /* called with buffer of length 512 */
2609 static inline int
2610 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2611 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2612 		 struct scsi_sense_hdr *sshdr)
2613 {
2614 	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2615 			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2616 			       sshdr);
2617 }
2618 
2619 /*
2620  * read write protect setting, if possible - called only in sd_revalidate_disk()
2621  * called with buffer of length SD_BUF_SIZE
2622  */
2623 static void
2624 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2625 {
2626 	int res;
2627 	struct scsi_device *sdp = sdkp->device;
2628 	struct scsi_mode_data data;
2629 	int old_wp = sdkp->write_prot;
2630 
2631 	set_disk_ro(sdkp->disk, 0);
2632 	if (sdp->skip_ms_page_3f) {
2633 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2634 		return;
2635 	}
2636 
2637 	if (sdp->use_192_bytes_for_3f) {
2638 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2639 	} else {
2640 		/*
2641 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2642 		 * We have to start carefully: some devices hang if we ask
2643 		 * for more than is available.
2644 		 */
2645 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2646 
2647 		/*
2648 		 * Second attempt: ask for page 0 When only page 0 is
2649 		 * implemented, a request for page 3F may return Sense Key
2650 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2651 		 * CDB.
2652 		 */
2653 		if (!scsi_status_is_good(res))
2654 			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2655 
2656 		/*
2657 		 * Third attempt: ask 255 bytes, as we did earlier.
2658 		 */
2659 		if (!scsi_status_is_good(res))
2660 			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2661 					       &data, NULL);
2662 	}
2663 
2664 	if (!scsi_status_is_good(res)) {
2665 		sd_first_printk(KERN_WARNING, sdkp,
2666 			  "Test WP failed, assume Write Enabled\n");
2667 	} else {
2668 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2669 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2670 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2671 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2672 				  sdkp->write_prot ? "on" : "off");
2673 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2674 		}
2675 	}
2676 }
2677 
2678 /*
2679  * sd_read_cache_type - called only from sd_revalidate_disk()
2680  * called with buffer of length SD_BUF_SIZE
2681  */
2682 static void
2683 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2684 {
2685 	int len = 0, res;
2686 	struct scsi_device *sdp = sdkp->device;
2687 
2688 	int dbd;
2689 	int modepage;
2690 	int first_len;
2691 	struct scsi_mode_data data;
2692 	struct scsi_sense_hdr sshdr;
2693 	int old_wce = sdkp->WCE;
2694 	int old_rcd = sdkp->RCD;
2695 	int old_dpofua = sdkp->DPOFUA;
2696 
2697 
2698 	if (sdkp->cache_override)
2699 		return;
2700 
2701 	first_len = 4;
2702 	if (sdp->skip_ms_page_8) {
2703 		if (sdp->type == TYPE_RBC)
2704 			goto defaults;
2705 		else {
2706 			if (sdp->skip_ms_page_3f)
2707 				goto defaults;
2708 			modepage = 0x3F;
2709 			if (sdp->use_192_bytes_for_3f)
2710 				first_len = 192;
2711 			dbd = 0;
2712 		}
2713 	} else if (sdp->type == TYPE_RBC) {
2714 		modepage = 6;
2715 		dbd = 8;
2716 	} else {
2717 		modepage = 8;
2718 		dbd = 0;
2719 	}
2720 
2721 	/* cautiously ask */
2722 	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2723 			&data, &sshdr);
2724 
2725 	if (!scsi_status_is_good(res))
2726 		goto bad_sense;
2727 
2728 	if (!data.header_length) {
2729 		modepage = 6;
2730 		first_len = 0;
2731 		sd_first_printk(KERN_ERR, sdkp,
2732 				"Missing header in MODE_SENSE response\n");
2733 	}
2734 
2735 	/* that went OK, now ask for the proper length */
2736 	len = data.length;
2737 
2738 	/*
2739 	 * We're only interested in the first three bytes, actually.
2740 	 * But the data cache page is defined for the first 20.
2741 	 */
2742 	if (len < 3)
2743 		goto bad_sense;
2744 	else if (len > SD_BUF_SIZE) {
2745 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2746 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2747 		len = SD_BUF_SIZE;
2748 	}
2749 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2750 		len = 192;
2751 
2752 	/* Get the data */
2753 	if (len > first_len)
2754 		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2755 				&data, &sshdr);
2756 
2757 	if (scsi_status_is_good(res)) {
2758 		int offset = data.header_length + data.block_descriptor_length;
2759 
2760 		while (offset < len) {
2761 			u8 page_code = buffer[offset] & 0x3F;
2762 			u8 spf       = buffer[offset] & 0x40;
2763 
2764 			if (page_code == 8 || page_code == 6) {
2765 				/* We're interested only in the first 3 bytes.
2766 				 */
2767 				if (len - offset <= 2) {
2768 					sd_first_printk(KERN_ERR, sdkp,
2769 						"Incomplete mode parameter "
2770 							"data\n");
2771 					goto defaults;
2772 				} else {
2773 					modepage = page_code;
2774 					goto Page_found;
2775 				}
2776 			} else {
2777 				/* Go to the next page */
2778 				if (spf && len - offset > 3)
2779 					offset += 4 + (buffer[offset+2] << 8) +
2780 						buffer[offset+3];
2781 				else if (!spf && len - offset > 1)
2782 					offset += 2 + buffer[offset+1];
2783 				else {
2784 					sd_first_printk(KERN_ERR, sdkp,
2785 							"Incomplete mode "
2786 							"parameter data\n");
2787 					goto defaults;
2788 				}
2789 			}
2790 		}
2791 
2792 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2793 		goto defaults;
2794 
2795 	Page_found:
2796 		if (modepage == 8) {
2797 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2798 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2799 		} else {
2800 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2801 			sdkp->RCD = 0;
2802 		}
2803 
2804 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2805 		if (sdp->broken_fua) {
2806 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2807 			sdkp->DPOFUA = 0;
2808 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2809 			   !sdkp->device->use_16_for_rw) {
2810 			sd_first_printk(KERN_NOTICE, sdkp,
2811 				  "Uses READ/WRITE(6), disabling FUA\n");
2812 			sdkp->DPOFUA = 0;
2813 		}
2814 
2815 		/* No cache flush allowed for write protected devices */
2816 		if (sdkp->WCE && sdkp->write_prot)
2817 			sdkp->WCE = 0;
2818 
2819 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2820 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2821 			sd_printk(KERN_NOTICE, sdkp,
2822 				  "Write cache: %s, read cache: %s, %s\n",
2823 				  sdkp->WCE ? "enabled" : "disabled",
2824 				  sdkp->RCD ? "disabled" : "enabled",
2825 				  sdkp->DPOFUA ? "supports DPO and FUA"
2826 				  : "doesn't support DPO or FUA");
2827 
2828 		return;
2829 	}
2830 
2831 bad_sense:
2832 	if (scsi_sense_valid(&sshdr) &&
2833 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2834 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2835 		/* Invalid field in CDB */
2836 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2837 	else
2838 		sd_first_printk(KERN_ERR, sdkp,
2839 				"Asking for cache data failed\n");
2840 
2841 defaults:
2842 	if (sdp->wce_default_on) {
2843 		sd_first_printk(KERN_NOTICE, sdkp,
2844 				"Assuming drive cache: write back\n");
2845 		sdkp->WCE = 1;
2846 	} else {
2847 		sd_first_printk(KERN_ERR, sdkp,
2848 				"Assuming drive cache: write through\n");
2849 		sdkp->WCE = 0;
2850 	}
2851 	sdkp->RCD = 0;
2852 	sdkp->DPOFUA = 0;
2853 }
2854 
2855 /*
2856  * The ATO bit indicates whether the DIF application tag is available
2857  * for use by the operating system.
2858  */
2859 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2860 {
2861 	int res, offset;
2862 	struct scsi_device *sdp = sdkp->device;
2863 	struct scsi_mode_data data;
2864 	struct scsi_sense_hdr sshdr;
2865 
2866 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2867 		return;
2868 
2869 	if (sdkp->protection_type == 0)
2870 		return;
2871 
2872 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2873 			      SD_MAX_RETRIES, &data, &sshdr);
2874 
2875 	if (!scsi_status_is_good(res) || !data.header_length ||
2876 	    data.length < 6) {
2877 		sd_first_printk(KERN_WARNING, sdkp,
2878 			  "getting Control mode page failed, assume no ATO\n");
2879 
2880 		if (scsi_sense_valid(&sshdr))
2881 			sd_print_sense_hdr(sdkp, &sshdr);
2882 
2883 		return;
2884 	}
2885 
2886 	offset = data.header_length + data.block_descriptor_length;
2887 
2888 	if ((buffer[offset] & 0x3f) != 0x0a) {
2889 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2890 		return;
2891 	}
2892 
2893 	if ((buffer[offset + 5] & 0x80) == 0)
2894 		return;
2895 
2896 	sdkp->ATO = 1;
2897 
2898 	return;
2899 }
2900 
2901 /**
2902  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2903  * @sdkp: disk to query
2904  */
2905 static void sd_read_block_limits(struct scsi_disk *sdkp)
2906 {
2907 	unsigned int sector_sz = sdkp->device->sector_size;
2908 	const int vpd_len = 64;
2909 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2910 
2911 	if (!buffer ||
2912 	    /* Block Limits VPD */
2913 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2914 		goto out;
2915 
2916 	blk_queue_io_min(sdkp->disk->queue,
2917 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2918 
2919 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2920 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2921 
2922 	if (buffer[3] == 0x3c) {
2923 		unsigned int lba_count, desc_count;
2924 
2925 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2926 
2927 		if (!sdkp->lbpme)
2928 			goto out;
2929 
2930 		lba_count = get_unaligned_be32(&buffer[20]);
2931 		desc_count = get_unaligned_be32(&buffer[24]);
2932 
2933 		if (lba_count && desc_count)
2934 			sdkp->max_unmap_blocks = lba_count;
2935 
2936 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2937 
2938 		if (buffer[32] & 0x80)
2939 			sdkp->unmap_alignment =
2940 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2941 
2942 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2943 
2944 			if (sdkp->max_unmap_blocks)
2945 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2946 			else
2947 				sd_config_discard(sdkp, SD_LBP_WS16);
2948 
2949 		} else {	/* LBP VPD page tells us what to use */
2950 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2951 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2952 			else if (sdkp->lbpws)
2953 				sd_config_discard(sdkp, SD_LBP_WS16);
2954 			else if (sdkp->lbpws10)
2955 				sd_config_discard(sdkp, SD_LBP_WS10);
2956 			else
2957 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2958 		}
2959 	}
2960 
2961  out:
2962 	kfree(buffer);
2963 }
2964 
2965 /**
2966  * sd_read_block_characteristics - Query block dev. characteristics
2967  * @sdkp: disk to query
2968  */
2969 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2970 {
2971 	struct request_queue *q = sdkp->disk->queue;
2972 	unsigned char *buffer;
2973 	u16 rot;
2974 	const int vpd_len = 64;
2975 
2976 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2977 
2978 	if (!buffer ||
2979 	    /* Block Device Characteristics VPD */
2980 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2981 		goto out;
2982 
2983 	rot = get_unaligned_be16(&buffer[4]);
2984 
2985 	if (rot == 1) {
2986 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2987 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2988 	}
2989 
2990 	if (sdkp->device->type == TYPE_ZBC) {
2991 		/* Host-managed */
2992 		q->limits.zoned = BLK_ZONED_HM;
2993 	} else {
2994 		sdkp->zoned = (buffer[8] >> 4) & 3;
2995 		if (sdkp->zoned == 1)
2996 			/* Host-aware */
2997 			q->limits.zoned = BLK_ZONED_HA;
2998 		else
2999 			/*
3000 			 * Treat drive-managed devices as
3001 			 * regular block devices.
3002 			 */
3003 			q->limits.zoned = BLK_ZONED_NONE;
3004 	}
3005 	if (blk_queue_is_zoned(q) && sdkp->first_scan)
3006 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3007 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3008 
3009  out:
3010 	kfree(buffer);
3011 }
3012 
3013 /**
3014  * sd_read_block_provisioning - Query provisioning VPD page
3015  * @sdkp: disk to query
3016  */
3017 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3018 {
3019 	unsigned char *buffer;
3020 	const int vpd_len = 8;
3021 
3022 	if (sdkp->lbpme == 0)
3023 		return;
3024 
3025 	buffer = kmalloc(vpd_len, GFP_KERNEL);
3026 
3027 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3028 		goto out;
3029 
3030 	sdkp->lbpvpd	= 1;
3031 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
3032 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
3033 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
3034 
3035  out:
3036 	kfree(buffer);
3037 }
3038 
3039 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3040 {
3041 	struct scsi_device *sdev = sdkp->device;
3042 
3043 	if (sdev->host->no_write_same) {
3044 		sdev->no_write_same = 1;
3045 
3046 		return;
3047 	}
3048 
3049 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3050 		/* too large values might cause issues with arcmsr */
3051 		int vpd_buf_len = 64;
3052 
3053 		sdev->no_report_opcodes = 1;
3054 
3055 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3056 		 * CODES is unsupported and the device has an ATA
3057 		 * Information VPD page (SAT).
3058 		 */
3059 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3060 			sdev->no_write_same = 1;
3061 	}
3062 
3063 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3064 		sdkp->ws16 = 1;
3065 
3066 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3067 		sdkp->ws10 = 1;
3068 }
3069 
3070 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3071 {
3072 	struct scsi_device *sdev = sdkp->device;
3073 
3074 	if (!sdev->security_supported)
3075 		return;
3076 
3077 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3078 			SECURITY_PROTOCOL_IN) == 1 &&
3079 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3080 			SECURITY_PROTOCOL_OUT) == 1)
3081 		sdkp->security = 1;
3082 }
3083 
3084 /**
3085  *	sd_revalidate_disk - called the first time a new disk is seen,
3086  *	performs disk spin up, read_capacity, etc.
3087  *	@disk: struct gendisk we care about
3088  **/
3089 static int sd_revalidate_disk(struct gendisk *disk)
3090 {
3091 	struct scsi_disk *sdkp = scsi_disk(disk);
3092 	struct scsi_device *sdp = sdkp->device;
3093 	struct request_queue *q = sdkp->disk->queue;
3094 	sector_t old_capacity = sdkp->capacity;
3095 	unsigned char *buffer;
3096 	unsigned int dev_max, rw_max;
3097 
3098 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3099 				      "sd_revalidate_disk\n"));
3100 
3101 	/*
3102 	 * If the device is offline, don't try and read capacity or any
3103 	 * of the other niceties.
3104 	 */
3105 	if (!scsi_device_online(sdp))
3106 		goto out;
3107 
3108 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3109 	if (!buffer) {
3110 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3111 			  "allocation failure.\n");
3112 		goto out;
3113 	}
3114 
3115 	sd_spinup_disk(sdkp);
3116 
3117 	/*
3118 	 * Without media there is no reason to ask; moreover, some devices
3119 	 * react badly if we do.
3120 	 */
3121 	if (sdkp->media_present) {
3122 		sd_read_capacity(sdkp, buffer);
3123 
3124 		if (scsi_device_supports_vpd(sdp)) {
3125 			sd_read_block_provisioning(sdkp);
3126 			sd_read_block_limits(sdkp);
3127 			sd_read_block_characteristics(sdkp);
3128 			sd_zbc_read_zones(sdkp, buffer);
3129 		}
3130 
3131 		sd_print_capacity(sdkp, old_capacity);
3132 
3133 		sd_read_write_protect_flag(sdkp, buffer);
3134 		sd_read_cache_type(sdkp, buffer);
3135 		sd_read_app_tag_own(sdkp, buffer);
3136 		sd_read_write_same(sdkp, buffer);
3137 		sd_read_security(sdkp, buffer);
3138 	}
3139 
3140 	/*
3141 	 * We now have all cache related info, determine how we deal
3142 	 * with flush requests.
3143 	 */
3144 	sd_set_flush_flag(sdkp);
3145 
3146 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3147 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3148 
3149 	/* Some devices report a maximum block count for READ/WRITE requests. */
3150 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3151 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3152 
3153 	/*
3154 	 * Determine the device's preferred I/O size for reads and writes
3155 	 * unless the reported value is unreasonably small, large, or
3156 	 * garbage.
3157 	 */
3158 	if (sdkp->opt_xfer_blocks &&
3159 	    sdkp->opt_xfer_blocks <= dev_max &&
3160 	    sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3161 	    logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3162 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3163 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3164 	} else
3165 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3166 				      (sector_t)BLK_DEF_MAX_SECTORS);
3167 
3168 	/* Do not exceed controller limit */
3169 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3170 
3171 	/*
3172 	 * Only update max_sectors if previously unset or if the current value
3173 	 * exceeds the capabilities of the hardware.
3174 	 */
3175 	if (sdkp->first_scan ||
3176 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3177 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3178 		q->limits.max_sectors = rw_max;
3179 
3180 	sdkp->first_scan = 0;
3181 
3182 	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3183 	sd_config_write_same(sdkp);
3184 	kfree(buffer);
3185 
3186  out:
3187 	return 0;
3188 }
3189 
3190 /**
3191  *	sd_unlock_native_capacity - unlock native capacity
3192  *	@disk: struct gendisk to set capacity for
3193  *
3194  *	Block layer calls this function if it detects that partitions
3195  *	on @disk reach beyond the end of the device.  If the SCSI host
3196  *	implements ->unlock_native_capacity() method, it's invoked to
3197  *	give it a chance to adjust the device capacity.
3198  *
3199  *	CONTEXT:
3200  *	Defined by block layer.  Might sleep.
3201  */
3202 static void sd_unlock_native_capacity(struct gendisk *disk)
3203 {
3204 	struct scsi_device *sdev = scsi_disk(disk)->device;
3205 
3206 	if (sdev->host->hostt->unlock_native_capacity)
3207 		sdev->host->hostt->unlock_native_capacity(sdev);
3208 }
3209 
3210 /**
3211  *	sd_format_disk_name - format disk name
3212  *	@prefix: name prefix - ie. "sd" for SCSI disks
3213  *	@index: index of the disk to format name for
3214  *	@buf: output buffer
3215  *	@buflen: length of the output buffer
3216  *
3217  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3218  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3219  *	which is followed by sdaaa.
3220  *
3221  *	This is basically 26 base counting with one extra 'nil' entry
3222  *	at the beginning from the second digit on and can be
3223  *	determined using similar method as 26 base conversion with the
3224  *	index shifted -1 after each digit is computed.
3225  *
3226  *	CONTEXT:
3227  *	Don't care.
3228  *
3229  *	RETURNS:
3230  *	0 on success, -errno on failure.
3231  */
3232 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3233 {
3234 	const int base = 'z' - 'a' + 1;
3235 	char *begin = buf + strlen(prefix);
3236 	char *end = buf + buflen;
3237 	char *p;
3238 	int unit;
3239 
3240 	p = end - 1;
3241 	*p = '\0';
3242 	unit = base;
3243 	do {
3244 		if (p == begin)
3245 			return -EINVAL;
3246 		*--p = 'a' + (index % unit);
3247 		index = (index / unit) - 1;
3248 	} while (index >= 0);
3249 
3250 	memmove(begin, p, end - p);
3251 	memcpy(buf, prefix, strlen(prefix));
3252 
3253 	return 0;
3254 }
3255 
3256 /*
3257  * The asynchronous part of sd_probe
3258  */
3259 static void sd_probe_async(void *data, async_cookie_t cookie)
3260 {
3261 	struct scsi_disk *sdkp = data;
3262 	struct scsi_device *sdp;
3263 	struct gendisk *gd;
3264 	u32 index;
3265 	struct device *dev;
3266 
3267 	sdp = sdkp->device;
3268 	gd = sdkp->disk;
3269 	index = sdkp->index;
3270 	dev = &sdp->sdev_gendev;
3271 
3272 	gd->major = sd_major((index & 0xf0) >> 4);
3273 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3274 
3275 	gd->fops = &sd_fops;
3276 	gd->private_data = &sdkp->driver;
3277 	gd->queue = sdkp->device->request_queue;
3278 
3279 	/* defaults, until the device tells us otherwise */
3280 	sdp->sector_size = 512;
3281 	sdkp->capacity = 0;
3282 	sdkp->media_present = 1;
3283 	sdkp->write_prot = 0;
3284 	sdkp->cache_override = 0;
3285 	sdkp->WCE = 0;
3286 	sdkp->RCD = 0;
3287 	sdkp->ATO = 0;
3288 	sdkp->first_scan = 1;
3289 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3290 
3291 	sd_revalidate_disk(gd);
3292 
3293 	gd->flags = GENHD_FL_EXT_DEVT;
3294 	if (sdp->removable) {
3295 		gd->flags |= GENHD_FL_REMOVABLE;
3296 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3297 	}
3298 
3299 	blk_pm_runtime_init(sdp->request_queue, dev);
3300 	device_add_disk(dev, gd);
3301 	if (sdkp->capacity)
3302 		sd_dif_config_host(sdkp);
3303 
3304 	sd_revalidate_disk(gd);
3305 
3306 	if (sdkp->security) {
3307 		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3308 		if (sdkp->opal_dev)
3309 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3310 	}
3311 
3312 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3313 		  sdp->removable ? "removable " : "");
3314 	scsi_autopm_put_device(sdp);
3315 	put_device(&sdkp->dev);
3316 }
3317 
3318 /**
3319  *	sd_probe - called during driver initialization and whenever a
3320  *	new scsi device is attached to the system. It is called once
3321  *	for each scsi device (not just disks) present.
3322  *	@dev: pointer to device object
3323  *
3324  *	Returns 0 if successful (or not interested in this scsi device
3325  *	(e.g. scanner)); 1 when there is an error.
3326  *
3327  *	Note: this function is invoked from the scsi mid-level.
3328  *	This function sets up the mapping between a given
3329  *	<host,channel,id,lun> (found in sdp) and new device name
3330  *	(e.g. /dev/sda). More precisely it is the block device major
3331  *	and minor number that is chosen here.
3332  *
3333  *	Assume sd_probe is not re-entrant (for time being)
3334  *	Also think about sd_probe() and sd_remove() running coincidentally.
3335  **/
3336 static int sd_probe(struct device *dev)
3337 {
3338 	struct scsi_device *sdp = to_scsi_device(dev);
3339 	struct scsi_disk *sdkp;
3340 	struct gendisk *gd;
3341 	int index;
3342 	int error;
3343 
3344 	scsi_autopm_get_device(sdp);
3345 	error = -ENODEV;
3346 	if (sdp->type != TYPE_DISK &&
3347 	    sdp->type != TYPE_ZBC &&
3348 	    sdp->type != TYPE_MOD &&
3349 	    sdp->type != TYPE_RBC)
3350 		goto out;
3351 
3352 #ifndef CONFIG_BLK_DEV_ZONED
3353 	if (sdp->type == TYPE_ZBC)
3354 		goto out;
3355 #endif
3356 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3357 					"sd_probe\n"));
3358 
3359 	error = -ENOMEM;
3360 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3361 	if (!sdkp)
3362 		goto out;
3363 
3364 	gd = alloc_disk(SD_MINORS);
3365 	if (!gd)
3366 		goto out_free;
3367 
3368 	do {
3369 		if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3370 			goto out_put;
3371 
3372 		spin_lock(&sd_index_lock);
3373 		error = ida_get_new(&sd_index_ida, &index);
3374 		spin_unlock(&sd_index_lock);
3375 	} while (error == -EAGAIN);
3376 
3377 	if (error) {
3378 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3379 		goto out_put;
3380 	}
3381 
3382 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3383 	if (error) {
3384 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3385 		goto out_free_index;
3386 	}
3387 
3388 	sdkp->device = sdp;
3389 	sdkp->driver = &sd_template;
3390 	sdkp->disk = gd;
3391 	sdkp->index = index;
3392 	atomic_set(&sdkp->openers, 0);
3393 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3394 
3395 	if (!sdp->request_queue->rq_timeout) {
3396 		if (sdp->type != TYPE_MOD)
3397 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3398 		else
3399 			blk_queue_rq_timeout(sdp->request_queue,
3400 					     SD_MOD_TIMEOUT);
3401 	}
3402 
3403 	device_initialize(&sdkp->dev);
3404 	sdkp->dev.parent = dev;
3405 	sdkp->dev.class = &sd_disk_class;
3406 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3407 
3408 	error = device_add(&sdkp->dev);
3409 	if (error)
3410 		goto out_free_index;
3411 
3412 	get_device(dev);
3413 	dev_set_drvdata(dev, sdkp);
3414 
3415 	get_device(&sdkp->dev);	/* prevent release before async_schedule */
3416 	async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3417 
3418 	return 0;
3419 
3420  out_free_index:
3421 	spin_lock(&sd_index_lock);
3422 	ida_remove(&sd_index_ida, index);
3423 	spin_unlock(&sd_index_lock);
3424  out_put:
3425 	put_disk(gd);
3426  out_free:
3427 	kfree(sdkp);
3428  out:
3429 	scsi_autopm_put_device(sdp);
3430 	return error;
3431 }
3432 
3433 /**
3434  *	sd_remove - called whenever a scsi disk (previously recognized by
3435  *	sd_probe) is detached from the system. It is called (potentially
3436  *	multiple times) during sd module unload.
3437  *	@dev: pointer to device object
3438  *
3439  *	Note: this function is invoked from the scsi mid-level.
3440  *	This function potentially frees up a device name (e.g. /dev/sdc)
3441  *	that could be re-used by a subsequent sd_probe().
3442  *	This function is not called when the built-in sd driver is "exit-ed".
3443  **/
3444 static int sd_remove(struct device *dev)
3445 {
3446 	struct scsi_disk *sdkp;
3447 	dev_t devt;
3448 
3449 	sdkp = dev_get_drvdata(dev);
3450 	devt = disk_devt(sdkp->disk);
3451 	scsi_autopm_get_device(sdkp->device);
3452 
3453 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3454 	async_synchronize_full_domain(&scsi_sd_probe_domain);
3455 	device_del(&sdkp->dev);
3456 	del_gendisk(sdkp->disk);
3457 	sd_shutdown(dev);
3458 
3459 	sd_zbc_remove(sdkp);
3460 
3461 	free_opal_dev(sdkp->opal_dev);
3462 
3463 	blk_register_region(devt, SD_MINORS, NULL,
3464 			    sd_default_probe, NULL, NULL);
3465 
3466 	mutex_lock(&sd_ref_mutex);
3467 	dev_set_drvdata(dev, NULL);
3468 	put_device(&sdkp->dev);
3469 	mutex_unlock(&sd_ref_mutex);
3470 
3471 	return 0;
3472 }
3473 
3474 /**
3475  *	scsi_disk_release - Called to free the scsi_disk structure
3476  *	@dev: pointer to embedded class device
3477  *
3478  *	sd_ref_mutex must be held entering this routine.  Because it is
3479  *	called on last put, you should always use the scsi_disk_get()
3480  *	scsi_disk_put() helpers which manipulate the semaphore directly
3481  *	and never do a direct put_device.
3482  **/
3483 static void scsi_disk_release(struct device *dev)
3484 {
3485 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3486 	struct gendisk *disk = sdkp->disk;
3487 
3488 	spin_lock(&sd_index_lock);
3489 	ida_remove(&sd_index_ida, sdkp->index);
3490 	spin_unlock(&sd_index_lock);
3491 
3492 	disk->private_data = NULL;
3493 	put_disk(disk);
3494 	put_device(&sdkp->device->sdev_gendev);
3495 
3496 	kfree(sdkp);
3497 }
3498 
3499 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3500 {
3501 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3502 	struct scsi_sense_hdr sshdr;
3503 	struct scsi_device *sdp = sdkp->device;
3504 	int res;
3505 
3506 	if (start)
3507 		cmd[4] |= 1;	/* START */
3508 
3509 	if (sdp->start_stop_pwr_cond)
3510 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3511 
3512 	if (!scsi_device_online(sdp))
3513 		return -ENODEV;
3514 
3515 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3516 			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3517 	if (res) {
3518 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3519 		if (driver_byte(res) & DRIVER_SENSE)
3520 			sd_print_sense_hdr(sdkp, &sshdr);
3521 		if (scsi_sense_valid(&sshdr) &&
3522 			/* 0x3a is medium not present */
3523 			sshdr.asc == 0x3a)
3524 			res = 0;
3525 	}
3526 
3527 	/* SCSI error codes must not go to the generic layer */
3528 	if (res)
3529 		return -EIO;
3530 
3531 	return 0;
3532 }
3533 
3534 /*
3535  * Send a SYNCHRONIZE CACHE instruction down to the device through
3536  * the normal SCSI command structure.  Wait for the command to
3537  * complete.
3538  */
3539 static void sd_shutdown(struct device *dev)
3540 {
3541 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3542 
3543 	if (!sdkp)
3544 		return;         /* this can happen */
3545 
3546 	if (pm_runtime_suspended(dev))
3547 		return;
3548 
3549 	if (sdkp->WCE && sdkp->media_present) {
3550 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3551 		sd_sync_cache(sdkp, NULL);
3552 	}
3553 
3554 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3555 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3556 		sd_start_stop_device(sdkp, 0);
3557 	}
3558 }
3559 
3560 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3561 {
3562 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3563 	struct scsi_sense_hdr sshdr;
3564 	int ret = 0;
3565 
3566 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3567 		return 0;
3568 
3569 	if (sdkp->WCE && sdkp->media_present) {
3570 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3571 		ret = sd_sync_cache(sdkp, &sshdr);
3572 
3573 		if (ret) {
3574 			/* ignore OFFLINE device */
3575 			if (ret == -ENODEV)
3576 				return 0;
3577 
3578 			if (!scsi_sense_valid(&sshdr) ||
3579 			    sshdr.sense_key != ILLEGAL_REQUEST)
3580 				return ret;
3581 
3582 			/*
3583 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3584 			 * doesn't support sync. There's not much to do and
3585 			 * suspend shouldn't fail.
3586 			 */
3587 			ret = 0;
3588 		}
3589 	}
3590 
3591 	if (sdkp->device->manage_start_stop) {
3592 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3593 		/* an error is not worth aborting a system sleep */
3594 		ret = sd_start_stop_device(sdkp, 0);
3595 		if (ignore_stop_errors)
3596 			ret = 0;
3597 	}
3598 
3599 	return ret;
3600 }
3601 
3602 static int sd_suspend_system(struct device *dev)
3603 {
3604 	return sd_suspend_common(dev, true);
3605 }
3606 
3607 static int sd_suspend_runtime(struct device *dev)
3608 {
3609 	return sd_suspend_common(dev, false);
3610 }
3611 
3612 static int sd_resume(struct device *dev)
3613 {
3614 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3615 	int ret;
3616 
3617 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3618 		return 0;
3619 
3620 	if (!sdkp->device->manage_start_stop)
3621 		return 0;
3622 
3623 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3624 	ret = sd_start_stop_device(sdkp, 1);
3625 	if (!ret)
3626 		opal_unlock_from_suspend(sdkp->opal_dev);
3627 	return ret;
3628 }
3629 
3630 /**
3631  *	init_sd - entry point for this driver (both when built in or when
3632  *	a module).
3633  *
3634  *	Note: this function registers this driver with the scsi mid-level.
3635  **/
3636 static int __init init_sd(void)
3637 {
3638 	int majors = 0, i, err;
3639 
3640 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3641 
3642 	for (i = 0; i < SD_MAJORS; i++) {
3643 		if (register_blkdev(sd_major(i), "sd") != 0)
3644 			continue;
3645 		majors++;
3646 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3647 				    sd_default_probe, NULL, NULL);
3648 	}
3649 
3650 	if (!majors)
3651 		return -ENODEV;
3652 
3653 	err = class_register(&sd_disk_class);
3654 	if (err)
3655 		goto err_out;
3656 
3657 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3658 					 0, 0, NULL);
3659 	if (!sd_cdb_cache) {
3660 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3661 		err = -ENOMEM;
3662 		goto err_out_class;
3663 	}
3664 
3665 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3666 	if (!sd_cdb_pool) {
3667 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3668 		err = -ENOMEM;
3669 		goto err_out_cache;
3670 	}
3671 
3672 	err = scsi_register_driver(&sd_template.gendrv);
3673 	if (err)
3674 		goto err_out_driver;
3675 
3676 	return 0;
3677 
3678 err_out_driver:
3679 	mempool_destroy(sd_cdb_pool);
3680 
3681 err_out_cache:
3682 	kmem_cache_destroy(sd_cdb_cache);
3683 
3684 err_out_class:
3685 	class_unregister(&sd_disk_class);
3686 err_out:
3687 	for (i = 0; i < SD_MAJORS; i++)
3688 		unregister_blkdev(sd_major(i), "sd");
3689 	return err;
3690 }
3691 
3692 /**
3693  *	exit_sd - exit point for this driver (when it is a module).
3694  *
3695  *	Note: this function unregisters this driver from the scsi mid-level.
3696  **/
3697 static void __exit exit_sd(void)
3698 {
3699 	int i;
3700 
3701 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3702 
3703 	scsi_unregister_driver(&sd_template.gendrv);
3704 	mempool_destroy(sd_cdb_pool);
3705 	kmem_cache_destroy(sd_cdb_cache);
3706 
3707 	class_unregister(&sd_disk_class);
3708 
3709 	for (i = 0; i < SD_MAJORS; i++) {
3710 		blk_unregister_region(sd_major(i), SD_MINORS);
3711 		unregister_blkdev(sd_major(i), "sd");
3712 	}
3713 }
3714 
3715 module_init(init_sd);
3716 module_exit(exit_sd);
3717 
3718 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3719 			       struct scsi_sense_hdr *sshdr)
3720 {
3721 	scsi_print_sense_hdr(sdkp->device,
3722 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3723 }
3724 
3725 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3726 			    int result)
3727 {
3728 	const char *hb_string = scsi_hostbyte_string(result);
3729 	const char *db_string = scsi_driverbyte_string(result);
3730 
3731 	if (hb_string || db_string)
3732 		sd_printk(KERN_INFO, sdkp,
3733 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3734 			  hb_string ? hb_string : "invalid",
3735 			  db_string ? db_string : "invalid");
3736 	else
3737 		sd_printk(KERN_INFO, sdkp,
3738 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3739 			  msg, host_byte(result), driver_byte(result));
3740 }
3741 
3742