1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/major.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 71 #include "sd.h" 72 #include "scsi_priv.h" 73 #include "scsi_logging.h" 74 75 MODULE_AUTHOR("Eric Youngdale"); 76 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 77 MODULE_LICENSE("GPL"); 78 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 99 100 #define SD_MINORS 16 101 102 static void sd_config_discard(struct scsi_disk *, unsigned int); 103 static void sd_config_write_same(struct scsi_disk *); 104 static int sd_revalidate_disk(struct gendisk *); 105 static void sd_unlock_native_capacity(struct gendisk *disk); 106 static int sd_probe(struct device *); 107 static int sd_remove(struct device *); 108 static void sd_shutdown(struct device *); 109 static int sd_suspend_system(struct device *); 110 static int sd_suspend_runtime(struct device *); 111 static int sd_resume_system(struct device *); 112 static int sd_resume_runtime(struct device *); 113 static void sd_rescan(struct device *); 114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 115 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 116 static int sd_done(struct scsi_cmnd *); 117 static void sd_eh_reset(struct scsi_cmnd *); 118 static int sd_eh_action(struct scsi_cmnd *, int); 119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 120 static void scsi_disk_release(struct device *cdev); 121 122 static DEFINE_IDA(sd_index_ida); 123 124 static mempool_t *sd_page_pool; 125 static struct lock_class_key sd_bio_compl_lkclass; 126 127 static const char *sd_cache_types[] = { 128 "write through", "none", "write back", 129 "write back, no read (daft)" 130 }; 131 132 static void sd_set_flush_flag(struct scsi_disk *sdkp) 133 { 134 bool wc = false, fua = false; 135 136 if (sdkp->WCE) { 137 wc = true; 138 if (sdkp->DPOFUA) 139 fua = true; 140 } 141 142 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 143 } 144 145 static ssize_t 146 cache_type_store(struct device *dev, struct device_attribute *attr, 147 const char *buf, size_t count) 148 { 149 int ct, rcd, wce, sp; 150 struct scsi_disk *sdkp = to_scsi_disk(dev); 151 struct scsi_device *sdp = sdkp->device; 152 char buffer[64]; 153 char *buffer_data; 154 struct scsi_mode_data data; 155 struct scsi_sense_hdr sshdr; 156 static const char temp[] = "temporary "; 157 int len; 158 159 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 160 /* no cache control on RBC devices; theoretically they 161 * can do it, but there's probably so many exceptions 162 * it's not worth the risk */ 163 return -EINVAL; 164 165 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 166 buf += sizeof(temp) - 1; 167 sdkp->cache_override = 1; 168 } else { 169 sdkp->cache_override = 0; 170 } 171 172 ct = sysfs_match_string(sd_cache_types, buf); 173 if (ct < 0) 174 return -EINVAL; 175 176 rcd = ct & 0x01 ? 1 : 0; 177 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 178 179 if (sdkp->cache_override) { 180 sdkp->WCE = wce; 181 sdkp->RCD = rcd; 182 sd_set_flush_flag(sdkp); 183 return count; 184 } 185 186 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 187 sdkp->max_retries, &data, NULL)) 188 return -EINVAL; 189 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 190 data.block_descriptor_length); 191 buffer_data = buffer + data.header_length + 192 data.block_descriptor_length; 193 buffer_data[2] &= ~0x05; 194 buffer_data[2] |= wce << 2 | rcd; 195 sp = buffer_data[0] & 0x80 ? 1 : 0; 196 buffer_data[0] &= ~0x80; 197 198 /* 199 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 200 * received mode parameter buffer before doing MODE SELECT. 201 */ 202 data.device_specific = 0; 203 204 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 205 sdkp->max_retries, &data, &sshdr)) { 206 if (scsi_sense_valid(&sshdr)) 207 sd_print_sense_hdr(sdkp, &sshdr); 208 return -EINVAL; 209 } 210 sd_revalidate_disk(sdkp->disk); 211 return count; 212 } 213 214 static ssize_t 215 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 216 char *buf) 217 { 218 struct scsi_disk *sdkp = to_scsi_disk(dev); 219 struct scsi_device *sdp = sdkp->device; 220 221 return sprintf(buf, "%u\n", sdp->manage_start_stop); 222 } 223 224 static ssize_t 225 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 226 const char *buf, size_t count) 227 { 228 struct scsi_disk *sdkp = to_scsi_disk(dev); 229 struct scsi_device *sdp = sdkp->device; 230 bool v; 231 232 if (!capable(CAP_SYS_ADMIN)) 233 return -EACCES; 234 235 if (kstrtobool(buf, &v)) 236 return -EINVAL; 237 238 sdp->manage_start_stop = v; 239 240 return count; 241 } 242 static DEVICE_ATTR_RW(manage_start_stop); 243 244 static ssize_t 245 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 246 { 247 struct scsi_disk *sdkp = to_scsi_disk(dev); 248 249 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 250 } 251 252 static ssize_t 253 allow_restart_store(struct device *dev, struct device_attribute *attr, 254 const char *buf, size_t count) 255 { 256 bool v; 257 struct scsi_disk *sdkp = to_scsi_disk(dev); 258 struct scsi_device *sdp = sdkp->device; 259 260 if (!capable(CAP_SYS_ADMIN)) 261 return -EACCES; 262 263 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 264 return -EINVAL; 265 266 if (kstrtobool(buf, &v)) 267 return -EINVAL; 268 269 sdp->allow_restart = v; 270 271 return count; 272 } 273 static DEVICE_ATTR_RW(allow_restart); 274 275 static ssize_t 276 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 277 { 278 struct scsi_disk *sdkp = to_scsi_disk(dev); 279 int ct = sdkp->RCD + 2*sdkp->WCE; 280 281 return sprintf(buf, "%s\n", sd_cache_types[ct]); 282 } 283 static DEVICE_ATTR_RW(cache_type); 284 285 static ssize_t 286 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 287 { 288 struct scsi_disk *sdkp = to_scsi_disk(dev); 289 290 return sprintf(buf, "%u\n", sdkp->DPOFUA); 291 } 292 static DEVICE_ATTR_RO(FUA); 293 294 static ssize_t 295 protection_type_show(struct device *dev, struct device_attribute *attr, 296 char *buf) 297 { 298 struct scsi_disk *sdkp = to_scsi_disk(dev); 299 300 return sprintf(buf, "%u\n", sdkp->protection_type); 301 } 302 303 static ssize_t 304 protection_type_store(struct device *dev, struct device_attribute *attr, 305 const char *buf, size_t count) 306 { 307 struct scsi_disk *sdkp = to_scsi_disk(dev); 308 unsigned int val; 309 int err; 310 311 if (!capable(CAP_SYS_ADMIN)) 312 return -EACCES; 313 314 err = kstrtouint(buf, 10, &val); 315 316 if (err) 317 return err; 318 319 if (val <= T10_PI_TYPE3_PROTECTION) 320 sdkp->protection_type = val; 321 322 return count; 323 } 324 static DEVICE_ATTR_RW(protection_type); 325 326 static ssize_t 327 protection_mode_show(struct device *dev, struct device_attribute *attr, 328 char *buf) 329 { 330 struct scsi_disk *sdkp = to_scsi_disk(dev); 331 struct scsi_device *sdp = sdkp->device; 332 unsigned int dif, dix; 333 334 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 335 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 336 337 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 338 dif = 0; 339 dix = 1; 340 } 341 342 if (!dif && !dix) 343 return sprintf(buf, "none\n"); 344 345 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 346 } 347 static DEVICE_ATTR_RO(protection_mode); 348 349 static ssize_t 350 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 351 { 352 struct scsi_disk *sdkp = to_scsi_disk(dev); 353 354 return sprintf(buf, "%u\n", sdkp->ATO); 355 } 356 static DEVICE_ATTR_RO(app_tag_own); 357 358 static ssize_t 359 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 360 char *buf) 361 { 362 struct scsi_disk *sdkp = to_scsi_disk(dev); 363 364 return sprintf(buf, "%u\n", sdkp->lbpme); 365 } 366 static DEVICE_ATTR_RO(thin_provisioning); 367 368 /* sysfs_match_string() requires dense arrays */ 369 static const char *lbp_mode[] = { 370 [SD_LBP_FULL] = "full", 371 [SD_LBP_UNMAP] = "unmap", 372 [SD_LBP_WS16] = "writesame_16", 373 [SD_LBP_WS10] = "writesame_10", 374 [SD_LBP_ZERO] = "writesame_zero", 375 [SD_LBP_DISABLE] = "disabled", 376 }; 377 378 static ssize_t 379 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 380 char *buf) 381 { 382 struct scsi_disk *sdkp = to_scsi_disk(dev); 383 384 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 385 } 386 387 static ssize_t 388 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 389 const char *buf, size_t count) 390 { 391 struct scsi_disk *sdkp = to_scsi_disk(dev); 392 struct scsi_device *sdp = sdkp->device; 393 int mode; 394 395 if (!capable(CAP_SYS_ADMIN)) 396 return -EACCES; 397 398 if (sd_is_zoned(sdkp)) { 399 sd_config_discard(sdkp, SD_LBP_DISABLE); 400 return count; 401 } 402 403 if (sdp->type != TYPE_DISK) 404 return -EINVAL; 405 406 mode = sysfs_match_string(lbp_mode, buf); 407 if (mode < 0) 408 return -EINVAL; 409 410 sd_config_discard(sdkp, mode); 411 412 return count; 413 } 414 static DEVICE_ATTR_RW(provisioning_mode); 415 416 /* sysfs_match_string() requires dense arrays */ 417 static const char *zeroing_mode[] = { 418 [SD_ZERO_WRITE] = "write", 419 [SD_ZERO_WS] = "writesame", 420 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 421 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 422 }; 423 424 static ssize_t 425 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 426 char *buf) 427 { 428 struct scsi_disk *sdkp = to_scsi_disk(dev); 429 430 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 431 } 432 433 static ssize_t 434 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 435 const char *buf, size_t count) 436 { 437 struct scsi_disk *sdkp = to_scsi_disk(dev); 438 int mode; 439 440 if (!capable(CAP_SYS_ADMIN)) 441 return -EACCES; 442 443 mode = sysfs_match_string(zeroing_mode, buf); 444 if (mode < 0) 445 return -EINVAL; 446 447 sdkp->zeroing_mode = mode; 448 449 return count; 450 } 451 static DEVICE_ATTR_RW(zeroing_mode); 452 453 static ssize_t 454 max_medium_access_timeouts_show(struct device *dev, 455 struct device_attribute *attr, char *buf) 456 { 457 struct scsi_disk *sdkp = to_scsi_disk(dev); 458 459 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 460 } 461 462 static ssize_t 463 max_medium_access_timeouts_store(struct device *dev, 464 struct device_attribute *attr, const char *buf, 465 size_t count) 466 { 467 struct scsi_disk *sdkp = to_scsi_disk(dev); 468 int err; 469 470 if (!capable(CAP_SYS_ADMIN)) 471 return -EACCES; 472 473 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 474 475 return err ? err : count; 476 } 477 static DEVICE_ATTR_RW(max_medium_access_timeouts); 478 479 static ssize_t 480 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 481 char *buf) 482 { 483 struct scsi_disk *sdkp = to_scsi_disk(dev); 484 485 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 486 } 487 488 static ssize_t 489 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 490 const char *buf, size_t count) 491 { 492 struct scsi_disk *sdkp = to_scsi_disk(dev); 493 struct scsi_device *sdp = sdkp->device; 494 unsigned long max; 495 int err; 496 497 if (!capable(CAP_SYS_ADMIN)) 498 return -EACCES; 499 500 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 501 return -EINVAL; 502 503 err = kstrtoul(buf, 10, &max); 504 505 if (err) 506 return err; 507 508 if (max == 0) 509 sdp->no_write_same = 1; 510 else if (max <= SD_MAX_WS16_BLOCKS) { 511 sdp->no_write_same = 0; 512 sdkp->max_ws_blocks = max; 513 } 514 515 sd_config_write_same(sdkp); 516 517 return count; 518 } 519 static DEVICE_ATTR_RW(max_write_same_blocks); 520 521 static ssize_t 522 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 523 { 524 struct scsi_disk *sdkp = to_scsi_disk(dev); 525 526 if (sdkp->device->type == TYPE_ZBC) 527 return sprintf(buf, "host-managed\n"); 528 if (sdkp->zoned == 1) 529 return sprintf(buf, "host-aware\n"); 530 if (sdkp->zoned == 2) 531 return sprintf(buf, "drive-managed\n"); 532 return sprintf(buf, "none\n"); 533 } 534 static DEVICE_ATTR_RO(zoned_cap); 535 536 static ssize_t 537 max_retries_store(struct device *dev, struct device_attribute *attr, 538 const char *buf, size_t count) 539 { 540 struct scsi_disk *sdkp = to_scsi_disk(dev); 541 struct scsi_device *sdev = sdkp->device; 542 int retries, err; 543 544 err = kstrtoint(buf, 10, &retries); 545 if (err) 546 return err; 547 548 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 549 sdkp->max_retries = retries; 550 return count; 551 } 552 553 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 554 SD_MAX_RETRIES); 555 return -EINVAL; 556 } 557 558 static ssize_t 559 max_retries_show(struct device *dev, struct device_attribute *attr, 560 char *buf) 561 { 562 struct scsi_disk *sdkp = to_scsi_disk(dev); 563 564 return sprintf(buf, "%d\n", sdkp->max_retries); 565 } 566 567 static DEVICE_ATTR_RW(max_retries); 568 569 static struct attribute *sd_disk_attrs[] = { 570 &dev_attr_cache_type.attr, 571 &dev_attr_FUA.attr, 572 &dev_attr_allow_restart.attr, 573 &dev_attr_manage_start_stop.attr, 574 &dev_attr_protection_type.attr, 575 &dev_attr_protection_mode.attr, 576 &dev_attr_app_tag_own.attr, 577 &dev_attr_thin_provisioning.attr, 578 &dev_attr_provisioning_mode.attr, 579 &dev_attr_zeroing_mode.attr, 580 &dev_attr_max_write_same_blocks.attr, 581 &dev_attr_max_medium_access_timeouts.attr, 582 &dev_attr_zoned_cap.attr, 583 &dev_attr_max_retries.attr, 584 NULL, 585 }; 586 ATTRIBUTE_GROUPS(sd_disk); 587 588 static struct class sd_disk_class = { 589 .name = "scsi_disk", 590 .dev_release = scsi_disk_release, 591 .dev_groups = sd_disk_groups, 592 }; 593 594 static const struct dev_pm_ops sd_pm_ops = { 595 .suspend = sd_suspend_system, 596 .resume = sd_resume_system, 597 .poweroff = sd_suspend_system, 598 .restore = sd_resume_system, 599 .runtime_suspend = sd_suspend_runtime, 600 .runtime_resume = sd_resume_runtime, 601 }; 602 603 static struct scsi_driver sd_template = { 604 .gendrv = { 605 .name = "sd", 606 .owner = THIS_MODULE, 607 .probe = sd_probe, 608 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 609 .remove = sd_remove, 610 .shutdown = sd_shutdown, 611 .pm = &sd_pm_ops, 612 }, 613 .rescan = sd_rescan, 614 .init_command = sd_init_command, 615 .uninit_command = sd_uninit_command, 616 .done = sd_done, 617 .eh_action = sd_eh_action, 618 .eh_reset = sd_eh_reset, 619 }; 620 621 /* 622 * Don't request a new module, as that could deadlock in multipath 623 * environment. 624 */ 625 static void sd_default_probe(dev_t devt) 626 { 627 } 628 629 /* 630 * Device no to disk mapping: 631 * 632 * major disc2 disc p1 633 * |............|.............|....|....| <- dev_t 634 * 31 20 19 8 7 4 3 0 635 * 636 * Inside a major, we have 16k disks, however mapped non- 637 * contiguously. The first 16 disks are for major0, the next 638 * ones with major1, ... Disk 256 is for major0 again, disk 272 639 * for major1, ... 640 * As we stay compatible with our numbering scheme, we can reuse 641 * the well-know SCSI majors 8, 65--71, 136--143. 642 */ 643 static int sd_major(int major_idx) 644 { 645 switch (major_idx) { 646 case 0: 647 return SCSI_DISK0_MAJOR; 648 case 1 ... 7: 649 return SCSI_DISK1_MAJOR + major_idx - 1; 650 case 8 ... 15: 651 return SCSI_DISK8_MAJOR + major_idx - 8; 652 default: 653 BUG(); 654 return 0; /* shut up gcc */ 655 } 656 } 657 658 #ifdef CONFIG_BLK_SED_OPAL 659 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 660 size_t len, bool send) 661 { 662 struct scsi_disk *sdkp = data; 663 struct scsi_device *sdev = sdkp->device; 664 u8 cdb[12] = { 0, }; 665 const struct scsi_exec_args exec_args = { 666 .req_flags = BLK_MQ_REQ_PM, 667 }; 668 int ret; 669 670 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 671 cdb[1] = secp; 672 put_unaligned_be16(spsp, &cdb[2]); 673 put_unaligned_be32(len, &cdb[6]); 674 675 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 676 buffer, len, SD_TIMEOUT, sdkp->max_retries, 677 &exec_args); 678 return ret <= 0 ? ret : -EIO; 679 } 680 #endif /* CONFIG_BLK_SED_OPAL */ 681 682 /* 683 * Look up the DIX operation based on whether the command is read or 684 * write and whether dix and dif are enabled. 685 */ 686 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 687 { 688 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 689 static const unsigned int ops[] = { /* wrt dix dif */ 690 SCSI_PROT_NORMAL, /* 0 0 0 */ 691 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 692 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 693 SCSI_PROT_READ_PASS, /* 0 1 1 */ 694 SCSI_PROT_NORMAL, /* 1 0 0 */ 695 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 696 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 697 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 698 }; 699 700 return ops[write << 2 | dix << 1 | dif]; 701 } 702 703 /* 704 * Returns a mask of the protection flags that are valid for a given DIX 705 * operation. 706 */ 707 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 708 { 709 static const unsigned int flag_mask[] = { 710 [SCSI_PROT_NORMAL] = 0, 711 712 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 713 SCSI_PROT_GUARD_CHECK | 714 SCSI_PROT_REF_CHECK | 715 SCSI_PROT_REF_INCREMENT, 716 717 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 718 SCSI_PROT_IP_CHECKSUM, 719 720 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 721 SCSI_PROT_GUARD_CHECK | 722 SCSI_PROT_REF_CHECK | 723 SCSI_PROT_REF_INCREMENT | 724 SCSI_PROT_IP_CHECKSUM, 725 726 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 727 SCSI_PROT_REF_INCREMENT, 728 729 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 730 SCSI_PROT_REF_CHECK | 731 SCSI_PROT_REF_INCREMENT | 732 SCSI_PROT_IP_CHECKSUM, 733 734 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 735 SCSI_PROT_GUARD_CHECK | 736 SCSI_PROT_REF_CHECK | 737 SCSI_PROT_REF_INCREMENT | 738 SCSI_PROT_IP_CHECKSUM, 739 }; 740 741 return flag_mask[prot_op]; 742 } 743 744 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 745 unsigned int dix, unsigned int dif) 746 { 747 struct request *rq = scsi_cmd_to_rq(scmd); 748 struct bio *bio = rq->bio; 749 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 750 unsigned int protect = 0; 751 752 if (dix) { /* DIX Type 0, 1, 2, 3 */ 753 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 754 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 755 756 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 757 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 758 } 759 760 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 761 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 762 763 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 764 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 765 } 766 767 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 768 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 769 770 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 771 protect = 3 << 5; /* Disable target PI checking */ 772 else 773 protect = 1 << 5; /* Enable target PI checking */ 774 } 775 776 scsi_set_prot_op(scmd, prot_op); 777 scsi_set_prot_type(scmd, dif); 778 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 779 780 return protect; 781 } 782 783 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 784 { 785 struct request_queue *q = sdkp->disk->queue; 786 unsigned int logical_block_size = sdkp->device->sector_size; 787 unsigned int max_blocks = 0; 788 789 q->limits.discard_alignment = 790 sdkp->unmap_alignment * logical_block_size; 791 q->limits.discard_granularity = 792 max(sdkp->physical_block_size, 793 sdkp->unmap_granularity * logical_block_size); 794 sdkp->provisioning_mode = mode; 795 796 switch (mode) { 797 798 case SD_LBP_FULL: 799 case SD_LBP_DISABLE: 800 blk_queue_max_discard_sectors(q, 0); 801 return; 802 803 case SD_LBP_UNMAP: 804 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 805 (u32)SD_MAX_WS16_BLOCKS); 806 break; 807 808 case SD_LBP_WS16: 809 if (sdkp->device->unmap_limit_for_ws) 810 max_blocks = sdkp->max_unmap_blocks; 811 else 812 max_blocks = sdkp->max_ws_blocks; 813 814 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 815 break; 816 817 case SD_LBP_WS10: 818 if (sdkp->device->unmap_limit_for_ws) 819 max_blocks = sdkp->max_unmap_blocks; 820 else 821 max_blocks = sdkp->max_ws_blocks; 822 823 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 824 break; 825 826 case SD_LBP_ZERO: 827 max_blocks = min_not_zero(sdkp->max_ws_blocks, 828 (u32)SD_MAX_WS10_BLOCKS); 829 break; 830 } 831 832 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 833 } 834 835 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len) 836 { 837 struct page *page; 838 839 page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 840 if (!page) 841 return NULL; 842 clear_highpage(page); 843 bvec_set_page(&rq->special_vec, page, data_len, 0); 844 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 845 return bvec_virt(&rq->special_vec); 846 } 847 848 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 849 { 850 struct scsi_device *sdp = cmd->device; 851 struct request *rq = scsi_cmd_to_rq(cmd); 852 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 853 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 854 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 855 unsigned int data_len = 24; 856 char *buf; 857 858 buf = sd_set_special_bvec(rq, data_len); 859 if (!buf) 860 return BLK_STS_RESOURCE; 861 862 cmd->cmd_len = 10; 863 cmd->cmnd[0] = UNMAP; 864 cmd->cmnd[8] = 24; 865 866 put_unaligned_be16(6 + 16, &buf[0]); 867 put_unaligned_be16(16, &buf[2]); 868 put_unaligned_be64(lba, &buf[8]); 869 put_unaligned_be32(nr_blocks, &buf[16]); 870 871 cmd->allowed = sdkp->max_retries; 872 cmd->transfersize = data_len; 873 rq->timeout = SD_TIMEOUT; 874 875 return scsi_alloc_sgtables(cmd); 876 } 877 878 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 879 bool unmap) 880 { 881 struct scsi_device *sdp = cmd->device; 882 struct request *rq = scsi_cmd_to_rq(cmd); 883 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 884 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 885 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 886 u32 data_len = sdp->sector_size; 887 888 if (!sd_set_special_bvec(rq, data_len)) 889 return BLK_STS_RESOURCE; 890 891 cmd->cmd_len = 16; 892 cmd->cmnd[0] = WRITE_SAME_16; 893 if (unmap) 894 cmd->cmnd[1] = 0x8; /* UNMAP */ 895 put_unaligned_be64(lba, &cmd->cmnd[2]); 896 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 897 898 cmd->allowed = sdkp->max_retries; 899 cmd->transfersize = data_len; 900 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 901 902 return scsi_alloc_sgtables(cmd); 903 } 904 905 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 906 bool unmap) 907 { 908 struct scsi_device *sdp = cmd->device; 909 struct request *rq = scsi_cmd_to_rq(cmd); 910 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 911 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 912 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 913 u32 data_len = sdp->sector_size; 914 915 if (!sd_set_special_bvec(rq, data_len)) 916 return BLK_STS_RESOURCE; 917 918 cmd->cmd_len = 10; 919 cmd->cmnd[0] = WRITE_SAME; 920 if (unmap) 921 cmd->cmnd[1] = 0x8; /* UNMAP */ 922 put_unaligned_be32(lba, &cmd->cmnd[2]); 923 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 924 925 cmd->allowed = sdkp->max_retries; 926 cmd->transfersize = data_len; 927 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 928 929 return scsi_alloc_sgtables(cmd); 930 } 931 932 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 933 { 934 struct request *rq = scsi_cmd_to_rq(cmd); 935 struct scsi_device *sdp = cmd->device; 936 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 937 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 938 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 939 940 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 941 switch (sdkp->zeroing_mode) { 942 case SD_ZERO_WS16_UNMAP: 943 return sd_setup_write_same16_cmnd(cmd, true); 944 case SD_ZERO_WS10_UNMAP: 945 return sd_setup_write_same10_cmnd(cmd, true); 946 } 947 } 948 949 if (sdp->no_write_same) { 950 rq->rq_flags |= RQF_QUIET; 951 return BLK_STS_TARGET; 952 } 953 954 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 955 return sd_setup_write_same16_cmnd(cmd, false); 956 957 return sd_setup_write_same10_cmnd(cmd, false); 958 } 959 960 static void sd_config_write_same(struct scsi_disk *sdkp) 961 { 962 struct request_queue *q = sdkp->disk->queue; 963 unsigned int logical_block_size = sdkp->device->sector_size; 964 965 if (sdkp->device->no_write_same) { 966 sdkp->max_ws_blocks = 0; 967 goto out; 968 } 969 970 /* Some devices can not handle block counts above 0xffff despite 971 * supporting WRITE SAME(16). Consequently we default to 64k 972 * blocks per I/O unless the device explicitly advertises a 973 * bigger limit. 974 */ 975 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 976 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 977 (u32)SD_MAX_WS16_BLOCKS); 978 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 979 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 980 (u32)SD_MAX_WS10_BLOCKS); 981 else { 982 sdkp->device->no_write_same = 1; 983 sdkp->max_ws_blocks = 0; 984 } 985 986 if (sdkp->lbprz && sdkp->lbpws) 987 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 988 else if (sdkp->lbprz && sdkp->lbpws10) 989 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 990 else if (sdkp->max_ws_blocks) 991 sdkp->zeroing_mode = SD_ZERO_WS; 992 else 993 sdkp->zeroing_mode = SD_ZERO_WRITE; 994 995 if (sdkp->max_ws_blocks && 996 sdkp->physical_block_size > logical_block_size) { 997 /* 998 * Reporting a maximum number of blocks that is not aligned 999 * on the device physical size would cause a large write same 1000 * request to be split into physically unaligned chunks by 1001 * __blkdev_issue_write_zeroes() even if the caller of this 1002 * functions took care to align the large request. So make sure 1003 * the maximum reported is aligned to the device physical block 1004 * size. This is only an optional optimization for regular 1005 * disks, but this is mandatory to avoid failure of large write 1006 * same requests directed at sequential write required zones of 1007 * host-managed ZBC disks. 1008 */ 1009 sdkp->max_ws_blocks = 1010 round_down(sdkp->max_ws_blocks, 1011 bytes_to_logical(sdkp->device, 1012 sdkp->physical_block_size)); 1013 } 1014 1015 out: 1016 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1017 (logical_block_size >> 9)); 1018 } 1019 1020 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1021 { 1022 struct request *rq = scsi_cmd_to_rq(cmd); 1023 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1024 1025 /* flush requests don't perform I/O, zero the S/G table */ 1026 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1027 1028 if (cmd->device->use_16_for_sync) { 1029 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16; 1030 cmd->cmd_len = 16; 1031 } else { 1032 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1033 cmd->cmd_len = 10; 1034 } 1035 cmd->transfersize = 0; 1036 cmd->allowed = sdkp->max_retries; 1037 1038 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1039 return BLK_STS_OK; 1040 } 1041 1042 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1043 sector_t lba, unsigned int nr_blocks, 1044 unsigned char flags) 1045 { 1046 cmd->cmd_len = SD_EXT_CDB_SIZE; 1047 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1048 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1049 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1050 cmd->cmnd[10] = flags; 1051 put_unaligned_be64(lba, &cmd->cmnd[12]); 1052 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1053 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1054 1055 return BLK_STS_OK; 1056 } 1057 1058 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1059 sector_t lba, unsigned int nr_blocks, 1060 unsigned char flags) 1061 { 1062 cmd->cmd_len = 16; 1063 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1064 cmd->cmnd[1] = flags; 1065 cmd->cmnd[14] = 0; 1066 cmd->cmnd[15] = 0; 1067 put_unaligned_be64(lba, &cmd->cmnd[2]); 1068 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1069 1070 return BLK_STS_OK; 1071 } 1072 1073 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1074 sector_t lba, unsigned int nr_blocks, 1075 unsigned char flags) 1076 { 1077 cmd->cmd_len = 10; 1078 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1079 cmd->cmnd[1] = flags; 1080 cmd->cmnd[6] = 0; 1081 cmd->cmnd[9] = 0; 1082 put_unaligned_be32(lba, &cmd->cmnd[2]); 1083 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1084 1085 return BLK_STS_OK; 1086 } 1087 1088 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1089 sector_t lba, unsigned int nr_blocks, 1090 unsigned char flags) 1091 { 1092 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1093 if (WARN_ON_ONCE(nr_blocks == 0)) 1094 return BLK_STS_IOERR; 1095 1096 if (unlikely(flags & 0x8)) { 1097 /* 1098 * This happens only if this drive failed 10byte rw 1099 * command with ILLEGAL_REQUEST during operation and 1100 * thus turned off use_10_for_rw. 1101 */ 1102 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1103 return BLK_STS_IOERR; 1104 } 1105 1106 cmd->cmd_len = 6; 1107 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1108 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1109 cmd->cmnd[2] = (lba >> 8) & 0xff; 1110 cmd->cmnd[3] = lba & 0xff; 1111 cmd->cmnd[4] = nr_blocks; 1112 cmd->cmnd[5] = 0; 1113 1114 return BLK_STS_OK; 1115 } 1116 1117 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1118 { 1119 struct request *rq = scsi_cmd_to_rq(cmd); 1120 struct scsi_device *sdp = cmd->device; 1121 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1122 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1123 sector_t threshold; 1124 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1125 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1126 bool write = rq_data_dir(rq) == WRITE; 1127 unsigned char protect, fua; 1128 blk_status_t ret; 1129 unsigned int dif; 1130 bool dix; 1131 1132 ret = scsi_alloc_sgtables(cmd); 1133 if (ret != BLK_STS_OK) 1134 return ret; 1135 1136 ret = BLK_STS_IOERR; 1137 if (!scsi_device_online(sdp) || sdp->changed) { 1138 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1139 goto fail; 1140 } 1141 1142 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1143 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1144 goto fail; 1145 } 1146 1147 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1148 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1149 goto fail; 1150 } 1151 1152 /* 1153 * Some SD card readers can't handle accesses which touch the 1154 * last one or two logical blocks. Split accesses as needed. 1155 */ 1156 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1157 1158 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1159 if (lba < threshold) { 1160 /* Access up to the threshold but not beyond */ 1161 nr_blocks = threshold - lba; 1162 } else { 1163 /* Access only a single logical block */ 1164 nr_blocks = 1; 1165 } 1166 } 1167 1168 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1169 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1170 if (ret) 1171 goto fail; 1172 } 1173 1174 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1175 dix = scsi_prot_sg_count(cmd); 1176 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1177 1178 if (dif || dix) 1179 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1180 else 1181 protect = 0; 1182 1183 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1184 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1185 protect | fua); 1186 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1187 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1188 protect | fua); 1189 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1190 sdp->use_10_for_rw || protect) { 1191 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1192 protect | fua); 1193 } else { 1194 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1195 protect | fua); 1196 } 1197 1198 if (unlikely(ret != BLK_STS_OK)) 1199 goto fail; 1200 1201 /* 1202 * We shouldn't disconnect in the middle of a sector, so with a dumb 1203 * host adapter, it's safe to assume that we can at least transfer 1204 * this many bytes between each connect / disconnect. 1205 */ 1206 cmd->transfersize = sdp->sector_size; 1207 cmd->underflow = nr_blocks << 9; 1208 cmd->allowed = sdkp->max_retries; 1209 cmd->sdb.length = nr_blocks * sdp->sector_size; 1210 1211 SCSI_LOG_HLQUEUE(1, 1212 scmd_printk(KERN_INFO, cmd, 1213 "%s: block=%llu, count=%d\n", __func__, 1214 (unsigned long long)blk_rq_pos(rq), 1215 blk_rq_sectors(rq))); 1216 SCSI_LOG_HLQUEUE(2, 1217 scmd_printk(KERN_INFO, cmd, 1218 "%s %d/%u 512 byte blocks.\n", 1219 write ? "writing" : "reading", nr_blocks, 1220 blk_rq_sectors(rq))); 1221 1222 /* 1223 * This indicates that the command is ready from our end to be queued. 1224 */ 1225 return BLK_STS_OK; 1226 fail: 1227 scsi_free_sgtables(cmd); 1228 return ret; 1229 } 1230 1231 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1232 { 1233 struct request *rq = scsi_cmd_to_rq(cmd); 1234 1235 switch (req_op(rq)) { 1236 case REQ_OP_DISCARD: 1237 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1238 case SD_LBP_UNMAP: 1239 return sd_setup_unmap_cmnd(cmd); 1240 case SD_LBP_WS16: 1241 return sd_setup_write_same16_cmnd(cmd, true); 1242 case SD_LBP_WS10: 1243 return sd_setup_write_same10_cmnd(cmd, true); 1244 case SD_LBP_ZERO: 1245 return sd_setup_write_same10_cmnd(cmd, false); 1246 default: 1247 return BLK_STS_TARGET; 1248 } 1249 case REQ_OP_WRITE_ZEROES: 1250 return sd_setup_write_zeroes_cmnd(cmd); 1251 case REQ_OP_FLUSH: 1252 return sd_setup_flush_cmnd(cmd); 1253 case REQ_OP_READ: 1254 case REQ_OP_WRITE: 1255 case REQ_OP_ZONE_APPEND: 1256 return sd_setup_read_write_cmnd(cmd); 1257 case REQ_OP_ZONE_RESET: 1258 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1259 false); 1260 case REQ_OP_ZONE_RESET_ALL: 1261 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1262 true); 1263 case REQ_OP_ZONE_OPEN: 1264 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1265 case REQ_OP_ZONE_CLOSE: 1266 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1267 case REQ_OP_ZONE_FINISH: 1268 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1269 default: 1270 WARN_ON_ONCE(1); 1271 return BLK_STS_NOTSUPP; 1272 } 1273 } 1274 1275 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1276 { 1277 struct request *rq = scsi_cmd_to_rq(SCpnt); 1278 1279 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1280 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1281 } 1282 1283 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp) 1284 { 1285 if (sdkp->device->removable || sdkp->write_prot) { 1286 if (disk_check_media_change(disk)) 1287 return true; 1288 } 1289 1290 /* 1291 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1292 * nothing to do with partitions, BLKRRPART is used to force a full 1293 * revalidate after things like a format for historical reasons. 1294 */ 1295 return test_bit(GD_NEED_PART_SCAN, &disk->state); 1296 } 1297 1298 /** 1299 * sd_open - open a scsi disk device 1300 * @disk: disk to open 1301 * @mode: open mode 1302 * 1303 * Returns 0 if successful. Returns a negated errno value in case 1304 * of error. 1305 * 1306 * Note: This can be called from a user context (e.g. fsck(1) ) 1307 * or from within the kernel (e.g. as a result of a mount(1) ). 1308 * In the latter case @inode and @filp carry an abridged amount 1309 * of information as noted above. 1310 * 1311 * Locking: called with disk->open_mutex held. 1312 **/ 1313 static int sd_open(struct gendisk *disk, blk_mode_t mode) 1314 { 1315 struct scsi_disk *sdkp = scsi_disk(disk); 1316 struct scsi_device *sdev = sdkp->device; 1317 int retval; 1318 1319 if (scsi_device_get(sdev)) 1320 return -ENXIO; 1321 1322 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1323 1324 /* 1325 * If the device is in error recovery, wait until it is done. 1326 * If the device is offline, then disallow any access to it. 1327 */ 1328 retval = -ENXIO; 1329 if (!scsi_block_when_processing_errors(sdev)) 1330 goto error_out; 1331 1332 if (sd_need_revalidate(disk, sdkp)) 1333 sd_revalidate_disk(disk); 1334 1335 /* 1336 * If the drive is empty, just let the open fail. 1337 */ 1338 retval = -ENOMEDIUM; 1339 if (sdev->removable && !sdkp->media_present && 1340 !(mode & BLK_OPEN_NDELAY)) 1341 goto error_out; 1342 1343 /* 1344 * If the device has the write protect tab set, have the open fail 1345 * if the user expects to be able to write to the thing. 1346 */ 1347 retval = -EROFS; 1348 if (sdkp->write_prot && (mode & BLK_OPEN_WRITE)) 1349 goto error_out; 1350 1351 /* 1352 * It is possible that the disk changing stuff resulted in 1353 * the device being taken offline. If this is the case, 1354 * report this to the user, and don't pretend that the 1355 * open actually succeeded. 1356 */ 1357 retval = -ENXIO; 1358 if (!scsi_device_online(sdev)) 1359 goto error_out; 1360 1361 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1362 if (scsi_block_when_processing_errors(sdev)) 1363 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1364 } 1365 1366 return 0; 1367 1368 error_out: 1369 scsi_device_put(sdev); 1370 return retval; 1371 } 1372 1373 /** 1374 * sd_release - invoked when the (last) close(2) is called on this 1375 * scsi disk. 1376 * @disk: disk to release 1377 * 1378 * Returns 0. 1379 * 1380 * Note: may block (uninterruptible) if error recovery is underway 1381 * on this disk. 1382 * 1383 * Locking: called with disk->open_mutex held. 1384 **/ 1385 static void sd_release(struct gendisk *disk) 1386 { 1387 struct scsi_disk *sdkp = scsi_disk(disk); 1388 struct scsi_device *sdev = sdkp->device; 1389 1390 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1391 1392 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1393 if (scsi_block_when_processing_errors(sdev)) 1394 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1395 } 1396 1397 scsi_device_put(sdev); 1398 } 1399 1400 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1401 { 1402 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1403 struct scsi_device *sdp = sdkp->device; 1404 struct Scsi_Host *host = sdp->host; 1405 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1406 int diskinfo[4]; 1407 1408 /* default to most commonly used values */ 1409 diskinfo[0] = 0x40; /* 1 << 6 */ 1410 diskinfo[1] = 0x20; /* 1 << 5 */ 1411 diskinfo[2] = capacity >> 11; 1412 1413 /* override with calculated, extended default, or driver values */ 1414 if (host->hostt->bios_param) 1415 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1416 else 1417 scsicam_bios_param(bdev, capacity, diskinfo); 1418 1419 geo->heads = diskinfo[0]; 1420 geo->sectors = diskinfo[1]; 1421 geo->cylinders = diskinfo[2]; 1422 return 0; 1423 } 1424 1425 /** 1426 * sd_ioctl - process an ioctl 1427 * @bdev: target block device 1428 * @mode: open mode 1429 * @cmd: ioctl command number 1430 * @arg: this is third argument given to ioctl(2) system call. 1431 * Often contains a pointer. 1432 * 1433 * Returns 0 if successful (some ioctls return positive numbers on 1434 * success as well). Returns a negated errno value in case of error. 1435 * 1436 * Note: most ioctls are forward onto the block subsystem or further 1437 * down in the scsi subsystem. 1438 **/ 1439 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode, 1440 unsigned int cmd, unsigned long arg) 1441 { 1442 struct gendisk *disk = bdev->bd_disk; 1443 struct scsi_disk *sdkp = scsi_disk(disk); 1444 struct scsi_device *sdp = sdkp->device; 1445 void __user *p = (void __user *)arg; 1446 int error; 1447 1448 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1449 "cmd=0x%x\n", disk->disk_name, cmd)); 1450 1451 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1452 return -ENOIOCTLCMD; 1453 1454 /* 1455 * If we are in the middle of error recovery, don't let anyone 1456 * else try and use this device. Also, if error recovery fails, it 1457 * may try and take the device offline, in which case all further 1458 * access to the device is prohibited. 1459 */ 1460 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1461 (mode & BLK_OPEN_NDELAY)); 1462 if (error) 1463 return error; 1464 1465 if (is_sed_ioctl(cmd)) 1466 return sed_ioctl(sdkp->opal_dev, cmd, p); 1467 return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p); 1468 } 1469 1470 static void set_media_not_present(struct scsi_disk *sdkp) 1471 { 1472 if (sdkp->media_present) 1473 sdkp->device->changed = 1; 1474 1475 if (sdkp->device->removable) { 1476 sdkp->media_present = 0; 1477 sdkp->capacity = 0; 1478 } 1479 } 1480 1481 static int media_not_present(struct scsi_disk *sdkp, 1482 struct scsi_sense_hdr *sshdr) 1483 { 1484 if (!scsi_sense_valid(sshdr)) 1485 return 0; 1486 1487 /* not invoked for commands that could return deferred errors */ 1488 switch (sshdr->sense_key) { 1489 case UNIT_ATTENTION: 1490 case NOT_READY: 1491 /* medium not present */ 1492 if (sshdr->asc == 0x3A) { 1493 set_media_not_present(sdkp); 1494 return 1; 1495 } 1496 } 1497 return 0; 1498 } 1499 1500 /** 1501 * sd_check_events - check media events 1502 * @disk: kernel device descriptor 1503 * @clearing: disk events currently being cleared 1504 * 1505 * Returns mask of DISK_EVENT_*. 1506 * 1507 * Note: this function is invoked from the block subsystem. 1508 **/ 1509 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1510 { 1511 struct scsi_disk *sdkp = disk->private_data; 1512 struct scsi_device *sdp; 1513 int retval; 1514 bool disk_changed; 1515 1516 if (!sdkp) 1517 return 0; 1518 1519 sdp = sdkp->device; 1520 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1521 1522 /* 1523 * If the device is offline, don't send any commands - just pretend as 1524 * if the command failed. If the device ever comes back online, we 1525 * can deal with it then. It is only because of unrecoverable errors 1526 * that we would ever take a device offline in the first place. 1527 */ 1528 if (!scsi_device_online(sdp)) { 1529 set_media_not_present(sdkp); 1530 goto out; 1531 } 1532 1533 /* 1534 * Using TEST_UNIT_READY enables differentiation between drive with 1535 * no cartridge loaded - NOT READY, drive with changed cartridge - 1536 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1537 * 1538 * Drives that auto spin down. eg iomega jaz 1G, will be started 1539 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1540 * sd_revalidate() is called. 1541 */ 1542 if (scsi_block_when_processing_errors(sdp)) { 1543 struct scsi_sense_hdr sshdr = { 0, }; 1544 1545 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1546 &sshdr); 1547 1548 /* failed to execute TUR, assume media not present */ 1549 if (retval < 0 || host_byte(retval)) { 1550 set_media_not_present(sdkp); 1551 goto out; 1552 } 1553 1554 if (media_not_present(sdkp, &sshdr)) 1555 goto out; 1556 } 1557 1558 /* 1559 * For removable scsi disk we have to recognise the presence 1560 * of a disk in the drive. 1561 */ 1562 if (!sdkp->media_present) 1563 sdp->changed = 1; 1564 sdkp->media_present = 1; 1565 out: 1566 /* 1567 * sdp->changed is set under the following conditions: 1568 * 1569 * Medium present state has changed in either direction. 1570 * Device has indicated UNIT_ATTENTION. 1571 */ 1572 disk_changed = sdp->changed; 1573 sdp->changed = 0; 1574 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1575 } 1576 1577 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1578 { 1579 int retries, res; 1580 struct scsi_device *sdp = sdkp->device; 1581 const int timeout = sdp->request_queue->rq_timeout 1582 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1583 struct scsi_sense_hdr my_sshdr; 1584 const struct scsi_exec_args exec_args = { 1585 .req_flags = BLK_MQ_REQ_PM, 1586 /* caller might not be interested in sense, but we need it */ 1587 .sshdr = sshdr ? : &my_sshdr, 1588 }; 1589 1590 if (!scsi_device_online(sdp)) 1591 return -ENODEV; 1592 1593 sshdr = exec_args.sshdr; 1594 1595 for (retries = 3; retries > 0; --retries) { 1596 unsigned char cmd[16] = { 0 }; 1597 1598 if (sdp->use_16_for_sync) 1599 cmd[0] = SYNCHRONIZE_CACHE_16; 1600 else 1601 cmd[0] = SYNCHRONIZE_CACHE; 1602 /* 1603 * Leave the rest of the command zero to indicate 1604 * flush everything. 1605 */ 1606 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 1607 timeout, sdkp->max_retries, &exec_args); 1608 if (res == 0) 1609 break; 1610 } 1611 1612 if (res) { 1613 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1614 1615 if (res < 0) 1616 return res; 1617 1618 if (scsi_status_is_check_condition(res) && 1619 scsi_sense_valid(sshdr)) { 1620 sd_print_sense_hdr(sdkp, sshdr); 1621 1622 /* we need to evaluate the error return */ 1623 if (sshdr->asc == 0x3a || /* medium not present */ 1624 sshdr->asc == 0x20 || /* invalid command */ 1625 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1626 /* this is no error here */ 1627 return 0; 1628 } 1629 1630 switch (host_byte(res)) { 1631 /* ignore errors due to racing a disconnection */ 1632 case DID_BAD_TARGET: 1633 case DID_NO_CONNECT: 1634 return 0; 1635 /* signal the upper layer it might try again */ 1636 case DID_BUS_BUSY: 1637 case DID_IMM_RETRY: 1638 case DID_REQUEUE: 1639 case DID_SOFT_ERROR: 1640 return -EBUSY; 1641 default: 1642 return -EIO; 1643 } 1644 } 1645 return 0; 1646 } 1647 1648 static void sd_rescan(struct device *dev) 1649 { 1650 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1651 1652 sd_revalidate_disk(sdkp->disk); 1653 } 1654 1655 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1656 enum blk_unique_id type) 1657 { 1658 struct scsi_device *sdev = scsi_disk(disk)->device; 1659 const struct scsi_vpd *vpd; 1660 const unsigned char *d; 1661 int ret = -ENXIO, len; 1662 1663 rcu_read_lock(); 1664 vpd = rcu_dereference(sdev->vpd_pg83); 1665 if (!vpd) 1666 goto out_unlock; 1667 1668 ret = -EINVAL; 1669 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1670 /* we only care about designators with LU association */ 1671 if (((d[1] >> 4) & 0x3) != 0x00) 1672 continue; 1673 if ((d[1] & 0xf) != type) 1674 continue; 1675 1676 /* 1677 * Only exit early if a 16-byte descriptor was found. Otherwise 1678 * keep looking as one with more entropy might still show up. 1679 */ 1680 len = d[3]; 1681 if (len != 8 && len != 12 && len != 16) 1682 continue; 1683 ret = len; 1684 memcpy(id, d + 4, len); 1685 if (len == 16) 1686 break; 1687 } 1688 out_unlock: 1689 rcu_read_unlock(); 1690 return ret; 1691 } 1692 1693 static char sd_pr_type(enum pr_type type) 1694 { 1695 switch (type) { 1696 case PR_WRITE_EXCLUSIVE: 1697 return 0x01; 1698 case PR_EXCLUSIVE_ACCESS: 1699 return 0x03; 1700 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1701 return 0x05; 1702 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1703 return 0x06; 1704 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1705 return 0x07; 1706 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1707 return 0x08; 1708 default: 1709 return 0; 1710 } 1711 }; 1712 1713 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result) 1714 { 1715 switch (host_byte(result)) { 1716 case DID_TRANSPORT_MARGINAL: 1717 case DID_TRANSPORT_DISRUPTED: 1718 case DID_BUS_BUSY: 1719 return PR_STS_RETRY_PATH_FAILURE; 1720 case DID_NO_CONNECT: 1721 return PR_STS_PATH_FAILED; 1722 case DID_TRANSPORT_FAILFAST: 1723 return PR_STS_PATH_FAST_FAILED; 1724 } 1725 1726 switch (status_byte(result)) { 1727 case SAM_STAT_RESERVATION_CONFLICT: 1728 return PR_STS_RESERVATION_CONFLICT; 1729 case SAM_STAT_CHECK_CONDITION: 1730 if (!scsi_sense_valid(sshdr)) 1731 return PR_STS_IOERR; 1732 1733 if (sshdr->sense_key == ILLEGAL_REQUEST && 1734 (sshdr->asc == 0x26 || sshdr->asc == 0x24)) 1735 return -EINVAL; 1736 1737 fallthrough; 1738 default: 1739 return PR_STS_IOERR; 1740 } 1741 } 1742 1743 static int sd_pr_command(struct block_device *bdev, u8 sa, 1744 u64 key, u64 sa_key, u8 type, u8 flags) 1745 { 1746 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1747 struct scsi_device *sdev = sdkp->device; 1748 struct scsi_sense_hdr sshdr; 1749 const struct scsi_exec_args exec_args = { 1750 .sshdr = &sshdr, 1751 }; 1752 int result; 1753 u8 cmd[16] = { 0, }; 1754 u8 data[24] = { 0, }; 1755 1756 cmd[0] = PERSISTENT_RESERVE_OUT; 1757 cmd[1] = sa; 1758 cmd[2] = type; 1759 put_unaligned_be32(sizeof(data), &cmd[5]); 1760 1761 put_unaligned_be64(key, &data[0]); 1762 put_unaligned_be64(sa_key, &data[8]); 1763 data[20] = flags; 1764 1765 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data, 1766 sizeof(data), SD_TIMEOUT, sdkp->max_retries, 1767 &exec_args); 1768 1769 if (scsi_status_is_check_condition(result) && 1770 scsi_sense_valid(&sshdr)) { 1771 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1772 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1773 } 1774 1775 if (result <= 0) 1776 return result; 1777 1778 return sd_scsi_to_pr_err(&sshdr, result); 1779 } 1780 1781 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1782 u32 flags) 1783 { 1784 if (flags & ~PR_FL_IGNORE_KEY) 1785 return -EOPNOTSUPP; 1786 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1787 old_key, new_key, 0, 1788 (1 << 0) /* APTPL */); 1789 } 1790 1791 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1792 u32 flags) 1793 { 1794 if (flags) 1795 return -EOPNOTSUPP; 1796 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1797 } 1798 1799 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1800 { 1801 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1802 } 1803 1804 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1805 enum pr_type type, bool abort) 1806 { 1807 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1808 sd_pr_type(type), 0); 1809 } 1810 1811 static int sd_pr_clear(struct block_device *bdev, u64 key) 1812 { 1813 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1814 } 1815 1816 static const struct pr_ops sd_pr_ops = { 1817 .pr_register = sd_pr_register, 1818 .pr_reserve = sd_pr_reserve, 1819 .pr_release = sd_pr_release, 1820 .pr_preempt = sd_pr_preempt, 1821 .pr_clear = sd_pr_clear, 1822 }; 1823 1824 static void scsi_disk_free_disk(struct gendisk *disk) 1825 { 1826 struct scsi_disk *sdkp = scsi_disk(disk); 1827 1828 put_device(&sdkp->disk_dev); 1829 } 1830 1831 static const struct block_device_operations sd_fops = { 1832 .owner = THIS_MODULE, 1833 .open = sd_open, 1834 .release = sd_release, 1835 .ioctl = sd_ioctl, 1836 .getgeo = sd_getgeo, 1837 .compat_ioctl = blkdev_compat_ptr_ioctl, 1838 .check_events = sd_check_events, 1839 .unlock_native_capacity = sd_unlock_native_capacity, 1840 .report_zones = sd_zbc_report_zones, 1841 .get_unique_id = sd_get_unique_id, 1842 .free_disk = scsi_disk_free_disk, 1843 .pr_ops = &sd_pr_ops, 1844 }; 1845 1846 /** 1847 * sd_eh_reset - reset error handling callback 1848 * @scmd: sd-issued command that has failed 1849 * 1850 * This function is called by the SCSI midlayer before starting 1851 * SCSI EH. When counting medium access failures we have to be 1852 * careful to register it only only once per device and SCSI EH run; 1853 * there might be several timed out commands which will cause the 1854 * 'max_medium_access_timeouts' counter to trigger after the first 1855 * SCSI EH run already and set the device to offline. 1856 * So this function resets the internal counter before starting SCSI EH. 1857 **/ 1858 static void sd_eh_reset(struct scsi_cmnd *scmd) 1859 { 1860 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1861 1862 /* New SCSI EH run, reset gate variable */ 1863 sdkp->ignore_medium_access_errors = false; 1864 } 1865 1866 /** 1867 * sd_eh_action - error handling callback 1868 * @scmd: sd-issued command that has failed 1869 * @eh_disp: The recovery disposition suggested by the midlayer 1870 * 1871 * This function is called by the SCSI midlayer upon completion of an 1872 * error test command (currently TEST UNIT READY). The result of sending 1873 * the eh command is passed in eh_disp. We're looking for devices that 1874 * fail medium access commands but are OK with non access commands like 1875 * test unit ready (so wrongly see the device as having a successful 1876 * recovery) 1877 **/ 1878 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1879 { 1880 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1881 struct scsi_device *sdev = scmd->device; 1882 1883 if (!scsi_device_online(sdev) || 1884 !scsi_medium_access_command(scmd) || 1885 host_byte(scmd->result) != DID_TIME_OUT || 1886 eh_disp != SUCCESS) 1887 return eh_disp; 1888 1889 /* 1890 * The device has timed out executing a medium access command. 1891 * However, the TEST UNIT READY command sent during error 1892 * handling completed successfully. Either the device is in the 1893 * process of recovering or has it suffered an internal failure 1894 * that prevents access to the storage medium. 1895 */ 1896 if (!sdkp->ignore_medium_access_errors) { 1897 sdkp->medium_access_timed_out++; 1898 sdkp->ignore_medium_access_errors = true; 1899 } 1900 1901 /* 1902 * If the device keeps failing read/write commands but TEST UNIT 1903 * READY always completes successfully we assume that medium 1904 * access is no longer possible and take the device offline. 1905 */ 1906 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1907 scmd_printk(KERN_ERR, scmd, 1908 "Medium access timeout failure. Offlining disk!\n"); 1909 mutex_lock(&sdev->state_mutex); 1910 scsi_device_set_state(sdev, SDEV_OFFLINE); 1911 mutex_unlock(&sdev->state_mutex); 1912 1913 return SUCCESS; 1914 } 1915 1916 return eh_disp; 1917 } 1918 1919 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1920 { 1921 struct request *req = scsi_cmd_to_rq(scmd); 1922 struct scsi_device *sdev = scmd->device; 1923 unsigned int transferred, good_bytes; 1924 u64 start_lba, end_lba, bad_lba; 1925 1926 /* 1927 * Some commands have a payload smaller than the device logical 1928 * block size (e.g. INQUIRY on a 4K disk). 1929 */ 1930 if (scsi_bufflen(scmd) <= sdev->sector_size) 1931 return 0; 1932 1933 /* Check if we have a 'bad_lba' information */ 1934 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1935 SCSI_SENSE_BUFFERSIZE, 1936 &bad_lba)) 1937 return 0; 1938 1939 /* 1940 * If the bad lba was reported incorrectly, we have no idea where 1941 * the error is. 1942 */ 1943 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1944 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1945 if (bad_lba < start_lba || bad_lba >= end_lba) 1946 return 0; 1947 1948 /* 1949 * resid is optional but mostly filled in. When it's unused, 1950 * its value is zero, so we assume the whole buffer transferred 1951 */ 1952 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1953 1954 /* This computation should always be done in terms of the 1955 * resolution of the device's medium. 1956 */ 1957 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1958 1959 return min(good_bytes, transferred); 1960 } 1961 1962 /** 1963 * sd_done - bottom half handler: called when the lower level 1964 * driver has completed (successfully or otherwise) a scsi command. 1965 * @SCpnt: mid-level's per command structure. 1966 * 1967 * Note: potentially run from within an ISR. Must not block. 1968 **/ 1969 static int sd_done(struct scsi_cmnd *SCpnt) 1970 { 1971 int result = SCpnt->result; 1972 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1973 unsigned int sector_size = SCpnt->device->sector_size; 1974 unsigned int resid; 1975 struct scsi_sense_hdr sshdr; 1976 struct request *req = scsi_cmd_to_rq(SCpnt); 1977 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 1978 int sense_valid = 0; 1979 int sense_deferred = 0; 1980 1981 switch (req_op(req)) { 1982 case REQ_OP_DISCARD: 1983 case REQ_OP_WRITE_ZEROES: 1984 case REQ_OP_ZONE_RESET: 1985 case REQ_OP_ZONE_RESET_ALL: 1986 case REQ_OP_ZONE_OPEN: 1987 case REQ_OP_ZONE_CLOSE: 1988 case REQ_OP_ZONE_FINISH: 1989 if (!result) { 1990 good_bytes = blk_rq_bytes(req); 1991 scsi_set_resid(SCpnt, 0); 1992 } else { 1993 good_bytes = 0; 1994 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1995 } 1996 break; 1997 default: 1998 /* 1999 * In case of bogus fw or device, we could end up having 2000 * an unaligned partial completion. Check this here and force 2001 * alignment. 2002 */ 2003 resid = scsi_get_resid(SCpnt); 2004 if (resid & (sector_size - 1)) { 2005 sd_printk(KERN_INFO, sdkp, 2006 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2007 resid, sector_size); 2008 scsi_print_command(SCpnt); 2009 resid = min(scsi_bufflen(SCpnt), 2010 round_up(resid, sector_size)); 2011 scsi_set_resid(SCpnt, resid); 2012 } 2013 } 2014 2015 if (result) { 2016 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2017 if (sense_valid) 2018 sense_deferred = scsi_sense_is_deferred(&sshdr); 2019 } 2020 sdkp->medium_access_timed_out = 0; 2021 2022 if (!scsi_status_is_check_condition(result) && 2023 (!sense_valid || sense_deferred)) 2024 goto out; 2025 2026 switch (sshdr.sense_key) { 2027 case HARDWARE_ERROR: 2028 case MEDIUM_ERROR: 2029 good_bytes = sd_completed_bytes(SCpnt); 2030 break; 2031 case RECOVERED_ERROR: 2032 good_bytes = scsi_bufflen(SCpnt); 2033 break; 2034 case NO_SENSE: 2035 /* This indicates a false check condition, so ignore it. An 2036 * unknown amount of data was transferred so treat it as an 2037 * error. 2038 */ 2039 SCpnt->result = 0; 2040 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2041 break; 2042 case ABORTED_COMMAND: 2043 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2044 good_bytes = sd_completed_bytes(SCpnt); 2045 break; 2046 case ILLEGAL_REQUEST: 2047 switch (sshdr.asc) { 2048 case 0x10: /* DIX: Host detected corruption */ 2049 good_bytes = sd_completed_bytes(SCpnt); 2050 break; 2051 case 0x20: /* INVALID COMMAND OPCODE */ 2052 case 0x24: /* INVALID FIELD IN CDB */ 2053 switch (SCpnt->cmnd[0]) { 2054 case UNMAP: 2055 sd_config_discard(sdkp, SD_LBP_DISABLE); 2056 break; 2057 case WRITE_SAME_16: 2058 case WRITE_SAME: 2059 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2060 sd_config_discard(sdkp, SD_LBP_DISABLE); 2061 } else { 2062 sdkp->device->no_write_same = 1; 2063 sd_config_write_same(sdkp); 2064 req->rq_flags |= RQF_QUIET; 2065 } 2066 break; 2067 } 2068 } 2069 break; 2070 default: 2071 break; 2072 } 2073 2074 out: 2075 if (sd_is_zoned(sdkp)) 2076 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2077 2078 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2079 "sd_done: completed %d of %d bytes\n", 2080 good_bytes, scsi_bufflen(SCpnt))); 2081 2082 return good_bytes; 2083 } 2084 2085 /* 2086 * spinup disk - called only in sd_revalidate_disk() 2087 */ 2088 static void 2089 sd_spinup_disk(struct scsi_disk *sdkp) 2090 { 2091 unsigned char cmd[10]; 2092 unsigned long spintime_expire = 0; 2093 int retries, spintime; 2094 unsigned int the_result; 2095 struct scsi_sense_hdr sshdr; 2096 const struct scsi_exec_args exec_args = { 2097 .sshdr = &sshdr, 2098 }; 2099 int sense_valid = 0; 2100 2101 spintime = 0; 2102 2103 /* Spin up drives, as required. Only do this at boot time */ 2104 /* Spinup needs to be done for module loads too. */ 2105 do { 2106 retries = 0; 2107 2108 do { 2109 bool media_was_present = sdkp->media_present; 2110 2111 cmd[0] = TEST_UNIT_READY; 2112 memset((void *) &cmd[1], 0, 9); 2113 2114 the_result = scsi_execute_cmd(sdkp->device, cmd, 2115 REQ_OP_DRV_IN, NULL, 0, 2116 SD_TIMEOUT, 2117 sdkp->max_retries, 2118 &exec_args); 2119 2120 /* 2121 * If the drive has indicated to us that it 2122 * doesn't have any media in it, don't bother 2123 * with any more polling. 2124 */ 2125 if (media_not_present(sdkp, &sshdr)) { 2126 if (media_was_present) 2127 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); 2128 return; 2129 } 2130 2131 if (the_result) 2132 sense_valid = scsi_sense_valid(&sshdr); 2133 retries++; 2134 } while (retries < 3 && 2135 (!scsi_status_is_good(the_result) || 2136 (scsi_status_is_check_condition(the_result) && 2137 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2138 2139 if (!scsi_status_is_check_condition(the_result)) { 2140 /* no sense, TUR either succeeded or failed 2141 * with a status error */ 2142 if(!spintime && !scsi_status_is_good(the_result)) { 2143 sd_print_result(sdkp, "Test Unit Ready failed", 2144 the_result); 2145 } 2146 break; 2147 } 2148 2149 /* 2150 * The device does not want the automatic start to be issued. 2151 */ 2152 if (sdkp->device->no_start_on_add) 2153 break; 2154 2155 if (sense_valid && sshdr.sense_key == NOT_READY) { 2156 if (sshdr.asc == 4 && sshdr.ascq == 3) 2157 break; /* manual intervention required */ 2158 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2159 break; /* standby */ 2160 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2161 break; /* unavailable */ 2162 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2163 break; /* sanitize in progress */ 2164 /* 2165 * Issue command to spin up drive when not ready 2166 */ 2167 if (!spintime) { 2168 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2169 cmd[0] = START_STOP; 2170 cmd[1] = 1; /* Return immediately */ 2171 memset((void *) &cmd[2], 0, 8); 2172 cmd[4] = 1; /* Start spin cycle */ 2173 if (sdkp->device->start_stop_pwr_cond) 2174 cmd[4] |= 1 << 4; 2175 scsi_execute_cmd(sdkp->device, cmd, 2176 REQ_OP_DRV_IN, NULL, 0, 2177 SD_TIMEOUT, sdkp->max_retries, 2178 &exec_args); 2179 spintime_expire = jiffies + 100 * HZ; 2180 spintime = 1; 2181 } 2182 /* Wait 1 second for next try */ 2183 msleep(1000); 2184 printk(KERN_CONT "."); 2185 2186 /* 2187 * Wait for USB flash devices with slow firmware. 2188 * Yes, this sense key/ASC combination shouldn't 2189 * occur here. It's characteristic of these devices. 2190 */ 2191 } else if (sense_valid && 2192 sshdr.sense_key == UNIT_ATTENTION && 2193 sshdr.asc == 0x28) { 2194 if (!spintime) { 2195 spintime_expire = jiffies + 5 * HZ; 2196 spintime = 1; 2197 } 2198 /* Wait 1 second for next try */ 2199 msleep(1000); 2200 } else { 2201 /* we don't understand the sense code, so it's 2202 * probably pointless to loop */ 2203 if(!spintime) { 2204 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2205 sd_print_sense_hdr(sdkp, &sshdr); 2206 } 2207 break; 2208 } 2209 2210 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2211 2212 if (spintime) { 2213 if (scsi_status_is_good(the_result)) 2214 printk(KERN_CONT "ready\n"); 2215 else 2216 printk(KERN_CONT "not responding...\n"); 2217 } 2218 } 2219 2220 /* 2221 * Determine whether disk supports Data Integrity Field. 2222 */ 2223 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2224 { 2225 struct scsi_device *sdp = sdkp->device; 2226 u8 type; 2227 2228 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2229 sdkp->protection_type = 0; 2230 return 0; 2231 } 2232 2233 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2234 2235 if (type > T10_PI_TYPE3_PROTECTION) { 2236 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2237 " protection type %u. Disabling disk!\n", 2238 type); 2239 sdkp->protection_type = 0; 2240 return -ENODEV; 2241 } 2242 2243 sdkp->protection_type = type; 2244 2245 return 0; 2246 } 2247 2248 static void sd_config_protection(struct scsi_disk *sdkp) 2249 { 2250 struct scsi_device *sdp = sdkp->device; 2251 2252 sd_dif_config_host(sdkp); 2253 2254 if (!sdkp->protection_type) 2255 return; 2256 2257 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2258 sd_first_printk(KERN_NOTICE, sdkp, 2259 "Disabling DIF Type %u protection\n", 2260 sdkp->protection_type); 2261 sdkp->protection_type = 0; 2262 } 2263 2264 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2265 sdkp->protection_type); 2266 } 2267 2268 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2269 struct scsi_sense_hdr *sshdr, int sense_valid, 2270 int the_result) 2271 { 2272 if (sense_valid) 2273 sd_print_sense_hdr(sdkp, sshdr); 2274 else 2275 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2276 2277 /* 2278 * Set dirty bit for removable devices if not ready - 2279 * sometimes drives will not report this properly. 2280 */ 2281 if (sdp->removable && 2282 sense_valid && sshdr->sense_key == NOT_READY) 2283 set_media_not_present(sdkp); 2284 2285 /* 2286 * We used to set media_present to 0 here to indicate no media 2287 * in the drive, but some drives fail read capacity even with 2288 * media present, so we can't do that. 2289 */ 2290 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2291 } 2292 2293 #define RC16_LEN 32 2294 #if RC16_LEN > SD_BUF_SIZE 2295 #error RC16_LEN must not be more than SD_BUF_SIZE 2296 #endif 2297 2298 #define READ_CAPACITY_RETRIES_ON_RESET 10 2299 2300 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2301 unsigned char *buffer) 2302 { 2303 unsigned char cmd[16]; 2304 struct scsi_sense_hdr sshdr; 2305 const struct scsi_exec_args exec_args = { 2306 .sshdr = &sshdr, 2307 }; 2308 int sense_valid = 0; 2309 int the_result; 2310 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2311 unsigned int alignment; 2312 unsigned long long lba; 2313 unsigned sector_size; 2314 2315 if (sdp->no_read_capacity_16) 2316 return -EINVAL; 2317 2318 do { 2319 memset(cmd, 0, 16); 2320 cmd[0] = SERVICE_ACTION_IN_16; 2321 cmd[1] = SAI_READ_CAPACITY_16; 2322 cmd[13] = RC16_LEN; 2323 memset(buffer, 0, RC16_LEN); 2324 2325 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, 2326 buffer, RC16_LEN, SD_TIMEOUT, 2327 sdkp->max_retries, &exec_args); 2328 2329 if (media_not_present(sdkp, &sshdr)) 2330 return -ENODEV; 2331 2332 if (the_result > 0) { 2333 sense_valid = scsi_sense_valid(&sshdr); 2334 if (sense_valid && 2335 sshdr.sense_key == ILLEGAL_REQUEST && 2336 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2337 sshdr.ascq == 0x00) 2338 /* Invalid Command Operation Code or 2339 * Invalid Field in CDB, just retry 2340 * silently with RC10 */ 2341 return -EINVAL; 2342 if (sense_valid && 2343 sshdr.sense_key == UNIT_ATTENTION && 2344 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2345 /* Device reset might occur several times, 2346 * give it one more chance */ 2347 if (--reset_retries > 0) 2348 continue; 2349 } 2350 retries--; 2351 2352 } while (the_result && retries); 2353 2354 if (the_result) { 2355 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2356 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2357 return -EINVAL; 2358 } 2359 2360 sector_size = get_unaligned_be32(&buffer[8]); 2361 lba = get_unaligned_be64(&buffer[0]); 2362 2363 if (sd_read_protection_type(sdkp, buffer) < 0) { 2364 sdkp->capacity = 0; 2365 return -ENODEV; 2366 } 2367 2368 /* Logical blocks per physical block exponent */ 2369 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2370 2371 /* RC basis */ 2372 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2373 2374 /* Lowest aligned logical block */ 2375 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2376 blk_queue_alignment_offset(sdp->request_queue, alignment); 2377 if (alignment && sdkp->first_scan) 2378 sd_printk(KERN_NOTICE, sdkp, 2379 "physical block alignment offset: %u\n", alignment); 2380 2381 if (buffer[14] & 0x80) { /* LBPME */ 2382 sdkp->lbpme = 1; 2383 2384 if (buffer[14] & 0x40) /* LBPRZ */ 2385 sdkp->lbprz = 1; 2386 2387 sd_config_discard(sdkp, SD_LBP_WS16); 2388 } 2389 2390 sdkp->capacity = lba + 1; 2391 return sector_size; 2392 } 2393 2394 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2395 unsigned char *buffer) 2396 { 2397 unsigned char cmd[16]; 2398 struct scsi_sense_hdr sshdr; 2399 const struct scsi_exec_args exec_args = { 2400 .sshdr = &sshdr, 2401 }; 2402 int sense_valid = 0; 2403 int the_result; 2404 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2405 sector_t lba; 2406 unsigned sector_size; 2407 2408 do { 2409 cmd[0] = READ_CAPACITY; 2410 memset(&cmd[1], 0, 9); 2411 memset(buffer, 0, 8); 2412 2413 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer, 2414 8, SD_TIMEOUT, sdkp->max_retries, 2415 &exec_args); 2416 2417 if (media_not_present(sdkp, &sshdr)) 2418 return -ENODEV; 2419 2420 if (the_result > 0) { 2421 sense_valid = scsi_sense_valid(&sshdr); 2422 if (sense_valid && 2423 sshdr.sense_key == UNIT_ATTENTION && 2424 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2425 /* Device reset might occur several times, 2426 * give it one more chance */ 2427 if (--reset_retries > 0) 2428 continue; 2429 } 2430 retries--; 2431 2432 } while (the_result && retries); 2433 2434 if (the_result) { 2435 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2436 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2437 return -EINVAL; 2438 } 2439 2440 sector_size = get_unaligned_be32(&buffer[4]); 2441 lba = get_unaligned_be32(&buffer[0]); 2442 2443 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2444 /* Some buggy (usb cardreader) devices return an lba of 2445 0xffffffff when the want to report a size of 0 (with 2446 which they really mean no media is present) */ 2447 sdkp->capacity = 0; 2448 sdkp->physical_block_size = sector_size; 2449 return sector_size; 2450 } 2451 2452 sdkp->capacity = lba + 1; 2453 sdkp->physical_block_size = sector_size; 2454 return sector_size; 2455 } 2456 2457 static int sd_try_rc16_first(struct scsi_device *sdp) 2458 { 2459 if (sdp->host->max_cmd_len < 16) 2460 return 0; 2461 if (sdp->try_rc_10_first) 2462 return 0; 2463 if (sdp->scsi_level > SCSI_SPC_2) 2464 return 1; 2465 if (scsi_device_protection(sdp)) 2466 return 1; 2467 return 0; 2468 } 2469 2470 /* 2471 * read disk capacity 2472 */ 2473 static void 2474 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2475 { 2476 int sector_size; 2477 struct scsi_device *sdp = sdkp->device; 2478 2479 if (sd_try_rc16_first(sdp)) { 2480 sector_size = read_capacity_16(sdkp, sdp, buffer); 2481 if (sector_size == -EOVERFLOW) 2482 goto got_data; 2483 if (sector_size == -ENODEV) 2484 return; 2485 if (sector_size < 0) 2486 sector_size = read_capacity_10(sdkp, sdp, buffer); 2487 if (sector_size < 0) 2488 return; 2489 } else { 2490 sector_size = read_capacity_10(sdkp, sdp, buffer); 2491 if (sector_size == -EOVERFLOW) 2492 goto got_data; 2493 if (sector_size < 0) 2494 return; 2495 if ((sizeof(sdkp->capacity) > 4) && 2496 (sdkp->capacity > 0xffffffffULL)) { 2497 int old_sector_size = sector_size; 2498 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2499 "Trying to use READ CAPACITY(16).\n"); 2500 sector_size = read_capacity_16(sdkp, sdp, buffer); 2501 if (sector_size < 0) { 2502 sd_printk(KERN_NOTICE, sdkp, 2503 "Using 0xffffffff as device size\n"); 2504 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2505 sector_size = old_sector_size; 2506 goto got_data; 2507 } 2508 /* Remember that READ CAPACITY(16) succeeded */ 2509 sdp->try_rc_10_first = 0; 2510 } 2511 } 2512 2513 /* Some devices are known to return the total number of blocks, 2514 * not the highest block number. Some devices have versions 2515 * which do this and others which do not. Some devices we might 2516 * suspect of doing this but we don't know for certain. 2517 * 2518 * If we know the reported capacity is wrong, decrement it. If 2519 * we can only guess, then assume the number of blocks is even 2520 * (usually true but not always) and err on the side of lowering 2521 * the capacity. 2522 */ 2523 if (sdp->fix_capacity || 2524 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2525 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2526 "from its reported value: %llu\n", 2527 (unsigned long long) sdkp->capacity); 2528 --sdkp->capacity; 2529 } 2530 2531 got_data: 2532 if (sector_size == 0) { 2533 sector_size = 512; 2534 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2535 "assuming 512.\n"); 2536 } 2537 2538 if (sector_size != 512 && 2539 sector_size != 1024 && 2540 sector_size != 2048 && 2541 sector_size != 4096) { 2542 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2543 sector_size); 2544 /* 2545 * The user might want to re-format the drive with 2546 * a supported sectorsize. Once this happens, it 2547 * would be relatively trivial to set the thing up. 2548 * For this reason, we leave the thing in the table. 2549 */ 2550 sdkp->capacity = 0; 2551 /* 2552 * set a bogus sector size so the normal read/write 2553 * logic in the block layer will eventually refuse any 2554 * request on this device without tripping over power 2555 * of two sector size assumptions 2556 */ 2557 sector_size = 512; 2558 } 2559 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2560 blk_queue_physical_block_size(sdp->request_queue, 2561 sdkp->physical_block_size); 2562 sdkp->device->sector_size = sector_size; 2563 2564 if (sdkp->capacity > 0xffffffff) 2565 sdp->use_16_for_rw = 1; 2566 2567 } 2568 2569 /* 2570 * Print disk capacity 2571 */ 2572 static void 2573 sd_print_capacity(struct scsi_disk *sdkp, 2574 sector_t old_capacity) 2575 { 2576 int sector_size = sdkp->device->sector_size; 2577 char cap_str_2[10], cap_str_10[10]; 2578 2579 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2580 return; 2581 2582 string_get_size(sdkp->capacity, sector_size, 2583 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2584 string_get_size(sdkp->capacity, sector_size, 2585 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2586 2587 sd_printk(KERN_NOTICE, sdkp, 2588 "%llu %d-byte logical blocks: (%s/%s)\n", 2589 (unsigned long long)sdkp->capacity, 2590 sector_size, cap_str_10, cap_str_2); 2591 2592 if (sdkp->physical_block_size != sector_size) 2593 sd_printk(KERN_NOTICE, sdkp, 2594 "%u-byte physical blocks\n", 2595 sdkp->physical_block_size); 2596 } 2597 2598 /* called with buffer of length 512 */ 2599 static inline int 2600 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2601 unsigned char *buffer, int len, struct scsi_mode_data *data, 2602 struct scsi_sense_hdr *sshdr) 2603 { 2604 /* 2605 * If we must use MODE SENSE(10), make sure that the buffer length 2606 * is at least 8 bytes so that the mode sense header fits. 2607 */ 2608 if (sdkp->device->use_10_for_ms && len < 8) 2609 len = 8; 2610 2611 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2612 SD_TIMEOUT, sdkp->max_retries, data, 2613 sshdr); 2614 } 2615 2616 /* 2617 * read write protect setting, if possible - called only in sd_revalidate_disk() 2618 * called with buffer of length SD_BUF_SIZE 2619 */ 2620 static void 2621 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2622 { 2623 int res; 2624 struct scsi_device *sdp = sdkp->device; 2625 struct scsi_mode_data data; 2626 int old_wp = sdkp->write_prot; 2627 2628 set_disk_ro(sdkp->disk, 0); 2629 if (sdp->skip_ms_page_3f) { 2630 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2631 return; 2632 } 2633 2634 if (sdp->use_192_bytes_for_3f) { 2635 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2636 } else { 2637 /* 2638 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2639 * We have to start carefully: some devices hang if we ask 2640 * for more than is available. 2641 */ 2642 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2643 2644 /* 2645 * Second attempt: ask for page 0 When only page 0 is 2646 * implemented, a request for page 3F may return Sense Key 2647 * 5: Illegal Request, Sense Code 24: Invalid field in 2648 * CDB. 2649 */ 2650 if (res < 0) 2651 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2652 2653 /* 2654 * Third attempt: ask 255 bytes, as we did earlier. 2655 */ 2656 if (res < 0) 2657 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2658 &data, NULL); 2659 } 2660 2661 if (res < 0) { 2662 sd_first_printk(KERN_WARNING, sdkp, 2663 "Test WP failed, assume Write Enabled\n"); 2664 } else { 2665 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2666 set_disk_ro(sdkp->disk, sdkp->write_prot); 2667 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2668 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2669 sdkp->write_prot ? "on" : "off"); 2670 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2671 } 2672 } 2673 } 2674 2675 /* 2676 * sd_read_cache_type - called only from sd_revalidate_disk() 2677 * called with buffer of length SD_BUF_SIZE 2678 */ 2679 static void 2680 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2681 { 2682 int len = 0, res; 2683 struct scsi_device *sdp = sdkp->device; 2684 2685 int dbd; 2686 int modepage; 2687 int first_len; 2688 struct scsi_mode_data data; 2689 struct scsi_sense_hdr sshdr; 2690 int old_wce = sdkp->WCE; 2691 int old_rcd = sdkp->RCD; 2692 int old_dpofua = sdkp->DPOFUA; 2693 2694 2695 if (sdkp->cache_override) 2696 return; 2697 2698 first_len = 4; 2699 if (sdp->skip_ms_page_8) { 2700 if (sdp->type == TYPE_RBC) 2701 goto defaults; 2702 else { 2703 if (sdp->skip_ms_page_3f) 2704 goto defaults; 2705 modepage = 0x3F; 2706 if (sdp->use_192_bytes_for_3f) 2707 first_len = 192; 2708 dbd = 0; 2709 } 2710 } else if (sdp->type == TYPE_RBC) { 2711 modepage = 6; 2712 dbd = 8; 2713 } else { 2714 modepage = 8; 2715 dbd = 0; 2716 } 2717 2718 /* cautiously ask */ 2719 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2720 &data, &sshdr); 2721 2722 if (res < 0) 2723 goto bad_sense; 2724 2725 if (!data.header_length) { 2726 modepage = 6; 2727 first_len = 0; 2728 sd_first_printk(KERN_ERR, sdkp, 2729 "Missing header in MODE_SENSE response\n"); 2730 } 2731 2732 /* that went OK, now ask for the proper length */ 2733 len = data.length; 2734 2735 /* 2736 * We're only interested in the first three bytes, actually. 2737 * But the data cache page is defined for the first 20. 2738 */ 2739 if (len < 3) 2740 goto bad_sense; 2741 else if (len > SD_BUF_SIZE) { 2742 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2743 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2744 len = SD_BUF_SIZE; 2745 } 2746 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2747 len = 192; 2748 2749 /* Get the data */ 2750 if (len > first_len) 2751 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2752 &data, &sshdr); 2753 2754 if (!res) { 2755 int offset = data.header_length + data.block_descriptor_length; 2756 2757 while (offset < len) { 2758 u8 page_code = buffer[offset] & 0x3F; 2759 u8 spf = buffer[offset] & 0x40; 2760 2761 if (page_code == 8 || page_code == 6) { 2762 /* We're interested only in the first 3 bytes. 2763 */ 2764 if (len - offset <= 2) { 2765 sd_first_printk(KERN_ERR, sdkp, 2766 "Incomplete mode parameter " 2767 "data\n"); 2768 goto defaults; 2769 } else { 2770 modepage = page_code; 2771 goto Page_found; 2772 } 2773 } else { 2774 /* Go to the next page */ 2775 if (spf && len - offset > 3) 2776 offset += 4 + (buffer[offset+2] << 8) + 2777 buffer[offset+3]; 2778 else if (!spf && len - offset > 1) 2779 offset += 2 + buffer[offset+1]; 2780 else { 2781 sd_first_printk(KERN_ERR, sdkp, 2782 "Incomplete mode " 2783 "parameter data\n"); 2784 goto defaults; 2785 } 2786 } 2787 } 2788 2789 sd_first_printk(KERN_WARNING, sdkp, 2790 "No Caching mode page found\n"); 2791 goto defaults; 2792 2793 Page_found: 2794 if (modepage == 8) { 2795 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2796 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2797 } else { 2798 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2799 sdkp->RCD = 0; 2800 } 2801 2802 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2803 if (sdp->broken_fua) { 2804 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2805 sdkp->DPOFUA = 0; 2806 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2807 !sdkp->device->use_16_for_rw) { 2808 sd_first_printk(KERN_NOTICE, sdkp, 2809 "Uses READ/WRITE(6), disabling FUA\n"); 2810 sdkp->DPOFUA = 0; 2811 } 2812 2813 /* No cache flush allowed for write protected devices */ 2814 if (sdkp->WCE && sdkp->write_prot) 2815 sdkp->WCE = 0; 2816 2817 if (sdkp->first_scan || old_wce != sdkp->WCE || 2818 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2819 sd_printk(KERN_NOTICE, sdkp, 2820 "Write cache: %s, read cache: %s, %s\n", 2821 sdkp->WCE ? "enabled" : "disabled", 2822 sdkp->RCD ? "disabled" : "enabled", 2823 sdkp->DPOFUA ? "supports DPO and FUA" 2824 : "doesn't support DPO or FUA"); 2825 2826 return; 2827 } 2828 2829 bad_sense: 2830 if (scsi_sense_valid(&sshdr) && 2831 sshdr.sense_key == ILLEGAL_REQUEST && 2832 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2833 /* Invalid field in CDB */ 2834 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2835 else 2836 sd_first_printk(KERN_ERR, sdkp, 2837 "Asking for cache data failed\n"); 2838 2839 defaults: 2840 if (sdp->wce_default_on) { 2841 sd_first_printk(KERN_NOTICE, sdkp, 2842 "Assuming drive cache: write back\n"); 2843 sdkp->WCE = 1; 2844 } else { 2845 sd_first_printk(KERN_WARNING, sdkp, 2846 "Assuming drive cache: write through\n"); 2847 sdkp->WCE = 0; 2848 } 2849 sdkp->RCD = 0; 2850 sdkp->DPOFUA = 0; 2851 } 2852 2853 /* 2854 * The ATO bit indicates whether the DIF application tag is available 2855 * for use by the operating system. 2856 */ 2857 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2858 { 2859 int res, offset; 2860 struct scsi_device *sdp = sdkp->device; 2861 struct scsi_mode_data data; 2862 struct scsi_sense_hdr sshdr; 2863 2864 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2865 return; 2866 2867 if (sdkp->protection_type == 0) 2868 return; 2869 2870 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2871 sdkp->max_retries, &data, &sshdr); 2872 2873 if (res < 0 || !data.header_length || 2874 data.length < 6) { 2875 sd_first_printk(KERN_WARNING, sdkp, 2876 "getting Control mode page failed, assume no ATO\n"); 2877 2878 if (scsi_sense_valid(&sshdr)) 2879 sd_print_sense_hdr(sdkp, &sshdr); 2880 2881 return; 2882 } 2883 2884 offset = data.header_length + data.block_descriptor_length; 2885 2886 if ((buffer[offset] & 0x3f) != 0x0a) { 2887 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2888 return; 2889 } 2890 2891 if ((buffer[offset + 5] & 0x80) == 0) 2892 return; 2893 2894 sdkp->ATO = 1; 2895 2896 return; 2897 } 2898 2899 /** 2900 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2901 * @sdkp: disk to query 2902 */ 2903 static void sd_read_block_limits(struct scsi_disk *sdkp) 2904 { 2905 struct scsi_vpd *vpd; 2906 2907 rcu_read_lock(); 2908 2909 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 2910 if (!vpd || vpd->len < 16) 2911 goto out; 2912 2913 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 2914 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 2915 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 2916 2917 if (vpd->len >= 64) { 2918 unsigned int lba_count, desc_count; 2919 2920 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 2921 2922 if (!sdkp->lbpme) 2923 goto out; 2924 2925 lba_count = get_unaligned_be32(&vpd->data[20]); 2926 desc_count = get_unaligned_be32(&vpd->data[24]); 2927 2928 if (lba_count && desc_count) 2929 sdkp->max_unmap_blocks = lba_count; 2930 2931 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 2932 2933 if (vpd->data[32] & 0x80) 2934 sdkp->unmap_alignment = 2935 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 2936 2937 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2938 2939 if (sdkp->max_unmap_blocks) 2940 sd_config_discard(sdkp, SD_LBP_UNMAP); 2941 else 2942 sd_config_discard(sdkp, SD_LBP_WS16); 2943 2944 } else { /* LBP VPD page tells us what to use */ 2945 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2946 sd_config_discard(sdkp, SD_LBP_UNMAP); 2947 else if (sdkp->lbpws) 2948 sd_config_discard(sdkp, SD_LBP_WS16); 2949 else if (sdkp->lbpws10) 2950 sd_config_discard(sdkp, SD_LBP_WS10); 2951 else 2952 sd_config_discard(sdkp, SD_LBP_DISABLE); 2953 } 2954 } 2955 2956 out: 2957 rcu_read_unlock(); 2958 } 2959 2960 /** 2961 * sd_read_block_characteristics - Query block dev. characteristics 2962 * @sdkp: disk to query 2963 */ 2964 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2965 { 2966 struct request_queue *q = sdkp->disk->queue; 2967 struct scsi_vpd *vpd; 2968 u16 rot; 2969 u8 zoned; 2970 2971 rcu_read_lock(); 2972 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 2973 2974 if (!vpd || vpd->len < 8) { 2975 rcu_read_unlock(); 2976 return; 2977 } 2978 2979 rot = get_unaligned_be16(&vpd->data[4]); 2980 zoned = (vpd->data[8] >> 4) & 3; 2981 rcu_read_unlock(); 2982 2983 if (rot == 1) { 2984 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2985 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2986 } 2987 2988 if (sdkp->device->type == TYPE_ZBC) { 2989 /* 2990 * Host-managed: Per ZBC and ZAC specifications, writes in 2991 * sequential write required zones of host-managed devices must 2992 * be aligned to the device physical block size. 2993 */ 2994 disk_set_zoned(sdkp->disk, BLK_ZONED_HM); 2995 blk_queue_zone_write_granularity(q, sdkp->physical_block_size); 2996 } else { 2997 sdkp->zoned = zoned; 2998 if (sdkp->zoned == 1) { 2999 /* Host-aware */ 3000 disk_set_zoned(sdkp->disk, BLK_ZONED_HA); 3001 } else { 3002 /* Regular disk or drive managed disk */ 3003 disk_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3004 } 3005 } 3006 3007 if (!sdkp->first_scan) 3008 return; 3009 3010 if (blk_queue_is_zoned(q)) { 3011 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3012 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3013 } else { 3014 if (sdkp->zoned == 1) 3015 sd_printk(KERN_NOTICE, sdkp, 3016 "Host-aware SMR disk used as regular disk\n"); 3017 else if (sdkp->zoned == 2) 3018 sd_printk(KERN_NOTICE, sdkp, 3019 "Drive-managed SMR disk\n"); 3020 } 3021 } 3022 3023 /** 3024 * sd_read_block_provisioning - Query provisioning VPD page 3025 * @sdkp: disk to query 3026 */ 3027 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3028 { 3029 struct scsi_vpd *vpd; 3030 3031 if (sdkp->lbpme == 0) 3032 return; 3033 3034 rcu_read_lock(); 3035 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 3036 3037 if (!vpd || vpd->len < 8) { 3038 rcu_read_unlock(); 3039 return; 3040 } 3041 3042 sdkp->lbpvpd = 1; 3043 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 3044 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 3045 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 3046 rcu_read_unlock(); 3047 } 3048 3049 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3050 { 3051 struct scsi_device *sdev = sdkp->device; 3052 3053 if (sdev->host->no_write_same) { 3054 sdev->no_write_same = 1; 3055 3056 return; 3057 } 3058 3059 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3060 struct scsi_vpd *vpd; 3061 3062 sdev->no_report_opcodes = 1; 3063 3064 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3065 * CODES is unsupported and the device has an ATA 3066 * Information VPD page (SAT). 3067 */ 3068 rcu_read_lock(); 3069 vpd = rcu_dereference(sdev->vpd_pg89); 3070 if (vpd) 3071 sdev->no_write_same = 1; 3072 rcu_read_unlock(); 3073 } 3074 3075 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3076 sdkp->ws16 = 1; 3077 3078 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3079 sdkp->ws10 = 1; 3080 } 3081 3082 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3083 { 3084 struct scsi_device *sdev = sdkp->device; 3085 3086 if (!sdev->security_supported) 3087 return; 3088 3089 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3090 SECURITY_PROTOCOL_IN) == 1 && 3091 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3092 SECURITY_PROTOCOL_OUT) == 1) 3093 sdkp->security = 1; 3094 } 3095 3096 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3097 { 3098 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3099 } 3100 3101 /** 3102 * sd_read_cpr - Query concurrent positioning ranges 3103 * @sdkp: disk to query 3104 */ 3105 static void sd_read_cpr(struct scsi_disk *sdkp) 3106 { 3107 struct blk_independent_access_ranges *iars = NULL; 3108 unsigned char *buffer = NULL; 3109 unsigned int nr_cpr = 0; 3110 int i, vpd_len, buf_len = SD_BUF_SIZE; 3111 u8 *desc; 3112 3113 /* 3114 * We need to have the capacity set first for the block layer to be 3115 * able to check the ranges. 3116 */ 3117 if (sdkp->first_scan) 3118 return; 3119 3120 if (!sdkp->capacity) 3121 goto out; 3122 3123 /* 3124 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3125 * leading to a maximum page size of 64 + 256*32 bytes. 3126 */ 3127 buf_len = 64 + 256*32; 3128 buffer = kmalloc(buf_len, GFP_KERNEL); 3129 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3130 goto out; 3131 3132 /* We must have at least a 64B header and one 32B range descriptor */ 3133 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3134 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3135 sd_printk(KERN_ERR, sdkp, 3136 "Invalid Concurrent Positioning Ranges VPD page\n"); 3137 goto out; 3138 } 3139 3140 nr_cpr = (vpd_len - 64) / 32; 3141 if (nr_cpr == 1) { 3142 nr_cpr = 0; 3143 goto out; 3144 } 3145 3146 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3147 if (!iars) { 3148 nr_cpr = 0; 3149 goto out; 3150 } 3151 3152 desc = &buffer[64]; 3153 for (i = 0; i < nr_cpr; i++, desc += 32) { 3154 if (desc[0] != i) { 3155 sd_printk(KERN_ERR, sdkp, 3156 "Invalid Concurrent Positioning Range number\n"); 3157 nr_cpr = 0; 3158 break; 3159 } 3160 3161 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3162 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3163 } 3164 3165 out: 3166 disk_set_independent_access_ranges(sdkp->disk, iars); 3167 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3168 sd_printk(KERN_NOTICE, sdkp, 3169 "%u concurrent positioning ranges\n", nr_cpr); 3170 sdkp->nr_actuators = nr_cpr; 3171 } 3172 3173 kfree(buffer); 3174 } 3175 3176 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3177 { 3178 struct scsi_device *sdp = sdkp->device; 3179 unsigned int min_xfer_bytes = 3180 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3181 3182 if (sdkp->min_xfer_blocks == 0) 3183 return false; 3184 3185 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3186 sd_first_printk(KERN_WARNING, sdkp, 3187 "Preferred minimum I/O size %u bytes not a " \ 3188 "multiple of physical block size (%u bytes)\n", 3189 min_xfer_bytes, sdkp->physical_block_size); 3190 sdkp->min_xfer_blocks = 0; 3191 return false; 3192 } 3193 3194 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3195 min_xfer_bytes); 3196 return true; 3197 } 3198 3199 /* 3200 * Determine the device's preferred I/O size for reads and writes 3201 * unless the reported value is unreasonably small, large, not a 3202 * multiple of the physical block size, or simply garbage. 3203 */ 3204 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3205 unsigned int dev_max) 3206 { 3207 struct scsi_device *sdp = sdkp->device; 3208 unsigned int opt_xfer_bytes = 3209 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3210 unsigned int min_xfer_bytes = 3211 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3212 3213 if (sdkp->opt_xfer_blocks == 0) 3214 return false; 3215 3216 if (sdkp->opt_xfer_blocks > dev_max) { 3217 sd_first_printk(KERN_WARNING, sdkp, 3218 "Optimal transfer size %u logical blocks " \ 3219 "> dev_max (%u logical blocks)\n", 3220 sdkp->opt_xfer_blocks, dev_max); 3221 return false; 3222 } 3223 3224 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3225 sd_first_printk(KERN_WARNING, sdkp, 3226 "Optimal transfer size %u logical blocks " \ 3227 "> sd driver limit (%u logical blocks)\n", 3228 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3229 return false; 3230 } 3231 3232 if (opt_xfer_bytes < PAGE_SIZE) { 3233 sd_first_printk(KERN_WARNING, sdkp, 3234 "Optimal transfer size %u bytes < " \ 3235 "PAGE_SIZE (%u bytes)\n", 3236 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3237 return false; 3238 } 3239 3240 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3241 sd_first_printk(KERN_WARNING, sdkp, 3242 "Optimal transfer size %u bytes not a " \ 3243 "multiple of preferred minimum block " \ 3244 "size (%u bytes)\n", 3245 opt_xfer_bytes, min_xfer_bytes); 3246 return false; 3247 } 3248 3249 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3250 sd_first_printk(KERN_WARNING, sdkp, 3251 "Optimal transfer size %u bytes not a " \ 3252 "multiple of physical block size (%u bytes)\n", 3253 opt_xfer_bytes, sdkp->physical_block_size); 3254 return false; 3255 } 3256 3257 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3258 opt_xfer_bytes); 3259 return true; 3260 } 3261 3262 /** 3263 * sd_revalidate_disk - called the first time a new disk is seen, 3264 * performs disk spin up, read_capacity, etc. 3265 * @disk: struct gendisk we care about 3266 **/ 3267 static int sd_revalidate_disk(struct gendisk *disk) 3268 { 3269 struct scsi_disk *sdkp = scsi_disk(disk); 3270 struct scsi_device *sdp = sdkp->device; 3271 struct request_queue *q = sdkp->disk->queue; 3272 sector_t old_capacity = sdkp->capacity; 3273 unsigned char *buffer; 3274 unsigned int dev_max, rw_max; 3275 3276 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3277 "sd_revalidate_disk\n")); 3278 3279 /* 3280 * If the device is offline, don't try and read capacity or any 3281 * of the other niceties. 3282 */ 3283 if (!scsi_device_online(sdp)) 3284 goto out; 3285 3286 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3287 if (!buffer) { 3288 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3289 "allocation failure.\n"); 3290 goto out; 3291 } 3292 3293 sd_spinup_disk(sdkp); 3294 3295 /* 3296 * Without media there is no reason to ask; moreover, some devices 3297 * react badly if we do. 3298 */ 3299 if (sdkp->media_present) { 3300 sd_read_capacity(sdkp, buffer); 3301 3302 /* 3303 * set the default to rotational. All non-rotational devices 3304 * support the block characteristics VPD page, which will 3305 * cause this to be updated correctly and any device which 3306 * doesn't support it should be treated as rotational. 3307 */ 3308 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3309 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3310 3311 if (scsi_device_supports_vpd(sdp)) { 3312 sd_read_block_provisioning(sdkp); 3313 sd_read_block_limits(sdkp); 3314 sd_read_block_characteristics(sdkp); 3315 sd_zbc_read_zones(sdkp, buffer); 3316 sd_read_cpr(sdkp); 3317 } 3318 3319 sd_print_capacity(sdkp, old_capacity); 3320 3321 sd_read_write_protect_flag(sdkp, buffer); 3322 sd_read_cache_type(sdkp, buffer); 3323 sd_read_app_tag_own(sdkp, buffer); 3324 sd_read_write_same(sdkp, buffer); 3325 sd_read_security(sdkp, buffer); 3326 sd_config_protection(sdkp); 3327 } 3328 3329 /* 3330 * We now have all cache related info, determine how we deal 3331 * with flush requests. 3332 */ 3333 sd_set_flush_flag(sdkp); 3334 3335 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3336 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3337 3338 /* Some devices report a maximum block count for READ/WRITE requests. */ 3339 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3340 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3341 3342 if (sd_validate_min_xfer_size(sdkp)) 3343 blk_queue_io_min(sdkp->disk->queue, 3344 logical_to_bytes(sdp, sdkp->min_xfer_blocks)); 3345 else 3346 blk_queue_io_min(sdkp->disk->queue, 0); 3347 3348 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3349 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3350 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3351 } else { 3352 q->limits.io_opt = 0; 3353 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3354 (sector_t)BLK_DEF_MAX_SECTORS); 3355 } 3356 3357 /* 3358 * Limit default to SCSI host optimal sector limit if set. There may be 3359 * an impact on performance for when the size of a request exceeds this 3360 * host limit. 3361 */ 3362 rw_max = min_not_zero(rw_max, sdp->host->opt_sectors); 3363 3364 /* Do not exceed controller limit */ 3365 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3366 3367 /* 3368 * Only update max_sectors if previously unset or if the current value 3369 * exceeds the capabilities of the hardware. 3370 */ 3371 if (sdkp->first_scan || 3372 q->limits.max_sectors > q->limits.max_dev_sectors || 3373 q->limits.max_sectors > q->limits.max_hw_sectors) 3374 q->limits.max_sectors = rw_max; 3375 3376 sdkp->first_scan = 0; 3377 3378 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3379 sd_config_write_same(sdkp); 3380 kfree(buffer); 3381 3382 /* 3383 * For a zoned drive, revalidating the zones can be done only once 3384 * the gendisk capacity is set. So if this fails, set back the gendisk 3385 * capacity to 0. 3386 */ 3387 if (sd_zbc_revalidate_zones(sdkp)) 3388 set_capacity_and_notify(disk, 0); 3389 3390 out: 3391 return 0; 3392 } 3393 3394 /** 3395 * sd_unlock_native_capacity - unlock native capacity 3396 * @disk: struct gendisk to set capacity for 3397 * 3398 * Block layer calls this function if it detects that partitions 3399 * on @disk reach beyond the end of the device. If the SCSI host 3400 * implements ->unlock_native_capacity() method, it's invoked to 3401 * give it a chance to adjust the device capacity. 3402 * 3403 * CONTEXT: 3404 * Defined by block layer. Might sleep. 3405 */ 3406 static void sd_unlock_native_capacity(struct gendisk *disk) 3407 { 3408 struct scsi_device *sdev = scsi_disk(disk)->device; 3409 3410 if (sdev->host->hostt->unlock_native_capacity) 3411 sdev->host->hostt->unlock_native_capacity(sdev); 3412 } 3413 3414 /** 3415 * sd_format_disk_name - format disk name 3416 * @prefix: name prefix - ie. "sd" for SCSI disks 3417 * @index: index of the disk to format name for 3418 * @buf: output buffer 3419 * @buflen: length of the output buffer 3420 * 3421 * SCSI disk names starts at sda. The 26th device is sdz and the 3422 * 27th is sdaa. The last one for two lettered suffix is sdzz 3423 * which is followed by sdaaa. 3424 * 3425 * This is basically 26 base counting with one extra 'nil' entry 3426 * at the beginning from the second digit on and can be 3427 * determined using similar method as 26 base conversion with the 3428 * index shifted -1 after each digit is computed. 3429 * 3430 * CONTEXT: 3431 * Don't care. 3432 * 3433 * RETURNS: 3434 * 0 on success, -errno on failure. 3435 */ 3436 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3437 { 3438 const int base = 'z' - 'a' + 1; 3439 char *begin = buf + strlen(prefix); 3440 char *end = buf + buflen; 3441 char *p; 3442 int unit; 3443 3444 p = end - 1; 3445 *p = '\0'; 3446 unit = base; 3447 do { 3448 if (p == begin) 3449 return -EINVAL; 3450 *--p = 'a' + (index % unit); 3451 index = (index / unit) - 1; 3452 } while (index >= 0); 3453 3454 memmove(begin, p, end - p); 3455 memcpy(buf, prefix, strlen(prefix)); 3456 3457 return 0; 3458 } 3459 3460 /** 3461 * sd_probe - called during driver initialization and whenever a 3462 * new scsi device is attached to the system. It is called once 3463 * for each scsi device (not just disks) present. 3464 * @dev: pointer to device object 3465 * 3466 * Returns 0 if successful (or not interested in this scsi device 3467 * (e.g. scanner)); 1 when there is an error. 3468 * 3469 * Note: this function is invoked from the scsi mid-level. 3470 * This function sets up the mapping between a given 3471 * <host,channel,id,lun> (found in sdp) and new device name 3472 * (e.g. /dev/sda). More precisely it is the block device major 3473 * and minor number that is chosen here. 3474 * 3475 * Assume sd_probe is not re-entrant (for time being) 3476 * Also think about sd_probe() and sd_remove() running coincidentally. 3477 **/ 3478 static int sd_probe(struct device *dev) 3479 { 3480 struct scsi_device *sdp = to_scsi_device(dev); 3481 struct scsi_disk *sdkp; 3482 struct gendisk *gd; 3483 int index; 3484 int error; 3485 3486 scsi_autopm_get_device(sdp); 3487 error = -ENODEV; 3488 if (sdp->type != TYPE_DISK && 3489 sdp->type != TYPE_ZBC && 3490 sdp->type != TYPE_MOD && 3491 sdp->type != TYPE_RBC) 3492 goto out; 3493 3494 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3495 sdev_printk(KERN_WARNING, sdp, 3496 "Unsupported ZBC host-managed device.\n"); 3497 goto out; 3498 } 3499 3500 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3501 "sd_probe\n")); 3502 3503 error = -ENOMEM; 3504 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3505 if (!sdkp) 3506 goto out; 3507 3508 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue, 3509 &sd_bio_compl_lkclass); 3510 if (!gd) 3511 goto out_free; 3512 3513 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3514 if (index < 0) { 3515 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3516 goto out_put; 3517 } 3518 3519 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3520 if (error) { 3521 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3522 goto out_free_index; 3523 } 3524 3525 sdkp->device = sdp; 3526 sdkp->disk = gd; 3527 sdkp->index = index; 3528 sdkp->max_retries = SD_MAX_RETRIES; 3529 atomic_set(&sdkp->openers, 0); 3530 atomic_set(&sdkp->device->ioerr_cnt, 0); 3531 3532 if (!sdp->request_queue->rq_timeout) { 3533 if (sdp->type != TYPE_MOD) 3534 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3535 else 3536 blk_queue_rq_timeout(sdp->request_queue, 3537 SD_MOD_TIMEOUT); 3538 } 3539 3540 device_initialize(&sdkp->disk_dev); 3541 sdkp->disk_dev.parent = get_device(dev); 3542 sdkp->disk_dev.class = &sd_disk_class; 3543 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3544 3545 error = device_add(&sdkp->disk_dev); 3546 if (error) { 3547 put_device(&sdkp->disk_dev); 3548 goto out; 3549 } 3550 3551 dev_set_drvdata(dev, sdkp); 3552 3553 gd->major = sd_major((index & 0xf0) >> 4); 3554 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3555 gd->minors = SD_MINORS; 3556 3557 gd->fops = &sd_fops; 3558 gd->private_data = sdkp; 3559 3560 /* defaults, until the device tells us otherwise */ 3561 sdp->sector_size = 512; 3562 sdkp->capacity = 0; 3563 sdkp->media_present = 1; 3564 sdkp->write_prot = 0; 3565 sdkp->cache_override = 0; 3566 sdkp->WCE = 0; 3567 sdkp->RCD = 0; 3568 sdkp->ATO = 0; 3569 sdkp->first_scan = 1; 3570 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3571 3572 sd_revalidate_disk(gd); 3573 3574 if (sdp->removable) { 3575 gd->flags |= GENHD_FL_REMOVABLE; 3576 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3577 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3578 } 3579 3580 blk_pm_runtime_init(sdp->request_queue, dev); 3581 if (sdp->rpm_autosuspend) { 3582 pm_runtime_set_autosuspend_delay(dev, 3583 sdp->host->hostt->rpm_autosuspend_delay); 3584 } 3585 3586 error = device_add_disk(dev, gd, NULL); 3587 if (error) { 3588 put_device(&sdkp->disk_dev); 3589 put_disk(gd); 3590 goto out; 3591 } 3592 3593 if (sdkp->security) { 3594 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3595 if (sdkp->opal_dev) 3596 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3597 } 3598 3599 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3600 sdp->removable ? "removable " : ""); 3601 scsi_autopm_put_device(sdp); 3602 3603 return 0; 3604 3605 out_free_index: 3606 ida_free(&sd_index_ida, index); 3607 out_put: 3608 put_disk(gd); 3609 out_free: 3610 kfree(sdkp); 3611 out: 3612 scsi_autopm_put_device(sdp); 3613 return error; 3614 } 3615 3616 /** 3617 * sd_remove - called whenever a scsi disk (previously recognized by 3618 * sd_probe) is detached from the system. It is called (potentially 3619 * multiple times) during sd module unload. 3620 * @dev: pointer to device object 3621 * 3622 * Note: this function is invoked from the scsi mid-level. 3623 * This function potentially frees up a device name (e.g. /dev/sdc) 3624 * that could be re-used by a subsequent sd_probe(). 3625 * This function is not called when the built-in sd driver is "exit-ed". 3626 **/ 3627 static int sd_remove(struct device *dev) 3628 { 3629 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3630 3631 scsi_autopm_get_device(sdkp->device); 3632 3633 device_del(&sdkp->disk_dev); 3634 del_gendisk(sdkp->disk); 3635 sd_shutdown(dev); 3636 3637 put_disk(sdkp->disk); 3638 return 0; 3639 } 3640 3641 static void scsi_disk_release(struct device *dev) 3642 { 3643 struct scsi_disk *sdkp = to_scsi_disk(dev); 3644 3645 ida_free(&sd_index_ida, sdkp->index); 3646 sd_zbc_free_zone_info(sdkp); 3647 put_device(&sdkp->device->sdev_gendev); 3648 free_opal_dev(sdkp->opal_dev); 3649 3650 kfree(sdkp); 3651 } 3652 3653 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3654 { 3655 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3656 struct scsi_sense_hdr sshdr; 3657 const struct scsi_exec_args exec_args = { 3658 .sshdr = &sshdr, 3659 .req_flags = BLK_MQ_REQ_PM, 3660 }; 3661 struct scsi_device *sdp = sdkp->device; 3662 int res; 3663 3664 if (start) 3665 cmd[4] |= 1; /* START */ 3666 3667 if (sdp->start_stop_pwr_cond) 3668 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3669 3670 if (!scsi_device_online(sdp)) 3671 return -ENODEV; 3672 3673 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, 3674 sdkp->max_retries, &exec_args); 3675 if (res) { 3676 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3677 if (res > 0 && scsi_sense_valid(&sshdr)) { 3678 sd_print_sense_hdr(sdkp, &sshdr); 3679 /* 0x3a is medium not present */ 3680 if (sshdr.asc == 0x3a) 3681 res = 0; 3682 } 3683 } 3684 3685 /* SCSI error codes must not go to the generic layer */ 3686 if (res) 3687 return -EIO; 3688 3689 return 0; 3690 } 3691 3692 /* 3693 * Send a SYNCHRONIZE CACHE instruction down to the device through 3694 * the normal SCSI command structure. Wait for the command to 3695 * complete. 3696 */ 3697 static void sd_shutdown(struct device *dev) 3698 { 3699 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3700 3701 if (!sdkp) 3702 return; /* this can happen */ 3703 3704 if (pm_runtime_suspended(dev)) 3705 return; 3706 3707 if (sdkp->WCE && sdkp->media_present) { 3708 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3709 sd_sync_cache(sdkp, NULL); 3710 } 3711 3712 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3713 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3714 sd_start_stop_device(sdkp, 0); 3715 } 3716 } 3717 3718 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3719 { 3720 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3721 struct scsi_sense_hdr sshdr; 3722 int ret = 0; 3723 3724 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3725 return 0; 3726 3727 if (sdkp->WCE && sdkp->media_present) { 3728 if (!sdkp->device->silence_suspend) 3729 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3730 ret = sd_sync_cache(sdkp, &sshdr); 3731 3732 if (ret) { 3733 /* ignore OFFLINE device */ 3734 if (ret == -ENODEV) 3735 return 0; 3736 3737 if (!scsi_sense_valid(&sshdr) || 3738 sshdr.sense_key != ILLEGAL_REQUEST) 3739 return ret; 3740 3741 /* 3742 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3743 * doesn't support sync. There's not much to do and 3744 * suspend shouldn't fail. 3745 */ 3746 ret = 0; 3747 } 3748 } 3749 3750 if (sdkp->device->manage_start_stop) { 3751 if (!sdkp->device->silence_suspend) 3752 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3753 /* an error is not worth aborting a system sleep */ 3754 ret = sd_start_stop_device(sdkp, 0); 3755 if (ignore_stop_errors) 3756 ret = 0; 3757 } 3758 3759 return ret; 3760 } 3761 3762 static int sd_suspend_system(struct device *dev) 3763 { 3764 if (pm_runtime_suspended(dev)) 3765 return 0; 3766 3767 return sd_suspend_common(dev, true); 3768 } 3769 3770 static int sd_suspend_runtime(struct device *dev) 3771 { 3772 return sd_suspend_common(dev, false); 3773 } 3774 3775 static int sd_resume(struct device *dev) 3776 { 3777 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3778 int ret; 3779 3780 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3781 return 0; 3782 3783 if (!sdkp->device->manage_start_stop) 3784 return 0; 3785 3786 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3787 ret = sd_start_stop_device(sdkp, 1); 3788 if (!ret) 3789 opal_unlock_from_suspend(sdkp->opal_dev); 3790 return ret; 3791 } 3792 3793 static int sd_resume_system(struct device *dev) 3794 { 3795 if (pm_runtime_suspended(dev)) 3796 return 0; 3797 3798 return sd_resume(dev); 3799 } 3800 3801 static int sd_resume_runtime(struct device *dev) 3802 { 3803 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3804 struct scsi_device *sdp; 3805 3806 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3807 return 0; 3808 3809 sdp = sdkp->device; 3810 3811 if (sdp->ignore_media_change) { 3812 /* clear the device's sense data */ 3813 static const u8 cmd[10] = { REQUEST_SENSE }; 3814 const struct scsi_exec_args exec_args = { 3815 .req_flags = BLK_MQ_REQ_PM, 3816 }; 3817 3818 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 3819 sdp->request_queue->rq_timeout, 1, 3820 &exec_args)) 3821 sd_printk(KERN_NOTICE, sdkp, 3822 "Failed to clear sense data\n"); 3823 } 3824 3825 return sd_resume(dev); 3826 } 3827 3828 /** 3829 * init_sd - entry point for this driver (both when built in or when 3830 * a module). 3831 * 3832 * Note: this function registers this driver with the scsi mid-level. 3833 **/ 3834 static int __init init_sd(void) 3835 { 3836 int majors = 0, i, err; 3837 3838 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3839 3840 for (i = 0; i < SD_MAJORS; i++) { 3841 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3842 continue; 3843 majors++; 3844 } 3845 3846 if (!majors) 3847 return -ENODEV; 3848 3849 err = class_register(&sd_disk_class); 3850 if (err) 3851 goto err_out; 3852 3853 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3854 if (!sd_page_pool) { 3855 printk(KERN_ERR "sd: can't init discard page pool\n"); 3856 err = -ENOMEM; 3857 goto err_out_class; 3858 } 3859 3860 err = scsi_register_driver(&sd_template.gendrv); 3861 if (err) 3862 goto err_out_driver; 3863 3864 return 0; 3865 3866 err_out_driver: 3867 mempool_destroy(sd_page_pool); 3868 err_out_class: 3869 class_unregister(&sd_disk_class); 3870 err_out: 3871 for (i = 0; i < SD_MAJORS; i++) 3872 unregister_blkdev(sd_major(i), "sd"); 3873 return err; 3874 } 3875 3876 /** 3877 * exit_sd - exit point for this driver (when it is a module). 3878 * 3879 * Note: this function unregisters this driver from the scsi mid-level. 3880 **/ 3881 static void __exit exit_sd(void) 3882 { 3883 int i; 3884 3885 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3886 3887 scsi_unregister_driver(&sd_template.gendrv); 3888 mempool_destroy(sd_page_pool); 3889 3890 class_unregister(&sd_disk_class); 3891 3892 for (i = 0; i < SD_MAJORS; i++) 3893 unregister_blkdev(sd_major(i), "sd"); 3894 } 3895 3896 module_init(init_sd); 3897 module_exit(exit_sd); 3898 3899 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3900 { 3901 scsi_print_sense_hdr(sdkp->device, 3902 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3903 } 3904 3905 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3906 { 3907 const char *hb_string = scsi_hostbyte_string(result); 3908 3909 if (hb_string) 3910 sd_printk(KERN_INFO, sdkp, 3911 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3912 hb_string ? hb_string : "invalid", 3913 "DRIVER_OK"); 3914 else 3915 sd_printk(KERN_INFO, sdkp, 3916 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 3917 msg, host_byte(result), "DRIVER_OK"); 3918 } 3919