1 /* 2 * sd.c Copyright (C) 1992 Drew Eckhardt 3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 4 * 5 * Linux scsi disk driver 6 * Initial versions: Drew Eckhardt 7 * Subsequent revisions: Eric Youngdale 8 * Modification history: 9 * - Drew Eckhardt <drew@colorado.edu> original 10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 11 * outstanding request, and other enhancements. 12 * Support loadable low-level scsi drivers. 13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 14 * eight major numbers. 15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 17 * sd_init and cleanups. 18 * - Alex Davis <letmein@erols.com> Fix problem where partition info 19 * not being read in sd_open. Fix problem where removable media 20 * could be ejected after sd_open. 21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 24 * Support 32k/1M disks. 25 * 26 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 30 * - entering other commands: SCSI_LOG_HLQUEUE level 3 31 * Note: when the logging level is set by the user, it must be greater 32 * than the level indicated above to trigger output. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/fs.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/bio.h> 40 #include <linux/genhd.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/delay.h> 49 #include <linux/mutex.h> 50 #include <linux/string_helpers.h> 51 #include <linux/async.h> 52 #include <linux/slab.h> 53 #include <linux/pm_runtime.h> 54 #include <linux/pr.h> 55 #include <linux/t10-pi.h> 56 #include <linux/uaccess.h> 57 #include <asm/unaligned.h> 58 59 #include <scsi/scsi.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_dbg.h> 62 #include <scsi/scsi_device.h> 63 #include <scsi/scsi_driver.h> 64 #include <scsi/scsi_eh.h> 65 #include <scsi/scsi_host.h> 66 #include <scsi/scsi_ioctl.h> 67 #include <scsi/scsicam.h> 68 69 #include "sd.h" 70 #include "scsi_priv.h" 71 #include "scsi_logging.h" 72 73 MODULE_AUTHOR("Eric Youngdale"); 74 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 75 MODULE_LICENSE("GPL"); 76 77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 93 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 94 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 97 98 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 99 #define SD_MINORS 16 100 #else 101 #define SD_MINORS 0 102 #endif 103 104 static void sd_config_discard(struct scsi_disk *, unsigned int); 105 static void sd_config_write_same(struct scsi_disk *); 106 static int sd_revalidate_disk(struct gendisk *); 107 static void sd_unlock_native_capacity(struct gendisk *disk); 108 static int sd_probe(struct device *); 109 static int sd_remove(struct device *); 110 static void sd_shutdown(struct device *); 111 static int sd_suspend_system(struct device *); 112 static int sd_suspend_runtime(struct device *); 113 static int sd_resume(struct device *); 114 static void sd_rescan(struct device *); 115 static int sd_init_command(struct scsi_cmnd *SCpnt); 116 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 117 static int sd_done(struct scsi_cmnd *); 118 static void sd_eh_reset(struct scsi_cmnd *); 119 static int sd_eh_action(struct scsi_cmnd *, int); 120 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 121 static void scsi_disk_release(struct device *cdev); 122 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 123 static void sd_print_result(const struct scsi_disk *, const char *, int); 124 125 static DEFINE_SPINLOCK(sd_index_lock); 126 static DEFINE_IDA(sd_index_ida); 127 128 /* This semaphore is used to mediate the 0->1 reference get in the 129 * face of object destruction (i.e. we can't allow a get on an 130 * object after last put) */ 131 static DEFINE_MUTEX(sd_ref_mutex); 132 133 static struct kmem_cache *sd_cdb_cache; 134 static mempool_t *sd_cdb_pool; 135 136 static const char *sd_cache_types[] = { 137 "write through", "none", "write back", 138 "write back, no read (daft)" 139 }; 140 141 static void sd_set_flush_flag(struct scsi_disk *sdkp) 142 { 143 bool wc = false, fua = false; 144 145 if (sdkp->WCE) { 146 wc = true; 147 if (sdkp->DPOFUA) 148 fua = true; 149 } 150 151 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 152 } 153 154 static ssize_t 155 cache_type_store(struct device *dev, struct device_attribute *attr, 156 const char *buf, size_t count) 157 { 158 int i, ct = -1, rcd, wce, sp; 159 struct scsi_disk *sdkp = to_scsi_disk(dev); 160 struct scsi_device *sdp = sdkp->device; 161 char buffer[64]; 162 char *buffer_data; 163 struct scsi_mode_data data; 164 struct scsi_sense_hdr sshdr; 165 static const char temp[] = "temporary "; 166 int len; 167 168 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 169 /* no cache control on RBC devices; theoretically they 170 * can do it, but there's probably so many exceptions 171 * it's not worth the risk */ 172 return -EINVAL; 173 174 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 175 buf += sizeof(temp) - 1; 176 sdkp->cache_override = 1; 177 } else { 178 sdkp->cache_override = 0; 179 } 180 181 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) { 182 len = strlen(sd_cache_types[i]); 183 if (strncmp(sd_cache_types[i], buf, len) == 0 && 184 buf[len] == '\n') { 185 ct = i; 186 break; 187 } 188 } 189 if (ct < 0) 190 return -EINVAL; 191 rcd = ct & 0x01 ? 1 : 0; 192 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 193 194 if (sdkp->cache_override) { 195 sdkp->WCE = wce; 196 sdkp->RCD = rcd; 197 sd_set_flush_flag(sdkp); 198 return count; 199 } 200 201 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 202 SD_MAX_RETRIES, &data, NULL)) 203 return -EINVAL; 204 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 205 data.block_descriptor_length); 206 buffer_data = buffer + data.header_length + 207 data.block_descriptor_length; 208 buffer_data[2] &= ~0x05; 209 buffer_data[2] |= wce << 2 | rcd; 210 sp = buffer_data[0] & 0x80 ? 1 : 0; 211 buffer_data[0] &= ~0x80; 212 213 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 214 SD_MAX_RETRIES, &data, &sshdr)) { 215 if (scsi_sense_valid(&sshdr)) 216 sd_print_sense_hdr(sdkp, &sshdr); 217 return -EINVAL; 218 } 219 revalidate_disk(sdkp->disk); 220 return count; 221 } 222 223 static ssize_t 224 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 225 char *buf) 226 { 227 struct scsi_disk *sdkp = to_scsi_disk(dev); 228 struct scsi_device *sdp = sdkp->device; 229 230 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop); 231 } 232 233 static ssize_t 234 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 235 const char *buf, size_t count) 236 { 237 struct scsi_disk *sdkp = to_scsi_disk(dev); 238 struct scsi_device *sdp = sdkp->device; 239 240 if (!capable(CAP_SYS_ADMIN)) 241 return -EACCES; 242 243 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10); 244 245 return count; 246 } 247 static DEVICE_ATTR_RW(manage_start_stop); 248 249 static ssize_t 250 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 251 { 252 struct scsi_disk *sdkp = to_scsi_disk(dev); 253 254 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart); 255 } 256 257 static ssize_t 258 allow_restart_store(struct device *dev, struct device_attribute *attr, 259 const char *buf, size_t count) 260 { 261 struct scsi_disk *sdkp = to_scsi_disk(dev); 262 struct scsi_device *sdp = sdkp->device; 263 264 if (!capable(CAP_SYS_ADMIN)) 265 return -EACCES; 266 267 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 268 return -EINVAL; 269 270 sdp->allow_restart = simple_strtoul(buf, NULL, 10); 271 272 return count; 273 } 274 static DEVICE_ATTR_RW(allow_restart); 275 276 static ssize_t 277 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 278 { 279 struct scsi_disk *sdkp = to_scsi_disk(dev); 280 int ct = sdkp->RCD + 2*sdkp->WCE; 281 282 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]); 283 } 284 static DEVICE_ATTR_RW(cache_type); 285 286 static ssize_t 287 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 288 { 289 struct scsi_disk *sdkp = to_scsi_disk(dev); 290 291 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA); 292 } 293 static DEVICE_ATTR_RO(FUA); 294 295 static ssize_t 296 protection_type_show(struct device *dev, struct device_attribute *attr, 297 char *buf) 298 { 299 struct scsi_disk *sdkp = to_scsi_disk(dev); 300 301 return snprintf(buf, 20, "%u\n", sdkp->protection_type); 302 } 303 304 static ssize_t 305 protection_type_store(struct device *dev, struct device_attribute *attr, 306 const char *buf, size_t count) 307 { 308 struct scsi_disk *sdkp = to_scsi_disk(dev); 309 unsigned int val; 310 int err; 311 312 if (!capable(CAP_SYS_ADMIN)) 313 return -EACCES; 314 315 err = kstrtouint(buf, 10, &val); 316 317 if (err) 318 return err; 319 320 if (val >= 0 && val <= T10_PI_TYPE3_PROTECTION) 321 sdkp->protection_type = val; 322 323 return count; 324 } 325 static DEVICE_ATTR_RW(protection_type); 326 327 static ssize_t 328 protection_mode_show(struct device *dev, struct device_attribute *attr, 329 char *buf) 330 { 331 struct scsi_disk *sdkp = to_scsi_disk(dev); 332 struct scsi_device *sdp = sdkp->device; 333 unsigned int dif, dix; 334 335 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 336 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 337 338 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 339 dif = 0; 340 dix = 1; 341 } 342 343 if (!dif && !dix) 344 return snprintf(buf, 20, "none\n"); 345 346 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif); 347 } 348 static DEVICE_ATTR_RO(protection_mode); 349 350 static ssize_t 351 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 352 { 353 struct scsi_disk *sdkp = to_scsi_disk(dev); 354 355 return snprintf(buf, 20, "%u\n", sdkp->ATO); 356 } 357 static DEVICE_ATTR_RO(app_tag_own); 358 359 static ssize_t 360 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 361 char *buf) 362 { 363 struct scsi_disk *sdkp = to_scsi_disk(dev); 364 365 return snprintf(buf, 20, "%u\n", sdkp->lbpme); 366 } 367 static DEVICE_ATTR_RO(thin_provisioning); 368 369 static const char *lbp_mode[] = { 370 [SD_LBP_FULL] = "full", 371 [SD_LBP_UNMAP] = "unmap", 372 [SD_LBP_WS16] = "writesame_16", 373 [SD_LBP_WS10] = "writesame_10", 374 [SD_LBP_ZERO] = "writesame_zero", 375 [SD_LBP_DISABLE] = "disabled", 376 }; 377 378 static ssize_t 379 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 380 char *buf) 381 { 382 struct scsi_disk *sdkp = to_scsi_disk(dev); 383 384 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]); 385 } 386 387 static ssize_t 388 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 389 const char *buf, size_t count) 390 { 391 struct scsi_disk *sdkp = to_scsi_disk(dev); 392 struct scsi_device *sdp = sdkp->device; 393 394 if (!capable(CAP_SYS_ADMIN)) 395 return -EACCES; 396 397 if (sd_is_zoned(sdkp)) { 398 sd_config_discard(sdkp, SD_LBP_DISABLE); 399 return count; 400 } 401 402 if (sdp->type != TYPE_DISK) 403 return -EINVAL; 404 405 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20)) 406 sd_config_discard(sdkp, SD_LBP_UNMAP); 407 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20)) 408 sd_config_discard(sdkp, SD_LBP_WS16); 409 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20)) 410 sd_config_discard(sdkp, SD_LBP_WS10); 411 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20)) 412 sd_config_discard(sdkp, SD_LBP_ZERO); 413 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20)) 414 sd_config_discard(sdkp, SD_LBP_DISABLE); 415 else 416 return -EINVAL; 417 418 return count; 419 } 420 static DEVICE_ATTR_RW(provisioning_mode); 421 422 static const char *zeroing_mode[] = { 423 [SD_ZERO_WRITE] = "write", 424 [SD_ZERO_WS] = "writesame", 425 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 426 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 427 }; 428 429 static ssize_t 430 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 431 char *buf) 432 { 433 struct scsi_disk *sdkp = to_scsi_disk(dev); 434 435 return snprintf(buf, 20, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 436 } 437 438 static ssize_t 439 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 440 const char *buf, size_t count) 441 { 442 struct scsi_disk *sdkp = to_scsi_disk(dev); 443 444 if (!capable(CAP_SYS_ADMIN)) 445 return -EACCES; 446 447 if (!strncmp(buf, zeroing_mode[SD_ZERO_WRITE], 20)) 448 sdkp->zeroing_mode = SD_ZERO_WRITE; 449 else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS], 20)) 450 sdkp->zeroing_mode = SD_ZERO_WS; 451 else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS16_UNMAP], 20)) 452 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 453 else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS10_UNMAP], 20)) 454 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 455 else 456 return -EINVAL; 457 458 return count; 459 } 460 static DEVICE_ATTR_RW(zeroing_mode); 461 462 static ssize_t 463 max_medium_access_timeouts_show(struct device *dev, 464 struct device_attribute *attr, char *buf) 465 { 466 struct scsi_disk *sdkp = to_scsi_disk(dev); 467 468 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts); 469 } 470 471 static ssize_t 472 max_medium_access_timeouts_store(struct device *dev, 473 struct device_attribute *attr, const char *buf, 474 size_t count) 475 { 476 struct scsi_disk *sdkp = to_scsi_disk(dev); 477 int err; 478 479 if (!capable(CAP_SYS_ADMIN)) 480 return -EACCES; 481 482 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 483 484 return err ? err : count; 485 } 486 static DEVICE_ATTR_RW(max_medium_access_timeouts); 487 488 static ssize_t 489 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 490 char *buf) 491 { 492 struct scsi_disk *sdkp = to_scsi_disk(dev); 493 494 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks); 495 } 496 497 static ssize_t 498 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 499 const char *buf, size_t count) 500 { 501 struct scsi_disk *sdkp = to_scsi_disk(dev); 502 struct scsi_device *sdp = sdkp->device; 503 unsigned long max; 504 int err; 505 506 if (!capable(CAP_SYS_ADMIN)) 507 return -EACCES; 508 509 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 510 return -EINVAL; 511 512 err = kstrtoul(buf, 10, &max); 513 514 if (err) 515 return err; 516 517 if (max == 0) 518 sdp->no_write_same = 1; 519 else if (max <= SD_MAX_WS16_BLOCKS) { 520 sdp->no_write_same = 0; 521 sdkp->max_ws_blocks = max; 522 } 523 524 sd_config_write_same(sdkp); 525 526 return count; 527 } 528 static DEVICE_ATTR_RW(max_write_same_blocks); 529 530 static struct attribute *sd_disk_attrs[] = { 531 &dev_attr_cache_type.attr, 532 &dev_attr_FUA.attr, 533 &dev_attr_allow_restart.attr, 534 &dev_attr_manage_start_stop.attr, 535 &dev_attr_protection_type.attr, 536 &dev_attr_protection_mode.attr, 537 &dev_attr_app_tag_own.attr, 538 &dev_attr_thin_provisioning.attr, 539 &dev_attr_provisioning_mode.attr, 540 &dev_attr_zeroing_mode.attr, 541 &dev_attr_max_write_same_blocks.attr, 542 &dev_attr_max_medium_access_timeouts.attr, 543 NULL, 544 }; 545 ATTRIBUTE_GROUPS(sd_disk); 546 547 static struct class sd_disk_class = { 548 .name = "scsi_disk", 549 .owner = THIS_MODULE, 550 .dev_release = scsi_disk_release, 551 .dev_groups = sd_disk_groups, 552 }; 553 554 static const struct dev_pm_ops sd_pm_ops = { 555 .suspend = sd_suspend_system, 556 .resume = sd_resume, 557 .poweroff = sd_suspend_system, 558 .restore = sd_resume, 559 .runtime_suspend = sd_suspend_runtime, 560 .runtime_resume = sd_resume, 561 }; 562 563 static struct scsi_driver sd_template = { 564 .gendrv = { 565 .name = "sd", 566 .owner = THIS_MODULE, 567 .probe = sd_probe, 568 .remove = sd_remove, 569 .shutdown = sd_shutdown, 570 .pm = &sd_pm_ops, 571 }, 572 .rescan = sd_rescan, 573 .init_command = sd_init_command, 574 .uninit_command = sd_uninit_command, 575 .done = sd_done, 576 .eh_action = sd_eh_action, 577 .eh_reset = sd_eh_reset, 578 }; 579 580 /* 581 * Dummy kobj_map->probe function. 582 * The default ->probe function will call modprobe, which is 583 * pointless as this module is already loaded. 584 */ 585 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 586 { 587 return NULL; 588 } 589 590 /* 591 * Device no to disk mapping: 592 * 593 * major disc2 disc p1 594 * |............|.............|....|....| <- dev_t 595 * 31 20 19 8 7 4 3 0 596 * 597 * Inside a major, we have 16k disks, however mapped non- 598 * contiguously. The first 16 disks are for major0, the next 599 * ones with major1, ... Disk 256 is for major0 again, disk 272 600 * for major1, ... 601 * As we stay compatible with our numbering scheme, we can reuse 602 * the well-know SCSI majors 8, 65--71, 136--143. 603 */ 604 static int sd_major(int major_idx) 605 { 606 switch (major_idx) { 607 case 0: 608 return SCSI_DISK0_MAJOR; 609 case 1 ... 7: 610 return SCSI_DISK1_MAJOR + major_idx - 1; 611 case 8 ... 15: 612 return SCSI_DISK8_MAJOR + major_idx - 8; 613 default: 614 BUG(); 615 return 0; /* shut up gcc */ 616 } 617 } 618 619 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 620 { 621 struct scsi_disk *sdkp = NULL; 622 623 mutex_lock(&sd_ref_mutex); 624 625 if (disk->private_data) { 626 sdkp = scsi_disk(disk); 627 if (scsi_device_get(sdkp->device) == 0) 628 get_device(&sdkp->dev); 629 else 630 sdkp = NULL; 631 } 632 mutex_unlock(&sd_ref_mutex); 633 return sdkp; 634 } 635 636 static void scsi_disk_put(struct scsi_disk *sdkp) 637 { 638 struct scsi_device *sdev = sdkp->device; 639 640 mutex_lock(&sd_ref_mutex); 641 put_device(&sdkp->dev); 642 scsi_device_put(sdev); 643 mutex_unlock(&sd_ref_mutex); 644 } 645 646 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 647 unsigned int dix, unsigned int dif) 648 { 649 struct bio *bio = scmd->request->bio; 650 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 651 unsigned int protect = 0; 652 653 if (dix) { /* DIX Type 0, 1, 2, 3 */ 654 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 655 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 656 657 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 658 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 659 } 660 661 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 662 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 663 664 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 665 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 666 } 667 668 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 669 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 670 671 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 672 protect = 3 << 5; /* Disable target PI checking */ 673 else 674 protect = 1 << 5; /* Enable target PI checking */ 675 } 676 677 scsi_set_prot_op(scmd, prot_op); 678 scsi_set_prot_type(scmd, dif); 679 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 680 681 return protect; 682 } 683 684 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 685 { 686 struct request_queue *q = sdkp->disk->queue; 687 unsigned int logical_block_size = sdkp->device->sector_size; 688 unsigned int max_blocks = 0; 689 690 q->limits.discard_alignment = 691 sdkp->unmap_alignment * logical_block_size; 692 q->limits.discard_granularity = 693 max(sdkp->physical_block_size, 694 sdkp->unmap_granularity * logical_block_size); 695 sdkp->provisioning_mode = mode; 696 697 switch (mode) { 698 699 case SD_LBP_DISABLE: 700 blk_queue_max_discard_sectors(q, 0); 701 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 702 return; 703 704 case SD_LBP_UNMAP: 705 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 706 (u32)SD_MAX_WS16_BLOCKS); 707 break; 708 709 case SD_LBP_WS16: 710 max_blocks = min_not_zero(sdkp->max_ws_blocks, 711 (u32)SD_MAX_WS16_BLOCKS); 712 break; 713 714 case SD_LBP_WS10: 715 max_blocks = min_not_zero(sdkp->max_ws_blocks, 716 (u32)SD_MAX_WS10_BLOCKS); 717 break; 718 719 case SD_LBP_ZERO: 720 max_blocks = min_not_zero(sdkp->max_ws_blocks, 721 (u32)SD_MAX_WS10_BLOCKS); 722 break; 723 } 724 725 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 726 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 727 } 728 729 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 730 { 731 struct scsi_device *sdp = cmd->device; 732 struct request *rq = cmd->request; 733 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 734 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 735 unsigned int data_len = 24; 736 char *buf; 737 738 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 739 if (!rq->special_vec.bv_page) 740 return BLKPREP_DEFER; 741 rq->special_vec.bv_offset = 0; 742 rq->special_vec.bv_len = data_len; 743 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 744 745 cmd->cmd_len = 10; 746 cmd->cmnd[0] = UNMAP; 747 cmd->cmnd[8] = 24; 748 749 buf = page_address(rq->special_vec.bv_page); 750 put_unaligned_be16(6 + 16, &buf[0]); 751 put_unaligned_be16(16, &buf[2]); 752 put_unaligned_be64(sector, &buf[8]); 753 put_unaligned_be32(nr_sectors, &buf[16]); 754 755 cmd->allowed = SD_MAX_RETRIES; 756 cmd->transfersize = data_len; 757 rq->timeout = SD_TIMEOUT; 758 scsi_req(rq)->resid_len = data_len; 759 760 return scsi_init_io(cmd); 761 } 762 763 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap) 764 { 765 struct scsi_device *sdp = cmd->device; 766 struct request *rq = cmd->request; 767 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 768 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 769 u32 data_len = sdp->sector_size; 770 771 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 772 if (!rq->special_vec.bv_page) 773 return BLKPREP_DEFER; 774 rq->special_vec.bv_offset = 0; 775 rq->special_vec.bv_len = data_len; 776 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 777 778 cmd->cmd_len = 16; 779 cmd->cmnd[0] = WRITE_SAME_16; 780 if (unmap) 781 cmd->cmnd[1] = 0x8; /* UNMAP */ 782 put_unaligned_be64(sector, &cmd->cmnd[2]); 783 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 784 785 cmd->allowed = SD_MAX_RETRIES; 786 cmd->transfersize = data_len; 787 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 788 scsi_req(rq)->resid_len = data_len; 789 790 return scsi_init_io(cmd); 791 } 792 793 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap) 794 { 795 struct scsi_device *sdp = cmd->device; 796 struct request *rq = cmd->request; 797 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 798 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 799 u32 data_len = sdp->sector_size; 800 801 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 802 if (!rq->special_vec.bv_page) 803 return BLKPREP_DEFER; 804 rq->special_vec.bv_offset = 0; 805 rq->special_vec.bv_len = data_len; 806 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 807 808 cmd->cmd_len = 10; 809 cmd->cmnd[0] = WRITE_SAME; 810 if (unmap) 811 cmd->cmnd[1] = 0x8; /* UNMAP */ 812 put_unaligned_be32(sector, &cmd->cmnd[2]); 813 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 814 815 cmd->allowed = SD_MAX_RETRIES; 816 cmd->transfersize = data_len; 817 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 818 scsi_req(rq)->resid_len = data_len; 819 820 return scsi_init_io(cmd); 821 } 822 823 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 824 { 825 struct request *rq = cmd->request; 826 struct scsi_device *sdp = cmd->device; 827 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 828 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 829 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 830 int ret; 831 832 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 833 switch (sdkp->zeroing_mode) { 834 case SD_ZERO_WS16_UNMAP: 835 ret = sd_setup_write_same16_cmnd(cmd, true); 836 goto out; 837 case SD_ZERO_WS10_UNMAP: 838 ret = sd_setup_write_same10_cmnd(cmd, true); 839 goto out; 840 } 841 } 842 843 if (sdp->no_write_same) 844 return BLKPREP_INVALID; 845 846 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) 847 ret = sd_setup_write_same16_cmnd(cmd, false); 848 else 849 ret = sd_setup_write_same10_cmnd(cmd, false); 850 851 out: 852 if (sd_is_zoned(sdkp) && ret == BLKPREP_OK) 853 return sd_zbc_write_lock_zone(cmd); 854 855 return ret; 856 } 857 858 static void sd_config_write_same(struct scsi_disk *sdkp) 859 { 860 struct request_queue *q = sdkp->disk->queue; 861 unsigned int logical_block_size = sdkp->device->sector_size; 862 863 if (sdkp->device->no_write_same) { 864 sdkp->max_ws_blocks = 0; 865 goto out; 866 } 867 868 /* Some devices can not handle block counts above 0xffff despite 869 * supporting WRITE SAME(16). Consequently we default to 64k 870 * blocks per I/O unless the device explicitly advertises a 871 * bigger limit. 872 */ 873 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 874 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 875 (u32)SD_MAX_WS16_BLOCKS); 876 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 877 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 878 (u32)SD_MAX_WS10_BLOCKS); 879 else { 880 sdkp->device->no_write_same = 1; 881 sdkp->max_ws_blocks = 0; 882 } 883 884 if (sdkp->lbprz && sdkp->lbpws) 885 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 886 else if (sdkp->lbprz && sdkp->lbpws10) 887 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 888 else if (sdkp->max_ws_blocks) 889 sdkp->zeroing_mode = SD_ZERO_WS; 890 else 891 sdkp->zeroing_mode = SD_ZERO_WRITE; 892 893 out: 894 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 895 (logical_block_size >> 9)); 896 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 897 (logical_block_size >> 9)); 898 } 899 900 /** 901 * sd_setup_write_same_cmnd - write the same data to multiple blocks 902 * @cmd: command to prepare 903 * 904 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 905 * the preference indicated by the target device. 906 **/ 907 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 908 { 909 struct request *rq = cmd->request; 910 struct scsi_device *sdp = cmd->device; 911 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 912 struct bio *bio = rq->bio; 913 sector_t sector = blk_rq_pos(rq); 914 unsigned int nr_sectors = blk_rq_sectors(rq); 915 unsigned int nr_bytes = blk_rq_bytes(rq); 916 int ret; 917 918 if (sdkp->device->no_write_same) 919 return BLKPREP_INVALID; 920 921 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 922 923 if (sd_is_zoned(sdkp)) { 924 ret = sd_zbc_write_lock_zone(cmd); 925 if (ret != BLKPREP_OK) 926 return ret; 927 } 928 929 sector >>= ilog2(sdp->sector_size) - 9; 930 nr_sectors >>= ilog2(sdp->sector_size) - 9; 931 932 rq->timeout = SD_WRITE_SAME_TIMEOUT; 933 934 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) { 935 cmd->cmd_len = 16; 936 cmd->cmnd[0] = WRITE_SAME_16; 937 put_unaligned_be64(sector, &cmd->cmnd[2]); 938 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 939 } else { 940 cmd->cmd_len = 10; 941 cmd->cmnd[0] = WRITE_SAME; 942 put_unaligned_be32(sector, &cmd->cmnd[2]); 943 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 944 } 945 946 cmd->transfersize = sdp->sector_size; 947 cmd->allowed = SD_MAX_RETRIES; 948 949 /* 950 * For WRITE SAME the data transferred via the DATA OUT buffer is 951 * different from the amount of data actually written to the target. 952 * 953 * We set up __data_len to the amount of data transferred via the 954 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 955 * to transfer a single sector of data first, but then reset it to 956 * the amount of data to be written right after so that the I/O path 957 * knows how much to actually write. 958 */ 959 rq->__data_len = sdp->sector_size; 960 ret = scsi_init_io(cmd); 961 rq->__data_len = nr_bytes; 962 963 if (sd_is_zoned(sdkp) && ret != BLKPREP_OK) 964 sd_zbc_write_unlock_zone(cmd); 965 966 return ret; 967 } 968 969 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 970 { 971 struct request *rq = cmd->request; 972 973 /* flush requests don't perform I/O, zero the S/G table */ 974 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 975 976 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 977 cmd->cmd_len = 10; 978 cmd->transfersize = 0; 979 cmd->allowed = SD_MAX_RETRIES; 980 981 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 982 return BLKPREP_OK; 983 } 984 985 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt) 986 { 987 struct request *rq = SCpnt->request; 988 struct scsi_device *sdp = SCpnt->device; 989 struct gendisk *disk = rq->rq_disk; 990 struct scsi_disk *sdkp = scsi_disk(disk); 991 sector_t block = blk_rq_pos(rq); 992 sector_t threshold; 993 unsigned int this_count = blk_rq_sectors(rq); 994 unsigned int dif, dix; 995 bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE; 996 int ret; 997 unsigned char protect; 998 999 if (zoned_write) { 1000 ret = sd_zbc_write_lock_zone(SCpnt); 1001 if (ret != BLKPREP_OK) 1002 return ret; 1003 } 1004 1005 ret = scsi_init_io(SCpnt); 1006 if (ret != BLKPREP_OK) 1007 goto out; 1008 SCpnt = rq->special; 1009 1010 /* from here on until we're complete, any goto out 1011 * is used for a killable error condition */ 1012 ret = BLKPREP_KILL; 1013 1014 SCSI_LOG_HLQUEUE(1, 1015 scmd_printk(KERN_INFO, SCpnt, 1016 "%s: block=%llu, count=%d\n", 1017 __func__, (unsigned long long)block, this_count)); 1018 1019 if (!sdp || !scsi_device_online(sdp) || 1020 block + blk_rq_sectors(rq) > get_capacity(disk)) { 1021 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1022 "Finishing %u sectors\n", 1023 blk_rq_sectors(rq))); 1024 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1025 "Retry with 0x%p\n", SCpnt)); 1026 goto out; 1027 } 1028 1029 if (sdp->changed) { 1030 /* 1031 * quietly refuse to do anything to a changed disc until 1032 * the changed bit has been reset 1033 */ 1034 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */ 1035 goto out; 1036 } 1037 1038 /* 1039 * Some SD card readers can't handle multi-sector accesses which touch 1040 * the last one or two hardware sectors. Split accesses as needed. 1041 */ 1042 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS * 1043 (sdp->sector_size / 512); 1044 1045 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) { 1046 if (block < threshold) { 1047 /* Access up to the threshold but not beyond */ 1048 this_count = threshold - block; 1049 } else { 1050 /* Access only a single hardware sector */ 1051 this_count = sdp->sector_size / 512; 1052 } 1053 } 1054 1055 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", 1056 (unsigned long long)block)); 1057 1058 /* 1059 * If we have a 1K hardware sectorsize, prevent access to single 1060 * 512 byte sectors. In theory we could handle this - in fact 1061 * the scsi cdrom driver must be able to handle this because 1062 * we typically use 1K blocksizes, and cdroms typically have 1063 * 2K hardware sectorsizes. Of course, things are simpler 1064 * with the cdrom, since it is read-only. For performance 1065 * reasons, the filesystems should be able to handle this 1066 * and not force the scsi disk driver to use bounce buffers 1067 * for this. 1068 */ 1069 if (sdp->sector_size == 1024) { 1070 if ((block & 1) || (blk_rq_sectors(rq) & 1)) { 1071 scmd_printk(KERN_ERR, SCpnt, 1072 "Bad block number requested\n"); 1073 goto out; 1074 } else { 1075 block = block >> 1; 1076 this_count = this_count >> 1; 1077 } 1078 } 1079 if (sdp->sector_size == 2048) { 1080 if ((block & 3) || (blk_rq_sectors(rq) & 3)) { 1081 scmd_printk(KERN_ERR, SCpnt, 1082 "Bad block number requested\n"); 1083 goto out; 1084 } else { 1085 block = block >> 2; 1086 this_count = this_count >> 2; 1087 } 1088 } 1089 if (sdp->sector_size == 4096) { 1090 if ((block & 7) || (blk_rq_sectors(rq) & 7)) { 1091 scmd_printk(KERN_ERR, SCpnt, 1092 "Bad block number requested\n"); 1093 goto out; 1094 } else { 1095 block = block >> 3; 1096 this_count = this_count >> 3; 1097 } 1098 } 1099 if (rq_data_dir(rq) == WRITE) { 1100 SCpnt->cmnd[0] = WRITE_6; 1101 1102 if (blk_integrity_rq(rq)) 1103 sd_dif_prepare(SCpnt); 1104 1105 } else if (rq_data_dir(rq) == READ) { 1106 SCpnt->cmnd[0] = READ_6; 1107 } else { 1108 scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq)); 1109 goto out; 1110 } 1111 1112 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1113 "%s %d/%u 512 byte blocks.\n", 1114 (rq_data_dir(rq) == WRITE) ? 1115 "writing" : "reading", this_count, 1116 blk_rq_sectors(rq))); 1117 1118 dix = scsi_prot_sg_count(SCpnt); 1119 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type); 1120 1121 if (dif || dix) 1122 protect = sd_setup_protect_cmnd(SCpnt, dix, dif); 1123 else 1124 protect = 0; 1125 1126 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1127 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1128 1129 if (unlikely(SCpnt->cmnd == NULL)) { 1130 ret = BLKPREP_DEFER; 1131 goto out; 1132 } 1133 1134 SCpnt->cmd_len = SD_EXT_CDB_SIZE; 1135 memset(SCpnt->cmnd, 0, SCpnt->cmd_len); 1136 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD; 1137 SCpnt->cmnd[7] = 0x18; 1138 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32; 1139 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1140 1141 /* LBA */ 1142 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1143 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1144 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1145 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1146 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff; 1147 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff; 1148 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff; 1149 SCpnt->cmnd[19] = (unsigned char) block & 0xff; 1150 1151 /* Expected Indirect LBA */ 1152 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff; 1153 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff; 1154 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff; 1155 SCpnt->cmnd[23] = (unsigned char) block & 0xff; 1156 1157 /* Transfer length */ 1158 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff; 1159 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff; 1160 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff; 1161 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff; 1162 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) { 1163 SCpnt->cmnd[0] += READ_16 - READ_6; 1164 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1165 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1166 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1167 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1168 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1169 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; 1170 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; 1171 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; 1172 SCpnt->cmnd[9] = (unsigned char) block & 0xff; 1173 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; 1174 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; 1175 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; 1176 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; 1177 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; 1178 } else if ((this_count > 0xff) || (block > 0x1fffff) || 1179 scsi_device_protection(SCpnt->device) || 1180 SCpnt->device->use_10_for_rw) { 1181 SCpnt->cmnd[0] += READ_10 - READ_6; 1182 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1183 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; 1184 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; 1185 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; 1186 SCpnt->cmnd[5] = (unsigned char) block & 0xff; 1187 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; 1188 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; 1189 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; 1190 } else { 1191 if (unlikely(rq->cmd_flags & REQ_FUA)) { 1192 /* 1193 * This happens only if this drive failed 1194 * 10byte rw command with ILLEGAL_REQUEST 1195 * during operation and thus turned off 1196 * use_10_for_rw. 1197 */ 1198 scmd_printk(KERN_ERR, SCpnt, 1199 "FUA write on READ/WRITE(6) drive\n"); 1200 goto out; 1201 } 1202 1203 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); 1204 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); 1205 SCpnt->cmnd[3] = (unsigned char) block & 0xff; 1206 SCpnt->cmnd[4] = (unsigned char) this_count; 1207 SCpnt->cmnd[5] = 0; 1208 } 1209 SCpnt->sdb.length = this_count * sdp->sector_size; 1210 1211 /* 1212 * We shouldn't disconnect in the middle of a sector, so with a dumb 1213 * host adapter, it's safe to assume that we can at least transfer 1214 * this many bytes between each connect / disconnect. 1215 */ 1216 SCpnt->transfersize = sdp->sector_size; 1217 SCpnt->underflow = this_count << 9; 1218 SCpnt->allowed = SD_MAX_RETRIES; 1219 1220 /* 1221 * This indicates that the command is ready from our end to be 1222 * queued. 1223 */ 1224 ret = BLKPREP_OK; 1225 out: 1226 if (zoned_write && ret != BLKPREP_OK) 1227 sd_zbc_write_unlock_zone(SCpnt); 1228 1229 return ret; 1230 } 1231 1232 static int sd_init_command(struct scsi_cmnd *cmd) 1233 { 1234 struct request *rq = cmd->request; 1235 1236 switch (req_op(rq)) { 1237 case REQ_OP_DISCARD: 1238 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1239 case SD_LBP_UNMAP: 1240 return sd_setup_unmap_cmnd(cmd); 1241 case SD_LBP_WS16: 1242 return sd_setup_write_same16_cmnd(cmd, true); 1243 case SD_LBP_WS10: 1244 return sd_setup_write_same10_cmnd(cmd, true); 1245 case SD_LBP_ZERO: 1246 return sd_setup_write_same10_cmnd(cmd, false); 1247 default: 1248 return BLKPREP_INVALID; 1249 } 1250 case REQ_OP_WRITE_ZEROES: 1251 return sd_setup_write_zeroes_cmnd(cmd); 1252 case REQ_OP_WRITE_SAME: 1253 return sd_setup_write_same_cmnd(cmd); 1254 case REQ_OP_FLUSH: 1255 return sd_setup_flush_cmnd(cmd); 1256 case REQ_OP_READ: 1257 case REQ_OP_WRITE: 1258 return sd_setup_read_write_cmnd(cmd); 1259 case REQ_OP_ZONE_REPORT: 1260 return sd_zbc_setup_report_cmnd(cmd); 1261 case REQ_OP_ZONE_RESET: 1262 return sd_zbc_setup_reset_cmnd(cmd); 1263 default: 1264 BUG(); 1265 } 1266 } 1267 1268 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1269 { 1270 struct request *rq = SCpnt->request; 1271 1272 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1273 __free_page(rq->special_vec.bv_page); 1274 1275 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1276 mempool_free(SCpnt->cmnd, sd_cdb_pool); 1277 SCpnt->cmnd = NULL; 1278 SCpnt->cmd_len = 0; 1279 } 1280 } 1281 1282 /** 1283 * sd_open - open a scsi disk device 1284 * @bdev: Block device of the scsi disk to open 1285 * @mode: FMODE_* mask 1286 * 1287 * Returns 0 if successful. Returns a negated errno value in case 1288 * of error. 1289 * 1290 * Note: This can be called from a user context (e.g. fsck(1) ) 1291 * or from within the kernel (e.g. as a result of a mount(1) ). 1292 * In the latter case @inode and @filp carry an abridged amount 1293 * of information as noted above. 1294 * 1295 * Locking: called with bdev->bd_mutex held. 1296 **/ 1297 static int sd_open(struct block_device *bdev, fmode_t mode) 1298 { 1299 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1300 struct scsi_device *sdev; 1301 int retval; 1302 1303 if (!sdkp) 1304 return -ENXIO; 1305 1306 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1307 1308 sdev = sdkp->device; 1309 1310 /* 1311 * If the device is in error recovery, wait until it is done. 1312 * If the device is offline, then disallow any access to it. 1313 */ 1314 retval = -ENXIO; 1315 if (!scsi_block_when_processing_errors(sdev)) 1316 goto error_out; 1317 1318 if (sdev->removable || sdkp->write_prot) 1319 check_disk_change(bdev); 1320 1321 /* 1322 * If the drive is empty, just let the open fail. 1323 */ 1324 retval = -ENOMEDIUM; 1325 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1326 goto error_out; 1327 1328 /* 1329 * If the device has the write protect tab set, have the open fail 1330 * if the user expects to be able to write to the thing. 1331 */ 1332 retval = -EROFS; 1333 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1334 goto error_out; 1335 1336 /* 1337 * It is possible that the disk changing stuff resulted in 1338 * the device being taken offline. If this is the case, 1339 * report this to the user, and don't pretend that the 1340 * open actually succeeded. 1341 */ 1342 retval = -ENXIO; 1343 if (!scsi_device_online(sdev)) 1344 goto error_out; 1345 1346 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1347 if (scsi_block_when_processing_errors(sdev)) 1348 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1349 } 1350 1351 return 0; 1352 1353 error_out: 1354 scsi_disk_put(sdkp); 1355 return retval; 1356 } 1357 1358 /** 1359 * sd_release - invoked when the (last) close(2) is called on this 1360 * scsi disk. 1361 * @disk: disk to release 1362 * @mode: FMODE_* mask 1363 * 1364 * Returns 0. 1365 * 1366 * Note: may block (uninterruptible) if error recovery is underway 1367 * on this disk. 1368 * 1369 * Locking: called with bdev->bd_mutex held. 1370 **/ 1371 static void sd_release(struct gendisk *disk, fmode_t mode) 1372 { 1373 struct scsi_disk *sdkp = scsi_disk(disk); 1374 struct scsi_device *sdev = sdkp->device; 1375 1376 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1377 1378 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1379 if (scsi_block_when_processing_errors(sdev)) 1380 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1381 } 1382 1383 /* 1384 * XXX and what if there are packets in flight and this close() 1385 * XXX is followed by a "rmmod sd_mod"? 1386 */ 1387 1388 scsi_disk_put(sdkp); 1389 } 1390 1391 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1392 { 1393 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1394 struct scsi_device *sdp = sdkp->device; 1395 struct Scsi_Host *host = sdp->host; 1396 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1397 int diskinfo[4]; 1398 1399 /* default to most commonly used values */ 1400 diskinfo[0] = 0x40; /* 1 << 6 */ 1401 diskinfo[1] = 0x20; /* 1 << 5 */ 1402 diskinfo[2] = capacity >> 11; 1403 1404 /* override with calculated, extended default, or driver values */ 1405 if (host->hostt->bios_param) 1406 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1407 else 1408 scsicam_bios_param(bdev, capacity, diskinfo); 1409 1410 geo->heads = diskinfo[0]; 1411 geo->sectors = diskinfo[1]; 1412 geo->cylinders = diskinfo[2]; 1413 return 0; 1414 } 1415 1416 /** 1417 * sd_ioctl - process an ioctl 1418 * @bdev: target block device 1419 * @mode: FMODE_* mask 1420 * @cmd: ioctl command number 1421 * @arg: this is third argument given to ioctl(2) system call. 1422 * Often contains a pointer. 1423 * 1424 * Returns 0 if successful (some ioctls return positive numbers on 1425 * success as well). Returns a negated errno value in case of error. 1426 * 1427 * Note: most ioctls are forward onto the block subsystem or further 1428 * down in the scsi subsystem. 1429 **/ 1430 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1431 unsigned int cmd, unsigned long arg) 1432 { 1433 struct gendisk *disk = bdev->bd_disk; 1434 struct scsi_disk *sdkp = scsi_disk(disk); 1435 struct scsi_device *sdp = sdkp->device; 1436 void __user *p = (void __user *)arg; 1437 int error; 1438 1439 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1440 "cmd=0x%x\n", disk->disk_name, cmd)); 1441 1442 error = scsi_verify_blk_ioctl(bdev, cmd); 1443 if (error < 0) 1444 return error; 1445 1446 /* 1447 * If we are in the middle of error recovery, don't let anyone 1448 * else try and use this device. Also, if error recovery fails, it 1449 * may try and take the device offline, in which case all further 1450 * access to the device is prohibited. 1451 */ 1452 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1453 (mode & FMODE_NDELAY) != 0); 1454 if (error) 1455 goto out; 1456 1457 /* 1458 * Send SCSI addressing ioctls directly to mid level, send other 1459 * ioctls to block level and then onto mid level if they can't be 1460 * resolved. 1461 */ 1462 switch (cmd) { 1463 case SCSI_IOCTL_GET_IDLUN: 1464 case SCSI_IOCTL_GET_BUS_NUMBER: 1465 error = scsi_ioctl(sdp, cmd, p); 1466 break; 1467 default: 1468 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1469 if (error != -ENOTTY) 1470 break; 1471 error = scsi_ioctl(sdp, cmd, p); 1472 break; 1473 } 1474 out: 1475 return error; 1476 } 1477 1478 static void set_media_not_present(struct scsi_disk *sdkp) 1479 { 1480 if (sdkp->media_present) 1481 sdkp->device->changed = 1; 1482 1483 if (sdkp->device->removable) { 1484 sdkp->media_present = 0; 1485 sdkp->capacity = 0; 1486 } 1487 } 1488 1489 static int media_not_present(struct scsi_disk *sdkp, 1490 struct scsi_sense_hdr *sshdr) 1491 { 1492 if (!scsi_sense_valid(sshdr)) 1493 return 0; 1494 1495 /* not invoked for commands that could return deferred errors */ 1496 switch (sshdr->sense_key) { 1497 case UNIT_ATTENTION: 1498 case NOT_READY: 1499 /* medium not present */ 1500 if (sshdr->asc == 0x3A) { 1501 set_media_not_present(sdkp); 1502 return 1; 1503 } 1504 } 1505 return 0; 1506 } 1507 1508 /** 1509 * sd_check_events - check media events 1510 * @disk: kernel device descriptor 1511 * @clearing: disk events currently being cleared 1512 * 1513 * Returns mask of DISK_EVENT_*. 1514 * 1515 * Note: this function is invoked from the block subsystem. 1516 **/ 1517 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1518 { 1519 struct scsi_disk *sdkp = scsi_disk_get(disk); 1520 struct scsi_device *sdp; 1521 int retval; 1522 1523 if (!sdkp) 1524 return 0; 1525 1526 sdp = sdkp->device; 1527 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1528 1529 /* 1530 * If the device is offline, don't send any commands - just pretend as 1531 * if the command failed. If the device ever comes back online, we 1532 * can deal with it then. It is only because of unrecoverable errors 1533 * that we would ever take a device offline in the first place. 1534 */ 1535 if (!scsi_device_online(sdp)) { 1536 set_media_not_present(sdkp); 1537 goto out; 1538 } 1539 1540 /* 1541 * Using TEST_UNIT_READY enables differentiation between drive with 1542 * no cartridge loaded - NOT READY, drive with changed cartridge - 1543 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1544 * 1545 * Drives that auto spin down. eg iomega jaz 1G, will be started 1546 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1547 * sd_revalidate() is called. 1548 */ 1549 if (scsi_block_when_processing_errors(sdp)) { 1550 struct scsi_sense_hdr sshdr = { 0, }; 1551 1552 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1553 &sshdr); 1554 1555 /* failed to execute TUR, assume media not present */ 1556 if (host_byte(retval)) { 1557 set_media_not_present(sdkp); 1558 goto out; 1559 } 1560 1561 if (media_not_present(sdkp, &sshdr)) 1562 goto out; 1563 } 1564 1565 /* 1566 * For removable scsi disk we have to recognise the presence 1567 * of a disk in the drive. 1568 */ 1569 if (!sdkp->media_present) 1570 sdp->changed = 1; 1571 sdkp->media_present = 1; 1572 out: 1573 /* 1574 * sdp->changed is set under the following conditions: 1575 * 1576 * Medium present state has changed in either direction. 1577 * Device has indicated UNIT_ATTENTION. 1578 */ 1579 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1580 sdp->changed = 0; 1581 scsi_disk_put(sdkp); 1582 return retval; 1583 } 1584 1585 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1586 { 1587 int retries, res; 1588 struct scsi_device *sdp = sdkp->device; 1589 const int timeout = sdp->request_queue->rq_timeout 1590 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1591 struct scsi_sense_hdr my_sshdr; 1592 1593 if (!scsi_device_online(sdp)) 1594 return -ENODEV; 1595 1596 /* caller might not be interested in sense, but we need it */ 1597 if (!sshdr) 1598 sshdr = &my_sshdr; 1599 1600 for (retries = 3; retries > 0; --retries) { 1601 unsigned char cmd[10] = { 0 }; 1602 1603 cmd[0] = SYNCHRONIZE_CACHE; 1604 /* 1605 * Leave the rest of the command zero to indicate 1606 * flush everything. 1607 */ 1608 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1609 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL); 1610 if (res == 0) 1611 break; 1612 } 1613 1614 if (res) { 1615 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1616 1617 if (driver_byte(res) & DRIVER_SENSE) 1618 sd_print_sense_hdr(sdkp, sshdr); 1619 1620 /* we need to evaluate the error return */ 1621 if (scsi_sense_valid(sshdr) && 1622 (sshdr->asc == 0x3a || /* medium not present */ 1623 sshdr->asc == 0x20)) /* invalid command */ 1624 /* this is no error here */ 1625 return 0; 1626 1627 switch (host_byte(res)) { 1628 /* ignore errors due to racing a disconnection */ 1629 case DID_BAD_TARGET: 1630 case DID_NO_CONNECT: 1631 return 0; 1632 /* signal the upper layer it might try again */ 1633 case DID_BUS_BUSY: 1634 case DID_IMM_RETRY: 1635 case DID_REQUEUE: 1636 case DID_SOFT_ERROR: 1637 return -EBUSY; 1638 default: 1639 return -EIO; 1640 } 1641 } 1642 return 0; 1643 } 1644 1645 static void sd_rescan(struct device *dev) 1646 { 1647 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1648 1649 revalidate_disk(sdkp->disk); 1650 } 1651 1652 1653 #ifdef CONFIG_COMPAT 1654 /* 1655 * This gets directly called from VFS. When the ioctl 1656 * is not recognized we go back to the other translation paths. 1657 */ 1658 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1659 unsigned int cmd, unsigned long arg) 1660 { 1661 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1662 int error; 1663 1664 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1665 (mode & FMODE_NDELAY) != 0); 1666 if (error) 1667 return error; 1668 1669 /* 1670 * Let the static ioctl translation table take care of it. 1671 */ 1672 if (!sdev->host->hostt->compat_ioctl) 1673 return -ENOIOCTLCMD; 1674 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1675 } 1676 #endif 1677 1678 static char sd_pr_type(enum pr_type type) 1679 { 1680 switch (type) { 1681 case PR_WRITE_EXCLUSIVE: 1682 return 0x01; 1683 case PR_EXCLUSIVE_ACCESS: 1684 return 0x03; 1685 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1686 return 0x05; 1687 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1688 return 0x06; 1689 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1690 return 0x07; 1691 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1692 return 0x08; 1693 default: 1694 return 0; 1695 } 1696 }; 1697 1698 static int sd_pr_command(struct block_device *bdev, u8 sa, 1699 u64 key, u64 sa_key, u8 type, u8 flags) 1700 { 1701 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1702 struct scsi_sense_hdr sshdr; 1703 int result; 1704 u8 cmd[16] = { 0, }; 1705 u8 data[24] = { 0, }; 1706 1707 cmd[0] = PERSISTENT_RESERVE_OUT; 1708 cmd[1] = sa; 1709 cmd[2] = type; 1710 put_unaligned_be32(sizeof(data), &cmd[5]); 1711 1712 put_unaligned_be64(key, &data[0]); 1713 put_unaligned_be64(sa_key, &data[8]); 1714 data[20] = flags; 1715 1716 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1717 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1718 1719 if ((driver_byte(result) & DRIVER_SENSE) && 1720 (scsi_sense_valid(&sshdr))) { 1721 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1722 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1723 } 1724 1725 return result; 1726 } 1727 1728 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1729 u32 flags) 1730 { 1731 if (flags & ~PR_FL_IGNORE_KEY) 1732 return -EOPNOTSUPP; 1733 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1734 old_key, new_key, 0, 1735 (1 << 0) /* APTPL */); 1736 } 1737 1738 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1739 u32 flags) 1740 { 1741 if (flags) 1742 return -EOPNOTSUPP; 1743 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1744 } 1745 1746 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1747 { 1748 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1749 } 1750 1751 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1752 enum pr_type type, bool abort) 1753 { 1754 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1755 sd_pr_type(type), 0); 1756 } 1757 1758 static int sd_pr_clear(struct block_device *bdev, u64 key) 1759 { 1760 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1761 } 1762 1763 static const struct pr_ops sd_pr_ops = { 1764 .pr_register = sd_pr_register, 1765 .pr_reserve = sd_pr_reserve, 1766 .pr_release = sd_pr_release, 1767 .pr_preempt = sd_pr_preempt, 1768 .pr_clear = sd_pr_clear, 1769 }; 1770 1771 static const struct block_device_operations sd_fops = { 1772 .owner = THIS_MODULE, 1773 .open = sd_open, 1774 .release = sd_release, 1775 .ioctl = sd_ioctl, 1776 .getgeo = sd_getgeo, 1777 #ifdef CONFIG_COMPAT 1778 .compat_ioctl = sd_compat_ioctl, 1779 #endif 1780 .check_events = sd_check_events, 1781 .revalidate_disk = sd_revalidate_disk, 1782 .unlock_native_capacity = sd_unlock_native_capacity, 1783 .pr_ops = &sd_pr_ops, 1784 }; 1785 1786 /** 1787 * sd_eh_reset - reset error handling callback 1788 * @scmd: sd-issued command that has failed 1789 * 1790 * This function is called by the SCSI midlayer before starting 1791 * SCSI EH. When counting medium access failures we have to be 1792 * careful to register it only only once per device and SCSI EH run; 1793 * there might be several timed out commands which will cause the 1794 * 'max_medium_access_timeouts' counter to trigger after the first 1795 * SCSI EH run already and set the device to offline. 1796 * So this function resets the internal counter before starting SCSI EH. 1797 **/ 1798 static void sd_eh_reset(struct scsi_cmnd *scmd) 1799 { 1800 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1801 1802 /* New SCSI EH run, reset gate variable */ 1803 sdkp->ignore_medium_access_errors = false; 1804 } 1805 1806 /** 1807 * sd_eh_action - error handling callback 1808 * @scmd: sd-issued command that has failed 1809 * @eh_disp: The recovery disposition suggested by the midlayer 1810 * 1811 * This function is called by the SCSI midlayer upon completion of an 1812 * error test command (currently TEST UNIT READY). The result of sending 1813 * the eh command is passed in eh_disp. We're looking for devices that 1814 * fail medium access commands but are OK with non access commands like 1815 * test unit ready (so wrongly see the device as having a successful 1816 * recovery) 1817 **/ 1818 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1819 { 1820 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1821 1822 if (!scsi_device_online(scmd->device) || 1823 !scsi_medium_access_command(scmd) || 1824 host_byte(scmd->result) != DID_TIME_OUT || 1825 eh_disp != SUCCESS) 1826 return eh_disp; 1827 1828 /* 1829 * The device has timed out executing a medium access command. 1830 * However, the TEST UNIT READY command sent during error 1831 * handling completed successfully. Either the device is in the 1832 * process of recovering or has it suffered an internal failure 1833 * that prevents access to the storage medium. 1834 */ 1835 if (!sdkp->ignore_medium_access_errors) { 1836 sdkp->medium_access_timed_out++; 1837 sdkp->ignore_medium_access_errors = true; 1838 } 1839 1840 /* 1841 * If the device keeps failing read/write commands but TEST UNIT 1842 * READY always completes successfully we assume that medium 1843 * access is no longer possible and take the device offline. 1844 */ 1845 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1846 scmd_printk(KERN_ERR, scmd, 1847 "Medium access timeout failure. Offlining disk!\n"); 1848 scsi_device_set_state(scmd->device, SDEV_OFFLINE); 1849 1850 return SUCCESS; 1851 } 1852 1853 return eh_disp; 1854 } 1855 1856 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1857 { 1858 struct request *req = scmd->request; 1859 struct scsi_device *sdev = scmd->device; 1860 unsigned int transferred, good_bytes; 1861 u64 start_lba, end_lba, bad_lba; 1862 1863 /* 1864 * Some commands have a payload smaller than the device logical 1865 * block size (e.g. INQUIRY on a 4K disk). 1866 */ 1867 if (scsi_bufflen(scmd) <= sdev->sector_size) 1868 return 0; 1869 1870 /* Check if we have a 'bad_lba' information */ 1871 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1872 SCSI_SENSE_BUFFERSIZE, 1873 &bad_lba)) 1874 return 0; 1875 1876 /* 1877 * If the bad lba was reported incorrectly, we have no idea where 1878 * the error is. 1879 */ 1880 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1881 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1882 if (bad_lba < start_lba || bad_lba >= end_lba) 1883 return 0; 1884 1885 /* 1886 * resid is optional but mostly filled in. When it's unused, 1887 * its value is zero, so we assume the whole buffer transferred 1888 */ 1889 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1890 1891 /* This computation should always be done in terms of the 1892 * resolution of the device's medium. 1893 */ 1894 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1895 1896 return min(good_bytes, transferred); 1897 } 1898 1899 /** 1900 * sd_done - bottom half handler: called when the lower level 1901 * driver has completed (successfully or otherwise) a scsi command. 1902 * @SCpnt: mid-level's per command structure. 1903 * 1904 * Note: potentially run from within an ISR. Must not block. 1905 **/ 1906 static int sd_done(struct scsi_cmnd *SCpnt) 1907 { 1908 int result = SCpnt->result; 1909 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1910 unsigned int sector_size = SCpnt->device->sector_size; 1911 unsigned int resid; 1912 struct scsi_sense_hdr sshdr; 1913 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1914 struct request *req = SCpnt->request; 1915 int sense_valid = 0; 1916 int sense_deferred = 0; 1917 1918 switch (req_op(req)) { 1919 case REQ_OP_DISCARD: 1920 case REQ_OP_WRITE_ZEROES: 1921 case REQ_OP_WRITE_SAME: 1922 case REQ_OP_ZONE_RESET: 1923 if (!result) { 1924 good_bytes = blk_rq_bytes(req); 1925 scsi_set_resid(SCpnt, 0); 1926 } else { 1927 good_bytes = 0; 1928 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1929 } 1930 break; 1931 case REQ_OP_ZONE_REPORT: 1932 if (!result) { 1933 good_bytes = scsi_bufflen(SCpnt) 1934 - scsi_get_resid(SCpnt); 1935 scsi_set_resid(SCpnt, 0); 1936 } else { 1937 good_bytes = 0; 1938 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1939 } 1940 break; 1941 default: 1942 /* 1943 * In case of bogus fw or device, we could end up having 1944 * an unaligned partial completion. Check this here and force 1945 * alignment. 1946 */ 1947 resid = scsi_get_resid(SCpnt); 1948 if (resid & (sector_size - 1)) { 1949 sd_printk(KERN_INFO, sdkp, 1950 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 1951 resid, sector_size); 1952 resid = min(scsi_bufflen(SCpnt), 1953 round_up(resid, sector_size)); 1954 scsi_set_resid(SCpnt, resid); 1955 } 1956 } 1957 1958 if (result) { 1959 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1960 if (sense_valid) 1961 sense_deferred = scsi_sense_is_deferred(&sshdr); 1962 } 1963 sdkp->medium_access_timed_out = 0; 1964 1965 if (driver_byte(result) != DRIVER_SENSE && 1966 (!sense_valid || sense_deferred)) 1967 goto out; 1968 1969 switch (sshdr.sense_key) { 1970 case HARDWARE_ERROR: 1971 case MEDIUM_ERROR: 1972 good_bytes = sd_completed_bytes(SCpnt); 1973 break; 1974 case RECOVERED_ERROR: 1975 good_bytes = scsi_bufflen(SCpnt); 1976 break; 1977 case NO_SENSE: 1978 /* This indicates a false check condition, so ignore it. An 1979 * unknown amount of data was transferred so treat it as an 1980 * error. 1981 */ 1982 SCpnt->result = 0; 1983 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1984 break; 1985 case ABORTED_COMMAND: 1986 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 1987 good_bytes = sd_completed_bytes(SCpnt); 1988 break; 1989 case ILLEGAL_REQUEST: 1990 switch (sshdr.asc) { 1991 case 0x10: /* DIX: Host detected corruption */ 1992 good_bytes = sd_completed_bytes(SCpnt); 1993 break; 1994 case 0x20: /* INVALID COMMAND OPCODE */ 1995 case 0x24: /* INVALID FIELD IN CDB */ 1996 switch (SCpnt->cmnd[0]) { 1997 case UNMAP: 1998 sd_config_discard(sdkp, SD_LBP_DISABLE); 1999 break; 2000 case WRITE_SAME_16: 2001 case WRITE_SAME: 2002 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2003 sd_config_discard(sdkp, SD_LBP_DISABLE); 2004 } else { 2005 sdkp->device->no_write_same = 1; 2006 sd_config_write_same(sdkp); 2007 req->__data_len = blk_rq_bytes(req); 2008 req->rq_flags |= RQF_QUIET; 2009 } 2010 break; 2011 } 2012 } 2013 break; 2014 default: 2015 break; 2016 } 2017 2018 out: 2019 if (sd_is_zoned(sdkp)) 2020 sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2021 2022 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2023 "sd_done: completed %d of %d bytes\n", 2024 good_bytes, scsi_bufflen(SCpnt))); 2025 2026 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt)) 2027 sd_dif_complete(SCpnt, good_bytes); 2028 2029 return good_bytes; 2030 } 2031 2032 /* 2033 * spinup disk - called only in sd_revalidate_disk() 2034 */ 2035 static void 2036 sd_spinup_disk(struct scsi_disk *sdkp) 2037 { 2038 unsigned char cmd[10]; 2039 unsigned long spintime_expire = 0; 2040 int retries, spintime; 2041 unsigned int the_result; 2042 struct scsi_sense_hdr sshdr; 2043 int sense_valid = 0; 2044 2045 spintime = 0; 2046 2047 /* Spin up drives, as required. Only do this at boot time */ 2048 /* Spinup needs to be done for module loads too. */ 2049 do { 2050 retries = 0; 2051 2052 do { 2053 cmd[0] = TEST_UNIT_READY; 2054 memset((void *) &cmd[1], 0, 9); 2055 2056 the_result = scsi_execute_req(sdkp->device, cmd, 2057 DMA_NONE, NULL, 0, 2058 &sshdr, SD_TIMEOUT, 2059 SD_MAX_RETRIES, NULL); 2060 2061 /* 2062 * If the drive has indicated to us that it 2063 * doesn't have any media in it, don't bother 2064 * with any more polling. 2065 */ 2066 if (media_not_present(sdkp, &sshdr)) 2067 return; 2068 2069 if (the_result) 2070 sense_valid = scsi_sense_valid(&sshdr); 2071 retries++; 2072 } while (retries < 3 && 2073 (!scsi_status_is_good(the_result) || 2074 ((driver_byte(the_result) & DRIVER_SENSE) && 2075 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2076 2077 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) { 2078 /* no sense, TUR either succeeded or failed 2079 * with a status error */ 2080 if(!spintime && !scsi_status_is_good(the_result)) { 2081 sd_print_result(sdkp, "Test Unit Ready failed", 2082 the_result); 2083 } 2084 break; 2085 } 2086 2087 /* 2088 * The device does not want the automatic start to be issued. 2089 */ 2090 if (sdkp->device->no_start_on_add) 2091 break; 2092 2093 if (sense_valid && sshdr.sense_key == NOT_READY) { 2094 if (sshdr.asc == 4 && sshdr.ascq == 3) 2095 break; /* manual intervention required */ 2096 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2097 break; /* standby */ 2098 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2099 break; /* unavailable */ 2100 /* 2101 * Issue command to spin up drive when not ready 2102 */ 2103 if (!spintime) { 2104 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2105 cmd[0] = START_STOP; 2106 cmd[1] = 1; /* Return immediately */ 2107 memset((void *) &cmd[2], 0, 8); 2108 cmd[4] = 1; /* Start spin cycle */ 2109 if (sdkp->device->start_stop_pwr_cond) 2110 cmd[4] |= 1 << 4; 2111 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2112 NULL, 0, &sshdr, 2113 SD_TIMEOUT, SD_MAX_RETRIES, 2114 NULL); 2115 spintime_expire = jiffies + 100 * HZ; 2116 spintime = 1; 2117 } 2118 /* Wait 1 second for next try */ 2119 msleep(1000); 2120 printk("."); 2121 2122 /* 2123 * Wait for USB flash devices with slow firmware. 2124 * Yes, this sense key/ASC combination shouldn't 2125 * occur here. It's characteristic of these devices. 2126 */ 2127 } else if (sense_valid && 2128 sshdr.sense_key == UNIT_ATTENTION && 2129 sshdr.asc == 0x28) { 2130 if (!spintime) { 2131 spintime_expire = jiffies + 5 * HZ; 2132 spintime = 1; 2133 } 2134 /* Wait 1 second for next try */ 2135 msleep(1000); 2136 } else { 2137 /* we don't understand the sense code, so it's 2138 * probably pointless to loop */ 2139 if(!spintime) { 2140 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2141 sd_print_sense_hdr(sdkp, &sshdr); 2142 } 2143 break; 2144 } 2145 2146 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2147 2148 if (spintime) { 2149 if (scsi_status_is_good(the_result)) 2150 printk("ready\n"); 2151 else 2152 printk("not responding...\n"); 2153 } 2154 } 2155 2156 /* 2157 * Determine whether disk supports Data Integrity Field. 2158 */ 2159 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2160 { 2161 struct scsi_device *sdp = sdkp->device; 2162 u8 type; 2163 int ret = 0; 2164 2165 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 2166 return ret; 2167 2168 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2169 2170 if (type > T10_PI_TYPE3_PROTECTION) 2171 ret = -ENODEV; 2172 else if (scsi_host_dif_capable(sdp->host, type)) 2173 ret = 1; 2174 2175 if (sdkp->first_scan || type != sdkp->protection_type) 2176 switch (ret) { 2177 case -ENODEV: 2178 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2179 " protection type %u. Disabling disk!\n", 2180 type); 2181 break; 2182 case 1: 2183 sd_printk(KERN_NOTICE, sdkp, 2184 "Enabling DIF Type %u protection\n", type); 2185 break; 2186 case 0: 2187 sd_printk(KERN_NOTICE, sdkp, 2188 "Disabling DIF Type %u protection\n", type); 2189 break; 2190 } 2191 2192 sdkp->protection_type = type; 2193 2194 return ret; 2195 } 2196 2197 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2198 struct scsi_sense_hdr *sshdr, int sense_valid, 2199 int the_result) 2200 { 2201 if (driver_byte(the_result) & DRIVER_SENSE) 2202 sd_print_sense_hdr(sdkp, sshdr); 2203 else 2204 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2205 2206 /* 2207 * Set dirty bit for removable devices if not ready - 2208 * sometimes drives will not report this properly. 2209 */ 2210 if (sdp->removable && 2211 sense_valid && sshdr->sense_key == NOT_READY) 2212 set_media_not_present(sdkp); 2213 2214 /* 2215 * We used to set media_present to 0 here to indicate no media 2216 * in the drive, but some drives fail read capacity even with 2217 * media present, so we can't do that. 2218 */ 2219 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2220 } 2221 2222 #define RC16_LEN 32 2223 #if RC16_LEN > SD_BUF_SIZE 2224 #error RC16_LEN must not be more than SD_BUF_SIZE 2225 #endif 2226 2227 #define READ_CAPACITY_RETRIES_ON_RESET 10 2228 2229 /* 2230 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set 2231 * and the reported logical block size is bigger than 512 bytes. Note 2232 * that last_sector is a u64 and therefore logical_to_sectors() is not 2233 * applicable. 2234 */ 2235 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size) 2236 { 2237 u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9); 2238 2239 if (sizeof(sector_t) == 4 && last_sector > U32_MAX) 2240 return false; 2241 2242 return true; 2243 } 2244 2245 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2246 unsigned char *buffer) 2247 { 2248 unsigned char cmd[16]; 2249 struct scsi_sense_hdr sshdr; 2250 int sense_valid = 0; 2251 int the_result; 2252 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2253 unsigned int alignment; 2254 unsigned long long lba; 2255 unsigned sector_size; 2256 2257 if (sdp->no_read_capacity_16) 2258 return -EINVAL; 2259 2260 do { 2261 memset(cmd, 0, 16); 2262 cmd[0] = SERVICE_ACTION_IN_16; 2263 cmd[1] = SAI_READ_CAPACITY_16; 2264 cmd[13] = RC16_LEN; 2265 memset(buffer, 0, RC16_LEN); 2266 2267 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2268 buffer, RC16_LEN, &sshdr, 2269 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2270 2271 if (media_not_present(sdkp, &sshdr)) 2272 return -ENODEV; 2273 2274 if (the_result) { 2275 sense_valid = scsi_sense_valid(&sshdr); 2276 if (sense_valid && 2277 sshdr.sense_key == ILLEGAL_REQUEST && 2278 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2279 sshdr.ascq == 0x00) 2280 /* Invalid Command Operation Code or 2281 * Invalid Field in CDB, just retry 2282 * silently with RC10 */ 2283 return -EINVAL; 2284 if (sense_valid && 2285 sshdr.sense_key == UNIT_ATTENTION && 2286 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2287 /* Device reset might occur several times, 2288 * give it one more chance */ 2289 if (--reset_retries > 0) 2290 continue; 2291 } 2292 retries--; 2293 2294 } while (the_result && retries); 2295 2296 if (the_result) { 2297 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2298 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2299 return -EINVAL; 2300 } 2301 2302 sector_size = get_unaligned_be32(&buffer[8]); 2303 lba = get_unaligned_be64(&buffer[0]); 2304 2305 if (sd_read_protection_type(sdkp, buffer) < 0) { 2306 sdkp->capacity = 0; 2307 return -ENODEV; 2308 } 2309 2310 if (!sd_addressable_capacity(lba, sector_size)) { 2311 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2312 "kernel compiled with support for large block " 2313 "devices.\n"); 2314 sdkp->capacity = 0; 2315 return -EOVERFLOW; 2316 } 2317 2318 /* Logical blocks per physical block exponent */ 2319 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2320 2321 /* RC basis */ 2322 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2323 2324 /* Lowest aligned logical block */ 2325 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2326 blk_queue_alignment_offset(sdp->request_queue, alignment); 2327 if (alignment && sdkp->first_scan) 2328 sd_printk(KERN_NOTICE, sdkp, 2329 "physical block alignment offset: %u\n", alignment); 2330 2331 if (buffer[14] & 0x80) { /* LBPME */ 2332 sdkp->lbpme = 1; 2333 2334 if (buffer[14] & 0x40) /* LBPRZ */ 2335 sdkp->lbprz = 1; 2336 2337 sd_config_discard(sdkp, SD_LBP_WS16); 2338 } 2339 2340 sdkp->capacity = lba + 1; 2341 return sector_size; 2342 } 2343 2344 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2345 unsigned char *buffer) 2346 { 2347 unsigned char cmd[16]; 2348 struct scsi_sense_hdr sshdr; 2349 int sense_valid = 0; 2350 int the_result; 2351 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2352 sector_t lba; 2353 unsigned sector_size; 2354 2355 do { 2356 cmd[0] = READ_CAPACITY; 2357 memset(&cmd[1], 0, 9); 2358 memset(buffer, 0, 8); 2359 2360 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2361 buffer, 8, &sshdr, 2362 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2363 2364 if (media_not_present(sdkp, &sshdr)) 2365 return -ENODEV; 2366 2367 if (the_result) { 2368 sense_valid = scsi_sense_valid(&sshdr); 2369 if (sense_valid && 2370 sshdr.sense_key == UNIT_ATTENTION && 2371 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2372 /* Device reset might occur several times, 2373 * give it one more chance */ 2374 if (--reset_retries > 0) 2375 continue; 2376 } 2377 retries--; 2378 2379 } while (the_result && retries); 2380 2381 if (the_result) { 2382 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2383 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2384 return -EINVAL; 2385 } 2386 2387 sector_size = get_unaligned_be32(&buffer[4]); 2388 lba = get_unaligned_be32(&buffer[0]); 2389 2390 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2391 /* Some buggy (usb cardreader) devices return an lba of 2392 0xffffffff when the want to report a size of 0 (with 2393 which they really mean no media is present) */ 2394 sdkp->capacity = 0; 2395 sdkp->physical_block_size = sector_size; 2396 return sector_size; 2397 } 2398 2399 if (!sd_addressable_capacity(lba, sector_size)) { 2400 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2401 "kernel compiled with support for large block " 2402 "devices.\n"); 2403 sdkp->capacity = 0; 2404 return -EOVERFLOW; 2405 } 2406 2407 sdkp->capacity = lba + 1; 2408 sdkp->physical_block_size = sector_size; 2409 return sector_size; 2410 } 2411 2412 static int sd_try_rc16_first(struct scsi_device *sdp) 2413 { 2414 if (sdp->host->max_cmd_len < 16) 2415 return 0; 2416 if (sdp->try_rc_10_first) 2417 return 0; 2418 if (sdp->scsi_level > SCSI_SPC_2) 2419 return 1; 2420 if (scsi_device_protection(sdp)) 2421 return 1; 2422 return 0; 2423 } 2424 2425 /* 2426 * read disk capacity 2427 */ 2428 static void 2429 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2430 { 2431 int sector_size; 2432 struct scsi_device *sdp = sdkp->device; 2433 2434 if (sd_try_rc16_first(sdp)) { 2435 sector_size = read_capacity_16(sdkp, sdp, buffer); 2436 if (sector_size == -EOVERFLOW) 2437 goto got_data; 2438 if (sector_size == -ENODEV) 2439 return; 2440 if (sector_size < 0) 2441 sector_size = read_capacity_10(sdkp, sdp, buffer); 2442 if (sector_size < 0) 2443 return; 2444 } else { 2445 sector_size = read_capacity_10(sdkp, sdp, buffer); 2446 if (sector_size == -EOVERFLOW) 2447 goto got_data; 2448 if (sector_size < 0) 2449 return; 2450 if ((sizeof(sdkp->capacity) > 4) && 2451 (sdkp->capacity > 0xffffffffULL)) { 2452 int old_sector_size = sector_size; 2453 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2454 "Trying to use READ CAPACITY(16).\n"); 2455 sector_size = read_capacity_16(sdkp, sdp, buffer); 2456 if (sector_size < 0) { 2457 sd_printk(KERN_NOTICE, sdkp, 2458 "Using 0xffffffff as device size\n"); 2459 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2460 sector_size = old_sector_size; 2461 goto got_data; 2462 } 2463 } 2464 } 2465 2466 /* Some devices are known to return the total number of blocks, 2467 * not the highest block number. Some devices have versions 2468 * which do this and others which do not. Some devices we might 2469 * suspect of doing this but we don't know for certain. 2470 * 2471 * If we know the reported capacity is wrong, decrement it. If 2472 * we can only guess, then assume the number of blocks is even 2473 * (usually true but not always) and err on the side of lowering 2474 * the capacity. 2475 */ 2476 if (sdp->fix_capacity || 2477 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2478 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2479 "from its reported value: %llu\n", 2480 (unsigned long long) sdkp->capacity); 2481 --sdkp->capacity; 2482 } 2483 2484 got_data: 2485 if (sector_size == 0) { 2486 sector_size = 512; 2487 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2488 "assuming 512.\n"); 2489 } 2490 2491 if (sector_size != 512 && 2492 sector_size != 1024 && 2493 sector_size != 2048 && 2494 sector_size != 4096) { 2495 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2496 sector_size); 2497 /* 2498 * The user might want to re-format the drive with 2499 * a supported sectorsize. Once this happens, it 2500 * would be relatively trivial to set the thing up. 2501 * For this reason, we leave the thing in the table. 2502 */ 2503 sdkp->capacity = 0; 2504 /* 2505 * set a bogus sector size so the normal read/write 2506 * logic in the block layer will eventually refuse any 2507 * request on this device without tripping over power 2508 * of two sector size assumptions 2509 */ 2510 sector_size = 512; 2511 } 2512 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2513 blk_queue_physical_block_size(sdp->request_queue, 2514 sdkp->physical_block_size); 2515 sdkp->device->sector_size = sector_size; 2516 2517 if (sdkp->capacity > 0xffffffff) 2518 sdp->use_16_for_rw = 1; 2519 2520 } 2521 2522 /* 2523 * Print disk capacity 2524 */ 2525 static void 2526 sd_print_capacity(struct scsi_disk *sdkp, 2527 sector_t old_capacity) 2528 { 2529 int sector_size = sdkp->device->sector_size; 2530 char cap_str_2[10], cap_str_10[10]; 2531 2532 string_get_size(sdkp->capacity, sector_size, 2533 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2534 string_get_size(sdkp->capacity, sector_size, 2535 STRING_UNITS_10, cap_str_10, 2536 sizeof(cap_str_10)); 2537 2538 if (sdkp->first_scan || old_capacity != sdkp->capacity) { 2539 sd_printk(KERN_NOTICE, sdkp, 2540 "%llu %d-byte logical blocks: (%s/%s)\n", 2541 (unsigned long long)sdkp->capacity, 2542 sector_size, cap_str_10, cap_str_2); 2543 2544 if (sdkp->physical_block_size != sector_size) 2545 sd_printk(KERN_NOTICE, sdkp, 2546 "%u-byte physical blocks\n", 2547 sdkp->physical_block_size); 2548 2549 sd_zbc_print_zones(sdkp); 2550 } 2551 } 2552 2553 /* called with buffer of length 512 */ 2554 static inline int 2555 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2556 unsigned char *buffer, int len, struct scsi_mode_data *data, 2557 struct scsi_sense_hdr *sshdr) 2558 { 2559 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2560 SD_TIMEOUT, SD_MAX_RETRIES, data, 2561 sshdr); 2562 } 2563 2564 /* 2565 * read write protect setting, if possible - called only in sd_revalidate_disk() 2566 * called with buffer of length SD_BUF_SIZE 2567 */ 2568 static void 2569 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2570 { 2571 int res; 2572 struct scsi_device *sdp = sdkp->device; 2573 struct scsi_mode_data data; 2574 int old_wp = sdkp->write_prot; 2575 2576 set_disk_ro(sdkp->disk, 0); 2577 if (sdp->skip_ms_page_3f) { 2578 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2579 return; 2580 } 2581 2582 if (sdp->use_192_bytes_for_3f) { 2583 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2584 } else { 2585 /* 2586 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2587 * We have to start carefully: some devices hang if we ask 2588 * for more than is available. 2589 */ 2590 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2591 2592 /* 2593 * Second attempt: ask for page 0 When only page 0 is 2594 * implemented, a request for page 3F may return Sense Key 2595 * 5: Illegal Request, Sense Code 24: Invalid field in 2596 * CDB. 2597 */ 2598 if (!scsi_status_is_good(res)) 2599 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2600 2601 /* 2602 * Third attempt: ask 255 bytes, as we did earlier. 2603 */ 2604 if (!scsi_status_is_good(res)) 2605 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2606 &data, NULL); 2607 } 2608 2609 if (!scsi_status_is_good(res)) { 2610 sd_first_printk(KERN_WARNING, sdkp, 2611 "Test WP failed, assume Write Enabled\n"); 2612 } else { 2613 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2614 set_disk_ro(sdkp->disk, sdkp->write_prot); 2615 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2616 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2617 sdkp->write_prot ? "on" : "off"); 2618 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2619 } 2620 } 2621 } 2622 2623 /* 2624 * sd_read_cache_type - called only from sd_revalidate_disk() 2625 * called with buffer of length SD_BUF_SIZE 2626 */ 2627 static void 2628 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2629 { 2630 int len = 0, res; 2631 struct scsi_device *sdp = sdkp->device; 2632 2633 int dbd; 2634 int modepage; 2635 int first_len; 2636 struct scsi_mode_data data; 2637 struct scsi_sense_hdr sshdr; 2638 int old_wce = sdkp->WCE; 2639 int old_rcd = sdkp->RCD; 2640 int old_dpofua = sdkp->DPOFUA; 2641 2642 2643 if (sdkp->cache_override) 2644 return; 2645 2646 first_len = 4; 2647 if (sdp->skip_ms_page_8) { 2648 if (sdp->type == TYPE_RBC) 2649 goto defaults; 2650 else { 2651 if (sdp->skip_ms_page_3f) 2652 goto defaults; 2653 modepage = 0x3F; 2654 if (sdp->use_192_bytes_for_3f) 2655 first_len = 192; 2656 dbd = 0; 2657 } 2658 } else if (sdp->type == TYPE_RBC) { 2659 modepage = 6; 2660 dbd = 8; 2661 } else { 2662 modepage = 8; 2663 dbd = 0; 2664 } 2665 2666 /* cautiously ask */ 2667 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2668 &data, &sshdr); 2669 2670 if (!scsi_status_is_good(res)) 2671 goto bad_sense; 2672 2673 if (!data.header_length) { 2674 modepage = 6; 2675 first_len = 0; 2676 sd_first_printk(KERN_ERR, sdkp, 2677 "Missing header in MODE_SENSE response\n"); 2678 } 2679 2680 /* that went OK, now ask for the proper length */ 2681 len = data.length; 2682 2683 /* 2684 * We're only interested in the first three bytes, actually. 2685 * But the data cache page is defined for the first 20. 2686 */ 2687 if (len < 3) 2688 goto bad_sense; 2689 else if (len > SD_BUF_SIZE) { 2690 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2691 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2692 len = SD_BUF_SIZE; 2693 } 2694 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2695 len = 192; 2696 2697 /* Get the data */ 2698 if (len > first_len) 2699 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2700 &data, &sshdr); 2701 2702 if (scsi_status_is_good(res)) { 2703 int offset = data.header_length + data.block_descriptor_length; 2704 2705 while (offset < len) { 2706 u8 page_code = buffer[offset] & 0x3F; 2707 u8 spf = buffer[offset] & 0x40; 2708 2709 if (page_code == 8 || page_code == 6) { 2710 /* We're interested only in the first 3 bytes. 2711 */ 2712 if (len - offset <= 2) { 2713 sd_first_printk(KERN_ERR, sdkp, 2714 "Incomplete mode parameter " 2715 "data\n"); 2716 goto defaults; 2717 } else { 2718 modepage = page_code; 2719 goto Page_found; 2720 } 2721 } else { 2722 /* Go to the next page */ 2723 if (spf && len - offset > 3) 2724 offset += 4 + (buffer[offset+2] << 8) + 2725 buffer[offset+3]; 2726 else if (!spf && len - offset > 1) 2727 offset += 2 + buffer[offset+1]; 2728 else { 2729 sd_first_printk(KERN_ERR, sdkp, 2730 "Incomplete mode " 2731 "parameter data\n"); 2732 goto defaults; 2733 } 2734 } 2735 } 2736 2737 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2738 goto defaults; 2739 2740 Page_found: 2741 if (modepage == 8) { 2742 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2743 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2744 } else { 2745 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2746 sdkp->RCD = 0; 2747 } 2748 2749 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2750 if (sdp->broken_fua) { 2751 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2752 sdkp->DPOFUA = 0; 2753 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2754 !sdkp->device->use_16_for_rw) { 2755 sd_first_printk(KERN_NOTICE, sdkp, 2756 "Uses READ/WRITE(6), disabling FUA\n"); 2757 sdkp->DPOFUA = 0; 2758 } 2759 2760 /* No cache flush allowed for write protected devices */ 2761 if (sdkp->WCE && sdkp->write_prot) 2762 sdkp->WCE = 0; 2763 2764 if (sdkp->first_scan || old_wce != sdkp->WCE || 2765 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2766 sd_printk(KERN_NOTICE, sdkp, 2767 "Write cache: %s, read cache: %s, %s\n", 2768 sdkp->WCE ? "enabled" : "disabled", 2769 sdkp->RCD ? "disabled" : "enabled", 2770 sdkp->DPOFUA ? "supports DPO and FUA" 2771 : "doesn't support DPO or FUA"); 2772 2773 return; 2774 } 2775 2776 bad_sense: 2777 if (scsi_sense_valid(&sshdr) && 2778 sshdr.sense_key == ILLEGAL_REQUEST && 2779 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2780 /* Invalid field in CDB */ 2781 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2782 else 2783 sd_first_printk(KERN_ERR, sdkp, 2784 "Asking for cache data failed\n"); 2785 2786 defaults: 2787 if (sdp->wce_default_on) { 2788 sd_first_printk(KERN_NOTICE, sdkp, 2789 "Assuming drive cache: write back\n"); 2790 sdkp->WCE = 1; 2791 } else { 2792 sd_first_printk(KERN_ERR, sdkp, 2793 "Assuming drive cache: write through\n"); 2794 sdkp->WCE = 0; 2795 } 2796 sdkp->RCD = 0; 2797 sdkp->DPOFUA = 0; 2798 } 2799 2800 /* 2801 * The ATO bit indicates whether the DIF application tag is available 2802 * for use by the operating system. 2803 */ 2804 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2805 { 2806 int res, offset; 2807 struct scsi_device *sdp = sdkp->device; 2808 struct scsi_mode_data data; 2809 struct scsi_sense_hdr sshdr; 2810 2811 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2812 return; 2813 2814 if (sdkp->protection_type == 0) 2815 return; 2816 2817 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2818 SD_MAX_RETRIES, &data, &sshdr); 2819 2820 if (!scsi_status_is_good(res) || !data.header_length || 2821 data.length < 6) { 2822 sd_first_printk(KERN_WARNING, sdkp, 2823 "getting Control mode page failed, assume no ATO\n"); 2824 2825 if (scsi_sense_valid(&sshdr)) 2826 sd_print_sense_hdr(sdkp, &sshdr); 2827 2828 return; 2829 } 2830 2831 offset = data.header_length + data.block_descriptor_length; 2832 2833 if ((buffer[offset] & 0x3f) != 0x0a) { 2834 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2835 return; 2836 } 2837 2838 if ((buffer[offset + 5] & 0x80) == 0) 2839 return; 2840 2841 sdkp->ATO = 1; 2842 2843 return; 2844 } 2845 2846 /** 2847 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2848 * @sdkp: disk to query 2849 */ 2850 static void sd_read_block_limits(struct scsi_disk *sdkp) 2851 { 2852 unsigned int sector_sz = sdkp->device->sector_size; 2853 const int vpd_len = 64; 2854 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2855 2856 if (!buffer || 2857 /* Block Limits VPD */ 2858 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2859 goto out; 2860 2861 blk_queue_io_min(sdkp->disk->queue, 2862 get_unaligned_be16(&buffer[6]) * sector_sz); 2863 2864 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2865 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2866 2867 if (buffer[3] == 0x3c) { 2868 unsigned int lba_count, desc_count; 2869 2870 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2871 2872 if (!sdkp->lbpme) 2873 goto out; 2874 2875 lba_count = get_unaligned_be32(&buffer[20]); 2876 desc_count = get_unaligned_be32(&buffer[24]); 2877 2878 if (lba_count && desc_count) 2879 sdkp->max_unmap_blocks = lba_count; 2880 2881 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2882 2883 if (buffer[32] & 0x80) 2884 sdkp->unmap_alignment = 2885 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2886 2887 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2888 2889 if (sdkp->max_unmap_blocks) 2890 sd_config_discard(sdkp, SD_LBP_UNMAP); 2891 else 2892 sd_config_discard(sdkp, SD_LBP_WS16); 2893 2894 } else { /* LBP VPD page tells us what to use */ 2895 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2896 sd_config_discard(sdkp, SD_LBP_UNMAP); 2897 else if (sdkp->lbpws) 2898 sd_config_discard(sdkp, SD_LBP_WS16); 2899 else if (sdkp->lbpws10) 2900 sd_config_discard(sdkp, SD_LBP_WS10); 2901 else if (sdkp->lbpu && sdkp->max_unmap_blocks) 2902 sd_config_discard(sdkp, SD_LBP_UNMAP); 2903 else 2904 sd_config_discard(sdkp, SD_LBP_DISABLE); 2905 } 2906 } 2907 2908 out: 2909 kfree(buffer); 2910 } 2911 2912 /** 2913 * sd_read_block_characteristics - Query block dev. characteristics 2914 * @sdkp: disk to query 2915 */ 2916 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2917 { 2918 struct request_queue *q = sdkp->disk->queue; 2919 unsigned char *buffer; 2920 u16 rot; 2921 const int vpd_len = 64; 2922 2923 buffer = kmalloc(vpd_len, GFP_KERNEL); 2924 2925 if (!buffer || 2926 /* Block Device Characteristics VPD */ 2927 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2928 goto out; 2929 2930 rot = get_unaligned_be16(&buffer[4]); 2931 2932 if (rot == 1) { 2933 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 2934 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); 2935 } 2936 2937 if (sdkp->device->type == TYPE_ZBC) { 2938 /* Host-managed */ 2939 q->limits.zoned = BLK_ZONED_HM; 2940 } else { 2941 sdkp->zoned = (buffer[8] >> 4) & 3; 2942 if (sdkp->zoned == 1) 2943 /* Host-aware */ 2944 q->limits.zoned = BLK_ZONED_HA; 2945 else 2946 /* 2947 * Treat drive-managed devices as 2948 * regular block devices. 2949 */ 2950 q->limits.zoned = BLK_ZONED_NONE; 2951 } 2952 if (blk_queue_is_zoned(q) && sdkp->first_scan) 2953 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2954 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2955 2956 out: 2957 kfree(buffer); 2958 } 2959 2960 /** 2961 * sd_read_block_provisioning - Query provisioning VPD page 2962 * @sdkp: disk to query 2963 */ 2964 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2965 { 2966 unsigned char *buffer; 2967 const int vpd_len = 8; 2968 2969 if (sdkp->lbpme == 0) 2970 return; 2971 2972 buffer = kmalloc(vpd_len, GFP_KERNEL); 2973 2974 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2975 goto out; 2976 2977 sdkp->lbpvpd = 1; 2978 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 2979 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 2980 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 2981 2982 out: 2983 kfree(buffer); 2984 } 2985 2986 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 2987 { 2988 struct scsi_device *sdev = sdkp->device; 2989 2990 if (sdev->host->no_write_same) { 2991 sdev->no_write_same = 1; 2992 2993 return; 2994 } 2995 2996 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 2997 /* too large values might cause issues with arcmsr */ 2998 int vpd_buf_len = 64; 2999 3000 sdev->no_report_opcodes = 1; 3001 3002 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3003 * CODES is unsupported and the device has an ATA 3004 * Information VPD page (SAT). 3005 */ 3006 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3007 sdev->no_write_same = 1; 3008 } 3009 3010 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3011 sdkp->ws16 = 1; 3012 3013 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3014 sdkp->ws10 = 1; 3015 } 3016 3017 /** 3018 * sd_revalidate_disk - called the first time a new disk is seen, 3019 * performs disk spin up, read_capacity, etc. 3020 * @disk: struct gendisk we care about 3021 **/ 3022 static int sd_revalidate_disk(struct gendisk *disk) 3023 { 3024 struct scsi_disk *sdkp = scsi_disk(disk); 3025 struct scsi_device *sdp = sdkp->device; 3026 struct request_queue *q = sdkp->disk->queue; 3027 sector_t old_capacity = sdkp->capacity; 3028 unsigned char *buffer; 3029 unsigned int dev_max, rw_max; 3030 3031 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3032 "sd_revalidate_disk\n")); 3033 3034 /* 3035 * If the device is offline, don't try and read capacity or any 3036 * of the other niceties. 3037 */ 3038 if (!scsi_device_online(sdp)) 3039 goto out; 3040 3041 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3042 if (!buffer) { 3043 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3044 "allocation failure.\n"); 3045 goto out; 3046 } 3047 3048 sd_spinup_disk(sdkp); 3049 3050 /* 3051 * Without media there is no reason to ask; moreover, some devices 3052 * react badly if we do. 3053 */ 3054 if (sdkp->media_present) { 3055 sd_read_capacity(sdkp, buffer); 3056 3057 if (scsi_device_supports_vpd(sdp)) { 3058 sd_read_block_provisioning(sdkp); 3059 sd_read_block_limits(sdkp); 3060 sd_read_block_characteristics(sdkp); 3061 sd_zbc_read_zones(sdkp, buffer); 3062 } 3063 3064 sd_print_capacity(sdkp, old_capacity); 3065 3066 sd_read_write_protect_flag(sdkp, buffer); 3067 sd_read_cache_type(sdkp, buffer); 3068 sd_read_app_tag_own(sdkp, buffer); 3069 sd_read_write_same(sdkp, buffer); 3070 } 3071 3072 sdkp->first_scan = 0; 3073 3074 /* 3075 * We now have all cache related info, determine how we deal 3076 * with flush requests. 3077 */ 3078 sd_set_flush_flag(sdkp); 3079 3080 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3081 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3082 3083 /* Some devices report a maximum block count for READ/WRITE requests. */ 3084 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3085 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3086 3087 /* 3088 * Use the device's preferred I/O size for reads and writes 3089 * unless the reported value is unreasonably small, large, or 3090 * garbage. 3091 */ 3092 if (sdkp->opt_xfer_blocks && 3093 sdkp->opt_xfer_blocks <= dev_max && 3094 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS && 3095 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) { 3096 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3097 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3098 } else 3099 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3100 (sector_t)BLK_DEF_MAX_SECTORS); 3101 3102 /* Combine with controller limits */ 3103 q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q)); 3104 3105 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); 3106 sd_config_write_same(sdkp); 3107 kfree(buffer); 3108 3109 out: 3110 return 0; 3111 } 3112 3113 /** 3114 * sd_unlock_native_capacity - unlock native capacity 3115 * @disk: struct gendisk to set capacity for 3116 * 3117 * Block layer calls this function if it detects that partitions 3118 * on @disk reach beyond the end of the device. If the SCSI host 3119 * implements ->unlock_native_capacity() method, it's invoked to 3120 * give it a chance to adjust the device capacity. 3121 * 3122 * CONTEXT: 3123 * Defined by block layer. Might sleep. 3124 */ 3125 static void sd_unlock_native_capacity(struct gendisk *disk) 3126 { 3127 struct scsi_device *sdev = scsi_disk(disk)->device; 3128 3129 if (sdev->host->hostt->unlock_native_capacity) 3130 sdev->host->hostt->unlock_native_capacity(sdev); 3131 } 3132 3133 /** 3134 * sd_format_disk_name - format disk name 3135 * @prefix: name prefix - ie. "sd" for SCSI disks 3136 * @index: index of the disk to format name for 3137 * @buf: output buffer 3138 * @buflen: length of the output buffer 3139 * 3140 * SCSI disk names starts at sda. The 26th device is sdz and the 3141 * 27th is sdaa. The last one for two lettered suffix is sdzz 3142 * which is followed by sdaaa. 3143 * 3144 * This is basically 26 base counting with one extra 'nil' entry 3145 * at the beginning from the second digit on and can be 3146 * determined using similar method as 26 base conversion with the 3147 * index shifted -1 after each digit is computed. 3148 * 3149 * CONTEXT: 3150 * Don't care. 3151 * 3152 * RETURNS: 3153 * 0 on success, -errno on failure. 3154 */ 3155 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3156 { 3157 const int base = 'z' - 'a' + 1; 3158 char *begin = buf + strlen(prefix); 3159 char *end = buf + buflen; 3160 char *p; 3161 int unit; 3162 3163 p = end - 1; 3164 *p = '\0'; 3165 unit = base; 3166 do { 3167 if (p == begin) 3168 return -EINVAL; 3169 *--p = 'a' + (index % unit); 3170 index = (index / unit) - 1; 3171 } while (index >= 0); 3172 3173 memmove(begin, p, end - p); 3174 memcpy(buf, prefix, strlen(prefix)); 3175 3176 return 0; 3177 } 3178 3179 /* 3180 * The asynchronous part of sd_probe 3181 */ 3182 static void sd_probe_async(void *data, async_cookie_t cookie) 3183 { 3184 struct scsi_disk *sdkp = data; 3185 struct scsi_device *sdp; 3186 struct gendisk *gd; 3187 u32 index; 3188 struct device *dev; 3189 3190 sdp = sdkp->device; 3191 gd = sdkp->disk; 3192 index = sdkp->index; 3193 dev = &sdp->sdev_gendev; 3194 3195 gd->major = sd_major((index & 0xf0) >> 4); 3196 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3197 gd->minors = SD_MINORS; 3198 3199 gd->fops = &sd_fops; 3200 gd->private_data = &sdkp->driver; 3201 gd->queue = sdkp->device->request_queue; 3202 3203 /* defaults, until the device tells us otherwise */ 3204 sdp->sector_size = 512; 3205 sdkp->capacity = 0; 3206 sdkp->media_present = 1; 3207 sdkp->write_prot = 0; 3208 sdkp->cache_override = 0; 3209 sdkp->WCE = 0; 3210 sdkp->RCD = 0; 3211 sdkp->ATO = 0; 3212 sdkp->first_scan = 1; 3213 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3214 3215 sd_revalidate_disk(gd); 3216 3217 gd->flags = GENHD_FL_EXT_DEVT; 3218 if (sdp->removable) { 3219 gd->flags |= GENHD_FL_REMOVABLE; 3220 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3221 } 3222 3223 blk_pm_runtime_init(sdp->request_queue, dev); 3224 device_add_disk(dev, gd); 3225 if (sdkp->capacity) 3226 sd_dif_config_host(sdkp); 3227 3228 sd_revalidate_disk(gd); 3229 3230 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3231 sdp->removable ? "removable " : ""); 3232 scsi_autopm_put_device(sdp); 3233 put_device(&sdkp->dev); 3234 } 3235 3236 /** 3237 * sd_probe - called during driver initialization and whenever a 3238 * new scsi device is attached to the system. It is called once 3239 * for each scsi device (not just disks) present. 3240 * @dev: pointer to device object 3241 * 3242 * Returns 0 if successful (or not interested in this scsi device 3243 * (e.g. scanner)); 1 when there is an error. 3244 * 3245 * Note: this function is invoked from the scsi mid-level. 3246 * This function sets up the mapping between a given 3247 * <host,channel,id,lun> (found in sdp) and new device name 3248 * (e.g. /dev/sda). More precisely it is the block device major 3249 * and minor number that is chosen here. 3250 * 3251 * Assume sd_probe is not re-entrant (for time being) 3252 * Also think about sd_probe() and sd_remove() running coincidentally. 3253 **/ 3254 static int sd_probe(struct device *dev) 3255 { 3256 struct scsi_device *sdp = to_scsi_device(dev); 3257 struct scsi_disk *sdkp; 3258 struct gendisk *gd; 3259 int index; 3260 int error; 3261 3262 scsi_autopm_get_device(sdp); 3263 error = -ENODEV; 3264 if (sdp->type != TYPE_DISK && 3265 sdp->type != TYPE_ZBC && 3266 sdp->type != TYPE_MOD && 3267 sdp->type != TYPE_RBC) 3268 goto out; 3269 3270 #ifndef CONFIG_BLK_DEV_ZONED 3271 if (sdp->type == TYPE_ZBC) 3272 goto out; 3273 #endif 3274 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3275 "sd_probe\n")); 3276 3277 error = -ENOMEM; 3278 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3279 if (!sdkp) 3280 goto out; 3281 3282 gd = alloc_disk(SD_MINORS); 3283 if (!gd) 3284 goto out_free; 3285 3286 do { 3287 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL)) 3288 goto out_put; 3289 3290 spin_lock(&sd_index_lock); 3291 error = ida_get_new(&sd_index_ida, &index); 3292 spin_unlock(&sd_index_lock); 3293 } while (error == -EAGAIN); 3294 3295 if (error) { 3296 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3297 goto out_put; 3298 } 3299 3300 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3301 if (error) { 3302 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3303 goto out_free_index; 3304 } 3305 3306 sdkp->device = sdp; 3307 sdkp->driver = &sd_template; 3308 sdkp->disk = gd; 3309 sdkp->index = index; 3310 atomic_set(&sdkp->openers, 0); 3311 atomic_set(&sdkp->device->ioerr_cnt, 0); 3312 3313 if (!sdp->request_queue->rq_timeout) { 3314 if (sdp->type != TYPE_MOD) 3315 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3316 else 3317 blk_queue_rq_timeout(sdp->request_queue, 3318 SD_MOD_TIMEOUT); 3319 } 3320 3321 device_initialize(&sdkp->dev); 3322 sdkp->dev.parent = dev; 3323 sdkp->dev.class = &sd_disk_class; 3324 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3325 3326 error = device_add(&sdkp->dev); 3327 if (error) 3328 goto out_free_index; 3329 3330 get_device(dev); 3331 dev_set_drvdata(dev, sdkp); 3332 3333 get_device(&sdkp->dev); /* prevent release before async_schedule */ 3334 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); 3335 3336 return 0; 3337 3338 out_free_index: 3339 spin_lock(&sd_index_lock); 3340 ida_remove(&sd_index_ida, index); 3341 spin_unlock(&sd_index_lock); 3342 out_put: 3343 put_disk(gd); 3344 out_free: 3345 kfree(sdkp); 3346 out: 3347 scsi_autopm_put_device(sdp); 3348 return error; 3349 } 3350 3351 /** 3352 * sd_remove - called whenever a scsi disk (previously recognized by 3353 * sd_probe) is detached from the system. It is called (potentially 3354 * multiple times) during sd module unload. 3355 * @dev: pointer to device object 3356 * 3357 * Note: this function is invoked from the scsi mid-level. 3358 * This function potentially frees up a device name (e.g. /dev/sdc) 3359 * that could be re-used by a subsequent sd_probe(). 3360 * This function is not called when the built-in sd driver is "exit-ed". 3361 **/ 3362 static int sd_remove(struct device *dev) 3363 { 3364 struct scsi_disk *sdkp; 3365 dev_t devt; 3366 3367 sdkp = dev_get_drvdata(dev); 3368 devt = disk_devt(sdkp->disk); 3369 scsi_autopm_get_device(sdkp->device); 3370 3371 async_synchronize_full_domain(&scsi_sd_pm_domain); 3372 async_synchronize_full_domain(&scsi_sd_probe_domain); 3373 device_del(&sdkp->dev); 3374 del_gendisk(sdkp->disk); 3375 sd_shutdown(dev); 3376 3377 sd_zbc_remove(sdkp); 3378 3379 blk_register_region(devt, SD_MINORS, NULL, 3380 sd_default_probe, NULL, NULL); 3381 3382 mutex_lock(&sd_ref_mutex); 3383 dev_set_drvdata(dev, NULL); 3384 put_device(&sdkp->dev); 3385 mutex_unlock(&sd_ref_mutex); 3386 3387 return 0; 3388 } 3389 3390 /** 3391 * scsi_disk_release - Called to free the scsi_disk structure 3392 * @dev: pointer to embedded class device 3393 * 3394 * sd_ref_mutex must be held entering this routine. Because it is 3395 * called on last put, you should always use the scsi_disk_get() 3396 * scsi_disk_put() helpers which manipulate the semaphore directly 3397 * and never do a direct put_device. 3398 **/ 3399 static void scsi_disk_release(struct device *dev) 3400 { 3401 struct scsi_disk *sdkp = to_scsi_disk(dev); 3402 struct gendisk *disk = sdkp->disk; 3403 3404 spin_lock(&sd_index_lock); 3405 ida_remove(&sd_index_ida, sdkp->index); 3406 spin_unlock(&sd_index_lock); 3407 3408 disk->private_data = NULL; 3409 put_disk(disk); 3410 put_device(&sdkp->device->sdev_gendev); 3411 3412 kfree(sdkp); 3413 } 3414 3415 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3416 { 3417 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3418 struct scsi_sense_hdr sshdr; 3419 struct scsi_device *sdp = sdkp->device; 3420 int res; 3421 3422 if (start) 3423 cmd[4] |= 1; /* START */ 3424 3425 if (sdp->start_stop_pwr_cond) 3426 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3427 3428 if (!scsi_device_online(sdp)) 3429 return -ENODEV; 3430 3431 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3432 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL); 3433 if (res) { 3434 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3435 if (driver_byte(res) & DRIVER_SENSE) 3436 sd_print_sense_hdr(sdkp, &sshdr); 3437 if (scsi_sense_valid(&sshdr) && 3438 /* 0x3a is medium not present */ 3439 sshdr.asc == 0x3a) 3440 res = 0; 3441 } 3442 3443 /* SCSI error codes must not go to the generic layer */ 3444 if (res) 3445 return -EIO; 3446 3447 return 0; 3448 } 3449 3450 /* 3451 * Send a SYNCHRONIZE CACHE instruction down to the device through 3452 * the normal SCSI command structure. Wait for the command to 3453 * complete. 3454 */ 3455 static void sd_shutdown(struct device *dev) 3456 { 3457 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3458 3459 if (!sdkp) 3460 return; /* this can happen */ 3461 3462 if (pm_runtime_suspended(dev)) 3463 return; 3464 3465 if (sdkp->WCE && sdkp->media_present) { 3466 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3467 sd_sync_cache(sdkp, NULL); 3468 } 3469 3470 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3471 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3472 sd_start_stop_device(sdkp, 0); 3473 } 3474 } 3475 3476 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3477 { 3478 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3479 struct scsi_sense_hdr sshdr; 3480 int ret = 0; 3481 3482 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3483 return 0; 3484 3485 if (sdkp->WCE && sdkp->media_present) { 3486 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3487 ret = sd_sync_cache(sdkp, &sshdr); 3488 3489 if (ret) { 3490 /* ignore OFFLINE device */ 3491 if (ret == -ENODEV) 3492 return 0; 3493 3494 if (!scsi_sense_valid(&sshdr) || 3495 sshdr.sense_key != ILLEGAL_REQUEST) 3496 return ret; 3497 3498 /* 3499 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3500 * doesn't support sync. There's not much to do and 3501 * suspend shouldn't fail. 3502 */ 3503 ret = 0; 3504 } 3505 } 3506 3507 if (sdkp->device->manage_start_stop) { 3508 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3509 /* an error is not worth aborting a system sleep */ 3510 ret = sd_start_stop_device(sdkp, 0); 3511 if (ignore_stop_errors) 3512 ret = 0; 3513 } 3514 3515 return ret; 3516 } 3517 3518 static int sd_suspend_system(struct device *dev) 3519 { 3520 return sd_suspend_common(dev, true); 3521 } 3522 3523 static int sd_suspend_runtime(struct device *dev) 3524 { 3525 return sd_suspend_common(dev, false); 3526 } 3527 3528 static int sd_resume(struct device *dev) 3529 { 3530 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3531 3532 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3533 return 0; 3534 3535 if (!sdkp->device->manage_start_stop) 3536 return 0; 3537 3538 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3539 return sd_start_stop_device(sdkp, 1); 3540 } 3541 3542 /** 3543 * init_sd - entry point for this driver (both when built in or when 3544 * a module). 3545 * 3546 * Note: this function registers this driver with the scsi mid-level. 3547 **/ 3548 static int __init init_sd(void) 3549 { 3550 int majors = 0, i, err; 3551 3552 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3553 3554 for (i = 0; i < SD_MAJORS; i++) { 3555 if (register_blkdev(sd_major(i), "sd") != 0) 3556 continue; 3557 majors++; 3558 blk_register_region(sd_major(i), SD_MINORS, NULL, 3559 sd_default_probe, NULL, NULL); 3560 } 3561 3562 if (!majors) 3563 return -ENODEV; 3564 3565 err = class_register(&sd_disk_class); 3566 if (err) 3567 goto err_out; 3568 3569 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3570 0, 0, NULL); 3571 if (!sd_cdb_cache) { 3572 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3573 err = -ENOMEM; 3574 goto err_out_class; 3575 } 3576 3577 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3578 if (!sd_cdb_pool) { 3579 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3580 err = -ENOMEM; 3581 goto err_out_cache; 3582 } 3583 3584 err = scsi_register_driver(&sd_template.gendrv); 3585 if (err) 3586 goto err_out_driver; 3587 3588 return 0; 3589 3590 err_out_driver: 3591 mempool_destroy(sd_cdb_pool); 3592 3593 err_out_cache: 3594 kmem_cache_destroy(sd_cdb_cache); 3595 3596 err_out_class: 3597 class_unregister(&sd_disk_class); 3598 err_out: 3599 for (i = 0; i < SD_MAJORS; i++) 3600 unregister_blkdev(sd_major(i), "sd"); 3601 return err; 3602 } 3603 3604 /** 3605 * exit_sd - exit point for this driver (when it is a module). 3606 * 3607 * Note: this function unregisters this driver from the scsi mid-level. 3608 **/ 3609 static void __exit exit_sd(void) 3610 { 3611 int i; 3612 3613 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3614 3615 scsi_unregister_driver(&sd_template.gendrv); 3616 mempool_destroy(sd_cdb_pool); 3617 kmem_cache_destroy(sd_cdb_cache); 3618 3619 class_unregister(&sd_disk_class); 3620 3621 for (i = 0; i < SD_MAJORS; i++) { 3622 blk_unregister_region(sd_major(i), SD_MINORS); 3623 unregister_blkdev(sd_major(i), "sd"); 3624 } 3625 } 3626 3627 module_init(init_sd); 3628 module_exit(exit_sd); 3629 3630 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3631 struct scsi_sense_hdr *sshdr) 3632 { 3633 scsi_print_sense_hdr(sdkp->device, 3634 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3635 } 3636 3637 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3638 int result) 3639 { 3640 const char *hb_string = scsi_hostbyte_string(result); 3641 const char *db_string = scsi_driverbyte_string(result); 3642 3643 if (hb_string || db_string) 3644 sd_printk(KERN_INFO, sdkp, 3645 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3646 hb_string ? hb_string : "invalid", 3647 db_string ? db_string : "invalid"); 3648 else 3649 sd_printk(KERN_INFO, sdkp, 3650 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3651 msg, host_byte(result), driver_byte(result)); 3652 } 3653 3654