xref: /openbmc/linux/drivers/scsi/sd.c (revision b96c0546)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/async.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61 
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71 
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75 
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79 
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100 
101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
102 #define SD_MINORS	16
103 #else
104 #define SD_MINORS	0
105 #endif
106 
107 static void sd_config_discard(struct scsi_disk *, unsigned int);
108 static void sd_config_write_same(struct scsi_disk *);
109 static int  sd_revalidate_disk(struct gendisk *);
110 static void sd_unlock_native_capacity(struct gendisk *disk);
111 static int  sd_probe(struct device *);
112 static int  sd_remove(struct device *);
113 static void sd_shutdown(struct device *);
114 static int sd_suspend_system(struct device *);
115 static int sd_suspend_runtime(struct device *);
116 static int sd_resume(struct device *);
117 static void sd_rescan(struct device *);
118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
119 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
120 static int sd_done(struct scsi_cmnd *);
121 static void sd_eh_reset(struct scsi_cmnd *);
122 static int sd_eh_action(struct scsi_cmnd *, int);
123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
124 static void scsi_disk_release(struct device *cdev);
125 
126 static DEFINE_IDA(sd_index_ida);
127 
128 /* This semaphore is used to mediate the 0->1 reference get in the
129  * face of object destruction (i.e. we can't allow a get on an
130  * object after last put) */
131 static DEFINE_MUTEX(sd_ref_mutex);
132 
133 static struct kmem_cache *sd_cdb_cache;
134 static mempool_t *sd_cdb_pool;
135 static mempool_t *sd_page_pool;
136 
137 static const char *sd_cache_types[] = {
138 	"write through", "none", "write back",
139 	"write back, no read (daft)"
140 };
141 
142 static void sd_set_flush_flag(struct scsi_disk *sdkp)
143 {
144 	bool wc = false, fua = false;
145 
146 	if (sdkp->WCE) {
147 		wc = true;
148 		if (sdkp->DPOFUA)
149 			fua = true;
150 	}
151 
152 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
153 }
154 
155 static ssize_t
156 cache_type_store(struct device *dev, struct device_attribute *attr,
157 		 const char *buf, size_t count)
158 {
159 	int ct, rcd, wce, sp;
160 	struct scsi_disk *sdkp = to_scsi_disk(dev);
161 	struct scsi_device *sdp = sdkp->device;
162 	char buffer[64];
163 	char *buffer_data;
164 	struct scsi_mode_data data;
165 	struct scsi_sense_hdr sshdr;
166 	static const char temp[] = "temporary ";
167 	int len;
168 
169 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
170 		/* no cache control on RBC devices; theoretically they
171 		 * can do it, but there's probably so many exceptions
172 		 * it's not worth the risk */
173 		return -EINVAL;
174 
175 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
176 		buf += sizeof(temp) - 1;
177 		sdkp->cache_override = 1;
178 	} else {
179 		sdkp->cache_override = 0;
180 	}
181 
182 	ct = sysfs_match_string(sd_cache_types, buf);
183 	if (ct < 0)
184 		return -EINVAL;
185 
186 	rcd = ct & 0x01 ? 1 : 0;
187 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
188 
189 	if (sdkp->cache_override) {
190 		sdkp->WCE = wce;
191 		sdkp->RCD = rcd;
192 		sd_set_flush_flag(sdkp);
193 		return count;
194 	}
195 
196 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
197 			    sdkp->max_retries, &data, NULL))
198 		return -EINVAL;
199 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
200 		  data.block_descriptor_length);
201 	buffer_data = buffer + data.header_length +
202 		data.block_descriptor_length;
203 	buffer_data[2] &= ~0x05;
204 	buffer_data[2] |= wce << 2 | rcd;
205 	sp = buffer_data[0] & 0x80 ? 1 : 0;
206 	buffer_data[0] &= ~0x80;
207 
208 	/*
209 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
210 	 * received mode parameter buffer before doing MODE SELECT.
211 	 */
212 	data.device_specific = 0;
213 
214 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
215 			     sdkp->max_retries, &data, &sshdr)) {
216 		if (scsi_sense_valid(&sshdr))
217 			sd_print_sense_hdr(sdkp, &sshdr);
218 		return -EINVAL;
219 	}
220 	sd_revalidate_disk(sdkp->disk);
221 	return count;
222 }
223 
224 static ssize_t
225 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
226 		       char *buf)
227 {
228 	struct scsi_disk *sdkp = to_scsi_disk(dev);
229 	struct scsi_device *sdp = sdkp->device;
230 
231 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
232 }
233 
234 static ssize_t
235 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
236 			const char *buf, size_t count)
237 {
238 	struct scsi_disk *sdkp = to_scsi_disk(dev);
239 	struct scsi_device *sdp = sdkp->device;
240 	bool v;
241 
242 	if (!capable(CAP_SYS_ADMIN))
243 		return -EACCES;
244 
245 	if (kstrtobool(buf, &v))
246 		return -EINVAL;
247 
248 	sdp->manage_start_stop = v;
249 
250 	return count;
251 }
252 static DEVICE_ATTR_RW(manage_start_stop);
253 
254 static ssize_t
255 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
256 {
257 	struct scsi_disk *sdkp = to_scsi_disk(dev);
258 
259 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
260 }
261 
262 static ssize_t
263 allow_restart_store(struct device *dev, struct device_attribute *attr,
264 		    const char *buf, size_t count)
265 {
266 	bool v;
267 	struct scsi_disk *sdkp = to_scsi_disk(dev);
268 	struct scsi_device *sdp = sdkp->device;
269 
270 	if (!capable(CAP_SYS_ADMIN))
271 		return -EACCES;
272 
273 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
274 		return -EINVAL;
275 
276 	if (kstrtobool(buf, &v))
277 		return -EINVAL;
278 
279 	sdp->allow_restart = v;
280 
281 	return count;
282 }
283 static DEVICE_ATTR_RW(allow_restart);
284 
285 static ssize_t
286 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
287 {
288 	struct scsi_disk *sdkp = to_scsi_disk(dev);
289 	int ct = sdkp->RCD + 2*sdkp->WCE;
290 
291 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
292 }
293 static DEVICE_ATTR_RW(cache_type);
294 
295 static ssize_t
296 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
297 {
298 	struct scsi_disk *sdkp = to_scsi_disk(dev);
299 
300 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
301 }
302 static DEVICE_ATTR_RO(FUA);
303 
304 static ssize_t
305 protection_type_show(struct device *dev, struct device_attribute *attr,
306 		     char *buf)
307 {
308 	struct scsi_disk *sdkp = to_scsi_disk(dev);
309 
310 	return sprintf(buf, "%u\n", sdkp->protection_type);
311 }
312 
313 static ssize_t
314 protection_type_store(struct device *dev, struct device_attribute *attr,
315 		      const char *buf, size_t count)
316 {
317 	struct scsi_disk *sdkp = to_scsi_disk(dev);
318 	unsigned int val;
319 	int err;
320 
321 	if (!capable(CAP_SYS_ADMIN))
322 		return -EACCES;
323 
324 	err = kstrtouint(buf, 10, &val);
325 
326 	if (err)
327 		return err;
328 
329 	if (val <= T10_PI_TYPE3_PROTECTION)
330 		sdkp->protection_type = val;
331 
332 	return count;
333 }
334 static DEVICE_ATTR_RW(protection_type);
335 
336 static ssize_t
337 protection_mode_show(struct device *dev, struct device_attribute *attr,
338 		     char *buf)
339 {
340 	struct scsi_disk *sdkp = to_scsi_disk(dev);
341 	struct scsi_device *sdp = sdkp->device;
342 	unsigned int dif, dix;
343 
344 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
345 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
346 
347 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
348 		dif = 0;
349 		dix = 1;
350 	}
351 
352 	if (!dif && !dix)
353 		return sprintf(buf, "none\n");
354 
355 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
356 }
357 static DEVICE_ATTR_RO(protection_mode);
358 
359 static ssize_t
360 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
361 {
362 	struct scsi_disk *sdkp = to_scsi_disk(dev);
363 
364 	return sprintf(buf, "%u\n", sdkp->ATO);
365 }
366 static DEVICE_ATTR_RO(app_tag_own);
367 
368 static ssize_t
369 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
370 		       char *buf)
371 {
372 	struct scsi_disk *sdkp = to_scsi_disk(dev);
373 
374 	return sprintf(buf, "%u\n", sdkp->lbpme);
375 }
376 static DEVICE_ATTR_RO(thin_provisioning);
377 
378 /* sysfs_match_string() requires dense arrays */
379 static const char *lbp_mode[] = {
380 	[SD_LBP_FULL]		= "full",
381 	[SD_LBP_UNMAP]		= "unmap",
382 	[SD_LBP_WS16]		= "writesame_16",
383 	[SD_LBP_WS10]		= "writesame_10",
384 	[SD_LBP_ZERO]		= "writesame_zero",
385 	[SD_LBP_DISABLE]	= "disabled",
386 };
387 
388 static ssize_t
389 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
390 		       char *buf)
391 {
392 	struct scsi_disk *sdkp = to_scsi_disk(dev);
393 
394 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
395 }
396 
397 static ssize_t
398 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
399 			const char *buf, size_t count)
400 {
401 	struct scsi_disk *sdkp = to_scsi_disk(dev);
402 	struct scsi_device *sdp = sdkp->device;
403 	int mode;
404 
405 	if (!capable(CAP_SYS_ADMIN))
406 		return -EACCES;
407 
408 	if (sd_is_zoned(sdkp)) {
409 		sd_config_discard(sdkp, SD_LBP_DISABLE);
410 		return count;
411 	}
412 
413 	if (sdp->type != TYPE_DISK)
414 		return -EINVAL;
415 
416 	mode = sysfs_match_string(lbp_mode, buf);
417 	if (mode < 0)
418 		return -EINVAL;
419 
420 	sd_config_discard(sdkp, mode);
421 
422 	return count;
423 }
424 static DEVICE_ATTR_RW(provisioning_mode);
425 
426 /* sysfs_match_string() requires dense arrays */
427 static const char *zeroing_mode[] = {
428 	[SD_ZERO_WRITE]		= "write",
429 	[SD_ZERO_WS]		= "writesame",
430 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
431 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
432 };
433 
434 static ssize_t
435 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
436 		  char *buf)
437 {
438 	struct scsi_disk *sdkp = to_scsi_disk(dev);
439 
440 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
441 }
442 
443 static ssize_t
444 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
445 		   const char *buf, size_t count)
446 {
447 	struct scsi_disk *sdkp = to_scsi_disk(dev);
448 	int mode;
449 
450 	if (!capable(CAP_SYS_ADMIN))
451 		return -EACCES;
452 
453 	mode = sysfs_match_string(zeroing_mode, buf);
454 	if (mode < 0)
455 		return -EINVAL;
456 
457 	sdkp->zeroing_mode = mode;
458 
459 	return count;
460 }
461 static DEVICE_ATTR_RW(zeroing_mode);
462 
463 static ssize_t
464 max_medium_access_timeouts_show(struct device *dev,
465 				struct device_attribute *attr, char *buf)
466 {
467 	struct scsi_disk *sdkp = to_scsi_disk(dev);
468 
469 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
470 }
471 
472 static ssize_t
473 max_medium_access_timeouts_store(struct device *dev,
474 				 struct device_attribute *attr, const char *buf,
475 				 size_t count)
476 {
477 	struct scsi_disk *sdkp = to_scsi_disk(dev);
478 	int err;
479 
480 	if (!capable(CAP_SYS_ADMIN))
481 		return -EACCES;
482 
483 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
484 
485 	return err ? err : count;
486 }
487 static DEVICE_ATTR_RW(max_medium_access_timeouts);
488 
489 static ssize_t
490 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
491 			   char *buf)
492 {
493 	struct scsi_disk *sdkp = to_scsi_disk(dev);
494 
495 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
496 }
497 
498 static ssize_t
499 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
500 			    const char *buf, size_t count)
501 {
502 	struct scsi_disk *sdkp = to_scsi_disk(dev);
503 	struct scsi_device *sdp = sdkp->device;
504 	unsigned long max;
505 	int err;
506 
507 	if (!capable(CAP_SYS_ADMIN))
508 		return -EACCES;
509 
510 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
511 		return -EINVAL;
512 
513 	err = kstrtoul(buf, 10, &max);
514 
515 	if (err)
516 		return err;
517 
518 	if (max == 0)
519 		sdp->no_write_same = 1;
520 	else if (max <= SD_MAX_WS16_BLOCKS) {
521 		sdp->no_write_same = 0;
522 		sdkp->max_ws_blocks = max;
523 	}
524 
525 	sd_config_write_same(sdkp);
526 
527 	return count;
528 }
529 static DEVICE_ATTR_RW(max_write_same_blocks);
530 
531 static ssize_t
532 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
533 {
534 	struct scsi_disk *sdkp = to_scsi_disk(dev);
535 
536 	if (sdkp->device->type == TYPE_ZBC)
537 		return sprintf(buf, "host-managed\n");
538 	if (sdkp->zoned == 1)
539 		return sprintf(buf, "host-aware\n");
540 	if (sdkp->zoned == 2)
541 		return sprintf(buf, "drive-managed\n");
542 	return sprintf(buf, "none\n");
543 }
544 static DEVICE_ATTR_RO(zoned_cap);
545 
546 static ssize_t
547 max_retries_store(struct device *dev, struct device_attribute *attr,
548 		  const char *buf, size_t count)
549 {
550 	struct scsi_disk *sdkp = to_scsi_disk(dev);
551 	struct scsi_device *sdev = sdkp->device;
552 	int retries, err;
553 
554 	err = kstrtoint(buf, 10, &retries);
555 	if (err)
556 		return err;
557 
558 	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
559 		sdkp->max_retries = retries;
560 		return count;
561 	}
562 
563 	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
564 		    SD_MAX_RETRIES);
565 	return -EINVAL;
566 }
567 
568 static ssize_t
569 max_retries_show(struct device *dev, struct device_attribute *attr,
570 		 char *buf)
571 {
572 	struct scsi_disk *sdkp = to_scsi_disk(dev);
573 
574 	return sprintf(buf, "%d\n", sdkp->max_retries);
575 }
576 
577 static DEVICE_ATTR_RW(max_retries);
578 
579 static struct attribute *sd_disk_attrs[] = {
580 	&dev_attr_cache_type.attr,
581 	&dev_attr_FUA.attr,
582 	&dev_attr_allow_restart.attr,
583 	&dev_attr_manage_start_stop.attr,
584 	&dev_attr_protection_type.attr,
585 	&dev_attr_protection_mode.attr,
586 	&dev_attr_app_tag_own.attr,
587 	&dev_attr_thin_provisioning.attr,
588 	&dev_attr_provisioning_mode.attr,
589 	&dev_attr_zeroing_mode.attr,
590 	&dev_attr_max_write_same_blocks.attr,
591 	&dev_attr_max_medium_access_timeouts.attr,
592 	&dev_attr_zoned_cap.attr,
593 	&dev_attr_max_retries.attr,
594 	NULL,
595 };
596 ATTRIBUTE_GROUPS(sd_disk);
597 
598 static struct class sd_disk_class = {
599 	.name		= "scsi_disk",
600 	.owner		= THIS_MODULE,
601 	.dev_release	= scsi_disk_release,
602 	.dev_groups	= sd_disk_groups,
603 };
604 
605 static const struct dev_pm_ops sd_pm_ops = {
606 	.suspend		= sd_suspend_system,
607 	.resume			= sd_resume,
608 	.poweroff		= sd_suspend_system,
609 	.restore		= sd_resume,
610 	.runtime_suspend	= sd_suspend_runtime,
611 	.runtime_resume		= sd_resume,
612 };
613 
614 static struct scsi_driver sd_template = {
615 	.gendrv = {
616 		.name		= "sd",
617 		.owner		= THIS_MODULE,
618 		.probe		= sd_probe,
619 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
620 		.remove		= sd_remove,
621 		.shutdown	= sd_shutdown,
622 		.pm		= &sd_pm_ops,
623 	},
624 	.rescan			= sd_rescan,
625 	.init_command		= sd_init_command,
626 	.uninit_command		= sd_uninit_command,
627 	.done			= sd_done,
628 	.eh_action		= sd_eh_action,
629 	.eh_reset		= sd_eh_reset,
630 };
631 
632 /*
633  * Dummy kobj_map->probe function.
634  * The default ->probe function will call modprobe, which is
635  * pointless as this module is already loaded.
636  */
637 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
638 {
639 	return NULL;
640 }
641 
642 /*
643  * Device no to disk mapping:
644  *
645  *       major         disc2     disc  p1
646  *   |............|.............|....|....| <- dev_t
647  *    31        20 19          8 7  4 3  0
648  *
649  * Inside a major, we have 16k disks, however mapped non-
650  * contiguously. The first 16 disks are for major0, the next
651  * ones with major1, ... Disk 256 is for major0 again, disk 272
652  * for major1, ...
653  * As we stay compatible with our numbering scheme, we can reuse
654  * the well-know SCSI majors 8, 65--71, 136--143.
655  */
656 static int sd_major(int major_idx)
657 {
658 	switch (major_idx) {
659 	case 0:
660 		return SCSI_DISK0_MAJOR;
661 	case 1 ... 7:
662 		return SCSI_DISK1_MAJOR + major_idx - 1;
663 	case 8 ... 15:
664 		return SCSI_DISK8_MAJOR + major_idx - 8;
665 	default:
666 		BUG();
667 		return 0;	/* shut up gcc */
668 	}
669 }
670 
671 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
672 {
673 	struct scsi_disk *sdkp = NULL;
674 
675 	mutex_lock(&sd_ref_mutex);
676 
677 	if (disk->private_data) {
678 		sdkp = scsi_disk(disk);
679 		if (scsi_device_get(sdkp->device) == 0)
680 			get_device(&sdkp->dev);
681 		else
682 			sdkp = NULL;
683 	}
684 	mutex_unlock(&sd_ref_mutex);
685 	return sdkp;
686 }
687 
688 static void scsi_disk_put(struct scsi_disk *sdkp)
689 {
690 	struct scsi_device *sdev = sdkp->device;
691 
692 	mutex_lock(&sd_ref_mutex);
693 	put_device(&sdkp->dev);
694 	scsi_device_put(sdev);
695 	mutex_unlock(&sd_ref_mutex);
696 }
697 
698 #ifdef CONFIG_BLK_SED_OPAL
699 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
700 		size_t len, bool send)
701 {
702 	struct scsi_disk *sdkp = data;
703 	struct scsi_device *sdev = sdkp->device;
704 	u8 cdb[12] = { 0, };
705 	int ret;
706 
707 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
708 	cdb[1] = secp;
709 	put_unaligned_be16(spsp, &cdb[2]);
710 	put_unaligned_be32(len, &cdb[6]);
711 
712 	ret = scsi_execute_req(sdev, cdb,
713 			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
714 			buffer, len, NULL, SD_TIMEOUT, sdkp->max_retries, NULL);
715 	return ret <= 0 ? ret : -EIO;
716 }
717 #endif /* CONFIG_BLK_SED_OPAL */
718 
719 /*
720  * Look up the DIX operation based on whether the command is read or
721  * write and whether dix and dif are enabled.
722  */
723 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
724 {
725 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
726 	static const unsigned int ops[] = {	/* wrt dix dif */
727 		SCSI_PROT_NORMAL,		/*  0	0   0  */
728 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
729 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
730 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
731 		SCSI_PROT_NORMAL,		/*  1	0   0  */
732 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
733 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
734 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
735 	};
736 
737 	return ops[write << 2 | dix << 1 | dif];
738 }
739 
740 /*
741  * Returns a mask of the protection flags that are valid for a given DIX
742  * operation.
743  */
744 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
745 {
746 	static const unsigned int flag_mask[] = {
747 		[SCSI_PROT_NORMAL]		= 0,
748 
749 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
750 						  SCSI_PROT_GUARD_CHECK |
751 						  SCSI_PROT_REF_CHECK |
752 						  SCSI_PROT_REF_INCREMENT,
753 
754 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
755 						  SCSI_PROT_IP_CHECKSUM,
756 
757 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
758 						  SCSI_PROT_GUARD_CHECK |
759 						  SCSI_PROT_REF_CHECK |
760 						  SCSI_PROT_REF_INCREMENT |
761 						  SCSI_PROT_IP_CHECKSUM,
762 
763 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
764 						  SCSI_PROT_REF_INCREMENT,
765 
766 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
767 						  SCSI_PROT_REF_CHECK |
768 						  SCSI_PROT_REF_INCREMENT |
769 						  SCSI_PROT_IP_CHECKSUM,
770 
771 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
772 						  SCSI_PROT_GUARD_CHECK |
773 						  SCSI_PROT_REF_CHECK |
774 						  SCSI_PROT_REF_INCREMENT |
775 						  SCSI_PROT_IP_CHECKSUM,
776 	};
777 
778 	return flag_mask[prot_op];
779 }
780 
781 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
782 					   unsigned int dix, unsigned int dif)
783 {
784 	struct bio *bio = scmd->request->bio;
785 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
786 	unsigned int protect = 0;
787 
788 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
789 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
790 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
791 
792 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
793 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
794 	}
795 
796 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
797 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
798 
799 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
800 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
801 	}
802 
803 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
804 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
805 
806 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
807 			protect = 3 << 5;	/* Disable target PI checking */
808 		else
809 			protect = 1 << 5;	/* Enable target PI checking */
810 	}
811 
812 	scsi_set_prot_op(scmd, prot_op);
813 	scsi_set_prot_type(scmd, dif);
814 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
815 
816 	return protect;
817 }
818 
819 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
820 {
821 	struct request_queue *q = sdkp->disk->queue;
822 	unsigned int logical_block_size = sdkp->device->sector_size;
823 	unsigned int max_blocks = 0;
824 
825 	q->limits.discard_alignment =
826 		sdkp->unmap_alignment * logical_block_size;
827 	q->limits.discard_granularity =
828 		max(sdkp->physical_block_size,
829 		    sdkp->unmap_granularity * logical_block_size);
830 	sdkp->provisioning_mode = mode;
831 
832 	switch (mode) {
833 
834 	case SD_LBP_FULL:
835 	case SD_LBP_DISABLE:
836 		blk_queue_max_discard_sectors(q, 0);
837 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
838 		return;
839 
840 	case SD_LBP_UNMAP:
841 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
842 					  (u32)SD_MAX_WS16_BLOCKS);
843 		break;
844 
845 	case SD_LBP_WS16:
846 		if (sdkp->device->unmap_limit_for_ws)
847 			max_blocks = sdkp->max_unmap_blocks;
848 		else
849 			max_blocks = sdkp->max_ws_blocks;
850 
851 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
852 		break;
853 
854 	case SD_LBP_WS10:
855 		if (sdkp->device->unmap_limit_for_ws)
856 			max_blocks = sdkp->max_unmap_blocks;
857 		else
858 			max_blocks = sdkp->max_ws_blocks;
859 
860 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
861 		break;
862 
863 	case SD_LBP_ZERO:
864 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
865 					  (u32)SD_MAX_WS10_BLOCKS);
866 		break;
867 	}
868 
869 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
870 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
871 }
872 
873 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
874 {
875 	struct scsi_device *sdp = cmd->device;
876 	struct request *rq = cmd->request;
877 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
878 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
879 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
880 	unsigned int data_len = 24;
881 	char *buf;
882 
883 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
884 	if (!rq->special_vec.bv_page)
885 		return BLK_STS_RESOURCE;
886 	clear_highpage(rq->special_vec.bv_page);
887 	rq->special_vec.bv_offset = 0;
888 	rq->special_vec.bv_len = data_len;
889 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
890 
891 	cmd->cmd_len = 10;
892 	cmd->cmnd[0] = UNMAP;
893 	cmd->cmnd[8] = 24;
894 
895 	buf = page_address(rq->special_vec.bv_page);
896 	put_unaligned_be16(6 + 16, &buf[0]);
897 	put_unaligned_be16(16, &buf[2]);
898 	put_unaligned_be64(lba, &buf[8]);
899 	put_unaligned_be32(nr_blocks, &buf[16]);
900 
901 	cmd->allowed = sdkp->max_retries;
902 	cmd->transfersize = data_len;
903 	rq->timeout = SD_TIMEOUT;
904 
905 	return scsi_alloc_sgtables(cmd);
906 }
907 
908 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
909 		bool unmap)
910 {
911 	struct scsi_device *sdp = cmd->device;
912 	struct request *rq = cmd->request;
913 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
914 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
915 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
916 	u32 data_len = sdp->sector_size;
917 
918 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
919 	if (!rq->special_vec.bv_page)
920 		return BLK_STS_RESOURCE;
921 	clear_highpage(rq->special_vec.bv_page);
922 	rq->special_vec.bv_offset = 0;
923 	rq->special_vec.bv_len = data_len;
924 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
925 
926 	cmd->cmd_len = 16;
927 	cmd->cmnd[0] = WRITE_SAME_16;
928 	if (unmap)
929 		cmd->cmnd[1] = 0x8; /* UNMAP */
930 	put_unaligned_be64(lba, &cmd->cmnd[2]);
931 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
932 
933 	cmd->allowed = sdkp->max_retries;
934 	cmd->transfersize = data_len;
935 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
936 
937 	return scsi_alloc_sgtables(cmd);
938 }
939 
940 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
941 		bool unmap)
942 {
943 	struct scsi_device *sdp = cmd->device;
944 	struct request *rq = cmd->request;
945 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
946 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
947 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
948 	u32 data_len = sdp->sector_size;
949 
950 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
951 	if (!rq->special_vec.bv_page)
952 		return BLK_STS_RESOURCE;
953 	clear_highpage(rq->special_vec.bv_page);
954 	rq->special_vec.bv_offset = 0;
955 	rq->special_vec.bv_len = data_len;
956 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
957 
958 	cmd->cmd_len = 10;
959 	cmd->cmnd[0] = WRITE_SAME;
960 	if (unmap)
961 		cmd->cmnd[1] = 0x8; /* UNMAP */
962 	put_unaligned_be32(lba, &cmd->cmnd[2]);
963 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
964 
965 	cmd->allowed = sdkp->max_retries;
966 	cmd->transfersize = data_len;
967 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
968 
969 	return scsi_alloc_sgtables(cmd);
970 }
971 
972 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
973 {
974 	struct request *rq = cmd->request;
975 	struct scsi_device *sdp = cmd->device;
976 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
977 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
978 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
979 
980 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
981 		switch (sdkp->zeroing_mode) {
982 		case SD_ZERO_WS16_UNMAP:
983 			return sd_setup_write_same16_cmnd(cmd, true);
984 		case SD_ZERO_WS10_UNMAP:
985 			return sd_setup_write_same10_cmnd(cmd, true);
986 		}
987 	}
988 
989 	if (sdp->no_write_same)
990 		return BLK_STS_TARGET;
991 
992 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
993 		return sd_setup_write_same16_cmnd(cmd, false);
994 
995 	return sd_setup_write_same10_cmnd(cmd, false);
996 }
997 
998 static void sd_config_write_same(struct scsi_disk *sdkp)
999 {
1000 	struct request_queue *q = sdkp->disk->queue;
1001 	unsigned int logical_block_size = sdkp->device->sector_size;
1002 
1003 	if (sdkp->device->no_write_same) {
1004 		sdkp->max_ws_blocks = 0;
1005 		goto out;
1006 	}
1007 
1008 	/* Some devices can not handle block counts above 0xffff despite
1009 	 * supporting WRITE SAME(16). Consequently we default to 64k
1010 	 * blocks per I/O unless the device explicitly advertises a
1011 	 * bigger limit.
1012 	 */
1013 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1014 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1015 						   (u32)SD_MAX_WS16_BLOCKS);
1016 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1017 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1018 						   (u32)SD_MAX_WS10_BLOCKS);
1019 	else {
1020 		sdkp->device->no_write_same = 1;
1021 		sdkp->max_ws_blocks = 0;
1022 	}
1023 
1024 	if (sdkp->lbprz && sdkp->lbpws)
1025 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1026 	else if (sdkp->lbprz && sdkp->lbpws10)
1027 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1028 	else if (sdkp->max_ws_blocks)
1029 		sdkp->zeroing_mode = SD_ZERO_WS;
1030 	else
1031 		sdkp->zeroing_mode = SD_ZERO_WRITE;
1032 
1033 	if (sdkp->max_ws_blocks &&
1034 	    sdkp->physical_block_size > logical_block_size) {
1035 		/*
1036 		 * Reporting a maximum number of blocks that is not aligned
1037 		 * on the device physical size would cause a large write same
1038 		 * request to be split into physically unaligned chunks by
1039 		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
1040 		 * even if the caller of these functions took care to align the
1041 		 * large request. So make sure the maximum reported is aligned
1042 		 * to the device physical block size. This is only an optional
1043 		 * optimization for regular disks, but this is mandatory to
1044 		 * avoid failure of large write same requests directed at
1045 		 * sequential write required zones of host-managed ZBC disks.
1046 		 */
1047 		sdkp->max_ws_blocks =
1048 			round_down(sdkp->max_ws_blocks,
1049 				   bytes_to_logical(sdkp->device,
1050 						    sdkp->physical_block_size));
1051 	}
1052 
1053 out:
1054 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1055 					 (logical_block_size >> 9));
1056 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1057 					 (logical_block_size >> 9));
1058 }
1059 
1060 /**
1061  * sd_setup_write_same_cmnd - write the same data to multiple blocks
1062  * @cmd: command to prepare
1063  *
1064  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1065  * the preference indicated by the target device.
1066  **/
1067 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1068 {
1069 	struct request *rq = cmd->request;
1070 	struct scsi_device *sdp = cmd->device;
1071 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1072 	struct bio *bio = rq->bio;
1073 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1074 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1075 	blk_status_t ret;
1076 
1077 	if (sdkp->device->no_write_same)
1078 		return BLK_STS_TARGET;
1079 
1080 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1081 
1082 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
1083 
1084 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1085 		cmd->cmd_len = 16;
1086 		cmd->cmnd[0] = WRITE_SAME_16;
1087 		put_unaligned_be64(lba, &cmd->cmnd[2]);
1088 		put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1089 	} else {
1090 		cmd->cmd_len = 10;
1091 		cmd->cmnd[0] = WRITE_SAME;
1092 		put_unaligned_be32(lba, &cmd->cmnd[2]);
1093 		put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1094 	}
1095 
1096 	cmd->transfersize = sdp->sector_size;
1097 	cmd->allowed = sdkp->max_retries;
1098 
1099 	/*
1100 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
1101 	 * different from the amount of data actually written to the target.
1102 	 *
1103 	 * We set up __data_len to the amount of data transferred via the
1104 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1105 	 * to transfer a single sector of data first, but then reset it to
1106 	 * the amount of data to be written right after so that the I/O path
1107 	 * knows how much to actually write.
1108 	 */
1109 	rq->__data_len = sdp->sector_size;
1110 	ret = scsi_alloc_sgtables(cmd);
1111 	rq->__data_len = blk_rq_bytes(rq);
1112 
1113 	return ret;
1114 }
1115 
1116 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1117 {
1118 	struct request *rq = cmd->request;
1119 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1120 
1121 	/* flush requests don't perform I/O, zero the S/G table */
1122 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1123 
1124 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1125 	cmd->cmd_len = 10;
1126 	cmd->transfersize = 0;
1127 	cmd->allowed = sdkp->max_retries;
1128 
1129 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1130 	return BLK_STS_OK;
1131 }
1132 
1133 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1134 				       sector_t lba, unsigned int nr_blocks,
1135 				       unsigned char flags)
1136 {
1137 	cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1138 	if (unlikely(cmd->cmnd == NULL))
1139 		return BLK_STS_RESOURCE;
1140 
1141 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1142 	memset(cmd->cmnd, 0, cmd->cmd_len);
1143 
1144 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1145 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1146 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1147 	cmd->cmnd[10] = flags;
1148 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1149 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1150 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1151 
1152 	return BLK_STS_OK;
1153 }
1154 
1155 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1156 				       sector_t lba, unsigned int nr_blocks,
1157 				       unsigned char flags)
1158 {
1159 	cmd->cmd_len  = 16;
1160 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1161 	cmd->cmnd[1]  = flags;
1162 	cmd->cmnd[14] = 0;
1163 	cmd->cmnd[15] = 0;
1164 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1165 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1166 
1167 	return BLK_STS_OK;
1168 }
1169 
1170 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1171 				       sector_t lba, unsigned int nr_blocks,
1172 				       unsigned char flags)
1173 {
1174 	cmd->cmd_len = 10;
1175 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1176 	cmd->cmnd[1] = flags;
1177 	cmd->cmnd[6] = 0;
1178 	cmd->cmnd[9] = 0;
1179 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1180 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1181 
1182 	return BLK_STS_OK;
1183 }
1184 
1185 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1186 				      sector_t lba, unsigned int nr_blocks,
1187 				      unsigned char flags)
1188 {
1189 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1190 	if (WARN_ON_ONCE(nr_blocks == 0))
1191 		return BLK_STS_IOERR;
1192 
1193 	if (unlikely(flags & 0x8)) {
1194 		/*
1195 		 * This happens only if this drive failed 10byte rw
1196 		 * command with ILLEGAL_REQUEST during operation and
1197 		 * thus turned off use_10_for_rw.
1198 		 */
1199 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1200 		return BLK_STS_IOERR;
1201 	}
1202 
1203 	cmd->cmd_len = 6;
1204 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1205 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1206 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1207 	cmd->cmnd[3] = lba & 0xff;
1208 	cmd->cmnd[4] = nr_blocks;
1209 	cmd->cmnd[5] = 0;
1210 
1211 	return BLK_STS_OK;
1212 }
1213 
1214 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1215 {
1216 	struct request *rq = cmd->request;
1217 	struct scsi_device *sdp = cmd->device;
1218 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1219 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1220 	sector_t threshold;
1221 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1222 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1223 	bool write = rq_data_dir(rq) == WRITE;
1224 	unsigned char protect, fua;
1225 	blk_status_t ret;
1226 	unsigned int dif;
1227 	bool dix;
1228 
1229 	ret = scsi_alloc_sgtables(cmd);
1230 	if (ret != BLK_STS_OK)
1231 		return ret;
1232 
1233 	ret = BLK_STS_IOERR;
1234 	if (!scsi_device_online(sdp) || sdp->changed) {
1235 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1236 		goto fail;
1237 	}
1238 
1239 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1240 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1241 		goto fail;
1242 	}
1243 
1244 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1245 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1246 		goto fail;
1247 	}
1248 
1249 	/*
1250 	 * Some SD card readers can't handle accesses which touch the
1251 	 * last one or two logical blocks. Split accesses as needed.
1252 	 */
1253 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1254 
1255 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1256 		if (lba < threshold) {
1257 			/* Access up to the threshold but not beyond */
1258 			nr_blocks = threshold - lba;
1259 		} else {
1260 			/* Access only a single logical block */
1261 			nr_blocks = 1;
1262 		}
1263 	}
1264 
1265 	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1266 		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1267 		if (ret)
1268 			goto fail;
1269 	}
1270 
1271 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1272 	dix = scsi_prot_sg_count(cmd);
1273 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1274 
1275 	if (dif || dix)
1276 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1277 	else
1278 		protect = 0;
1279 
1280 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1281 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1282 					 protect | fua);
1283 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1284 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1285 					 protect | fua);
1286 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1287 		   sdp->use_10_for_rw || protect) {
1288 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1289 					 protect | fua);
1290 	} else {
1291 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1292 					protect | fua);
1293 	}
1294 
1295 	if (unlikely(ret != BLK_STS_OK))
1296 		goto fail;
1297 
1298 	/*
1299 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1300 	 * host adapter, it's safe to assume that we can at least transfer
1301 	 * this many bytes between each connect / disconnect.
1302 	 */
1303 	cmd->transfersize = sdp->sector_size;
1304 	cmd->underflow = nr_blocks << 9;
1305 	cmd->allowed = sdkp->max_retries;
1306 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1307 
1308 	SCSI_LOG_HLQUEUE(1,
1309 			 scmd_printk(KERN_INFO, cmd,
1310 				     "%s: block=%llu, count=%d\n", __func__,
1311 				     (unsigned long long)blk_rq_pos(rq),
1312 				     blk_rq_sectors(rq)));
1313 	SCSI_LOG_HLQUEUE(2,
1314 			 scmd_printk(KERN_INFO, cmd,
1315 				     "%s %d/%u 512 byte blocks.\n",
1316 				     write ? "writing" : "reading", nr_blocks,
1317 				     blk_rq_sectors(rq)));
1318 
1319 	/*
1320 	 * This indicates that the command is ready from our end to be queued.
1321 	 */
1322 	return BLK_STS_OK;
1323 fail:
1324 	scsi_free_sgtables(cmd);
1325 	return ret;
1326 }
1327 
1328 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1329 {
1330 	struct request *rq = cmd->request;
1331 
1332 	switch (req_op(rq)) {
1333 	case REQ_OP_DISCARD:
1334 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1335 		case SD_LBP_UNMAP:
1336 			return sd_setup_unmap_cmnd(cmd);
1337 		case SD_LBP_WS16:
1338 			return sd_setup_write_same16_cmnd(cmd, true);
1339 		case SD_LBP_WS10:
1340 			return sd_setup_write_same10_cmnd(cmd, true);
1341 		case SD_LBP_ZERO:
1342 			return sd_setup_write_same10_cmnd(cmd, false);
1343 		default:
1344 			return BLK_STS_TARGET;
1345 		}
1346 	case REQ_OP_WRITE_ZEROES:
1347 		return sd_setup_write_zeroes_cmnd(cmd);
1348 	case REQ_OP_WRITE_SAME:
1349 		return sd_setup_write_same_cmnd(cmd);
1350 	case REQ_OP_FLUSH:
1351 		return sd_setup_flush_cmnd(cmd);
1352 	case REQ_OP_READ:
1353 	case REQ_OP_WRITE:
1354 	case REQ_OP_ZONE_APPEND:
1355 		return sd_setup_read_write_cmnd(cmd);
1356 	case REQ_OP_ZONE_RESET:
1357 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1358 						   false);
1359 	case REQ_OP_ZONE_RESET_ALL:
1360 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1361 						   true);
1362 	case REQ_OP_ZONE_OPEN:
1363 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1364 	case REQ_OP_ZONE_CLOSE:
1365 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1366 	case REQ_OP_ZONE_FINISH:
1367 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1368 	default:
1369 		WARN_ON_ONCE(1);
1370 		return BLK_STS_NOTSUPP;
1371 	}
1372 }
1373 
1374 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1375 {
1376 	struct request *rq = SCpnt->request;
1377 	u8 *cmnd;
1378 
1379 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1380 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1381 
1382 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1383 		cmnd = SCpnt->cmnd;
1384 		SCpnt->cmnd = NULL;
1385 		SCpnt->cmd_len = 0;
1386 		mempool_free(cmnd, sd_cdb_pool);
1387 	}
1388 }
1389 
1390 /**
1391  *	sd_open - open a scsi disk device
1392  *	@bdev: Block device of the scsi disk to open
1393  *	@mode: FMODE_* mask
1394  *
1395  *	Returns 0 if successful. Returns a negated errno value in case
1396  *	of error.
1397  *
1398  *	Note: This can be called from a user context (e.g. fsck(1) )
1399  *	or from within the kernel (e.g. as a result of a mount(1) ).
1400  *	In the latter case @inode and @filp carry an abridged amount
1401  *	of information as noted above.
1402  *
1403  *	Locking: called with bdev->bd_mutex held.
1404  **/
1405 static int sd_open(struct block_device *bdev, fmode_t mode)
1406 {
1407 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1408 	struct scsi_device *sdev;
1409 	int retval;
1410 
1411 	if (!sdkp)
1412 		return -ENXIO;
1413 
1414 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1415 
1416 	sdev = sdkp->device;
1417 
1418 	/*
1419 	 * If the device is in error recovery, wait until it is done.
1420 	 * If the device is offline, then disallow any access to it.
1421 	 */
1422 	retval = -ENXIO;
1423 	if (!scsi_block_when_processing_errors(sdev))
1424 		goto error_out;
1425 
1426 	if (sdev->removable || sdkp->write_prot) {
1427 		if (bdev_check_media_change(bdev))
1428 			sd_revalidate_disk(bdev->bd_disk);
1429 	}
1430 
1431 	/*
1432 	 * If the drive is empty, just let the open fail.
1433 	 */
1434 	retval = -ENOMEDIUM;
1435 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1436 		goto error_out;
1437 
1438 	/*
1439 	 * If the device has the write protect tab set, have the open fail
1440 	 * if the user expects to be able to write to the thing.
1441 	 */
1442 	retval = -EROFS;
1443 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1444 		goto error_out;
1445 
1446 	/*
1447 	 * It is possible that the disk changing stuff resulted in
1448 	 * the device being taken offline.  If this is the case,
1449 	 * report this to the user, and don't pretend that the
1450 	 * open actually succeeded.
1451 	 */
1452 	retval = -ENXIO;
1453 	if (!scsi_device_online(sdev))
1454 		goto error_out;
1455 
1456 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1457 		if (scsi_block_when_processing_errors(sdev))
1458 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1459 	}
1460 
1461 	return 0;
1462 
1463 error_out:
1464 	scsi_disk_put(sdkp);
1465 	return retval;
1466 }
1467 
1468 /**
1469  *	sd_release - invoked when the (last) close(2) is called on this
1470  *	scsi disk.
1471  *	@disk: disk to release
1472  *	@mode: FMODE_* mask
1473  *
1474  *	Returns 0.
1475  *
1476  *	Note: may block (uninterruptible) if error recovery is underway
1477  *	on this disk.
1478  *
1479  *	Locking: called with bdev->bd_mutex held.
1480  **/
1481 static void sd_release(struct gendisk *disk, fmode_t mode)
1482 {
1483 	struct scsi_disk *sdkp = scsi_disk(disk);
1484 	struct scsi_device *sdev = sdkp->device;
1485 
1486 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1487 
1488 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1489 		if (scsi_block_when_processing_errors(sdev))
1490 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1491 	}
1492 
1493 	scsi_disk_put(sdkp);
1494 }
1495 
1496 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1497 {
1498 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1499 	struct scsi_device *sdp = sdkp->device;
1500 	struct Scsi_Host *host = sdp->host;
1501 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1502 	int diskinfo[4];
1503 
1504 	/* default to most commonly used values */
1505 	diskinfo[0] = 0x40;	/* 1 << 6 */
1506 	diskinfo[1] = 0x20;	/* 1 << 5 */
1507 	diskinfo[2] = capacity >> 11;
1508 
1509 	/* override with calculated, extended default, or driver values */
1510 	if (host->hostt->bios_param)
1511 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1512 	else
1513 		scsicam_bios_param(bdev, capacity, diskinfo);
1514 
1515 	geo->heads = diskinfo[0];
1516 	geo->sectors = diskinfo[1];
1517 	geo->cylinders = diskinfo[2];
1518 	return 0;
1519 }
1520 
1521 /**
1522  *	sd_ioctl - process an ioctl
1523  *	@bdev: target block device
1524  *	@mode: FMODE_* mask
1525  *	@cmd: ioctl command number
1526  *	@p: this is third argument given to ioctl(2) system call.
1527  *	Often contains a pointer.
1528  *
1529  *	Returns 0 if successful (some ioctls return positive numbers on
1530  *	success as well). Returns a negated errno value in case of error.
1531  *
1532  *	Note: most ioctls are forward onto the block subsystem or further
1533  *	down in the scsi subsystem.
1534  **/
1535 static int sd_ioctl_common(struct block_device *bdev, fmode_t mode,
1536 			   unsigned int cmd, void __user *p)
1537 {
1538 	struct gendisk *disk = bdev->bd_disk;
1539 	struct scsi_disk *sdkp = scsi_disk(disk);
1540 	struct scsi_device *sdp = sdkp->device;
1541 	int error;
1542 
1543 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1544 				    "cmd=0x%x\n", disk->disk_name, cmd));
1545 
1546 	error = scsi_verify_blk_ioctl(bdev, cmd);
1547 	if (error < 0)
1548 		return error;
1549 
1550 	/*
1551 	 * If we are in the middle of error recovery, don't let anyone
1552 	 * else try and use this device.  Also, if error recovery fails, it
1553 	 * may try and take the device offline, in which case all further
1554 	 * access to the device is prohibited.
1555 	 */
1556 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1557 			(mode & FMODE_NDELAY) != 0);
1558 	if (error)
1559 		goto out;
1560 
1561 	if (is_sed_ioctl(cmd))
1562 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1563 
1564 	/*
1565 	 * Send SCSI addressing ioctls directly to mid level, send other
1566 	 * ioctls to block level and then onto mid level if they can't be
1567 	 * resolved.
1568 	 */
1569 	switch (cmd) {
1570 		case SCSI_IOCTL_GET_IDLUN:
1571 		case SCSI_IOCTL_GET_BUS_NUMBER:
1572 			error = scsi_ioctl(sdp, cmd, p);
1573 			break;
1574 		default:
1575 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1576 			break;
1577 	}
1578 out:
1579 	return error;
1580 }
1581 
1582 static void set_media_not_present(struct scsi_disk *sdkp)
1583 {
1584 	if (sdkp->media_present)
1585 		sdkp->device->changed = 1;
1586 
1587 	if (sdkp->device->removable) {
1588 		sdkp->media_present = 0;
1589 		sdkp->capacity = 0;
1590 	}
1591 }
1592 
1593 static int media_not_present(struct scsi_disk *sdkp,
1594 			     struct scsi_sense_hdr *sshdr)
1595 {
1596 	if (!scsi_sense_valid(sshdr))
1597 		return 0;
1598 
1599 	/* not invoked for commands that could return deferred errors */
1600 	switch (sshdr->sense_key) {
1601 	case UNIT_ATTENTION:
1602 	case NOT_READY:
1603 		/* medium not present */
1604 		if (sshdr->asc == 0x3A) {
1605 			set_media_not_present(sdkp);
1606 			return 1;
1607 		}
1608 	}
1609 	return 0;
1610 }
1611 
1612 /**
1613  *	sd_check_events - check media events
1614  *	@disk: kernel device descriptor
1615  *	@clearing: disk events currently being cleared
1616  *
1617  *	Returns mask of DISK_EVENT_*.
1618  *
1619  *	Note: this function is invoked from the block subsystem.
1620  **/
1621 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1622 {
1623 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1624 	struct scsi_device *sdp;
1625 	int retval;
1626 
1627 	if (!sdkp)
1628 		return 0;
1629 
1630 	sdp = sdkp->device;
1631 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1632 
1633 	/*
1634 	 * If the device is offline, don't send any commands - just pretend as
1635 	 * if the command failed.  If the device ever comes back online, we
1636 	 * can deal with it then.  It is only because of unrecoverable errors
1637 	 * that we would ever take a device offline in the first place.
1638 	 */
1639 	if (!scsi_device_online(sdp)) {
1640 		set_media_not_present(sdkp);
1641 		goto out;
1642 	}
1643 
1644 	/*
1645 	 * Using TEST_UNIT_READY enables differentiation between drive with
1646 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1647 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1648 	 *
1649 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1650 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1651 	 * sd_revalidate() is called.
1652 	 */
1653 	if (scsi_block_when_processing_errors(sdp)) {
1654 		struct scsi_sense_hdr sshdr = { 0, };
1655 
1656 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1657 					      &sshdr);
1658 
1659 		/* failed to execute TUR, assume media not present */
1660 		if (host_byte(retval)) {
1661 			set_media_not_present(sdkp);
1662 			goto out;
1663 		}
1664 
1665 		if (media_not_present(sdkp, &sshdr))
1666 			goto out;
1667 	}
1668 
1669 	/*
1670 	 * For removable scsi disk we have to recognise the presence
1671 	 * of a disk in the drive.
1672 	 */
1673 	if (!sdkp->media_present)
1674 		sdp->changed = 1;
1675 	sdkp->media_present = 1;
1676 out:
1677 	/*
1678 	 * sdp->changed is set under the following conditions:
1679 	 *
1680 	 *	Medium present state has changed in either direction.
1681 	 *	Device has indicated UNIT_ATTENTION.
1682 	 */
1683 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1684 	sdp->changed = 0;
1685 	scsi_disk_put(sdkp);
1686 	return retval;
1687 }
1688 
1689 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1690 {
1691 	int retries, res;
1692 	struct scsi_device *sdp = sdkp->device;
1693 	const int timeout = sdp->request_queue->rq_timeout
1694 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1695 	struct scsi_sense_hdr my_sshdr;
1696 
1697 	if (!scsi_device_online(sdp))
1698 		return -ENODEV;
1699 
1700 	/* caller might not be interested in sense, but we need it */
1701 	if (!sshdr)
1702 		sshdr = &my_sshdr;
1703 
1704 	for (retries = 3; retries > 0; --retries) {
1705 		unsigned char cmd[10] = { 0 };
1706 
1707 		cmd[0] = SYNCHRONIZE_CACHE;
1708 		/*
1709 		 * Leave the rest of the command zero to indicate
1710 		 * flush everything.
1711 		 */
1712 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1713 				timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1714 		if (res == 0)
1715 			break;
1716 	}
1717 
1718 	if (res) {
1719 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1720 
1721 		if (driver_byte(res) == DRIVER_SENSE)
1722 			sd_print_sense_hdr(sdkp, sshdr);
1723 
1724 		/* we need to evaluate the error return  */
1725 		if (scsi_sense_valid(sshdr) &&
1726 			(sshdr->asc == 0x3a ||	/* medium not present */
1727 			 sshdr->asc == 0x20 ||	/* invalid command */
1728 			 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)))	/* drive is password locked */
1729 				/* this is no error here */
1730 				return 0;
1731 
1732 		switch (host_byte(res)) {
1733 		/* ignore errors due to racing a disconnection */
1734 		case DID_BAD_TARGET:
1735 		case DID_NO_CONNECT:
1736 			return 0;
1737 		/* signal the upper layer it might try again */
1738 		case DID_BUS_BUSY:
1739 		case DID_IMM_RETRY:
1740 		case DID_REQUEUE:
1741 		case DID_SOFT_ERROR:
1742 			return -EBUSY;
1743 		default:
1744 			return -EIO;
1745 		}
1746 	}
1747 	return 0;
1748 }
1749 
1750 static void sd_rescan(struct device *dev)
1751 {
1752 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1753 	int ret;
1754 
1755 	ret = sd_revalidate_disk(sdkp->disk);
1756 	revalidate_disk_size(sdkp->disk, ret == 0);
1757 }
1758 
1759 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1760 		    unsigned int cmd, unsigned long arg)
1761 {
1762 	void __user *p = (void __user *)arg;
1763 	int ret;
1764 
1765 	ret = sd_ioctl_common(bdev, mode, cmd, p);
1766 	if (ret != -ENOTTY)
1767 		return ret;
1768 
1769 	return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1770 }
1771 
1772 #ifdef CONFIG_COMPAT
1773 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1774 			   unsigned int cmd, unsigned long arg)
1775 {
1776 	void __user *p = compat_ptr(arg);
1777 	int ret;
1778 
1779 	ret = sd_ioctl_common(bdev, mode, cmd, p);
1780 	if (ret != -ENOTTY)
1781 		return ret;
1782 
1783 	return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1784 }
1785 #endif
1786 
1787 static char sd_pr_type(enum pr_type type)
1788 {
1789 	switch (type) {
1790 	case PR_WRITE_EXCLUSIVE:
1791 		return 0x01;
1792 	case PR_EXCLUSIVE_ACCESS:
1793 		return 0x03;
1794 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1795 		return 0x05;
1796 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1797 		return 0x06;
1798 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1799 		return 0x07;
1800 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1801 		return 0x08;
1802 	default:
1803 		return 0;
1804 	}
1805 };
1806 
1807 static int sd_pr_command(struct block_device *bdev, u8 sa,
1808 		u64 key, u64 sa_key, u8 type, u8 flags)
1809 {
1810 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1811 	struct scsi_device *sdev = sdkp->device;
1812 	struct scsi_sense_hdr sshdr;
1813 	int result;
1814 	u8 cmd[16] = { 0, };
1815 	u8 data[24] = { 0, };
1816 
1817 	cmd[0] = PERSISTENT_RESERVE_OUT;
1818 	cmd[1] = sa;
1819 	cmd[2] = type;
1820 	put_unaligned_be32(sizeof(data), &cmd[5]);
1821 
1822 	put_unaligned_be64(key, &data[0]);
1823 	put_unaligned_be64(sa_key, &data[8]);
1824 	data[20] = flags;
1825 
1826 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1827 			&sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1828 
1829 	if (driver_byte(result) == DRIVER_SENSE &&
1830 	    scsi_sense_valid(&sshdr)) {
1831 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1832 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1833 	}
1834 
1835 	return result;
1836 }
1837 
1838 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1839 		u32 flags)
1840 {
1841 	if (flags & ~PR_FL_IGNORE_KEY)
1842 		return -EOPNOTSUPP;
1843 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1844 			old_key, new_key, 0,
1845 			(1 << 0) /* APTPL */);
1846 }
1847 
1848 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1849 		u32 flags)
1850 {
1851 	if (flags)
1852 		return -EOPNOTSUPP;
1853 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1854 }
1855 
1856 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1857 {
1858 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1859 }
1860 
1861 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1862 		enum pr_type type, bool abort)
1863 {
1864 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1865 			     sd_pr_type(type), 0);
1866 }
1867 
1868 static int sd_pr_clear(struct block_device *bdev, u64 key)
1869 {
1870 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1871 }
1872 
1873 static const struct pr_ops sd_pr_ops = {
1874 	.pr_register	= sd_pr_register,
1875 	.pr_reserve	= sd_pr_reserve,
1876 	.pr_release	= sd_pr_release,
1877 	.pr_preempt	= sd_pr_preempt,
1878 	.pr_clear	= sd_pr_clear,
1879 };
1880 
1881 static const struct block_device_operations sd_fops = {
1882 	.owner			= THIS_MODULE,
1883 	.open			= sd_open,
1884 	.release		= sd_release,
1885 	.ioctl			= sd_ioctl,
1886 	.getgeo			= sd_getgeo,
1887 #ifdef CONFIG_COMPAT
1888 	.compat_ioctl		= sd_compat_ioctl,
1889 #endif
1890 	.check_events		= sd_check_events,
1891 	.unlock_native_capacity	= sd_unlock_native_capacity,
1892 	.report_zones		= sd_zbc_report_zones,
1893 	.pr_ops			= &sd_pr_ops,
1894 };
1895 
1896 /**
1897  *	sd_eh_reset - reset error handling callback
1898  *	@scmd:		sd-issued command that has failed
1899  *
1900  *	This function is called by the SCSI midlayer before starting
1901  *	SCSI EH. When counting medium access failures we have to be
1902  *	careful to register it only only once per device and SCSI EH run;
1903  *	there might be several timed out commands which will cause the
1904  *	'max_medium_access_timeouts' counter to trigger after the first
1905  *	SCSI EH run already and set the device to offline.
1906  *	So this function resets the internal counter before starting SCSI EH.
1907  **/
1908 static void sd_eh_reset(struct scsi_cmnd *scmd)
1909 {
1910 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1911 
1912 	/* New SCSI EH run, reset gate variable */
1913 	sdkp->ignore_medium_access_errors = false;
1914 }
1915 
1916 /**
1917  *	sd_eh_action - error handling callback
1918  *	@scmd:		sd-issued command that has failed
1919  *	@eh_disp:	The recovery disposition suggested by the midlayer
1920  *
1921  *	This function is called by the SCSI midlayer upon completion of an
1922  *	error test command (currently TEST UNIT READY). The result of sending
1923  *	the eh command is passed in eh_disp.  We're looking for devices that
1924  *	fail medium access commands but are OK with non access commands like
1925  *	test unit ready (so wrongly see the device as having a successful
1926  *	recovery)
1927  **/
1928 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1929 {
1930 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1931 	struct scsi_device *sdev = scmd->device;
1932 
1933 	if (!scsi_device_online(sdev) ||
1934 	    !scsi_medium_access_command(scmd) ||
1935 	    host_byte(scmd->result) != DID_TIME_OUT ||
1936 	    eh_disp != SUCCESS)
1937 		return eh_disp;
1938 
1939 	/*
1940 	 * The device has timed out executing a medium access command.
1941 	 * However, the TEST UNIT READY command sent during error
1942 	 * handling completed successfully. Either the device is in the
1943 	 * process of recovering or has it suffered an internal failure
1944 	 * that prevents access to the storage medium.
1945 	 */
1946 	if (!sdkp->ignore_medium_access_errors) {
1947 		sdkp->medium_access_timed_out++;
1948 		sdkp->ignore_medium_access_errors = true;
1949 	}
1950 
1951 	/*
1952 	 * If the device keeps failing read/write commands but TEST UNIT
1953 	 * READY always completes successfully we assume that medium
1954 	 * access is no longer possible and take the device offline.
1955 	 */
1956 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1957 		scmd_printk(KERN_ERR, scmd,
1958 			    "Medium access timeout failure. Offlining disk!\n");
1959 		mutex_lock(&sdev->state_mutex);
1960 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1961 		mutex_unlock(&sdev->state_mutex);
1962 
1963 		return SUCCESS;
1964 	}
1965 
1966 	return eh_disp;
1967 }
1968 
1969 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1970 {
1971 	struct request *req = scmd->request;
1972 	struct scsi_device *sdev = scmd->device;
1973 	unsigned int transferred, good_bytes;
1974 	u64 start_lba, end_lba, bad_lba;
1975 
1976 	/*
1977 	 * Some commands have a payload smaller than the device logical
1978 	 * block size (e.g. INQUIRY on a 4K disk).
1979 	 */
1980 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1981 		return 0;
1982 
1983 	/* Check if we have a 'bad_lba' information */
1984 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1985 				     SCSI_SENSE_BUFFERSIZE,
1986 				     &bad_lba))
1987 		return 0;
1988 
1989 	/*
1990 	 * If the bad lba was reported incorrectly, we have no idea where
1991 	 * the error is.
1992 	 */
1993 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1994 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1995 	if (bad_lba < start_lba || bad_lba >= end_lba)
1996 		return 0;
1997 
1998 	/*
1999 	 * resid is optional but mostly filled in.  When it's unused,
2000 	 * its value is zero, so we assume the whole buffer transferred
2001 	 */
2002 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2003 
2004 	/* This computation should always be done in terms of the
2005 	 * resolution of the device's medium.
2006 	 */
2007 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2008 
2009 	return min(good_bytes, transferred);
2010 }
2011 
2012 /**
2013  *	sd_done - bottom half handler: called when the lower level
2014  *	driver has completed (successfully or otherwise) a scsi command.
2015  *	@SCpnt: mid-level's per command structure.
2016  *
2017  *	Note: potentially run from within an ISR. Must not block.
2018  **/
2019 static int sd_done(struct scsi_cmnd *SCpnt)
2020 {
2021 	int result = SCpnt->result;
2022 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2023 	unsigned int sector_size = SCpnt->device->sector_size;
2024 	unsigned int resid;
2025 	struct scsi_sense_hdr sshdr;
2026 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
2027 	struct request *req = SCpnt->request;
2028 	int sense_valid = 0;
2029 	int sense_deferred = 0;
2030 
2031 	switch (req_op(req)) {
2032 	case REQ_OP_DISCARD:
2033 	case REQ_OP_WRITE_ZEROES:
2034 	case REQ_OP_WRITE_SAME:
2035 	case REQ_OP_ZONE_RESET:
2036 	case REQ_OP_ZONE_RESET_ALL:
2037 	case REQ_OP_ZONE_OPEN:
2038 	case REQ_OP_ZONE_CLOSE:
2039 	case REQ_OP_ZONE_FINISH:
2040 		if (!result) {
2041 			good_bytes = blk_rq_bytes(req);
2042 			scsi_set_resid(SCpnt, 0);
2043 		} else {
2044 			good_bytes = 0;
2045 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2046 		}
2047 		break;
2048 	default:
2049 		/*
2050 		 * In case of bogus fw or device, we could end up having
2051 		 * an unaligned partial completion. Check this here and force
2052 		 * alignment.
2053 		 */
2054 		resid = scsi_get_resid(SCpnt);
2055 		if (resid & (sector_size - 1)) {
2056 			sd_printk(KERN_INFO, sdkp,
2057 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2058 				resid, sector_size);
2059 			scsi_print_command(SCpnt);
2060 			resid = min(scsi_bufflen(SCpnt),
2061 				    round_up(resid, sector_size));
2062 			scsi_set_resid(SCpnt, resid);
2063 		}
2064 	}
2065 
2066 	if (result) {
2067 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2068 		if (sense_valid)
2069 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2070 	}
2071 	sdkp->medium_access_timed_out = 0;
2072 
2073 	if (driver_byte(result) != DRIVER_SENSE &&
2074 	    (!sense_valid || sense_deferred))
2075 		goto out;
2076 
2077 	switch (sshdr.sense_key) {
2078 	case HARDWARE_ERROR:
2079 	case MEDIUM_ERROR:
2080 		good_bytes = sd_completed_bytes(SCpnt);
2081 		break;
2082 	case RECOVERED_ERROR:
2083 		good_bytes = scsi_bufflen(SCpnt);
2084 		break;
2085 	case NO_SENSE:
2086 		/* This indicates a false check condition, so ignore it.  An
2087 		 * unknown amount of data was transferred so treat it as an
2088 		 * error.
2089 		 */
2090 		SCpnt->result = 0;
2091 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2092 		break;
2093 	case ABORTED_COMMAND:
2094 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2095 			good_bytes = sd_completed_bytes(SCpnt);
2096 		break;
2097 	case ILLEGAL_REQUEST:
2098 		switch (sshdr.asc) {
2099 		case 0x10:	/* DIX: Host detected corruption */
2100 			good_bytes = sd_completed_bytes(SCpnt);
2101 			break;
2102 		case 0x20:	/* INVALID COMMAND OPCODE */
2103 		case 0x24:	/* INVALID FIELD IN CDB */
2104 			switch (SCpnt->cmnd[0]) {
2105 			case UNMAP:
2106 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2107 				break;
2108 			case WRITE_SAME_16:
2109 			case WRITE_SAME:
2110 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2111 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2112 				} else {
2113 					sdkp->device->no_write_same = 1;
2114 					sd_config_write_same(sdkp);
2115 					req->rq_flags |= RQF_QUIET;
2116 				}
2117 				break;
2118 			}
2119 		}
2120 		break;
2121 	default:
2122 		break;
2123 	}
2124 
2125  out:
2126 	if (sd_is_zoned(sdkp))
2127 		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2128 
2129 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2130 					   "sd_done: completed %d of %d bytes\n",
2131 					   good_bytes, scsi_bufflen(SCpnt)));
2132 
2133 	return good_bytes;
2134 }
2135 
2136 /*
2137  * spinup disk - called only in sd_revalidate_disk()
2138  */
2139 static void
2140 sd_spinup_disk(struct scsi_disk *sdkp)
2141 {
2142 	unsigned char cmd[10];
2143 	unsigned long spintime_expire = 0;
2144 	int retries, spintime;
2145 	unsigned int the_result;
2146 	struct scsi_sense_hdr sshdr;
2147 	int sense_valid = 0;
2148 
2149 	spintime = 0;
2150 
2151 	/* Spin up drives, as required.  Only do this at boot time */
2152 	/* Spinup needs to be done for module loads too. */
2153 	do {
2154 		retries = 0;
2155 
2156 		do {
2157 			cmd[0] = TEST_UNIT_READY;
2158 			memset((void *) &cmd[1], 0, 9);
2159 
2160 			the_result = scsi_execute_req(sdkp->device, cmd,
2161 						      DMA_NONE, NULL, 0,
2162 						      &sshdr, SD_TIMEOUT,
2163 						      sdkp->max_retries, NULL);
2164 
2165 			/*
2166 			 * If the drive has indicated to us that it
2167 			 * doesn't have any media in it, don't bother
2168 			 * with any more polling.
2169 			 */
2170 			if (media_not_present(sdkp, &sshdr))
2171 				return;
2172 
2173 			if (the_result)
2174 				sense_valid = scsi_sense_valid(&sshdr);
2175 			retries++;
2176 		} while (retries < 3 &&
2177 			 (!scsi_status_is_good(the_result) ||
2178 			  ((driver_byte(the_result) == DRIVER_SENSE) &&
2179 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2180 
2181 		if (driver_byte(the_result) != DRIVER_SENSE) {
2182 			/* no sense, TUR either succeeded or failed
2183 			 * with a status error */
2184 			if(!spintime && !scsi_status_is_good(the_result)) {
2185 				sd_print_result(sdkp, "Test Unit Ready failed",
2186 						the_result);
2187 			}
2188 			break;
2189 		}
2190 
2191 		/*
2192 		 * The device does not want the automatic start to be issued.
2193 		 */
2194 		if (sdkp->device->no_start_on_add)
2195 			break;
2196 
2197 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2198 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2199 				break;	/* manual intervention required */
2200 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2201 				break;	/* standby */
2202 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2203 				break;	/* unavailable */
2204 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2205 				break;	/* sanitize in progress */
2206 			/*
2207 			 * Issue command to spin up drive when not ready
2208 			 */
2209 			if (!spintime) {
2210 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2211 				cmd[0] = START_STOP;
2212 				cmd[1] = 1;	/* Return immediately */
2213 				memset((void *) &cmd[2], 0, 8);
2214 				cmd[4] = 1;	/* Start spin cycle */
2215 				if (sdkp->device->start_stop_pwr_cond)
2216 					cmd[4] |= 1 << 4;
2217 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2218 						 NULL, 0, &sshdr,
2219 						 SD_TIMEOUT, sdkp->max_retries,
2220 						 NULL);
2221 				spintime_expire = jiffies + 100 * HZ;
2222 				spintime = 1;
2223 			}
2224 			/* Wait 1 second for next try */
2225 			msleep(1000);
2226 			printk(KERN_CONT ".");
2227 
2228 		/*
2229 		 * Wait for USB flash devices with slow firmware.
2230 		 * Yes, this sense key/ASC combination shouldn't
2231 		 * occur here.  It's characteristic of these devices.
2232 		 */
2233 		} else if (sense_valid &&
2234 				sshdr.sense_key == UNIT_ATTENTION &&
2235 				sshdr.asc == 0x28) {
2236 			if (!spintime) {
2237 				spintime_expire = jiffies + 5 * HZ;
2238 				spintime = 1;
2239 			}
2240 			/* Wait 1 second for next try */
2241 			msleep(1000);
2242 		} else {
2243 			/* we don't understand the sense code, so it's
2244 			 * probably pointless to loop */
2245 			if(!spintime) {
2246 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2247 				sd_print_sense_hdr(sdkp, &sshdr);
2248 			}
2249 			break;
2250 		}
2251 
2252 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2253 
2254 	if (spintime) {
2255 		if (scsi_status_is_good(the_result))
2256 			printk(KERN_CONT "ready\n");
2257 		else
2258 			printk(KERN_CONT "not responding...\n");
2259 	}
2260 }
2261 
2262 /*
2263  * Determine whether disk supports Data Integrity Field.
2264  */
2265 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2266 {
2267 	struct scsi_device *sdp = sdkp->device;
2268 	u8 type;
2269 	int ret = 0;
2270 
2271 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2272 		sdkp->protection_type = 0;
2273 		return ret;
2274 	}
2275 
2276 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2277 
2278 	if (type > T10_PI_TYPE3_PROTECTION)
2279 		ret = -ENODEV;
2280 	else if (scsi_host_dif_capable(sdp->host, type))
2281 		ret = 1;
2282 
2283 	if (sdkp->first_scan || type != sdkp->protection_type)
2284 		switch (ret) {
2285 		case -ENODEV:
2286 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2287 				  " protection type %u. Disabling disk!\n",
2288 				  type);
2289 			break;
2290 		case 1:
2291 			sd_printk(KERN_NOTICE, sdkp,
2292 				  "Enabling DIF Type %u protection\n", type);
2293 			break;
2294 		case 0:
2295 			sd_printk(KERN_NOTICE, sdkp,
2296 				  "Disabling DIF Type %u protection\n", type);
2297 			break;
2298 		}
2299 
2300 	sdkp->protection_type = type;
2301 
2302 	return ret;
2303 }
2304 
2305 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2306 			struct scsi_sense_hdr *sshdr, int sense_valid,
2307 			int the_result)
2308 {
2309 	if (driver_byte(the_result) == DRIVER_SENSE)
2310 		sd_print_sense_hdr(sdkp, sshdr);
2311 	else
2312 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2313 
2314 	/*
2315 	 * Set dirty bit for removable devices if not ready -
2316 	 * sometimes drives will not report this properly.
2317 	 */
2318 	if (sdp->removable &&
2319 	    sense_valid && sshdr->sense_key == NOT_READY)
2320 		set_media_not_present(sdkp);
2321 
2322 	/*
2323 	 * We used to set media_present to 0 here to indicate no media
2324 	 * in the drive, but some drives fail read capacity even with
2325 	 * media present, so we can't do that.
2326 	 */
2327 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2328 }
2329 
2330 #define RC16_LEN 32
2331 #if RC16_LEN > SD_BUF_SIZE
2332 #error RC16_LEN must not be more than SD_BUF_SIZE
2333 #endif
2334 
2335 #define READ_CAPACITY_RETRIES_ON_RESET	10
2336 
2337 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2338 						unsigned char *buffer)
2339 {
2340 	unsigned char cmd[16];
2341 	struct scsi_sense_hdr sshdr;
2342 	int sense_valid = 0;
2343 	int the_result;
2344 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2345 	unsigned int alignment;
2346 	unsigned long long lba;
2347 	unsigned sector_size;
2348 
2349 	if (sdp->no_read_capacity_16)
2350 		return -EINVAL;
2351 
2352 	do {
2353 		memset(cmd, 0, 16);
2354 		cmd[0] = SERVICE_ACTION_IN_16;
2355 		cmd[1] = SAI_READ_CAPACITY_16;
2356 		cmd[13] = RC16_LEN;
2357 		memset(buffer, 0, RC16_LEN);
2358 
2359 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2360 					buffer, RC16_LEN, &sshdr,
2361 					SD_TIMEOUT, sdkp->max_retries, NULL);
2362 
2363 		if (media_not_present(sdkp, &sshdr))
2364 			return -ENODEV;
2365 
2366 		if (the_result) {
2367 			sense_valid = scsi_sense_valid(&sshdr);
2368 			if (sense_valid &&
2369 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2370 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2371 			    sshdr.ascq == 0x00)
2372 				/* Invalid Command Operation Code or
2373 				 * Invalid Field in CDB, just retry
2374 				 * silently with RC10 */
2375 				return -EINVAL;
2376 			if (sense_valid &&
2377 			    sshdr.sense_key == UNIT_ATTENTION &&
2378 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2379 				/* Device reset might occur several times,
2380 				 * give it one more chance */
2381 				if (--reset_retries > 0)
2382 					continue;
2383 		}
2384 		retries--;
2385 
2386 	} while (the_result && retries);
2387 
2388 	if (the_result) {
2389 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2390 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2391 		return -EINVAL;
2392 	}
2393 
2394 	sector_size = get_unaligned_be32(&buffer[8]);
2395 	lba = get_unaligned_be64(&buffer[0]);
2396 
2397 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2398 		sdkp->capacity = 0;
2399 		return -ENODEV;
2400 	}
2401 
2402 	/* Logical blocks per physical block exponent */
2403 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2404 
2405 	/* RC basis */
2406 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2407 
2408 	/* Lowest aligned logical block */
2409 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2410 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2411 	if (alignment && sdkp->first_scan)
2412 		sd_printk(KERN_NOTICE, sdkp,
2413 			  "physical block alignment offset: %u\n", alignment);
2414 
2415 	if (buffer[14] & 0x80) { /* LBPME */
2416 		sdkp->lbpme = 1;
2417 
2418 		if (buffer[14] & 0x40) /* LBPRZ */
2419 			sdkp->lbprz = 1;
2420 
2421 		sd_config_discard(sdkp, SD_LBP_WS16);
2422 	}
2423 
2424 	sdkp->capacity = lba + 1;
2425 	return sector_size;
2426 }
2427 
2428 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2429 						unsigned char *buffer)
2430 {
2431 	unsigned char cmd[16];
2432 	struct scsi_sense_hdr sshdr;
2433 	int sense_valid = 0;
2434 	int the_result;
2435 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2436 	sector_t lba;
2437 	unsigned sector_size;
2438 
2439 	do {
2440 		cmd[0] = READ_CAPACITY;
2441 		memset(&cmd[1], 0, 9);
2442 		memset(buffer, 0, 8);
2443 
2444 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2445 					buffer, 8, &sshdr,
2446 					SD_TIMEOUT, sdkp->max_retries, NULL);
2447 
2448 		if (media_not_present(sdkp, &sshdr))
2449 			return -ENODEV;
2450 
2451 		if (the_result) {
2452 			sense_valid = scsi_sense_valid(&sshdr);
2453 			if (sense_valid &&
2454 			    sshdr.sense_key == UNIT_ATTENTION &&
2455 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2456 				/* Device reset might occur several times,
2457 				 * give it one more chance */
2458 				if (--reset_retries > 0)
2459 					continue;
2460 		}
2461 		retries--;
2462 
2463 	} while (the_result && retries);
2464 
2465 	if (the_result) {
2466 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2467 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2468 		return -EINVAL;
2469 	}
2470 
2471 	sector_size = get_unaligned_be32(&buffer[4]);
2472 	lba = get_unaligned_be32(&buffer[0]);
2473 
2474 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2475 		/* Some buggy (usb cardreader) devices return an lba of
2476 		   0xffffffff when the want to report a size of 0 (with
2477 		   which they really mean no media is present) */
2478 		sdkp->capacity = 0;
2479 		sdkp->physical_block_size = sector_size;
2480 		return sector_size;
2481 	}
2482 
2483 	sdkp->capacity = lba + 1;
2484 	sdkp->physical_block_size = sector_size;
2485 	return sector_size;
2486 }
2487 
2488 static int sd_try_rc16_first(struct scsi_device *sdp)
2489 {
2490 	if (sdp->host->max_cmd_len < 16)
2491 		return 0;
2492 	if (sdp->try_rc_10_first)
2493 		return 0;
2494 	if (sdp->scsi_level > SCSI_SPC_2)
2495 		return 1;
2496 	if (scsi_device_protection(sdp))
2497 		return 1;
2498 	return 0;
2499 }
2500 
2501 /*
2502  * read disk capacity
2503  */
2504 static void
2505 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2506 {
2507 	int sector_size;
2508 	struct scsi_device *sdp = sdkp->device;
2509 
2510 	if (sd_try_rc16_first(sdp)) {
2511 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2512 		if (sector_size == -EOVERFLOW)
2513 			goto got_data;
2514 		if (sector_size == -ENODEV)
2515 			return;
2516 		if (sector_size < 0)
2517 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2518 		if (sector_size < 0)
2519 			return;
2520 	} else {
2521 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2522 		if (sector_size == -EOVERFLOW)
2523 			goto got_data;
2524 		if (sector_size < 0)
2525 			return;
2526 		if ((sizeof(sdkp->capacity) > 4) &&
2527 		    (sdkp->capacity > 0xffffffffULL)) {
2528 			int old_sector_size = sector_size;
2529 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2530 					"Trying to use READ CAPACITY(16).\n");
2531 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2532 			if (sector_size < 0) {
2533 				sd_printk(KERN_NOTICE, sdkp,
2534 					"Using 0xffffffff as device size\n");
2535 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2536 				sector_size = old_sector_size;
2537 				goto got_data;
2538 			}
2539 			/* Remember that READ CAPACITY(16) succeeded */
2540 			sdp->try_rc_10_first = 0;
2541 		}
2542 	}
2543 
2544 	/* Some devices are known to return the total number of blocks,
2545 	 * not the highest block number.  Some devices have versions
2546 	 * which do this and others which do not.  Some devices we might
2547 	 * suspect of doing this but we don't know for certain.
2548 	 *
2549 	 * If we know the reported capacity is wrong, decrement it.  If
2550 	 * we can only guess, then assume the number of blocks is even
2551 	 * (usually true but not always) and err on the side of lowering
2552 	 * the capacity.
2553 	 */
2554 	if (sdp->fix_capacity ||
2555 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2556 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2557 				"from its reported value: %llu\n",
2558 				(unsigned long long) sdkp->capacity);
2559 		--sdkp->capacity;
2560 	}
2561 
2562 got_data:
2563 	if (sector_size == 0) {
2564 		sector_size = 512;
2565 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2566 			  "assuming 512.\n");
2567 	}
2568 
2569 	if (sector_size != 512 &&
2570 	    sector_size != 1024 &&
2571 	    sector_size != 2048 &&
2572 	    sector_size != 4096) {
2573 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2574 			  sector_size);
2575 		/*
2576 		 * The user might want to re-format the drive with
2577 		 * a supported sectorsize.  Once this happens, it
2578 		 * would be relatively trivial to set the thing up.
2579 		 * For this reason, we leave the thing in the table.
2580 		 */
2581 		sdkp->capacity = 0;
2582 		/*
2583 		 * set a bogus sector size so the normal read/write
2584 		 * logic in the block layer will eventually refuse any
2585 		 * request on this device without tripping over power
2586 		 * of two sector size assumptions
2587 		 */
2588 		sector_size = 512;
2589 	}
2590 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2591 	blk_queue_physical_block_size(sdp->request_queue,
2592 				      sdkp->physical_block_size);
2593 	sdkp->device->sector_size = sector_size;
2594 
2595 	if (sdkp->capacity > 0xffffffff)
2596 		sdp->use_16_for_rw = 1;
2597 
2598 }
2599 
2600 /*
2601  * Print disk capacity
2602  */
2603 static void
2604 sd_print_capacity(struct scsi_disk *sdkp,
2605 		  sector_t old_capacity)
2606 {
2607 	int sector_size = sdkp->device->sector_size;
2608 	char cap_str_2[10], cap_str_10[10];
2609 
2610 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2611 		return;
2612 
2613 	string_get_size(sdkp->capacity, sector_size,
2614 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2615 	string_get_size(sdkp->capacity, sector_size,
2616 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2617 
2618 	sd_printk(KERN_NOTICE, sdkp,
2619 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2620 		  (unsigned long long)sdkp->capacity,
2621 		  sector_size, cap_str_10, cap_str_2);
2622 
2623 	if (sdkp->physical_block_size != sector_size)
2624 		sd_printk(KERN_NOTICE, sdkp,
2625 			  "%u-byte physical blocks\n",
2626 			  sdkp->physical_block_size);
2627 }
2628 
2629 /* called with buffer of length 512 */
2630 static inline int
2631 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2632 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2633 		 struct scsi_sense_hdr *sshdr)
2634 {
2635 	return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2636 			       SD_TIMEOUT, sdkp->max_retries, data,
2637 			       sshdr);
2638 }
2639 
2640 /*
2641  * read write protect setting, if possible - called only in sd_revalidate_disk()
2642  * called with buffer of length SD_BUF_SIZE
2643  */
2644 static void
2645 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2646 {
2647 	int res;
2648 	struct scsi_device *sdp = sdkp->device;
2649 	struct scsi_mode_data data;
2650 	int old_wp = sdkp->write_prot;
2651 
2652 	set_disk_ro(sdkp->disk, 0);
2653 	if (sdp->skip_ms_page_3f) {
2654 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2655 		return;
2656 	}
2657 
2658 	if (sdp->use_192_bytes_for_3f) {
2659 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2660 	} else {
2661 		/*
2662 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2663 		 * We have to start carefully: some devices hang if we ask
2664 		 * for more than is available.
2665 		 */
2666 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2667 
2668 		/*
2669 		 * Second attempt: ask for page 0 When only page 0 is
2670 		 * implemented, a request for page 3F may return Sense Key
2671 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2672 		 * CDB.
2673 		 */
2674 		if (!scsi_status_is_good(res))
2675 			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2676 
2677 		/*
2678 		 * Third attempt: ask 255 bytes, as we did earlier.
2679 		 */
2680 		if (!scsi_status_is_good(res))
2681 			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2682 					       &data, NULL);
2683 	}
2684 
2685 	if (!scsi_status_is_good(res)) {
2686 		sd_first_printk(KERN_WARNING, sdkp,
2687 			  "Test WP failed, assume Write Enabled\n");
2688 	} else {
2689 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2690 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2691 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2692 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2693 				  sdkp->write_prot ? "on" : "off");
2694 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2695 		}
2696 	}
2697 }
2698 
2699 /*
2700  * sd_read_cache_type - called only from sd_revalidate_disk()
2701  * called with buffer of length SD_BUF_SIZE
2702  */
2703 static void
2704 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2705 {
2706 	int len = 0, res;
2707 	struct scsi_device *sdp = sdkp->device;
2708 
2709 	int dbd;
2710 	int modepage;
2711 	int first_len;
2712 	struct scsi_mode_data data;
2713 	struct scsi_sense_hdr sshdr;
2714 	int old_wce = sdkp->WCE;
2715 	int old_rcd = sdkp->RCD;
2716 	int old_dpofua = sdkp->DPOFUA;
2717 
2718 
2719 	if (sdkp->cache_override)
2720 		return;
2721 
2722 	first_len = 4;
2723 	if (sdp->skip_ms_page_8) {
2724 		if (sdp->type == TYPE_RBC)
2725 			goto defaults;
2726 		else {
2727 			if (sdp->skip_ms_page_3f)
2728 				goto defaults;
2729 			modepage = 0x3F;
2730 			if (sdp->use_192_bytes_for_3f)
2731 				first_len = 192;
2732 			dbd = 0;
2733 		}
2734 	} else if (sdp->type == TYPE_RBC) {
2735 		modepage = 6;
2736 		dbd = 8;
2737 	} else {
2738 		modepage = 8;
2739 		dbd = 0;
2740 	}
2741 
2742 	/* cautiously ask */
2743 	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2744 			&data, &sshdr);
2745 
2746 	if (!scsi_status_is_good(res))
2747 		goto bad_sense;
2748 
2749 	if (!data.header_length) {
2750 		modepage = 6;
2751 		first_len = 0;
2752 		sd_first_printk(KERN_ERR, sdkp,
2753 				"Missing header in MODE_SENSE response\n");
2754 	}
2755 
2756 	/* that went OK, now ask for the proper length */
2757 	len = data.length;
2758 
2759 	/*
2760 	 * We're only interested in the first three bytes, actually.
2761 	 * But the data cache page is defined for the first 20.
2762 	 */
2763 	if (len < 3)
2764 		goto bad_sense;
2765 	else if (len > SD_BUF_SIZE) {
2766 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2767 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2768 		len = SD_BUF_SIZE;
2769 	}
2770 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2771 		len = 192;
2772 
2773 	/* Get the data */
2774 	if (len > first_len)
2775 		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2776 				&data, &sshdr);
2777 
2778 	if (scsi_status_is_good(res)) {
2779 		int offset = data.header_length + data.block_descriptor_length;
2780 
2781 		while (offset < len) {
2782 			u8 page_code = buffer[offset] & 0x3F;
2783 			u8 spf       = buffer[offset] & 0x40;
2784 
2785 			if (page_code == 8 || page_code == 6) {
2786 				/* We're interested only in the first 3 bytes.
2787 				 */
2788 				if (len - offset <= 2) {
2789 					sd_first_printk(KERN_ERR, sdkp,
2790 						"Incomplete mode parameter "
2791 							"data\n");
2792 					goto defaults;
2793 				} else {
2794 					modepage = page_code;
2795 					goto Page_found;
2796 				}
2797 			} else {
2798 				/* Go to the next page */
2799 				if (spf && len - offset > 3)
2800 					offset += 4 + (buffer[offset+2] << 8) +
2801 						buffer[offset+3];
2802 				else if (!spf && len - offset > 1)
2803 					offset += 2 + buffer[offset+1];
2804 				else {
2805 					sd_first_printk(KERN_ERR, sdkp,
2806 							"Incomplete mode "
2807 							"parameter data\n");
2808 					goto defaults;
2809 				}
2810 			}
2811 		}
2812 
2813 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2814 		goto defaults;
2815 
2816 	Page_found:
2817 		if (modepage == 8) {
2818 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2819 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2820 		} else {
2821 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2822 			sdkp->RCD = 0;
2823 		}
2824 
2825 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2826 		if (sdp->broken_fua) {
2827 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2828 			sdkp->DPOFUA = 0;
2829 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2830 			   !sdkp->device->use_16_for_rw) {
2831 			sd_first_printk(KERN_NOTICE, sdkp,
2832 				  "Uses READ/WRITE(6), disabling FUA\n");
2833 			sdkp->DPOFUA = 0;
2834 		}
2835 
2836 		/* No cache flush allowed for write protected devices */
2837 		if (sdkp->WCE && sdkp->write_prot)
2838 			sdkp->WCE = 0;
2839 
2840 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2841 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2842 			sd_printk(KERN_NOTICE, sdkp,
2843 				  "Write cache: %s, read cache: %s, %s\n",
2844 				  sdkp->WCE ? "enabled" : "disabled",
2845 				  sdkp->RCD ? "disabled" : "enabled",
2846 				  sdkp->DPOFUA ? "supports DPO and FUA"
2847 				  : "doesn't support DPO or FUA");
2848 
2849 		return;
2850 	}
2851 
2852 bad_sense:
2853 	if (scsi_sense_valid(&sshdr) &&
2854 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2855 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2856 		/* Invalid field in CDB */
2857 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2858 	else
2859 		sd_first_printk(KERN_ERR, sdkp,
2860 				"Asking for cache data failed\n");
2861 
2862 defaults:
2863 	if (sdp->wce_default_on) {
2864 		sd_first_printk(KERN_NOTICE, sdkp,
2865 				"Assuming drive cache: write back\n");
2866 		sdkp->WCE = 1;
2867 	} else {
2868 		sd_first_printk(KERN_ERR, sdkp,
2869 				"Assuming drive cache: write through\n");
2870 		sdkp->WCE = 0;
2871 	}
2872 	sdkp->RCD = 0;
2873 	sdkp->DPOFUA = 0;
2874 }
2875 
2876 /*
2877  * The ATO bit indicates whether the DIF application tag is available
2878  * for use by the operating system.
2879  */
2880 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2881 {
2882 	int res, offset;
2883 	struct scsi_device *sdp = sdkp->device;
2884 	struct scsi_mode_data data;
2885 	struct scsi_sense_hdr sshdr;
2886 
2887 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2888 		return;
2889 
2890 	if (sdkp->protection_type == 0)
2891 		return;
2892 
2893 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2894 			      sdkp->max_retries, &data, &sshdr);
2895 
2896 	if (!scsi_status_is_good(res) || !data.header_length ||
2897 	    data.length < 6) {
2898 		sd_first_printk(KERN_WARNING, sdkp,
2899 			  "getting Control mode page failed, assume no ATO\n");
2900 
2901 		if (scsi_sense_valid(&sshdr))
2902 			sd_print_sense_hdr(sdkp, &sshdr);
2903 
2904 		return;
2905 	}
2906 
2907 	offset = data.header_length + data.block_descriptor_length;
2908 
2909 	if ((buffer[offset] & 0x3f) != 0x0a) {
2910 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2911 		return;
2912 	}
2913 
2914 	if ((buffer[offset + 5] & 0x80) == 0)
2915 		return;
2916 
2917 	sdkp->ATO = 1;
2918 
2919 	return;
2920 }
2921 
2922 /**
2923  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2924  * @sdkp: disk to query
2925  */
2926 static void sd_read_block_limits(struct scsi_disk *sdkp)
2927 {
2928 	unsigned int sector_sz = sdkp->device->sector_size;
2929 	const int vpd_len = 64;
2930 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2931 
2932 	if (!buffer ||
2933 	    /* Block Limits VPD */
2934 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2935 		goto out;
2936 
2937 	blk_queue_io_min(sdkp->disk->queue,
2938 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2939 
2940 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2941 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2942 
2943 	if (buffer[3] == 0x3c) {
2944 		unsigned int lba_count, desc_count;
2945 
2946 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2947 
2948 		if (!sdkp->lbpme)
2949 			goto out;
2950 
2951 		lba_count = get_unaligned_be32(&buffer[20]);
2952 		desc_count = get_unaligned_be32(&buffer[24]);
2953 
2954 		if (lba_count && desc_count)
2955 			sdkp->max_unmap_blocks = lba_count;
2956 
2957 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2958 
2959 		if (buffer[32] & 0x80)
2960 			sdkp->unmap_alignment =
2961 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2962 
2963 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2964 
2965 			if (sdkp->max_unmap_blocks)
2966 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2967 			else
2968 				sd_config_discard(sdkp, SD_LBP_WS16);
2969 
2970 		} else {	/* LBP VPD page tells us what to use */
2971 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2972 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2973 			else if (sdkp->lbpws)
2974 				sd_config_discard(sdkp, SD_LBP_WS16);
2975 			else if (sdkp->lbpws10)
2976 				sd_config_discard(sdkp, SD_LBP_WS10);
2977 			else
2978 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2979 		}
2980 	}
2981 
2982  out:
2983 	kfree(buffer);
2984 }
2985 
2986 /**
2987  * sd_read_block_characteristics - Query block dev. characteristics
2988  * @sdkp: disk to query
2989  */
2990 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2991 {
2992 	struct request_queue *q = sdkp->disk->queue;
2993 	unsigned char *buffer;
2994 	u16 rot;
2995 	const int vpd_len = 64;
2996 
2997 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2998 
2999 	if (!buffer ||
3000 	    /* Block Device Characteristics VPD */
3001 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
3002 		goto out;
3003 
3004 	rot = get_unaligned_be16(&buffer[4]);
3005 
3006 	if (rot == 1) {
3007 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3008 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3009 	}
3010 
3011 	if (sdkp->device->type == TYPE_ZBC) {
3012 		/* Host-managed */
3013 		blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM);
3014 	} else {
3015 		sdkp->zoned = (buffer[8] >> 4) & 3;
3016 		if (sdkp->zoned == 1) {
3017 			/* Host-aware */
3018 			blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA);
3019 		} else {
3020 			/* Regular disk or drive managed disk */
3021 			blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3022 		}
3023 	}
3024 
3025 	if (!sdkp->first_scan)
3026 		goto out;
3027 
3028 	if (blk_queue_is_zoned(q)) {
3029 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3030 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3031 	} else {
3032 		if (sdkp->zoned == 1)
3033 			sd_printk(KERN_NOTICE, sdkp,
3034 				  "Host-aware SMR disk used as regular disk\n");
3035 		else if (sdkp->zoned == 2)
3036 			sd_printk(KERN_NOTICE, sdkp,
3037 				  "Drive-managed SMR disk\n");
3038 	}
3039 
3040  out:
3041 	kfree(buffer);
3042 }
3043 
3044 /**
3045  * sd_read_block_provisioning - Query provisioning VPD page
3046  * @sdkp: disk to query
3047  */
3048 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3049 {
3050 	unsigned char *buffer;
3051 	const int vpd_len = 8;
3052 
3053 	if (sdkp->lbpme == 0)
3054 		return;
3055 
3056 	buffer = kmalloc(vpd_len, GFP_KERNEL);
3057 
3058 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3059 		goto out;
3060 
3061 	sdkp->lbpvpd	= 1;
3062 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
3063 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
3064 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
3065 
3066  out:
3067 	kfree(buffer);
3068 }
3069 
3070 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3071 {
3072 	struct scsi_device *sdev = sdkp->device;
3073 
3074 	if (sdev->host->no_write_same) {
3075 		sdev->no_write_same = 1;
3076 
3077 		return;
3078 	}
3079 
3080 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3081 		/* too large values might cause issues with arcmsr */
3082 		int vpd_buf_len = 64;
3083 
3084 		sdev->no_report_opcodes = 1;
3085 
3086 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3087 		 * CODES is unsupported and the device has an ATA
3088 		 * Information VPD page (SAT).
3089 		 */
3090 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3091 			sdev->no_write_same = 1;
3092 	}
3093 
3094 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3095 		sdkp->ws16 = 1;
3096 
3097 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3098 		sdkp->ws10 = 1;
3099 }
3100 
3101 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3102 {
3103 	struct scsi_device *sdev = sdkp->device;
3104 
3105 	if (!sdev->security_supported)
3106 		return;
3107 
3108 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3109 			SECURITY_PROTOCOL_IN) == 1 &&
3110 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3111 			SECURITY_PROTOCOL_OUT) == 1)
3112 		sdkp->security = 1;
3113 }
3114 
3115 /*
3116  * Determine the device's preferred I/O size for reads and writes
3117  * unless the reported value is unreasonably small, large, not a
3118  * multiple of the physical block size, or simply garbage.
3119  */
3120 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3121 				      unsigned int dev_max)
3122 {
3123 	struct scsi_device *sdp = sdkp->device;
3124 	unsigned int opt_xfer_bytes =
3125 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3126 
3127 	if (sdkp->opt_xfer_blocks == 0)
3128 		return false;
3129 
3130 	if (sdkp->opt_xfer_blocks > dev_max) {
3131 		sd_first_printk(KERN_WARNING, sdkp,
3132 				"Optimal transfer size %u logical blocks " \
3133 				"> dev_max (%u logical blocks)\n",
3134 				sdkp->opt_xfer_blocks, dev_max);
3135 		return false;
3136 	}
3137 
3138 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3139 		sd_first_printk(KERN_WARNING, sdkp,
3140 				"Optimal transfer size %u logical blocks " \
3141 				"> sd driver limit (%u logical blocks)\n",
3142 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3143 		return false;
3144 	}
3145 
3146 	if (opt_xfer_bytes < PAGE_SIZE) {
3147 		sd_first_printk(KERN_WARNING, sdkp,
3148 				"Optimal transfer size %u bytes < " \
3149 				"PAGE_SIZE (%u bytes)\n",
3150 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3151 		return false;
3152 	}
3153 
3154 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3155 		sd_first_printk(KERN_WARNING, sdkp,
3156 				"Optimal transfer size %u bytes not a " \
3157 				"multiple of physical block size (%u bytes)\n",
3158 				opt_xfer_bytes, sdkp->physical_block_size);
3159 		return false;
3160 	}
3161 
3162 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3163 			opt_xfer_bytes);
3164 	return true;
3165 }
3166 
3167 /**
3168  *	sd_revalidate_disk - called the first time a new disk is seen,
3169  *	performs disk spin up, read_capacity, etc.
3170  *	@disk: struct gendisk we care about
3171  **/
3172 static int sd_revalidate_disk(struct gendisk *disk)
3173 {
3174 	struct scsi_disk *sdkp = scsi_disk(disk);
3175 	struct scsi_device *sdp = sdkp->device;
3176 	struct request_queue *q = sdkp->disk->queue;
3177 	sector_t old_capacity = sdkp->capacity;
3178 	unsigned char *buffer;
3179 	unsigned int dev_max, rw_max;
3180 
3181 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3182 				      "sd_revalidate_disk\n"));
3183 
3184 	/*
3185 	 * If the device is offline, don't try and read capacity or any
3186 	 * of the other niceties.
3187 	 */
3188 	if (!scsi_device_online(sdp))
3189 		goto out;
3190 
3191 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3192 	if (!buffer) {
3193 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3194 			  "allocation failure.\n");
3195 		goto out;
3196 	}
3197 
3198 	sd_spinup_disk(sdkp);
3199 
3200 	/*
3201 	 * Without media there is no reason to ask; moreover, some devices
3202 	 * react badly if we do.
3203 	 */
3204 	if (sdkp->media_present) {
3205 		sd_read_capacity(sdkp, buffer);
3206 
3207 		/*
3208 		 * set the default to rotational.  All non-rotational devices
3209 		 * support the block characteristics VPD page, which will
3210 		 * cause this to be updated correctly and any device which
3211 		 * doesn't support it should be treated as rotational.
3212 		 */
3213 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3214 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3215 
3216 		if (scsi_device_supports_vpd(sdp)) {
3217 			sd_read_block_provisioning(sdkp);
3218 			sd_read_block_limits(sdkp);
3219 			sd_read_block_characteristics(sdkp);
3220 			sd_zbc_read_zones(sdkp, buffer);
3221 		}
3222 
3223 		sd_print_capacity(sdkp, old_capacity);
3224 
3225 		sd_read_write_protect_flag(sdkp, buffer);
3226 		sd_read_cache_type(sdkp, buffer);
3227 		sd_read_app_tag_own(sdkp, buffer);
3228 		sd_read_write_same(sdkp, buffer);
3229 		sd_read_security(sdkp, buffer);
3230 	}
3231 
3232 	/*
3233 	 * We now have all cache related info, determine how we deal
3234 	 * with flush requests.
3235 	 */
3236 	sd_set_flush_flag(sdkp);
3237 
3238 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3239 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3240 
3241 	/* Some devices report a maximum block count for READ/WRITE requests. */
3242 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3243 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3244 
3245 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3246 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3247 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3248 	} else {
3249 		q->limits.io_opt = 0;
3250 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3251 				      (sector_t)BLK_DEF_MAX_SECTORS);
3252 	}
3253 
3254 	/* Do not exceed controller limit */
3255 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3256 
3257 	/*
3258 	 * Only update max_sectors if previously unset or if the current value
3259 	 * exceeds the capabilities of the hardware.
3260 	 */
3261 	if (sdkp->first_scan ||
3262 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3263 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3264 		q->limits.max_sectors = rw_max;
3265 
3266 	sdkp->first_scan = 0;
3267 
3268 	set_capacity_revalidate_and_notify(disk,
3269 		logical_to_sectors(sdp, sdkp->capacity), false);
3270 	sd_config_write_same(sdkp);
3271 	kfree(buffer);
3272 
3273 	/*
3274 	 * For a zoned drive, revalidating the zones can be done only once
3275 	 * the gendisk capacity is set. So if this fails, set back the gendisk
3276 	 * capacity to 0.
3277 	 */
3278 	if (sd_zbc_revalidate_zones(sdkp))
3279 		set_capacity_revalidate_and_notify(disk, 0, false);
3280 
3281  out:
3282 	return 0;
3283 }
3284 
3285 /**
3286  *	sd_unlock_native_capacity - unlock native capacity
3287  *	@disk: struct gendisk to set capacity for
3288  *
3289  *	Block layer calls this function if it detects that partitions
3290  *	on @disk reach beyond the end of the device.  If the SCSI host
3291  *	implements ->unlock_native_capacity() method, it's invoked to
3292  *	give it a chance to adjust the device capacity.
3293  *
3294  *	CONTEXT:
3295  *	Defined by block layer.  Might sleep.
3296  */
3297 static void sd_unlock_native_capacity(struct gendisk *disk)
3298 {
3299 	struct scsi_device *sdev = scsi_disk(disk)->device;
3300 
3301 	if (sdev->host->hostt->unlock_native_capacity)
3302 		sdev->host->hostt->unlock_native_capacity(sdev);
3303 }
3304 
3305 /**
3306  *	sd_format_disk_name - format disk name
3307  *	@prefix: name prefix - ie. "sd" for SCSI disks
3308  *	@index: index of the disk to format name for
3309  *	@buf: output buffer
3310  *	@buflen: length of the output buffer
3311  *
3312  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3313  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3314  *	which is followed by sdaaa.
3315  *
3316  *	This is basically 26 base counting with one extra 'nil' entry
3317  *	at the beginning from the second digit on and can be
3318  *	determined using similar method as 26 base conversion with the
3319  *	index shifted -1 after each digit is computed.
3320  *
3321  *	CONTEXT:
3322  *	Don't care.
3323  *
3324  *	RETURNS:
3325  *	0 on success, -errno on failure.
3326  */
3327 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3328 {
3329 	const int base = 'z' - 'a' + 1;
3330 	char *begin = buf + strlen(prefix);
3331 	char *end = buf + buflen;
3332 	char *p;
3333 	int unit;
3334 
3335 	p = end - 1;
3336 	*p = '\0';
3337 	unit = base;
3338 	do {
3339 		if (p == begin)
3340 			return -EINVAL;
3341 		*--p = 'a' + (index % unit);
3342 		index = (index / unit) - 1;
3343 	} while (index >= 0);
3344 
3345 	memmove(begin, p, end - p);
3346 	memcpy(buf, prefix, strlen(prefix));
3347 
3348 	return 0;
3349 }
3350 
3351 /**
3352  *	sd_probe - called during driver initialization and whenever a
3353  *	new scsi device is attached to the system. It is called once
3354  *	for each scsi device (not just disks) present.
3355  *	@dev: pointer to device object
3356  *
3357  *	Returns 0 if successful (or not interested in this scsi device
3358  *	(e.g. scanner)); 1 when there is an error.
3359  *
3360  *	Note: this function is invoked from the scsi mid-level.
3361  *	This function sets up the mapping between a given
3362  *	<host,channel,id,lun> (found in sdp) and new device name
3363  *	(e.g. /dev/sda). More precisely it is the block device major
3364  *	and minor number that is chosen here.
3365  *
3366  *	Assume sd_probe is not re-entrant (for time being)
3367  *	Also think about sd_probe() and sd_remove() running coincidentally.
3368  **/
3369 static int sd_probe(struct device *dev)
3370 {
3371 	struct scsi_device *sdp = to_scsi_device(dev);
3372 	struct scsi_disk *sdkp;
3373 	struct gendisk *gd;
3374 	int index;
3375 	int error;
3376 
3377 	scsi_autopm_get_device(sdp);
3378 	error = -ENODEV;
3379 	if (sdp->type != TYPE_DISK &&
3380 	    sdp->type != TYPE_ZBC &&
3381 	    sdp->type != TYPE_MOD &&
3382 	    sdp->type != TYPE_RBC)
3383 		goto out;
3384 
3385 #ifndef CONFIG_BLK_DEV_ZONED
3386 	if (sdp->type == TYPE_ZBC)
3387 		goto out;
3388 #endif
3389 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3390 					"sd_probe\n"));
3391 
3392 	error = -ENOMEM;
3393 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3394 	if (!sdkp)
3395 		goto out;
3396 
3397 	gd = alloc_disk(SD_MINORS);
3398 	if (!gd)
3399 		goto out_free;
3400 
3401 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3402 	if (index < 0) {
3403 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3404 		goto out_put;
3405 	}
3406 
3407 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3408 	if (error) {
3409 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3410 		goto out_free_index;
3411 	}
3412 
3413 	sdkp->device = sdp;
3414 	sdkp->driver = &sd_template;
3415 	sdkp->disk = gd;
3416 	sdkp->index = index;
3417 	sdkp->max_retries = SD_MAX_RETRIES;
3418 	atomic_set(&sdkp->openers, 0);
3419 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3420 
3421 	if (!sdp->request_queue->rq_timeout) {
3422 		if (sdp->type != TYPE_MOD)
3423 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3424 		else
3425 			blk_queue_rq_timeout(sdp->request_queue,
3426 					     SD_MOD_TIMEOUT);
3427 	}
3428 
3429 	device_initialize(&sdkp->dev);
3430 	sdkp->dev.parent = dev;
3431 	sdkp->dev.class = &sd_disk_class;
3432 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3433 
3434 	error = device_add(&sdkp->dev);
3435 	if (error)
3436 		goto out_free_index;
3437 
3438 	get_device(dev);
3439 	dev_set_drvdata(dev, sdkp);
3440 
3441 	gd->major = sd_major((index & 0xf0) >> 4);
3442 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3443 
3444 	gd->fops = &sd_fops;
3445 	gd->private_data = &sdkp->driver;
3446 	gd->queue = sdkp->device->request_queue;
3447 
3448 	/* defaults, until the device tells us otherwise */
3449 	sdp->sector_size = 512;
3450 	sdkp->capacity = 0;
3451 	sdkp->media_present = 1;
3452 	sdkp->write_prot = 0;
3453 	sdkp->cache_override = 0;
3454 	sdkp->WCE = 0;
3455 	sdkp->RCD = 0;
3456 	sdkp->ATO = 0;
3457 	sdkp->first_scan = 1;
3458 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3459 
3460 	sd_revalidate_disk(gd);
3461 
3462 	gd->flags = GENHD_FL_EXT_DEVT;
3463 	if (sdp->removable) {
3464 		gd->flags |= GENHD_FL_REMOVABLE;
3465 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3466 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3467 	}
3468 
3469 	blk_pm_runtime_init(sdp->request_queue, dev);
3470 	if (sdp->rpm_autosuspend) {
3471 		pm_runtime_set_autosuspend_delay(dev,
3472 			sdp->host->hostt->rpm_autosuspend_delay);
3473 	}
3474 	device_add_disk(dev, gd, NULL);
3475 	if (sdkp->capacity)
3476 		sd_dif_config_host(sdkp);
3477 
3478 	sd_revalidate_disk(gd);
3479 
3480 	if (sdkp->security) {
3481 		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3482 		if (sdkp->opal_dev)
3483 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3484 	}
3485 
3486 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3487 		  sdp->removable ? "removable " : "");
3488 	scsi_autopm_put_device(sdp);
3489 
3490 	return 0;
3491 
3492  out_free_index:
3493 	ida_free(&sd_index_ida, index);
3494  out_put:
3495 	put_disk(gd);
3496  out_free:
3497 	sd_zbc_release_disk(sdkp);
3498 	kfree(sdkp);
3499  out:
3500 	scsi_autopm_put_device(sdp);
3501 	return error;
3502 }
3503 
3504 /**
3505  *	sd_remove - called whenever a scsi disk (previously recognized by
3506  *	sd_probe) is detached from the system. It is called (potentially
3507  *	multiple times) during sd module unload.
3508  *	@dev: pointer to device object
3509  *
3510  *	Note: this function is invoked from the scsi mid-level.
3511  *	This function potentially frees up a device name (e.g. /dev/sdc)
3512  *	that could be re-used by a subsequent sd_probe().
3513  *	This function is not called when the built-in sd driver is "exit-ed".
3514  **/
3515 static int sd_remove(struct device *dev)
3516 {
3517 	struct scsi_disk *sdkp;
3518 	dev_t devt;
3519 
3520 	sdkp = dev_get_drvdata(dev);
3521 	devt = disk_devt(sdkp->disk);
3522 	scsi_autopm_get_device(sdkp->device);
3523 
3524 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3525 	device_del(&sdkp->dev);
3526 	del_gendisk(sdkp->disk);
3527 	sd_shutdown(dev);
3528 
3529 	free_opal_dev(sdkp->opal_dev);
3530 
3531 	blk_register_region(devt, SD_MINORS, NULL,
3532 			    sd_default_probe, NULL, NULL);
3533 
3534 	mutex_lock(&sd_ref_mutex);
3535 	dev_set_drvdata(dev, NULL);
3536 	put_device(&sdkp->dev);
3537 	mutex_unlock(&sd_ref_mutex);
3538 
3539 	return 0;
3540 }
3541 
3542 /**
3543  *	scsi_disk_release - Called to free the scsi_disk structure
3544  *	@dev: pointer to embedded class device
3545  *
3546  *	sd_ref_mutex must be held entering this routine.  Because it is
3547  *	called on last put, you should always use the scsi_disk_get()
3548  *	scsi_disk_put() helpers which manipulate the semaphore directly
3549  *	and never do a direct put_device.
3550  **/
3551 static void scsi_disk_release(struct device *dev)
3552 {
3553 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3554 	struct gendisk *disk = sdkp->disk;
3555 	struct request_queue *q = disk->queue;
3556 
3557 	ida_free(&sd_index_ida, sdkp->index);
3558 
3559 	/*
3560 	 * Wait until all requests that are in progress have completed.
3561 	 * This is necessary to avoid that e.g. scsi_end_request() crashes
3562 	 * due to clearing the disk->private_data pointer. Wait from inside
3563 	 * scsi_disk_release() instead of from sd_release() to avoid that
3564 	 * freezing and unfreezing the request queue affects user space I/O
3565 	 * in case multiple processes open a /dev/sd... node concurrently.
3566 	 */
3567 	blk_mq_freeze_queue(q);
3568 	blk_mq_unfreeze_queue(q);
3569 
3570 	disk->private_data = NULL;
3571 	put_disk(disk);
3572 	put_device(&sdkp->device->sdev_gendev);
3573 
3574 	sd_zbc_release_disk(sdkp);
3575 
3576 	kfree(sdkp);
3577 }
3578 
3579 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3580 {
3581 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3582 	struct scsi_sense_hdr sshdr;
3583 	struct scsi_device *sdp = sdkp->device;
3584 	int res;
3585 
3586 	if (start)
3587 		cmd[4] |= 1;	/* START */
3588 
3589 	if (sdp->start_stop_pwr_cond)
3590 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3591 
3592 	if (!scsi_device_online(sdp))
3593 		return -ENODEV;
3594 
3595 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3596 			SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3597 	if (res) {
3598 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3599 		if (driver_byte(res) == DRIVER_SENSE)
3600 			sd_print_sense_hdr(sdkp, &sshdr);
3601 		if (scsi_sense_valid(&sshdr) &&
3602 			/* 0x3a is medium not present */
3603 			sshdr.asc == 0x3a)
3604 			res = 0;
3605 	}
3606 
3607 	/* SCSI error codes must not go to the generic layer */
3608 	if (res)
3609 		return -EIO;
3610 
3611 	return 0;
3612 }
3613 
3614 /*
3615  * Send a SYNCHRONIZE CACHE instruction down to the device through
3616  * the normal SCSI command structure.  Wait for the command to
3617  * complete.
3618  */
3619 static void sd_shutdown(struct device *dev)
3620 {
3621 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3622 
3623 	if (!sdkp)
3624 		return;         /* this can happen */
3625 
3626 	if (pm_runtime_suspended(dev))
3627 		return;
3628 
3629 	if (sdkp->WCE && sdkp->media_present) {
3630 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3631 		sd_sync_cache(sdkp, NULL);
3632 	}
3633 
3634 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3635 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3636 		sd_start_stop_device(sdkp, 0);
3637 	}
3638 }
3639 
3640 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3641 {
3642 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3643 	struct scsi_sense_hdr sshdr;
3644 	int ret = 0;
3645 
3646 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3647 		return 0;
3648 
3649 	if (sdkp->WCE && sdkp->media_present) {
3650 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3651 		ret = sd_sync_cache(sdkp, &sshdr);
3652 
3653 		if (ret) {
3654 			/* ignore OFFLINE device */
3655 			if (ret == -ENODEV)
3656 				return 0;
3657 
3658 			if (!scsi_sense_valid(&sshdr) ||
3659 			    sshdr.sense_key != ILLEGAL_REQUEST)
3660 				return ret;
3661 
3662 			/*
3663 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3664 			 * doesn't support sync. There's not much to do and
3665 			 * suspend shouldn't fail.
3666 			 */
3667 			ret = 0;
3668 		}
3669 	}
3670 
3671 	if (sdkp->device->manage_start_stop) {
3672 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3673 		/* an error is not worth aborting a system sleep */
3674 		ret = sd_start_stop_device(sdkp, 0);
3675 		if (ignore_stop_errors)
3676 			ret = 0;
3677 	}
3678 
3679 	return ret;
3680 }
3681 
3682 static int sd_suspend_system(struct device *dev)
3683 {
3684 	return sd_suspend_common(dev, true);
3685 }
3686 
3687 static int sd_suspend_runtime(struct device *dev)
3688 {
3689 	return sd_suspend_common(dev, false);
3690 }
3691 
3692 static int sd_resume(struct device *dev)
3693 {
3694 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3695 	int ret;
3696 
3697 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3698 		return 0;
3699 
3700 	if (!sdkp->device->manage_start_stop)
3701 		return 0;
3702 
3703 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3704 	ret = sd_start_stop_device(sdkp, 1);
3705 	if (!ret)
3706 		opal_unlock_from_suspend(sdkp->opal_dev);
3707 	return ret;
3708 }
3709 
3710 /**
3711  *	init_sd - entry point for this driver (both when built in or when
3712  *	a module).
3713  *
3714  *	Note: this function registers this driver with the scsi mid-level.
3715  **/
3716 static int __init init_sd(void)
3717 {
3718 	int majors = 0, i, err;
3719 
3720 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3721 
3722 	for (i = 0; i < SD_MAJORS; i++) {
3723 		if (register_blkdev(sd_major(i), "sd") != 0)
3724 			continue;
3725 		majors++;
3726 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3727 				    sd_default_probe, NULL, NULL);
3728 	}
3729 
3730 	if (!majors)
3731 		return -ENODEV;
3732 
3733 	err = class_register(&sd_disk_class);
3734 	if (err)
3735 		goto err_out;
3736 
3737 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3738 					 0, 0, NULL);
3739 	if (!sd_cdb_cache) {
3740 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3741 		err = -ENOMEM;
3742 		goto err_out_class;
3743 	}
3744 
3745 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3746 	if (!sd_cdb_pool) {
3747 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3748 		err = -ENOMEM;
3749 		goto err_out_cache;
3750 	}
3751 
3752 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3753 	if (!sd_page_pool) {
3754 		printk(KERN_ERR "sd: can't init discard page pool\n");
3755 		err = -ENOMEM;
3756 		goto err_out_ppool;
3757 	}
3758 
3759 	err = scsi_register_driver(&sd_template.gendrv);
3760 	if (err)
3761 		goto err_out_driver;
3762 
3763 	return 0;
3764 
3765 err_out_driver:
3766 	mempool_destroy(sd_page_pool);
3767 
3768 err_out_ppool:
3769 	mempool_destroy(sd_cdb_pool);
3770 
3771 err_out_cache:
3772 	kmem_cache_destroy(sd_cdb_cache);
3773 
3774 err_out_class:
3775 	class_unregister(&sd_disk_class);
3776 err_out:
3777 	for (i = 0; i < SD_MAJORS; i++)
3778 		unregister_blkdev(sd_major(i), "sd");
3779 	return err;
3780 }
3781 
3782 /**
3783  *	exit_sd - exit point for this driver (when it is a module).
3784  *
3785  *	Note: this function unregisters this driver from the scsi mid-level.
3786  **/
3787 static void __exit exit_sd(void)
3788 {
3789 	int i;
3790 
3791 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3792 
3793 	scsi_unregister_driver(&sd_template.gendrv);
3794 	mempool_destroy(sd_cdb_pool);
3795 	mempool_destroy(sd_page_pool);
3796 	kmem_cache_destroy(sd_cdb_cache);
3797 
3798 	class_unregister(&sd_disk_class);
3799 
3800 	for (i = 0; i < SD_MAJORS; i++) {
3801 		blk_unregister_region(sd_major(i), SD_MINORS);
3802 		unregister_blkdev(sd_major(i), "sd");
3803 	}
3804 }
3805 
3806 module_init(init_sd);
3807 module_exit(exit_sd);
3808 
3809 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3810 {
3811 	scsi_print_sense_hdr(sdkp->device,
3812 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3813 }
3814 
3815 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3816 {
3817 	const char *hb_string = scsi_hostbyte_string(result);
3818 	const char *db_string = scsi_driverbyte_string(result);
3819 
3820 	if (hb_string || db_string)
3821 		sd_printk(KERN_INFO, sdkp,
3822 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3823 			  hb_string ? hb_string : "invalid",
3824 			  db_string ? db_string : "invalid");
3825 	else
3826 		sd_printk(KERN_INFO, sdkp,
3827 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3828 			  msg, host_byte(result), driver_byte(result));
3829 }
3830