1 /* 2 * sd.c Copyright (C) 1992 Drew Eckhardt 3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 4 * 5 * Linux scsi disk driver 6 * Initial versions: Drew Eckhardt 7 * Subsequent revisions: Eric Youngdale 8 * Modification history: 9 * - Drew Eckhardt <drew@colorado.edu> original 10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 11 * outstanding request, and other enhancements. 12 * Support loadable low-level scsi drivers. 13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 14 * eight major numbers. 15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 17 * sd_init and cleanups. 18 * - Alex Davis <letmein@erols.com> Fix problem where partition info 19 * not being read in sd_open. Fix problem where removable media 20 * could be ejected after sd_open. 21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 24 * Support 32k/1M disks. 25 * 26 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 30 * - entering other commands: SCSI_LOG_HLQUEUE level 3 31 * Note: when the logging level is set by the user, it must be greater 32 * than the level indicated above to trigger output. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/fs.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/bio.h> 40 #include <linux/genhd.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/delay.h> 49 #include <linux/mutex.h> 50 #include <linux/string_helpers.h> 51 #include <linux/async.h> 52 #include <linux/slab.h> 53 #include <linux/pm_runtime.h> 54 #include <linux/pr.h> 55 #include <linux/t10-pi.h> 56 #include <linux/uaccess.h> 57 #include <asm/unaligned.h> 58 59 #include <scsi/scsi.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_dbg.h> 62 #include <scsi/scsi_device.h> 63 #include <scsi/scsi_driver.h> 64 #include <scsi/scsi_eh.h> 65 #include <scsi/scsi_host.h> 66 #include <scsi/scsi_ioctl.h> 67 #include <scsi/scsicam.h> 68 69 #include "sd.h" 70 #include "scsi_priv.h" 71 #include "scsi_logging.h" 72 73 MODULE_AUTHOR("Eric Youngdale"); 74 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 75 MODULE_LICENSE("GPL"); 76 77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 93 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 94 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 97 98 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 99 #define SD_MINORS 16 100 #else 101 #define SD_MINORS 0 102 #endif 103 104 static void sd_config_discard(struct scsi_disk *, unsigned int); 105 static void sd_config_write_same(struct scsi_disk *); 106 static int sd_revalidate_disk(struct gendisk *); 107 static void sd_unlock_native_capacity(struct gendisk *disk); 108 static int sd_probe(struct device *); 109 static int sd_remove(struct device *); 110 static void sd_shutdown(struct device *); 111 static int sd_suspend_system(struct device *); 112 static int sd_suspend_runtime(struct device *); 113 static int sd_resume(struct device *); 114 static void sd_rescan(struct device *); 115 static int sd_init_command(struct scsi_cmnd *SCpnt); 116 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 117 static int sd_done(struct scsi_cmnd *); 118 static int sd_eh_action(struct scsi_cmnd *, int); 119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 120 static void scsi_disk_release(struct device *cdev); 121 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 122 static void sd_print_result(const struct scsi_disk *, const char *, int); 123 124 static DEFINE_SPINLOCK(sd_index_lock); 125 static DEFINE_IDA(sd_index_ida); 126 127 /* This semaphore is used to mediate the 0->1 reference get in the 128 * face of object destruction (i.e. we can't allow a get on an 129 * object after last put) */ 130 static DEFINE_MUTEX(sd_ref_mutex); 131 132 static struct kmem_cache *sd_cdb_cache; 133 static mempool_t *sd_cdb_pool; 134 135 static const char *sd_cache_types[] = { 136 "write through", "none", "write back", 137 "write back, no read (daft)" 138 }; 139 140 static void sd_set_flush_flag(struct scsi_disk *sdkp) 141 { 142 bool wc = false, fua = false; 143 144 if (sdkp->WCE) { 145 wc = true; 146 if (sdkp->DPOFUA) 147 fua = true; 148 } 149 150 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 151 } 152 153 static ssize_t 154 cache_type_store(struct device *dev, struct device_attribute *attr, 155 const char *buf, size_t count) 156 { 157 int i, ct = -1, rcd, wce, sp; 158 struct scsi_disk *sdkp = to_scsi_disk(dev); 159 struct scsi_device *sdp = sdkp->device; 160 char buffer[64]; 161 char *buffer_data; 162 struct scsi_mode_data data; 163 struct scsi_sense_hdr sshdr; 164 static const char temp[] = "temporary "; 165 int len; 166 167 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 168 /* no cache control on RBC devices; theoretically they 169 * can do it, but there's probably so many exceptions 170 * it's not worth the risk */ 171 return -EINVAL; 172 173 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 174 buf += sizeof(temp) - 1; 175 sdkp->cache_override = 1; 176 } else { 177 sdkp->cache_override = 0; 178 } 179 180 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) { 181 len = strlen(sd_cache_types[i]); 182 if (strncmp(sd_cache_types[i], buf, len) == 0 && 183 buf[len] == '\n') { 184 ct = i; 185 break; 186 } 187 } 188 if (ct < 0) 189 return -EINVAL; 190 rcd = ct & 0x01 ? 1 : 0; 191 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 192 193 if (sdkp->cache_override) { 194 sdkp->WCE = wce; 195 sdkp->RCD = rcd; 196 sd_set_flush_flag(sdkp); 197 return count; 198 } 199 200 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 201 SD_MAX_RETRIES, &data, NULL)) 202 return -EINVAL; 203 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 204 data.block_descriptor_length); 205 buffer_data = buffer + data.header_length + 206 data.block_descriptor_length; 207 buffer_data[2] &= ~0x05; 208 buffer_data[2] |= wce << 2 | rcd; 209 sp = buffer_data[0] & 0x80 ? 1 : 0; 210 buffer_data[0] &= ~0x80; 211 212 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 213 SD_MAX_RETRIES, &data, &sshdr)) { 214 if (scsi_sense_valid(&sshdr)) 215 sd_print_sense_hdr(sdkp, &sshdr); 216 return -EINVAL; 217 } 218 revalidate_disk(sdkp->disk); 219 return count; 220 } 221 222 static ssize_t 223 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 224 char *buf) 225 { 226 struct scsi_disk *sdkp = to_scsi_disk(dev); 227 struct scsi_device *sdp = sdkp->device; 228 229 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop); 230 } 231 232 static ssize_t 233 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 234 const char *buf, size_t count) 235 { 236 struct scsi_disk *sdkp = to_scsi_disk(dev); 237 struct scsi_device *sdp = sdkp->device; 238 239 if (!capable(CAP_SYS_ADMIN)) 240 return -EACCES; 241 242 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10); 243 244 return count; 245 } 246 static DEVICE_ATTR_RW(manage_start_stop); 247 248 static ssize_t 249 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 250 { 251 struct scsi_disk *sdkp = to_scsi_disk(dev); 252 253 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart); 254 } 255 256 static ssize_t 257 allow_restart_store(struct device *dev, struct device_attribute *attr, 258 const char *buf, size_t count) 259 { 260 struct scsi_disk *sdkp = to_scsi_disk(dev); 261 struct scsi_device *sdp = sdkp->device; 262 263 if (!capable(CAP_SYS_ADMIN)) 264 return -EACCES; 265 266 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 267 return -EINVAL; 268 269 sdp->allow_restart = simple_strtoul(buf, NULL, 10); 270 271 return count; 272 } 273 static DEVICE_ATTR_RW(allow_restart); 274 275 static ssize_t 276 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 277 { 278 struct scsi_disk *sdkp = to_scsi_disk(dev); 279 int ct = sdkp->RCD + 2*sdkp->WCE; 280 281 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]); 282 } 283 static DEVICE_ATTR_RW(cache_type); 284 285 static ssize_t 286 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 287 { 288 struct scsi_disk *sdkp = to_scsi_disk(dev); 289 290 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA); 291 } 292 static DEVICE_ATTR_RO(FUA); 293 294 static ssize_t 295 protection_type_show(struct device *dev, struct device_attribute *attr, 296 char *buf) 297 { 298 struct scsi_disk *sdkp = to_scsi_disk(dev); 299 300 return snprintf(buf, 20, "%u\n", sdkp->protection_type); 301 } 302 303 static ssize_t 304 protection_type_store(struct device *dev, struct device_attribute *attr, 305 const char *buf, size_t count) 306 { 307 struct scsi_disk *sdkp = to_scsi_disk(dev); 308 unsigned int val; 309 int err; 310 311 if (!capable(CAP_SYS_ADMIN)) 312 return -EACCES; 313 314 err = kstrtouint(buf, 10, &val); 315 316 if (err) 317 return err; 318 319 if (val >= 0 && val <= T10_PI_TYPE3_PROTECTION) 320 sdkp->protection_type = val; 321 322 return count; 323 } 324 static DEVICE_ATTR_RW(protection_type); 325 326 static ssize_t 327 protection_mode_show(struct device *dev, struct device_attribute *attr, 328 char *buf) 329 { 330 struct scsi_disk *sdkp = to_scsi_disk(dev); 331 struct scsi_device *sdp = sdkp->device; 332 unsigned int dif, dix; 333 334 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 335 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 336 337 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 338 dif = 0; 339 dix = 1; 340 } 341 342 if (!dif && !dix) 343 return snprintf(buf, 20, "none\n"); 344 345 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif); 346 } 347 static DEVICE_ATTR_RO(protection_mode); 348 349 static ssize_t 350 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 351 { 352 struct scsi_disk *sdkp = to_scsi_disk(dev); 353 354 return snprintf(buf, 20, "%u\n", sdkp->ATO); 355 } 356 static DEVICE_ATTR_RO(app_tag_own); 357 358 static ssize_t 359 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 360 char *buf) 361 { 362 struct scsi_disk *sdkp = to_scsi_disk(dev); 363 364 return snprintf(buf, 20, "%u\n", sdkp->lbpme); 365 } 366 static DEVICE_ATTR_RO(thin_provisioning); 367 368 static const char *lbp_mode[] = { 369 [SD_LBP_FULL] = "full", 370 [SD_LBP_UNMAP] = "unmap", 371 [SD_LBP_WS16] = "writesame_16", 372 [SD_LBP_WS10] = "writesame_10", 373 [SD_LBP_ZERO] = "writesame_zero", 374 [SD_LBP_DISABLE] = "disabled", 375 }; 376 377 static ssize_t 378 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 379 char *buf) 380 { 381 struct scsi_disk *sdkp = to_scsi_disk(dev); 382 383 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]); 384 } 385 386 static ssize_t 387 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 388 const char *buf, size_t count) 389 { 390 struct scsi_disk *sdkp = to_scsi_disk(dev); 391 struct scsi_device *sdp = sdkp->device; 392 393 if (!capable(CAP_SYS_ADMIN)) 394 return -EACCES; 395 396 if (sd_is_zoned(sdkp)) { 397 sd_config_discard(sdkp, SD_LBP_DISABLE); 398 return count; 399 } 400 401 if (sdp->type != TYPE_DISK) 402 return -EINVAL; 403 404 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20)) 405 sd_config_discard(sdkp, SD_LBP_UNMAP); 406 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20)) 407 sd_config_discard(sdkp, SD_LBP_WS16); 408 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20)) 409 sd_config_discard(sdkp, SD_LBP_WS10); 410 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20)) 411 sd_config_discard(sdkp, SD_LBP_ZERO); 412 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20)) 413 sd_config_discard(sdkp, SD_LBP_DISABLE); 414 else 415 return -EINVAL; 416 417 return count; 418 } 419 static DEVICE_ATTR_RW(provisioning_mode); 420 421 static ssize_t 422 max_medium_access_timeouts_show(struct device *dev, 423 struct device_attribute *attr, char *buf) 424 { 425 struct scsi_disk *sdkp = to_scsi_disk(dev); 426 427 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts); 428 } 429 430 static ssize_t 431 max_medium_access_timeouts_store(struct device *dev, 432 struct device_attribute *attr, const char *buf, 433 size_t count) 434 { 435 struct scsi_disk *sdkp = to_scsi_disk(dev); 436 int err; 437 438 if (!capable(CAP_SYS_ADMIN)) 439 return -EACCES; 440 441 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 442 443 return err ? err : count; 444 } 445 static DEVICE_ATTR_RW(max_medium_access_timeouts); 446 447 static ssize_t 448 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 449 char *buf) 450 { 451 struct scsi_disk *sdkp = to_scsi_disk(dev); 452 453 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks); 454 } 455 456 static ssize_t 457 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 458 const char *buf, size_t count) 459 { 460 struct scsi_disk *sdkp = to_scsi_disk(dev); 461 struct scsi_device *sdp = sdkp->device; 462 unsigned long max; 463 int err; 464 465 if (!capable(CAP_SYS_ADMIN)) 466 return -EACCES; 467 468 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 469 return -EINVAL; 470 471 err = kstrtoul(buf, 10, &max); 472 473 if (err) 474 return err; 475 476 if (max == 0) 477 sdp->no_write_same = 1; 478 else if (max <= SD_MAX_WS16_BLOCKS) { 479 sdp->no_write_same = 0; 480 sdkp->max_ws_blocks = max; 481 } 482 483 sd_config_write_same(sdkp); 484 485 return count; 486 } 487 static DEVICE_ATTR_RW(max_write_same_blocks); 488 489 static struct attribute *sd_disk_attrs[] = { 490 &dev_attr_cache_type.attr, 491 &dev_attr_FUA.attr, 492 &dev_attr_allow_restart.attr, 493 &dev_attr_manage_start_stop.attr, 494 &dev_attr_protection_type.attr, 495 &dev_attr_protection_mode.attr, 496 &dev_attr_app_tag_own.attr, 497 &dev_attr_thin_provisioning.attr, 498 &dev_attr_provisioning_mode.attr, 499 &dev_attr_max_write_same_blocks.attr, 500 &dev_attr_max_medium_access_timeouts.attr, 501 NULL, 502 }; 503 ATTRIBUTE_GROUPS(sd_disk); 504 505 static struct class sd_disk_class = { 506 .name = "scsi_disk", 507 .owner = THIS_MODULE, 508 .dev_release = scsi_disk_release, 509 .dev_groups = sd_disk_groups, 510 }; 511 512 static const struct dev_pm_ops sd_pm_ops = { 513 .suspend = sd_suspend_system, 514 .resume = sd_resume, 515 .poweroff = sd_suspend_system, 516 .restore = sd_resume, 517 .runtime_suspend = sd_suspend_runtime, 518 .runtime_resume = sd_resume, 519 }; 520 521 static struct scsi_driver sd_template = { 522 .gendrv = { 523 .name = "sd", 524 .owner = THIS_MODULE, 525 .probe = sd_probe, 526 .remove = sd_remove, 527 .shutdown = sd_shutdown, 528 .pm = &sd_pm_ops, 529 }, 530 .rescan = sd_rescan, 531 .init_command = sd_init_command, 532 .uninit_command = sd_uninit_command, 533 .done = sd_done, 534 .eh_action = sd_eh_action, 535 }; 536 537 /* 538 * Dummy kobj_map->probe function. 539 * The default ->probe function will call modprobe, which is 540 * pointless as this module is already loaded. 541 */ 542 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 543 { 544 return NULL; 545 } 546 547 /* 548 * Device no to disk mapping: 549 * 550 * major disc2 disc p1 551 * |............|.............|....|....| <- dev_t 552 * 31 20 19 8 7 4 3 0 553 * 554 * Inside a major, we have 16k disks, however mapped non- 555 * contiguously. The first 16 disks are for major0, the next 556 * ones with major1, ... Disk 256 is for major0 again, disk 272 557 * for major1, ... 558 * As we stay compatible with our numbering scheme, we can reuse 559 * the well-know SCSI majors 8, 65--71, 136--143. 560 */ 561 static int sd_major(int major_idx) 562 { 563 switch (major_idx) { 564 case 0: 565 return SCSI_DISK0_MAJOR; 566 case 1 ... 7: 567 return SCSI_DISK1_MAJOR + major_idx - 1; 568 case 8 ... 15: 569 return SCSI_DISK8_MAJOR + major_idx - 8; 570 default: 571 BUG(); 572 return 0; /* shut up gcc */ 573 } 574 } 575 576 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 577 { 578 struct scsi_disk *sdkp = NULL; 579 580 mutex_lock(&sd_ref_mutex); 581 582 if (disk->private_data) { 583 sdkp = scsi_disk(disk); 584 if (scsi_device_get(sdkp->device) == 0) 585 get_device(&sdkp->dev); 586 else 587 sdkp = NULL; 588 } 589 mutex_unlock(&sd_ref_mutex); 590 return sdkp; 591 } 592 593 static void scsi_disk_put(struct scsi_disk *sdkp) 594 { 595 struct scsi_device *sdev = sdkp->device; 596 597 mutex_lock(&sd_ref_mutex); 598 put_device(&sdkp->dev); 599 scsi_device_put(sdev); 600 mutex_unlock(&sd_ref_mutex); 601 } 602 603 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 604 unsigned int dix, unsigned int dif) 605 { 606 struct bio *bio = scmd->request->bio; 607 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 608 unsigned int protect = 0; 609 610 if (dix) { /* DIX Type 0, 1, 2, 3 */ 611 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 612 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 613 614 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 615 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 616 } 617 618 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 619 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 620 621 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 622 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 623 } 624 625 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 626 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 627 628 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 629 protect = 3 << 5; /* Disable target PI checking */ 630 else 631 protect = 1 << 5; /* Enable target PI checking */ 632 } 633 634 scsi_set_prot_op(scmd, prot_op); 635 scsi_set_prot_type(scmd, dif); 636 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 637 638 return protect; 639 } 640 641 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 642 { 643 struct request_queue *q = sdkp->disk->queue; 644 unsigned int logical_block_size = sdkp->device->sector_size; 645 unsigned int max_blocks = 0; 646 647 q->limits.discard_zeroes_data = 0; 648 649 /* 650 * When LBPRZ is reported, discard alignment and granularity 651 * must be fixed to the logical block size. Otherwise the block 652 * layer will drop misaligned portions of the request which can 653 * lead to data corruption. If LBPRZ is not set, we honor the 654 * device preference. 655 */ 656 if (sdkp->lbprz) { 657 q->limits.discard_alignment = 0; 658 q->limits.discard_granularity = logical_block_size; 659 } else { 660 q->limits.discard_alignment = sdkp->unmap_alignment * 661 logical_block_size; 662 q->limits.discard_granularity = 663 max(sdkp->physical_block_size, 664 sdkp->unmap_granularity * logical_block_size); 665 } 666 667 sdkp->provisioning_mode = mode; 668 669 switch (mode) { 670 671 case SD_LBP_DISABLE: 672 blk_queue_max_discard_sectors(q, 0); 673 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 674 return; 675 676 case SD_LBP_UNMAP: 677 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 678 (u32)SD_MAX_WS16_BLOCKS); 679 break; 680 681 case SD_LBP_WS16: 682 max_blocks = min_not_zero(sdkp->max_ws_blocks, 683 (u32)SD_MAX_WS16_BLOCKS); 684 q->limits.discard_zeroes_data = sdkp->lbprz; 685 break; 686 687 case SD_LBP_WS10: 688 max_blocks = min_not_zero(sdkp->max_ws_blocks, 689 (u32)SD_MAX_WS10_BLOCKS); 690 q->limits.discard_zeroes_data = sdkp->lbprz; 691 break; 692 693 case SD_LBP_ZERO: 694 max_blocks = min_not_zero(sdkp->max_ws_blocks, 695 (u32)SD_MAX_WS10_BLOCKS); 696 q->limits.discard_zeroes_data = 1; 697 break; 698 } 699 700 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 701 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 702 } 703 704 /** 705 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device 706 * @sdp: scsi device to operate one 707 * @rq: Request to prepare 708 * 709 * Will issue either UNMAP or WRITE SAME(16) depending on preference 710 * indicated by target device. 711 **/ 712 static int sd_setup_discard_cmnd(struct scsi_cmnd *cmd) 713 { 714 struct request *rq = cmd->request; 715 struct scsi_device *sdp = cmd->device; 716 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 717 sector_t sector = blk_rq_pos(rq); 718 unsigned int nr_sectors = blk_rq_sectors(rq); 719 unsigned int len; 720 int ret; 721 char *buf; 722 struct page *page; 723 724 sector >>= ilog2(sdp->sector_size) - 9; 725 nr_sectors >>= ilog2(sdp->sector_size) - 9; 726 727 page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 728 if (!page) 729 return BLKPREP_DEFER; 730 731 switch (sdkp->provisioning_mode) { 732 case SD_LBP_UNMAP: 733 buf = page_address(page); 734 735 cmd->cmd_len = 10; 736 cmd->cmnd[0] = UNMAP; 737 cmd->cmnd[8] = 24; 738 739 put_unaligned_be16(6 + 16, &buf[0]); 740 put_unaligned_be16(16, &buf[2]); 741 put_unaligned_be64(sector, &buf[8]); 742 put_unaligned_be32(nr_sectors, &buf[16]); 743 744 len = 24; 745 break; 746 747 case SD_LBP_WS16: 748 cmd->cmd_len = 16; 749 cmd->cmnd[0] = WRITE_SAME_16; 750 cmd->cmnd[1] = 0x8; /* UNMAP */ 751 put_unaligned_be64(sector, &cmd->cmnd[2]); 752 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 753 754 len = sdkp->device->sector_size; 755 break; 756 757 case SD_LBP_WS10: 758 case SD_LBP_ZERO: 759 cmd->cmd_len = 10; 760 cmd->cmnd[0] = WRITE_SAME; 761 if (sdkp->provisioning_mode == SD_LBP_WS10) 762 cmd->cmnd[1] = 0x8; /* UNMAP */ 763 put_unaligned_be32(sector, &cmd->cmnd[2]); 764 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 765 766 len = sdkp->device->sector_size; 767 break; 768 769 default: 770 ret = BLKPREP_INVALID; 771 goto out; 772 } 773 774 rq->timeout = SD_TIMEOUT; 775 776 cmd->transfersize = len; 777 cmd->allowed = SD_MAX_RETRIES; 778 779 rq->special_vec.bv_page = page; 780 rq->special_vec.bv_offset = 0; 781 rq->special_vec.bv_len = len; 782 783 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 784 rq->resid_len = len; 785 786 ret = scsi_init_io(cmd); 787 out: 788 if (ret != BLKPREP_OK) 789 __free_page(page); 790 return ret; 791 } 792 793 static void sd_config_write_same(struct scsi_disk *sdkp) 794 { 795 struct request_queue *q = sdkp->disk->queue; 796 unsigned int logical_block_size = sdkp->device->sector_size; 797 798 if (sdkp->device->no_write_same) { 799 sdkp->max_ws_blocks = 0; 800 goto out; 801 } 802 803 /* Some devices can not handle block counts above 0xffff despite 804 * supporting WRITE SAME(16). Consequently we default to 64k 805 * blocks per I/O unless the device explicitly advertises a 806 * bigger limit. 807 */ 808 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 809 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 810 (u32)SD_MAX_WS16_BLOCKS); 811 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 812 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 813 (u32)SD_MAX_WS10_BLOCKS); 814 else { 815 sdkp->device->no_write_same = 1; 816 sdkp->max_ws_blocks = 0; 817 } 818 819 out: 820 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 821 (logical_block_size >> 9)); 822 } 823 824 /** 825 * sd_setup_write_same_cmnd - write the same data to multiple blocks 826 * @cmd: command to prepare 827 * 828 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on 829 * preference indicated by target device. 830 **/ 831 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 832 { 833 struct request *rq = cmd->request; 834 struct scsi_device *sdp = cmd->device; 835 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 836 struct bio *bio = rq->bio; 837 sector_t sector = blk_rq_pos(rq); 838 unsigned int nr_sectors = blk_rq_sectors(rq); 839 unsigned int nr_bytes = blk_rq_bytes(rq); 840 int ret; 841 842 if (sdkp->device->no_write_same) 843 return BLKPREP_INVALID; 844 845 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 846 847 if (sd_is_zoned(sdkp)) { 848 ret = sd_zbc_setup_write_cmnd(cmd); 849 if (ret != BLKPREP_OK) 850 return ret; 851 } 852 853 sector >>= ilog2(sdp->sector_size) - 9; 854 nr_sectors >>= ilog2(sdp->sector_size) - 9; 855 856 rq->timeout = SD_WRITE_SAME_TIMEOUT; 857 858 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) { 859 cmd->cmd_len = 16; 860 cmd->cmnd[0] = WRITE_SAME_16; 861 put_unaligned_be64(sector, &cmd->cmnd[2]); 862 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 863 } else { 864 cmd->cmd_len = 10; 865 cmd->cmnd[0] = WRITE_SAME; 866 put_unaligned_be32(sector, &cmd->cmnd[2]); 867 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 868 } 869 870 cmd->transfersize = sdp->sector_size; 871 cmd->allowed = SD_MAX_RETRIES; 872 873 /* 874 * For WRITE_SAME the data transferred in the DATA IN buffer is 875 * different from the amount of data actually written to the target. 876 * 877 * We set up __data_len to the amount of data transferred from the 878 * DATA IN buffer so that blk_rq_map_sg set up the proper S/G list 879 * to transfer a single sector of data first, but then reset it to 880 * the amount of data to be written right after so that the I/O path 881 * knows how much to actually write. 882 */ 883 rq->__data_len = sdp->sector_size; 884 ret = scsi_init_io(cmd); 885 rq->__data_len = nr_bytes; 886 return ret; 887 } 888 889 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 890 { 891 struct request *rq = cmd->request; 892 893 /* flush requests don't perform I/O, zero the S/G table */ 894 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 895 896 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 897 cmd->cmd_len = 10; 898 cmd->transfersize = 0; 899 cmd->allowed = SD_MAX_RETRIES; 900 901 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 902 return BLKPREP_OK; 903 } 904 905 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt) 906 { 907 struct request *rq = SCpnt->request; 908 struct scsi_device *sdp = SCpnt->device; 909 struct gendisk *disk = rq->rq_disk; 910 struct scsi_disk *sdkp = scsi_disk(disk); 911 sector_t block = blk_rq_pos(rq); 912 sector_t threshold; 913 unsigned int this_count = blk_rq_sectors(rq); 914 unsigned int dif, dix; 915 bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE; 916 int ret; 917 unsigned char protect; 918 919 if (zoned_write) { 920 ret = sd_zbc_setup_write_cmnd(SCpnt); 921 if (ret != BLKPREP_OK) 922 return ret; 923 } 924 925 ret = scsi_init_io(SCpnt); 926 if (ret != BLKPREP_OK) 927 goto out; 928 SCpnt = rq->special; 929 930 /* from here on until we're complete, any goto out 931 * is used for a killable error condition */ 932 ret = BLKPREP_KILL; 933 934 SCSI_LOG_HLQUEUE(1, 935 scmd_printk(KERN_INFO, SCpnt, 936 "%s: block=%llu, count=%d\n", 937 __func__, (unsigned long long)block, this_count)); 938 939 if (!sdp || !scsi_device_online(sdp) || 940 block + blk_rq_sectors(rq) > get_capacity(disk)) { 941 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 942 "Finishing %u sectors\n", 943 blk_rq_sectors(rq))); 944 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 945 "Retry with 0x%p\n", SCpnt)); 946 goto out; 947 } 948 949 if (sdp->changed) { 950 /* 951 * quietly refuse to do anything to a changed disc until 952 * the changed bit has been reset 953 */ 954 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */ 955 goto out; 956 } 957 958 /* 959 * Some SD card readers can't handle multi-sector accesses which touch 960 * the last one or two hardware sectors. Split accesses as needed. 961 */ 962 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS * 963 (sdp->sector_size / 512); 964 965 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) { 966 if (block < threshold) { 967 /* Access up to the threshold but not beyond */ 968 this_count = threshold - block; 969 } else { 970 /* Access only a single hardware sector */ 971 this_count = sdp->sector_size / 512; 972 } 973 } 974 975 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", 976 (unsigned long long)block)); 977 978 /* 979 * If we have a 1K hardware sectorsize, prevent access to single 980 * 512 byte sectors. In theory we could handle this - in fact 981 * the scsi cdrom driver must be able to handle this because 982 * we typically use 1K blocksizes, and cdroms typically have 983 * 2K hardware sectorsizes. Of course, things are simpler 984 * with the cdrom, since it is read-only. For performance 985 * reasons, the filesystems should be able to handle this 986 * and not force the scsi disk driver to use bounce buffers 987 * for this. 988 */ 989 if (sdp->sector_size == 1024) { 990 if ((block & 1) || (blk_rq_sectors(rq) & 1)) { 991 scmd_printk(KERN_ERR, SCpnt, 992 "Bad block number requested\n"); 993 goto out; 994 } else { 995 block = block >> 1; 996 this_count = this_count >> 1; 997 } 998 } 999 if (sdp->sector_size == 2048) { 1000 if ((block & 3) || (blk_rq_sectors(rq) & 3)) { 1001 scmd_printk(KERN_ERR, SCpnt, 1002 "Bad block number requested\n"); 1003 goto out; 1004 } else { 1005 block = block >> 2; 1006 this_count = this_count >> 2; 1007 } 1008 } 1009 if (sdp->sector_size == 4096) { 1010 if ((block & 7) || (blk_rq_sectors(rq) & 7)) { 1011 scmd_printk(KERN_ERR, SCpnt, 1012 "Bad block number requested\n"); 1013 goto out; 1014 } else { 1015 block = block >> 3; 1016 this_count = this_count >> 3; 1017 } 1018 } 1019 if (rq_data_dir(rq) == WRITE) { 1020 SCpnt->cmnd[0] = WRITE_6; 1021 1022 if (blk_integrity_rq(rq)) 1023 sd_dif_prepare(SCpnt); 1024 1025 } else if (rq_data_dir(rq) == READ) { 1026 SCpnt->cmnd[0] = READ_6; 1027 } else { 1028 scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq)); 1029 goto out; 1030 } 1031 1032 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1033 "%s %d/%u 512 byte blocks.\n", 1034 (rq_data_dir(rq) == WRITE) ? 1035 "writing" : "reading", this_count, 1036 blk_rq_sectors(rq))); 1037 1038 dix = scsi_prot_sg_count(SCpnt); 1039 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type); 1040 1041 if (dif || dix) 1042 protect = sd_setup_protect_cmnd(SCpnt, dix, dif); 1043 else 1044 protect = 0; 1045 1046 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1047 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1048 1049 if (unlikely(SCpnt->cmnd == NULL)) { 1050 ret = BLKPREP_DEFER; 1051 goto out; 1052 } 1053 1054 SCpnt->cmd_len = SD_EXT_CDB_SIZE; 1055 memset(SCpnt->cmnd, 0, SCpnt->cmd_len); 1056 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD; 1057 SCpnt->cmnd[7] = 0x18; 1058 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32; 1059 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1060 1061 /* LBA */ 1062 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1063 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1064 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1065 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1066 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff; 1067 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff; 1068 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff; 1069 SCpnt->cmnd[19] = (unsigned char) block & 0xff; 1070 1071 /* Expected Indirect LBA */ 1072 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff; 1073 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff; 1074 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff; 1075 SCpnt->cmnd[23] = (unsigned char) block & 0xff; 1076 1077 /* Transfer length */ 1078 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff; 1079 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff; 1080 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff; 1081 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff; 1082 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) { 1083 SCpnt->cmnd[0] += READ_16 - READ_6; 1084 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1085 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1086 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1087 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1088 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1089 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; 1090 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; 1091 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; 1092 SCpnt->cmnd[9] = (unsigned char) block & 0xff; 1093 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; 1094 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; 1095 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; 1096 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; 1097 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; 1098 } else if ((this_count > 0xff) || (block > 0x1fffff) || 1099 scsi_device_protection(SCpnt->device) || 1100 SCpnt->device->use_10_for_rw) { 1101 SCpnt->cmnd[0] += READ_10 - READ_6; 1102 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1103 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; 1104 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; 1105 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; 1106 SCpnt->cmnd[5] = (unsigned char) block & 0xff; 1107 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; 1108 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; 1109 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; 1110 } else { 1111 if (unlikely(rq->cmd_flags & REQ_FUA)) { 1112 /* 1113 * This happens only if this drive failed 1114 * 10byte rw command with ILLEGAL_REQUEST 1115 * during operation and thus turned off 1116 * use_10_for_rw. 1117 */ 1118 scmd_printk(KERN_ERR, SCpnt, 1119 "FUA write on READ/WRITE(6) drive\n"); 1120 goto out; 1121 } 1122 1123 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); 1124 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); 1125 SCpnt->cmnd[3] = (unsigned char) block & 0xff; 1126 SCpnt->cmnd[4] = (unsigned char) this_count; 1127 SCpnt->cmnd[5] = 0; 1128 } 1129 SCpnt->sdb.length = this_count * sdp->sector_size; 1130 1131 /* 1132 * We shouldn't disconnect in the middle of a sector, so with a dumb 1133 * host adapter, it's safe to assume that we can at least transfer 1134 * this many bytes between each connect / disconnect. 1135 */ 1136 SCpnt->transfersize = sdp->sector_size; 1137 SCpnt->underflow = this_count << 9; 1138 SCpnt->allowed = SD_MAX_RETRIES; 1139 1140 /* 1141 * This indicates that the command is ready from our end to be 1142 * queued. 1143 */ 1144 ret = BLKPREP_OK; 1145 out: 1146 if (zoned_write && ret != BLKPREP_OK) 1147 sd_zbc_cancel_write_cmnd(SCpnt); 1148 1149 return ret; 1150 } 1151 1152 static int sd_init_command(struct scsi_cmnd *cmd) 1153 { 1154 struct request *rq = cmd->request; 1155 1156 switch (req_op(rq)) { 1157 case REQ_OP_DISCARD: 1158 return sd_setup_discard_cmnd(cmd); 1159 case REQ_OP_WRITE_SAME: 1160 return sd_setup_write_same_cmnd(cmd); 1161 case REQ_OP_FLUSH: 1162 return sd_setup_flush_cmnd(cmd); 1163 case REQ_OP_READ: 1164 case REQ_OP_WRITE: 1165 return sd_setup_read_write_cmnd(cmd); 1166 case REQ_OP_ZONE_REPORT: 1167 return sd_zbc_setup_report_cmnd(cmd); 1168 case REQ_OP_ZONE_RESET: 1169 return sd_zbc_setup_reset_cmnd(cmd); 1170 default: 1171 BUG(); 1172 } 1173 } 1174 1175 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1176 { 1177 struct request *rq = SCpnt->request; 1178 1179 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1180 __free_page(rq->special_vec.bv_page); 1181 1182 if (SCpnt->cmnd != rq->cmd) { 1183 mempool_free(SCpnt->cmnd, sd_cdb_pool); 1184 SCpnt->cmnd = NULL; 1185 SCpnt->cmd_len = 0; 1186 } 1187 } 1188 1189 /** 1190 * sd_open - open a scsi disk device 1191 * @inode: only i_rdev member may be used 1192 * @filp: only f_mode and f_flags may be used 1193 * 1194 * Returns 0 if successful. Returns a negated errno value in case 1195 * of error. 1196 * 1197 * Note: This can be called from a user context (e.g. fsck(1) ) 1198 * or from within the kernel (e.g. as a result of a mount(1) ). 1199 * In the latter case @inode and @filp carry an abridged amount 1200 * of information as noted above. 1201 * 1202 * Locking: called with bdev->bd_mutex held. 1203 **/ 1204 static int sd_open(struct block_device *bdev, fmode_t mode) 1205 { 1206 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1207 struct scsi_device *sdev; 1208 int retval; 1209 1210 if (!sdkp) 1211 return -ENXIO; 1212 1213 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1214 1215 sdev = sdkp->device; 1216 1217 /* 1218 * If the device is in error recovery, wait until it is done. 1219 * If the device is offline, then disallow any access to it. 1220 */ 1221 retval = -ENXIO; 1222 if (!scsi_block_when_processing_errors(sdev)) 1223 goto error_out; 1224 1225 if (sdev->removable || sdkp->write_prot) 1226 check_disk_change(bdev); 1227 1228 /* 1229 * If the drive is empty, just let the open fail. 1230 */ 1231 retval = -ENOMEDIUM; 1232 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1233 goto error_out; 1234 1235 /* 1236 * If the device has the write protect tab set, have the open fail 1237 * if the user expects to be able to write to the thing. 1238 */ 1239 retval = -EROFS; 1240 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1241 goto error_out; 1242 1243 /* 1244 * It is possible that the disk changing stuff resulted in 1245 * the device being taken offline. If this is the case, 1246 * report this to the user, and don't pretend that the 1247 * open actually succeeded. 1248 */ 1249 retval = -ENXIO; 1250 if (!scsi_device_online(sdev)) 1251 goto error_out; 1252 1253 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1254 if (scsi_block_when_processing_errors(sdev)) 1255 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1256 } 1257 1258 return 0; 1259 1260 error_out: 1261 scsi_disk_put(sdkp); 1262 return retval; 1263 } 1264 1265 /** 1266 * sd_release - invoked when the (last) close(2) is called on this 1267 * scsi disk. 1268 * @inode: only i_rdev member may be used 1269 * @filp: only f_mode and f_flags may be used 1270 * 1271 * Returns 0. 1272 * 1273 * Note: may block (uninterruptible) if error recovery is underway 1274 * on this disk. 1275 * 1276 * Locking: called with bdev->bd_mutex held. 1277 **/ 1278 static void sd_release(struct gendisk *disk, fmode_t mode) 1279 { 1280 struct scsi_disk *sdkp = scsi_disk(disk); 1281 struct scsi_device *sdev = sdkp->device; 1282 1283 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1284 1285 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1286 if (scsi_block_when_processing_errors(sdev)) 1287 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1288 } 1289 1290 /* 1291 * XXX and what if there are packets in flight and this close() 1292 * XXX is followed by a "rmmod sd_mod"? 1293 */ 1294 1295 scsi_disk_put(sdkp); 1296 } 1297 1298 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1299 { 1300 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1301 struct scsi_device *sdp = sdkp->device; 1302 struct Scsi_Host *host = sdp->host; 1303 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1304 int diskinfo[4]; 1305 1306 /* default to most commonly used values */ 1307 diskinfo[0] = 0x40; /* 1 << 6 */ 1308 diskinfo[1] = 0x20; /* 1 << 5 */ 1309 diskinfo[2] = capacity >> 11; 1310 1311 /* override with calculated, extended default, or driver values */ 1312 if (host->hostt->bios_param) 1313 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1314 else 1315 scsicam_bios_param(bdev, capacity, diskinfo); 1316 1317 geo->heads = diskinfo[0]; 1318 geo->sectors = diskinfo[1]; 1319 geo->cylinders = diskinfo[2]; 1320 return 0; 1321 } 1322 1323 /** 1324 * sd_ioctl - process an ioctl 1325 * @inode: only i_rdev/i_bdev members may be used 1326 * @filp: only f_mode and f_flags may be used 1327 * @cmd: ioctl command number 1328 * @arg: this is third argument given to ioctl(2) system call. 1329 * Often contains a pointer. 1330 * 1331 * Returns 0 if successful (some ioctls return positive numbers on 1332 * success as well). Returns a negated errno value in case of error. 1333 * 1334 * Note: most ioctls are forward onto the block subsystem or further 1335 * down in the scsi subsystem. 1336 **/ 1337 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1338 unsigned int cmd, unsigned long arg) 1339 { 1340 struct gendisk *disk = bdev->bd_disk; 1341 struct scsi_disk *sdkp = scsi_disk(disk); 1342 struct scsi_device *sdp = sdkp->device; 1343 void __user *p = (void __user *)arg; 1344 int error; 1345 1346 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1347 "cmd=0x%x\n", disk->disk_name, cmd)); 1348 1349 error = scsi_verify_blk_ioctl(bdev, cmd); 1350 if (error < 0) 1351 return error; 1352 1353 /* 1354 * If we are in the middle of error recovery, don't let anyone 1355 * else try and use this device. Also, if error recovery fails, it 1356 * may try and take the device offline, in which case all further 1357 * access to the device is prohibited. 1358 */ 1359 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1360 (mode & FMODE_NDELAY) != 0); 1361 if (error) 1362 goto out; 1363 1364 /* 1365 * Send SCSI addressing ioctls directly to mid level, send other 1366 * ioctls to block level and then onto mid level if they can't be 1367 * resolved. 1368 */ 1369 switch (cmd) { 1370 case SCSI_IOCTL_GET_IDLUN: 1371 case SCSI_IOCTL_GET_BUS_NUMBER: 1372 error = scsi_ioctl(sdp, cmd, p); 1373 break; 1374 default: 1375 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1376 if (error != -ENOTTY) 1377 break; 1378 error = scsi_ioctl(sdp, cmd, p); 1379 break; 1380 } 1381 out: 1382 return error; 1383 } 1384 1385 static void set_media_not_present(struct scsi_disk *sdkp) 1386 { 1387 if (sdkp->media_present) 1388 sdkp->device->changed = 1; 1389 1390 if (sdkp->device->removable) { 1391 sdkp->media_present = 0; 1392 sdkp->capacity = 0; 1393 } 1394 } 1395 1396 static int media_not_present(struct scsi_disk *sdkp, 1397 struct scsi_sense_hdr *sshdr) 1398 { 1399 if (!scsi_sense_valid(sshdr)) 1400 return 0; 1401 1402 /* not invoked for commands that could return deferred errors */ 1403 switch (sshdr->sense_key) { 1404 case UNIT_ATTENTION: 1405 case NOT_READY: 1406 /* medium not present */ 1407 if (sshdr->asc == 0x3A) { 1408 set_media_not_present(sdkp); 1409 return 1; 1410 } 1411 } 1412 return 0; 1413 } 1414 1415 /** 1416 * sd_check_events - check media events 1417 * @disk: kernel device descriptor 1418 * @clearing: disk events currently being cleared 1419 * 1420 * Returns mask of DISK_EVENT_*. 1421 * 1422 * Note: this function is invoked from the block subsystem. 1423 **/ 1424 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1425 { 1426 struct scsi_disk *sdkp = scsi_disk_get(disk); 1427 struct scsi_device *sdp; 1428 struct scsi_sense_hdr *sshdr = NULL; 1429 int retval; 1430 1431 if (!sdkp) 1432 return 0; 1433 1434 sdp = sdkp->device; 1435 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1436 1437 /* 1438 * If the device is offline, don't send any commands - just pretend as 1439 * if the command failed. If the device ever comes back online, we 1440 * can deal with it then. It is only because of unrecoverable errors 1441 * that we would ever take a device offline in the first place. 1442 */ 1443 if (!scsi_device_online(sdp)) { 1444 set_media_not_present(sdkp); 1445 goto out; 1446 } 1447 1448 /* 1449 * Using TEST_UNIT_READY enables differentiation between drive with 1450 * no cartridge loaded - NOT READY, drive with changed cartridge - 1451 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1452 * 1453 * Drives that auto spin down. eg iomega jaz 1G, will be started 1454 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1455 * sd_revalidate() is called. 1456 */ 1457 retval = -ENODEV; 1458 1459 if (scsi_block_when_processing_errors(sdp)) { 1460 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 1461 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1462 sshdr); 1463 } 1464 1465 /* failed to execute TUR, assume media not present */ 1466 if (host_byte(retval)) { 1467 set_media_not_present(sdkp); 1468 goto out; 1469 } 1470 1471 if (media_not_present(sdkp, sshdr)) 1472 goto out; 1473 1474 /* 1475 * For removable scsi disk we have to recognise the presence 1476 * of a disk in the drive. 1477 */ 1478 if (!sdkp->media_present) 1479 sdp->changed = 1; 1480 sdkp->media_present = 1; 1481 out: 1482 /* 1483 * sdp->changed is set under the following conditions: 1484 * 1485 * Medium present state has changed in either direction. 1486 * Device has indicated UNIT_ATTENTION. 1487 */ 1488 kfree(sshdr); 1489 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1490 sdp->changed = 0; 1491 scsi_disk_put(sdkp); 1492 return retval; 1493 } 1494 1495 static int sd_sync_cache(struct scsi_disk *sdkp) 1496 { 1497 int retries, res; 1498 struct scsi_device *sdp = sdkp->device; 1499 const int timeout = sdp->request_queue->rq_timeout 1500 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1501 struct scsi_sense_hdr sshdr; 1502 1503 if (!scsi_device_online(sdp)) 1504 return -ENODEV; 1505 1506 for (retries = 3; retries > 0; --retries) { 1507 unsigned char cmd[10] = { 0 }; 1508 1509 cmd[0] = SYNCHRONIZE_CACHE; 1510 /* 1511 * Leave the rest of the command zero to indicate 1512 * flush everything. 1513 */ 1514 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, 1515 &sshdr, timeout, SD_MAX_RETRIES, 1516 NULL, 0, RQF_PM); 1517 if (res == 0) 1518 break; 1519 } 1520 1521 if (res) { 1522 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1523 1524 if (driver_byte(res) & DRIVER_SENSE) 1525 sd_print_sense_hdr(sdkp, &sshdr); 1526 /* we need to evaluate the error return */ 1527 if (scsi_sense_valid(&sshdr) && 1528 (sshdr.asc == 0x3a || /* medium not present */ 1529 sshdr.asc == 0x20)) /* invalid command */ 1530 /* this is no error here */ 1531 return 0; 1532 1533 switch (host_byte(res)) { 1534 /* ignore errors due to racing a disconnection */ 1535 case DID_BAD_TARGET: 1536 case DID_NO_CONNECT: 1537 return 0; 1538 /* signal the upper layer it might try again */ 1539 case DID_BUS_BUSY: 1540 case DID_IMM_RETRY: 1541 case DID_REQUEUE: 1542 case DID_SOFT_ERROR: 1543 return -EBUSY; 1544 default: 1545 return -EIO; 1546 } 1547 } 1548 return 0; 1549 } 1550 1551 static void sd_rescan(struct device *dev) 1552 { 1553 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1554 1555 revalidate_disk(sdkp->disk); 1556 } 1557 1558 1559 #ifdef CONFIG_COMPAT 1560 /* 1561 * This gets directly called from VFS. When the ioctl 1562 * is not recognized we go back to the other translation paths. 1563 */ 1564 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1565 unsigned int cmd, unsigned long arg) 1566 { 1567 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1568 int error; 1569 1570 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1571 (mode & FMODE_NDELAY) != 0); 1572 if (error) 1573 return error; 1574 1575 /* 1576 * Let the static ioctl translation table take care of it. 1577 */ 1578 if (!sdev->host->hostt->compat_ioctl) 1579 return -ENOIOCTLCMD; 1580 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1581 } 1582 #endif 1583 1584 static char sd_pr_type(enum pr_type type) 1585 { 1586 switch (type) { 1587 case PR_WRITE_EXCLUSIVE: 1588 return 0x01; 1589 case PR_EXCLUSIVE_ACCESS: 1590 return 0x03; 1591 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1592 return 0x05; 1593 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1594 return 0x06; 1595 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1596 return 0x07; 1597 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1598 return 0x08; 1599 default: 1600 return 0; 1601 } 1602 }; 1603 1604 static int sd_pr_command(struct block_device *bdev, u8 sa, 1605 u64 key, u64 sa_key, u8 type, u8 flags) 1606 { 1607 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1608 struct scsi_sense_hdr sshdr; 1609 int result; 1610 u8 cmd[16] = { 0, }; 1611 u8 data[24] = { 0, }; 1612 1613 cmd[0] = PERSISTENT_RESERVE_OUT; 1614 cmd[1] = sa; 1615 cmd[2] = type; 1616 put_unaligned_be32(sizeof(data), &cmd[5]); 1617 1618 put_unaligned_be64(key, &data[0]); 1619 put_unaligned_be64(sa_key, &data[8]); 1620 data[20] = flags; 1621 1622 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1623 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1624 1625 if ((driver_byte(result) & DRIVER_SENSE) && 1626 (scsi_sense_valid(&sshdr))) { 1627 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1628 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1629 } 1630 1631 return result; 1632 } 1633 1634 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1635 u32 flags) 1636 { 1637 if (flags & ~PR_FL_IGNORE_KEY) 1638 return -EOPNOTSUPP; 1639 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1640 old_key, new_key, 0, 1641 (1 << 0) /* APTPL */); 1642 } 1643 1644 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1645 u32 flags) 1646 { 1647 if (flags) 1648 return -EOPNOTSUPP; 1649 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1650 } 1651 1652 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1653 { 1654 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1655 } 1656 1657 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1658 enum pr_type type, bool abort) 1659 { 1660 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1661 sd_pr_type(type), 0); 1662 } 1663 1664 static int sd_pr_clear(struct block_device *bdev, u64 key) 1665 { 1666 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1667 } 1668 1669 static const struct pr_ops sd_pr_ops = { 1670 .pr_register = sd_pr_register, 1671 .pr_reserve = sd_pr_reserve, 1672 .pr_release = sd_pr_release, 1673 .pr_preempt = sd_pr_preempt, 1674 .pr_clear = sd_pr_clear, 1675 }; 1676 1677 static const struct block_device_operations sd_fops = { 1678 .owner = THIS_MODULE, 1679 .open = sd_open, 1680 .release = sd_release, 1681 .ioctl = sd_ioctl, 1682 .getgeo = sd_getgeo, 1683 #ifdef CONFIG_COMPAT 1684 .compat_ioctl = sd_compat_ioctl, 1685 #endif 1686 .check_events = sd_check_events, 1687 .revalidate_disk = sd_revalidate_disk, 1688 .unlock_native_capacity = sd_unlock_native_capacity, 1689 .pr_ops = &sd_pr_ops, 1690 }; 1691 1692 /** 1693 * sd_eh_action - error handling callback 1694 * @scmd: sd-issued command that has failed 1695 * @eh_disp: The recovery disposition suggested by the midlayer 1696 * 1697 * This function is called by the SCSI midlayer upon completion of an 1698 * error test command (currently TEST UNIT READY). The result of sending 1699 * the eh command is passed in eh_disp. We're looking for devices that 1700 * fail medium access commands but are OK with non access commands like 1701 * test unit ready (so wrongly see the device as having a successful 1702 * recovery) 1703 **/ 1704 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1705 { 1706 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1707 1708 if (!scsi_device_online(scmd->device) || 1709 !scsi_medium_access_command(scmd) || 1710 host_byte(scmd->result) != DID_TIME_OUT || 1711 eh_disp != SUCCESS) 1712 return eh_disp; 1713 1714 /* 1715 * The device has timed out executing a medium access command. 1716 * However, the TEST UNIT READY command sent during error 1717 * handling completed successfully. Either the device is in the 1718 * process of recovering or has it suffered an internal failure 1719 * that prevents access to the storage medium. 1720 */ 1721 sdkp->medium_access_timed_out++; 1722 1723 /* 1724 * If the device keeps failing read/write commands but TEST UNIT 1725 * READY always completes successfully we assume that medium 1726 * access is no longer possible and take the device offline. 1727 */ 1728 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1729 scmd_printk(KERN_ERR, scmd, 1730 "Medium access timeout failure. Offlining disk!\n"); 1731 scsi_device_set_state(scmd->device, SDEV_OFFLINE); 1732 1733 return FAILED; 1734 } 1735 1736 return eh_disp; 1737 } 1738 1739 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1740 { 1741 u64 start_lba = blk_rq_pos(scmd->request); 1742 u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512); 1743 u64 factor = scmd->device->sector_size / 512; 1744 u64 bad_lba; 1745 int info_valid; 1746 /* 1747 * resid is optional but mostly filled in. When it's unused, 1748 * its value is zero, so we assume the whole buffer transferred 1749 */ 1750 unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1751 unsigned int good_bytes; 1752 1753 if (scmd->request->cmd_type != REQ_TYPE_FS) 1754 return 0; 1755 1756 info_valid = scsi_get_sense_info_fld(scmd->sense_buffer, 1757 SCSI_SENSE_BUFFERSIZE, 1758 &bad_lba); 1759 if (!info_valid) 1760 return 0; 1761 1762 if (scsi_bufflen(scmd) <= scmd->device->sector_size) 1763 return 0; 1764 1765 /* be careful ... don't want any overflows */ 1766 do_div(start_lba, factor); 1767 do_div(end_lba, factor); 1768 1769 /* The bad lba was reported incorrectly, we have no idea where 1770 * the error is. 1771 */ 1772 if (bad_lba < start_lba || bad_lba >= end_lba) 1773 return 0; 1774 1775 /* This computation should always be done in terms of 1776 * the resolution of the device's medium. 1777 */ 1778 good_bytes = (bad_lba - start_lba) * scmd->device->sector_size; 1779 return min(good_bytes, transferred); 1780 } 1781 1782 /** 1783 * sd_done - bottom half handler: called when the lower level 1784 * driver has completed (successfully or otherwise) a scsi command. 1785 * @SCpnt: mid-level's per command structure. 1786 * 1787 * Note: potentially run from within an ISR. Must not block. 1788 **/ 1789 static int sd_done(struct scsi_cmnd *SCpnt) 1790 { 1791 int result = SCpnt->result; 1792 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1793 struct scsi_sense_hdr sshdr; 1794 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1795 struct request *req = SCpnt->request; 1796 int sense_valid = 0; 1797 int sense_deferred = 0; 1798 unsigned char op = SCpnt->cmnd[0]; 1799 unsigned char unmap = SCpnt->cmnd[1] & 8; 1800 1801 switch (req_op(req)) { 1802 case REQ_OP_DISCARD: 1803 case REQ_OP_WRITE_SAME: 1804 case REQ_OP_ZONE_RESET: 1805 if (!result) { 1806 good_bytes = blk_rq_bytes(req); 1807 scsi_set_resid(SCpnt, 0); 1808 } else { 1809 good_bytes = 0; 1810 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1811 } 1812 break; 1813 case REQ_OP_ZONE_REPORT: 1814 if (!result) { 1815 good_bytes = scsi_bufflen(SCpnt) 1816 - scsi_get_resid(SCpnt); 1817 scsi_set_resid(SCpnt, 0); 1818 } else { 1819 good_bytes = 0; 1820 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1821 } 1822 break; 1823 } 1824 1825 if (result) { 1826 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1827 if (sense_valid) 1828 sense_deferred = scsi_sense_is_deferred(&sshdr); 1829 } 1830 sdkp->medium_access_timed_out = 0; 1831 1832 if (driver_byte(result) != DRIVER_SENSE && 1833 (!sense_valid || sense_deferred)) 1834 goto out; 1835 1836 switch (sshdr.sense_key) { 1837 case HARDWARE_ERROR: 1838 case MEDIUM_ERROR: 1839 good_bytes = sd_completed_bytes(SCpnt); 1840 break; 1841 case RECOVERED_ERROR: 1842 good_bytes = scsi_bufflen(SCpnt); 1843 break; 1844 case NO_SENSE: 1845 /* This indicates a false check condition, so ignore it. An 1846 * unknown amount of data was transferred so treat it as an 1847 * error. 1848 */ 1849 SCpnt->result = 0; 1850 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1851 break; 1852 case ABORTED_COMMAND: 1853 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 1854 good_bytes = sd_completed_bytes(SCpnt); 1855 break; 1856 case ILLEGAL_REQUEST: 1857 if (sshdr.asc == 0x10) /* DIX: Host detected corruption */ 1858 good_bytes = sd_completed_bytes(SCpnt); 1859 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 1860 if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 1861 switch (op) { 1862 case UNMAP: 1863 sd_config_discard(sdkp, SD_LBP_DISABLE); 1864 break; 1865 case WRITE_SAME_16: 1866 case WRITE_SAME: 1867 if (unmap) 1868 sd_config_discard(sdkp, SD_LBP_DISABLE); 1869 else { 1870 sdkp->device->no_write_same = 1; 1871 sd_config_write_same(sdkp); 1872 1873 good_bytes = 0; 1874 req->__data_len = blk_rq_bytes(req); 1875 req->rq_flags |= RQF_QUIET; 1876 } 1877 } 1878 } 1879 break; 1880 default: 1881 break; 1882 } 1883 1884 out: 1885 if (sd_is_zoned(sdkp)) 1886 sd_zbc_complete(SCpnt, good_bytes, &sshdr); 1887 1888 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 1889 "sd_done: completed %d of %d bytes\n", 1890 good_bytes, scsi_bufflen(SCpnt))); 1891 1892 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt)) 1893 sd_dif_complete(SCpnt, good_bytes); 1894 1895 return good_bytes; 1896 } 1897 1898 /* 1899 * spinup disk - called only in sd_revalidate_disk() 1900 */ 1901 static void 1902 sd_spinup_disk(struct scsi_disk *sdkp) 1903 { 1904 unsigned char cmd[10]; 1905 unsigned long spintime_expire = 0; 1906 int retries, spintime; 1907 unsigned int the_result; 1908 struct scsi_sense_hdr sshdr; 1909 int sense_valid = 0; 1910 1911 spintime = 0; 1912 1913 /* Spin up drives, as required. Only do this at boot time */ 1914 /* Spinup needs to be done for module loads too. */ 1915 do { 1916 retries = 0; 1917 1918 do { 1919 cmd[0] = TEST_UNIT_READY; 1920 memset((void *) &cmd[1], 0, 9); 1921 1922 the_result = scsi_execute_req(sdkp->device, cmd, 1923 DMA_NONE, NULL, 0, 1924 &sshdr, SD_TIMEOUT, 1925 SD_MAX_RETRIES, NULL); 1926 1927 /* 1928 * If the drive has indicated to us that it 1929 * doesn't have any media in it, don't bother 1930 * with any more polling. 1931 */ 1932 if (media_not_present(sdkp, &sshdr)) 1933 return; 1934 1935 if (the_result) 1936 sense_valid = scsi_sense_valid(&sshdr); 1937 retries++; 1938 } while (retries < 3 && 1939 (!scsi_status_is_good(the_result) || 1940 ((driver_byte(the_result) & DRIVER_SENSE) && 1941 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 1942 1943 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) { 1944 /* no sense, TUR either succeeded or failed 1945 * with a status error */ 1946 if(!spintime && !scsi_status_is_good(the_result)) { 1947 sd_print_result(sdkp, "Test Unit Ready failed", 1948 the_result); 1949 } 1950 break; 1951 } 1952 1953 /* 1954 * The device does not want the automatic start to be issued. 1955 */ 1956 if (sdkp->device->no_start_on_add) 1957 break; 1958 1959 if (sense_valid && sshdr.sense_key == NOT_READY) { 1960 if (sshdr.asc == 4 && sshdr.ascq == 3) 1961 break; /* manual intervention required */ 1962 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 1963 break; /* standby */ 1964 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 1965 break; /* unavailable */ 1966 /* 1967 * Issue command to spin up drive when not ready 1968 */ 1969 if (!spintime) { 1970 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 1971 cmd[0] = START_STOP; 1972 cmd[1] = 1; /* Return immediately */ 1973 memset((void *) &cmd[2], 0, 8); 1974 cmd[4] = 1; /* Start spin cycle */ 1975 if (sdkp->device->start_stop_pwr_cond) 1976 cmd[4] |= 1 << 4; 1977 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 1978 NULL, 0, &sshdr, 1979 SD_TIMEOUT, SD_MAX_RETRIES, 1980 NULL); 1981 spintime_expire = jiffies + 100 * HZ; 1982 spintime = 1; 1983 } 1984 /* Wait 1 second for next try */ 1985 msleep(1000); 1986 printk("."); 1987 1988 /* 1989 * Wait for USB flash devices with slow firmware. 1990 * Yes, this sense key/ASC combination shouldn't 1991 * occur here. It's characteristic of these devices. 1992 */ 1993 } else if (sense_valid && 1994 sshdr.sense_key == UNIT_ATTENTION && 1995 sshdr.asc == 0x28) { 1996 if (!spintime) { 1997 spintime_expire = jiffies + 5 * HZ; 1998 spintime = 1; 1999 } 2000 /* Wait 1 second for next try */ 2001 msleep(1000); 2002 } else { 2003 /* we don't understand the sense code, so it's 2004 * probably pointless to loop */ 2005 if(!spintime) { 2006 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2007 sd_print_sense_hdr(sdkp, &sshdr); 2008 } 2009 break; 2010 } 2011 2012 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2013 2014 if (spintime) { 2015 if (scsi_status_is_good(the_result)) 2016 printk("ready\n"); 2017 else 2018 printk("not responding...\n"); 2019 } 2020 } 2021 2022 /* 2023 * Determine whether disk supports Data Integrity Field. 2024 */ 2025 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2026 { 2027 struct scsi_device *sdp = sdkp->device; 2028 u8 type; 2029 int ret = 0; 2030 2031 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 2032 return ret; 2033 2034 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2035 2036 if (type > T10_PI_TYPE3_PROTECTION) 2037 ret = -ENODEV; 2038 else if (scsi_host_dif_capable(sdp->host, type)) 2039 ret = 1; 2040 2041 if (sdkp->first_scan || type != sdkp->protection_type) 2042 switch (ret) { 2043 case -ENODEV: 2044 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2045 " protection type %u. Disabling disk!\n", 2046 type); 2047 break; 2048 case 1: 2049 sd_printk(KERN_NOTICE, sdkp, 2050 "Enabling DIF Type %u protection\n", type); 2051 break; 2052 case 0: 2053 sd_printk(KERN_NOTICE, sdkp, 2054 "Disabling DIF Type %u protection\n", type); 2055 break; 2056 } 2057 2058 sdkp->protection_type = type; 2059 2060 return ret; 2061 } 2062 2063 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2064 struct scsi_sense_hdr *sshdr, int sense_valid, 2065 int the_result) 2066 { 2067 if (driver_byte(the_result) & DRIVER_SENSE) 2068 sd_print_sense_hdr(sdkp, sshdr); 2069 else 2070 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2071 2072 /* 2073 * Set dirty bit for removable devices if not ready - 2074 * sometimes drives will not report this properly. 2075 */ 2076 if (sdp->removable && 2077 sense_valid && sshdr->sense_key == NOT_READY) 2078 set_media_not_present(sdkp); 2079 2080 /* 2081 * We used to set media_present to 0 here to indicate no media 2082 * in the drive, but some drives fail read capacity even with 2083 * media present, so we can't do that. 2084 */ 2085 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2086 } 2087 2088 #define RC16_LEN 32 2089 #if RC16_LEN > SD_BUF_SIZE 2090 #error RC16_LEN must not be more than SD_BUF_SIZE 2091 #endif 2092 2093 #define READ_CAPACITY_RETRIES_ON_RESET 10 2094 2095 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2096 unsigned char *buffer) 2097 { 2098 unsigned char cmd[16]; 2099 struct scsi_sense_hdr sshdr; 2100 int sense_valid = 0; 2101 int the_result; 2102 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2103 unsigned int alignment; 2104 unsigned long long lba; 2105 unsigned sector_size; 2106 2107 if (sdp->no_read_capacity_16) 2108 return -EINVAL; 2109 2110 do { 2111 memset(cmd, 0, 16); 2112 cmd[0] = SERVICE_ACTION_IN_16; 2113 cmd[1] = SAI_READ_CAPACITY_16; 2114 cmd[13] = RC16_LEN; 2115 memset(buffer, 0, RC16_LEN); 2116 2117 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2118 buffer, RC16_LEN, &sshdr, 2119 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2120 2121 if (media_not_present(sdkp, &sshdr)) 2122 return -ENODEV; 2123 2124 if (the_result) { 2125 sense_valid = scsi_sense_valid(&sshdr); 2126 if (sense_valid && 2127 sshdr.sense_key == ILLEGAL_REQUEST && 2128 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2129 sshdr.ascq == 0x00) 2130 /* Invalid Command Operation Code or 2131 * Invalid Field in CDB, just retry 2132 * silently with RC10 */ 2133 return -EINVAL; 2134 if (sense_valid && 2135 sshdr.sense_key == UNIT_ATTENTION && 2136 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2137 /* Device reset might occur several times, 2138 * give it one more chance */ 2139 if (--reset_retries > 0) 2140 continue; 2141 } 2142 retries--; 2143 2144 } while (the_result && retries); 2145 2146 if (the_result) { 2147 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2148 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2149 return -EINVAL; 2150 } 2151 2152 sector_size = get_unaligned_be32(&buffer[8]); 2153 lba = get_unaligned_be64(&buffer[0]); 2154 2155 if (sd_read_protection_type(sdkp, buffer) < 0) { 2156 sdkp->capacity = 0; 2157 return -ENODEV; 2158 } 2159 2160 if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) { 2161 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2162 "kernel compiled with support for large block " 2163 "devices.\n"); 2164 sdkp->capacity = 0; 2165 return -EOVERFLOW; 2166 } 2167 2168 /* Logical blocks per physical block exponent */ 2169 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2170 2171 /* RC basis */ 2172 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2173 2174 /* Lowest aligned logical block */ 2175 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2176 blk_queue_alignment_offset(sdp->request_queue, alignment); 2177 if (alignment && sdkp->first_scan) 2178 sd_printk(KERN_NOTICE, sdkp, 2179 "physical block alignment offset: %u\n", alignment); 2180 2181 if (buffer[14] & 0x80) { /* LBPME */ 2182 sdkp->lbpme = 1; 2183 2184 if (buffer[14] & 0x40) /* LBPRZ */ 2185 sdkp->lbprz = 1; 2186 2187 sd_config_discard(sdkp, SD_LBP_WS16); 2188 } 2189 2190 sdkp->capacity = lba + 1; 2191 return sector_size; 2192 } 2193 2194 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2195 unsigned char *buffer) 2196 { 2197 unsigned char cmd[16]; 2198 struct scsi_sense_hdr sshdr; 2199 int sense_valid = 0; 2200 int the_result; 2201 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2202 sector_t lba; 2203 unsigned sector_size; 2204 2205 do { 2206 cmd[0] = READ_CAPACITY; 2207 memset(&cmd[1], 0, 9); 2208 memset(buffer, 0, 8); 2209 2210 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2211 buffer, 8, &sshdr, 2212 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2213 2214 if (media_not_present(sdkp, &sshdr)) 2215 return -ENODEV; 2216 2217 if (the_result) { 2218 sense_valid = scsi_sense_valid(&sshdr); 2219 if (sense_valid && 2220 sshdr.sense_key == UNIT_ATTENTION && 2221 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2222 /* Device reset might occur several times, 2223 * give it one more chance */ 2224 if (--reset_retries > 0) 2225 continue; 2226 } 2227 retries--; 2228 2229 } while (the_result && retries); 2230 2231 if (the_result) { 2232 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2233 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2234 return -EINVAL; 2235 } 2236 2237 sector_size = get_unaligned_be32(&buffer[4]); 2238 lba = get_unaligned_be32(&buffer[0]); 2239 2240 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2241 /* Some buggy (usb cardreader) devices return an lba of 2242 0xffffffff when the want to report a size of 0 (with 2243 which they really mean no media is present) */ 2244 sdkp->capacity = 0; 2245 sdkp->physical_block_size = sector_size; 2246 return sector_size; 2247 } 2248 2249 if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) { 2250 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2251 "kernel compiled with support for large block " 2252 "devices.\n"); 2253 sdkp->capacity = 0; 2254 return -EOVERFLOW; 2255 } 2256 2257 sdkp->capacity = lba + 1; 2258 sdkp->physical_block_size = sector_size; 2259 return sector_size; 2260 } 2261 2262 static int sd_try_rc16_first(struct scsi_device *sdp) 2263 { 2264 if (sdp->host->max_cmd_len < 16) 2265 return 0; 2266 if (sdp->try_rc_10_first) 2267 return 0; 2268 if (sdp->scsi_level > SCSI_SPC_2) 2269 return 1; 2270 if (scsi_device_protection(sdp)) 2271 return 1; 2272 return 0; 2273 } 2274 2275 /* 2276 * read disk capacity 2277 */ 2278 static void 2279 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2280 { 2281 int sector_size; 2282 struct scsi_device *sdp = sdkp->device; 2283 2284 if (sd_try_rc16_first(sdp)) { 2285 sector_size = read_capacity_16(sdkp, sdp, buffer); 2286 if (sector_size == -EOVERFLOW) 2287 goto got_data; 2288 if (sector_size == -ENODEV) 2289 return; 2290 if (sector_size < 0) 2291 sector_size = read_capacity_10(sdkp, sdp, buffer); 2292 if (sector_size < 0) 2293 return; 2294 } else { 2295 sector_size = read_capacity_10(sdkp, sdp, buffer); 2296 if (sector_size == -EOVERFLOW) 2297 goto got_data; 2298 if (sector_size < 0) 2299 return; 2300 if ((sizeof(sdkp->capacity) > 4) && 2301 (sdkp->capacity > 0xffffffffULL)) { 2302 int old_sector_size = sector_size; 2303 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2304 "Trying to use READ CAPACITY(16).\n"); 2305 sector_size = read_capacity_16(sdkp, sdp, buffer); 2306 if (sector_size < 0) { 2307 sd_printk(KERN_NOTICE, sdkp, 2308 "Using 0xffffffff as device size\n"); 2309 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2310 sector_size = old_sector_size; 2311 goto got_data; 2312 } 2313 } 2314 } 2315 2316 /* Some devices are known to return the total number of blocks, 2317 * not the highest block number. Some devices have versions 2318 * which do this and others which do not. Some devices we might 2319 * suspect of doing this but we don't know for certain. 2320 * 2321 * If we know the reported capacity is wrong, decrement it. If 2322 * we can only guess, then assume the number of blocks is even 2323 * (usually true but not always) and err on the side of lowering 2324 * the capacity. 2325 */ 2326 if (sdp->fix_capacity || 2327 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2328 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2329 "from its reported value: %llu\n", 2330 (unsigned long long) sdkp->capacity); 2331 --sdkp->capacity; 2332 } 2333 2334 got_data: 2335 if (sector_size == 0) { 2336 sector_size = 512; 2337 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2338 "assuming 512.\n"); 2339 } 2340 2341 if (sector_size != 512 && 2342 sector_size != 1024 && 2343 sector_size != 2048 && 2344 sector_size != 4096) { 2345 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2346 sector_size); 2347 /* 2348 * The user might want to re-format the drive with 2349 * a supported sectorsize. Once this happens, it 2350 * would be relatively trivial to set the thing up. 2351 * For this reason, we leave the thing in the table. 2352 */ 2353 sdkp->capacity = 0; 2354 /* 2355 * set a bogus sector size so the normal read/write 2356 * logic in the block layer will eventually refuse any 2357 * request on this device without tripping over power 2358 * of two sector size assumptions 2359 */ 2360 sector_size = 512; 2361 } 2362 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2363 blk_queue_physical_block_size(sdp->request_queue, 2364 sdkp->physical_block_size); 2365 sdkp->device->sector_size = sector_size; 2366 2367 if (sdkp->capacity > 0xffffffff) 2368 sdp->use_16_for_rw = 1; 2369 2370 } 2371 2372 /* 2373 * Print disk capacity 2374 */ 2375 static void 2376 sd_print_capacity(struct scsi_disk *sdkp, 2377 sector_t old_capacity) 2378 { 2379 int sector_size = sdkp->device->sector_size; 2380 char cap_str_2[10], cap_str_10[10]; 2381 2382 string_get_size(sdkp->capacity, sector_size, 2383 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2384 string_get_size(sdkp->capacity, sector_size, 2385 STRING_UNITS_10, cap_str_10, 2386 sizeof(cap_str_10)); 2387 2388 if (sdkp->first_scan || old_capacity != sdkp->capacity) { 2389 sd_printk(KERN_NOTICE, sdkp, 2390 "%llu %d-byte logical blocks: (%s/%s)\n", 2391 (unsigned long long)sdkp->capacity, 2392 sector_size, cap_str_10, cap_str_2); 2393 2394 if (sdkp->physical_block_size != sector_size) 2395 sd_printk(KERN_NOTICE, sdkp, 2396 "%u-byte physical blocks\n", 2397 sdkp->physical_block_size); 2398 2399 sd_zbc_print_zones(sdkp); 2400 } 2401 } 2402 2403 /* called with buffer of length 512 */ 2404 static inline int 2405 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2406 unsigned char *buffer, int len, struct scsi_mode_data *data, 2407 struct scsi_sense_hdr *sshdr) 2408 { 2409 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2410 SD_TIMEOUT, SD_MAX_RETRIES, data, 2411 sshdr); 2412 } 2413 2414 /* 2415 * read write protect setting, if possible - called only in sd_revalidate_disk() 2416 * called with buffer of length SD_BUF_SIZE 2417 */ 2418 static void 2419 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2420 { 2421 int res; 2422 struct scsi_device *sdp = sdkp->device; 2423 struct scsi_mode_data data; 2424 int old_wp = sdkp->write_prot; 2425 2426 set_disk_ro(sdkp->disk, 0); 2427 if (sdp->skip_ms_page_3f) { 2428 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2429 return; 2430 } 2431 2432 if (sdp->use_192_bytes_for_3f) { 2433 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2434 } else { 2435 /* 2436 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2437 * We have to start carefully: some devices hang if we ask 2438 * for more than is available. 2439 */ 2440 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2441 2442 /* 2443 * Second attempt: ask for page 0 When only page 0 is 2444 * implemented, a request for page 3F may return Sense Key 2445 * 5: Illegal Request, Sense Code 24: Invalid field in 2446 * CDB. 2447 */ 2448 if (!scsi_status_is_good(res)) 2449 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2450 2451 /* 2452 * Third attempt: ask 255 bytes, as we did earlier. 2453 */ 2454 if (!scsi_status_is_good(res)) 2455 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2456 &data, NULL); 2457 } 2458 2459 if (!scsi_status_is_good(res)) { 2460 sd_first_printk(KERN_WARNING, sdkp, 2461 "Test WP failed, assume Write Enabled\n"); 2462 } else { 2463 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2464 set_disk_ro(sdkp->disk, sdkp->write_prot); 2465 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2466 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2467 sdkp->write_prot ? "on" : "off"); 2468 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2469 } 2470 } 2471 } 2472 2473 /* 2474 * sd_read_cache_type - called only from sd_revalidate_disk() 2475 * called with buffer of length SD_BUF_SIZE 2476 */ 2477 static void 2478 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2479 { 2480 int len = 0, res; 2481 struct scsi_device *sdp = sdkp->device; 2482 2483 int dbd; 2484 int modepage; 2485 int first_len; 2486 struct scsi_mode_data data; 2487 struct scsi_sense_hdr sshdr; 2488 int old_wce = sdkp->WCE; 2489 int old_rcd = sdkp->RCD; 2490 int old_dpofua = sdkp->DPOFUA; 2491 2492 2493 if (sdkp->cache_override) 2494 return; 2495 2496 first_len = 4; 2497 if (sdp->skip_ms_page_8) { 2498 if (sdp->type == TYPE_RBC) 2499 goto defaults; 2500 else { 2501 if (sdp->skip_ms_page_3f) 2502 goto defaults; 2503 modepage = 0x3F; 2504 if (sdp->use_192_bytes_for_3f) 2505 first_len = 192; 2506 dbd = 0; 2507 } 2508 } else if (sdp->type == TYPE_RBC) { 2509 modepage = 6; 2510 dbd = 8; 2511 } else { 2512 modepage = 8; 2513 dbd = 0; 2514 } 2515 2516 /* cautiously ask */ 2517 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2518 &data, &sshdr); 2519 2520 if (!scsi_status_is_good(res)) 2521 goto bad_sense; 2522 2523 if (!data.header_length) { 2524 modepage = 6; 2525 first_len = 0; 2526 sd_first_printk(KERN_ERR, sdkp, 2527 "Missing header in MODE_SENSE response\n"); 2528 } 2529 2530 /* that went OK, now ask for the proper length */ 2531 len = data.length; 2532 2533 /* 2534 * We're only interested in the first three bytes, actually. 2535 * But the data cache page is defined for the first 20. 2536 */ 2537 if (len < 3) 2538 goto bad_sense; 2539 else if (len > SD_BUF_SIZE) { 2540 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2541 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2542 len = SD_BUF_SIZE; 2543 } 2544 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2545 len = 192; 2546 2547 /* Get the data */ 2548 if (len > first_len) 2549 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2550 &data, &sshdr); 2551 2552 if (scsi_status_is_good(res)) { 2553 int offset = data.header_length + data.block_descriptor_length; 2554 2555 while (offset < len) { 2556 u8 page_code = buffer[offset] & 0x3F; 2557 u8 spf = buffer[offset] & 0x40; 2558 2559 if (page_code == 8 || page_code == 6) { 2560 /* We're interested only in the first 3 bytes. 2561 */ 2562 if (len - offset <= 2) { 2563 sd_first_printk(KERN_ERR, sdkp, 2564 "Incomplete mode parameter " 2565 "data\n"); 2566 goto defaults; 2567 } else { 2568 modepage = page_code; 2569 goto Page_found; 2570 } 2571 } else { 2572 /* Go to the next page */ 2573 if (spf && len - offset > 3) 2574 offset += 4 + (buffer[offset+2] << 8) + 2575 buffer[offset+3]; 2576 else if (!spf && len - offset > 1) 2577 offset += 2 + buffer[offset+1]; 2578 else { 2579 sd_first_printk(KERN_ERR, sdkp, 2580 "Incomplete mode " 2581 "parameter data\n"); 2582 goto defaults; 2583 } 2584 } 2585 } 2586 2587 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2588 goto defaults; 2589 2590 Page_found: 2591 if (modepage == 8) { 2592 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2593 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2594 } else { 2595 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2596 sdkp->RCD = 0; 2597 } 2598 2599 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2600 if (sdp->broken_fua) { 2601 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2602 sdkp->DPOFUA = 0; 2603 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) { 2604 sd_first_printk(KERN_NOTICE, sdkp, 2605 "Uses READ/WRITE(6), disabling FUA\n"); 2606 sdkp->DPOFUA = 0; 2607 } 2608 2609 /* No cache flush allowed for write protected devices */ 2610 if (sdkp->WCE && sdkp->write_prot) 2611 sdkp->WCE = 0; 2612 2613 if (sdkp->first_scan || old_wce != sdkp->WCE || 2614 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2615 sd_printk(KERN_NOTICE, sdkp, 2616 "Write cache: %s, read cache: %s, %s\n", 2617 sdkp->WCE ? "enabled" : "disabled", 2618 sdkp->RCD ? "disabled" : "enabled", 2619 sdkp->DPOFUA ? "supports DPO and FUA" 2620 : "doesn't support DPO or FUA"); 2621 2622 return; 2623 } 2624 2625 bad_sense: 2626 if (scsi_sense_valid(&sshdr) && 2627 sshdr.sense_key == ILLEGAL_REQUEST && 2628 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2629 /* Invalid field in CDB */ 2630 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2631 else 2632 sd_first_printk(KERN_ERR, sdkp, 2633 "Asking for cache data failed\n"); 2634 2635 defaults: 2636 if (sdp->wce_default_on) { 2637 sd_first_printk(KERN_NOTICE, sdkp, 2638 "Assuming drive cache: write back\n"); 2639 sdkp->WCE = 1; 2640 } else { 2641 sd_first_printk(KERN_ERR, sdkp, 2642 "Assuming drive cache: write through\n"); 2643 sdkp->WCE = 0; 2644 } 2645 sdkp->RCD = 0; 2646 sdkp->DPOFUA = 0; 2647 } 2648 2649 /* 2650 * The ATO bit indicates whether the DIF application tag is available 2651 * for use by the operating system. 2652 */ 2653 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2654 { 2655 int res, offset; 2656 struct scsi_device *sdp = sdkp->device; 2657 struct scsi_mode_data data; 2658 struct scsi_sense_hdr sshdr; 2659 2660 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2661 return; 2662 2663 if (sdkp->protection_type == 0) 2664 return; 2665 2666 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2667 SD_MAX_RETRIES, &data, &sshdr); 2668 2669 if (!scsi_status_is_good(res) || !data.header_length || 2670 data.length < 6) { 2671 sd_first_printk(KERN_WARNING, sdkp, 2672 "getting Control mode page failed, assume no ATO\n"); 2673 2674 if (scsi_sense_valid(&sshdr)) 2675 sd_print_sense_hdr(sdkp, &sshdr); 2676 2677 return; 2678 } 2679 2680 offset = data.header_length + data.block_descriptor_length; 2681 2682 if ((buffer[offset] & 0x3f) != 0x0a) { 2683 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2684 return; 2685 } 2686 2687 if ((buffer[offset + 5] & 0x80) == 0) 2688 return; 2689 2690 sdkp->ATO = 1; 2691 2692 return; 2693 } 2694 2695 /** 2696 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2697 * @disk: disk to query 2698 */ 2699 static void sd_read_block_limits(struct scsi_disk *sdkp) 2700 { 2701 unsigned int sector_sz = sdkp->device->sector_size; 2702 const int vpd_len = 64; 2703 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2704 2705 if (!buffer || 2706 /* Block Limits VPD */ 2707 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2708 goto out; 2709 2710 blk_queue_io_min(sdkp->disk->queue, 2711 get_unaligned_be16(&buffer[6]) * sector_sz); 2712 2713 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2714 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2715 2716 if (buffer[3] == 0x3c) { 2717 unsigned int lba_count, desc_count; 2718 2719 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2720 2721 if (!sdkp->lbpme) 2722 goto out; 2723 2724 lba_count = get_unaligned_be32(&buffer[20]); 2725 desc_count = get_unaligned_be32(&buffer[24]); 2726 2727 if (lba_count && desc_count) 2728 sdkp->max_unmap_blocks = lba_count; 2729 2730 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2731 2732 if (buffer[32] & 0x80) 2733 sdkp->unmap_alignment = 2734 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2735 2736 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2737 2738 if (sdkp->max_unmap_blocks) 2739 sd_config_discard(sdkp, SD_LBP_UNMAP); 2740 else 2741 sd_config_discard(sdkp, SD_LBP_WS16); 2742 2743 } else { /* LBP VPD page tells us what to use */ 2744 if (sdkp->lbpu && sdkp->max_unmap_blocks && !sdkp->lbprz) 2745 sd_config_discard(sdkp, SD_LBP_UNMAP); 2746 else if (sdkp->lbpws) 2747 sd_config_discard(sdkp, SD_LBP_WS16); 2748 else if (sdkp->lbpws10) 2749 sd_config_discard(sdkp, SD_LBP_WS10); 2750 else if (sdkp->lbpu && sdkp->max_unmap_blocks) 2751 sd_config_discard(sdkp, SD_LBP_UNMAP); 2752 else 2753 sd_config_discard(sdkp, SD_LBP_DISABLE); 2754 } 2755 } 2756 2757 out: 2758 kfree(buffer); 2759 } 2760 2761 /** 2762 * sd_read_block_characteristics - Query block dev. characteristics 2763 * @disk: disk to query 2764 */ 2765 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2766 { 2767 struct request_queue *q = sdkp->disk->queue; 2768 unsigned char *buffer; 2769 u16 rot; 2770 const int vpd_len = 64; 2771 2772 buffer = kmalloc(vpd_len, GFP_KERNEL); 2773 2774 if (!buffer || 2775 /* Block Device Characteristics VPD */ 2776 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2777 goto out; 2778 2779 rot = get_unaligned_be16(&buffer[4]); 2780 2781 if (rot == 1) { 2782 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 2783 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); 2784 } 2785 2786 sdkp->zoned = (buffer[8] >> 4) & 3; 2787 if (sdkp->zoned == 1) 2788 q->limits.zoned = BLK_ZONED_HA; 2789 else if (sdkp->device->type == TYPE_ZBC) 2790 q->limits.zoned = BLK_ZONED_HM; 2791 else 2792 q->limits.zoned = BLK_ZONED_NONE; 2793 if (blk_queue_is_zoned(q) && sdkp->first_scan) 2794 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2795 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2796 2797 out: 2798 kfree(buffer); 2799 } 2800 2801 /** 2802 * sd_read_block_provisioning - Query provisioning VPD page 2803 * @disk: disk to query 2804 */ 2805 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2806 { 2807 unsigned char *buffer; 2808 const int vpd_len = 8; 2809 2810 if (sdkp->lbpme == 0) 2811 return; 2812 2813 buffer = kmalloc(vpd_len, GFP_KERNEL); 2814 2815 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2816 goto out; 2817 2818 sdkp->lbpvpd = 1; 2819 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 2820 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 2821 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 2822 2823 out: 2824 kfree(buffer); 2825 } 2826 2827 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 2828 { 2829 struct scsi_device *sdev = sdkp->device; 2830 2831 if (sdev->host->no_write_same) { 2832 sdev->no_write_same = 1; 2833 2834 return; 2835 } 2836 2837 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 2838 /* too large values might cause issues with arcmsr */ 2839 int vpd_buf_len = 64; 2840 2841 sdev->no_report_opcodes = 1; 2842 2843 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 2844 * CODES is unsupported and the device has an ATA 2845 * Information VPD page (SAT). 2846 */ 2847 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 2848 sdev->no_write_same = 1; 2849 } 2850 2851 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 2852 sdkp->ws16 = 1; 2853 2854 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 2855 sdkp->ws10 = 1; 2856 } 2857 2858 /** 2859 * sd_revalidate_disk - called the first time a new disk is seen, 2860 * performs disk spin up, read_capacity, etc. 2861 * @disk: struct gendisk we care about 2862 **/ 2863 static int sd_revalidate_disk(struct gendisk *disk) 2864 { 2865 struct scsi_disk *sdkp = scsi_disk(disk); 2866 struct scsi_device *sdp = sdkp->device; 2867 struct request_queue *q = sdkp->disk->queue; 2868 sector_t old_capacity = sdkp->capacity; 2869 unsigned char *buffer; 2870 unsigned int dev_max, rw_max; 2871 2872 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 2873 "sd_revalidate_disk\n")); 2874 2875 /* 2876 * If the device is offline, don't try and read capacity or any 2877 * of the other niceties. 2878 */ 2879 if (!scsi_device_online(sdp)) 2880 goto out; 2881 2882 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 2883 if (!buffer) { 2884 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 2885 "allocation failure.\n"); 2886 goto out; 2887 } 2888 2889 sd_spinup_disk(sdkp); 2890 2891 /* 2892 * Without media there is no reason to ask; moreover, some devices 2893 * react badly if we do. 2894 */ 2895 if (sdkp->media_present) { 2896 sd_read_capacity(sdkp, buffer); 2897 2898 if (scsi_device_supports_vpd(sdp)) { 2899 sd_read_block_provisioning(sdkp); 2900 sd_read_block_limits(sdkp); 2901 sd_read_block_characteristics(sdkp); 2902 sd_zbc_read_zones(sdkp, buffer); 2903 } 2904 2905 sd_print_capacity(sdkp, old_capacity); 2906 2907 sd_read_write_protect_flag(sdkp, buffer); 2908 sd_read_cache_type(sdkp, buffer); 2909 sd_read_app_tag_own(sdkp, buffer); 2910 sd_read_write_same(sdkp, buffer); 2911 } 2912 2913 sdkp->first_scan = 0; 2914 2915 /* 2916 * We now have all cache related info, determine how we deal 2917 * with flush requests. 2918 */ 2919 sd_set_flush_flag(sdkp); 2920 2921 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 2922 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 2923 2924 /* Some devices report a maximum block count for READ/WRITE requests. */ 2925 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 2926 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 2927 2928 /* 2929 * Use the device's preferred I/O size for reads and writes 2930 * unless the reported value is unreasonably small, large, or 2931 * garbage. 2932 */ 2933 if (sdkp->opt_xfer_blocks && 2934 sdkp->opt_xfer_blocks <= dev_max && 2935 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS && 2936 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) { 2937 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 2938 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 2939 } else 2940 rw_max = BLK_DEF_MAX_SECTORS; 2941 2942 /* Combine with controller limits */ 2943 q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q)); 2944 2945 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); 2946 sd_config_write_same(sdkp); 2947 kfree(buffer); 2948 2949 out: 2950 return 0; 2951 } 2952 2953 /** 2954 * sd_unlock_native_capacity - unlock native capacity 2955 * @disk: struct gendisk to set capacity for 2956 * 2957 * Block layer calls this function if it detects that partitions 2958 * on @disk reach beyond the end of the device. If the SCSI host 2959 * implements ->unlock_native_capacity() method, it's invoked to 2960 * give it a chance to adjust the device capacity. 2961 * 2962 * CONTEXT: 2963 * Defined by block layer. Might sleep. 2964 */ 2965 static void sd_unlock_native_capacity(struct gendisk *disk) 2966 { 2967 struct scsi_device *sdev = scsi_disk(disk)->device; 2968 2969 if (sdev->host->hostt->unlock_native_capacity) 2970 sdev->host->hostt->unlock_native_capacity(sdev); 2971 } 2972 2973 /** 2974 * sd_format_disk_name - format disk name 2975 * @prefix: name prefix - ie. "sd" for SCSI disks 2976 * @index: index of the disk to format name for 2977 * @buf: output buffer 2978 * @buflen: length of the output buffer 2979 * 2980 * SCSI disk names starts at sda. The 26th device is sdz and the 2981 * 27th is sdaa. The last one for two lettered suffix is sdzz 2982 * which is followed by sdaaa. 2983 * 2984 * This is basically 26 base counting with one extra 'nil' entry 2985 * at the beginning from the second digit on and can be 2986 * determined using similar method as 26 base conversion with the 2987 * index shifted -1 after each digit is computed. 2988 * 2989 * CONTEXT: 2990 * Don't care. 2991 * 2992 * RETURNS: 2993 * 0 on success, -errno on failure. 2994 */ 2995 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 2996 { 2997 const int base = 'z' - 'a' + 1; 2998 char *begin = buf + strlen(prefix); 2999 char *end = buf + buflen; 3000 char *p; 3001 int unit; 3002 3003 p = end - 1; 3004 *p = '\0'; 3005 unit = base; 3006 do { 3007 if (p == begin) 3008 return -EINVAL; 3009 *--p = 'a' + (index % unit); 3010 index = (index / unit) - 1; 3011 } while (index >= 0); 3012 3013 memmove(begin, p, end - p); 3014 memcpy(buf, prefix, strlen(prefix)); 3015 3016 return 0; 3017 } 3018 3019 /* 3020 * The asynchronous part of sd_probe 3021 */ 3022 static void sd_probe_async(void *data, async_cookie_t cookie) 3023 { 3024 struct scsi_disk *sdkp = data; 3025 struct scsi_device *sdp; 3026 struct gendisk *gd; 3027 u32 index; 3028 struct device *dev; 3029 3030 sdp = sdkp->device; 3031 gd = sdkp->disk; 3032 index = sdkp->index; 3033 dev = &sdp->sdev_gendev; 3034 3035 gd->major = sd_major((index & 0xf0) >> 4); 3036 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3037 gd->minors = SD_MINORS; 3038 3039 gd->fops = &sd_fops; 3040 gd->private_data = &sdkp->driver; 3041 gd->queue = sdkp->device->request_queue; 3042 3043 /* defaults, until the device tells us otherwise */ 3044 sdp->sector_size = 512; 3045 sdkp->capacity = 0; 3046 sdkp->media_present = 1; 3047 sdkp->write_prot = 0; 3048 sdkp->cache_override = 0; 3049 sdkp->WCE = 0; 3050 sdkp->RCD = 0; 3051 sdkp->ATO = 0; 3052 sdkp->first_scan = 1; 3053 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3054 3055 sd_revalidate_disk(gd); 3056 3057 gd->flags = GENHD_FL_EXT_DEVT; 3058 if (sdp->removable) { 3059 gd->flags |= GENHD_FL_REMOVABLE; 3060 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3061 } 3062 3063 blk_pm_runtime_init(sdp->request_queue, dev); 3064 device_add_disk(dev, gd); 3065 if (sdkp->capacity) 3066 sd_dif_config_host(sdkp); 3067 3068 sd_revalidate_disk(gd); 3069 3070 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3071 sdp->removable ? "removable " : ""); 3072 scsi_autopm_put_device(sdp); 3073 put_device(&sdkp->dev); 3074 } 3075 3076 /** 3077 * sd_probe - called during driver initialization and whenever a 3078 * new scsi device is attached to the system. It is called once 3079 * for each scsi device (not just disks) present. 3080 * @dev: pointer to device object 3081 * 3082 * Returns 0 if successful (or not interested in this scsi device 3083 * (e.g. scanner)); 1 when there is an error. 3084 * 3085 * Note: this function is invoked from the scsi mid-level. 3086 * This function sets up the mapping between a given 3087 * <host,channel,id,lun> (found in sdp) and new device name 3088 * (e.g. /dev/sda). More precisely it is the block device major 3089 * and minor number that is chosen here. 3090 * 3091 * Assume sd_probe is not re-entrant (for time being) 3092 * Also think about sd_probe() and sd_remove() running coincidentally. 3093 **/ 3094 static int sd_probe(struct device *dev) 3095 { 3096 struct scsi_device *sdp = to_scsi_device(dev); 3097 struct scsi_disk *sdkp; 3098 struct gendisk *gd; 3099 int index; 3100 int error; 3101 3102 scsi_autopm_get_device(sdp); 3103 error = -ENODEV; 3104 if (sdp->type != TYPE_DISK && 3105 sdp->type != TYPE_ZBC && 3106 sdp->type != TYPE_MOD && 3107 sdp->type != TYPE_RBC) 3108 goto out; 3109 3110 #ifndef CONFIG_BLK_DEV_ZONED 3111 if (sdp->type == TYPE_ZBC) 3112 goto out; 3113 #endif 3114 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3115 "sd_probe\n")); 3116 3117 error = -ENOMEM; 3118 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3119 if (!sdkp) 3120 goto out; 3121 3122 gd = alloc_disk(SD_MINORS); 3123 if (!gd) 3124 goto out_free; 3125 3126 do { 3127 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL)) 3128 goto out_put; 3129 3130 spin_lock(&sd_index_lock); 3131 error = ida_get_new(&sd_index_ida, &index); 3132 spin_unlock(&sd_index_lock); 3133 } while (error == -EAGAIN); 3134 3135 if (error) { 3136 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3137 goto out_put; 3138 } 3139 3140 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3141 if (error) { 3142 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3143 goto out_free_index; 3144 } 3145 3146 sdkp->device = sdp; 3147 sdkp->driver = &sd_template; 3148 sdkp->disk = gd; 3149 sdkp->index = index; 3150 atomic_set(&sdkp->openers, 0); 3151 atomic_set(&sdkp->device->ioerr_cnt, 0); 3152 3153 if (!sdp->request_queue->rq_timeout) { 3154 if (sdp->type != TYPE_MOD) 3155 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3156 else 3157 blk_queue_rq_timeout(sdp->request_queue, 3158 SD_MOD_TIMEOUT); 3159 } 3160 3161 device_initialize(&sdkp->dev); 3162 sdkp->dev.parent = dev; 3163 sdkp->dev.class = &sd_disk_class; 3164 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3165 3166 error = device_add(&sdkp->dev); 3167 if (error) 3168 goto out_free_index; 3169 3170 get_device(dev); 3171 dev_set_drvdata(dev, sdkp); 3172 3173 get_device(&sdkp->dev); /* prevent release before async_schedule */ 3174 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); 3175 3176 return 0; 3177 3178 out_free_index: 3179 spin_lock(&sd_index_lock); 3180 ida_remove(&sd_index_ida, index); 3181 spin_unlock(&sd_index_lock); 3182 out_put: 3183 put_disk(gd); 3184 out_free: 3185 kfree(sdkp); 3186 out: 3187 scsi_autopm_put_device(sdp); 3188 return error; 3189 } 3190 3191 /** 3192 * sd_remove - called whenever a scsi disk (previously recognized by 3193 * sd_probe) is detached from the system. It is called (potentially 3194 * multiple times) during sd module unload. 3195 * @sdp: pointer to mid level scsi device object 3196 * 3197 * Note: this function is invoked from the scsi mid-level. 3198 * This function potentially frees up a device name (e.g. /dev/sdc) 3199 * that could be re-used by a subsequent sd_probe(). 3200 * This function is not called when the built-in sd driver is "exit-ed". 3201 **/ 3202 static int sd_remove(struct device *dev) 3203 { 3204 struct scsi_disk *sdkp; 3205 dev_t devt; 3206 3207 sdkp = dev_get_drvdata(dev); 3208 devt = disk_devt(sdkp->disk); 3209 scsi_autopm_get_device(sdkp->device); 3210 3211 async_synchronize_full_domain(&scsi_sd_pm_domain); 3212 async_synchronize_full_domain(&scsi_sd_probe_domain); 3213 device_del(&sdkp->dev); 3214 del_gendisk(sdkp->disk); 3215 sd_shutdown(dev); 3216 3217 sd_zbc_remove(sdkp); 3218 3219 blk_register_region(devt, SD_MINORS, NULL, 3220 sd_default_probe, NULL, NULL); 3221 3222 mutex_lock(&sd_ref_mutex); 3223 dev_set_drvdata(dev, NULL); 3224 put_device(&sdkp->dev); 3225 mutex_unlock(&sd_ref_mutex); 3226 3227 return 0; 3228 } 3229 3230 /** 3231 * scsi_disk_release - Called to free the scsi_disk structure 3232 * @dev: pointer to embedded class device 3233 * 3234 * sd_ref_mutex must be held entering this routine. Because it is 3235 * called on last put, you should always use the scsi_disk_get() 3236 * scsi_disk_put() helpers which manipulate the semaphore directly 3237 * and never do a direct put_device. 3238 **/ 3239 static void scsi_disk_release(struct device *dev) 3240 { 3241 struct scsi_disk *sdkp = to_scsi_disk(dev); 3242 struct gendisk *disk = sdkp->disk; 3243 3244 spin_lock(&sd_index_lock); 3245 ida_remove(&sd_index_ida, sdkp->index); 3246 spin_unlock(&sd_index_lock); 3247 3248 disk->private_data = NULL; 3249 put_disk(disk); 3250 put_device(&sdkp->device->sdev_gendev); 3251 3252 kfree(sdkp); 3253 } 3254 3255 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3256 { 3257 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3258 struct scsi_sense_hdr sshdr; 3259 struct scsi_device *sdp = sdkp->device; 3260 int res; 3261 3262 if (start) 3263 cmd[4] |= 1; /* START */ 3264 3265 if (sdp->start_stop_pwr_cond) 3266 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3267 3268 if (!scsi_device_online(sdp)) 3269 return -ENODEV; 3270 3271 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr, 3272 SD_TIMEOUT, SD_MAX_RETRIES, NULL, 0, RQF_PM); 3273 if (res) { 3274 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3275 if (driver_byte(res) & DRIVER_SENSE) 3276 sd_print_sense_hdr(sdkp, &sshdr); 3277 if (scsi_sense_valid(&sshdr) && 3278 /* 0x3a is medium not present */ 3279 sshdr.asc == 0x3a) 3280 res = 0; 3281 } 3282 3283 /* SCSI error codes must not go to the generic layer */ 3284 if (res) 3285 return -EIO; 3286 3287 return 0; 3288 } 3289 3290 /* 3291 * Send a SYNCHRONIZE CACHE instruction down to the device through 3292 * the normal SCSI command structure. Wait for the command to 3293 * complete. 3294 */ 3295 static void sd_shutdown(struct device *dev) 3296 { 3297 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3298 3299 if (!sdkp) 3300 return; /* this can happen */ 3301 3302 if (pm_runtime_suspended(dev)) 3303 return; 3304 3305 if (sdkp->WCE && sdkp->media_present) { 3306 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3307 sd_sync_cache(sdkp); 3308 } 3309 3310 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3311 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3312 sd_start_stop_device(sdkp, 0); 3313 } 3314 } 3315 3316 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3317 { 3318 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3319 int ret = 0; 3320 3321 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3322 return 0; 3323 3324 if (sdkp->WCE && sdkp->media_present) { 3325 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3326 ret = sd_sync_cache(sdkp); 3327 if (ret) { 3328 /* ignore OFFLINE device */ 3329 if (ret == -ENODEV) 3330 ret = 0; 3331 goto done; 3332 } 3333 } 3334 3335 if (sdkp->device->manage_start_stop) { 3336 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3337 /* an error is not worth aborting a system sleep */ 3338 ret = sd_start_stop_device(sdkp, 0); 3339 if (ignore_stop_errors) 3340 ret = 0; 3341 } 3342 3343 done: 3344 return ret; 3345 } 3346 3347 static int sd_suspend_system(struct device *dev) 3348 { 3349 return sd_suspend_common(dev, true); 3350 } 3351 3352 static int sd_suspend_runtime(struct device *dev) 3353 { 3354 return sd_suspend_common(dev, false); 3355 } 3356 3357 static int sd_resume(struct device *dev) 3358 { 3359 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3360 3361 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3362 return 0; 3363 3364 if (!sdkp->device->manage_start_stop) 3365 return 0; 3366 3367 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3368 return sd_start_stop_device(sdkp, 1); 3369 } 3370 3371 /** 3372 * init_sd - entry point for this driver (both when built in or when 3373 * a module). 3374 * 3375 * Note: this function registers this driver with the scsi mid-level. 3376 **/ 3377 static int __init init_sd(void) 3378 { 3379 int majors = 0, i, err; 3380 3381 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3382 3383 for (i = 0; i < SD_MAJORS; i++) { 3384 if (register_blkdev(sd_major(i), "sd") != 0) 3385 continue; 3386 majors++; 3387 blk_register_region(sd_major(i), SD_MINORS, NULL, 3388 sd_default_probe, NULL, NULL); 3389 } 3390 3391 if (!majors) 3392 return -ENODEV; 3393 3394 err = class_register(&sd_disk_class); 3395 if (err) 3396 goto err_out; 3397 3398 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3399 0, 0, NULL); 3400 if (!sd_cdb_cache) { 3401 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3402 err = -ENOMEM; 3403 goto err_out_class; 3404 } 3405 3406 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3407 if (!sd_cdb_pool) { 3408 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3409 err = -ENOMEM; 3410 goto err_out_cache; 3411 } 3412 3413 err = scsi_register_driver(&sd_template.gendrv); 3414 if (err) 3415 goto err_out_driver; 3416 3417 return 0; 3418 3419 err_out_driver: 3420 mempool_destroy(sd_cdb_pool); 3421 3422 err_out_cache: 3423 kmem_cache_destroy(sd_cdb_cache); 3424 3425 err_out_class: 3426 class_unregister(&sd_disk_class); 3427 err_out: 3428 for (i = 0; i < SD_MAJORS; i++) 3429 unregister_blkdev(sd_major(i), "sd"); 3430 return err; 3431 } 3432 3433 /** 3434 * exit_sd - exit point for this driver (when it is a module). 3435 * 3436 * Note: this function unregisters this driver from the scsi mid-level. 3437 **/ 3438 static void __exit exit_sd(void) 3439 { 3440 int i; 3441 3442 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3443 3444 scsi_unregister_driver(&sd_template.gendrv); 3445 mempool_destroy(sd_cdb_pool); 3446 kmem_cache_destroy(sd_cdb_cache); 3447 3448 class_unregister(&sd_disk_class); 3449 3450 for (i = 0; i < SD_MAJORS; i++) { 3451 blk_unregister_region(sd_major(i), SD_MINORS); 3452 unregister_blkdev(sd_major(i), "sd"); 3453 } 3454 } 3455 3456 module_init(init_sd); 3457 module_exit(exit_sd); 3458 3459 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3460 struct scsi_sense_hdr *sshdr) 3461 { 3462 scsi_print_sense_hdr(sdkp->device, 3463 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3464 } 3465 3466 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3467 int result) 3468 { 3469 const char *hb_string = scsi_hostbyte_string(result); 3470 const char *db_string = scsi_driverbyte_string(result); 3471 3472 if (hb_string || db_string) 3473 sd_printk(KERN_INFO, sdkp, 3474 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3475 hb_string ? hb_string : "invalid", 3476 db_string ? db_string : "invalid"); 3477 else 3478 sd_printk(KERN_INFO, sdkp, 3479 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3480 msg, host_byte(result), driver_byte(result)); 3481 } 3482 3483