1 /* 2 * sd.c Copyright (C) 1992 Drew Eckhardt 3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 4 * 5 * Linux scsi disk driver 6 * Initial versions: Drew Eckhardt 7 * Subsequent revisions: Eric Youngdale 8 * Modification history: 9 * - Drew Eckhardt <drew@colorado.edu> original 10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 11 * outstanding request, and other enhancements. 12 * Support loadable low-level scsi drivers. 13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 14 * eight major numbers. 15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 17 * sd_init and cleanups. 18 * - Alex Davis <letmein@erols.com> Fix problem where partition info 19 * not being read in sd_open. Fix problem where removable media 20 * could be ejected after sd_open. 21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 24 * Support 32k/1M disks. 25 * 26 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 30 * - entering other commands: SCSI_LOG_HLQUEUE level 3 31 * Note: when the logging level is set by the user, it must be greater 32 * than the level indicated above to trigger output. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/fs.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/bio.h> 40 #include <linux/genhd.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/delay.h> 49 #include <linux/mutex.h> 50 #include <linux/string_helpers.h> 51 #include <linux/async.h> 52 #include <linux/slab.h> 53 #include <linux/pm_runtime.h> 54 #include <linux/pr.h> 55 #include <linux/t10-pi.h> 56 #include <linux/uaccess.h> 57 #include <asm/unaligned.h> 58 59 #include <scsi/scsi.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_dbg.h> 62 #include <scsi/scsi_device.h> 63 #include <scsi/scsi_driver.h> 64 #include <scsi/scsi_eh.h> 65 #include <scsi/scsi_host.h> 66 #include <scsi/scsi_ioctl.h> 67 #include <scsi/scsicam.h> 68 69 #include "sd.h" 70 #include "scsi_priv.h" 71 #include "scsi_logging.h" 72 73 MODULE_AUTHOR("Eric Youngdale"); 74 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 75 MODULE_LICENSE("GPL"); 76 77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 93 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 94 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 97 98 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 99 #define SD_MINORS 16 100 #else 101 #define SD_MINORS 0 102 #endif 103 104 static void sd_config_discard(struct scsi_disk *, unsigned int); 105 static void sd_config_write_same(struct scsi_disk *); 106 static int sd_revalidate_disk(struct gendisk *); 107 static void sd_unlock_native_capacity(struct gendisk *disk); 108 static int sd_probe(struct device *); 109 static int sd_remove(struct device *); 110 static void sd_shutdown(struct device *); 111 static int sd_suspend_system(struct device *); 112 static int sd_suspend_runtime(struct device *); 113 static int sd_resume(struct device *); 114 static void sd_rescan(struct device *); 115 static int sd_init_command(struct scsi_cmnd *SCpnt); 116 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 117 static int sd_done(struct scsi_cmnd *); 118 static int sd_eh_action(struct scsi_cmnd *, int); 119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 120 static void scsi_disk_release(struct device *cdev); 121 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 122 static void sd_print_result(const struct scsi_disk *, const char *, int); 123 124 static DEFINE_SPINLOCK(sd_index_lock); 125 static DEFINE_IDA(sd_index_ida); 126 127 /* This semaphore is used to mediate the 0->1 reference get in the 128 * face of object destruction (i.e. we can't allow a get on an 129 * object after last put) */ 130 static DEFINE_MUTEX(sd_ref_mutex); 131 132 static struct kmem_cache *sd_cdb_cache; 133 static mempool_t *sd_cdb_pool; 134 135 static const char *sd_cache_types[] = { 136 "write through", "none", "write back", 137 "write back, no read (daft)" 138 }; 139 140 static void sd_set_flush_flag(struct scsi_disk *sdkp) 141 { 142 bool wc = false, fua = false; 143 144 if (sdkp->WCE) { 145 wc = true; 146 if (sdkp->DPOFUA) 147 fua = true; 148 } 149 150 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 151 } 152 153 static ssize_t 154 cache_type_store(struct device *dev, struct device_attribute *attr, 155 const char *buf, size_t count) 156 { 157 int i, ct = -1, rcd, wce, sp; 158 struct scsi_disk *sdkp = to_scsi_disk(dev); 159 struct scsi_device *sdp = sdkp->device; 160 char buffer[64]; 161 char *buffer_data; 162 struct scsi_mode_data data; 163 struct scsi_sense_hdr sshdr; 164 static const char temp[] = "temporary "; 165 int len; 166 167 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 168 /* no cache control on RBC devices; theoretically they 169 * can do it, but there's probably so many exceptions 170 * it's not worth the risk */ 171 return -EINVAL; 172 173 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 174 buf += sizeof(temp) - 1; 175 sdkp->cache_override = 1; 176 } else { 177 sdkp->cache_override = 0; 178 } 179 180 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) { 181 len = strlen(sd_cache_types[i]); 182 if (strncmp(sd_cache_types[i], buf, len) == 0 && 183 buf[len] == '\n') { 184 ct = i; 185 break; 186 } 187 } 188 if (ct < 0) 189 return -EINVAL; 190 rcd = ct & 0x01 ? 1 : 0; 191 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 192 193 if (sdkp->cache_override) { 194 sdkp->WCE = wce; 195 sdkp->RCD = rcd; 196 sd_set_flush_flag(sdkp); 197 return count; 198 } 199 200 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 201 SD_MAX_RETRIES, &data, NULL)) 202 return -EINVAL; 203 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 204 data.block_descriptor_length); 205 buffer_data = buffer + data.header_length + 206 data.block_descriptor_length; 207 buffer_data[2] &= ~0x05; 208 buffer_data[2] |= wce << 2 | rcd; 209 sp = buffer_data[0] & 0x80 ? 1 : 0; 210 buffer_data[0] &= ~0x80; 211 212 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 213 SD_MAX_RETRIES, &data, &sshdr)) { 214 if (scsi_sense_valid(&sshdr)) 215 sd_print_sense_hdr(sdkp, &sshdr); 216 return -EINVAL; 217 } 218 revalidate_disk(sdkp->disk); 219 return count; 220 } 221 222 static ssize_t 223 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 224 char *buf) 225 { 226 struct scsi_disk *sdkp = to_scsi_disk(dev); 227 struct scsi_device *sdp = sdkp->device; 228 229 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop); 230 } 231 232 static ssize_t 233 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 234 const char *buf, size_t count) 235 { 236 struct scsi_disk *sdkp = to_scsi_disk(dev); 237 struct scsi_device *sdp = sdkp->device; 238 239 if (!capable(CAP_SYS_ADMIN)) 240 return -EACCES; 241 242 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10); 243 244 return count; 245 } 246 static DEVICE_ATTR_RW(manage_start_stop); 247 248 static ssize_t 249 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 250 { 251 struct scsi_disk *sdkp = to_scsi_disk(dev); 252 253 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart); 254 } 255 256 static ssize_t 257 allow_restart_store(struct device *dev, struct device_attribute *attr, 258 const char *buf, size_t count) 259 { 260 struct scsi_disk *sdkp = to_scsi_disk(dev); 261 struct scsi_device *sdp = sdkp->device; 262 263 if (!capable(CAP_SYS_ADMIN)) 264 return -EACCES; 265 266 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 267 return -EINVAL; 268 269 sdp->allow_restart = simple_strtoul(buf, NULL, 10); 270 271 return count; 272 } 273 static DEVICE_ATTR_RW(allow_restart); 274 275 static ssize_t 276 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 277 { 278 struct scsi_disk *sdkp = to_scsi_disk(dev); 279 int ct = sdkp->RCD + 2*sdkp->WCE; 280 281 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]); 282 } 283 static DEVICE_ATTR_RW(cache_type); 284 285 static ssize_t 286 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 287 { 288 struct scsi_disk *sdkp = to_scsi_disk(dev); 289 290 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA); 291 } 292 static DEVICE_ATTR_RO(FUA); 293 294 static ssize_t 295 protection_type_show(struct device *dev, struct device_attribute *attr, 296 char *buf) 297 { 298 struct scsi_disk *sdkp = to_scsi_disk(dev); 299 300 return snprintf(buf, 20, "%u\n", sdkp->protection_type); 301 } 302 303 static ssize_t 304 protection_type_store(struct device *dev, struct device_attribute *attr, 305 const char *buf, size_t count) 306 { 307 struct scsi_disk *sdkp = to_scsi_disk(dev); 308 unsigned int val; 309 int err; 310 311 if (!capable(CAP_SYS_ADMIN)) 312 return -EACCES; 313 314 err = kstrtouint(buf, 10, &val); 315 316 if (err) 317 return err; 318 319 if (val >= 0 && val <= T10_PI_TYPE3_PROTECTION) 320 sdkp->protection_type = val; 321 322 return count; 323 } 324 static DEVICE_ATTR_RW(protection_type); 325 326 static ssize_t 327 protection_mode_show(struct device *dev, struct device_attribute *attr, 328 char *buf) 329 { 330 struct scsi_disk *sdkp = to_scsi_disk(dev); 331 struct scsi_device *sdp = sdkp->device; 332 unsigned int dif, dix; 333 334 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 335 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 336 337 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 338 dif = 0; 339 dix = 1; 340 } 341 342 if (!dif && !dix) 343 return snprintf(buf, 20, "none\n"); 344 345 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif); 346 } 347 static DEVICE_ATTR_RO(protection_mode); 348 349 static ssize_t 350 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 351 { 352 struct scsi_disk *sdkp = to_scsi_disk(dev); 353 354 return snprintf(buf, 20, "%u\n", sdkp->ATO); 355 } 356 static DEVICE_ATTR_RO(app_tag_own); 357 358 static ssize_t 359 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 360 char *buf) 361 { 362 struct scsi_disk *sdkp = to_scsi_disk(dev); 363 364 return snprintf(buf, 20, "%u\n", sdkp->lbpme); 365 } 366 static DEVICE_ATTR_RO(thin_provisioning); 367 368 static const char *lbp_mode[] = { 369 [SD_LBP_FULL] = "full", 370 [SD_LBP_UNMAP] = "unmap", 371 [SD_LBP_WS16] = "writesame_16", 372 [SD_LBP_WS10] = "writesame_10", 373 [SD_LBP_ZERO] = "writesame_zero", 374 [SD_LBP_DISABLE] = "disabled", 375 }; 376 377 static ssize_t 378 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 379 char *buf) 380 { 381 struct scsi_disk *sdkp = to_scsi_disk(dev); 382 383 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]); 384 } 385 386 static ssize_t 387 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 388 const char *buf, size_t count) 389 { 390 struct scsi_disk *sdkp = to_scsi_disk(dev); 391 struct scsi_device *sdp = sdkp->device; 392 393 if (!capable(CAP_SYS_ADMIN)) 394 return -EACCES; 395 396 if (sd_is_zoned(sdkp)) { 397 sd_config_discard(sdkp, SD_LBP_DISABLE); 398 return count; 399 } 400 401 if (sdp->type != TYPE_DISK) 402 return -EINVAL; 403 404 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20)) 405 sd_config_discard(sdkp, SD_LBP_UNMAP); 406 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20)) 407 sd_config_discard(sdkp, SD_LBP_WS16); 408 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20)) 409 sd_config_discard(sdkp, SD_LBP_WS10); 410 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20)) 411 sd_config_discard(sdkp, SD_LBP_ZERO); 412 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20)) 413 sd_config_discard(sdkp, SD_LBP_DISABLE); 414 else 415 return -EINVAL; 416 417 return count; 418 } 419 static DEVICE_ATTR_RW(provisioning_mode); 420 421 static ssize_t 422 max_medium_access_timeouts_show(struct device *dev, 423 struct device_attribute *attr, char *buf) 424 { 425 struct scsi_disk *sdkp = to_scsi_disk(dev); 426 427 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts); 428 } 429 430 static ssize_t 431 max_medium_access_timeouts_store(struct device *dev, 432 struct device_attribute *attr, const char *buf, 433 size_t count) 434 { 435 struct scsi_disk *sdkp = to_scsi_disk(dev); 436 int err; 437 438 if (!capable(CAP_SYS_ADMIN)) 439 return -EACCES; 440 441 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 442 443 return err ? err : count; 444 } 445 static DEVICE_ATTR_RW(max_medium_access_timeouts); 446 447 static ssize_t 448 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 449 char *buf) 450 { 451 struct scsi_disk *sdkp = to_scsi_disk(dev); 452 453 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks); 454 } 455 456 static ssize_t 457 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 458 const char *buf, size_t count) 459 { 460 struct scsi_disk *sdkp = to_scsi_disk(dev); 461 struct scsi_device *sdp = sdkp->device; 462 unsigned long max; 463 int err; 464 465 if (!capable(CAP_SYS_ADMIN)) 466 return -EACCES; 467 468 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 469 return -EINVAL; 470 471 err = kstrtoul(buf, 10, &max); 472 473 if (err) 474 return err; 475 476 if (max == 0) 477 sdp->no_write_same = 1; 478 else if (max <= SD_MAX_WS16_BLOCKS) { 479 sdp->no_write_same = 0; 480 sdkp->max_ws_blocks = max; 481 } 482 483 sd_config_write_same(sdkp); 484 485 return count; 486 } 487 static DEVICE_ATTR_RW(max_write_same_blocks); 488 489 static struct attribute *sd_disk_attrs[] = { 490 &dev_attr_cache_type.attr, 491 &dev_attr_FUA.attr, 492 &dev_attr_allow_restart.attr, 493 &dev_attr_manage_start_stop.attr, 494 &dev_attr_protection_type.attr, 495 &dev_attr_protection_mode.attr, 496 &dev_attr_app_tag_own.attr, 497 &dev_attr_thin_provisioning.attr, 498 &dev_attr_provisioning_mode.attr, 499 &dev_attr_max_write_same_blocks.attr, 500 &dev_attr_max_medium_access_timeouts.attr, 501 NULL, 502 }; 503 ATTRIBUTE_GROUPS(sd_disk); 504 505 static struct class sd_disk_class = { 506 .name = "scsi_disk", 507 .owner = THIS_MODULE, 508 .dev_release = scsi_disk_release, 509 .dev_groups = sd_disk_groups, 510 }; 511 512 static const struct dev_pm_ops sd_pm_ops = { 513 .suspend = sd_suspend_system, 514 .resume = sd_resume, 515 .poweroff = sd_suspend_system, 516 .restore = sd_resume, 517 .runtime_suspend = sd_suspend_runtime, 518 .runtime_resume = sd_resume, 519 }; 520 521 static struct scsi_driver sd_template = { 522 .gendrv = { 523 .name = "sd", 524 .owner = THIS_MODULE, 525 .probe = sd_probe, 526 .remove = sd_remove, 527 .shutdown = sd_shutdown, 528 .pm = &sd_pm_ops, 529 }, 530 .rescan = sd_rescan, 531 .init_command = sd_init_command, 532 .uninit_command = sd_uninit_command, 533 .done = sd_done, 534 .eh_action = sd_eh_action, 535 }; 536 537 /* 538 * Dummy kobj_map->probe function. 539 * The default ->probe function will call modprobe, which is 540 * pointless as this module is already loaded. 541 */ 542 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 543 { 544 return NULL; 545 } 546 547 /* 548 * Device no to disk mapping: 549 * 550 * major disc2 disc p1 551 * |............|.............|....|....| <- dev_t 552 * 31 20 19 8 7 4 3 0 553 * 554 * Inside a major, we have 16k disks, however mapped non- 555 * contiguously. The first 16 disks are for major0, the next 556 * ones with major1, ... Disk 256 is for major0 again, disk 272 557 * for major1, ... 558 * As we stay compatible with our numbering scheme, we can reuse 559 * the well-know SCSI majors 8, 65--71, 136--143. 560 */ 561 static int sd_major(int major_idx) 562 { 563 switch (major_idx) { 564 case 0: 565 return SCSI_DISK0_MAJOR; 566 case 1 ... 7: 567 return SCSI_DISK1_MAJOR + major_idx - 1; 568 case 8 ... 15: 569 return SCSI_DISK8_MAJOR + major_idx - 8; 570 default: 571 BUG(); 572 return 0; /* shut up gcc */ 573 } 574 } 575 576 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 577 { 578 struct scsi_disk *sdkp = NULL; 579 580 mutex_lock(&sd_ref_mutex); 581 582 if (disk->private_data) { 583 sdkp = scsi_disk(disk); 584 if (scsi_device_get(sdkp->device) == 0) 585 get_device(&sdkp->dev); 586 else 587 sdkp = NULL; 588 } 589 mutex_unlock(&sd_ref_mutex); 590 return sdkp; 591 } 592 593 static void scsi_disk_put(struct scsi_disk *sdkp) 594 { 595 struct scsi_device *sdev = sdkp->device; 596 597 mutex_lock(&sd_ref_mutex); 598 put_device(&sdkp->dev); 599 scsi_device_put(sdev); 600 mutex_unlock(&sd_ref_mutex); 601 } 602 603 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 604 unsigned int dix, unsigned int dif) 605 { 606 struct bio *bio = scmd->request->bio; 607 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 608 unsigned int protect = 0; 609 610 if (dix) { /* DIX Type 0, 1, 2, 3 */ 611 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 612 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 613 614 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 615 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 616 } 617 618 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 619 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 620 621 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 622 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 623 } 624 625 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 626 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 627 628 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 629 protect = 3 << 5; /* Disable target PI checking */ 630 else 631 protect = 1 << 5; /* Enable target PI checking */ 632 } 633 634 scsi_set_prot_op(scmd, prot_op); 635 scsi_set_prot_type(scmd, dif); 636 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 637 638 return protect; 639 } 640 641 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 642 { 643 struct request_queue *q = sdkp->disk->queue; 644 unsigned int logical_block_size = sdkp->device->sector_size; 645 unsigned int max_blocks = 0; 646 647 q->limits.discard_zeroes_data = 0; 648 649 /* 650 * When LBPRZ is reported, discard alignment and granularity 651 * must be fixed to the logical block size. Otherwise the block 652 * layer will drop misaligned portions of the request which can 653 * lead to data corruption. If LBPRZ is not set, we honor the 654 * device preference. 655 */ 656 if (sdkp->lbprz) { 657 q->limits.discard_alignment = 0; 658 q->limits.discard_granularity = logical_block_size; 659 } else { 660 q->limits.discard_alignment = sdkp->unmap_alignment * 661 logical_block_size; 662 q->limits.discard_granularity = 663 max(sdkp->physical_block_size, 664 sdkp->unmap_granularity * logical_block_size); 665 } 666 667 sdkp->provisioning_mode = mode; 668 669 switch (mode) { 670 671 case SD_LBP_DISABLE: 672 blk_queue_max_discard_sectors(q, 0); 673 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 674 return; 675 676 case SD_LBP_UNMAP: 677 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 678 (u32)SD_MAX_WS16_BLOCKS); 679 break; 680 681 case SD_LBP_WS16: 682 max_blocks = min_not_zero(sdkp->max_ws_blocks, 683 (u32)SD_MAX_WS16_BLOCKS); 684 q->limits.discard_zeroes_data = sdkp->lbprz; 685 break; 686 687 case SD_LBP_WS10: 688 max_blocks = min_not_zero(sdkp->max_ws_blocks, 689 (u32)SD_MAX_WS10_BLOCKS); 690 q->limits.discard_zeroes_data = sdkp->lbprz; 691 break; 692 693 case SD_LBP_ZERO: 694 max_blocks = min_not_zero(sdkp->max_ws_blocks, 695 (u32)SD_MAX_WS10_BLOCKS); 696 q->limits.discard_zeroes_data = 1; 697 break; 698 } 699 700 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 701 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 702 } 703 704 /** 705 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device 706 * @sdp: scsi device to operate on 707 * @rq: Request to prepare 708 * 709 * Will issue either UNMAP or WRITE SAME(16) depending on preference 710 * indicated by target device. 711 **/ 712 static int sd_setup_discard_cmnd(struct scsi_cmnd *cmd) 713 { 714 struct request *rq = cmd->request; 715 struct scsi_device *sdp = cmd->device; 716 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 717 sector_t sector = blk_rq_pos(rq); 718 unsigned int nr_sectors = blk_rq_sectors(rq); 719 unsigned int len; 720 int ret; 721 char *buf; 722 struct page *page; 723 724 sector >>= ilog2(sdp->sector_size) - 9; 725 nr_sectors >>= ilog2(sdp->sector_size) - 9; 726 727 page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 728 if (!page) 729 return BLKPREP_DEFER; 730 731 switch (sdkp->provisioning_mode) { 732 case SD_LBP_UNMAP: 733 buf = page_address(page); 734 735 cmd->cmd_len = 10; 736 cmd->cmnd[0] = UNMAP; 737 cmd->cmnd[8] = 24; 738 739 put_unaligned_be16(6 + 16, &buf[0]); 740 put_unaligned_be16(16, &buf[2]); 741 put_unaligned_be64(sector, &buf[8]); 742 put_unaligned_be32(nr_sectors, &buf[16]); 743 744 len = 24; 745 break; 746 747 case SD_LBP_WS16: 748 cmd->cmd_len = 16; 749 cmd->cmnd[0] = WRITE_SAME_16; 750 cmd->cmnd[1] = 0x8; /* UNMAP */ 751 put_unaligned_be64(sector, &cmd->cmnd[2]); 752 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 753 754 len = sdkp->device->sector_size; 755 break; 756 757 case SD_LBP_WS10: 758 case SD_LBP_ZERO: 759 cmd->cmd_len = 10; 760 cmd->cmnd[0] = WRITE_SAME; 761 if (sdkp->provisioning_mode == SD_LBP_WS10) 762 cmd->cmnd[1] = 0x8; /* UNMAP */ 763 put_unaligned_be32(sector, &cmd->cmnd[2]); 764 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 765 766 len = sdkp->device->sector_size; 767 break; 768 769 default: 770 ret = BLKPREP_INVALID; 771 goto out; 772 } 773 774 rq->timeout = SD_TIMEOUT; 775 776 cmd->transfersize = len; 777 cmd->allowed = SD_MAX_RETRIES; 778 779 rq->special_vec.bv_page = page; 780 rq->special_vec.bv_offset = 0; 781 rq->special_vec.bv_len = len; 782 783 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 784 scsi_req(rq)->resid_len = len; 785 786 ret = scsi_init_io(cmd); 787 out: 788 if (ret != BLKPREP_OK) 789 __free_page(page); 790 return ret; 791 } 792 793 static void sd_config_write_same(struct scsi_disk *sdkp) 794 { 795 struct request_queue *q = sdkp->disk->queue; 796 unsigned int logical_block_size = sdkp->device->sector_size; 797 798 if (sdkp->device->no_write_same) { 799 sdkp->max_ws_blocks = 0; 800 goto out; 801 } 802 803 /* Some devices can not handle block counts above 0xffff despite 804 * supporting WRITE SAME(16). Consequently we default to 64k 805 * blocks per I/O unless the device explicitly advertises a 806 * bigger limit. 807 */ 808 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 809 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 810 (u32)SD_MAX_WS16_BLOCKS); 811 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 812 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 813 (u32)SD_MAX_WS10_BLOCKS); 814 else { 815 sdkp->device->no_write_same = 1; 816 sdkp->max_ws_blocks = 0; 817 } 818 819 out: 820 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 821 (logical_block_size >> 9)); 822 } 823 824 /** 825 * sd_setup_write_same_cmnd - write the same data to multiple blocks 826 * @cmd: command to prepare 827 * 828 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on 829 * preference indicated by target device. 830 **/ 831 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 832 { 833 struct request *rq = cmd->request; 834 struct scsi_device *sdp = cmd->device; 835 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 836 struct bio *bio = rq->bio; 837 sector_t sector = blk_rq_pos(rq); 838 unsigned int nr_sectors = blk_rq_sectors(rq); 839 unsigned int nr_bytes = blk_rq_bytes(rq); 840 int ret; 841 842 if (sdkp->device->no_write_same) 843 return BLKPREP_INVALID; 844 845 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 846 847 if (sd_is_zoned(sdkp)) { 848 ret = sd_zbc_setup_write_cmnd(cmd); 849 if (ret != BLKPREP_OK) 850 return ret; 851 } 852 853 sector >>= ilog2(sdp->sector_size) - 9; 854 nr_sectors >>= ilog2(sdp->sector_size) - 9; 855 856 rq->timeout = SD_WRITE_SAME_TIMEOUT; 857 858 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) { 859 cmd->cmd_len = 16; 860 cmd->cmnd[0] = WRITE_SAME_16; 861 put_unaligned_be64(sector, &cmd->cmnd[2]); 862 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 863 } else { 864 cmd->cmd_len = 10; 865 cmd->cmnd[0] = WRITE_SAME; 866 put_unaligned_be32(sector, &cmd->cmnd[2]); 867 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 868 } 869 870 cmd->transfersize = sdp->sector_size; 871 cmd->allowed = SD_MAX_RETRIES; 872 873 /* 874 * For WRITE SAME the data transferred via the DATA OUT buffer is 875 * different from the amount of data actually written to the target. 876 * 877 * We set up __data_len to the amount of data transferred via the 878 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 879 * to transfer a single sector of data first, but then reset it to 880 * the amount of data to be written right after so that the I/O path 881 * knows how much to actually write. 882 */ 883 rq->__data_len = sdp->sector_size; 884 ret = scsi_init_io(cmd); 885 rq->__data_len = nr_bytes; 886 return ret; 887 } 888 889 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 890 { 891 struct request *rq = cmd->request; 892 893 /* flush requests don't perform I/O, zero the S/G table */ 894 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 895 896 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 897 cmd->cmd_len = 10; 898 cmd->transfersize = 0; 899 cmd->allowed = SD_MAX_RETRIES; 900 901 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 902 return BLKPREP_OK; 903 } 904 905 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt) 906 { 907 struct request *rq = SCpnt->request; 908 struct scsi_device *sdp = SCpnt->device; 909 struct gendisk *disk = rq->rq_disk; 910 struct scsi_disk *sdkp = scsi_disk(disk); 911 sector_t block = blk_rq_pos(rq); 912 sector_t threshold; 913 unsigned int this_count = blk_rq_sectors(rq); 914 unsigned int dif, dix; 915 bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE; 916 int ret; 917 unsigned char protect; 918 919 if (zoned_write) { 920 ret = sd_zbc_setup_write_cmnd(SCpnt); 921 if (ret != BLKPREP_OK) 922 return ret; 923 } 924 925 ret = scsi_init_io(SCpnt); 926 if (ret != BLKPREP_OK) 927 goto out; 928 SCpnt = rq->special; 929 930 /* from here on until we're complete, any goto out 931 * is used for a killable error condition */ 932 ret = BLKPREP_KILL; 933 934 SCSI_LOG_HLQUEUE(1, 935 scmd_printk(KERN_INFO, SCpnt, 936 "%s: block=%llu, count=%d\n", 937 __func__, (unsigned long long)block, this_count)); 938 939 if (!sdp || !scsi_device_online(sdp) || 940 block + blk_rq_sectors(rq) > get_capacity(disk)) { 941 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 942 "Finishing %u sectors\n", 943 blk_rq_sectors(rq))); 944 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 945 "Retry with 0x%p\n", SCpnt)); 946 goto out; 947 } 948 949 if (sdp->changed) { 950 /* 951 * quietly refuse to do anything to a changed disc until 952 * the changed bit has been reset 953 */ 954 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */ 955 goto out; 956 } 957 958 /* 959 * Some SD card readers can't handle multi-sector accesses which touch 960 * the last one or two hardware sectors. Split accesses as needed. 961 */ 962 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS * 963 (sdp->sector_size / 512); 964 965 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) { 966 if (block < threshold) { 967 /* Access up to the threshold but not beyond */ 968 this_count = threshold - block; 969 } else { 970 /* Access only a single hardware sector */ 971 this_count = sdp->sector_size / 512; 972 } 973 } 974 975 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", 976 (unsigned long long)block)); 977 978 /* 979 * If we have a 1K hardware sectorsize, prevent access to single 980 * 512 byte sectors. In theory we could handle this - in fact 981 * the scsi cdrom driver must be able to handle this because 982 * we typically use 1K blocksizes, and cdroms typically have 983 * 2K hardware sectorsizes. Of course, things are simpler 984 * with the cdrom, since it is read-only. For performance 985 * reasons, the filesystems should be able to handle this 986 * and not force the scsi disk driver to use bounce buffers 987 * for this. 988 */ 989 if (sdp->sector_size == 1024) { 990 if ((block & 1) || (blk_rq_sectors(rq) & 1)) { 991 scmd_printk(KERN_ERR, SCpnt, 992 "Bad block number requested\n"); 993 goto out; 994 } else { 995 block = block >> 1; 996 this_count = this_count >> 1; 997 } 998 } 999 if (sdp->sector_size == 2048) { 1000 if ((block & 3) || (blk_rq_sectors(rq) & 3)) { 1001 scmd_printk(KERN_ERR, SCpnt, 1002 "Bad block number requested\n"); 1003 goto out; 1004 } else { 1005 block = block >> 2; 1006 this_count = this_count >> 2; 1007 } 1008 } 1009 if (sdp->sector_size == 4096) { 1010 if ((block & 7) || (blk_rq_sectors(rq) & 7)) { 1011 scmd_printk(KERN_ERR, SCpnt, 1012 "Bad block number requested\n"); 1013 goto out; 1014 } else { 1015 block = block >> 3; 1016 this_count = this_count >> 3; 1017 } 1018 } 1019 if (rq_data_dir(rq) == WRITE) { 1020 SCpnt->cmnd[0] = WRITE_6; 1021 1022 if (blk_integrity_rq(rq)) 1023 sd_dif_prepare(SCpnt); 1024 1025 } else if (rq_data_dir(rq) == READ) { 1026 SCpnt->cmnd[0] = READ_6; 1027 } else { 1028 scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq)); 1029 goto out; 1030 } 1031 1032 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1033 "%s %d/%u 512 byte blocks.\n", 1034 (rq_data_dir(rq) == WRITE) ? 1035 "writing" : "reading", this_count, 1036 blk_rq_sectors(rq))); 1037 1038 dix = scsi_prot_sg_count(SCpnt); 1039 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type); 1040 1041 if (dif || dix) 1042 protect = sd_setup_protect_cmnd(SCpnt, dix, dif); 1043 else 1044 protect = 0; 1045 1046 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1047 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1048 1049 if (unlikely(SCpnt->cmnd == NULL)) { 1050 ret = BLKPREP_DEFER; 1051 goto out; 1052 } 1053 1054 SCpnt->cmd_len = SD_EXT_CDB_SIZE; 1055 memset(SCpnt->cmnd, 0, SCpnt->cmd_len); 1056 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD; 1057 SCpnt->cmnd[7] = 0x18; 1058 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32; 1059 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1060 1061 /* LBA */ 1062 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1063 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1064 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1065 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1066 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff; 1067 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff; 1068 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff; 1069 SCpnt->cmnd[19] = (unsigned char) block & 0xff; 1070 1071 /* Expected Indirect LBA */ 1072 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff; 1073 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff; 1074 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff; 1075 SCpnt->cmnd[23] = (unsigned char) block & 0xff; 1076 1077 /* Transfer length */ 1078 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff; 1079 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff; 1080 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff; 1081 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff; 1082 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) { 1083 SCpnt->cmnd[0] += READ_16 - READ_6; 1084 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1085 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1086 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1087 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1088 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1089 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; 1090 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; 1091 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; 1092 SCpnt->cmnd[9] = (unsigned char) block & 0xff; 1093 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; 1094 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; 1095 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; 1096 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; 1097 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; 1098 } else if ((this_count > 0xff) || (block > 0x1fffff) || 1099 scsi_device_protection(SCpnt->device) || 1100 SCpnt->device->use_10_for_rw) { 1101 SCpnt->cmnd[0] += READ_10 - READ_6; 1102 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1103 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; 1104 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; 1105 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; 1106 SCpnt->cmnd[5] = (unsigned char) block & 0xff; 1107 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; 1108 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; 1109 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; 1110 } else { 1111 if (unlikely(rq->cmd_flags & REQ_FUA)) { 1112 /* 1113 * This happens only if this drive failed 1114 * 10byte rw command with ILLEGAL_REQUEST 1115 * during operation and thus turned off 1116 * use_10_for_rw. 1117 */ 1118 scmd_printk(KERN_ERR, SCpnt, 1119 "FUA write on READ/WRITE(6) drive\n"); 1120 goto out; 1121 } 1122 1123 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); 1124 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); 1125 SCpnt->cmnd[3] = (unsigned char) block & 0xff; 1126 SCpnt->cmnd[4] = (unsigned char) this_count; 1127 SCpnt->cmnd[5] = 0; 1128 } 1129 SCpnt->sdb.length = this_count * sdp->sector_size; 1130 1131 /* 1132 * We shouldn't disconnect in the middle of a sector, so with a dumb 1133 * host adapter, it's safe to assume that we can at least transfer 1134 * this many bytes between each connect / disconnect. 1135 */ 1136 SCpnt->transfersize = sdp->sector_size; 1137 SCpnt->underflow = this_count << 9; 1138 SCpnt->allowed = SD_MAX_RETRIES; 1139 1140 /* 1141 * This indicates that the command is ready from our end to be 1142 * queued. 1143 */ 1144 ret = BLKPREP_OK; 1145 out: 1146 if (zoned_write && ret != BLKPREP_OK) 1147 sd_zbc_cancel_write_cmnd(SCpnt); 1148 1149 return ret; 1150 } 1151 1152 static int sd_init_command(struct scsi_cmnd *cmd) 1153 { 1154 struct request *rq = cmd->request; 1155 1156 switch (req_op(rq)) { 1157 case REQ_OP_DISCARD: 1158 return sd_setup_discard_cmnd(cmd); 1159 case REQ_OP_WRITE_SAME: 1160 return sd_setup_write_same_cmnd(cmd); 1161 case REQ_OP_FLUSH: 1162 return sd_setup_flush_cmnd(cmd); 1163 case REQ_OP_READ: 1164 case REQ_OP_WRITE: 1165 return sd_setup_read_write_cmnd(cmd); 1166 case REQ_OP_ZONE_REPORT: 1167 return sd_zbc_setup_report_cmnd(cmd); 1168 case REQ_OP_ZONE_RESET: 1169 return sd_zbc_setup_reset_cmnd(cmd); 1170 default: 1171 BUG(); 1172 } 1173 } 1174 1175 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1176 { 1177 struct request *rq = SCpnt->request; 1178 1179 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1180 __free_page(rq->special_vec.bv_page); 1181 1182 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1183 mempool_free(SCpnt->cmnd, sd_cdb_pool); 1184 SCpnt->cmnd = NULL; 1185 SCpnt->cmd_len = 0; 1186 } 1187 } 1188 1189 /** 1190 * sd_open - open a scsi disk device 1191 * @inode: only i_rdev member may be used 1192 * @filp: only f_mode and f_flags may be used 1193 * 1194 * Returns 0 if successful. Returns a negated errno value in case 1195 * of error. 1196 * 1197 * Note: This can be called from a user context (e.g. fsck(1) ) 1198 * or from within the kernel (e.g. as a result of a mount(1) ). 1199 * In the latter case @inode and @filp carry an abridged amount 1200 * of information as noted above. 1201 * 1202 * Locking: called with bdev->bd_mutex held. 1203 **/ 1204 static int sd_open(struct block_device *bdev, fmode_t mode) 1205 { 1206 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1207 struct scsi_device *sdev; 1208 int retval; 1209 1210 if (!sdkp) 1211 return -ENXIO; 1212 1213 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1214 1215 sdev = sdkp->device; 1216 1217 /* 1218 * If the device is in error recovery, wait until it is done. 1219 * If the device is offline, then disallow any access to it. 1220 */ 1221 retval = -ENXIO; 1222 if (!scsi_block_when_processing_errors(sdev)) 1223 goto error_out; 1224 1225 if (sdev->removable || sdkp->write_prot) 1226 check_disk_change(bdev); 1227 1228 /* 1229 * If the drive is empty, just let the open fail. 1230 */ 1231 retval = -ENOMEDIUM; 1232 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1233 goto error_out; 1234 1235 /* 1236 * If the device has the write protect tab set, have the open fail 1237 * if the user expects to be able to write to the thing. 1238 */ 1239 retval = -EROFS; 1240 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1241 goto error_out; 1242 1243 /* 1244 * It is possible that the disk changing stuff resulted in 1245 * the device being taken offline. If this is the case, 1246 * report this to the user, and don't pretend that the 1247 * open actually succeeded. 1248 */ 1249 retval = -ENXIO; 1250 if (!scsi_device_online(sdev)) 1251 goto error_out; 1252 1253 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1254 if (scsi_block_when_processing_errors(sdev)) 1255 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1256 } 1257 1258 return 0; 1259 1260 error_out: 1261 scsi_disk_put(sdkp); 1262 return retval; 1263 } 1264 1265 /** 1266 * sd_release - invoked when the (last) close(2) is called on this 1267 * scsi disk. 1268 * @inode: only i_rdev member may be used 1269 * @filp: only f_mode and f_flags may be used 1270 * 1271 * Returns 0. 1272 * 1273 * Note: may block (uninterruptible) if error recovery is underway 1274 * on this disk. 1275 * 1276 * Locking: called with bdev->bd_mutex held. 1277 **/ 1278 static void sd_release(struct gendisk *disk, fmode_t mode) 1279 { 1280 struct scsi_disk *sdkp = scsi_disk(disk); 1281 struct scsi_device *sdev = sdkp->device; 1282 1283 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1284 1285 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1286 if (scsi_block_when_processing_errors(sdev)) 1287 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1288 } 1289 1290 /* 1291 * XXX and what if there are packets in flight and this close() 1292 * XXX is followed by a "rmmod sd_mod"? 1293 */ 1294 1295 scsi_disk_put(sdkp); 1296 } 1297 1298 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1299 { 1300 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1301 struct scsi_device *sdp = sdkp->device; 1302 struct Scsi_Host *host = sdp->host; 1303 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1304 int diskinfo[4]; 1305 1306 /* default to most commonly used values */ 1307 diskinfo[0] = 0x40; /* 1 << 6 */ 1308 diskinfo[1] = 0x20; /* 1 << 5 */ 1309 diskinfo[2] = capacity >> 11; 1310 1311 /* override with calculated, extended default, or driver values */ 1312 if (host->hostt->bios_param) 1313 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1314 else 1315 scsicam_bios_param(bdev, capacity, diskinfo); 1316 1317 geo->heads = diskinfo[0]; 1318 geo->sectors = diskinfo[1]; 1319 geo->cylinders = diskinfo[2]; 1320 return 0; 1321 } 1322 1323 /** 1324 * sd_ioctl - process an ioctl 1325 * @inode: only i_rdev/i_bdev members may be used 1326 * @filp: only f_mode and f_flags may be used 1327 * @cmd: ioctl command number 1328 * @arg: this is third argument given to ioctl(2) system call. 1329 * Often contains a pointer. 1330 * 1331 * Returns 0 if successful (some ioctls return positive numbers on 1332 * success as well). Returns a negated errno value in case of error. 1333 * 1334 * Note: most ioctls are forward onto the block subsystem or further 1335 * down in the scsi subsystem. 1336 **/ 1337 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1338 unsigned int cmd, unsigned long arg) 1339 { 1340 struct gendisk *disk = bdev->bd_disk; 1341 struct scsi_disk *sdkp = scsi_disk(disk); 1342 struct scsi_device *sdp = sdkp->device; 1343 void __user *p = (void __user *)arg; 1344 int error; 1345 1346 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1347 "cmd=0x%x\n", disk->disk_name, cmd)); 1348 1349 error = scsi_verify_blk_ioctl(bdev, cmd); 1350 if (error < 0) 1351 return error; 1352 1353 /* 1354 * If we are in the middle of error recovery, don't let anyone 1355 * else try and use this device. Also, if error recovery fails, it 1356 * may try and take the device offline, in which case all further 1357 * access to the device is prohibited. 1358 */ 1359 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1360 (mode & FMODE_NDELAY) != 0); 1361 if (error) 1362 goto out; 1363 1364 /* 1365 * Send SCSI addressing ioctls directly to mid level, send other 1366 * ioctls to block level and then onto mid level if they can't be 1367 * resolved. 1368 */ 1369 switch (cmd) { 1370 case SCSI_IOCTL_GET_IDLUN: 1371 case SCSI_IOCTL_GET_BUS_NUMBER: 1372 error = scsi_ioctl(sdp, cmd, p); 1373 break; 1374 default: 1375 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1376 if (error != -ENOTTY) 1377 break; 1378 error = scsi_ioctl(sdp, cmd, p); 1379 break; 1380 } 1381 out: 1382 return error; 1383 } 1384 1385 static void set_media_not_present(struct scsi_disk *sdkp) 1386 { 1387 if (sdkp->media_present) 1388 sdkp->device->changed = 1; 1389 1390 if (sdkp->device->removable) { 1391 sdkp->media_present = 0; 1392 sdkp->capacity = 0; 1393 } 1394 } 1395 1396 static int media_not_present(struct scsi_disk *sdkp, 1397 struct scsi_sense_hdr *sshdr) 1398 { 1399 if (!scsi_sense_valid(sshdr)) 1400 return 0; 1401 1402 /* not invoked for commands that could return deferred errors */ 1403 switch (sshdr->sense_key) { 1404 case UNIT_ATTENTION: 1405 case NOT_READY: 1406 /* medium not present */ 1407 if (sshdr->asc == 0x3A) { 1408 set_media_not_present(sdkp); 1409 return 1; 1410 } 1411 } 1412 return 0; 1413 } 1414 1415 /** 1416 * sd_check_events - check media events 1417 * @disk: kernel device descriptor 1418 * @clearing: disk events currently being cleared 1419 * 1420 * Returns mask of DISK_EVENT_*. 1421 * 1422 * Note: this function is invoked from the block subsystem. 1423 **/ 1424 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1425 { 1426 struct scsi_disk *sdkp = scsi_disk_get(disk); 1427 struct scsi_device *sdp; 1428 int retval; 1429 1430 if (!sdkp) 1431 return 0; 1432 1433 sdp = sdkp->device; 1434 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1435 1436 /* 1437 * If the device is offline, don't send any commands - just pretend as 1438 * if the command failed. If the device ever comes back online, we 1439 * can deal with it then. It is only because of unrecoverable errors 1440 * that we would ever take a device offline in the first place. 1441 */ 1442 if (!scsi_device_online(sdp)) { 1443 set_media_not_present(sdkp); 1444 goto out; 1445 } 1446 1447 /* 1448 * Using TEST_UNIT_READY enables differentiation between drive with 1449 * no cartridge loaded - NOT READY, drive with changed cartridge - 1450 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1451 * 1452 * Drives that auto spin down. eg iomega jaz 1G, will be started 1453 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1454 * sd_revalidate() is called. 1455 */ 1456 if (scsi_block_when_processing_errors(sdp)) { 1457 struct scsi_sense_hdr sshdr = { 0, }; 1458 1459 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1460 &sshdr); 1461 1462 /* failed to execute TUR, assume media not present */ 1463 if (host_byte(retval)) { 1464 set_media_not_present(sdkp); 1465 goto out; 1466 } 1467 1468 if (media_not_present(sdkp, &sshdr)) 1469 goto out; 1470 } 1471 1472 /* 1473 * For removable scsi disk we have to recognise the presence 1474 * of a disk in the drive. 1475 */ 1476 if (!sdkp->media_present) 1477 sdp->changed = 1; 1478 sdkp->media_present = 1; 1479 out: 1480 /* 1481 * sdp->changed is set under the following conditions: 1482 * 1483 * Medium present state has changed in either direction. 1484 * Device has indicated UNIT_ATTENTION. 1485 */ 1486 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1487 sdp->changed = 0; 1488 scsi_disk_put(sdkp); 1489 return retval; 1490 } 1491 1492 static int sd_sync_cache(struct scsi_disk *sdkp) 1493 { 1494 int retries, res; 1495 struct scsi_device *sdp = sdkp->device; 1496 const int timeout = sdp->request_queue->rq_timeout 1497 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1498 struct scsi_sense_hdr sshdr; 1499 1500 if (!scsi_device_online(sdp)) 1501 return -ENODEV; 1502 1503 for (retries = 3; retries > 0; --retries) { 1504 unsigned char cmd[10] = { 0 }; 1505 1506 cmd[0] = SYNCHRONIZE_CACHE; 1507 /* 1508 * Leave the rest of the command zero to indicate 1509 * flush everything. 1510 */ 1511 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 1512 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL); 1513 if (res == 0) 1514 break; 1515 } 1516 1517 if (res) { 1518 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1519 1520 if (driver_byte(res) & DRIVER_SENSE) 1521 sd_print_sense_hdr(sdkp, &sshdr); 1522 /* we need to evaluate the error return */ 1523 if (scsi_sense_valid(&sshdr) && 1524 (sshdr.asc == 0x3a || /* medium not present */ 1525 sshdr.asc == 0x20)) /* invalid command */ 1526 /* this is no error here */ 1527 return 0; 1528 1529 switch (host_byte(res)) { 1530 /* ignore errors due to racing a disconnection */ 1531 case DID_BAD_TARGET: 1532 case DID_NO_CONNECT: 1533 return 0; 1534 /* signal the upper layer it might try again */ 1535 case DID_BUS_BUSY: 1536 case DID_IMM_RETRY: 1537 case DID_REQUEUE: 1538 case DID_SOFT_ERROR: 1539 return -EBUSY; 1540 default: 1541 return -EIO; 1542 } 1543 } 1544 return 0; 1545 } 1546 1547 static void sd_rescan(struct device *dev) 1548 { 1549 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1550 1551 revalidate_disk(sdkp->disk); 1552 } 1553 1554 1555 #ifdef CONFIG_COMPAT 1556 /* 1557 * This gets directly called from VFS. When the ioctl 1558 * is not recognized we go back to the other translation paths. 1559 */ 1560 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1561 unsigned int cmd, unsigned long arg) 1562 { 1563 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1564 int error; 1565 1566 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1567 (mode & FMODE_NDELAY) != 0); 1568 if (error) 1569 return error; 1570 1571 /* 1572 * Let the static ioctl translation table take care of it. 1573 */ 1574 if (!sdev->host->hostt->compat_ioctl) 1575 return -ENOIOCTLCMD; 1576 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1577 } 1578 #endif 1579 1580 static char sd_pr_type(enum pr_type type) 1581 { 1582 switch (type) { 1583 case PR_WRITE_EXCLUSIVE: 1584 return 0x01; 1585 case PR_EXCLUSIVE_ACCESS: 1586 return 0x03; 1587 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1588 return 0x05; 1589 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1590 return 0x06; 1591 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1592 return 0x07; 1593 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1594 return 0x08; 1595 default: 1596 return 0; 1597 } 1598 }; 1599 1600 static int sd_pr_command(struct block_device *bdev, u8 sa, 1601 u64 key, u64 sa_key, u8 type, u8 flags) 1602 { 1603 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1604 struct scsi_sense_hdr sshdr; 1605 int result; 1606 u8 cmd[16] = { 0, }; 1607 u8 data[24] = { 0, }; 1608 1609 cmd[0] = PERSISTENT_RESERVE_OUT; 1610 cmd[1] = sa; 1611 cmd[2] = type; 1612 put_unaligned_be32(sizeof(data), &cmd[5]); 1613 1614 put_unaligned_be64(key, &data[0]); 1615 put_unaligned_be64(sa_key, &data[8]); 1616 data[20] = flags; 1617 1618 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1619 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1620 1621 if ((driver_byte(result) & DRIVER_SENSE) && 1622 (scsi_sense_valid(&sshdr))) { 1623 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1624 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1625 } 1626 1627 return result; 1628 } 1629 1630 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1631 u32 flags) 1632 { 1633 if (flags & ~PR_FL_IGNORE_KEY) 1634 return -EOPNOTSUPP; 1635 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1636 old_key, new_key, 0, 1637 (1 << 0) /* APTPL */); 1638 } 1639 1640 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1641 u32 flags) 1642 { 1643 if (flags) 1644 return -EOPNOTSUPP; 1645 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1646 } 1647 1648 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1649 { 1650 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1651 } 1652 1653 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1654 enum pr_type type, bool abort) 1655 { 1656 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1657 sd_pr_type(type), 0); 1658 } 1659 1660 static int sd_pr_clear(struct block_device *bdev, u64 key) 1661 { 1662 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1663 } 1664 1665 static const struct pr_ops sd_pr_ops = { 1666 .pr_register = sd_pr_register, 1667 .pr_reserve = sd_pr_reserve, 1668 .pr_release = sd_pr_release, 1669 .pr_preempt = sd_pr_preempt, 1670 .pr_clear = sd_pr_clear, 1671 }; 1672 1673 static const struct block_device_operations sd_fops = { 1674 .owner = THIS_MODULE, 1675 .open = sd_open, 1676 .release = sd_release, 1677 .ioctl = sd_ioctl, 1678 .getgeo = sd_getgeo, 1679 #ifdef CONFIG_COMPAT 1680 .compat_ioctl = sd_compat_ioctl, 1681 #endif 1682 .check_events = sd_check_events, 1683 .revalidate_disk = sd_revalidate_disk, 1684 .unlock_native_capacity = sd_unlock_native_capacity, 1685 .pr_ops = &sd_pr_ops, 1686 }; 1687 1688 /** 1689 * sd_eh_action - error handling callback 1690 * @scmd: sd-issued command that has failed 1691 * @eh_disp: The recovery disposition suggested by the midlayer 1692 * 1693 * This function is called by the SCSI midlayer upon completion of an 1694 * error test command (currently TEST UNIT READY). The result of sending 1695 * the eh command is passed in eh_disp. We're looking for devices that 1696 * fail medium access commands but are OK with non access commands like 1697 * test unit ready (so wrongly see the device as having a successful 1698 * recovery) 1699 **/ 1700 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1701 { 1702 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1703 1704 if (!scsi_device_online(scmd->device) || 1705 !scsi_medium_access_command(scmd) || 1706 host_byte(scmd->result) != DID_TIME_OUT || 1707 eh_disp != SUCCESS) 1708 return eh_disp; 1709 1710 /* 1711 * The device has timed out executing a medium access command. 1712 * However, the TEST UNIT READY command sent during error 1713 * handling completed successfully. Either the device is in the 1714 * process of recovering or has it suffered an internal failure 1715 * that prevents access to the storage medium. 1716 */ 1717 sdkp->medium_access_timed_out++; 1718 1719 /* 1720 * If the device keeps failing read/write commands but TEST UNIT 1721 * READY always completes successfully we assume that medium 1722 * access is no longer possible and take the device offline. 1723 */ 1724 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1725 scmd_printk(KERN_ERR, scmd, 1726 "Medium access timeout failure. Offlining disk!\n"); 1727 scsi_device_set_state(scmd->device, SDEV_OFFLINE); 1728 1729 return FAILED; 1730 } 1731 1732 return eh_disp; 1733 } 1734 1735 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1736 { 1737 u64 start_lba = blk_rq_pos(scmd->request); 1738 u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512); 1739 u64 factor = scmd->device->sector_size / 512; 1740 u64 bad_lba; 1741 int info_valid; 1742 /* 1743 * resid is optional but mostly filled in. When it's unused, 1744 * its value is zero, so we assume the whole buffer transferred 1745 */ 1746 unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1747 unsigned int good_bytes; 1748 1749 info_valid = scsi_get_sense_info_fld(scmd->sense_buffer, 1750 SCSI_SENSE_BUFFERSIZE, 1751 &bad_lba); 1752 if (!info_valid) 1753 return 0; 1754 1755 if (scsi_bufflen(scmd) <= scmd->device->sector_size) 1756 return 0; 1757 1758 /* be careful ... don't want any overflows */ 1759 do_div(start_lba, factor); 1760 do_div(end_lba, factor); 1761 1762 /* The bad lba was reported incorrectly, we have no idea where 1763 * the error is. 1764 */ 1765 if (bad_lba < start_lba || bad_lba >= end_lba) 1766 return 0; 1767 1768 /* This computation should always be done in terms of 1769 * the resolution of the device's medium. 1770 */ 1771 good_bytes = (bad_lba - start_lba) * scmd->device->sector_size; 1772 return min(good_bytes, transferred); 1773 } 1774 1775 /** 1776 * sd_done - bottom half handler: called when the lower level 1777 * driver has completed (successfully or otherwise) a scsi command. 1778 * @SCpnt: mid-level's per command structure. 1779 * 1780 * Note: potentially run from within an ISR. Must not block. 1781 **/ 1782 static int sd_done(struct scsi_cmnd *SCpnt) 1783 { 1784 int result = SCpnt->result; 1785 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1786 struct scsi_sense_hdr sshdr; 1787 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1788 struct request *req = SCpnt->request; 1789 int sense_valid = 0; 1790 int sense_deferred = 0; 1791 unsigned char op = SCpnt->cmnd[0]; 1792 unsigned char unmap = SCpnt->cmnd[1] & 8; 1793 1794 switch (req_op(req)) { 1795 case REQ_OP_DISCARD: 1796 case REQ_OP_WRITE_SAME: 1797 case REQ_OP_ZONE_RESET: 1798 if (!result) { 1799 good_bytes = blk_rq_bytes(req); 1800 scsi_set_resid(SCpnt, 0); 1801 } else { 1802 good_bytes = 0; 1803 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1804 } 1805 break; 1806 case REQ_OP_ZONE_REPORT: 1807 if (!result) { 1808 good_bytes = scsi_bufflen(SCpnt) 1809 - scsi_get_resid(SCpnt); 1810 scsi_set_resid(SCpnt, 0); 1811 } else { 1812 good_bytes = 0; 1813 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1814 } 1815 break; 1816 } 1817 1818 if (result) { 1819 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1820 if (sense_valid) 1821 sense_deferred = scsi_sense_is_deferred(&sshdr); 1822 } 1823 sdkp->medium_access_timed_out = 0; 1824 1825 if (driver_byte(result) != DRIVER_SENSE && 1826 (!sense_valid || sense_deferred)) 1827 goto out; 1828 1829 switch (sshdr.sense_key) { 1830 case HARDWARE_ERROR: 1831 case MEDIUM_ERROR: 1832 good_bytes = sd_completed_bytes(SCpnt); 1833 break; 1834 case RECOVERED_ERROR: 1835 good_bytes = scsi_bufflen(SCpnt); 1836 break; 1837 case NO_SENSE: 1838 /* This indicates a false check condition, so ignore it. An 1839 * unknown amount of data was transferred so treat it as an 1840 * error. 1841 */ 1842 SCpnt->result = 0; 1843 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1844 break; 1845 case ABORTED_COMMAND: 1846 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 1847 good_bytes = sd_completed_bytes(SCpnt); 1848 break; 1849 case ILLEGAL_REQUEST: 1850 if (sshdr.asc == 0x10) /* DIX: Host detected corruption */ 1851 good_bytes = sd_completed_bytes(SCpnt); 1852 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 1853 if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 1854 switch (op) { 1855 case UNMAP: 1856 sd_config_discard(sdkp, SD_LBP_DISABLE); 1857 break; 1858 case WRITE_SAME_16: 1859 case WRITE_SAME: 1860 if (unmap) 1861 sd_config_discard(sdkp, SD_LBP_DISABLE); 1862 else { 1863 sdkp->device->no_write_same = 1; 1864 sd_config_write_same(sdkp); 1865 1866 good_bytes = 0; 1867 req->__data_len = blk_rq_bytes(req); 1868 req->rq_flags |= RQF_QUIET; 1869 } 1870 } 1871 } 1872 break; 1873 default: 1874 break; 1875 } 1876 1877 out: 1878 if (sd_is_zoned(sdkp)) 1879 sd_zbc_complete(SCpnt, good_bytes, &sshdr); 1880 1881 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 1882 "sd_done: completed %d of %d bytes\n", 1883 good_bytes, scsi_bufflen(SCpnt))); 1884 1885 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt)) 1886 sd_dif_complete(SCpnt, good_bytes); 1887 1888 return good_bytes; 1889 } 1890 1891 /* 1892 * spinup disk - called only in sd_revalidate_disk() 1893 */ 1894 static void 1895 sd_spinup_disk(struct scsi_disk *sdkp) 1896 { 1897 unsigned char cmd[10]; 1898 unsigned long spintime_expire = 0; 1899 int retries, spintime; 1900 unsigned int the_result; 1901 struct scsi_sense_hdr sshdr; 1902 int sense_valid = 0; 1903 1904 spintime = 0; 1905 1906 /* Spin up drives, as required. Only do this at boot time */ 1907 /* Spinup needs to be done for module loads too. */ 1908 do { 1909 retries = 0; 1910 1911 do { 1912 cmd[0] = TEST_UNIT_READY; 1913 memset((void *) &cmd[1], 0, 9); 1914 1915 the_result = scsi_execute_req(sdkp->device, cmd, 1916 DMA_NONE, NULL, 0, 1917 &sshdr, SD_TIMEOUT, 1918 SD_MAX_RETRIES, NULL); 1919 1920 /* 1921 * If the drive has indicated to us that it 1922 * doesn't have any media in it, don't bother 1923 * with any more polling. 1924 */ 1925 if (media_not_present(sdkp, &sshdr)) 1926 return; 1927 1928 if (the_result) 1929 sense_valid = scsi_sense_valid(&sshdr); 1930 retries++; 1931 } while (retries < 3 && 1932 (!scsi_status_is_good(the_result) || 1933 ((driver_byte(the_result) & DRIVER_SENSE) && 1934 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 1935 1936 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) { 1937 /* no sense, TUR either succeeded or failed 1938 * with a status error */ 1939 if(!spintime && !scsi_status_is_good(the_result)) { 1940 sd_print_result(sdkp, "Test Unit Ready failed", 1941 the_result); 1942 } 1943 break; 1944 } 1945 1946 /* 1947 * The device does not want the automatic start to be issued. 1948 */ 1949 if (sdkp->device->no_start_on_add) 1950 break; 1951 1952 if (sense_valid && sshdr.sense_key == NOT_READY) { 1953 if (sshdr.asc == 4 && sshdr.ascq == 3) 1954 break; /* manual intervention required */ 1955 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 1956 break; /* standby */ 1957 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 1958 break; /* unavailable */ 1959 /* 1960 * Issue command to spin up drive when not ready 1961 */ 1962 if (!spintime) { 1963 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 1964 cmd[0] = START_STOP; 1965 cmd[1] = 1; /* Return immediately */ 1966 memset((void *) &cmd[2], 0, 8); 1967 cmd[4] = 1; /* Start spin cycle */ 1968 if (sdkp->device->start_stop_pwr_cond) 1969 cmd[4] |= 1 << 4; 1970 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 1971 NULL, 0, &sshdr, 1972 SD_TIMEOUT, SD_MAX_RETRIES, 1973 NULL); 1974 spintime_expire = jiffies + 100 * HZ; 1975 spintime = 1; 1976 } 1977 /* Wait 1 second for next try */ 1978 msleep(1000); 1979 printk("."); 1980 1981 /* 1982 * Wait for USB flash devices with slow firmware. 1983 * Yes, this sense key/ASC combination shouldn't 1984 * occur here. It's characteristic of these devices. 1985 */ 1986 } else if (sense_valid && 1987 sshdr.sense_key == UNIT_ATTENTION && 1988 sshdr.asc == 0x28) { 1989 if (!spintime) { 1990 spintime_expire = jiffies + 5 * HZ; 1991 spintime = 1; 1992 } 1993 /* Wait 1 second for next try */ 1994 msleep(1000); 1995 } else { 1996 /* we don't understand the sense code, so it's 1997 * probably pointless to loop */ 1998 if(!spintime) { 1999 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2000 sd_print_sense_hdr(sdkp, &sshdr); 2001 } 2002 break; 2003 } 2004 2005 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2006 2007 if (spintime) { 2008 if (scsi_status_is_good(the_result)) 2009 printk("ready\n"); 2010 else 2011 printk("not responding...\n"); 2012 } 2013 } 2014 2015 /* 2016 * Determine whether disk supports Data Integrity Field. 2017 */ 2018 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2019 { 2020 struct scsi_device *sdp = sdkp->device; 2021 u8 type; 2022 int ret = 0; 2023 2024 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 2025 return ret; 2026 2027 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2028 2029 if (type > T10_PI_TYPE3_PROTECTION) 2030 ret = -ENODEV; 2031 else if (scsi_host_dif_capable(sdp->host, type)) 2032 ret = 1; 2033 2034 if (sdkp->first_scan || type != sdkp->protection_type) 2035 switch (ret) { 2036 case -ENODEV: 2037 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2038 " protection type %u. Disabling disk!\n", 2039 type); 2040 break; 2041 case 1: 2042 sd_printk(KERN_NOTICE, sdkp, 2043 "Enabling DIF Type %u protection\n", type); 2044 break; 2045 case 0: 2046 sd_printk(KERN_NOTICE, sdkp, 2047 "Disabling DIF Type %u protection\n", type); 2048 break; 2049 } 2050 2051 sdkp->protection_type = type; 2052 2053 return ret; 2054 } 2055 2056 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2057 struct scsi_sense_hdr *sshdr, int sense_valid, 2058 int the_result) 2059 { 2060 if (driver_byte(the_result) & DRIVER_SENSE) 2061 sd_print_sense_hdr(sdkp, sshdr); 2062 else 2063 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2064 2065 /* 2066 * Set dirty bit for removable devices if not ready - 2067 * sometimes drives will not report this properly. 2068 */ 2069 if (sdp->removable && 2070 sense_valid && sshdr->sense_key == NOT_READY) 2071 set_media_not_present(sdkp); 2072 2073 /* 2074 * We used to set media_present to 0 here to indicate no media 2075 * in the drive, but some drives fail read capacity even with 2076 * media present, so we can't do that. 2077 */ 2078 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2079 } 2080 2081 #define RC16_LEN 32 2082 #if RC16_LEN > SD_BUF_SIZE 2083 #error RC16_LEN must not be more than SD_BUF_SIZE 2084 #endif 2085 2086 #define READ_CAPACITY_RETRIES_ON_RESET 10 2087 2088 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2089 unsigned char *buffer) 2090 { 2091 unsigned char cmd[16]; 2092 struct scsi_sense_hdr sshdr; 2093 int sense_valid = 0; 2094 int the_result; 2095 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2096 unsigned int alignment; 2097 unsigned long long lba; 2098 unsigned sector_size; 2099 2100 if (sdp->no_read_capacity_16) 2101 return -EINVAL; 2102 2103 do { 2104 memset(cmd, 0, 16); 2105 cmd[0] = SERVICE_ACTION_IN_16; 2106 cmd[1] = SAI_READ_CAPACITY_16; 2107 cmd[13] = RC16_LEN; 2108 memset(buffer, 0, RC16_LEN); 2109 2110 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2111 buffer, RC16_LEN, &sshdr, 2112 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2113 2114 if (media_not_present(sdkp, &sshdr)) 2115 return -ENODEV; 2116 2117 if (the_result) { 2118 sense_valid = scsi_sense_valid(&sshdr); 2119 if (sense_valid && 2120 sshdr.sense_key == ILLEGAL_REQUEST && 2121 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2122 sshdr.ascq == 0x00) 2123 /* Invalid Command Operation Code or 2124 * Invalid Field in CDB, just retry 2125 * silently with RC10 */ 2126 return -EINVAL; 2127 if (sense_valid && 2128 sshdr.sense_key == UNIT_ATTENTION && 2129 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2130 /* Device reset might occur several times, 2131 * give it one more chance */ 2132 if (--reset_retries > 0) 2133 continue; 2134 } 2135 retries--; 2136 2137 } while (the_result && retries); 2138 2139 if (the_result) { 2140 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2141 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2142 return -EINVAL; 2143 } 2144 2145 sector_size = get_unaligned_be32(&buffer[8]); 2146 lba = get_unaligned_be64(&buffer[0]); 2147 2148 if (sd_read_protection_type(sdkp, buffer) < 0) { 2149 sdkp->capacity = 0; 2150 return -ENODEV; 2151 } 2152 2153 if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) { 2154 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2155 "kernel compiled with support for large block " 2156 "devices.\n"); 2157 sdkp->capacity = 0; 2158 return -EOVERFLOW; 2159 } 2160 2161 /* Logical blocks per physical block exponent */ 2162 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2163 2164 /* RC basis */ 2165 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2166 2167 /* Lowest aligned logical block */ 2168 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2169 blk_queue_alignment_offset(sdp->request_queue, alignment); 2170 if (alignment && sdkp->first_scan) 2171 sd_printk(KERN_NOTICE, sdkp, 2172 "physical block alignment offset: %u\n", alignment); 2173 2174 if (buffer[14] & 0x80) { /* LBPME */ 2175 sdkp->lbpme = 1; 2176 2177 if (buffer[14] & 0x40) /* LBPRZ */ 2178 sdkp->lbprz = 1; 2179 2180 sd_config_discard(sdkp, SD_LBP_WS16); 2181 } 2182 2183 sdkp->capacity = lba + 1; 2184 return sector_size; 2185 } 2186 2187 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2188 unsigned char *buffer) 2189 { 2190 unsigned char cmd[16]; 2191 struct scsi_sense_hdr sshdr; 2192 int sense_valid = 0; 2193 int the_result; 2194 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2195 sector_t lba; 2196 unsigned sector_size; 2197 2198 do { 2199 cmd[0] = READ_CAPACITY; 2200 memset(&cmd[1], 0, 9); 2201 memset(buffer, 0, 8); 2202 2203 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2204 buffer, 8, &sshdr, 2205 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2206 2207 if (media_not_present(sdkp, &sshdr)) 2208 return -ENODEV; 2209 2210 if (the_result) { 2211 sense_valid = scsi_sense_valid(&sshdr); 2212 if (sense_valid && 2213 sshdr.sense_key == UNIT_ATTENTION && 2214 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2215 /* Device reset might occur several times, 2216 * give it one more chance */ 2217 if (--reset_retries > 0) 2218 continue; 2219 } 2220 retries--; 2221 2222 } while (the_result && retries); 2223 2224 if (the_result) { 2225 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2226 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2227 return -EINVAL; 2228 } 2229 2230 sector_size = get_unaligned_be32(&buffer[4]); 2231 lba = get_unaligned_be32(&buffer[0]); 2232 2233 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2234 /* Some buggy (usb cardreader) devices return an lba of 2235 0xffffffff when the want to report a size of 0 (with 2236 which they really mean no media is present) */ 2237 sdkp->capacity = 0; 2238 sdkp->physical_block_size = sector_size; 2239 return sector_size; 2240 } 2241 2242 if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) { 2243 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2244 "kernel compiled with support for large block " 2245 "devices.\n"); 2246 sdkp->capacity = 0; 2247 return -EOVERFLOW; 2248 } 2249 2250 sdkp->capacity = lba + 1; 2251 sdkp->physical_block_size = sector_size; 2252 return sector_size; 2253 } 2254 2255 static int sd_try_rc16_first(struct scsi_device *sdp) 2256 { 2257 if (sdp->host->max_cmd_len < 16) 2258 return 0; 2259 if (sdp->try_rc_10_first) 2260 return 0; 2261 if (sdp->scsi_level > SCSI_SPC_2) 2262 return 1; 2263 if (scsi_device_protection(sdp)) 2264 return 1; 2265 return 0; 2266 } 2267 2268 /* 2269 * read disk capacity 2270 */ 2271 static void 2272 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2273 { 2274 int sector_size; 2275 struct scsi_device *sdp = sdkp->device; 2276 2277 if (sd_try_rc16_first(sdp)) { 2278 sector_size = read_capacity_16(sdkp, sdp, buffer); 2279 if (sector_size == -EOVERFLOW) 2280 goto got_data; 2281 if (sector_size == -ENODEV) 2282 return; 2283 if (sector_size < 0) 2284 sector_size = read_capacity_10(sdkp, sdp, buffer); 2285 if (sector_size < 0) 2286 return; 2287 } else { 2288 sector_size = read_capacity_10(sdkp, sdp, buffer); 2289 if (sector_size == -EOVERFLOW) 2290 goto got_data; 2291 if (sector_size < 0) 2292 return; 2293 if ((sizeof(sdkp->capacity) > 4) && 2294 (sdkp->capacity > 0xffffffffULL)) { 2295 int old_sector_size = sector_size; 2296 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2297 "Trying to use READ CAPACITY(16).\n"); 2298 sector_size = read_capacity_16(sdkp, sdp, buffer); 2299 if (sector_size < 0) { 2300 sd_printk(KERN_NOTICE, sdkp, 2301 "Using 0xffffffff as device size\n"); 2302 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2303 sector_size = old_sector_size; 2304 goto got_data; 2305 } 2306 } 2307 } 2308 2309 /* Some devices are known to return the total number of blocks, 2310 * not the highest block number. Some devices have versions 2311 * which do this and others which do not. Some devices we might 2312 * suspect of doing this but we don't know for certain. 2313 * 2314 * If we know the reported capacity is wrong, decrement it. If 2315 * we can only guess, then assume the number of blocks is even 2316 * (usually true but not always) and err on the side of lowering 2317 * the capacity. 2318 */ 2319 if (sdp->fix_capacity || 2320 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2321 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2322 "from its reported value: %llu\n", 2323 (unsigned long long) sdkp->capacity); 2324 --sdkp->capacity; 2325 } 2326 2327 got_data: 2328 if (sector_size == 0) { 2329 sector_size = 512; 2330 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2331 "assuming 512.\n"); 2332 } 2333 2334 if (sector_size != 512 && 2335 sector_size != 1024 && 2336 sector_size != 2048 && 2337 sector_size != 4096) { 2338 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2339 sector_size); 2340 /* 2341 * The user might want to re-format the drive with 2342 * a supported sectorsize. Once this happens, it 2343 * would be relatively trivial to set the thing up. 2344 * For this reason, we leave the thing in the table. 2345 */ 2346 sdkp->capacity = 0; 2347 /* 2348 * set a bogus sector size so the normal read/write 2349 * logic in the block layer will eventually refuse any 2350 * request on this device without tripping over power 2351 * of two sector size assumptions 2352 */ 2353 sector_size = 512; 2354 } 2355 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2356 blk_queue_physical_block_size(sdp->request_queue, 2357 sdkp->physical_block_size); 2358 sdkp->device->sector_size = sector_size; 2359 2360 if (sdkp->capacity > 0xffffffff) 2361 sdp->use_16_for_rw = 1; 2362 2363 } 2364 2365 /* 2366 * Print disk capacity 2367 */ 2368 static void 2369 sd_print_capacity(struct scsi_disk *sdkp, 2370 sector_t old_capacity) 2371 { 2372 int sector_size = sdkp->device->sector_size; 2373 char cap_str_2[10], cap_str_10[10]; 2374 2375 string_get_size(sdkp->capacity, sector_size, 2376 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2377 string_get_size(sdkp->capacity, sector_size, 2378 STRING_UNITS_10, cap_str_10, 2379 sizeof(cap_str_10)); 2380 2381 if (sdkp->first_scan || old_capacity != sdkp->capacity) { 2382 sd_printk(KERN_NOTICE, sdkp, 2383 "%llu %d-byte logical blocks: (%s/%s)\n", 2384 (unsigned long long)sdkp->capacity, 2385 sector_size, cap_str_10, cap_str_2); 2386 2387 if (sdkp->physical_block_size != sector_size) 2388 sd_printk(KERN_NOTICE, sdkp, 2389 "%u-byte physical blocks\n", 2390 sdkp->physical_block_size); 2391 2392 sd_zbc_print_zones(sdkp); 2393 } 2394 } 2395 2396 /* called with buffer of length 512 */ 2397 static inline int 2398 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2399 unsigned char *buffer, int len, struct scsi_mode_data *data, 2400 struct scsi_sense_hdr *sshdr) 2401 { 2402 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2403 SD_TIMEOUT, SD_MAX_RETRIES, data, 2404 sshdr); 2405 } 2406 2407 /* 2408 * read write protect setting, if possible - called only in sd_revalidate_disk() 2409 * called with buffer of length SD_BUF_SIZE 2410 */ 2411 static void 2412 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2413 { 2414 int res; 2415 struct scsi_device *sdp = sdkp->device; 2416 struct scsi_mode_data data; 2417 int old_wp = sdkp->write_prot; 2418 2419 set_disk_ro(sdkp->disk, 0); 2420 if (sdp->skip_ms_page_3f) { 2421 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2422 return; 2423 } 2424 2425 if (sdp->use_192_bytes_for_3f) { 2426 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2427 } else { 2428 /* 2429 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2430 * We have to start carefully: some devices hang if we ask 2431 * for more than is available. 2432 */ 2433 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2434 2435 /* 2436 * Second attempt: ask for page 0 When only page 0 is 2437 * implemented, a request for page 3F may return Sense Key 2438 * 5: Illegal Request, Sense Code 24: Invalid field in 2439 * CDB. 2440 */ 2441 if (!scsi_status_is_good(res)) 2442 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2443 2444 /* 2445 * Third attempt: ask 255 bytes, as we did earlier. 2446 */ 2447 if (!scsi_status_is_good(res)) 2448 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2449 &data, NULL); 2450 } 2451 2452 if (!scsi_status_is_good(res)) { 2453 sd_first_printk(KERN_WARNING, sdkp, 2454 "Test WP failed, assume Write Enabled\n"); 2455 } else { 2456 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2457 set_disk_ro(sdkp->disk, sdkp->write_prot); 2458 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2459 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2460 sdkp->write_prot ? "on" : "off"); 2461 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2462 } 2463 } 2464 } 2465 2466 /* 2467 * sd_read_cache_type - called only from sd_revalidate_disk() 2468 * called with buffer of length SD_BUF_SIZE 2469 */ 2470 static void 2471 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2472 { 2473 int len = 0, res; 2474 struct scsi_device *sdp = sdkp->device; 2475 2476 int dbd; 2477 int modepage; 2478 int first_len; 2479 struct scsi_mode_data data; 2480 struct scsi_sense_hdr sshdr; 2481 int old_wce = sdkp->WCE; 2482 int old_rcd = sdkp->RCD; 2483 int old_dpofua = sdkp->DPOFUA; 2484 2485 2486 if (sdkp->cache_override) 2487 return; 2488 2489 first_len = 4; 2490 if (sdp->skip_ms_page_8) { 2491 if (sdp->type == TYPE_RBC) 2492 goto defaults; 2493 else { 2494 if (sdp->skip_ms_page_3f) 2495 goto defaults; 2496 modepage = 0x3F; 2497 if (sdp->use_192_bytes_for_3f) 2498 first_len = 192; 2499 dbd = 0; 2500 } 2501 } else if (sdp->type == TYPE_RBC) { 2502 modepage = 6; 2503 dbd = 8; 2504 } else { 2505 modepage = 8; 2506 dbd = 0; 2507 } 2508 2509 /* cautiously ask */ 2510 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2511 &data, &sshdr); 2512 2513 if (!scsi_status_is_good(res)) 2514 goto bad_sense; 2515 2516 if (!data.header_length) { 2517 modepage = 6; 2518 first_len = 0; 2519 sd_first_printk(KERN_ERR, sdkp, 2520 "Missing header in MODE_SENSE response\n"); 2521 } 2522 2523 /* that went OK, now ask for the proper length */ 2524 len = data.length; 2525 2526 /* 2527 * We're only interested in the first three bytes, actually. 2528 * But the data cache page is defined for the first 20. 2529 */ 2530 if (len < 3) 2531 goto bad_sense; 2532 else if (len > SD_BUF_SIZE) { 2533 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2534 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2535 len = SD_BUF_SIZE; 2536 } 2537 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2538 len = 192; 2539 2540 /* Get the data */ 2541 if (len > first_len) 2542 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2543 &data, &sshdr); 2544 2545 if (scsi_status_is_good(res)) { 2546 int offset = data.header_length + data.block_descriptor_length; 2547 2548 while (offset < len) { 2549 u8 page_code = buffer[offset] & 0x3F; 2550 u8 spf = buffer[offset] & 0x40; 2551 2552 if (page_code == 8 || page_code == 6) { 2553 /* We're interested only in the first 3 bytes. 2554 */ 2555 if (len - offset <= 2) { 2556 sd_first_printk(KERN_ERR, sdkp, 2557 "Incomplete mode parameter " 2558 "data\n"); 2559 goto defaults; 2560 } else { 2561 modepage = page_code; 2562 goto Page_found; 2563 } 2564 } else { 2565 /* Go to the next page */ 2566 if (spf && len - offset > 3) 2567 offset += 4 + (buffer[offset+2] << 8) + 2568 buffer[offset+3]; 2569 else if (!spf && len - offset > 1) 2570 offset += 2 + buffer[offset+1]; 2571 else { 2572 sd_first_printk(KERN_ERR, sdkp, 2573 "Incomplete mode " 2574 "parameter data\n"); 2575 goto defaults; 2576 } 2577 } 2578 } 2579 2580 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2581 goto defaults; 2582 2583 Page_found: 2584 if (modepage == 8) { 2585 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2586 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2587 } else { 2588 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2589 sdkp->RCD = 0; 2590 } 2591 2592 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2593 if (sdp->broken_fua) { 2594 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2595 sdkp->DPOFUA = 0; 2596 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2597 !sdkp->device->use_16_for_rw) { 2598 sd_first_printk(KERN_NOTICE, sdkp, 2599 "Uses READ/WRITE(6), disabling FUA\n"); 2600 sdkp->DPOFUA = 0; 2601 } 2602 2603 /* No cache flush allowed for write protected devices */ 2604 if (sdkp->WCE && sdkp->write_prot) 2605 sdkp->WCE = 0; 2606 2607 if (sdkp->first_scan || old_wce != sdkp->WCE || 2608 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2609 sd_printk(KERN_NOTICE, sdkp, 2610 "Write cache: %s, read cache: %s, %s\n", 2611 sdkp->WCE ? "enabled" : "disabled", 2612 sdkp->RCD ? "disabled" : "enabled", 2613 sdkp->DPOFUA ? "supports DPO and FUA" 2614 : "doesn't support DPO or FUA"); 2615 2616 return; 2617 } 2618 2619 bad_sense: 2620 if (scsi_sense_valid(&sshdr) && 2621 sshdr.sense_key == ILLEGAL_REQUEST && 2622 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2623 /* Invalid field in CDB */ 2624 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2625 else 2626 sd_first_printk(KERN_ERR, sdkp, 2627 "Asking for cache data failed\n"); 2628 2629 defaults: 2630 if (sdp->wce_default_on) { 2631 sd_first_printk(KERN_NOTICE, sdkp, 2632 "Assuming drive cache: write back\n"); 2633 sdkp->WCE = 1; 2634 } else { 2635 sd_first_printk(KERN_ERR, sdkp, 2636 "Assuming drive cache: write through\n"); 2637 sdkp->WCE = 0; 2638 } 2639 sdkp->RCD = 0; 2640 sdkp->DPOFUA = 0; 2641 } 2642 2643 /* 2644 * The ATO bit indicates whether the DIF application tag is available 2645 * for use by the operating system. 2646 */ 2647 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2648 { 2649 int res, offset; 2650 struct scsi_device *sdp = sdkp->device; 2651 struct scsi_mode_data data; 2652 struct scsi_sense_hdr sshdr; 2653 2654 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2655 return; 2656 2657 if (sdkp->protection_type == 0) 2658 return; 2659 2660 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2661 SD_MAX_RETRIES, &data, &sshdr); 2662 2663 if (!scsi_status_is_good(res) || !data.header_length || 2664 data.length < 6) { 2665 sd_first_printk(KERN_WARNING, sdkp, 2666 "getting Control mode page failed, assume no ATO\n"); 2667 2668 if (scsi_sense_valid(&sshdr)) 2669 sd_print_sense_hdr(sdkp, &sshdr); 2670 2671 return; 2672 } 2673 2674 offset = data.header_length + data.block_descriptor_length; 2675 2676 if ((buffer[offset] & 0x3f) != 0x0a) { 2677 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2678 return; 2679 } 2680 2681 if ((buffer[offset + 5] & 0x80) == 0) 2682 return; 2683 2684 sdkp->ATO = 1; 2685 2686 return; 2687 } 2688 2689 /** 2690 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2691 * @disk: disk to query 2692 */ 2693 static void sd_read_block_limits(struct scsi_disk *sdkp) 2694 { 2695 unsigned int sector_sz = sdkp->device->sector_size; 2696 const int vpd_len = 64; 2697 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2698 2699 if (!buffer || 2700 /* Block Limits VPD */ 2701 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2702 goto out; 2703 2704 blk_queue_io_min(sdkp->disk->queue, 2705 get_unaligned_be16(&buffer[6]) * sector_sz); 2706 2707 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2708 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2709 2710 if (buffer[3] == 0x3c) { 2711 unsigned int lba_count, desc_count; 2712 2713 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2714 2715 if (!sdkp->lbpme) 2716 goto out; 2717 2718 lba_count = get_unaligned_be32(&buffer[20]); 2719 desc_count = get_unaligned_be32(&buffer[24]); 2720 2721 if (lba_count && desc_count) 2722 sdkp->max_unmap_blocks = lba_count; 2723 2724 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2725 2726 if (buffer[32] & 0x80) 2727 sdkp->unmap_alignment = 2728 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2729 2730 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2731 2732 if (sdkp->max_unmap_blocks) 2733 sd_config_discard(sdkp, SD_LBP_UNMAP); 2734 else 2735 sd_config_discard(sdkp, SD_LBP_WS16); 2736 2737 } else { /* LBP VPD page tells us what to use */ 2738 if (sdkp->lbpu && sdkp->max_unmap_blocks && !sdkp->lbprz) 2739 sd_config_discard(sdkp, SD_LBP_UNMAP); 2740 else if (sdkp->lbpws) 2741 sd_config_discard(sdkp, SD_LBP_WS16); 2742 else if (sdkp->lbpws10) 2743 sd_config_discard(sdkp, SD_LBP_WS10); 2744 else if (sdkp->lbpu && sdkp->max_unmap_blocks) 2745 sd_config_discard(sdkp, SD_LBP_UNMAP); 2746 else 2747 sd_config_discard(sdkp, SD_LBP_DISABLE); 2748 } 2749 } 2750 2751 out: 2752 kfree(buffer); 2753 } 2754 2755 /** 2756 * sd_read_block_characteristics - Query block dev. characteristics 2757 * @disk: disk to query 2758 */ 2759 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2760 { 2761 struct request_queue *q = sdkp->disk->queue; 2762 unsigned char *buffer; 2763 u16 rot; 2764 const int vpd_len = 64; 2765 2766 buffer = kmalloc(vpd_len, GFP_KERNEL); 2767 2768 if (!buffer || 2769 /* Block Device Characteristics VPD */ 2770 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2771 goto out; 2772 2773 rot = get_unaligned_be16(&buffer[4]); 2774 2775 if (rot == 1) { 2776 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 2777 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); 2778 } 2779 2780 if (sdkp->device->type == TYPE_ZBC) { 2781 /* Host-managed */ 2782 q->limits.zoned = BLK_ZONED_HM; 2783 } else { 2784 sdkp->zoned = (buffer[8] >> 4) & 3; 2785 if (sdkp->zoned == 1) 2786 /* Host-aware */ 2787 q->limits.zoned = BLK_ZONED_HA; 2788 else 2789 /* 2790 * Treat drive-managed devices as 2791 * regular block devices. 2792 */ 2793 q->limits.zoned = BLK_ZONED_NONE; 2794 } 2795 if (blk_queue_is_zoned(q) && sdkp->first_scan) 2796 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2797 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2798 2799 out: 2800 kfree(buffer); 2801 } 2802 2803 /** 2804 * sd_read_block_provisioning - Query provisioning VPD page 2805 * @disk: disk to query 2806 */ 2807 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2808 { 2809 unsigned char *buffer; 2810 const int vpd_len = 8; 2811 2812 if (sdkp->lbpme == 0) 2813 return; 2814 2815 buffer = kmalloc(vpd_len, GFP_KERNEL); 2816 2817 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2818 goto out; 2819 2820 sdkp->lbpvpd = 1; 2821 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 2822 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 2823 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 2824 2825 out: 2826 kfree(buffer); 2827 } 2828 2829 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 2830 { 2831 struct scsi_device *sdev = sdkp->device; 2832 2833 if (sdev->host->no_write_same) { 2834 sdev->no_write_same = 1; 2835 2836 return; 2837 } 2838 2839 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 2840 /* too large values might cause issues with arcmsr */ 2841 int vpd_buf_len = 64; 2842 2843 sdev->no_report_opcodes = 1; 2844 2845 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 2846 * CODES is unsupported and the device has an ATA 2847 * Information VPD page (SAT). 2848 */ 2849 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 2850 sdev->no_write_same = 1; 2851 } 2852 2853 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 2854 sdkp->ws16 = 1; 2855 2856 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 2857 sdkp->ws10 = 1; 2858 } 2859 2860 /** 2861 * sd_revalidate_disk - called the first time a new disk is seen, 2862 * performs disk spin up, read_capacity, etc. 2863 * @disk: struct gendisk we care about 2864 **/ 2865 static int sd_revalidate_disk(struct gendisk *disk) 2866 { 2867 struct scsi_disk *sdkp = scsi_disk(disk); 2868 struct scsi_device *sdp = sdkp->device; 2869 struct request_queue *q = sdkp->disk->queue; 2870 sector_t old_capacity = sdkp->capacity; 2871 unsigned char *buffer; 2872 unsigned int dev_max, rw_max; 2873 2874 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 2875 "sd_revalidate_disk\n")); 2876 2877 /* 2878 * If the device is offline, don't try and read capacity or any 2879 * of the other niceties. 2880 */ 2881 if (!scsi_device_online(sdp)) 2882 goto out; 2883 2884 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 2885 if (!buffer) { 2886 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 2887 "allocation failure.\n"); 2888 goto out; 2889 } 2890 2891 sd_spinup_disk(sdkp); 2892 2893 /* 2894 * Without media there is no reason to ask; moreover, some devices 2895 * react badly if we do. 2896 */ 2897 if (sdkp->media_present) { 2898 sd_read_capacity(sdkp, buffer); 2899 2900 if (scsi_device_supports_vpd(sdp)) { 2901 sd_read_block_provisioning(sdkp); 2902 sd_read_block_limits(sdkp); 2903 sd_read_block_characteristics(sdkp); 2904 sd_zbc_read_zones(sdkp, buffer); 2905 } 2906 2907 sd_print_capacity(sdkp, old_capacity); 2908 2909 sd_read_write_protect_flag(sdkp, buffer); 2910 sd_read_cache_type(sdkp, buffer); 2911 sd_read_app_tag_own(sdkp, buffer); 2912 sd_read_write_same(sdkp, buffer); 2913 } 2914 2915 sdkp->first_scan = 0; 2916 2917 /* 2918 * We now have all cache related info, determine how we deal 2919 * with flush requests. 2920 */ 2921 sd_set_flush_flag(sdkp); 2922 2923 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 2924 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 2925 2926 /* Some devices report a maximum block count for READ/WRITE requests. */ 2927 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 2928 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 2929 2930 /* 2931 * Use the device's preferred I/O size for reads and writes 2932 * unless the reported value is unreasonably small, large, or 2933 * garbage. 2934 */ 2935 if (sdkp->opt_xfer_blocks && 2936 sdkp->opt_xfer_blocks <= dev_max && 2937 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS && 2938 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) { 2939 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 2940 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 2941 } else 2942 rw_max = BLK_DEF_MAX_SECTORS; 2943 2944 /* Combine with controller limits */ 2945 q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q)); 2946 2947 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); 2948 sd_config_write_same(sdkp); 2949 kfree(buffer); 2950 2951 out: 2952 return 0; 2953 } 2954 2955 /** 2956 * sd_unlock_native_capacity - unlock native capacity 2957 * @disk: struct gendisk to set capacity for 2958 * 2959 * Block layer calls this function if it detects that partitions 2960 * on @disk reach beyond the end of the device. If the SCSI host 2961 * implements ->unlock_native_capacity() method, it's invoked to 2962 * give it a chance to adjust the device capacity. 2963 * 2964 * CONTEXT: 2965 * Defined by block layer. Might sleep. 2966 */ 2967 static void sd_unlock_native_capacity(struct gendisk *disk) 2968 { 2969 struct scsi_device *sdev = scsi_disk(disk)->device; 2970 2971 if (sdev->host->hostt->unlock_native_capacity) 2972 sdev->host->hostt->unlock_native_capacity(sdev); 2973 } 2974 2975 /** 2976 * sd_format_disk_name - format disk name 2977 * @prefix: name prefix - ie. "sd" for SCSI disks 2978 * @index: index of the disk to format name for 2979 * @buf: output buffer 2980 * @buflen: length of the output buffer 2981 * 2982 * SCSI disk names starts at sda. The 26th device is sdz and the 2983 * 27th is sdaa. The last one for two lettered suffix is sdzz 2984 * which is followed by sdaaa. 2985 * 2986 * This is basically 26 base counting with one extra 'nil' entry 2987 * at the beginning from the second digit on and can be 2988 * determined using similar method as 26 base conversion with the 2989 * index shifted -1 after each digit is computed. 2990 * 2991 * CONTEXT: 2992 * Don't care. 2993 * 2994 * RETURNS: 2995 * 0 on success, -errno on failure. 2996 */ 2997 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 2998 { 2999 const int base = 'z' - 'a' + 1; 3000 char *begin = buf + strlen(prefix); 3001 char *end = buf + buflen; 3002 char *p; 3003 int unit; 3004 3005 p = end - 1; 3006 *p = '\0'; 3007 unit = base; 3008 do { 3009 if (p == begin) 3010 return -EINVAL; 3011 *--p = 'a' + (index % unit); 3012 index = (index / unit) - 1; 3013 } while (index >= 0); 3014 3015 memmove(begin, p, end - p); 3016 memcpy(buf, prefix, strlen(prefix)); 3017 3018 return 0; 3019 } 3020 3021 /* 3022 * The asynchronous part of sd_probe 3023 */ 3024 static void sd_probe_async(void *data, async_cookie_t cookie) 3025 { 3026 struct scsi_disk *sdkp = data; 3027 struct scsi_device *sdp; 3028 struct gendisk *gd; 3029 u32 index; 3030 struct device *dev; 3031 3032 sdp = sdkp->device; 3033 gd = sdkp->disk; 3034 index = sdkp->index; 3035 dev = &sdp->sdev_gendev; 3036 3037 gd->major = sd_major((index & 0xf0) >> 4); 3038 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3039 gd->minors = SD_MINORS; 3040 3041 gd->fops = &sd_fops; 3042 gd->private_data = &sdkp->driver; 3043 gd->queue = sdkp->device->request_queue; 3044 3045 /* defaults, until the device tells us otherwise */ 3046 sdp->sector_size = 512; 3047 sdkp->capacity = 0; 3048 sdkp->media_present = 1; 3049 sdkp->write_prot = 0; 3050 sdkp->cache_override = 0; 3051 sdkp->WCE = 0; 3052 sdkp->RCD = 0; 3053 sdkp->ATO = 0; 3054 sdkp->first_scan = 1; 3055 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3056 3057 sd_revalidate_disk(gd); 3058 3059 gd->flags = GENHD_FL_EXT_DEVT; 3060 if (sdp->removable) { 3061 gd->flags |= GENHD_FL_REMOVABLE; 3062 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3063 } 3064 3065 blk_pm_runtime_init(sdp->request_queue, dev); 3066 device_add_disk(dev, gd); 3067 if (sdkp->capacity) 3068 sd_dif_config_host(sdkp); 3069 3070 sd_revalidate_disk(gd); 3071 3072 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3073 sdp->removable ? "removable " : ""); 3074 scsi_autopm_put_device(sdp); 3075 put_device(&sdkp->dev); 3076 } 3077 3078 struct sd_devt { 3079 int idx; 3080 struct disk_devt disk_devt; 3081 }; 3082 3083 static void sd_devt_release(struct disk_devt *disk_devt) 3084 { 3085 struct sd_devt *sd_devt = container_of(disk_devt, struct sd_devt, 3086 disk_devt); 3087 3088 spin_lock(&sd_index_lock); 3089 ida_remove(&sd_index_ida, sd_devt->idx); 3090 spin_unlock(&sd_index_lock); 3091 3092 kfree(sd_devt); 3093 } 3094 3095 /** 3096 * sd_probe - called during driver initialization and whenever a 3097 * new scsi device is attached to the system. It is called once 3098 * for each scsi device (not just disks) present. 3099 * @dev: pointer to device object 3100 * 3101 * Returns 0 if successful (or not interested in this scsi device 3102 * (e.g. scanner)); 1 when there is an error. 3103 * 3104 * Note: this function is invoked from the scsi mid-level. 3105 * This function sets up the mapping between a given 3106 * <host,channel,id,lun> (found in sdp) and new device name 3107 * (e.g. /dev/sda). More precisely it is the block device major 3108 * and minor number that is chosen here. 3109 * 3110 * Assume sd_probe is not re-entrant (for time being) 3111 * Also think about sd_probe() and sd_remove() running coincidentally. 3112 **/ 3113 static int sd_probe(struct device *dev) 3114 { 3115 struct scsi_device *sdp = to_scsi_device(dev); 3116 struct sd_devt *sd_devt; 3117 struct scsi_disk *sdkp; 3118 struct gendisk *gd; 3119 int index; 3120 int error; 3121 3122 scsi_autopm_get_device(sdp); 3123 error = -ENODEV; 3124 if (sdp->type != TYPE_DISK && 3125 sdp->type != TYPE_ZBC && 3126 sdp->type != TYPE_MOD && 3127 sdp->type != TYPE_RBC) 3128 goto out; 3129 3130 #ifndef CONFIG_BLK_DEV_ZONED 3131 if (sdp->type == TYPE_ZBC) 3132 goto out; 3133 #endif 3134 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3135 "sd_probe\n")); 3136 3137 error = -ENOMEM; 3138 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3139 if (!sdkp) 3140 goto out; 3141 3142 sd_devt = kzalloc(sizeof(*sd_devt), GFP_KERNEL); 3143 if (!sd_devt) 3144 goto out_free; 3145 3146 gd = alloc_disk(SD_MINORS); 3147 if (!gd) 3148 goto out_free_devt; 3149 3150 do { 3151 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL)) 3152 goto out_put; 3153 3154 spin_lock(&sd_index_lock); 3155 error = ida_get_new(&sd_index_ida, &index); 3156 spin_unlock(&sd_index_lock); 3157 } while (error == -EAGAIN); 3158 3159 if (error) { 3160 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3161 goto out_put; 3162 } 3163 3164 atomic_set(&sd_devt->disk_devt.count, 1); 3165 sd_devt->disk_devt.release = sd_devt_release; 3166 sd_devt->idx = index; 3167 gd->disk_devt = &sd_devt->disk_devt; 3168 3169 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3170 if (error) { 3171 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3172 goto out_free_index; 3173 } 3174 3175 sdkp->device = sdp; 3176 sdkp->driver = &sd_template; 3177 sdkp->disk = gd; 3178 sdkp->index = index; 3179 atomic_set(&sdkp->openers, 0); 3180 atomic_set(&sdkp->device->ioerr_cnt, 0); 3181 3182 if (!sdp->request_queue->rq_timeout) { 3183 if (sdp->type != TYPE_MOD) 3184 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3185 else 3186 blk_queue_rq_timeout(sdp->request_queue, 3187 SD_MOD_TIMEOUT); 3188 } 3189 3190 device_initialize(&sdkp->dev); 3191 sdkp->dev.parent = dev; 3192 sdkp->dev.class = &sd_disk_class; 3193 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3194 3195 error = device_add(&sdkp->dev); 3196 if (error) 3197 goto out_free_index; 3198 3199 get_device(dev); 3200 dev_set_drvdata(dev, sdkp); 3201 3202 get_device(&sdkp->dev); /* prevent release before async_schedule */ 3203 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); 3204 3205 return 0; 3206 3207 out_free_index: 3208 put_disk_devt(&sd_devt->disk_devt); 3209 sd_devt = NULL; 3210 out_put: 3211 put_disk(gd); 3212 out_free_devt: 3213 kfree(sd_devt); 3214 out_free: 3215 kfree(sdkp); 3216 out: 3217 scsi_autopm_put_device(sdp); 3218 return error; 3219 } 3220 3221 /** 3222 * sd_remove - called whenever a scsi disk (previously recognized by 3223 * sd_probe) is detached from the system. It is called (potentially 3224 * multiple times) during sd module unload. 3225 * @dev: pointer to device object 3226 * 3227 * Note: this function is invoked from the scsi mid-level. 3228 * This function potentially frees up a device name (e.g. /dev/sdc) 3229 * that could be re-used by a subsequent sd_probe(). 3230 * This function is not called when the built-in sd driver is "exit-ed". 3231 **/ 3232 static int sd_remove(struct device *dev) 3233 { 3234 struct scsi_disk *sdkp; 3235 dev_t devt; 3236 3237 sdkp = dev_get_drvdata(dev); 3238 devt = disk_devt(sdkp->disk); 3239 scsi_autopm_get_device(sdkp->device); 3240 3241 async_synchronize_full_domain(&scsi_sd_pm_domain); 3242 async_synchronize_full_domain(&scsi_sd_probe_domain); 3243 device_del(&sdkp->dev); 3244 del_gendisk(sdkp->disk); 3245 sd_shutdown(dev); 3246 3247 sd_zbc_remove(sdkp); 3248 3249 blk_register_region(devt, SD_MINORS, NULL, 3250 sd_default_probe, NULL, NULL); 3251 3252 mutex_lock(&sd_ref_mutex); 3253 dev_set_drvdata(dev, NULL); 3254 put_device(&sdkp->dev); 3255 mutex_unlock(&sd_ref_mutex); 3256 3257 return 0; 3258 } 3259 3260 /** 3261 * scsi_disk_release - Called to free the scsi_disk structure 3262 * @dev: pointer to embedded class device 3263 * 3264 * sd_ref_mutex must be held entering this routine. Because it is 3265 * called on last put, you should always use the scsi_disk_get() 3266 * scsi_disk_put() helpers which manipulate the semaphore directly 3267 * and never do a direct put_device. 3268 **/ 3269 static void scsi_disk_release(struct device *dev) 3270 { 3271 struct scsi_disk *sdkp = to_scsi_disk(dev); 3272 struct gendisk *disk = sdkp->disk; 3273 3274 put_disk_devt(disk->disk_devt); 3275 disk->private_data = NULL; 3276 put_disk(disk); 3277 put_device(&sdkp->device->sdev_gendev); 3278 3279 kfree(sdkp); 3280 } 3281 3282 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3283 { 3284 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3285 struct scsi_sense_hdr sshdr; 3286 struct scsi_device *sdp = sdkp->device; 3287 int res; 3288 3289 if (start) 3290 cmd[4] |= 1; /* START */ 3291 3292 if (sdp->start_stop_pwr_cond) 3293 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3294 3295 if (!scsi_device_online(sdp)) 3296 return -ENODEV; 3297 3298 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3299 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL); 3300 if (res) { 3301 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3302 if (driver_byte(res) & DRIVER_SENSE) 3303 sd_print_sense_hdr(sdkp, &sshdr); 3304 if (scsi_sense_valid(&sshdr) && 3305 /* 0x3a is medium not present */ 3306 sshdr.asc == 0x3a) 3307 res = 0; 3308 } 3309 3310 /* SCSI error codes must not go to the generic layer */ 3311 if (res) 3312 return -EIO; 3313 3314 return 0; 3315 } 3316 3317 /* 3318 * Send a SYNCHRONIZE CACHE instruction down to the device through 3319 * the normal SCSI command structure. Wait for the command to 3320 * complete. 3321 */ 3322 static void sd_shutdown(struct device *dev) 3323 { 3324 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3325 3326 if (!sdkp) 3327 return; /* this can happen */ 3328 3329 if (pm_runtime_suspended(dev)) 3330 return; 3331 3332 if (sdkp->WCE && sdkp->media_present) { 3333 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3334 sd_sync_cache(sdkp); 3335 } 3336 3337 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3338 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3339 sd_start_stop_device(sdkp, 0); 3340 } 3341 } 3342 3343 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3344 { 3345 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3346 int ret = 0; 3347 3348 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3349 return 0; 3350 3351 if (sdkp->WCE && sdkp->media_present) { 3352 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3353 ret = sd_sync_cache(sdkp); 3354 if (ret) { 3355 /* ignore OFFLINE device */ 3356 if (ret == -ENODEV) 3357 ret = 0; 3358 goto done; 3359 } 3360 } 3361 3362 if (sdkp->device->manage_start_stop) { 3363 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3364 /* an error is not worth aborting a system sleep */ 3365 ret = sd_start_stop_device(sdkp, 0); 3366 if (ignore_stop_errors) 3367 ret = 0; 3368 } 3369 3370 done: 3371 return ret; 3372 } 3373 3374 static int sd_suspend_system(struct device *dev) 3375 { 3376 return sd_suspend_common(dev, true); 3377 } 3378 3379 static int sd_suspend_runtime(struct device *dev) 3380 { 3381 return sd_suspend_common(dev, false); 3382 } 3383 3384 static int sd_resume(struct device *dev) 3385 { 3386 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3387 3388 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3389 return 0; 3390 3391 if (!sdkp->device->manage_start_stop) 3392 return 0; 3393 3394 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3395 return sd_start_stop_device(sdkp, 1); 3396 } 3397 3398 /** 3399 * init_sd - entry point for this driver (both when built in or when 3400 * a module). 3401 * 3402 * Note: this function registers this driver with the scsi mid-level. 3403 **/ 3404 static int __init init_sd(void) 3405 { 3406 int majors = 0, i, err; 3407 3408 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3409 3410 for (i = 0; i < SD_MAJORS; i++) { 3411 if (register_blkdev(sd_major(i), "sd") != 0) 3412 continue; 3413 majors++; 3414 blk_register_region(sd_major(i), SD_MINORS, NULL, 3415 sd_default_probe, NULL, NULL); 3416 } 3417 3418 if (!majors) 3419 return -ENODEV; 3420 3421 err = class_register(&sd_disk_class); 3422 if (err) 3423 goto err_out; 3424 3425 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3426 0, 0, NULL); 3427 if (!sd_cdb_cache) { 3428 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3429 err = -ENOMEM; 3430 goto err_out_class; 3431 } 3432 3433 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3434 if (!sd_cdb_pool) { 3435 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3436 err = -ENOMEM; 3437 goto err_out_cache; 3438 } 3439 3440 err = scsi_register_driver(&sd_template.gendrv); 3441 if (err) 3442 goto err_out_driver; 3443 3444 return 0; 3445 3446 err_out_driver: 3447 mempool_destroy(sd_cdb_pool); 3448 3449 err_out_cache: 3450 kmem_cache_destroy(sd_cdb_cache); 3451 3452 err_out_class: 3453 class_unregister(&sd_disk_class); 3454 err_out: 3455 for (i = 0; i < SD_MAJORS; i++) 3456 unregister_blkdev(sd_major(i), "sd"); 3457 return err; 3458 } 3459 3460 /** 3461 * exit_sd - exit point for this driver (when it is a module). 3462 * 3463 * Note: this function unregisters this driver from the scsi mid-level. 3464 **/ 3465 static void __exit exit_sd(void) 3466 { 3467 int i; 3468 3469 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3470 3471 scsi_unregister_driver(&sd_template.gendrv); 3472 mempool_destroy(sd_cdb_pool); 3473 kmem_cache_destroy(sd_cdb_cache); 3474 3475 class_unregister(&sd_disk_class); 3476 3477 for (i = 0; i < SD_MAJORS; i++) { 3478 blk_unregister_region(sd_major(i), SD_MINORS); 3479 unregister_blkdev(sd_major(i), "sd"); 3480 } 3481 } 3482 3483 module_init(init_sd); 3484 module_exit(exit_sd); 3485 3486 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3487 struct scsi_sense_hdr *sshdr) 3488 { 3489 scsi_print_sense_hdr(sdkp->device, 3490 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3491 } 3492 3493 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3494 int result) 3495 { 3496 const char *hb_string = scsi_hostbyte_string(result); 3497 const char *db_string = scsi_driverbyte_string(result); 3498 3499 if (hb_string || db_string) 3500 sd_printk(KERN_INFO, sdkp, 3501 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3502 hb_string ? hb_string : "invalid", 3503 db_string ? db_string : "invalid"); 3504 else 3505 sd_printk(KERN_INFO, sdkp, 3506 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3507 msg, host_byte(result), driver_byte(result)); 3508 } 3509 3510