xref: /openbmc/linux/drivers/scsi/sd.c (revision a5a7daa5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/async.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61 
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71 
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75 
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79 
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100 
101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
102 #define SD_MINORS	16
103 #else
104 #define SD_MINORS	0
105 #endif
106 
107 static void sd_config_discard(struct scsi_disk *, unsigned int);
108 static void sd_config_write_same(struct scsi_disk *);
109 static int  sd_revalidate_disk(struct gendisk *);
110 static void sd_unlock_native_capacity(struct gendisk *disk);
111 static int  sd_probe(struct device *);
112 static int  sd_remove(struct device *);
113 static void sd_shutdown(struct device *);
114 static int sd_suspend_system(struct device *);
115 static int sd_suspend_runtime(struct device *);
116 static int sd_resume(struct device *);
117 static void sd_rescan(struct device *);
118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
119 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
120 static int sd_done(struct scsi_cmnd *);
121 static void sd_eh_reset(struct scsi_cmnd *);
122 static int sd_eh_action(struct scsi_cmnd *, int);
123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
124 static void scsi_disk_release(struct device *cdev);
125 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
126 static void sd_print_result(const struct scsi_disk *, const char *, int);
127 
128 static DEFINE_IDA(sd_index_ida);
129 
130 /* This semaphore is used to mediate the 0->1 reference get in the
131  * face of object destruction (i.e. we can't allow a get on an
132  * object after last put) */
133 static DEFINE_MUTEX(sd_ref_mutex);
134 
135 static struct kmem_cache *sd_cdb_cache;
136 static mempool_t *sd_cdb_pool;
137 static mempool_t *sd_page_pool;
138 
139 static const char *sd_cache_types[] = {
140 	"write through", "none", "write back",
141 	"write back, no read (daft)"
142 };
143 
144 static void sd_set_flush_flag(struct scsi_disk *sdkp)
145 {
146 	bool wc = false, fua = false;
147 
148 	if (sdkp->WCE) {
149 		wc = true;
150 		if (sdkp->DPOFUA)
151 			fua = true;
152 	}
153 
154 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
155 }
156 
157 static ssize_t
158 cache_type_store(struct device *dev, struct device_attribute *attr,
159 		 const char *buf, size_t count)
160 {
161 	int ct, rcd, wce, sp;
162 	struct scsi_disk *sdkp = to_scsi_disk(dev);
163 	struct scsi_device *sdp = sdkp->device;
164 	char buffer[64];
165 	char *buffer_data;
166 	struct scsi_mode_data data;
167 	struct scsi_sense_hdr sshdr;
168 	static const char temp[] = "temporary ";
169 	int len;
170 
171 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
172 		/* no cache control on RBC devices; theoretically they
173 		 * can do it, but there's probably so many exceptions
174 		 * it's not worth the risk */
175 		return -EINVAL;
176 
177 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
178 		buf += sizeof(temp) - 1;
179 		sdkp->cache_override = 1;
180 	} else {
181 		sdkp->cache_override = 0;
182 	}
183 
184 	ct = sysfs_match_string(sd_cache_types, buf);
185 	if (ct < 0)
186 		return -EINVAL;
187 
188 	rcd = ct & 0x01 ? 1 : 0;
189 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
190 
191 	if (sdkp->cache_override) {
192 		sdkp->WCE = wce;
193 		sdkp->RCD = rcd;
194 		sd_set_flush_flag(sdkp);
195 		return count;
196 	}
197 
198 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
199 			    SD_MAX_RETRIES, &data, NULL))
200 		return -EINVAL;
201 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
202 		  data.block_descriptor_length);
203 	buffer_data = buffer + data.header_length +
204 		data.block_descriptor_length;
205 	buffer_data[2] &= ~0x05;
206 	buffer_data[2] |= wce << 2 | rcd;
207 	sp = buffer_data[0] & 0x80 ? 1 : 0;
208 	buffer_data[0] &= ~0x80;
209 
210 	/*
211 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
212 	 * received mode parameter buffer before doing MODE SELECT.
213 	 */
214 	data.device_specific = 0;
215 
216 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
217 			     SD_MAX_RETRIES, &data, &sshdr)) {
218 		if (scsi_sense_valid(&sshdr))
219 			sd_print_sense_hdr(sdkp, &sshdr);
220 		return -EINVAL;
221 	}
222 	revalidate_disk(sdkp->disk);
223 	return count;
224 }
225 
226 static ssize_t
227 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
228 		       char *buf)
229 {
230 	struct scsi_disk *sdkp = to_scsi_disk(dev);
231 	struct scsi_device *sdp = sdkp->device;
232 
233 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
234 }
235 
236 static ssize_t
237 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
238 			const char *buf, size_t count)
239 {
240 	struct scsi_disk *sdkp = to_scsi_disk(dev);
241 	struct scsi_device *sdp = sdkp->device;
242 	bool v;
243 
244 	if (!capable(CAP_SYS_ADMIN))
245 		return -EACCES;
246 
247 	if (kstrtobool(buf, &v))
248 		return -EINVAL;
249 
250 	sdp->manage_start_stop = v;
251 
252 	return count;
253 }
254 static DEVICE_ATTR_RW(manage_start_stop);
255 
256 static ssize_t
257 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
258 {
259 	struct scsi_disk *sdkp = to_scsi_disk(dev);
260 
261 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
262 }
263 
264 static ssize_t
265 allow_restart_store(struct device *dev, struct device_attribute *attr,
266 		    const char *buf, size_t count)
267 {
268 	bool v;
269 	struct scsi_disk *sdkp = to_scsi_disk(dev);
270 	struct scsi_device *sdp = sdkp->device;
271 
272 	if (!capable(CAP_SYS_ADMIN))
273 		return -EACCES;
274 
275 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
276 		return -EINVAL;
277 
278 	if (kstrtobool(buf, &v))
279 		return -EINVAL;
280 
281 	sdp->allow_restart = v;
282 
283 	return count;
284 }
285 static DEVICE_ATTR_RW(allow_restart);
286 
287 static ssize_t
288 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
289 {
290 	struct scsi_disk *sdkp = to_scsi_disk(dev);
291 	int ct = sdkp->RCD + 2*sdkp->WCE;
292 
293 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
294 }
295 static DEVICE_ATTR_RW(cache_type);
296 
297 static ssize_t
298 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
299 {
300 	struct scsi_disk *sdkp = to_scsi_disk(dev);
301 
302 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
303 }
304 static DEVICE_ATTR_RO(FUA);
305 
306 static ssize_t
307 protection_type_show(struct device *dev, struct device_attribute *attr,
308 		     char *buf)
309 {
310 	struct scsi_disk *sdkp = to_scsi_disk(dev);
311 
312 	return sprintf(buf, "%u\n", sdkp->protection_type);
313 }
314 
315 static ssize_t
316 protection_type_store(struct device *dev, struct device_attribute *attr,
317 		      const char *buf, size_t count)
318 {
319 	struct scsi_disk *sdkp = to_scsi_disk(dev);
320 	unsigned int val;
321 	int err;
322 
323 	if (!capable(CAP_SYS_ADMIN))
324 		return -EACCES;
325 
326 	err = kstrtouint(buf, 10, &val);
327 
328 	if (err)
329 		return err;
330 
331 	if (val <= T10_PI_TYPE3_PROTECTION)
332 		sdkp->protection_type = val;
333 
334 	return count;
335 }
336 static DEVICE_ATTR_RW(protection_type);
337 
338 static ssize_t
339 protection_mode_show(struct device *dev, struct device_attribute *attr,
340 		     char *buf)
341 {
342 	struct scsi_disk *sdkp = to_scsi_disk(dev);
343 	struct scsi_device *sdp = sdkp->device;
344 	unsigned int dif, dix;
345 
346 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
347 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
348 
349 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
350 		dif = 0;
351 		dix = 1;
352 	}
353 
354 	if (!dif && !dix)
355 		return sprintf(buf, "none\n");
356 
357 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
358 }
359 static DEVICE_ATTR_RO(protection_mode);
360 
361 static ssize_t
362 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
363 {
364 	struct scsi_disk *sdkp = to_scsi_disk(dev);
365 
366 	return sprintf(buf, "%u\n", sdkp->ATO);
367 }
368 static DEVICE_ATTR_RO(app_tag_own);
369 
370 static ssize_t
371 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
372 		       char *buf)
373 {
374 	struct scsi_disk *sdkp = to_scsi_disk(dev);
375 
376 	return sprintf(buf, "%u\n", sdkp->lbpme);
377 }
378 static DEVICE_ATTR_RO(thin_provisioning);
379 
380 /* sysfs_match_string() requires dense arrays */
381 static const char *lbp_mode[] = {
382 	[SD_LBP_FULL]		= "full",
383 	[SD_LBP_UNMAP]		= "unmap",
384 	[SD_LBP_WS16]		= "writesame_16",
385 	[SD_LBP_WS10]		= "writesame_10",
386 	[SD_LBP_ZERO]		= "writesame_zero",
387 	[SD_LBP_DISABLE]	= "disabled",
388 };
389 
390 static ssize_t
391 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
392 		       char *buf)
393 {
394 	struct scsi_disk *sdkp = to_scsi_disk(dev);
395 
396 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
397 }
398 
399 static ssize_t
400 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
401 			const char *buf, size_t count)
402 {
403 	struct scsi_disk *sdkp = to_scsi_disk(dev);
404 	struct scsi_device *sdp = sdkp->device;
405 	int mode;
406 
407 	if (!capable(CAP_SYS_ADMIN))
408 		return -EACCES;
409 
410 	if (sd_is_zoned(sdkp)) {
411 		sd_config_discard(sdkp, SD_LBP_DISABLE);
412 		return count;
413 	}
414 
415 	if (sdp->type != TYPE_DISK)
416 		return -EINVAL;
417 
418 	mode = sysfs_match_string(lbp_mode, buf);
419 	if (mode < 0)
420 		return -EINVAL;
421 
422 	sd_config_discard(sdkp, mode);
423 
424 	return count;
425 }
426 static DEVICE_ATTR_RW(provisioning_mode);
427 
428 /* sysfs_match_string() requires dense arrays */
429 static const char *zeroing_mode[] = {
430 	[SD_ZERO_WRITE]		= "write",
431 	[SD_ZERO_WS]		= "writesame",
432 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
433 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
434 };
435 
436 static ssize_t
437 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
438 		  char *buf)
439 {
440 	struct scsi_disk *sdkp = to_scsi_disk(dev);
441 
442 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
443 }
444 
445 static ssize_t
446 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
447 		   const char *buf, size_t count)
448 {
449 	struct scsi_disk *sdkp = to_scsi_disk(dev);
450 	int mode;
451 
452 	if (!capable(CAP_SYS_ADMIN))
453 		return -EACCES;
454 
455 	mode = sysfs_match_string(zeroing_mode, buf);
456 	if (mode < 0)
457 		return -EINVAL;
458 
459 	sdkp->zeroing_mode = mode;
460 
461 	return count;
462 }
463 static DEVICE_ATTR_RW(zeroing_mode);
464 
465 static ssize_t
466 max_medium_access_timeouts_show(struct device *dev,
467 				struct device_attribute *attr, char *buf)
468 {
469 	struct scsi_disk *sdkp = to_scsi_disk(dev);
470 
471 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
472 }
473 
474 static ssize_t
475 max_medium_access_timeouts_store(struct device *dev,
476 				 struct device_attribute *attr, const char *buf,
477 				 size_t count)
478 {
479 	struct scsi_disk *sdkp = to_scsi_disk(dev);
480 	int err;
481 
482 	if (!capable(CAP_SYS_ADMIN))
483 		return -EACCES;
484 
485 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
486 
487 	return err ? err : count;
488 }
489 static DEVICE_ATTR_RW(max_medium_access_timeouts);
490 
491 static ssize_t
492 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
493 			   char *buf)
494 {
495 	struct scsi_disk *sdkp = to_scsi_disk(dev);
496 
497 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
498 }
499 
500 static ssize_t
501 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
502 			    const char *buf, size_t count)
503 {
504 	struct scsi_disk *sdkp = to_scsi_disk(dev);
505 	struct scsi_device *sdp = sdkp->device;
506 	unsigned long max;
507 	int err;
508 
509 	if (!capable(CAP_SYS_ADMIN))
510 		return -EACCES;
511 
512 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
513 		return -EINVAL;
514 
515 	err = kstrtoul(buf, 10, &max);
516 
517 	if (err)
518 		return err;
519 
520 	if (max == 0)
521 		sdp->no_write_same = 1;
522 	else if (max <= SD_MAX_WS16_BLOCKS) {
523 		sdp->no_write_same = 0;
524 		sdkp->max_ws_blocks = max;
525 	}
526 
527 	sd_config_write_same(sdkp);
528 
529 	return count;
530 }
531 static DEVICE_ATTR_RW(max_write_same_blocks);
532 
533 static struct attribute *sd_disk_attrs[] = {
534 	&dev_attr_cache_type.attr,
535 	&dev_attr_FUA.attr,
536 	&dev_attr_allow_restart.attr,
537 	&dev_attr_manage_start_stop.attr,
538 	&dev_attr_protection_type.attr,
539 	&dev_attr_protection_mode.attr,
540 	&dev_attr_app_tag_own.attr,
541 	&dev_attr_thin_provisioning.attr,
542 	&dev_attr_provisioning_mode.attr,
543 	&dev_attr_zeroing_mode.attr,
544 	&dev_attr_max_write_same_blocks.attr,
545 	&dev_attr_max_medium_access_timeouts.attr,
546 	NULL,
547 };
548 ATTRIBUTE_GROUPS(sd_disk);
549 
550 static struct class sd_disk_class = {
551 	.name		= "scsi_disk",
552 	.owner		= THIS_MODULE,
553 	.dev_release	= scsi_disk_release,
554 	.dev_groups	= sd_disk_groups,
555 };
556 
557 static const struct dev_pm_ops sd_pm_ops = {
558 	.suspend		= sd_suspend_system,
559 	.resume			= sd_resume,
560 	.poweroff		= sd_suspend_system,
561 	.restore		= sd_resume,
562 	.runtime_suspend	= sd_suspend_runtime,
563 	.runtime_resume		= sd_resume,
564 };
565 
566 static struct scsi_driver sd_template = {
567 	.gendrv = {
568 		.name		= "sd",
569 		.owner		= THIS_MODULE,
570 		.probe		= sd_probe,
571 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
572 		.remove		= sd_remove,
573 		.shutdown	= sd_shutdown,
574 		.pm		= &sd_pm_ops,
575 	},
576 	.rescan			= sd_rescan,
577 	.init_command		= sd_init_command,
578 	.uninit_command		= sd_uninit_command,
579 	.done			= sd_done,
580 	.eh_action		= sd_eh_action,
581 	.eh_reset		= sd_eh_reset,
582 };
583 
584 /*
585  * Dummy kobj_map->probe function.
586  * The default ->probe function will call modprobe, which is
587  * pointless as this module is already loaded.
588  */
589 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
590 {
591 	return NULL;
592 }
593 
594 /*
595  * Device no to disk mapping:
596  *
597  *       major         disc2     disc  p1
598  *   |............|.............|....|....| <- dev_t
599  *    31        20 19          8 7  4 3  0
600  *
601  * Inside a major, we have 16k disks, however mapped non-
602  * contiguously. The first 16 disks are for major0, the next
603  * ones with major1, ... Disk 256 is for major0 again, disk 272
604  * for major1, ...
605  * As we stay compatible with our numbering scheme, we can reuse
606  * the well-know SCSI majors 8, 65--71, 136--143.
607  */
608 static int sd_major(int major_idx)
609 {
610 	switch (major_idx) {
611 	case 0:
612 		return SCSI_DISK0_MAJOR;
613 	case 1 ... 7:
614 		return SCSI_DISK1_MAJOR + major_idx - 1;
615 	case 8 ... 15:
616 		return SCSI_DISK8_MAJOR + major_idx - 8;
617 	default:
618 		BUG();
619 		return 0;	/* shut up gcc */
620 	}
621 }
622 
623 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
624 {
625 	struct scsi_disk *sdkp = NULL;
626 
627 	mutex_lock(&sd_ref_mutex);
628 
629 	if (disk->private_data) {
630 		sdkp = scsi_disk(disk);
631 		if (scsi_device_get(sdkp->device) == 0)
632 			get_device(&sdkp->dev);
633 		else
634 			sdkp = NULL;
635 	}
636 	mutex_unlock(&sd_ref_mutex);
637 	return sdkp;
638 }
639 
640 static void scsi_disk_put(struct scsi_disk *sdkp)
641 {
642 	struct scsi_device *sdev = sdkp->device;
643 
644 	mutex_lock(&sd_ref_mutex);
645 	put_device(&sdkp->dev);
646 	scsi_device_put(sdev);
647 	mutex_unlock(&sd_ref_mutex);
648 }
649 
650 #ifdef CONFIG_BLK_SED_OPAL
651 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
652 		size_t len, bool send)
653 {
654 	struct scsi_device *sdev = data;
655 	u8 cdb[12] = { 0, };
656 	int ret;
657 
658 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
659 	cdb[1] = secp;
660 	put_unaligned_be16(spsp, &cdb[2]);
661 	put_unaligned_be32(len, &cdb[6]);
662 
663 	ret = scsi_execute_req(sdev, cdb,
664 			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
665 			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
666 	return ret <= 0 ? ret : -EIO;
667 }
668 #endif /* CONFIG_BLK_SED_OPAL */
669 
670 /*
671  * Look up the DIX operation based on whether the command is read or
672  * write and whether dix and dif are enabled.
673  */
674 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
675 {
676 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
677 	static const unsigned int ops[] = {	/* wrt dix dif */
678 		SCSI_PROT_NORMAL,		/*  0	0   0  */
679 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
680 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
681 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
682 		SCSI_PROT_NORMAL,		/*  1	0   0  */
683 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
684 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
685 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
686 	};
687 
688 	return ops[write << 2 | dix << 1 | dif];
689 }
690 
691 /*
692  * Returns a mask of the protection flags that are valid for a given DIX
693  * operation.
694  */
695 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
696 {
697 	static const unsigned int flag_mask[] = {
698 		[SCSI_PROT_NORMAL]		= 0,
699 
700 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
701 						  SCSI_PROT_GUARD_CHECK |
702 						  SCSI_PROT_REF_CHECK |
703 						  SCSI_PROT_REF_INCREMENT,
704 
705 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
706 						  SCSI_PROT_IP_CHECKSUM,
707 
708 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
709 						  SCSI_PROT_GUARD_CHECK |
710 						  SCSI_PROT_REF_CHECK |
711 						  SCSI_PROT_REF_INCREMENT |
712 						  SCSI_PROT_IP_CHECKSUM,
713 
714 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
715 						  SCSI_PROT_REF_INCREMENT,
716 
717 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
718 						  SCSI_PROT_REF_CHECK |
719 						  SCSI_PROT_REF_INCREMENT |
720 						  SCSI_PROT_IP_CHECKSUM,
721 
722 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
723 						  SCSI_PROT_GUARD_CHECK |
724 						  SCSI_PROT_REF_CHECK |
725 						  SCSI_PROT_REF_INCREMENT |
726 						  SCSI_PROT_IP_CHECKSUM,
727 	};
728 
729 	return flag_mask[prot_op];
730 }
731 
732 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
733 					   unsigned int dix, unsigned int dif)
734 {
735 	struct bio *bio = scmd->request->bio;
736 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
737 	unsigned int protect = 0;
738 
739 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
740 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
741 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
742 
743 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
744 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
745 	}
746 
747 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
748 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
749 
750 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
751 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
752 	}
753 
754 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
755 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
756 
757 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
758 			protect = 3 << 5;	/* Disable target PI checking */
759 		else
760 			protect = 1 << 5;	/* Enable target PI checking */
761 	}
762 
763 	scsi_set_prot_op(scmd, prot_op);
764 	scsi_set_prot_type(scmd, dif);
765 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
766 
767 	return protect;
768 }
769 
770 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
771 {
772 	struct request_queue *q = sdkp->disk->queue;
773 	unsigned int logical_block_size = sdkp->device->sector_size;
774 	unsigned int max_blocks = 0;
775 
776 	q->limits.discard_alignment =
777 		sdkp->unmap_alignment * logical_block_size;
778 	q->limits.discard_granularity =
779 		max(sdkp->physical_block_size,
780 		    sdkp->unmap_granularity * logical_block_size);
781 	sdkp->provisioning_mode = mode;
782 
783 	switch (mode) {
784 
785 	case SD_LBP_FULL:
786 	case SD_LBP_DISABLE:
787 		blk_queue_max_discard_sectors(q, 0);
788 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
789 		return;
790 
791 	case SD_LBP_UNMAP:
792 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
793 					  (u32)SD_MAX_WS16_BLOCKS);
794 		break;
795 
796 	case SD_LBP_WS16:
797 		if (sdkp->device->unmap_limit_for_ws)
798 			max_blocks = sdkp->max_unmap_blocks;
799 		else
800 			max_blocks = sdkp->max_ws_blocks;
801 
802 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
803 		break;
804 
805 	case SD_LBP_WS10:
806 		if (sdkp->device->unmap_limit_for_ws)
807 			max_blocks = sdkp->max_unmap_blocks;
808 		else
809 			max_blocks = sdkp->max_ws_blocks;
810 
811 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
812 		break;
813 
814 	case SD_LBP_ZERO:
815 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
816 					  (u32)SD_MAX_WS10_BLOCKS);
817 		break;
818 	}
819 
820 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
821 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
822 }
823 
824 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
825 {
826 	struct scsi_device *sdp = cmd->device;
827 	struct request *rq = cmd->request;
828 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
829 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
830 	unsigned int data_len = 24;
831 	char *buf;
832 
833 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
834 	if (!rq->special_vec.bv_page)
835 		return BLK_STS_RESOURCE;
836 	clear_highpage(rq->special_vec.bv_page);
837 	rq->special_vec.bv_offset = 0;
838 	rq->special_vec.bv_len = data_len;
839 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
840 
841 	cmd->cmd_len = 10;
842 	cmd->cmnd[0] = UNMAP;
843 	cmd->cmnd[8] = 24;
844 
845 	buf = page_address(rq->special_vec.bv_page);
846 	put_unaligned_be16(6 + 16, &buf[0]);
847 	put_unaligned_be16(16, &buf[2]);
848 	put_unaligned_be64(lba, &buf[8]);
849 	put_unaligned_be32(nr_blocks, &buf[16]);
850 
851 	cmd->allowed = SD_MAX_RETRIES;
852 	cmd->transfersize = data_len;
853 	rq->timeout = SD_TIMEOUT;
854 
855 	return scsi_init_io(cmd);
856 }
857 
858 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
859 		bool unmap)
860 {
861 	struct scsi_device *sdp = cmd->device;
862 	struct request *rq = cmd->request;
863 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
864 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
865 	u32 data_len = sdp->sector_size;
866 
867 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
868 	if (!rq->special_vec.bv_page)
869 		return BLK_STS_RESOURCE;
870 	clear_highpage(rq->special_vec.bv_page);
871 	rq->special_vec.bv_offset = 0;
872 	rq->special_vec.bv_len = data_len;
873 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
874 
875 	cmd->cmd_len = 16;
876 	cmd->cmnd[0] = WRITE_SAME_16;
877 	if (unmap)
878 		cmd->cmnd[1] = 0x8; /* UNMAP */
879 	put_unaligned_be64(lba, &cmd->cmnd[2]);
880 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
881 
882 	cmd->allowed = SD_MAX_RETRIES;
883 	cmd->transfersize = data_len;
884 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
885 
886 	return scsi_init_io(cmd);
887 }
888 
889 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
890 		bool unmap)
891 {
892 	struct scsi_device *sdp = cmd->device;
893 	struct request *rq = cmd->request;
894 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
895 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
896 	u32 data_len = sdp->sector_size;
897 
898 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
899 	if (!rq->special_vec.bv_page)
900 		return BLK_STS_RESOURCE;
901 	clear_highpage(rq->special_vec.bv_page);
902 	rq->special_vec.bv_offset = 0;
903 	rq->special_vec.bv_len = data_len;
904 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
905 
906 	cmd->cmd_len = 10;
907 	cmd->cmnd[0] = WRITE_SAME;
908 	if (unmap)
909 		cmd->cmnd[1] = 0x8; /* UNMAP */
910 	put_unaligned_be32(lba, &cmd->cmnd[2]);
911 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
912 
913 	cmd->allowed = SD_MAX_RETRIES;
914 	cmd->transfersize = data_len;
915 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
916 
917 	return scsi_init_io(cmd);
918 }
919 
920 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
921 {
922 	struct request *rq = cmd->request;
923 	struct scsi_device *sdp = cmd->device;
924 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
925 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
926 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
927 
928 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
929 		switch (sdkp->zeroing_mode) {
930 		case SD_ZERO_WS16_UNMAP:
931 			return sd_setup_write_same16_cmnd(cmd, true);
932 		case SD_ZERO_WS10_UNMAP:
933 			return sd_setup_write_same10_cmnd(cmd, true);
934 		}
935 	}
936 
937 	if (sdp->no_write_same)
938 		return BLK_STS_TARGET;
939 
940 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
941 		return sd_setup_write_same16_cmnd(cmd, false);
942 
943 	return sd_setup_write_same10_cmnd(cmd, false);
944 }
945 
946 static void sd_config_write_same(struct scsi_disk *sdkp)
947 {
948 	struct request_queue *q = sdkp->disk->queue;
949 	unsigned int logical_block_size = sdkp->device->sector_size;
950 
951 	if (sdkp->device->no_write_same) {
952 		sdkp->max_ws_blocks = 0;
953 		goto out;
954 	}
955 
956 	/* Some devices can not handle block counts above 0xffff despite
957 	 * supporting WRITE SAME(16). Consequently we default to 64k
958 	 * blocks per I/O unless the device explicitly advertises a
959 	 * bigger limit.
960 	 */
961 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
962 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
963 						   (u32)SD_MAX_WS16_BLOCKS);
964 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
965 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
966 						   (u32)SD_MAX_WS10_BLOCKS);
967 	else {
968 		sdkp->device->no_write_same = 1;
969 		sdkp->max_ws_blocks = 0;
970 	}
971 
972 	if (sdkp->lbprz && sdkp->lbpws)
973 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
974 	else if (sdkp->lbprz && sdkp->lbpws10)
975 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
976 	else if (sdkp->max_ws_blocks)
977 		sdkp->zeroing_mode = SD_ZERO_WS;
978 	else
979 		sdkp->zeroing_mode = SD_ZERO_WRITE;
980 
981 	if (sdkp->max_ws_blocks &&
982 	    sdkp->physical_block_size > logical_block_size) {
983 		/*
984 		 * Reporting a maximum number of blocks that is not aligned
985 		 * on the device physical size would cause a large write same
986 		 * request to be split into physically unaligned chunks by
987 		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
988 		 * even if the caller of these functions took care to align the
989 		 * large request. So make sure the maximum reported is aligned
990 		 * to the device physical block size. This is only an optional
991 		 * optimization for regular disks, but this is mandatory to
992 		 * avoid failure of large write same requests directed at
993 		 * sequential write required zones of host-managed ZBC disks.
994 		 */
995 		sdkp->max_ws_blocks =
996 			round_down(sdkp->max_ws_blocks,
997 				   bytes_to_logical(sdkp->device,
998 						    sdkp->physical_block_size));
999 	}
1000 
1001 out:
1002 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1003 					 (logical_block_size >> 9));
1004 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1005 					 (logical_block_size >> 9));
1006 }
1007 
1008 /**
1009  * sd_setup_write_same_cmnd - write the same data to multiple blocks
1010  * @cmd: command to prepare
1011  *
1012  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1013  * the preference indicated by the target device.
1014  **/
1015 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1016 {
1017 	struct request *rq = cmd->request;
1018 	struct scsi_device *sdp = cmd->device;
1019 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1020 	struct bio *bio = rq->bio;
1021 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1022 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1023 	blk_status_t ret;
1024 
1025 	if (sdkp->device->no_write_same)
1026 		return BLK_STS_TARGET;
1027 
1028 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1029 
1030 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
1031 
1032 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1033 		cmd->cmd_len = 16;
1034 		cmd->cmnd[0] = WRITE_SAME_16;
1035 		put_unaligned_be64(lba, &cmd->cmnd[2]);
1036 		put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1037 	} else {
1038 		cmd->cmd_len = 10;
1039 		cmd->cmnd[0] = WRITE_SAME;
1040 		put_unaligned_be32(lba, &cmd->cmnd[2]);
1041 		put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1042 	}
1043 
1044 	cmd->transfersize = sdp->sector_size;
1045 	cmd->allowed = SD_MAX_RETRIES;
1046 
1047 	/*
1048 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
1049 	 * different from the amount of data actually written to the target.
1050 	 *
1051 	 * We set up __data_len to the amount of data transferred via the
1052 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1053 	 * to transfer a single sector of data first, but then reset it to
1054 	 * the amount of data to be written right after so that the I/O path
1055 	 * knows how much to actually write.
1056 	 */
1057 	rq->__data_len = sdp->sector_size;
1058 	ret = scsi_init_io(cmd);
1059 	rq->__data_len = blk_rq_bytes(rq);
1060 
1061 	return ret;
1062 }
1063 
1064 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1065 {
1066 	struct request *rq = cmd->request;
1067 
1068 	/* flush requests don't perform I/O, zero the S/G table */
1069 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1070 
1071 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1072 	cmd->cmd_len = 10;
1073 	cmd->transfersize = 0;
1074 	cmd->allowed = SD_MAX_RETRIES;
1075 
1076 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1077 	return BLK_STS_OK;
1078 }
1079 
1080 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1081 				       sector_t lba, unsigned int nr_blocks,
1082 				       unsigned char flags)
1083 {
1084 	cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1085 	if (unlikely(cmd->cmnd == NULL))
1086 		return BLK_STS_RESOURCE;
1087 
1088 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1089 	memset(cmd->cmnd, 0, cmd->cmd_len);
1090 
1091 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1092 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1093 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1094 	cmd->cmnd[10] = flags;
1095 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1096 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1097 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1098 
1099 	return BLK_STS_OK;
1100 }
1101 
1102 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1103 				       sector_t lba, unsigned int nr_blocks,
1104 				       unsigned char flags)
1105 {
1106 	cmd->cmd_len  = 16;
1107 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1108 	cmd->cmnd[1]  = flags;
1109 	cmd->cmnd[14] = 0;
1110 	cmd->cmnd[15] = 0;
1111 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1112 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1113 
1114 	return BLK_STS_OK;
1115 }
1116 
1117 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1118 				       sector_t lba, unsigned int nr_blocks,
1119 				       unsigned char flags)
1120 {
1121 	cmd->cmd_len = 10;
1122 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1123 	cmd->cmnd[1] = flags;
1124 	cmd->cmnd[6] = 0;
1125 	cmd->cmnd[9] = 0;
1126 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1127 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1128 
1129 	return BLK_STS_OK;
1130 }
1131 
1132 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1133 				      sector_t lba, unsigned int nr_blocks,
1134 				      unsigned char flags)
1135 {
1136 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1137 	if (WARN_ON_ONCE(nr_blocks == 0))
1138 		return BLK_STS_IOERR;
1139 
1140 	if (unlikely(flags & 0x8)) {
1141 		/*
1142 		 * This happens only if this drive failed 10byte rw
1143 		 * command with ILLEGAL_REQUEST during operation and
1144 		 * thus turned off use_10_for_rw.
1145 		 */
1146 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1147 		return BLK_STS_IOERR;
1148 	}
1149 
1150 	cmd->cmd_len = 6;
1151 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1152 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1153 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1154 	cmd->cmnd[3] = lba & 0xff;
1155 	cmd->cmnd[4] = nr_blocks;
1156 	cmd->cmnd[5] = 0;
1157 
1158 	return BLK_STS_OK;
1159 }
1160 
1161 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1162 {
1163 	struct request *rq = cmd->request;
1164 	struct scsi_device *sdp = cmd->device;
1165 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1166 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1167 	sector_t threshold;
1168 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1169 	bool dif, dix;
1170 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1171 	bool write = rq_data_dir(rq) == WRITE;
1172 	unsigned char protect, fua;
1173 	blk_status_t ret;
1174 
1175 	ret = scsi_init_io(cmd);
1176 	if (ret != BLK_STS_OK)
1177 		return ret;
1178 
1179 	if (!scsi_device_online(sdp) || sdp->changed) {
1180 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1181 		return BLK_STS_IOERR;
1182 	}
1183 
1184 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1185 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1186 		return BLK_STS_IOERR;
1187 	}
1188 
1189 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1190 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1191 		return BLK_STS_IOERR;
1192 	}
1193 
1194 	/*
1195 	 * Some SD card readers can't handle accesses which touch the
1196 	 * last one or two logical blocks. Split accesses as needed.
1197 	 */
1198 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1199 
1200 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1201 		if (lba < threshold) {
1202 			/* Access up to the threshold but not beyond */
1203 			nr_blocks = threshold - lba;
1204 		} else {
1205 			/* Access only a single logical block */
1206 			nr_blocks = 1;
1207 		}
1208 	}
1209 
1210 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1211 	dix = scsi_prot_sg_count(cmd);
1212 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1213 
1214 	if (dif || dix)
1215 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1216 	else
1217 		protect = 0;
1218 
1219 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1220 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1221 					 protect | fua);
1222 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1223 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1224 					 protect | fua);
1225 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1226 		   sdp->use_10_for_rw || protect) {
1227 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1228 					 protect | fua);
1229 	} else {
1230 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1231 					protect | fua);
1232 	}
1233 
1234 	if (unlikely(ret != BLK_STS_OK))
1235 		return ret;
1236 
1237 	/*
1238 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1239 	 * host adapter, it's safe to assume that we can at least transfer
1240 	 * this many bytes between each connect / disconnect.
1241 	 */
1242 	cmd->transfersize = sdp->sector_size;
1243 	cmd->underflow = nr_blocks << 9;
1244 	cmd->allowed = SD_MAX_RETRIES;
1245 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1246 
1247 	SCSI_LOG_HLQUEUE(1,
1248 			 scmd_printk(KERN_INFO, cmd,
1249 				     "%s: block=%llu, count=%d\n", __func__,
1250 				     (unsigned long long)blk_rq_pos(rq),
1251 				     blk_rq_sectors(rq)));
1252 	SCSI_LOG_HLQUEUE(2,
1253 			 scmd_printk(KERN_INFO, cmd,
1254 				     "%s %d/%u 512 byte blocks.\n",
1255 				     write ? "writing" : "reading", nr_blocks,
1256 				     blk_rq_sectors(rq)));
1257 
1258 	/*
1259 	 * This indicates that the command is ready from our end to be
1260 	 * queued.
1261 	 */
1262 	return BLK_STS_OK;
1263 }
1264 
1265 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1266 {
1267 	struct request *rq = cmd->request;
1268 
1269 	switch (req_op(rq)) {
1270 	case REQ_OP_DISCARD:
1271 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1272 		case SD_LBP_UNMAP:
1273 			return sd_setup_unmap_cmnd(cmd);
1274 		case SD_LBP_WS16:
1275 			return sd_setup_write_same16_cmnd(cmd, true);
1276 		case SD_LBP_WS10:
1277 			return sd_setup_write_same10_cmnd(cmd, true);
1278 		case SD_LBP_ZERO:
1279 			return sd_setup_write_same10_cmnd(cmd, false);
1280 		default:
1281 			return BLK_STS_TARGET;
1282 		}
1283 	case REQ_OP_WRITE_ZEROES:
1284 		return sd_setup_write_zeroes_cmnd(cmd);
1285 	case REQ_OP_WRITE_SAME:
1286 		return sd_setup_write_same_cmnd(cmd);
1287 	case REQ_OP_FLUSH:
1288 		return sd_setup_flush_cmnd(cmd);
1289 	case REQ_OP_READ:
1290 	case REQ_OP_WRITE:
1291 		return sd_setup_read_write_cmnd(cmd);
1292 	case REQ_OP_ZONE_RESET:
1293 		return sd_zbc_setup_reset_cmnd(cmd, false);
1294 	case REQ_OP_ZONE_RESET_ALL:
1295 		return sd_zbc_setup_reset_cmnd(cmd, true);
1296 	default:
1297 		WARN_ON_ONCE(1);
1298 		return BLK_STS_NOTSUPP;
1299 	}
1300 }
1301 
1302 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1303 {
1304 	struct request *rq = SCpnt->request;
1305 	u8 *cmnd;
1306 
1307 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1308 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1309 
1310 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1311 		cmnd = SCpnt->cmnd;
1312 		SCpnt->cmnd = NULL;
1313 		SCpnt->cmd_len = 0;
1314 		mempool_free(cmnd, sd_cdb_pool);
1315 	}
1316 }
1317 
1318 /**
1319  *	sd_open - open a scsi disk device
1320  *	@bdev: Block device of the scsi disk to open
1321  *	@mode: FMODE_* mask
1322  *
1323  *	Returns 0 if successful. Returns a negated errno value in case
1324  *	of error.
1325  *
1326  *	Note: This can be called from a user context (e.g. fsck(1) )
1327  *	or from within the kernel (e.g. as a result of a mount(1) ).
1328  *	In the latter case @inode and @filp carry an abridged amount
1329  *	of information as noted above.
1330  *
1331  *	Locking: called with bdev->bd_mutex held.
1332  **/
1333 static int sd_open(struct block_device *bdev, fmode_t mode)
1334 {
1335 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1336 	struct scsi_device *sdev;
1337 	int retval;
1338 
1339 	if (!sdkp)
1340 		return -ENXIO;
1341 
1342 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1343 
1344 	sdev = sdkp->device;
1345 
1346 	/*
1347 	 * If the device is in error recovery, wait until it is done.
1348 	 * If the device is offline, then disallow any access to it.
1349 	 */
1350 	retval = -ENXIO;
1351 	if (!scsi_block_when_processing_errors(sdev))
1352 		goto error_out;
1353 
1354 	if (sdev->removable || sdkp->write_prot)
1355 		check_disk_change(bdev);
1356 
1357 	/*
1358 	 * If the drive is empty, just let the open fail.
1359 	 */
1360 	retval = -ENOMEDIUM;
1361 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1362 		goto error_out;
1363 
1364 	/*
1365 	 * If the device has the write protect tab set, have the open fail
1366 	 * if the user expects to be able to write to the thing.
1367 	 */
1368 	retval = -EROFS;
1369 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1370 		goto error_out;
1371 
1372 	/*
1373 	 * It is possible that the disk changing stuff resulted in
1374 	 * the device being taken offline.  If this is the case,
1375 	 * report this to the user, and don't pretend that the
1376 	 * open actually succeeded.
1377 	 */
1378 	retval = -ENXIO;
1379 	if (!scsi_device_online(sdev))
1380 		goto error_out;
1381 
1382 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1383 		if (scsi_block_when_processing_errors(sdev))
1384 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1385 	}
1386 
1387 	return 0;
1388 
1389 error_out:
1390 	scsi_disk_put(sdkp);
1391 	return retval;
1392 }
1393 
1394 /**
1395  *	sd_release - invoked when the (last) close(2) is called on this
1396  *	scsi disk.
1397  *	@disk: disk to release
1398  *	@mode: FMODE_* mask
1399  *
1400  *	Returns 0.
1401  *
1402  *	Note: may block (uninterruptible) if error recovery is underway
1403  *	on this disk.
1404  *
1405  *	Locking: called with bdev->bd_mutex held.
1406  **/
1407 static void sd_release(struct gendisk *disk, fmode_t mode)
1408 {
1409 	struct scsi_disk *sdkp = scsi_disk(disk);
1410 	struct scsi_device *sdev = sdkp->device;
1411 
1412 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1413 
1414 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1415 		if (scsi_block_when_processing_errors(sdev))
1416 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1417 	}
1418 
1419 	scsi_disk_put(sdkp);
1420 }
1421 
1422 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1423 {
1424 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1425 	struct scsi_device *sdp = sdkp->device;
1426 	struct Scsi_Host *host = sdp->host;
1427 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1428 	int diskinfo[4];
1429 
1430 	/* default to most commonly used values */
1431 	diskinfo[0] = 0x40;	/* 1 << 6 */
1432 	diskinfo[1] = 0x20;	/* 1 << 5 */
1433 	diskinfo[2] = capacity >> 11;
1434 
1435 	/* override with calculated, extended default, or driver values */
1436 	if (host->hostt->bios_param)
1437 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1438 	else
1439 		scsicam_bios_param(bdev, capacity, diskinfo);
1440 
1441 	geo->heads = diskinfo[0];
1442 	geo->sectors = diskinfo[1];
1443 	geo->cylinders = diskinfo[2];
1444 	return 0;
1445 }
1446 
1447 /**
1448  *	sd_ioctl - process an ioctl
1449  *	@bdev: target block device
1450  *	@mode: FMODE_* mask
1451  *	@cmd: ioctl command number
1452  *	@arg: this is third argument given to ioctl(2) system call.
1453  *	Often contains a pointer.
1454  *
1455  *	Returns 0 if successful (some ioctls return positive numbers on
1456  *	success as well). Returns a negated errno value in case of error.
1457  *
1458  *	Note: most ioctls are forward onto the block subsystem or further
1459  *	down in the scsi subsystem.
1460  **/
1461 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1462 		    unsigned int cmd, unsigned long arg)
1463 {
1464 	struct gendisk *disk = bdev->bd_disk;
1465 	struct scsi_disk *sdkp = scsi_disk(disk);
1466 	struct scsi_device *sdp = sdkp->device;
1467 	void __user *p = (void __user *)arg;
1468 	int error;
1469 
1470 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1471 				    "cmd=0x%x\n", disk->disk_name, cmd));
1472 
1473 	error = scsi_verify_blk_ioctl(bdev, cmd);
1474 	if (error < 0)
1475 		return error;
1476 
1477 	/*
1478 	 * If we are in the middle of error recovery, don't let anyone
1479 	 * else try and use this device.  Also, if error recovery fails, it
1480 	 * may try and take the device offline, in which case all further
1481 	 * access to the device is prohibited.
1482 	 */
1483 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1484 			(mode & FMODE_NDELAY) != 0);
1485 	if (error)
1486 		goto out;
1487 
1488 	if (is_sed_ioctl(cmd))
1489 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1490 
1491 	/*
1492 	 * Send SCSI addressing ioctls directly to mid level, send other
1493 	 * ioctls to block level and then onto mid level if they can't be
1494 	 * resolved.
1495 	 */
1496 	switch (cmd) {
1497 		case SCSI_IOCTL_GET_IDLUN:
1498 		case SCSI_IOCTL_GET_BUS_NUMBER:
1499 			error = scsi_ioctl(sdp, cmd, p);
1500 			break;
1501 		default:
1502 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1503 			if (error != -ENOTTY)
1504 				break;
1505 			error = scsi_ioctl(sdp, cmd, p);
1506 			break;
1507 	}
1508 out:
1509 	return error;
1510 }
1511 
1512 static void set_media_not_present(struct scsi_disk *sdkp)
1513 {
1514 	if (sdkp->media_present)
1515 		sdkp->device->changed = 1;
1516 
1517 	if (sdkp->device->removable) {
1518 		sdkp->media_present = 0;
1519 		sdkp->capacity = 0;
1520 	}
1521 }
1522 
1523 static int media_not_present(struct scsi_disk *sdkp,
1524 			     struct scsi_sense_hdr *sshdr)
1525 {
1526 	if (!scsi_sense_valid(sshdr))
1527 		return 0;
1528 
1529 	/* not invoked for commands that could return deferred errors */
1530 	switch (sshdr->sense_key) {
1531 	case UNIT_ATTENTION:
1532 	case NOT_READY:
1533 		/* medium not present */
1534 		if (sshdr->asc == 0x3A) {
1535 			set_media_not_present(sdkp);
1536 			return 1;
1537 		}
1538 	}
1539 	return 0;
1540 }
1541 
1542 /**
1543  *	sd_check_events - check media events
1544  *	@disk: kernel device descriptor
1545  *	@clearing: disk events currently being cleared
1546  *
1547  *	Returns mask of DISK_EVENT_*.
1548  *
1549  *	Note: this function is invoked from the block subsystem.
1550  **/
1551 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1552 {
1553 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1554 	struct scsi_device *sdp;
1555 	int retval;
1556 
1557 	if (!sdkp)
1558 		return 0;
1559 
1560 	sdp = sdkp->device;
1561 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1562 
1563 	/*
1564 	 * If the device is offline, don't send any commands - just pretend as
1565 	 * if the command failed.  If the device ever comes back online, we
1566 	 * can deal with it then.  It is only because of unrecoverable errors
1567 	 * that we would ever take a device offline in the first place.
1568 	 */
1569 	if (!scsi_device_online(sdp)) {
1570 		set_media_not_present(sdkp);
1571 		goto out;
1572 	}
1573 
1574 	/*
1575 	 * Using TEST_UNIT_READY enables differentiation between drive with
1576 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1577 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1578 	 *
1579 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1580 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1581 	 * sd_revalidate() is called.
1582 	 */
1583 	if (scsi_block_when_processing_errors(sdp)) {
1584 		struct scsi_sense_hdr sshdr = { 0, };
1585 
1586 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1587 					      &sshdr);
1588 
1589 		/* failed to execute TUR, assume media not present */
1590 		if (host_byte(retval)) {
1591 			set_media_not_present(sdkp);
1592 			goto out;
1593 		}
1594 
1595 		if (media_not_present(sdkp, &sshdr))
1596 			goto out;
1597 	}
1598 
1599 	/*
1600 	 * For removable scsi disk we have to recognise the presence
1601 	 * of a disk in the drive.
1602 	 */
1603 	if (!sdkp->media_present)
1604 		sdp->changed = 1;
1605 	sdkp->media_present = 1;
1606 out:
1607 	/*
1608 	 * sdp->changed is set under the following conditions:
1609 	 *
1610 	 *	Medium present state has changed in either direction.
1611 	 *	Device has indicated UNIT_ATTENTION.
1612 	 */
1613 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1614 	sdp->changed = 0;
1615 	scsi_disk_put(sdkp);
1616 	return retval;
1617 }
1618 
1619 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1620 {
1621 	int retries, res;
1622 	struct scsi_device *sdp = sdkp->device;
1623 	const int timeout = sdp->request_queue->rq_timeout
1624 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1625 	struct scsi_sense_hdr my_sshdr;
1626 
1627 	if (!scsi_device_online(sdp))
1628 		return -ENODEV;
1629 
1630 	/* caller might not be interested in sense, but we need it */
1631 	if (!sshdr)
1632 		sshdr = &my_sshdr;
1633 
1634 	for (retries = 3; retries > 0; --retries) {
1635 		unsigned char cmd[10] = { 0 };
1636 
1637 		cmd[0] = SYNCHRONIZE_CACHE;
1638 		/*
1639 		 * Leave the rest of the command zero to indicate
1640 		 * flush everything.
1641 		 */
1642 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1643 				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1644 		if (res == 0)
1645 			break;
1646 	}
1647 
1648 	if (res) {
1649 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1650 
1651 		if (driver_byte(res) == DRIVER_SENSE)
1652 			sd_print_sense_hdr(sdkp, sshdr);
1653 
1654 		/* we need to evaluate the error return  */
1655 		if (scsi_sense_valid(sshdr) &&
1656 			(sshdr->asc == 0x3a ||	/* medium not present */
1657 			 sshdr->asc == 0x20 ||	/* invalid command */
1658 			 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)))	/* drive is password locked */
1659 				/* this is no error here */
1660 				return 0;
1661 
1662 		switch (host_byte(res)) {
1663 		/* ignore errors due to racing a disconnection */
1664 		case DID_BAD_TARGET:
1665 		case DID_NO_CONNECT:
1666 			return 0;
1667 		/* signal the upper layer it might try again */
1668 		case DID_BUS_BUSY:
1669 		case DID_IMM_RETRY:
1670 		case DID_REQUEUE:
1671 		case DID_SOFT_ERROR:
1672 			return -EBUSY;
1673 		default:
1674 			return -EIO;
1675 		}
1676 	}
1677 	return 0;
1678 }
1679 
1680 static void sd_rescan(struct device *dev)
1681 {
1682 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1683 
1684 	revalidate_disk(sdkp->disk);
1685 }
1686 
1687 
1688 #ifdef CONFIG_COMPAT
1689 /*
1690  * This gets directly called from VFS. When the ioctl
1691  * is not recognized we go back to the other translation paths.
1692  */
1693 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1694 			   unsigned int cmd, unsigned long arg)
1695 {
1696 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1697 	int error;
1698 
1699 	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1700 			(mode & FMODE_NDELAY) != 0);
1701 	if (error)
1702 		return error;
1703 
1704 	/*
1705 	 * Let the static ioctl translation table take care of it.
1706 	 */
1707 	if (!sdev->host->hostt->compat_ioctl)
1708 		return -ENOIOCTLCMD;
1709 	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1710 }
1711 #endif
1712 
1713 static char sd_pr_type(enum pr_type type)
1714 {
1715 	switch (type) {
1716 	case PR_WRITE_EXCLUSIVE:
1717 		return 0x01;
1718 	case PR_EXCLUSIVE_ACCESS:
1719 		return 0x03;
1720 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1721 		return 0x05;
1722 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1723 		return 0x06;
1724 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1725 		return 0x07;
1726 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1727 		return 0x08;
1728 	default:
1729 		return 0;
1730 	}
1731 };
1732 
1733 static int sd_pr_command(struct block_device *bdev, u8 sa,
1734 		u64 key, u64 sa_key, u8 type, u8 flags)
1735 {
1736 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1737 	struct scsi_sense_hdr sshdr;
1738 	int result;
1739 	u8 cmd[16] = { 0, };
1740 	u8 data[24] = { 0, };
1741 
1742 	cmd[0] = PERSISTENT_RESERVE_OUT;
1743 	cmd[1] = sa;
1744 	cmd[2] = type;
1745 	put_unaligned_be32(sizeof(data), &cmd[5]);
1746 
1747 	put_unaligned_be64(key, &data[0]);
1748 	put_unaligned_be64(sa_key, &data[8]);
1749 	data[20] = flags;
1750 
1751 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1752 			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1753 
1754 	if (driver_byte(result) == DRIVER_SENSE &&
1755 	    scsi_sense_valid(&sshdr)) {
1756 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1757 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1758 	}
1759 
1760 	return result;
1761 }
1762 
1763 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1764 		u32 flags)
1765 {
1766 	if (flags & ~PR_FL_IGNORE_KEY)
1767 		return -EOPNOTSUPP;
1768 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1769 			old_key, new_key, 0,
1770 			(1 << 0) /* APTPL */);
1771 }
1772 
1773 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1774 		u32 flags)
1775 {
1776 	if (flags)
1777 		return -EOPNOTSUPP;
1778 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1779 }
1780 
1781 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1782 {
1783 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1784 }
1785 
1786 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1787 		enum pr_type type, bool abort)
1788 {
1789 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1790 			     sd_pr_type(type), 0);
1791 }
1792 
1793 static int sd_pr_clear(struct block_device *bdev, u64 key)
1794 {
1795 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1796 }
1797 
1798 static const struct pr_ops sd_pr_ops = {
1799 	.pr_register	= sd_pr_register,
1800 	.pr_reserve	= sd_pr_reserve,
1801 	.pr_release	= sd_pr_release,
1802 	.pr_preempt	= sd_pr_preempt,
1803 	.pr_clear	= sd_pr_clear,
1804 };
1805 
1806 static const struct block_device_operations sd_fops = {
1807 	.owner			= THIS_MODULE,
1808 	.open			= sd_open,
1809 	.release		= sd_release,
1810 	.ioctl			= sd_ioctl,
1811 	.getgeo			= sd_getgeo,
1812 #ifdef CONFIG_COMPAT
1813 	.compat_ioctl		= sd_compat_ioctl,
1814 #endif
1815 	.check_events		= sd_check_events,
1816 	.revalidate_disk	= sd_revalidate_disk,
1817 	.unlock_native_capacity	= sd_unlock_native_capacity,
1818 	.report_zones		= sd_zbc_report_zones,
1819 	.pr_ops			= &sd_pr_ops,
1820 };
1821 
1822 /**
1823  *	sd_eh_reset - reset error handling callback
1824  *	@scmd:		sd-issued command that has failed
1825  *
1826  *	This function is called by the SCSI midlayer before starting
1827  *	SCSI EH. When counting medium access failures we have to be
1828  *	careful to register it only only once per device and SCSI EH run;
1829  *	there might be several timed out commands which will cause the
1830  *	'max_medium_access_timeouts' counter to trigger after the first
1831  *	SCSI EH run already and set the device to offline.
1832  *	So this function resets the internal counter before starting SCSI EH.
1833  **/
1834 static void sd_eh_reset(struct scsi_cmnd *scmd)
1835 {
1836 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1837 
1838 	/* New SCSI EH run, reset gate variable */
1839 	sdkp->ignore_medium_access_errors = false;
1840 }
1841 
1842 /**
1843  *	sd_eh_action - error handling callback
1844  *	@scmd:		sd-issued command that has failed
1845  *	@eh_disp:	The recovery disposition suggested by the midlayer
1846  *
1847  *	This function is called by the SCSI midlayer upon completion of an
1848  *	error test command (currently TEST UNIT READY). The result of sending
1849  *	the eh command is passed in eh_disp.  We're looking for devices that
1850  *	fail medium access commands but are OK with non access commands like
1851  *	test unit ready (so wrongly see the device as having a successful
1852  *	recovery)
1853  **/
1854 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1855 {
1856 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1857 	struct scsi_device *sdev = scmd->device;
1858 
1859 	if (!scsi_device_online(sdev) ||
1860 	    !scsi_medium_access_command(scmd) ||
1861 	    host_byte(scmd->result) != DID_TIME_OUT ||
1862 	    eh_disp != SUCCESS)
1863 		return eh_disp;
1864 
1865 	/*
1866 	 * The device has timed out executing a medium access command.
1867 	 * However, the TEST UNIT READY command sent during error
1868 	 * handling completed successfully. Either the device is in the
1869 	 * process of recovering or has it suffered an internal failure
1870 	 * that prevents access to the storage medium.
1871 	 */
1872 	if (!sdkp->ignore_medium_access_errors) {
1873 		sdkp->medium_access_timed_out++;
1874 		sdkp->ignore_medium_access_errors = true;
1875 	}
1876 
1877 	/*
1878 	 * If the device keeps failing read/write commands but TEST UNIT
1879 	 * READY always completes successfully we assume that medium
1880 	 * access is no longer possible and take the device offline.
1881 	 */
1882 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1883 		scmd_printk(KERN_ERR, scmd,
1884 			    "Medium access timeout failure. Offlining disk!\n");
1885 		mutex_lock(&sdev->state_mutex);
1886 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1887 		mutex_unlock(&sdev->state_mutex);
1888 
1889 		return SUCCESS;
1890 	}
1891 
1892 	return eh_disp;
1893 }
1894 
1895 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1896 {
1897 	struct request *req = scmd->request;
1898 	struct scsi_device *sdev = scmd->device;
1899 	unsigned int transferred, good_bytes;
1900 	u64 start_lba, end_lba, bad_lba;
1901 
1902 	/*
1903 	 * Some commands have a payload smaller than the device logical
1904 	 * block size (e.g. INQUIRY on a 4K disk).
1905 	 */
1906 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1907 		return 0;
1908 
1909 	/* Check if we have a 'bad_lba' information */
1910 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1911 				     SCSI_SENSE_BUFFERSIZE,
1912 				     &bad_lba))
1913 		return 0;
1914 
1915 	/*
1916 	 * If the bad lba was reported incorrectly, we have no idea where
1917 	 * the error is.
1918 	 */
1919 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1920 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1921 	if (bad_lba < start_lba || bad_lba >= end_lba)
1922 		return 0;
1923 
1924 	/*
1925 	 * resid is optional but mostly filled in.  When it's unused,
1926 	 * its value is zero, so we assume the whole buffer transferred
1927 	 */
1928 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1929 
1930 	/* This computation should always be done in terms of the
1931 	 * resolution of the device's medium.
1932 	 */
1933 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1934 
1935 	return min(good_bytes, transferred);
1936 }
1937 
1938 /**
1939  *	sd_done - bottom half handler: called when the lower level
1940  *	driver has completed (successfully or otherwise) a scsi command.
1941  *	@SCpnt: mid-level's per command structure.
1942  *
1943  *	Note: potentially run from within an ISR. Must not block.
1944  **/
1945 static int sd_done(struct scsi_cmnd *SCpnt)
1946 {
1947 	int result = SCpnt->result;
1948 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1949 	unsigned int sector_size = SCpnt->device->sector_size;
1950 	unsigned int resid;
1951 	struct scsi_sense_hdr sshdr;
1952 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1953 	struct request *req = SCpnt->request;
1954 	int sense_valid = 0;
1955 	int sense_deferred = 0;
1956 
1957 	switch (req_op(req)) {
1958 	case REQ_OP_DISCARD:
1959 	case REQ_OP_WRITE_ZEROES:
1960 	case REQ_OP_WRITE_SAME:
1961 	case REQ_OP_ZONE_RESET:
1962 	case REQ_OP_ZONE_RESET_ALL:
1963 		if (!result) {
1964 			good_bytes = blk_rq_bytes(req);
1965 			scsi_set_resid(SCpnt, 0);
1966 		} else {
1967 			good_bytes = 0;
1968 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1969 		}
1970 		break;
1971 	default:
1972 		/*
1973 		 * In case of bogus fw or device, we could end up having
1974 		 * an unaligned partial completion. Check this here and force
1975 		 * alignment.
1976 		 */
1977 		resid = scsi_get_resid(SCpnt);
1978 		if (resid & (sector_size - 1)) {
1979 			sd_printk(KERN_INFO, sdkp,
1980 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1981 				resid, sector_size);
1982 			scsi_print_command(SCpnt);
1983 			resid = min(scsi_bufflen(SCpnt),
1984 				    round_up(resid, sector_size));
1985 			scsi_set_resid(SCpnt, resid);
1986 		}
1987 	}
1988 
1989 	if (result) {
1990 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1991 		if (sense_valid)
1992 			sense_deferred = scsi_sense_is_deferred(&sshdr);
1993 	}
1994 	sdkp->medium_access_timed_out = 0;
1995 
1996 	if (driver_byte(result) != DRIVER_SENSE &&
1997 	    (!sense_valid || sense_deferred))
1998 		goto out;
1999 
2000 	switch (sshdr.sense_key) {
2001 	case HARDWARE_ERROR:
2002 	case MEDIUM_ERROR:
2003 		good_bytes = sd_completed_bytes(SCpnt);
2004 		break;
2005 	case RECOVERED_ERROR:
2006 		good_bytes = scsi_bufflen(SCpnt);
2007 		break;
2008 	case NO_SENSE:
2009 		/* This indicates a false check condition, so ignore it.  An
2010 		 * unknown amount of data was transferred so treat it as an
2011 		 * error.
2012 		 */
2013 		SCpnt->result = 0;
2014 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2015 		break;
2016 	case ABORTED_COMMAND:
2017 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2018 			good_bytes = sd_completed_bytes(SCpnt);
2019 		break;
2020 	case ILLEGAL_REQUEST:
2021 		switch (sshdr.asc) {
2022 		case 0x10:	/* DIX: Host detected corruption */
2023 			good_bytes = sd_completed_bytes(SCpnt);
2024 			break;
2025 		case 0x20:	/* INVALID COMMAND OPCODE */
2026 		case 0x24:	/* INVALID FIELD IN CDB */
2027 			switch (SCpnt->cmnd[0]) {
2028 			case UNMAP:
2029 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2030 				break;
2031 			case WRITE_SAME_16:
2032 			case WRITE_SAME:
2033 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2034 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2035 				} else {
2036 					sdkp->device->no_write_same = 1;
2037 					sd_config_write_same(sdkp);
2038 					req->rq_flags |= RQF_QUIET;
2039 				}
2040 				break;
2041 			}
2042 		}
2043 		break;
2044 	default:
2045 		break;
2046 	}
2047 
2048  out:
2049 	if (sd_is_zoned(sdkp))
2050 		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2051 
2052 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2053 					   "sd_done: completed %d of %d bytes\n",
2054 					   good_bytes, scsi_bufflen(SCpnt)));
2055 
2056 	return good_bytes;
2057 }
2058 
2059 /*
2060  * spinup disk - called only in sd_revalidate_disk()
2061  */
2062 static void
2063 sd_spinup_disk(struct scsi_disk *sdkp)
2064 {
2065 	unsigned char cmd[10];
2066 	unsigned long spintime_expire = 0;
2067 	int retries, spintime;
2068 	unsigned int the_result;
2069 	struct scsi_sense_hdr sshdr;
2070 	int sense_valid = 0;
2071 
2072 	spintime = 0;
2073 
2074 	/* Spin up drives, as required.  Only do this at boot time */
2075 	/* Spinup needs to be done for module loads too. */
2076 	do {
2077 		retries = 0;
2078 
2079 		do {
2080 			cmd[0] = TEST_UNIT_READY;
2081 			memset((void *) &cmd[1], 0, 9);
2082 
2083 			the_result = scsi_execute_req(sdkp->device, cmd,
2084 						      DMA_NONE, NULL, 0,
2085 						      &sshdr, SD_TIMEOUT,
2086 						      SD_MAX_RETRIES, NULL);
2087 
2088 			/*
2089 			 * If the drive has indicated to us that it
2090 			 * doesn't have any media in it, don't bother
2091 			 * with any more polling.
2092 			 */
2093 			if (media_not_present(sdkp, &sshdr))
2094 				return;
2095 
2096 			if (the_result)
2097 				sense_valid = scsi_sense_valid(&sshdr);
2098 			retries++;
2099 		} while (retries < 3 &&
2100 			 (!scsi_status_is_good(the_result) ||
2101 			  ((driver_byte(the_result) == DRIVER_SENSE) &&
2102 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2103 
2104 		if (driver_byte(the_result) != DRIVER_SENSE) {
2105 			/* no sense, TUR either succeeded or failed
2106 			 * with a status error */
2107 			if(!spintime && !scsi_status_is_good(the_result)) {
2108 				sd_print_result(sdkp, "Test Unit Ready failed",
2109 						the_result);
2110 			}
2111 			break;
2112 		}
2113 
2114 		/*
2115 		 * The device does not want the automatic start to be issued.
2116 		 */
2117 		if (sdkp->device->no_start_on_add)
2118 			break;
2119 
2120 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2121 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2122 				break;	/* manual intervention required */
2123 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2124 				break;	/* standby */
2125 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2126 				break;	/* unavailable */
2127 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2128 				break;	/* sanitize in progress */
2129 			/*
2130 			 * Issue command to spin up drive when not ready
2131 			 */
2132 			if (!spintime) {
2133 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2134 				cmd[0] = START_STOP;
2135 				cmd[1] = 1;	/* Return immediately */
2136 				memset((void *) &cmd[2], 0, 8);
2137 				cmd[4] = 1;	/* Start spin cycle */
2138 				if (sdkp->device->start_stop_pwr_cond)
2139 					cmd[4] |= 1 << 4;
2140 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2141 						 NULL, 0, &sshdr,
2142 						 SD_TIMEOUT, SD_MAX_RETRIES,
2143 						 NULL);
2144 				spintime_expire = jiffies + 100 * HZ;
2145 				spintime = 1;
2146 			}
2147 			/* Wait 1 second for next try */
2148 			msleep(1000);
2149 			printk(KERN_CONT ".");
2150 
2151 		/*
2152 		 * Wait for USB flash devices with slow firmware.
2153 		 * Yes, this sense key/ASC combination shouldn't
2154 		 * occur here.  It's characteristic of these devices.
2155 		 */
2156 		} else if (sense_valid &&
2157 				sshdr.sense_key == UNIT_ATTENTION &&
2158 				sshdr.asc == 0x28) {
2159 			if (!spintime) {
2160 				spintime_expire = jiffies + 5 * HZ;
2161 				spintime = 1;
2162 			}
2163 			/* Wait 1 second for next try */
2164 			msleep(1000);
2165 		} else {
2166 			/* we don't understand the sense code, so it's
2167 			 * probably pointless to loop */
2168 			if(!spintime) {
2169 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2170 				sd_print_sense_hdr(sdkp, &sshdr);
2171 			}
2172 			break;
2173 		}
2174 
2175 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2176 
2177 	if (spintime) {
2178 		if (scsi_status_is_good(the_result))
2179 			printk(KERN_CONT "ready\n");
2180 		else
2181 			printk(KERN_CONT "not responding...\n");
2182 	}
2183 }
2184 
2185 /*
2186  * Determine whether disk supports Data Integrity Field.
2187  */
2188 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2189 {
2190 	struct scsi_device *sdp = sdkp->device;
2191 	u8 type;
2192 	int ret = 0;
2193 
2194 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2195 		return ret;
2196 
2197 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2198 
2199 	if (type > T10_PI_TYPE3_PROTECTION)
2200 		ret = -ENODEV;
2201 	else if (scsi_host_dif_capable(sdp->host, type))
2202 		ret = 1;
2203 
2204 	if (sdkp->first_scan || type != sdkp->protection_type)
2205 		switch (ret) {
2206 		case -ENODEV:
2207 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2208 				  " protection type %u. Disabling disk!\n",
2209 				  type);
2210 			break;
2211 		case 1:
2212 			sd_printk(KERN_NOTICE, sdkp,
2213 				  "Enabling DIF Type %u protection\n", type);
2214 			break;
2215 		case 0:
2216 			sd_printk(KERN_NOTICE, sdkp,
2217 				  "Disabling DIF Type %u protection\n", type);
2218 			break;
2219 		}
2220 
2221 	sdkp->protection_type = type;
2222 
2223 	return ret;
2224 }
2225 
2226 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2227 			struct scsi_sense_hdr *sshdr, int sense_valid,
2228 			int the_result)
2229 {
2230 	if (driver_byte(the_result) == DRIVER_SENSE)
2231 		sd_print_sense_hdr(sdkp, sshdr);
2232 	else
2233 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2234 
2235 	/*
2236 	 * Set dirty bit for removable devices if not ready -
2237 	 * sometimes drives will not report this properly.
2238 	 */
2239 	if (sdp->removable &&
2240 	    sense_valid && sshdr->sense_key == NOT_READY)
2241 		set_media_not_present(sdkp);
2242 
2243 	/*
2244 	 * We used to set media_present to 0 here to indicate no media
2245 	 * in the drive, but some drives fail read capacity even with
2246 	 * media present, so we can't do that.
2247 	 */
2248 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2249 }
2250 
2251 #define RC16_LEN 32
2252 #if RC16_LEN > SD_BUF_SIZE
2253 #error RC16_LEN must not be more than SD_BUF_SIZE
2254 #endif
2255 
2256 #define READ_CAPACITY_RETRIES_ON_RESET	10
2257 
2258 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2259 						unsigned char *buffer)
2260 {
2261 	unsigned char cmd[16];
2262 	struct scsi_sense_hdr sshdr;
2263 	int sense_valid = 0;
2264 	int the_result;
2265 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2266 	unsigned int alignment;
2267 	unsigned long long lba;
2268 	unsigned sector_size;
2269 
2270 	if (sdp->no_read_capacity_16)
2271 		return -EINVAL;
2272 
2273 	do {
2274 		memset(cmd, 0, 16);
2275 		cmd[0] = SERVICE_ACTION_IN_16;
2276 		cmd[1] = SAI_READ_CAPACITY_16;
2277 		cmd[13] = RC16_LEN;
2278 		memset(buffer, 0, RC16_LEN);
2279 
2280 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2281 					buffer, RC16_LEN, &sshdr,
2282 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2283 
2284 		if (media_not_present(sdkp, &sshdr))
2285 			return -ENODEV;
2286 
2287 		if (the_result) {
2288 			sense_valid = scsi_sense_valid(&sshdr);
2289 			if (sense_valid &&
2290 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2291 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2292 			    sshdr.ascq == 0x00)
2293 				/* Invalid Command Operation Code or
2294 				 * Invalid Field in CDB, just retry
2295 				 * silently with RC10 */
2296 				return -EINVAL;
2297 			if (sense_valid &&
2298 			    sshdr.sense_key == UNIT_ATTENTION &&
2299 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2300 				/* Device reset might occur several times,
2301 				 * give it one more chance */
2302 				if (--reset_retries > 0)
2303 					continue;
2304 		}
2305 		retries--;
2306 
2307 	} while (the_result && retries);
2308 
2309 	if (the_result) {
2310 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2311 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2312 		return -EINVAL;
2313 	}
2314 
2315 	sector_size = get_unaligned_be32(&buffer[8]);
2316 	lba = get_unaligned_be64(&buffer[0]);
2317 
2318 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2319 		sdkp->capacity = 0;
2320 		return -ENODEV;
2321 	}
2322 
2323 	/* Logical blocks per physical block exponent */
2324 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2325 
2326 	/* RC basis */
2327 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2328 
2329 	/* Lowest aligned logical block */
2330 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2331 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2332 	if (alignment && sdkp->first_scan)
2333 		sd_printk(KERN_NOTICE, sdkp,
2334 			  "physical block alignment offset: %u\n", alignment);
2335 
2336 	if (buffer[14] & 0x80) { /* LBPME */
2337 		sdkp->lbpme = 1;
2338 
2339 		if (buffer[14] & 0x40) /* LBPRZ */
2340 			sdkp->lbprz = 1;
2341 
2342 		sd_config_discard(sdkp, SD_LBP_WS16);
2343 	}
2344 
2345 	sdkp->capacity = lba + 1;
2346 	return sector_size;
2347 }
2348 
2349 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2350 						unsigned char *buffer)
2351 {
2352 	unsigned char cmd[16];
2353 	struct scsi_sense_hdr sshdr;
2354 	int sense_valid = 0;
2355 	int the_result;
2356 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2357 	sector_t lba;
2358 	unsigned sector_size;
2359 
2360 	do {
2361 		cmd[0] = READ_CAPACITY;
2362 		memset(&cmd[1], 0, 9);
2363 		memset(buffer, 0, 8);
2364 
2365 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2366 					buffer, 8, &sshdr,
2367 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2368 
2369 		if (media_not_present(sdkp, &sshdr))
2370 			return -ENODEV;
2371 
2372 		if (the_result) {
2373 			sense_valid = scsi_sense_valid(&sshdr);
2374 			if (sense_valid &&
2375 			    sshdr.sense_key == UNIT_ATTENTION &&
2376 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2377 				/* Device reset might occur several times,
2378 				 * give it one more chance */
2379 				if (--reset_retries > 0)
2380 					continue;
2381 		}
2382 		retries--;
2383 
2384 	} while (the_result && retries);
2385 
2386 	if (the_result) {
2387 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2388 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2389 		return -EINVAL;
2390 	}
2391 
2392 	sector_size = get_unaligned_be32(&buffer[4]);
2393 	lba = get_unaligned_be32(&buffer[0]);
2394 
2395 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2396 		/* Some buggy (usb cardreader) devices return an lba of
2397 		   0xffffffff when the want to report a size of 0 (with
2398 		   which they really mean no media is present) */
2399 		sdkp->capacity = 0;
2400 		sdkp->physical_block_size = sector_size;
2401 		return sector_size;
2402 	}
2403 
2404 	sdkp->capacity = lba + 1;
2405 	sdkp->physical_block_size = sector_size;
2406 	return sector_size;
2407 }
2408 
2409 static int sd_try_rc16_first(struct scsi_device *sdp)
2410 {
2411 	if (sdp->host->max_cmd_len < 16)
2412 		return 0;
2413 	if (sdp->try_rc_10_first)
2414 		return 0;
2415 	if (sdp->scsi_level > SCSI_SPC_2)
2416 		return 1;
2417 	if (scsi_device_protection(sdp))
2418 		return 1;
2419 	return 0;
2420 }
2421 
2422 /*
2423  * read disk capacity
2424  */
2425 static void
2426 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2427 {
2428 	int sector_size;
2429 	struct scsi_device *sdp = sdkp->device;
2430 
2431 	if (sd_try_rc16_first(sdp)) {
2432 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2433 		if (sector_size == -EOVERFLOW)
2434 			goto got_data;
2435 		if (sector_size == -ENODEV)
2436 			return;
2437 		if (sector_size < 0)
2438 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2439 		if (sector_size < 0)
2440 			return;
2441 	} else {
2442 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2443 		if (sector_size == -EOVERFLOW)
2444 			goto got_data;
2445 		if (sector_size < 0)
2446 			return;
2447 		if ((sizeof(sdkp->capacity) > 4) &&
2448 		    (sdkp->capacity > 0xffffffffULL)) {
2449 			int old_sector_size = sector_size;
2450 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2451 					"Trying to use READ CAPACITY(16).\n");
2452 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2453 			if (sector_size < 0) {
2454 				sd_printk(KERN_NOTICE, sdkp,
2455 					"Using 0xffffffff as device size\n");
2456 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2457 				sector_size = old_sector_size;
2458 				goto got_data;
2459 			}
2460 			/* Remember that READ CAPACITY(16) succeeded */
2461 			sdp->try_rc_10_first = 0;
2462 		}
2463 	}
2464 
2465 	/* Some devices are known to return the total number of blocks,
2466 	 * not the highest block number.  Some devices have versions
2467 	 * which do this and others which do not.  Some devices we might
2468 	 * suspect of doing this but we don't know for certain.
2469 	 *
2470 	 * If we know the reported capacity is wrong, decrement it.  If
2471 	 * we can only guess, then assume the number of blocks is even
2472 	 * (usually true but not always) and err on the side of lowering
2473 	 * the capacity.
2474 	 */
2475 	if (sdp->fix_capacity ||
2476 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2477 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2478 				"from its reported value: %llu\n",
2479 				(unsigned long long) sdkp->capacity);
2480 		--sdkp->capacity;
2481 	}
2482 
2483 got_data:
2484 	if (sector_size == 0) {
2485 		sector_size = 512;
2486 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2487 			  "assuming 512.\n");
2488 	}
2489 
2490 	if (sector_size != 512 &&
2491 	    sector_size != 1024 &&
2492 	    sector_size != 2048 &&
2493 	    sector_size != 4096) {
2494 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2495 			  sector_size);
2496 		/*
2497 		 * The user might want to re-format the drive with
2498 		 * a supported sectorsize.  Once this happens, it
2499 		 * would be relatively trivial to set the thing up.
2500 		 * For this reason, we leave the thing in the table.
2501 		 */
2502 		sdkp->capacity = 0;
2503 		/*
2504 		 * set a bogus sector size so the normal read/write
2505 		 * logic in the block layer will eventually refuse any
2506 		 * request on this device without tripping over power
2507 		 * of two sector size assumptions
2508 		 */
2509 		sector_size = 512;
2510 	}
2511 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2512 	blk_queue_physical_block_size(sdp->request_queue,
2513 				      sdkp->physical_block_size);
2514 	sdkp->device->sector_size = sector_size;
2515 
2516 	if (sdkp->capacity > 0xffffffff)
2517 		sdp->use_16_for_rw = 1;
2518 
2519 }
2520 
2521 /*
2522  * Print disk capacity
2523  */
2524 static void
2525 sd_print_capacity(struct scsi_disk *sdkp,
2526 		  sector_t old_capacity)
2527 {
2528 	int sector_size = sdkp->device->sector_size;
2529 	char cap_str_2[10], cap_str_10[10];
2530 
2531 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2532 		return;
2533 
2534 	string_get_size(sdkp->capacity, sector_size,
2535 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2536 	string_get_size(sdkp->capacity, sector_size,
2537 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2538 
2539 	sd_printk(KERN_NOTICE, sdkp,
2540 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2541 		  (unsigned long long)sdkp->capacity,
2542 		  sector_size, cap_str_10, cap_str_2);
2543 
2544 	if (sdkp->physical_block_size != sector_size)
2545 		sd_printk(KERN_NOTICE, sdkp,
2546 			  "%u-byte physical blocks\n",
2547 			  sdkp->physical_block_size);
2548 
2549 	sd_zbc_print_zones(sdkp);
2550 }
2551 
2552 /* called with buffer of length 512 */
2553 static inline int
2554 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2555 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2556 		 struct scsi_sense_hdr *sshdr)
2557 {
2558 	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2559 			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2560 			       sshdr);
2561 }
2562 
2563 /*
2564  * read write protect setting, if possible - called only in sd_revalidate_disk()
2565  * called with buffer of length SD_BUF_SIZE
2566  */
2567 static void
2568 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2569 {
2570 	int res;
2571 	struct scsi_device *sdp = sdkp->device;
2572 	struct scsi_mode_data data;
2573 	int old_wp = sdkp->write_prot;
2574 
2575 	set_disk_ro(sdkp->disk, 0);
2576 	if (sdp->skip_ms_page_3f) {
2577 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2578 		return;
2579 	}
2580 
2581 	if (sdp->use_192_bytes_for_3f) {
2582 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2583 	} else {
2584 		/*
2585 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2586 		 * We have to start carefully: some devices hang if we ask
2587 		 * for more than is available.
2588 		 */
2589 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2590 
2591 		/*
2592 		 * Second attempt: ask for page 0 When only page 0 is
2593 		 * implemented, a request for page 3F may return Sense Key
2594 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2595 		 * CDB.
2596 		 */
2597 		if (!scsi_status_is_good(res))
2598 			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2599 
2600 		/*
2601 		 * Third attempt: ask 255 bytes, as we did earlier.
2602 		 */
2603 		if (!scsi_status_is_good(res))
2604 			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2605 					       &data, NULL);
2606 	}
2607 
2608 	if (!scsi_status_is_good(res)) {
2609 		sd_first_printk(KERN_WARNING, sdkp,
2610 			  "Test WP failed, assume Write Enabled\n");
2611 	} else {
2612 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2613 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2614 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2615 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2616 				  sdkp->write_prot ? "on" : "off");
2617 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2618 		}
2619 	}
2620 }
2621 
2622 /*
2623  * sd_read_cache_type - called only from sd_revalidate_disk()
2624  * called with buffer of length SD_BUF_SIZE
2625  */
2626 static void
2627 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2628 {
2629 	int len = 0, res;
2630 	struct scsi_device *sdp = sdkp->device;
2631 
2632 	int dbd;
2633 	int modepage;
2634 	int first_len;
2635 	struct scsi_mode_data data;
2636 	struct scsi_sense_hdr sshdr;
2637 	int old_wce = sdkp->WCE;
2638 	int old_rcd = sdkp->RCD;
2639 	int old_dpofua = sdkp->DPOFUA;
2640 
2641 
2642 	if (sdkp->cache_override)
2643 		return;
2644 
2645 	first_len = 4;
2646 	if (sdp->skip_ms_page_8) {
2647 		if (sdp->type == TYPE_RBC)
2648 			goto defaults;
2649 		else {
2650 			if (sdp->skip_ms_page_3f)
2651 				goto defaults;
2652 			modepage = 0x3F;
2653 			if (sdp->use_192_bytes_for_3f)
2654 				first_len = 192;
2655 			dbd = 0;
2656 		}
2657 	} else if (sdp->type == TYPE_RBC) {
2658 		modepage = 6;
2659 		dbd = 8;
2660 	} else {
2661 		modepage = 8;
2662 		dbd = 0;
2663 	}
2664 
2665 	/* cautiously ask */
2666 	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2667 			&data, &sshdr);
2668 
2669 	if (!scsi_status_is_good(res))
2670 		goto bad_sense;
2671 
2672 	if (!data.header_length) {
2673 		modepage = 6;
2674 		first_len = 0;
2675 		sd_first_printk(KERN_ERR, sdkp,
2676 				"Missing header in MODE_SENSE response\n");
2677 	}
2678 
2679 	/* that went OK, now ask for the proper length */
2680 	len = data.length;
2681 
2682 	/*
2683 	 * We're only interested in the first three bytes, actually.
2684 	 * But the data cache page is defined for the first 20.
2685 	 */
2686 	if (len < 3)
2687 		goto bad_sense;
2688 	else if (len > SD_BUF_SIZE) {
2689 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2690 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2691 		len = SD_BUF_SIZE;
2692 	}
2693 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2694 		len = 192;
2695 
2696 	/* Get the data */
2697 	if (len > first_len)
2698 		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2699 				&data, &sshdr);
2700 
2701 	if (scsi_status_is_good(res)) {
2702 		int offset = data.header_length + data.block_descriptor_length;
2703 
2704 		while (offset < len) {
2705 			u8 page_code = buffer[offset] & 0x3F;
2706 			u8 spf       = buffer[offset] & 0x40;
2707 
2708 			if (page_code == 8 || page_code == 6) {
2709 				/* We're interested only in the first 3 bytes.
2710 				 */
2711 				if (len - offset <= 2) {
2712 					sd_first_printk(KERN_ERR, sdkp,
2713 						"Incomplete mode parameter "
2714 							"data\n");
2715 					goto defaults;
2716 				} else {
2717 					modepage = page_code;
2718 					goto Page_found;
2719 				}
2720 			} else {
2721 				/* Go to the next page */
2722 				if (spf && len - offset > 3)
2723 					offset += 4 + (buffer[offset+2] << 8) +
2724 						buffer[offset+3];
2725 				else if (!spf && len - offset > 1)
2726 					offset += 2 + buffer[offset+1];
2727 				else {
2728 					sd_first_printk(KERN_ERR, sdkp,
2729 							"Incomplete mode "
2730 							"parameter data\n");
2731 					goto defaults;
2732 				}
2733 			}
2734 		}
2735 
2736 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2737 		goto defaults;
2738 
2739 	Page_found:
2740 		if (modepage == 8) {
2741 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2742 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2743 		} else {
2744 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2745 			sdkp->RCD = 0;
2746 		}
2747 
2748 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2749 		if (sdp->broken_fua) {
2750 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2751 			sdkp->DPOFUA = 0;
2752 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2753 			   !sdkp->device->use_16_for_rw) {
2754 			sd_first_printk(KERN_NOTICE, sdkp,
2755 				  "Uses READ/WRITE(6), disabling FUA\n");
2756 			sdkp->DPOFUA = 0;
2757 		}
2758 
2759 		/* No cache flush allowed for write protected devices */
2760 		if (sdkp->WCE && sdkp->write_prot)
2761 			sdkp->WCE = 0;
2762 
2763 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2764 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2765 			sd_printk(KERN_NOTICE, sdkp,
2766 				  "Write cache: %s, read cache: %s, %s\n",
2767 				  sdkp->WCE ? "enabled" : "disabled",
2768 				  sdkp->RCD ? "disabled" : "enabled",
2769 				  sdkp->DPOFUA ? "supports DPO and FUA"
2770 				  : "doesn't support DPO or FUA");
2771 
2772 		return;
2773 	}
2774 
2775 bad_sense:
2776 	if (scsi_sense_valid(&sshdr) &&
2777 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2778 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2779 		/* Invalid field in CDB */
2780 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2781 	else
2782 		sd_first_printk(KERN_ERR, sdkp,
2783 				"Asking for cache data failed\n");
2784 
2785 defaults:
2786 	if (sdp->wce_default_on) {
2787 		sd_first_printk(KERN_NOTICE, sdkp,
2788 				"Assuming drive cache: write back\n");
2789 		sdkp->WCE = 1;
2790 	} else {
2791 		sd_first_printk(KERN_ERR, sdkp,
2792 				"Assuming drive cache: write through\n");
2793 		sdkp->WCE = 0;
2794 	}
2795 	sdkp->RCD = 0;
2796 	sdkp->DPOFUA = 0;
2797 }
2798 
2799 /*
2800  * The ATO bit indicates whether the DIF application tag is available
2801  * for use by the operating system.
2802  */
2803 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2804 {
2805 	int res, offset;
2806 	struct scsi_device *sdp = sdkp->device;
2807 	struct scsi_mode_data data;
2808 	struct scsi_sense_hdr sshdr;
2809 
2810 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2811 		return;
2812 
2813 	if (sdkp->protection_type == 0)
2814 		return;
2815 
2816 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2817 			      SD_MAX_RETRIES, &data, &sshdr);
2818 
2819 	if (!scsi_status_is_good(res) || !data.header_length ||
2820 	    data.length < 6) {
2821 		sd_first_printk(KERN_WARNING, sdkp,
2822 			  "getting Control mode page failed, assume no ATO\n");
2823 
2824 		if (scsi_sense_valid(&sshdr))
2825 			sd_print_sense_hdr(sdkp, &sshdr);
2826 
2827 		return;
2828 	}
2829 
2830 	offset = data.header_length + data.block_descriptor_length;
2831 
2832 	if ((buffer[offset] & 0x3f) != 0x0a) {
2833 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2834 		return;
2835 	}
2836 
2837 	if ((buffer[offset + 5] & 0x80) == 0)
2838 		return;
2839 
2840 	sdkp->ATO = 1;
2841 
2842 	return;
2843 }
2844 
2845 /**
2846  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2847  * @sdkp: disk to query
2848  */
2849 static void sd_read_block_limits(struct scsi_disk *sdkp)
2850 {
2851 	unsigned int sector_sz = sdkp->device->sector_size;
2852 	const int vpd_len = 64;
2853 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2854 
2855 	if (!buffer ||
2856 	    /* Block Limits VPD */
2857 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2858 		goto out;
2859 
2860 	blk_queue_io_min(sdkp->disk->queue,
2861 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2862 
2863 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2864 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2865 
2866 	if (buffer[3] == 0x3c) {
2867 		unsigned int lba_count, desc_count;
2868 
2869 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2870 
2871 		if (!sdkp->lbpme)
2872 			goto out;
2873 
2874 		lba_count = get_unaligned_be32(&buffer[20]);
2875 		desc_count = get_unaligned_be32(&buffer[24]);
2876 
2877 		if (lba_count && desc_count)
2878 			sdkp->max_unmap_blocks = lba_count;
2879 
2880 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2881 
2882 		if (buffer[32] & 0x80)
2883 			sdkp->unmap_alignment =
2884 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2885 
2886 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2887 
2888 			if (sdkp->max_unmap_blocks)
2889 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2890 			else
2891 				sd_config_discard(sdkp, SD_LBP_WS16);
2892 
2893 		} else {	/* LBP VPD page tells us what to use */
2894 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2895 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2896 			else if (sdkp->lbpws)
2897 				sd_config_discard(sdkp, SD_LBP_WS16);
2898 			else if (sdkp->lbpws10)
2899 				sd_config_discard(sdkp, SD_LBP_WS10);
2900 			else
2901 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2902 		}
2903 	}
2904 
2905  out:
2906 	kfree(buffer);
2907 }
2908 
2909 /**
2910  * sd_read_block_characteristics - Query block dev. characteristics
2911  * @sdkp: disk to query
2912  */
2913 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2914 {
2915 	struct request_queue *q = sdkp->disk->queue;
2916 	unsigned char *buffer;
2917 	u16 rot;
2918 	const int vpd_len = 64;
2919 
2920 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2921 
2922 	if (!buffer ||
2923 	    /* Block Device Characteristics VPD */
2924 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2925 		goto out;
2926 
2927 	rot = get_unaligned_be16(&buffer[4]);
2928 
2929 	if (rot == 1) {
2930 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2931 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2932 	}
2933 
2934 	if (sdkp->device->type == TYPE_ZBC) {
2935 		/* Host-managed */
2936 		q->limits.zoned = BLK_ZONED_HM;
2937 	} else {
2938 		sdkp->zoned = (buffer[8] >> 4) & 3;
2939 		if (sdkp->zoned == 1)
2940 			/* Host-aware */
2941 			q->limits.zoned = BLK_ZONED_HA;
2942 		else
2943 			/*
2944 			 * Treat drive-managed devices as
2945 			 * regular block devices.
2946 			 */
2947 			q->limits.zoned = BLK_ZONED_NONE;
2948 	}
2949 	if (blk_queue_is_zoned(q) && sdkp->first_scan)
2950 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2951 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2952 
2953  out:
2954 	kfree(buffer);
2955 }
2956 
2957 /**
2958  * sd_read_block_provisioning - Query provisioning VPD page
2959  * @sdkp: disk to query
2960  */
2961 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2962 {
2963 	unsigned char *buffer;
2964 	const int vpd_len = 8;
2965 
2966 	if (sdkp->lbpme == 0)
2967 		return;
2968 
2969 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2970 
2971 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2972 		goto out;
2973 
2974 	sdkp->lbpvpd	= 1;
2975 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
2976 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
2977 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
2978 
2979  out:
2980 	kfree(buffer);
2981 }
2982 
2983 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2984 {
2985 	struct scsi_device *sdev = sdkp->device;
2986 
2987 	if (sdev->host->no_write_same) {
2988 		sdev->no_write_same = 1;
2989 
2990 		return;
2991 	}
2992 
2993 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2994 		/* too large values might cause issues with arcmsr */
2995 		int vpd_buf_len = 64;
2996 
2997 		sdev->no_report_opcodes = 1;
2998 
2999 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3000 		 * CODES is unsupported and the device has an ATA
3001 		 * Information VPD page (SAT).
3002 		 */
3003 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3004 			sdev->no_write_same = 1;
3005 	}
3006 
3007 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3008 		sdkp->ws16 = 1;
3009 
3010 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3011 		sdkp->ws10 = 1;
3012 }
3013 
3014 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3015 {
3016 	struct scsi_device *sdev = sdkp->device;
3017 
3018 	if (!sdev->security_supported)
3019 		return;
3020 
3021 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3022 			SECURITY_PROTOCOL_IN) == 1 &&
3023 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3024 			SECURITY_PROTOCOL_OUT) == 1)
3025 		sdkp->security = 1;
3026 }
3027 
3028 /*
3029  * Determine the device's preferred I/O size for reads and writes
3030  * unless the reported value is unreasonably small, large, not a
3031  * multiple of the physical block size, or simply garbage.
3032  */
3033 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3034 				      unsigned int dev_max)
3035 {
3036 	struct scsi_device *sdp = sdkp->device;
3037 	unsigned int opt_xfer_bytes =
3038 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3039 
3040 	if (sdkp->opt_xfer_blocks == 0)
3041 		return false;
3042 
3043 	if (sdkp->opt_xfer_blocks > dev_max) {
3044 		sd_first_printk(KERN_WARNING, sdkp,
3045 				"Optimal transfer size %u logical blocks " \
3046 				"> dev_max (%u logical blocks)\n",
3047 				sdkp->opt_xfer_blocks, dev_max);
3048 		return false;
3049 	}
3050 
3051 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3052 		sd_first_printk(KERN_WARNING, sdkp,
3053 				"Optimal transfer size %u logical blocks " \
3054 				"> sd driver limit (%u logical blocks)\n",
3055 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3056 		return false;
3057 	}
3058 
3059 	if (opt_xfer_bytes < PAGE_SIZE) {
3060 		sd_first_printk(KERN_WARNING, sdkp,
3061 				"Optimal transfer size %u bytes < " \
3062 				"PAGE_SIZE (%u bytes)\n",
3063 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3064 		return false;
3065 	}
3066 
3067 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3068 		sd_first_printk(KERN_WARNING, sdkp,
3069 				"Optimal transfer size %u bytes not a " \
3070 				"multiple of physical block size (%u bytes)\n",
3071 				opt_xfer_bytes, sdkp->physical_block_size);
3072 		return false;
3073 	}
3074 
3075 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3076 			opt_xfer_bytes);
3077 	return true;
3078 }
3079 
3080 /**
3081  *	sd_revalidate_disk - called the first time a new disk is seen,
3082  *	performs disk spin up, read_capacity, etc.
3083  *	@disk: struct gendisk we care about
3084  **/
3085 static int sd_revalidate_disk(struct gendisk *disk)
3086 {
3087 	struct scsi_disk *sdkp = scsi_disk(disk);
3088 	struct scsi_device *sdp = sdkp->device;
3089 	struct request_queue *q = sdkp->disk->queue;
3090 	sector_t old_capacity = sdkp->capacity;
3091 	unsigned char *buffer;
3092 	unsigned int dev_max, rw_max;
3093 
3094 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3095 				      "sd_revalidate_disk\n"));
3096 
3097 	/*
3098 	 * If the device is offline, don't try and read capacity or any
3099 	 * of the other niceties.
3100 	 */
3101 	if (!scsi_device_online(sdp))
3102 		goto out;
3103 
3104 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3105 	if (!buffer) {
3106 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3107 			  "allocation failure.\n");
3108 		goto out;
3109 	}
3110 
3111 	sd_spinup_disk(sdkp);
3112 
3113 	/*
3114 	 * Without media there is no reason to ask; moreover, some devices
3115 	 * react badly if we do.
3116 	 */
3117 	if (sdkp->media_present) {
3118 		sd_read_capacity(sdkp, buffer);
3119 
3120 		/*
3121 		 * set the default to rotational.  All non-rotational devices
3122 		 * support the block characteristics VPD page, which will
3123 		 * cause this to be updated correctly and any device which
3124 		 * doesn't support it should be treated as rotational.
3125 		 */
3126 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3127 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3128 
3129 		if (scsi_device_supports_vpd(sdp)) {
3130 			sd_read_block_provisioning(sdkp);
3131 			sd_read_block_limits(sdkp);
3132 			sd_read_block_characteristics(sdkp);
3133 			sd_zbc_read_zones(sdkp, buffer);
3134 		}
3135 
3136 		sd_print_capacity(sdkp, old_capacity);
3137 
3138 		sd_read_write_protect_flag(sdkp, buffer);
3139 		sd_read_cache_type(sdkp, buffer);
3140 		sd_read_app_tag_own(sdkp, buffer);
3141 		sd_read_write_same(sdkp, buffer);
3142 		sd_read_security(sdkp, buffer);
3143 	}
3144 
3145 	/*
3146 	 * We now have all cache related info, determine how we deal
3147 	 * with flush requests.
3148 	 */
3149 	sd_set_flush_flag(sdkp);
3150 
3151 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3152 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3153 
3154 	/* Some devices report a maximum block count for READ/WRITE requests. */
3155 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3156 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3157 
3158 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3159 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3160 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3161 	} else
3162 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3163 				      (sector_t)BLK_DEF_MAX_SECTORS);
3164 
3165 	/* Do not exceed controller limit */
3166 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3167 
3168 	/*
3169 	 * Only update max_sectors if previously unset or if the current value
3170 	 * exceeds the capabilities of the hardware.
3171 	 */
3172 	if (sdkp->first_scan ||
3173 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3174 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3175 		q->limits.max_sectors = rw_max;
3176 
3177 	sdkp->first_scan = 0;
3178 
3179 	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3180 	sd_config_write_same(sdkp);
3181 	kfree(buffer);
3182 
3183  out:
3184 	return 0;
3185 }
3186 
3187 /**
3188  *	sd_unlock_native_capacity - unlock native capacity
3189  *	@disk: struct gendisk to set capacity for
3190  *
3191  *	Block layer calls this function if it detects that partitions
3192  *	on @disk reach beyond the end of the device.  If the SCSI host
3193  *	implements ->unlock_native_capacity() method, it's invoked to
3194  *	give it a chance to adjust the device capacity.
3195  *
3196  *	CONTEXT:
3197  *	Defined by block layer.  Might sleep.
3198  */
3199 static void sd_unlock_native_capacity(struct gendisk *disk)
3200 {
3201 	struct scsi_device *sdev = scsi_disk(disk)->device;
3202 
3203 	if (sdev->host->hostt->unlock_native_capacity)
3204 		sdev->host->hostt->unlock_native_capacity(sdev);
3205 }
3206 
3207 /**
3208  *	sd_format_disk_name - format disk name
3209  *	@prefix: name prefix - ie. "sd" for SCSI disks
3210  *	@index: index of the disk to format name for
3211  *	@buf: output buffer
3212  *	@buflen: length of the output buffer
3213  *
3214  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3215  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3216  *	which is followed by sdaaa.
3217  *
3218  *	This is basically 26 base counting with one extra 'nil' entry
3219  *	at the beginning from the second digit on and can be
3220  *	determined using similar method as 26 base conversion with the
3221  *	index shifted -1 after each digit is computed.
3222  *
3223  *	CONTEXT:
3224  *	Don't care.
3225  *
3226  *	RETURNS:
3227  *	0 on success, -errno on failure.
3228  */
3229 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3230 {
3231 	const int base = 'z' - 'a' + 1;
3232 	char *begin = buf + strlen(prefix);
3233 	char *end = buf + buflen;
3234 	char *p;
3235 	int unit;
3236 
3237 	p = end - 1;
3238 	*p = '\0';
3239 	unit = base;
3240 	do {
3241 		if (p == begin)
3242 			return -EINVAL;
3243 		*--p = 'a' + (index % unit);
3244 		index = (index / unit) - 1;
3245 	} while (index >= 0);
3246 
3247 	memmove(begin, p, end - p);
3248 	memcpy(buf, prefix, strlen(prefix));
3249 
3250 	return 0;
3251 }
3252 
3253 /**
3254  *	sd_probe - called during driver initialization and whenever a
3255  *	new scsi device is attached to the system. It is called once
3256  *	for each scsi device (not just disks) present.
3257  *	@dev: pointer to device object
3258  *
3259  *	Returns 0 if successful (or not interested in this scsi device
3260  *	(e.g. scanner)); 1 when there is an error.
3261  *
3262  *	Note: this function is invoked from the scsi mid-level.
3263  *	This function sets up the mapping between a given
3264  *	<host,channel,id,lun> (found in sdp) and new device name
3265  *	(e.g. /dev/sda). More precisely it is the block device major
3266  *	and minor number that is chosen here.
3267  *
3268  *	Assume sd_probe is not re-entrant (for time being)
3269  *	Also think about sd_probe() and sd_remove() running coincidentally.
3270  **/
3271 static int sd_probe(struct device *dev)
3272 {
3273 	struct scsi_device *sdp = to_scsi_device(dev);
3274 	struct scsi_disk *sdkp;
3275 	struct gendisk *gd;
3276 	int index;
3277 	int error;
3278 
3279 	scsi_autopm_get_device(sdp);
3280 	error = -ENODEV;
3281 	if (sdp->type != TYPE_DISK &&
3282 	    sdp->type != TYPE_ZBC &&
3283 	    sdp->type != TYPE_MOD &&
3284 	    sdp->type != TYPE_RBC)
3285 		goto out;
3286 
3287 #ifndef CONFIG_BLK_DEV_ZONED
3288 	if (sdp->type == TYPE_ZBC)
3289 		goto out;
3290 #endif
3291 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3292 					"sd_probe\n"));
3293 
3294 	error = -ENOMEM;
3295 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3296 	if (!sdkp)
3297 		goto out;
3298 
3299 	gd = alloc_disk(SD_MINORS);
3300 	if (!gd)
3301 		goto out_free;
3302 
3303 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3304 	if (index < 0) {
3305 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3306 		goto out_put;
3307 	}
3308 
3309 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3310 	if (error) {
3311 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3312 		goto out_free_index;
3313 	}
3314 
3315 	sdkp->device = sdp;
3316 	sdkp->driver = &sd_template;
3317 	sdkp->disk = gd;
3318 	sdkp->index = index;
3319 	atomic_set(&sdkp->openers, 0);
3320 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3321 
3322 	if (!sdp->request_queue->rq_timeout) {
3323 		if (sdp->type != TYPE_MOD)
3324 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3325 		else
3326 			blk_queue_rq_timeout(sdp->request_queue,
3327 					     SD_MOD_TIMEOUT);
3328 	}
3329 
3330 	device_initialize(&sdkp->dev);
3331 	sdkp->dev.parent = dev;
3332 	sdkp->dev.class = &sd_disk_class;
3333 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3334 
3335 	error = device_add(&sdkp->dev);
3336 	if (error)
3337 		goto out_free_index;
3338 
3339 	get_device(dev);
3340 	dev_set_drvdata(dev, sdkp);
3341 
3342 	gd->major = sd_major((index & 0xf0) >> 4);
3343 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3344 
3345 	gd->fops = &sd_fops;
3346 	gd->private_data = &sdkp->driver;
3347 	gd->queue = sdkp->device->request_queue;
3348 
3349 	/* defaults, until the device tells us otherwise */
3350 	sdp->sector_size = 512;
3351 	sdkp->capacity = 0;
3352 	sdkp->media_present = 1;
3353 	sdkp->write_prot = 0;
3354 	sdkp->cache_override = 0;
3355 	sdkp->WCE = 0;
3356 	sdkp->RCD = 0;
3357 	sdkp->ATO = 0;
3358 	sdkp->first_scan = 1;
3359 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3360 
3361 	sd_revalidate_disk(gd);
3362 
3363 	gd->flags = GENHD_FL_EXT_DEVT;
3364 	if (sdp->removable) {
3365 		gd->flags |= GENHD_FL_REMOVABLE;
3366 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3367 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3368 	}
3369 
3370 	blk_pm_runtime_init(sdp->request_queue, dev);
3371 	device_add_disk(dev, gd, NULL);
3372 	if (sdkp->capacity)
3373 		sd_dif_config_host(sdkp);
3374 
3375 	sd_revalidate_disk(gd);
3376 
3377 	if (sdkp->security) {
3378 		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3379 		if (sdkp->opal_dev)
3380 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3381 	}
3382 
3383 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3384 		  sdp->removable ? "removable " : "");
3385 	scsi_autopm_put_device(sdp);
3386 
3387 	return 0;
3388 
3389  out_free_index:
3390 	ida_free(&sd_index_ida, index);
3391  out_put:
3392 	put_disk(gd);
3393  out_free:
3394 	kfree(sdkp);
3395  out:
3396 	scsi_autopm_put_device(sdp);
3397 	return error;
3398 }
3399 
3400 /**
3401  *	sd_remove - called whenever a scsi disk (previously recognized by
3402  *	sd_probe) is detached from the system. It is called (potentially
3403  *	multiple times) during sd module unload.
3404  *	@dev: pointer to device object
3405  *
3406  *	Note: this function is invoked from the scsi mid-level.
3407  *	This function potentially frees up a device name (e.g. /dev/sdc)
3408  *	that could be re-used by a subsequent sd_probe().
3409  *	This function is not called when the built-in sd driver is "exit-ed".
3410  **/
3411 static int sd_remove(struct device *dev)
3412 {
3413 	struct scsi_disk *sdkp;
3414 	dev_t devt;
3415 
3416 	sdkp = dev_get_drvdata(dev);
3417 	devt = disk_devt(sdkp->disk);
3418 	scsi_autopm_get_device(sdkp->device);
3419 
3420 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3421 	device_del(&sdkp->dev);
3422 	del_gendisk(sdkp->disk);
3423 	sd_shutdown(dev);
3424 
3425 	free_opal_dev(sdkp->opal_dev);
3426 
3427 	blk_register_region(devt, SD_MINORS, NULL,
3428 			    sd_default_probe, NULL, NULL);
3429 
3430 	mutex_lock(&sd_ref_mutex);
3431 	dev_set_drvdata(dev, NULL);
3432 	put_device(&sdkp->dev);
3433 	mutex_unlock(&sd_ref_mutex);
3434 
3435 	return 0;
3436 }
3437 
3438 /**
3439  *	scsi_disk_release - Called to free the scsi_disk structure
3440  *	@dev: pointer to embedded class device
3441  *
3442  *	sd_ref_mutex must be held entering this routine.  Because it is
3443  *	called on last put, you should always use the scsi_disk_get()
3444  *	scsi_disk_put() helpers which manipulate the semaphore directly
3445  *	and never do a direct put_device.
3446  **/
3447 static void scsi_disk_release(struct device *dev)
3448 {
3449 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3450 	struct gendisk *disk = sdkp->disk;
3451 	struct request_queue *q = disk->queue;
3452 
3453 	ida_free(&sd_index_ida, sdkp->index);
3454 
3455 	/*
3456 	 * Wait until all requests that are in progress have completed.
3457 	 * This is necessary to avoid that e.g. scsi_end_request() crashes
3458 	 * due to clearing the disk->private_data pointer. Wait from inside
3459 	 * scsi_disk_release() instead of from sd_release() to avoid that
3460 	 * freezing and unfreezing the request queue affects user space I/O
3461 	 * in case multiple processes open a /dev/sd... node concurrently.
3462 	 */
3463 	blk_mq_freeze_queue(q);
3464 	blk_mq_unfreeze_queue(q);
3465 
3466 	disk->private_data = NULL;
3467 	put_disk(disk);
3468 	put_device(&sdkp->device->sdev_gendev);
3469 
3470 	kfree(sdkp);
3471 }
3472 
3473 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3474 {
3475 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3476 	struct scsi_sense_hdr sshdr;
3477 	struct scsi_device *sdp = sdkp->device;
3478 	int res;
3479 
3480 	if (start)
3481 		cmd[4] |= 1;	/* START */
3482 
3483 	if (sdp->start_stop_pwr_cond)
3484 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3485 
3486 	if (!scsi_device_online(sdp))
3487 		return -ENODEV;
3488 
3489 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3490 			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3491 	if (res) {
3492 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3493 		if (driver_byte(res) == DRIVER_SENSE)
3494 			sd_print_sense_hdr(sdkp, &sshdr);
3495 		if (scsi_sense_valid(&sshdr) &&
3496 			/* 0x3a is medium not present */
3497 			sshdr.asc == 0x3a)
3498 			res = 0;
3499 	}
3500 
3501 	/* SCSI error codes must not go to the generic layer */
3502 	if (res)
3503 		return -EIO;
3504 
3505 	return 0;
3506 }
3507 
3508 /*
3509  * Send a SYNCHRONIZE CACHE instruction down to the device through
3510  * the normal SCSI command structure.  Wait for the command to
3511  * complete.
3512  */
3513 static void sd_shutdown(struct device *dev)
3514 {
3515 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3516 
3517 	if (!sdkp)
3518 		return;         /* this can happen */
3519 
3520 	if (pm_runtime_suspended(dev))
3521 		return;
3522 
3523 	if (sdkp->WCE && sdkp->media_present) {
3524 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3525 		sd_sync_cache(sdkp, NULL);
3526 	}
3527 
3528 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3529 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3530 		sd_start_stop_device(sdkp, 0);
3531 	}
3532 }
3533 
3534 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3535 {
3536 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3537 	struct scsi_sense_hdr sshdr;
3538 	int ret = 0;
3539 
3540 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3541 		return 0;
3542 
3543 	if (sdkp->WCE && sdkp->media_present) {
3544 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3545 		ret = sd_sync_cache(sdkp, &sshdr);
3546 
3547 		if (ret) {
3548 			/* ignore OFFLINE device */
3549 			if (ret == -ENODEV)
3550 				return 0;
3551 
3552 			if (!scsi_sense_valid(&sshdr) ||
3553 			    sshdr.sense_key != ILLEGAL_REQUEST)
3554 				return ret;
3555 
3556 			/*
3557 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3558 			 * doesn't support sync. There's not much to do and
3559 			 * suspend shouldn't fail.
3560 			 */
3561 			ret = 0;
3562 		}
3563 	}
3564 
3565 	if (sdkp->device->manage_start_stop) {
3566 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3567 		/* an error is not worth aborting a system sleep */
3568 		ret = sd_start_stop_device(sdkp, 0);
3569 		if (ignore_stop_errors)
3570 			ret = 0;
3571 	}
3572 
3573 	return ret;
3574 }
3575 
3576 static int sd_suspend_system(struct device *dev)
3577 {
3578 	return sd_suspend_common(dev, true);
3579 }
3580 
3581 static int sd_suspend_runtime(struct device *dev)
3582 {
3583 	return sd_suspend_common(dev, false);
3584 }
3585 
3586 static int sd_resume(struct device *dev)
3587 {
3588 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3589 	int ret;
3590 
3591 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3592 		return 0;
3593 
3594 	if (!sdkp->device->manage_start_stop)
3595 		return 0;
3596 
3597 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3598 	ret = sd_start_stop_device(sdkp, 1);
3599 	if (!ret)
3600 		opal_unlock_from_suspend(sdkp->opal_dev);
3601 	return ret;
3602 }
3603 
3604 /**
3605  *	init_sd - entry point for this driver (both when built in or when
3606  *	a module).
3607  *
3608  *	Note: this function registers this driver with the scsi mid-level.
3609  **/
3610 static int __init init_sd(void)
3611 {
3612 	int majors = 0, i, err;
3613 
3614 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3615 
3616 	for (i = 0; i < SD_MAJORS; i++) {
3617 		if (register_blkdev(sd_major(i), "sd") != 0)
3618 			continue;
3619 		majors++;
3620 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3621 				    sd_default_probe, NULL, NULL);
3622 	}
3623 
3624 	if (!majors)
3625 		return -ENODEV;
3626 
3627 	err = class_register(&sd_disk_class);
3628 	if (err)
3629 		goto err_out;
3630 
3631 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3632 					 0, 0, NULL);
3633 	if (!sd_cdb_cache) {
3634 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3635 		err = -ENOMEM;
3636 		goto err_out_class;
3637 	}
3638 
3639 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3640 	if (!sd_cdb_pool) {
3641 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3642 		err = -ENOMEM;
3643 		goto err_out_cache;
3644 	}
3645 
3646 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3647 	if (!sd_page_pool) {
3648 		printk(KERN_ERR "sd: can't init discard page pool\n");
3649 		err = -ENOMEM;
3650 		goto err_out_ppool;
3651 	}
3652 
3653 	err = scsi_register_driver(&sd_template.gendrv);
3654 	if (err)
3655 		goto err_out_driver;
3656 
3657 	return 0;
3658 
3659 err_out_driver:
3660 	mempool_destroy(sd_page_pool);
3661 
3662 err_out_ppool:
3663 	mempool_destroy(sd_cdb_pool);
3664 
3665 err_out_cache:
3666 	kmem_cache_destroy(sd_cdb_cache);
3667 
3668 err_out_class:
3669 	class_unregister(&sd_disk_class);
3670 err_out:
3671 	for (i = 0; i < SD_MAJORS; i++)
3672 		unregister_blkdev(sd_major(i), "sd");
3673 	return err;
3674 }
3675 
3676 /**
3677  *	exit_sd - exit point for this driver (when it is a module).
3678  *
3679  *	Note: this function unregisters this driver from the scsi mid-level.
3680  **/
3681 static void __exit exit_sd(void)
3682 {
3683 	int i;
3684 
3685 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3686 
3687 	scsi_unregister_driver(&sd_template.gendrv);
3688 	mempool_destroy(sd_cdb_pool);
3689 	mempool_destroy(sd_page_pool);
3690 	kmem_cache_destroy(sd_cdb_cache);
3691 
3692 	class_unregister(&sd_disk_class);
3693 
3694 	for (i = 0; i < SD_MAJORS; i++) {
3695 		blk_unregister_region(sd_major(i), SD_MINORS);
3696 		unregister_blkdev(sd_major(i), "sd");
3697 	}
3698 }
3699 
3700 module_init(init_sd);
3701 module_exit(exit_sd);
3702 
3703 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3704 			       struct scsi_sense_hdr *sshdr)
3705 {
3706 	scsi_print_sense_hdr(sdkp->device,
3707 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3708 }
3709 
3710 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3711 			    int result)
3712 {
3713 	const char *hb_string = scsi_hostbyte_string(result);
3714 	const char *db_string = scsi_driverbyte_string(result);
3715 
3716 	if (hb_string || db_string)
3717 		sd_printk(KERN_INFO, sdkp,
3718 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3719 			  hb_string ? hb_string : "invalid",
3720 			  db_string ? db_string : "invalid");
3721 	else
3722 		sd_printk(KERN_INFO, sdkp,
3723 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3724 			  msg, host_byte(result), driver_byte(result));
3725 }
3726 
3727