1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/major.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 71 #include "sd.h" 72 #include "scsi_priv.h" 73 #include "scsi_logging.h" 74 75 MODULE_AUTHOR("Eric Youngdale"); 76 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 77 MODULE_LICENSE("GPL"); 78 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 99 100 #define SD_MINORS 16 101 102 static void sd_config_discard(struct scsi_disk *, unsigned int); 103 static void sd_config_write_same(struct scsi_disk *); 104 static int sd_revalidate_disk(struct gendisk *); 105 static void sd_unlock_native_capacity(struct gendisk *disk); 106 static int sd_probe(struct device *); 107 static int sd_remove(struct device *); 108 static void sd_shutdown(struct device *); 109 static int sd_suspend_system(struct device *); 110 static int sd_suspend_runtime(struct device *); 111 static int sd_resume_system(struct device *); 112 static int sd_resume_runtime(struct device *); 113 static void sd_rescan(struct device *); 114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 115 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 116 static int sd_done(struct scsi_cmnd *); 117 static void sd_eh_reset(struct scsi_cmnd *); 118 static int sd_eh_action(struct scsi_cmnd *, int); 119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 120 static void scsi_disk_release(struct device *cdev); 121 122 static DEFINE_IDA(sd_index_ida); 123 124 static struct kmem_cache *sd_cdb_cache; 125 static mempool_t *sd_page_pool; 126 static struct lock_class_key sd_bio_compl_lkclass; 127 128 static const char *sd_cache_types[] = { 129 "write through", "none", "write back", 130 "write back, no read (daft)" 131 }; 132 133 static void sd_set_flush_flag(struct scsi_disk *sdkp) 134 { 135 bool wc = false, fua = false; 136 137 if (sdkp->WCE) { 138 wc = true; 139 if (sdkp->DPOFUA) 140 fua = true; 141 } 142 143 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 144 } 145 146 static ssize_t 147 cache_type_store(struct device *dev, struct device_attribute *attr, 148 const char *buf, size_t count) 149 { 150 int ct, rcd, wce, sp; 151 struct scsi_disk *sdkp = to_scsi_disk(dev); 152 struct scsi_device *sdp = sdkp->device; 153 char buffer[64]; 154 char *buffer_data; 155 struct scsi_mode_data data; 156 struct scsi_sense_hdr sshdr; 157 static const char temp[] = "temporary "; 158 int len; 159 160 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 161 /* no cache control on RBC devices; theoretically they 162 * can do it, but there's probably so many exceptions 163 * it's not worth the risk */ 164 return -EINVAL; 165 166 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 167 buf += sizeof(temp) - 1; 168 sdkp->cache_override = 1; 169 } else { 170 sdkp->cache_override = 0; 171 } 172 173 ct = sysfs_match_string(sd_cache_types, buf); 174 if (ct < 0) 175 return -EINVAL; 176 177 rcd = ct & 0x01 ? 1 : 0; 178 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 179 180 if (sdkp->cache_override) { 181 sdkp->WCE = wce; 182 sdkp->RCD = rcd; 183 sd_set_flush_flag(sdkp); 184 return count; 185 } 186 187 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 188 sdkp->max_retries, &data, NULL)) 189 return -EINVAL; 190 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 191 data.block_descriptor_length); 192 buffer_data = buffer + data.header_length + 193 data.block_descriptor_length; 194 buffer_data[2] &= ~0x05; 195 buffer_data[2] |= wce << 2 | rcd; 196 sp = buffer_data[0] & 0x80 ? 1 : 0; 197 buffer_data[0] &= ~0x80; 198 199 /* 200 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 201 * received mode parameter buffer before doing MODE SELECT. 202 */ 203 data.device_specific = 0; 204 205 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 206 sdkp->max_retries, &data, &sshdr)) { 207 if (scsi_sense_valid(&sshdr)) 208 sd_print_sense_hdr(sdkp, &sshdr); 209 return -EINVAL; 210 } 211 sd_revalidate_disk(sdkp->disk); 212 return count; 213 } 214 215 static ssize_t 216 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 217 char *buf) 218 { 219 struct scsi_disk *sdkp = to_scsi_disk(dev); 220 struct scsi_device *sdp = sdkp->device; 221 222 return sprintf(buf, "%u\n", sdp->manage_start_stop); 223 } 224 225 static ssize_t 226 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 227 const char *buf, size_t count) 228 { 229 struct scsi_disk *sdkp = to_scsi_disk(dev); 230 struct scsi_device *sdp = sdkp->device; 231 bool v; 232 233 if (!capable(CAP_SYS_ADMIN)) 234 return -EACCES; 235 236 if (kstrtobool(buf, &v)) 237 return -EINVAL; 238 239 sdp->manage_start_stop = v; 240 241 return count; 242 } 243 static DEVICE_ATTR_RW(manage_start_stop); 244 245 static ssize_t 246 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 247 { 248 struct scsi_disk *sdkp = to_scsi_disk(dev); 249 250 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 251 } 252 253 static ssize_t 254 allow_restart_store(struct device *dev, struct device_attribute *attr, 255 const char *buf, size_t count) 256 { 257 bool v; 258 struct scsi_disk *sdkp = to_scsi_disk(dev); 259 struct scsi_device *sdp = sdkp->device; 260 261 if (!capable(CAP_SYS_ADMIN)) 262 return -EACCES; 263 264 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 265 return -EINVAL; 266 267 if (kstrtobool(buf, &v)) 268 return -EINVAL; 269 270 sdp->allow_restart = v; 271 272 return count; 273 } 274 static DEVICE_ATTR_RW(allow_restart); 275 276 static ssize_t 277 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 278 { 279 struct scsi_disk *sdkp = to_scsi_disk(dev); 280 int ct = sdkp->RCD + 2*sdkp->WCE; 281 282 return sprintf(buf, "%s\n", sd_cache_types[ct]); 283 } 284 static DEVICE_ATTR_RW(cache_type); 285 286 static ssize_t 287 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 288 { 289 struct scsi_disk *sdkp = to_scsi_disk(dev); 290 291 return sprintf(buf, "%u\n", sdkp->DPOFUA); 292 } 293 static DEVICE_ATTR_RO(FUA); 294 295 static ssize_t 296 protection_type_show(struct device *dev, struct device_attribute *attr, 297 char *buf) 298 { 299 struct scsi_disk *sdkp = to_scsi_disk(dev); 300 301 return sprintf(buf, "%u\n", sdkp->protection_type); 302 } 303 304 static ssize_t 305 protection_type_store(struct device *dev, struct device_attribute *attr, 306 const char *buf, size_t count) 307 { 308 struct scsi_disk *sdkp = to_scsi_disk(dev); 309 unsigned int val; 310 int err; 311 312 if (!capable(CAP_SYS_ADMIN)) 313 return -EACCES; 314 315 err = kstrtouint(buf, 10, &val); 316 317 if (err) 318 return err; 319 320 if (val <= T10_PI_TYPE3_PROTECTION) 321 sdkp->protection_type = val; 322 323 return count; 324 } 325 static DEVICE_ATTR_RW(protection_type); 326 327 static ssize_t 328 protection_mode_show(struct device *dev, struct device_attribute *attr, 329 char *buf) 330 { 331 struct scsi_disk *sdkp = to_scsi_disk(dev); 332 struct scsi_device *sdp = sdkp->device; 333 unsigned int dif, dix; 334 335 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 336 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 337 338 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 339 dif = 0; 340 dix = 1; 341 } 342 343 if (!dif && !dix) 344 return sprintf(buf, "none\n"); 345 346 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 347 } 348 static DEVICE_ATTR_RO(protection_mode); 349 350 static ssize_t 351 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 352 { 353 struct scsi_disk *sdkp = to_scsi_disk(dev); 354 355 return sprintf(buf, "%u\n", sdkp->ATO); 356 } 357 static DEVICE_ATTR_RO(app_tag_own); 358 359 static ssize_t 360 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 361 char *buf) 362 { 363 struct scsi_disk *sdkp = to_scsi_disk(dev); 364 365 return sprintf(buf, "%u\n", sdkp->lbpme); 366 } 367 static DEVICE_ATTR_RO(thin_provisioning); 368 369 /* sysfs_match_string() requires dense arrays */ 370 static const char *lbp_mode[] = { 371 [SD_LBP_FULL] = "full", 372 [SD_LBP_UNMAP] = "unmap", 373 [SD_LBP_WS16] = "writesame_16", 374 [SD_LBP_WS10] = "writesame_10", 375 [SD_LBP_ZERO] = "writesame_zero", 376 [SD_LBP_DISABLE] = "disabled", 377 }; 378 379 static ssize_t 380 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 381 char *buf) 382 { 383 struct scsi_disk *sdkp = to_scsi_disk(dev); 384 385 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 386 } 387 388 static ssize_t 389 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 390 const char *buf, size_t count) 391 { 392 struct scsi_disk *sdkp = to_scsi_disk(dev); 393 struct scsi_device *sdp = sdkp->device; 394 int mode; 395 396 if (!capable(CAP_SYS_ADMIN)) 397 return -EACCES; 398 399 if (sd_is_zoned(sdkp)) { 400 sd_config_discard(sdkp, SD_LBP_DISABLE); 401 return count; 402 } 403 404 if (sdp->type != TYPE_DISK) 405 return -EINVAL; 406 407 mode = sysfs_match_string(lbp_mode, buf); 408 if (mode < 0) 409 return -EINVAL; 410 411 sd_config_discard(sdkp, mode); 412 413 return count; 414 } 415 static DEVICE_ATTR_RW(provisioning_mode); 416 417 /* sysfs_match_string() requires dense arrays */ 418 static const char *zeroing_mode[] = { 419 [SD_ZERO_WRITE] = "write", 420 [SD_ZERO_WS] = "writesame", 421 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 422 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 423 }; 424 425 static ssize_t 426 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 427 char *buf) 428 { 429 struct scsi_disk *sdkp = to_scsi_disk(dev); 430 431 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 432 } 433 434 static ssize_t 435 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 436 const char *buf, size_t count) 437 { 438 struct scsi_disk *sdkp = to_scsi_disk(dev); 439 int mode; 440 441 if (!capable(CAP_SYS_ADMIN)) 442 return -EACCES; 443 444 mode = sysfs_match_string(zeroing_mode, buf); 445 if (mode < 0) 446 return -EINVAL; 447 448 sdkp->zeroing_mode = mode; 449 450 return count; 451 } 452 static DEVICE_ATTR_RW(zeroing_mode); 453 454 static ssize_t 455 max_medium_access_timeouts_show(struct device *dev, 456 struct device_attribute *attr, char *buf) 457 { 458 struct scsi_disk *sdkp = to_scsi_disk(dev); 459 460 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 461 } 462 463 static ssize_t 464 max_medium_access_timeouts_store(struct device *dev, 465 struct device_attribute *attr, const char *buf, 466 size_t count) 467 { 468 struct scsi_disk *sdkp = to_scsi_disk(dev); 469 int err; 470 471 if (!capable(CAP_SYS_ADMIN)) 472 return -EACCES; 473 474 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 475 476 return err ? err : count; 477 } 478 static DEVICE_ATTR_RW(max_medium_access_timeouts); 479 480 static ssize_t 481 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 482 char *buf) 483 { 484 struct scsi_disk *sdkp = to_scsi_disk(dev); 485 486 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 487 } 488 489 static ssize_t 490 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 491 const char *buf, size_t count) 492 { 493 struct scsi_disk *sdkp = to_scsi_disk(dev); 494 struct scsi_device *sdp = sdkp->device; 495 unsigned long max; 496 int err; 497 498 if (!capable(CAP_SYS_ADMIN)) 499 return -EACCES; 500 501 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 502 return -EINVAL; 503 504 err = kstrtoul(buf, 10, &max); 505 506 if (err) 507 return err; 508 509 if (max == 0) 510 sdp->no_write_same = 1; 511 else if (max <= SD_MAX_WS16_BLOCKS) { 512 sdp->no_write_same = 0; 513 sdkp->max_ws_blocks = max; 514 } 515 516 sd_config_write_same(sdkp); 517 518 return count; 519 } 520 static DEVICE_ATTR_RW(max_write_same_blocks); 521 522 static ssize_t 523 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 524 { 525 struct scsi_disk *sdkp = to_scsi_disk(dev); 526 527 if (sdkp->device->type == TYPE_ZBC) 528 return sprintf(buf, "host-managed\n"); 529 if (sdkp->zoned == 1) 530 return sprintf(buf, "host-aware\n"); 531 if (sdkp->zoned == 2) 532 return sprintf(buf, "drive-managed\n"); 533 return sprintf(buf, "none\n"); 534 } 535 static DEVICE_ATTR_RO(zoned_cap); 536 537 static ssize_t 538 max_retries_store(struct device *dev, struct device_attribute *attr, 539 const char *buf, size_t count) 540 { 541 struct scsi_disk *sdkp = to_scsi_disk(dev); 542 struct scsi_device *sdev = sdkp->device; 543 int retries, err; 544 545 err = kstrtoint(buf, 10, &retries); 546 if (err) 547 return err; 548 549 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 550 sdkp->max_retries = retries; 551 return count; 552 } 553 554 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 555 SD_MAX_RETRIES); 556 return -EINVAL; 557 } 558 559 static ssize_t 560 max_retries_show(struct device *dev, struct device_attribute *attr, 561 char *buf) 562 { 563 struct scsi_disk *sdkp = to_scsi_disk(dev); 564 565 return sprintf(buf, "%d\n", sdkp->max_retries); 566 } 567 568 static DEVICE_ATTR_RW(max_retries); 569 570 static struct attribute *sd_disk_attrs[] = { 571 &dev_attr_cache_type.attr, 572 &dev_attr_FUA.attr, 573 &dev_attr_allow_restart.attr, 574 &dev_attr_manage_start_stop.attr, 575 &dev_attr_protection_type.attr, 576 &dev_attr_protection_mode.attr, 577 &dev_attr_app_tag_own.attr, 578 &dev_attr_thin_provisioning.attr, 579 &dev_attr_provisioning_mode.attr, 580 &dev_attr_zeroing_mode.attr, 581 &dev_attr_max_write_same_blocks.attr, 582 &dev_attr_max_medium_access_timeouts.attr, 583 &dev_attr_zoned_cap.attr, 584 &dev_attr_max_retries.attr, 585 NULL, 586 }; 587 ATTRIBUTE_GROUPS(sd_disk); 588 589 static struct class sd_disk_class = { 590 .name = "scsi_disk", 591 .owner = THIS_MODULE, 592 .dev_release = scsi_disk_release, 593 .dev_groups = sd_disk_groups, 594 }; 595 596 static const struct dev_pm_ops sd_pm_ops = { 597 .suspend = sd_suspend_system, 598 .resume = sd_resume_system, 599 .poweroff = sd_suspend_system, 600 .restore = sd_resume_system, 601 .runtime_suspend = sd_suspend_runtime, 602 .runtime_resume = sd_resume_runtime, 603 }; 604 605 static struct scsi_driver sd_template = { 606 .gendrv = { 607 .name = "sd", 608 .owner = THIS_MODULE, 609 .probe = sd_probe, 610 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 611 .remove = sd_remove, 612 .shutdown = sd_shutdown, 613 .pm = &sd_pm_ops, 614 }, 615 .rescan = sd_rescan, 616 .init_command = sd_init_command, 617 .uninit_command = sd_uninit_command, 618 .done = sd_done, 619 .eh_action = sd_eh_action, 620 .eh_reset = sd_eh_reset, 621 }; 622 623 /* 624 * Don't request a new module, as that could deadlock in multipath 625 * environment. 626 */ 627 static void sd_default_probe(dev_t devt) 628 { 629 } 630 631 /* 632 * Device no to disk mapping: 633 * 634 * major disc2 disc p1 635 * |............|.............|....|....| <- dev_t 636 * 31 20 19 8 7 4 3 0 637 * 638 * Inside a major, we have 16k disks, however mapped non- 639 * contiguously. The first 16 disks are for major0, the next 640 * ones with major1, ... Disk 256 is for major0 again, disk 272 641 * for major1, ... 642 * As we stay compatible with our numbering scheme, we can reuse 643 * the well-know SCSI majors 8, 65--71, 136--143. 644 */ 645 static int sd_major(int major_idx) 646 { 647 switch (major_idx) { 648 case 0: 649 return SCSI_DISK0_MAJOR; 650 case 1 ... 7: 651 return SCSI_DISK1_MAJOR + major_idx - 1; 652 case 8 ... 15: 653 return SCSI_DISK8_MAJOR + major_idx - 8; 654 default: 655 BUG(); 656 return 0; /* shut up gcc */ 657 } 658 } 659 660 #ifdef CONFIG_BLK_SED_OPAL 661 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 662 size_t len, bool send) 663 { 664 struct scsi_disk *sdkp = data; 665 struct scsi_device *sdev = sdkp->device; 666 u8 cdb[12] = { 0, }; 667 const struct scsi_exec_args exec_args = { 668 .req_flags = BLK_MQ_REQ_PM, 669 }; 670 int ret; 671 672 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 673 cdb[1] = secp; 674 put_unaligned_be16(spsp, &cdb[2]); 675 put_unaligned_be32(len, &cdb[6]); 676 677 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 678 buffer, len, SD_TIMEOUT, sdkp->max_retries, 679 &exec_args); 680 return ret <= 0 ? ret : -EIO; 681 } 682 #endif /* CONFIG_BLK_SED_OPAL */ 683 684 /* 685 * Look up the DIX operation based on whether the command is read or 686 * write and whether dix and dif are enabled. 687 */ 688 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 689 { 690 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 691 static const unsigned int ops[] = { /* wrt dix dif */ 692 SCSI_PROT_NORMAL, /* 0 0 0 */ 693 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 694 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 695 SCSI_PROT_READ_PASS, /* 0 1 1 */ 696 SCSI_PROT_NORMAL, /* 1 0 0 */ 697 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 698 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 699 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 700 }; 701 702 return ops[write << 2 | dix << 1 | dif]; 703 } 704 705 /* 706 * Returns a mask of the protection flags that are valid for a given DIX 707 * operation. 708 */ 709 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 710 { 711 static const unsigned int flag_mask[] = { 712 [SCSI_PROT_NORMAL] = 0, 713 714 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 715 SCSI_PROT_GUARD_CHECK | 716 SCSI_PROT_REF_CHECK | 717 SCSI_PROT_REF_INCREMENT, 718 719 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 720 SCSI_PROT_IP_CHECKSUM, 721 722 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 723 SCSI_PROT_GUARD_CHECK | 724 SCSI_PROT_REF_CHECK | 725 SCSI_PROT_REF_INCREMENT | 726 SCSI_PROT_IP_CHECKSUM, 727 728 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 729 SCSI_PROT_REF_INCREMENT, 730 731 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 732 SCSI_PROT_REF_CHECK | 733 SCSI_PROT_REF_INCREMENT | 734 SCSI_PROT_IP_CHECKSUM, 735 736 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 737 SCSI_PROT_GUARD_CHECK | 738 SCSI_PROT_REF_CHECK | 739 SCSI_PROT_REF_INCREMENT | 740 SCSI_PROT_IP_CHECKSUM, 741 }; 742 743 return flag_mask[prot_op]; 744 } 745 746 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 747 unsigned int dix, unsigned int dif) 748 { 749 struct request *rq = scsi_cmd_to_rq(scmd); 750 struct bio *bio = rq->bio; 751 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 752 unsigned int protect = 0; 753 754 if (dix) { /* DIX Type 0, 1, 2, 3 */ 755 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 756 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 757 758 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 759 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 760 } 761 762 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 763 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 764 765 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 766 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 767 } 768 769 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 770 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 771 772 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 773 protect = 3 << 5; /* Disable target PI checking */ 774 else 775 protect = 1 << 5; /* Enable target PI checking */ 776 } 777 778 scsi_set_prot_op(scmd, prot_op); 779 scsi_set_prot_type(scmd, dif); 780 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 781 782 return protect; 783 } 784 785 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 786 { 787 struct request_queue *q = sdkp->disk->queue; 788 unsigned int logical_block_size = sdkp->device->sector_size; 789 unsigned int max_blocks = 0; 790 791 q->limits.discard_alignment = 792 sdkp->unmap_alignment * logical_block_size; 793 q->limits.discard_granularity = 794 max(sdkp->physical_block_size, 795 sdkp->unmap_granularity * logical_block_size); 796 sdkp->provisioning_mode = mode; 797 798 switch (mode) { 799 800 case SD_LBP_FULL: 801 case SD_LBP_DISABLE: 802 blk_queue_max_discard_sectors(q, 0); 803 return; 804 805 case SD_LBP_UNMAP: 806 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 807 (u32)SD_MAX_WS16_BLOCKS); 808 break; 809 810 case SD_LBP_WS16: 811 if (sdkp->device->unmap_limit_for_ws) 812 max_blocks = sdkp->max_unmap_blocks; 813 else 814 max_blocks = sdkp->max_ws_blocks; 815 816 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 817 break; 818 819 case SD_LBP_WS10: 820 if (sdkp->device->unmap_limit_for_ws) 821 max_blocks = sdkp->max_unmap_blocks; 822 else 823 max_blocks = sdkp->max_ws_blocks; 824 825 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 826 break; 827 828 case SD_LBP_ZERO: 829 max_blocks = min_not_zero(sdkp->max_ws_blocks, 830 (u32)SD_MAX_WS10_BLOCKS); 831 break; 832 } 833 834 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 835 } 836 837 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len) 838 { 839 struct page *page; 840 841 page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 842 if (!page) 843 return NULL; 844 clear_highpage(page); 845 bvec_set_page(&rq->special_vec, page, data_len, 0); 846 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 847 return bvec_virt(&rq->special_vec); 848 } 849 850 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 851 { 852 struct scsi_device *sdp = cmd->device; 853 struct request *rq = scsi_cmd_to_rq(cmd); 854 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 855 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 856 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 857 unsigned int data_len = 24; 858 char *buf; 859 860 buf = sd_set_special_bvec(rq, data_len); 861 if (!buf) 862 return BLK_STS_RESOURCE; 863 864 cmd->cmd_len = 10; 865 cmd->cmnd[0] = UNMAP; 866 cmd->cmnd[8] = 24; 867 868 put_unaligned_be16(6 + 16, &buf[0]); 869 put_unaligned_be16(16, &buf[2]); 870 put_unaligned_be64(lba, &buf[8]); 871 put_unaligned_be32(nr_blocks, &buf[16]); 872 873 cmd->allowed = sdkp->max_retries; 874 cmd->transfersize = data_len; 875 rq->timeout = SD_TIMEOUT; 876 877 return scsi_alloc_sgtables(cmd); 878 } 879 880 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 881 bool unmap) 882 { 883 struct scsi_device *sdp = cmd->device; 884 struct request *rq = scsi_cmd_to_rq(cmd); 885 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 886 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 887 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 888 u32 data_len = sdp->sector_size; 889 890 if (!sd_set_special_bvec(rq, data_len)) 891 return BLK_STS_RESOURCE; 892 893 cmd->cmd_len = 16; 894 cmd->cmnd[0] = WRITE_SAME_16; 895 if (unmap) 896 cmd->cmnd[1] = 0x8; /* UNMAP */ 897 put_unaligned_be64(lba, &cmd->cmnd[2]); 898 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 899 900 cmd->allowed = sdkp->max_retries; 901 cmd->transfersize = data_len; 902 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 903 904 return scsi_alloc_sgtables(cmd); 905 } 906 907 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 908 bool unmap) 909 { 910 struct scsi_device *sdp = cmd->device; 911 struct request *rq = scsi_cmd_to_rq(cmd); 912 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 913 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 914 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 915 u32 data_len = sdp->sector_size; 916 917 if (!sd_set_special_bvec(rq, data_len)) 918 return BLK_STS_RESOURCE; 919 920 cmd->cmd_len = 10; 921 cmd->cmnd[0] = WRITE_SAME; 922 if (unmap) 923 cmd->cmnd[1] = 0x8; /* UNMAP */ 924 put_unaligned_be32(lba, &cmd->cmnd[2]); 925 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 926 927 cmd->allowed = sdkp->max_retries; 928 cmd->transfersize = data_len; 929 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 930 931 return scsi_alloc_sgtables(cmd); 932 } 933 934 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 935 { 936 struct request *rq = scsi_cmd_to_rq(cmd); 937 struct scsi_device *sdp = cmd->device; 938 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 939 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 940 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 941 942 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 943 switch (sdkp->zeroing_mode) { 944 case SD_ZERO_WS16_UNMAP: 945 return sd_setup_write_same16_cmnd(cmd, true); 946 case SD_ZERO_WS10_UNMAP: 947 return sd_setup_write_same10_cmnd(cmd, true); 948 } 949 } 950 951 if (sdp->no_write_same) { 952 rq->rq_flags |= RQF_QUIET; 953 return BLK_STS_TARGET; 954 } 955 956 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 957 return sd_setup_write_same16_cmnd(cmd, false); 958 959 return sd_setup_write_same10_cmnd(cmd, false); 960 } 961 962 static void sd_config_write_same(struct scsi_disk *sdkp) 963 { 964 struct request_queue *q = sdkp->disk->queue; 965 unsigned int logical_block_size = sdkp->device->sector_size; 966 967 if (sdkp->device->no_write_same) { 968 sdkp->max_ws_blocks = 0; 969 goto out; 970 } 971 972 /* Some devices can not handle block counts above 0xffff despite 973 * supporting WRITE SAME(16). Consequently we default to 64k 974 * blocks per I/O unless the device explicitly advertises a 975 * bigger limit. 976 */ 977 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 978 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 979 (u32)SD_MAX_WS16_BLOCKS); 980 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 981 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 982 (u32)SD_MAX_WS10_BLOCKS); 983 else { 984 sdkp->device->no_write_same = 1; 985 sdkp->max_ws_blocks = 0; 986 } 987 988 if (sdkp->lbprz && sdkp->lbpws) 989 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 990 else if (sdkp->lbprz && sdkp->lbpws10) 991 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 992 else if (sdkp->max_ws_blocks) 993 sdkp->zeroing_mode = SD_ZERO_WS; 994 else 995 sdkp->zeroing_mode = SD_ZERO_WRITE; 996 997 if (sdkp->max_ws_blocks && 998 sdkp->physical_block_size > logical_block_size) { 999 /* 1000 * Reporting a maximum number of blocks that is not aligned 1001 * on the device physical size would cause a large write same 1002 * request to be split into physically unaligned chunks by 1003 * __blkdev_issue_write_zeroes() even if the caller of this 1004 * functions took care to align the large request. So make sure 1005 * the maximum reported is aligned to the device physical block 1006 * size. This is only an optional optimization for regular 1007 * disks, but this is mandatory to avoid failure of large write 1008 * same requests directed at sequential write required zones of 1009 * host-managed ZBC disks. 1010 */ 1011 sdkp->max_ws_blocks = 1012 round_down(sdkp->max_ws_blocks, 1013 bytes_to_logical(sdkp->device, 1014 sdkp->physical_block_size)); 1015 } 1016 1017 out: 1018 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1019 (logical_block_size >> 9)); 1020 } 1021 1022 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1023 { 1024 struct request *rq = scsi_cmd_to_rq(cmd); 1025 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1026 1027 /* flush requests don't perform I/O, zero the S/G table */ 1028 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1029 1030 if (cmd->device->use_16_for_sync) { 1031 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16; 1032 cmd->cmd_len = 16; 1033 } else { 1034 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1035 cmd->cmd_len = 10; 1036 } 1037 cmd->transfersize = 0; 1038 cmd->allowed = sdkp->max_retries; 1039 1040 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1041 return BLK_STS_OK; 1042 } 1043 1044 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1045 sector_t lba, unsigned int nr_blocks, 1046 unsigned char flags) 1047 { 1048 cmd->cmd_len = SD_EXT_CDB_SIZE; 1049 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1050 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1051 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1052 cmd->cmnd[10] = flags; 1053 put_unaligned_be64(lba, &cmd->cmnd[12]); 1054 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1055 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1056 1057 return BLK_STS_OK; 1058 } 1059 1060 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1061 sector_t lba, unsigned int nr_blocks, 1062 unsigned char flags) 1063 { 1064 cmd->cmd_len = 16; 1065 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1066 cmd->cmnd[1] = flags; 1067 cmd->cmnd[14] = 0; 1068 cmd->cmnd[15] = 0; 1069 put_unaligned_be64(lba, &cmd->cmnd[2]); 1070 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1071 1072 return BLK_STS_OK; 1073 } 1074 1075 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1076 sector_t lba, unsigned int nr_blocks, 1077 unsigned char flags) 1078 { 1079 cmd->cmd_len = 10; 1080 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1081 cmd->cmnd[1] = flags; 1082 cmd->cmnd[6] = 0; 1083 cmd->cmnd[9] = 0; 1084 put_unaligned_be32(lba, &cmd->cmnd[2]); 1085 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1086 1087 return BLK_STS_OK; 1088 } 1089 1090 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1091 sector_t lba, unsigned int nr_blocks, 1092 unsigned char flags) 1093 { 1094 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1095 if (WARN_ON_ONCE(nr_blocks == 0)) 1096 return BLK_STS_IOERR; 1097 1098 if (unlikely(flags & 0x8)) { 1099 /* 1100 * This happens only if this drive failed 10byte rw 1101 * command with ILLEGAL_REQUEST during operation and 1102 * thus turned off use_10_for_rw. 1103 */ 1104 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1105 return BLK_STS_IOERR; 1106 } 1107 1108 cmd->cmd_len = 6; 1109 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1110 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1111 cmd->cmnd[2] = (lba >> 8) & 0xff; 1112 cmd->cmnd[3] = lba & 0xff; 1113 cmd->cmnd[4] = nr_blocks; 1114 cmd->cmnd[5] = 0; 1115 1116 return BLK_STS_OK; 1117 } 1118 1119 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1120 { 1121 struct request *rq = scsi_cmd_to_rq(cmd); 1122 struct scsi_device *sdp = cmd->device; 1123 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1124 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1125 sector_t threshold; 1126 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1127 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1128 bool write = rq_data_dir(rq) == WRITE; 1129 unsigned char protect, fua; 1130 blk_status_t ret; 1131 unsigned int dif; 1132 bool dix; 1133 1134 ret = scsi_alloc_sgtables(cmd); 1135 if (ret != BLK_STS_OK) 1136 return ret; 1137 1138 ret = BLK_STS_IOERR; 1139 if (!scsi_device_online(sdp) || sdp->changed) { 1140 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1141 goto fail; 1142 } 1143 1144 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1145 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1146 goto fail; 1147 } 1148 1149 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1150 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1151 goto fail; 1152 } 1153 1154 /* 1155 * Some SD card readers can't handle accesses which touch the 1156 * last one or two logical blocks. Split accesses as needed. 1157 */ 1158 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1159 1160 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1161 if (lba < threshold) { 1162 /* Access up to the threshold but not beyond */ 1163 nr_blocks = threshold - lba; 1164 } else { 1165 /* Access only a single logical block */ 1166 nr_blocks = 1; 1167 } 1168 } 1169 1170 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1171 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1172 if (ret) 1173 goto fail; 1174 } 1175 1176 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1177 dix = scsi_prot_sg_count(cmd); 1178 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1179 1180 if (dif || dix) 1181 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1182 else 1183 protect = 0; 1184 1185 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1186 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1187 protect | fua); 1188 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1189 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1190 protect | fua); 1191 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1192 sdp->use_10_for_rw || protect) { 1193 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1194 protect | fua); 1195 } else { 1196 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1197 protect | fua); 1198 } 1199 1200 if (unlikely(ret != BLK_STS_OK)) 1201 goto fail; 1202 1203 /* 1204 * We shouldn't disconnect in the middle of a sector, so with a dumb 1205 * host adapter, it's safe to assume that we can at least transfer 1206 * this many bytes between each connect / disconnect. 1207 */ 1208 cmd->transfersize = sdp->sector_size; 1209 cmd->underflow = nr_blocks << 9; 1210 cmd->allowed = sdkp->max_retries; 1211 cmd->sdb.length = nr_blocks * sdp->sector_size; 1212 1213 SCSI_LOG_HLQUEUE(1, 1214 scmd_printk(KERN_INFO, cmd, 1215 "%s: block=%llu, count=%d\n", __func__, 1216 (unsigned long long)blk_rq_pos(rq), 1217 blk_rq_sectors(rq))); 1218 SCSI_LOG_HLQUEUE(2, 1219 scmd_printk(KERN_INFO, cmd, 1220 "%s %d/%u 512 byte blocks.\n", 1221 write ? "writing" : "reading", nr_blocks, 1222 blk_rq_sectors(rq))); 1223 1224 /* 1225 * This indicates that the command is ready from our end to be queued. 1226 */ 1227 return BLK_STS_OK; 1228 fail: 1229 scsi_free_sgtables(cmd); 1230 return ret; 1231 } 1232 1233 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1234 { 1235 struct request *rq = scsi_cmd_to_rq(cmd); 1236 1237 switch (req_op(rq)) { 1238 case REQ_OP_DISCARD: 1239 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1240 case SD_LBP_UNMAP: 1241 return sd_setup_unmap_cmnd(cmd); 1242 case SD_LBP_WS16: 1243 return sd_setup_write_same16_cmnd(cmd, true); 1244 case SD_LBP_WS10: 1245 return sd_setup_write_same10_cmnd(cmd, true); 1246 case SD_LBP_ZERO: 1247 return sd_setup_write_same10_cmnd(cmd, false); 1248 default: 1249 return BLK_STS_TARGET; 1250 } 1251 case REQ_OP_WRITE_ZEROES: 1252 return sd_setup_write_zeroes_cmnd(cmd); 1253 case REQ_OP_FLUSH: 1254 return sd_setup_flush_cmnd(cmd); 1255 case REQ_OP_READ: 1256 case REQ_OP_WRITE: 1257 case REQ_OP_ZONE_APPEND: 1258 return sd_setup_read_write_cmnd(cmd); 1259 case REQ_OP_ZONE_RESET: 1260 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1261 false); 1262 case REQ_OP_ZONE_RESET_ALL: 1263 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1264 true); 1265 case REQ_OP_ZONE_OPEN: 1266 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1267 case REQ_OP_ZONE_CLOSE: 1268 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1269 case REQ_OP_ZONE_FINISH: 1270 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1271 default: 1272 WARN_ON_ONCE(1); 1273 return BLK_STS_NOTSUPP; 1274 } 1275 } 1276 1277 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1278 { 1279 struct request *rq = scsi_cmd_to_rq(SCpnt); 1280 1281 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1282 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1283 } 1284 1285 static bool sd_need_revalidate(struct block_device *bdev, 1286 struct scsi_disk *sdkp) 1287 { 1288 if (sdkp->device->removable || sdkp->write_prot) { 1289 if (bdev_check_media_change(bdev)) 1290 return true; 1291 } 1292 1293 /* 1294 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1295 * nothing to do with partitions, BLKRRPART is used to force a full 1296 * revalidate after things like a format for historical reasons. 1297 */ 1298 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 1299 } 1300 1301 /** 1302 * sd_open - open a scsi disk device 1303 * @bdev: Block device of the scsi disk to open 1304 * @mode: FMODE_* mask 1305 * 1306 * Returns 0 if successful. Returns a negated errno value in case 1307 * of error. 1308 * 1309 * Note: This can be called from a user context (e.g. fsck(1) ) 1310 * or from within the kernel (e.g. as a result of a mount(1) ). 1311 * In the latter case @inode and @filp carry an abridged amount 1312 * of information as noted above. 1313 * 1314 * Locking: called with bdev->bd_disk->open_mutex held. 1315 **/ 1316 static int sd_open(struct block_device *bdev, fmode_t mode) 1317 { 1318 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1319 struct scsi_device *sdev = sdkp->device; 1320 int retval; 1321 1322 if (scsi_device_get(sdev)) 1323 return -ENXIO; 1324 1325 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1326 1327 /* 1328 * If the device is in error recovery, wait until it is done. 1329 * If the device is offline, then disallow any access to it. 1330 */ 1331 retval = -ENXIO; 1332 if (!scsi_block_when_processing_errors(sdev)) 1333 goto error_out; 1334 1335 if (sd_need_revalidate(bdev, sdkp)) 1336 sd_revalidate_disk(bdev->bd_disk); 1337 1338 /* 1339 * If the drive is empty, just let the open fail. 1340 */ 1341 retval = -ENOMEDIUM; 1342 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1343 goto error_out; 1344 1345 /* 1346 * If the device has the write protect tab set, have the open fail 1347 * if the user expects to be able to write to the thing. 1348 */ 1349 retval = -EROFS; 1350 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1351 goto error_out; 1352 1353 /* 1354 * It is possible that the disk changing stuff resulted in 1355 * the device being taken offline. If this is the case, 1356 * report this to the user, and don't pretend that the 1357 * open actually succeeded. 1358 */ 1359 retval = -ENXIO; 1360 if (!scsi_device_online(sdev)) 1361 goto error_out; 1362 1363 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1364 if (scsi_block_when_processing_errors(sdev)) 1365 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1366 } 1367 1368 return 0; 1369 1370 error_out: 1371 scsi_device_put(sdev); 1372 return retval; 1373 } 1374 1375 /** 1376 * sd_release - invoked when the (last) close(2) is called on this 1377 * scsi disk. 1378 * @disk: disk to release 1379 * @mode: FMODE_* mask 1380 * 1381 * Returns 0. 1382 * 1383 * Note: may block (uninterruptible) if error recovery is underway 1384 * on this disk. 1385 * 1386 * Locking: called with bdev->bd_disk->open_mutex held. 1387 **/ 1388 static void sd_release(struct gendisk *disk, fmode_t mode) 1389 { 1390 struct scsi_disk *sdkp = scsi_disk(disk); 1391 struct scsi_device *sdev = sdkp->device; 1392 1393 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1394 1395 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1396 if (scsi_block_when_processing_errors(sdev)) 1397 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1398 } 1399 1400 scsi_device_put(sdev); 1401 } 1402 1403 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1404 { 1405 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1406 struct scsi_device *sdp = sdkp->device; 1407 struct Scsi_Host *host = sdp->host; 1408 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1409 int diskinfo[4]; 1410 1411 /* default to most commonly used values */ 1412 diskinfo[0] = 0x40; /* 1 << 6 */ 1413 diskinfo[1] = 0x20; /* 1 << 5 */ 1414 diskinfo[2] = capacity >> 11; 1415 1416 /* override with calculated, extended default, or driver values */ 1417 if (host->hostt->bios_param) 1418 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1419 else 1420 scsicam_bios_param(bdev, capacity, diskinfo); 1421 1422 geo->heads = diskinfo[0]; 1423 geo->sectors = diskinfo[1]; 1424 geo->cylinders = diskinfo[2]; 1425 return 0; 1426 } 1427 1428 /** 1429 * sd_ioctl - process an ioctl 1430 * @bdev: target block device 1431 * @mode: FMODE_* mask 1432 * @cmd: ioctl command number 1433 * @arg: this is third argument given to ioctl(2) system call. 1434 * Often contains a pointer. 1435 * 1436 * Returns 0 if successful (some ioctls return positive numbers on 1437 * success as well). Returns a negated errno value in case of error. 1438 * 1439 * Note: most ioctls are forward onto the block subsystem or further 1440 * down in the scsi subsystem. 1441 **/ 1442 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1443 unsigned int cmd, unsigned long arg) 1444 { 1445 struct gendisk *disk = bdev->bd_disk; 1446 struct scsi_disk *sdkp = scsi_disk(disk); 1447 struct scsi_device *sdp = sdkp->device; 1448 void __user *p = (void __user *)arg; 1449 int error; 1450 1451 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1452 "cmd=0x%x\n", disk->disk_name, cmd)); 1453 1454 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1455 return -ENOIOCTLCMD; 1456 1457 /* 1458 * If we are in the middle of error recovery, don't let anyone 1459 * else try and use this device. Also, if error recovery fails, it 1460 * may try and take the device offline, in which case all further 1461 * access to the device is prohibited. 1462 */ 1463 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1464 (mode & FMODE_NDELAY) != 0); 1465 if (error) 1466 return error; 1467 1468 if (is_sed_ioctl(cmd)) 1469 return sed_ioctl(sdkp->opal_dev, cmd, p); 1470 return scsi_ioctl(sdp, mode, cmd, p); 1471 } 1472 1473 static void set_media_not_present(struct scsi_disk *sdkp) 1474 { 1475 if (sdkp->media_present) 1476 sdkp->device->changed = 1; 1477 1478 if (sdkp->device->removable) { 1479 sdkp->media_present = 0; 1480 sdkp->capacity = 0; 1481 } 1482 } 1483 1484 static int media_not_present(struct scsi_disk *sdkp, 1485 struct scsi_sense_hdr *sshdr) 1486 { 1487 if (!scsi_sense_valid(sshdr)) 1488 return 0; 1489 1490 /* not invoked for commands that could return deferred errors */ 1491 switch (sshdr->sense_key) { 1492 case UNIT_ATTENTION: 1493 case NOT_READY: 1494 /* medium not present */ 1495 if (sshdr->asc == 0x3A) { 1496 set_media_not_present(sdkp); 1497 return 1; 1498 } 1499 } 1500 return 0; 1501 } 1502 1503 /** 1504 * sd_check_events - check media events 1505 * @disk: kernel device descriptor 1506 * @clearing: disk events currently being cleared 1507 * 1508 * Returns mask of DISK_EVENT_*. 1509 * 1510 * Note: this function is invoked from the block subsystem. 1511 **/ 1512 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1513 { 1514 struct scsi_disk *sdkp = disk->private_data; 1515 struct scsi_device *sdp; 1516 int retval; 1517 bool disk_changed; 1518 1519 if (!sdkp) 1520 return 0; 1521 1522 sdp = sdkp->device; 1523 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1524 1525 /* 1526 * If the device is offline, don't send any commands - just pretend as 1527 * if the command failed. If the device ever comes back online, we 1528 * can deal with it then. It is only because of unrecoverable errors 1529 * that we would ever take a device offline in the first place. 1530 */ 1531 if (!scsi_device_online(sdp)) { 1532 set_media_not_present(sdkp); 1533 goto out; 1534 } 1535 1536 /* 1537 * Using TEST_UNIT_READY enables differentiation between drive with 1538 * no cartridge loaded - NOT READY, drive with changed cartridge - 1539 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1540 * 1541 * Drives that auto spin down. eg iomega jaz 1G, will be started 1542 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1543 * sd_revalidate() is called. 1544 */ 1545 if (scsi_block_when_processing_errors(sdp)) { 1546 struct scsi_sense_hdr sshdr = { 0, }; 1547 1548 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1549 &sshdr); 1550 1551 /* failed to execute TUR, assume media not present */ 1552 if (retval < 0 || host_byte(retval)) { 1553 set_media_not_present(sdkp); 1554 goto out; 1555 } 1556 1557 if (media_not_present(sdkp, &sshdr)) 1558 goto out; 1559 } 1560 1561 /* 1562 * For removable scsi disk we have to recognise the presence 1563 * of a disk in the drive. 1564 */ 1565 if (!sdkp->media_present) 1566 sdp->changed = 1; 1567 sdkp->media_present = 1; 1568 out: 1569 /* 1570 * sdp->changed is set under the following conditions: 1571 * 1572 * Medium present state has changed in either direction. 1573 * Device has indicated UNIT_ATTENTION. 1574 */ 1575 disk_changed = sdp->changed; 1576 sdp->changed = 0; 1577 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1578 } 1579 1580 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1581 { 1582 int retries, res; 1583 struct scsi_device *sdp = sdkp->device; 1584 const int timeout = sdp->request_queue->rq_timeout 1585 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1586 struct scsi_sense_hdr my_sshdr; 1587 const struct scsi_exec_args exec_args = { 1588 .req_flags = BLK_MQ_REQ_PM, 1589 /* caller might not be interested in sense, but we need it */ 1590 .sshdr = sshdr ? : &my_sshdr, 1591 }; 1592 1593 if (!scsi_device_online(sdp)) 1594 return -ENODEV; 1595 1596 sshdr = exec_args.sshdr; 1597 1598 for (retries = 3; retries > 0; --retries) { 1599 unsigned char cmd[16] = { 0 }; 1600 1601 if (sdp->use_16_for_sync) 1602 cmd[0] = SYNCHRONIZE_CACHE_16; 1603 else 1604 cmd[0] = SYNCHRONIZE_CACHE; 1605 /* 1606 * Leave the rest of the command zero to indicate 1607 * flush everything. 1608 */ 1609 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 1610 timeout, sdkp->max_retries, &exec_args); 1611 if (res == 0) 1612 break; 1613 } 1614 1615 if (res) { 1616 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1617 1618 if (res < 0) 1619 return res; 1620 1621 if (scsi_status_is_check_condition(res) && 1622 scsi_sense_valid(sshdr)) { 1623 sd_print_sense_hdr(sdkp, sshdr); 1624 1625 /* we need to evaluate the error return */ 1626 if (sshdr->asc == 0x3a || /* medium not present */ 1627 sshdr->asc == 0x20 || /* invalid command */ 1628 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1629 /* this is no error here */ 1630 return 0; 1631 } 1632 1633 switch (host_byte(res)) { 1634 /* ignore errors due to racing a disconnection */ 1635 case DID_BAD_TARGET: 1636 case DID_NO_CONNECT: 1637 return 0; 1638 /* signal the upper layer it might try again */ 1639 case DID_BUS_BUSY: 1640 case DID_IMM_RETRY: 1641 case DID_REQUEUE: 1642 case DID_SOFT_ERROR: 1643 return -EBUSY; 1644 default: 1645 return -EIO; 1646 } 1647 } 1648 return 0; 1649 } 1650 1651 static void sd_rescan(struct device *dev) 1652 { 1653 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1654 1655 sd_revalidate_disk(sdkp->disk); 1656 } 1657 1658 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1659 enum blk_unique_id type) 1660 { 1661 struct scsi_device *sdev = scsi_disk(disk)->device; 1662 const struct scsi_vpd *vpd; 1663 const unsigned char *d; 1664 int ret = -ENXIO, len; 1665 1666 rcu_read_lock(); 1667 vpd = rcu_dereference(sdev->vpd_pg83); 1668 if (!vpd) 1669 goto out_unlock; 1670 1671 ret = -EINVAL; 1672 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1673 /* we only care about designators with LU association */ 1674 if (((d[1] >> 4) & 0x3) != 0x00) 1675 continue; 1676 if ((d[1] & 0xf) != type) 1677 continue; 1678 1679 /* 1680 * Only exit early if a 16-byte descriptor was found. Otherwise 1681 * keep looking as one with more entropy might still show up. 1682 */ 1683 len = d[3]; 1684 if (len != 8 && len != 12 && len != 16) 1685 continue; 1686 ret = len; 1687 memcpy(id, d + 4, len); 1688 if (len == 16) 1689 break; 1690 } 1691 out_unlock: 1692 rcu_read_unlock(); 1693 return ret; 1694 } 1695 1696 static char sd_pr_type(enum pr_type type) 1697 { 1698 switch (type) { 1699 case PR_WRITE_EXCLUSIVE: 1700 return 0x01; 1701 case PR_EXCLUSIVE_ACCESS: 1702 return 0x03; 1703 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1704 return 0x05; 1705 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1706 return 0x06; 1707 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1708 return 0x07; 1709 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1710 return 0x08; 1711 default: 1712 return 0; 1713 } 1714 }; 1715 1716 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result) 1717 { 1718 switch (host_byte(result)) { 1719 case DID_TRANSPORT_MARGINAL: 1720 case DID_TRANSPORT_DISRUPTED: 1721 case DID_BUS_BUSY: 1722 return PR_STS_RETRY_PATH_FAILURE; 1723 case DID_NO_CONNECT: 1724 return PR_STS_PATH_FAILED; 1725 case DID_TRANSPORT_FAILFAST: 1726 return PR_STS_PATH_FAST_FAILED; 1727 } 1728 1729 switch (status_byte(result)) { 1730 case SAM_STAT_RESERVATION_CONFLICT: 1731 return PR_STS_RESERVATION_CONFLICT; 1732 case SAM_STAT_CHECK_CONDITION: 1733 if (!scsi_sense_valid(sshdr)) 1734 return PR_STS_IOERR; 1735 1736 if (sshdr->sense_key == ILLEGAL_REQUEST && 1737 (sshdr->asc == 0x26 || sshdr->asc == 0x24)) 1738 return -EINVAL; 1739 1740 fallthrough; 1741 default: 1742 return PR_STS_IOERR; 1743 } 1744 } 1745 1746 static int sd_pr_command(struct block_device *bdev, u8 sa, 1747 u64 key, u64 sa_key, u8 type, u8 flags) 1748 { 1749 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1750 struct scsi_device *sdev = sdkp->device; 1751 struct scsi_sense_hdr sshdr; 1752 const struct scsi_exec_args exec_args = { 1753 .sshdr = &sshdr, 1754 }; 1755 int result; 1756 u8 cmd[16] = { 0, }; 1757 u8 data[24] = { 0, }; 1758 1759 cmd[0] = PERSISTENT_RESERVE_OUT; 1760 cmd[1] = sa; 1761 cmd[2] = type; 1762 put_unaligned_be32(sizeof(data), &cmd[5]); 1763 1764 put_unaligned_be64(key, &data[0]); 1765 put_unaligned_be64(sa_key, &data[8]); 1766 data[20] = flags; 1767 1768 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data, 1769 sizeof(data), SD_TIMEOUT, sdkp->max_retries, 1770 &exec_args); 1771 1772 if (scsi_status_is_check_condition(result) && 1773 scsi_sense_valid(&sshdr)) { 1774 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1775 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1776 } 1777 1778 if (result <= 0) 1779 return result; 1780 1781 return sd_scsi_to_pr_err(&sshdr, result); 1782 } 1783 1784 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1785 u32 flags) 1786 { 1787 if (flags & ~PR_FL_IGNORE_KEY) 1788 return -EOPNOTSUPP; 1789 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1790 old_key, new_key, 0, 1791 (1 << 0) /* APTPL */); 1792 } 1793 1794 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1795 u32 flags) 1796 { 1797 if (flags) 1798 return -EOPNOTSUPP; 1799 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1800 } 1801 1802 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1803 { 1804 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1805 } 1806 1807 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1808 enum pr_type type, bool abort) 1809 { 1810 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1811 sd_pr_type(type), 0); 1812 } 1813 1814 static int sd_pr_clear(struct block_device *bdev, u64 key) 1815 { 1816 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1817 } 1818 1819 static const struct pr_ops sd_pr_ops = { 1820 .pr_register = sd_pr_register, 1821 .pr_reserve = sd_pr_reserve, 1822 .pr_release = sd_pr_release, 1823 .pr_preempt = sd_pr_preempt, 1824 .pr_clear = sd_pr_clear, 1825 }; 1826 1827 static void scsi_disk_free_disk(struct gendisk *disk) 1828 { 1829 struct scsi_disk *sdkp = scsi_disk(disk); 1830 1831 put_device(&sdkp->disk_dev); 1832 } 1833 1834 static const struct block_device_operations sd_fops = { 1835 .owner = THIS_MODULE, 1836 .open = sd_open, 1837 .release = sd_release, 1838 .ioctl = sd_ioctl, 1839 .getgeo = sd_getgeo, 1840 .compat_ioctl = blkdev_compat_ptr_ioctl, 1841 .check_events = sd_check_events, 1842 .unlock_native_capacity = sd_unlock_native_capacity, 1843 .report_zones = sd_zbc_report_zones, 1844 .get_unique_id = sd_get_unique_id, 1845 .free_disk = scsi_disk_free_disk, 1846 .pr_ops = &sd_pr_ops, 1847 }; 1848 1849 /** 1850 * sd_eh_reset - reset error handling callback 1851 * @scmd: sd-issued command that has failed 1852 * 1853 * This function is called by the SCSI midlayer before starting 1854 * SCSI EH. When counting medium access failures we have to be 1855 * careful to register it only only once per device and SCSI EH run; 1856 * there might be several timed out commands which will cause the 1857 * 'max_medium_access_timeouts' counter to trigger after the first 1858 * SCSI EH run already and set the device to offline. 1859 * So this function resets the internal counter before starting SCSI EH. 1860 **/ 1861 static void sd_eh_reset(struct scsi_cmnd *scmd) 1862 { 1863 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1864 1865 /* New SCSI EH run, reset gate variable */ 1866 sdkp->ignore_medium_access_errors = false; 1867 } 1868 1869 /** 1870 * sd_eh_action - error handling callback 1871 * @scmd: sd-issued command that has failed 1872 * @eh_disp: The recovery disposition suggested by the midlayer 1873 * 1874 * This function is called by the SCSI midlayer upon completion of an 1875 * error test command (currently TEST UNIT READY). The result of sending 1876 * the eh command is passed in eh_disp. We're looking for devices that 1877 * fail medium access commands but are OK with non access commands like 1878 * test unit ready (so wrongly see the device as having a successful 1879 * recovery) 1880 **/ 1881 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1882 { 1883 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1884 struct scsi_device *sdev = scmd->device; 1885 1886 if (!scsi_device_online(sdev) || 1887 !scsi_medium_access_command(scmd) || 1888 host_byte(scmd->result) != DID_TIME_OUT || 1889 eh_disp != SUCCESS) 1890 return eh_disp; 1891 1892 /* 1893 * The device has timed out executing a medium access command. 1894 * However, the TEST UNIT READY command sent during error 1895 * handling completed successfully. Either the device is in the 1896 * process of recovering or has it suffered an internal failure 1897 * that prevents access to the storage medium. 1898 */ 1899 if (!sdkp->ignore_medium_access_errors) { 1900 sdkp->medium_access_timed_out++; 1901 sdkp->ignore_medium_access_errors = true; 1902 } 1903 1904 /* 1905 * If the device keeps failing read/write commands but TEST UNIT 1906 * READY always completes successfully we assume that medium 1907 * access is no longer possible and take the device offline. 1908 */ 1909 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1910 scmd_printk(KERN_ERR, scmd, 1911 "Medium access timeout failure. Offlining disk!\n"); 1912 mutex_lock(&sdev->state_mutex); 1913 scsi_device_set_state(sdev, SDEV_OFFLINE); 1914 mutex_unlock(&sdev->state_mutex); 1915 1916 return SUCCESS; 1917 } 1918 1919 return eh_disp; 1920 } 1921 1922 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1923 { 1924 struct request *req = scsi_cmd_to_rq(scmd); 1925 struct scsi_device *sdev = scmd->device; 1926 unsigned int transferred, good_bytes; 1927 u64 start_lba, end_lba, bad_lba; 1928 1929 /* 1930 * Some commands have a payload smaller than the device logical 1931 * block size (e.g. INQUIRY on a 4K disk). 1932 */ 1933 if (scsi_bufflen(scmd) <= sdev->sector_size) 1934 return 0; 1935 1936 /* Check if we have a 'bad_lba' information */ 1937 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1938 SCSI_SENSE_BUFFERSIZE, 1939 &bad_lba)) 1940 return 0; 1941 1942 /* 1943 * If the bad lba was reported incorrectly, we have no idea where 1944 * the error is. 1945 */ 1946 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1947 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1948 if (bad_lba < start_lba || bad_lba >= end_lba) 1949 return 0; 1950 1951 /* 1952 * resid is optional but mostly filled in. When it's unused, 1953 * its value is zero, so we assume the whole buffer transferred 1954 */ 1955 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1956 1957 /* This computation should always be done in terms of the 1958 * resolution of the device's medium. 1959 */ 1960 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1961 1962 return min(good_bytes, transferred); 1963 } 1964 1965 /** 1966 * sd_done - bottom half handler: called when the lower level 1967 * driver has completed (successfully or otherwise) a scsi command. 1968 * @SCpnt: mid-level's per command structure. 1969 * 1970 * Note: potentially run from within an ISR. Must not block. 1971 **/ 1972 static int sd_done(struct scsi_cmnd *SCpnt) 1973 { 1974 int result = SCpnt->result; 1975 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1976 unsigned int sector_size = SCpnt->device->sector_size; 1977 unsigned int resid; 1978 struct scsi_sense_hdr sshdr; 1979 struct request *req = scsi_cmd_to_rq(SCpnt); 1980 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 1981 int sense_valid = 0; 1982 int sense_deferred = 0; 1983 1984 switch (req_op(req)) { 1985 case REQ_OP_DISCARD: 1986 case REQ_OP_WRITE_ZEROES: 1987 case REQ_OP_ZONE_RESET: 1988 case REQ_OP_ZONE_RESET_ALL: 1989 case REQ_OP_ZONE_OPEN: 1990 case REQ_OP_ZONE_CLOSE: 1991 case REQ_OP_ZONE_FINISH: 1992 if (!result) { 1993 good_bytes = blk_rq_bytes(req); 1994 scsi_set_resid(SCpnt, 0); 1995 } else { 1996 good_bytes = 0; 1997 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1998 } 1999 break; 2000 default: 2001 /* 2002 * In case of bogus fw or device, we could end up having 2003 * an unaligned partial completion. Check this here and force 2004 * alignment. 2005 */ 2006 resid = scsi_get_resid(SCpnt); 2007 if (resid & (sector_size - 1)) { 2008 sd_printk(KERN_INFO, sdkp, 2009 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2010 resid, sector_size); 2011 scsi_print_command(SCpnt); 2012 resid = min(scsi_bufflen(SCpnt), 2013 round_up(resid, sector_size)); 2014 scsi_set_resid(SCpnt, resid); 2015 } 2016 } 2017 2018 if (result) { 2019 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2020 if (sense_valid) 2021 sense_deferred = scsi_sense_is_deferred(&sshdr); 2022 } 2023 sdkp->medium_access_timed_out = 0; 2024 2025 if (!scsi_status_is_check_condition(result) && 2026 (!sense_valid || sense_deferred)) 2027 goto out; 2028 2029 switch (sshdr.sense_key) { 2030 case HARDWARE_ERROR: 2031 case MEDIUM_ERROR: 2032 good_bytes = sd_completed_bytes(SCpnt); 2033 break; 2034 case RECOVERED_ERROR: 2035 good_bytes = scsi_bufflen(SCpnt); 2036 break; 2037 case NO_SENSE: 2038 /* This indicates a false check condition, so ignore it. An 2039 * unknown amount of data was transferred so treat it as an 2040 * error. 2041 */ 2042 SCpnt->result = 0; 2043 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2044 break; 2045 case ABORTED_COMMAND: 2046 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2047 good_bytes = sd_completed_bytes(SCpnt); 2048 break; 2049 case ILLEGAL_REQUEST: 2050 switch (sshdr.asc) { 2051 case 0x10: /* DIX: Host detected corruption */ 2052 good_bytes = sd_completed_bytes(SCpnt); 2053 break; 2054 case 0x20: /* INVALID COMMAND OPCODE */ 2055 case 0x24: /* INVALID FIELD IN CDB */ 2056 switch (SCpnt->cmnd[0]) { 2057 case UNMAP: 2058 sd_config_discard(sdkp, SD_LBP_DISABLE); 2059 break; 2060 case WRITE_SAME_16: 2061 case WRITE_SAME: 2062 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2063 sd_config_discard(sdkp, SD_LBP_DISABLE); 2064 } else { 2065 sdkp->device->no_write_same = 1; 2066 sd_config_write_same(sdkp); 2067 req->rq_flags |= RQF_QUIET; 2068 } 2069 break; 2070 } 2071 } 2072 break; 2073 default: 2074 break; 2075 } 2076 2077 out: 2078 if (sd_is_zoned(sdkp)) 2079 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2080 2081 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2082 "sd_done: completed %d of %d bytes\n", 2083 good_bytes, scsi_bufflen(SCpnt))); 2084 2085 return good_bytes; 2086 } 2087 2088 /* 2089 * spinup disk - called only in sd_revalidate_disk() 2090 */ 2091 static void 2092 sd_spinup_disk(struct scsi_disk *sdkp) 2093 { 2094 unsigned char cmd[10]; 2095 unsigned long spintime_expire = 0; 2096 int retries, spintime; 2097 unsigned int the_result; 2098 struct scsi_sense_hdr sshdr; 2099 const struct scsi_exec_args exec_args = { 2100 .sshdr = &sshdr, 2101 }; 2102 int sense_valid = 0; 2103 2104 spintime = 0; 2105 2106 /* Spin up drives, as required. Only do this at boot time */ 2107 /* Spinup needs to be done for module loads too. */ 2108 do { 2109 retries = 0; 2110 2111 do { 2112 bool media_was_present = sdkp->media_present; 2113 2114 cmd[0] = TEST_UNIT_READY; 2115 memset((void *) &cmd[1], 0, 9); 2116 2117 the_result = scsi_execute_cmd(sdkp->device, cmd, 2118 REQ_OP_DRV_IN, NULL, 0, 2119 SD_TIMEOUT, 2120 sdkp->max_retries, 2121 &exec_args); 2122 2123 /* 2124 * If the drive has indicated to us that it 2125 * doesn't have any media in it, don't bother 2126 * with any more polling. 2127 */ 2128 if (media_not_present(sdkp, &sshdr)) { 2129 if (media_was_present) 2130 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); 2131 return; 2132 } 2133 2134 if (the_result) 2135 sense_valid = scsi_sense_valid(&sshdr); 2136 retries++; 2137 } while (retries < 3 && 2138 (!scsi_status_is_good(the_result) || 2139 (scsi_status_is_check_condition(the_result) && 2140 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2141 2142 if (!scsi_status_is_check_condition(the_result)) { 2143 /* no sense, TUR either succeeded or failed 2144 * with a status error */ 2145 if(!spintime && !scsi_status_is_good(the_result)) { 2146 sd_print_result(sdkp, "Test Unit Ready failed", 2147 the_result); 2148 } 2149 break; 2150 } 2151 2152 /* 2153 * The device does not want the automatic start to be issued. 2154 */ 2155 if (sdkp->device->no_start_on_add) 2156 break; 2157 2158 if (sense_valid && sshdr.sense_key == NOT_READY) { 2159 if (sshdr.asc == 4 && sshdr.ascq == 3) 2160 break; /* manual intervention required */ 2161 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2162 break; /* standby */ 2163 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2164 break; /* unavailable */ 2165 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2166 break; /* sanitize in progress */ 2167 /* 2168 * Issue command to spin up drive when not ready 2169 */ 2170 if (!spintime) { 2171 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2172 cmd[0] = START_STOP; 2173 cmd[1] = 1; /* Return immediately */ 2174 memset((void *) &cmd[2], 0, 8); 2175 cmd[4] = 1; /* Start spin cycle */ 2176 if (sdkp->device->start_stop_pwr_cond) 2177 cmd[4] |= 1 << 4; 2178 scsi_execute_cmd(sdkp->device, cmd, 2179 REQ_OP_DRV_IN, NULL, 0, 2180 SD_TIMEOUT, sdkp->max_retries, 2181 &exec_args); 2182 spintime_expire = jiffies + 100 * HZ; 2183 spintime = 1; 2184 } 2185 /* Wait 1 second for next try */ 2186 msleep(1000); 2187 printk(KERN_CONT "."); 2188 2189 /* 2190 * Wait for USB flash devices with slow firmware. 2191 * Yes, this sense key/ASC combination shouldn't 2192 * occur here. It's characteristic of these devices. 2193 */ 2194 } else if (sense_valid && 2195 sshdr.sense_key == UNIT_ATTENTION && 2196 sshdr.asc == 0x28) { 2197 if (!spintime) { 2198 spintime_expire = jiffies + 5 * HZ; 2199 spintime = 1; 2200 } 2201 /* Wait 1 second for next try */ 2202 msleep(1000); 2203 } else { 2204 /* we don't understand the sense code, so it's 2205 * probably pointless to loop */ 2206 if(!spintime) { 2207 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2208 sd_print_sense_hdr(sdkp, &sshdr); 2209 } 2210 break; 2211 } 2212 2213 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2214 2215 if (spintime) { 2216 if (scsi_status_is_good(the_result)) 2217 printk(KERN_CONT "ready\n"); 2218 else 2219 printk(KERN_CONT "not responding...\n"); 2220 } 2221 } 2222 2223 /* 2224 * Determine whether disk supports Data Integrity Field. 2225 */ 2226 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2227 { 2228 struct scsi_device *sdp = sdkp->device; 2229 u8 type; 2230 2231 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2232 sdkp->protection_type = 0; 2233 return 0; 2234 } 2235 2236 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2237 2238 if (type > T10_PI_TYPE3_PROTECTION) { 2239 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2240 " protection type %u. Disabling disk!\n", 2241 type); 2242 sdkp->protection_type = 0; 2243 return -ENODEV; 2244 } 2245 2246 sdkp->protection_type = type; 2247 2248 return 0; 2249 } 2250 2251 static void sd_config_protection(struct scsi_disk *sdkp) 2252 { 2253 struct scsi_device *sdp = sdkp->device; 2254 2255 if (!sdkp->first_scan) 2256 return; 2257 2258 sd_dif_config_host(sdkp); 2259 2260 if (!sdkp->protection_type) 2261 return; 2262 2263 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2264 sd_printk(KERN_NOTICE, sdkp, 2265 "Disabling DIF Type %u protection\n", 2266 sdkp->protection_type); 2267 sdkp->protection_type = 0; 2268 } 2269 2270 sd_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2271 sdkp->protection_type); 2272 } 2273 2274 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2275 struct scsi_sense_hdr *sshdr, int sense_valid, 2276 int the_result) 2277 { 2278 if (sense_valid) 2279 sd_print_sense_hdr(sdkp, sshdr); 2280 else 2281 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2282 2283 /* 2284 * Set dirty bit for removable devices if not ready - 2285 * sometimes drives will not report this properly. 2286 */ 2287 if (sdp->removable && 2288 sense_valid && sshdr->sense_key == NOT_READY) 2289 set_media_not_present(sdkp); 2290 2291 /* 2292 * We used to set media_present to 0 here to indicate no media 2293 * in the drive, but some drives fail read capacity even with 2294 * media present, so we can't do that. 2295 */ 2296 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2297 } 2298 2299 #define RC16_LEN 32 2300 #if RC16_LEN > SD_BUF_SIZE 2301 #error RC16_LEN must not be more than SD_BUF_SIZE 2302 #endif 2303 2304 #define READ_CAPACITY_RETRIES_ON_RESET 10 2305 2306 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2307 unsigned char *buffer) 2308 { 2309 unsigned char cmd[16]; 2310 struct scsi_sense_hdr sshdr; 2311 const struct scsi_exec_args exec_args = { 2312 .sshdr = &sshdr, 2313 }; 2314 int sense_valid = 0; 2315 int the_result; 2316 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2317 unsigned int alignment; 2318 unsigned long long lba; 2319 unsigned sector_size; 2320 2321 if (sdp->no_read_capacity_16) 2322 return -EINVAL; 2323 2324 do { 2325 memset(cmd, 0, 16); 2326 cmd[0] = SERVICE_ACTION_IN_16; 2327 cmd[1] = SAI_READ_CAPACITY_16; 2328 cmd[13] = RC16_LEN; 2329 memset(buffer, 0, RC16_LEN); 2330 2331 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, 2332 buffer, RC16_LEN, SD_TIMEOUT, 2333 sdkp->max_retries, &exec_args); 2334 2335 if (media_not_present(sdkp, &sshdr)) 2336 return -ENODEV; 2337 2338 if (the_result > 0) { 2339 sense_valid = scsi_sense_valid(&sshdr); 2340 if (sense_valid && 2341 sshdr.sense_key == ILLEGAL_REQUEST && 2342 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2343 sshdr.ascq == 0x00) 2344 /* Invalid Command Operation Code or 2345 * Invalid Field in CDB, just retry 2346 * silently with RC10 */ 2347 return -EINVAL; 2348 if (sense_valid && 2349 sshdr.sense_key == UNIT_ATTENTION && 2350 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2351 /* Device reset might occur several times, 2352 * give it one more chance */ 2353 if (--reset_retries > 0) 2354 continue; 2355 } 2356 retries--; 2357 2358 } while (the_result && retries); 2359 2360 if (the_result) { 2361 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2362 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2363 return -EINVAL; 2364 } 2365 2366 sector_size = get_unaligned_be32(&buffer[8]); 2367 lba = get_unaligned_be64(&buffer[0]); 2368 2369 if (sd_read_protection_type(sdkp, buffer) < 0) { 2370 sdkp->capacity = 0; 2371 return -ENODEV; 2372 } 2373 2374 /* Logical blocks per physical block exponent */ 2375 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2376 2377 /* RC basis */ 2378 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2379 2380 /* Lowest aligned logical block */ 2381 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2382 blk_queue_alignment_offset(sdp->request_queue, alignment); 2383 if (alignment && sdkp->first_scan) 2384 sd_printk(KERN_NOTICE, sdkp, 2385 "physical block alignment offset: %u\n", alignment); 2386 2387 if (buffer[14] & 0x80) { /* LBPME */ 2388 sdkp->lbpme = 1; 2389 2390 if (buffer[14] & 0x40) /* LBPRZ */ 2391 sdkp->lbprz = 1; 2392 2393 sd_config_discard(sdkp, SD_LBP_WS16); 2394 } 2395 2396 sdkp->capacity = lba + 1; 2397 return sector_size; 2398 } 2399 2400 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2401 unsigned char *buffer) 2402 { 2403 unsigned char cmd[16]; 2404 struct scsi_sense_hdr sshdr; 2405 const struct scsi_exec_args exec_args = { 2406 .sshdr = &sshdr, 2407 }; 2408 int sense_valid = 0; 2409 int the_result; 2410 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2411 sector_t lba; 2412 unsigned sector_size; 2413 2414 do { 2415 cmd[0] = READ_CAPACITY; 2416 memset(&cmd[1], 0, 9); 2417 memset(buffer, 0, 8); 2418 2419 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer, 2420 8, SD_TIMEOUT, sdkp->max_retries, 2421 &exec_args); 2422 2423 if (media_not_present(sdkp, &sshdr)) 2424 return -ENODEV; 2425 2426 if (the_result > 0) { 2427 sense_valid = scsi_sense_valid(&sshdr); 2428 if (sense_valid && 2429 sshdr.sense_key == UNIT_ATTENTION && 2430 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2431 /* Device reset might occur several times, 2432 * give it one more chance */ 2433 if (--reset_retries > 0) 2434 continue; 2435 } 2436 retries--; 2437 2438 } while (the_result && retries); 2439 2440 if (the_result) { 2441 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2442 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2443 return -EINVAL; 2444 } 2445 2446 sector_size = get_unaligned_be32(&buffer[4]); 2447 lba = get_unaligned_be32(&buffer[0]); 2448 2449 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2450 /* Some buggy (usb cardreader) devices return an lba of 2451 0xffffffff when the want to report a size of 0 (with 2452 which they really mean no media is present) */ 2453 sdkp->capacity = 0; 2454 sdkp->physical_block_size = sector_size; 2455 return sector_size; 2456 } 2457 2458 sdkp->capacity = lba + 1; 2459 sdkp->physical_block_size = sector_size; 2460 return sector_size; 2461 } 2462 2463 static int sd_try_rc16_first(struct scsi_device *sdp) 2464 { 2465 if (sdp->host->max_cmd_len < 16) 2466 return 0; 2467 if (sdp->try_rc_10_first) 2468 return 0; 2469 if (sdp->scsi_level > SCSI_SPC_2) 2470 return 1; 2471 if (scsi_device_protection(sdp)) 2472 return 1; 2473 return 0; 2474 } 2475 2476 /* 2477 * read disk capacity 2478 */ 2479 static void 2480 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2481 { 2482 int sector_size; 2483 struct scsi_device *sdp = sdkp->device; 2484 2485 if (sd_try_rc16_first(sdp)) { 2486 sector_size = read_capacity_16(sdkp, sdp, buffer); 2487 if (sector_size == -EOVERFLOW) 2488 goto got_data; 2489 if (sector_size == -ENODEV) 2490 return; 2491 if (sector_size < 0) 2492 sector_size = read_capacity_10(sdkp, sdp, buffer); 2493 if (sector_size < 0) 2494 return; 2495 } else { 2496 sector_size = read_capacity_10(sdkp, sdp, buffer); 2497 if (sector_size == -EOVERFLOW) 2498 goto got_data; 2499 if (sector_size < 0) 2500 return; 2501 if ((sizeof(sdkp->capacity) > 4) && 2502 (sdkp->capacity > 0xffffffffULL)) { 2503 int old_sector_size = sector_size; 2504 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2505 "Trying to use READ CAPACITY(16).\n"); 2506 sector_size = read_capacity_16(sdkp, sdp, buffer); 2507 if (sector_size < 0) { 2508 sd_printk(KERN_NOTICE, sdkp, 2509 "Using 0xffffffff as device size\n"); 2510 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2511 sector_size = old_sector_size; 2512 goto got_data; 2513 } 2514 /* Remember that READ CAPACITY(16) succeeded */ 2515 sdp->try_rc_10_first = 0; 2516 } 2517 } 2518 2519 /* Some devices are known to return the total number of blocks, 2520 * not the highest block number. Some devices have versions 2521 * which do this and others which do not. Some devices we might 2522 * suspect of doing this but we don't know for certain. 2523 * 2524 * If we know the reported capacity is wrong, decrement it. If 2525 * we can only guess, then assume the number of blocks is even 2526 * (usually true but not always) and err on the side of lowering 2527 * the capacity. 2528 */ 2529 if (sdp->fix_capacity || 2530 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2531 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2532 "from its reported value: %llu\n", 2533 (unsigned long long) sdkp->capacity); 2534 --sdkp->capacity; 2535 } 2536 2537 got_data: 2538 if (sector_size == 0) { 2539 sector_size = 512; 2540 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2541 "assuming 512.\n"); 2542 } 2543 2544 if (sector_size != 512 && 2545 sector_size != 1024 && 2546 sector_size != 2048 && 2547 sector_size != 4096) { 2548 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2549 sector_size); 2550 /* 2551 * The user might want to re-format the drive with 2552 * a supported sectorsize. Once this happens, it 2553 * would be relatively trivial to set the thing up. 2554 * For this reason, we leave the thing in the table. 2555 */ 2556 sdkp->capacity = 0; 2557 /* 2558 * set a bogus sector size so the normal read/write 2559 * logic in the block layer will eventually refuse any 2560 * request on this device without tripping over power 2561 * of two sector size assumptions 2562 */ 2563 sector_size = 512; 2564 } 2565 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2566 blk_queue_physical_block_size(sdp->request_queue, 2567 sdkp->physical_block_size); 2568 sdkp->device->sector_size = sector_size; 2569 2570 if (sdkp->capacity > 0xffffffff) 2571 sdp->use_16_for_rw = 1; 2572 2573 } 2574 2575 /* 2576 * Print disk capacity 2577 */ 2578 static void 2579 sd_print_capacity(struct scsi_disk *sdkp, 2580 sector_t old_capacity) 2581 { 2582 int sector_size = sdkp->device->sector_size; 2583 char cap_str_2[10], cap_str_10[10]; 2584 2585 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2586 return; 2587 2588 string_get_size(sdkp->capacity, sector_size, 2589 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2590 string_get_size(sdkp->capacity, sector_size, 2591 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2592 2593 sd_printk(KERN_NOTICE, sdkp, 2594 "%llu %d-byte logical blocks: (%s/%s)\n", 2595 (unsigned long long)sdkp->capacity, 2596 sector_size, cap_str_10, cap_str_2); 2597 2598 if (sdkp->physical_block_size != sector_size) 2599 sd_printk(KERN_NOTICE, sdkp, 2600 "%u-byte physical blocks\n", 2601 sdkp->physical_block_size); 2602 } 2603 2604 /* called with buffer of length 512 */ 2605 static inline int 2606 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2607 unsigned char *buffer, int len, struct scsi_mode_data *data, 2608 struct scsi_sense_hdr *sshdr) 2609 { 2610 /* 2611 * If we must use MODE SENSE(10), make sure that the buffer length 2612 * is at least 8 bytes so that the mode sense header fits. 2613 */ 2614 if (sdkp->device->use_10_for_ms && len < 8) 2615 len = 8; 2616 2617 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2618 SD_TIMEOUT, sdkp->max_retries, data, 2619 sshdr); 2620 } 2621 2622 /* 2623 * read write protect setting, if possible - called only in sd_revalidate_disk() 2624 * called with buffer of length SD_BUF_SIZE 2625 */ 2626 static void 2627 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2628 { 2629 int res; 2630 struct scsi_device *sdp = sdkp->device; 2631 struct scsi_mode_data data; 2632 int old_wp = sdkp->write_prot; 2633 2634 set_disk_ro(sdkp->disk, 0); 2635 if (sdp->skip_ms_page_3f) { 2636 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2637 return; 2638 } 2639 2640 if (sdp->use_192_bytes_for_3f) { 2641 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2642 } else { 2643 /* 2644 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2645 * We have to start carefully: some devices hang if we ask 2646 * for more than is available. 2647 */ 2648 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2649 2650 /* 2651 * Second attempt: ask for page 0 When only page 0 is 2652 * implemented, a request for page 3F may return Sense Key 2653 * 5: Illegal Request, Sense Code 24: Invalid field in 2654 * CDB. 2655 */ 2656 if (res < 0) 2657 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2658 2659 /* 2660 * Third attempt: ask 255 bytes, as we did earlier. 2661 */ 2662 if (res < 0) 2663 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2664 &data, NULL); 2665 } 2666 2667 if (res < 0) { 2668 sd_first_printk(KERN_WARNING, sdkp, 2669 "Test WP failed, assume Write Enabled\n"); 2670 } else { 2671 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2672 set_disk_ro(sdkp->disk, sdkp->write_prot); 2673 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2674 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2675 sdkp->write_prot ? "on" : "off"); 2676 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2677 } 2678 } 2679 } 2680 2681 /* 2682 * sd_read_cache_type - called only from sd_revalidate_disk() 2683 * called with buffer of length SD_BUF_SIZE 2684 */ 2685 static void 2686 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2687 { 2688 int len = 0, res; 2689 struct scsi_device *sdp = sdkp->device; 2690 2691 int dbd; 2692 int modepage; 2693 int first_len; 2694 struct scsi_mode_data data; 2695 struct scsi_sense_hdr sshdr; 2696 int old_wce = sdkp->WCE; 2697 int old_rcd = sdkp->RCD; 2698 int old_dpofua = sdkp->DPOFUA; 2699 2700 2701 if (sdkp->cache_override) 2702 return; 2703 2704 first_len = 4; 2705 if (sdp->skip_ms_page_8) { 2706 if (sdp->type == TYPE_RBC) 2707 goto defaults; 2708 else { 2709 if (sdp->skip_ms_page_3f) 2710 goto defaults; 2711 modepage = 0x3F; 2712 if (sdp->use_192_bytes_for_3f) 2713 first_len = 192; 2714 dbd = 0; 2715 } 2716 } else if (sdp->type == TYPE_RBC) { 2717 modepage = 6; 2718 dbd = 8; 2719 } else { 2720 modepage = 8; 2721 dbd = 0; 2722 } 2723 2724 /* cautiously ask */ 2725 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2726 &data, &sshdr); 2727 2728 if (res < 0) 2729 goto bad_sense; 2730 2731 if (!data.header_length) { 2732 modepage = 6; 2733 first_len = 0; 2734 sd_first_printk(KERN_ERR, sdkp, 2735 "Missing header in MODE_SENSE response\n"); 2736 } 2737 2738 /* that went OK, now ask for the proper length */ 2739 len = data.length; 2740 2741 /* 2742 * We're only interested in the first three bytes, actually. 2743 * But the data cache page is defined for the first 20. 2744 */ 2745 if (len < 3) 2746 goto bad_sense; 2747 else if (len > SD_BUF_SIZE) { 2748 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2749 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2750 len = SD_BUF_SIZE; 2751 } 2752 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2753 len = 192; 2754 2755 /* Get the data */ 2756 if (len > first_len) 2757 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2758 &data, &sshdr); 2759 2760 if (!res) { 2761 int offset = data.header_length + data.block_descriptor_length; 2762 2763 while (offset < len) { 2764 u8 page_code = buffer[offset] & 0x3F; 2765 u8 spf = buffer[offset] & 0x40; 2766 2767 if (page_code == 8 || page_code == 6) { 2768 /* We're interested only in the first 3 bytes. 2769 */ 2770 if (len - offset <= 2) { 2771 sd_first_printk(KERN_ERR, sdkp, 2772 "Incomplete mode parameter " 2773 "data\n"); 2774 goto defaults; 2775 } else { 2776 modepage = page_code; 2777 goto Page_found; 2778 } 2779 } else { 2780 /* Go to the next page */ 2781 if (spf && len - offset > 3) 2782 offset += 4 + (buffer[offset+2] << 8) + 2783 buffer[offset+3]; 2784 else if (!spf && len - offset > 1) 2785 offset += 2 + buffer[offset+1]; 2786 else { 2787 sd_first_printk(KERN_ERR, sdkp, 2788 "Incomplete mode " 2789 "parameter data\n"); 2790 goto defaults; 2791 } 2792 } 2793 } 2794 2795 sd_first_printk(KERN_WARNING, sdkp, 2796 "No Caching mode page found\n"); 2797 goto defaults; 2798 2799 Page_found: 2800 if (modepage == 8) { 2801 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2802 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2803 } else { 2804 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2805 sdkp->RCD = 0; 2806 } 2807 2808 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2809 if (sdp->broken_fua) { 2810 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2811 sdkp->DPOFUA = 0; 2812 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2813 !sdkp->device->use_16_for_rw) { 2814 sd_first_printk(KERN_NOTICE, sdkp, 2815 "Uses READ/WRITE(6), disabling FUA\n"); 2816 sdkp->DPOFUA = 0; 2817 } 2818 2819 /* No cache flush allowed for write protected devices */ 2820 if (sdkp->WCE && sdkp->write_prot) 2821 sdkp->WCE = 0; 2822 2823 if (sdkp->first_scan || old_wce != sdkp->WCE || 2824 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2825 sd_printk(KERN_NOTICE, sdkp, 2826 "Write cache: %s, read cache: %s, %s\n", 2827 sdkp->WCE ? "enabled" : "disabled", 2828 sdkp->RCD ? "disabled" : "enabled", 2829 sdkp->DPOFUA ? "supports DPO and FUA" 2830 : "doesn't support DPO or FUA"); 2831 2832 return; 2833 } 2834 2835 bad_sense: 2836 if (scsi_sense_valid(&sshdr) && 2837 sshdr.sense_key == ILLEGAL_REQUEST && 2838 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2839 /* Invalid field in CDB */ 2840 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2841 else 2842 sd_first_printk(KERN_ERR, sdkp, 2843 "Asking for cache data failed\n"); 2844 2845 defaults: 2846 if (sdp->wce_default_on) { 2847 sd_first_printk(KERN_NOTICE, sdkp, 2848 "Assuming drive cache: write back\n"); 2849 sdkp->WCE = 1; 2850 } else { 2851 sd_first_printk(KERN_WARNING, sdkp, 2852 "Assuming drive cache: write through\n"); 2853 sdkp->WCE = 0; 2854 } 2855 sdkp->RCD = 0; 2856 sdkp->DPOFUA = 0; 2857 } 2858 2859 /* 2860 * The ATO bit indicates whether the DIF application tag is available 2861 * for use by the operating system. 2862 */ 2863 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2864 { 2865 int res, offset; 2866 struct scsi_device *sdp = sdkp->device; 2867 struct scsi_mode_data data; 2868 struct scsi_sense_hdr sshdr; 2869 2870 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2871 return; 2872 2873 if (sdkp->protection_type == 0) 2874 return; 2875 2876 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2877 sdkp->max_retries, &data, &sshdr); 2878 2879 if (res < 0 || !data.header_length || 2880 data.length < 6) { 2881 sd_first_printk(KERN_WARNING, sdkp, 2882 "getting Control mode page failed, assume no ATO\n"); 2883 2884 if (scsi_sense_valid(&sshdr)) 2885 sd_print_sense_hdr(sdkp, &sshdr); 2886 2887 return; 2888 } 2889 2890 offset = data.header_length + data.block_descriptor_length; 2891 2892 if ((buffer[offset] & 0x3f) != 0x0a) { 2893 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2894 return; 2895 } 2896 2897 if ((buffer[offset + 5] & 0x80) == 0) 2898 return; 2899 2900 sdkp->ATO = 1; 2901 2902 return; 2903 } 2904 2905 /** 2906 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2907 * @sdkp: disk to query 2908 */ 2909 static void sd_read_block_limits(struct scsi_disk *sdkp) 2910 { 2911 struct scsi_vpd *vpd; 2912 2913 rcu_read_lock(); 2914 2915 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 2916 if (!vpd || vpd->len < 16) 2917 goto out; 2918 2919 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 2920 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 2921 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 2922 2923 if (vpd->len >= 64) { 2924 unsigned int lba_count, desc_count; 2925 2926 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 2927 2928 if (!sdkp->lbpme) 2929 goto out; 2930 2931 lba_count = get_unaligned_be32(&vpd->data[20]); 2932 desc_count = get_unaligned_be32(&vpd->data[24]); 2933 2934 if (lba_count && desc_count) 2935 sdkp->max_unmap_blocks = lba_count; 2936 2937 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 2938 2939 if (vpd->data[32] & 0x80) 2940 sdkp->unmap_alignment = 2941 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 2942 2943 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2944 2945 if (sdkp->max_unmap_blocks) 2946 sd_config_discard(sdkp, SD_LBP_UNMAP); 2947 else 2948 sd_config_discard(sdkp, SD_LBP_WS16); 2949 2950 } else { /* LBP VPD page tells us what to use */ 2951 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2952 sd_config_discard(sdkp, SD_LBP_UNMAP); 2953 else if (sdkp->lbpws) 2954 sd_config_discard(sdkp, SD_LBP_WS16); 2955 else if (sdkp->lbpws10) 2956 sd_config_discard(sdkp, SD_LBP_WS10); 2957 else 2958 sd_config_discard(sdkp, SD_LBP_DISABLE); 2959 } 2960 } 2961 2962 out: 2963 rcu_read_unlock(); 2964 } 2965 2966 /** 2967 * sd_read_block_characteristics - Query block dev. characteristics 2968 * @sdkp: disk to query 2969 */ 2970 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2971 { 2972 struct request_queue *q = sdkp->disk->queue; 2973 struct scsi_vpd *vpd; 2974 u16 rot; 2975 u8 zoned; 2976 2977 rcu_read_lock(); 2978 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 2979 2980 if (!vpd || vpd->len < 8) { 2981 rcu_read_unlock(); 2982 return; 2983 } 2984 2985 rot = get_unaligned_be16(&vpd->data[4]); 2986 zoned = (vpd->data[8] >> 4) & 3; 2987 rcu_read_unlock(); 2988 2989 if (rot == 1) { 2990 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2991 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2992 } 2993 2994 if (sdkp->device->type == TYPE_ZBC) { 2995 /* Host-managed */ 2996 disk_set_zoned(sdkp->disk, BLK_ZONED_HM); 2997 } else { 2998 sdkp->zoned = zoned; 2999 if (sdkp->zoned == 1) { 3000 /* Host-aware */ 3001 disk_set_zoned(sdkp->disk, BLK_ZONED_HA); 3002 } else { 3003 /* Regular disk or drive managed disk */ 3004 disk_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3005 } 3006 } 3007 3008 if (!sdkp->first_scan) 3009 return; 3010 3011 if (blk_queue_is_zoned(q)) { 3012 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3013 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3014 } else { 3015 if (sdkp->zoned == 1) 3016 sd_printk(KERN_NOTICE, sdkp, 3017 "Host-aware SMR disk used as regular disk\n"); 3018 else if (sdkp->zoned == 2) 3019 sd_printk(KERN_NOTICE, sdkp, 3020 "Drive-managed SMR disk\n"); 3021 } 3022 } 3023 3024 /** 3025 * sd_read_block_provisioning - Query provisioning VPD page 3026 * @sdkp: disk to query 3027 */ 3028 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3029 { 3030 struct scsi_vpd *vpd; 3031 3032 if (sdkp->lbpme == 0) 3033 return; 3034 3035 rcu_read_lock(); 3036 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 3037 3038 if (!vpd || vpd->len < 8) { 3039 rcu_read_unlock(); 3040 return; 3041 } 3042 3043 sdkp->lbpvpd = 1; 3044 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 3045 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 3046 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 3047 rcu_read_unlock(); 3048 } 3049 3050 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3051 { 3052 struct scsi_device *sdev = sdkp->device; 3053 3054 if (sdev->host->no_write_same) { 3055 sdev->no_write_same = 1; 3056 3057 return; 3058 } 3059 3060 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3061 struct scsi_vpd *vpd; 3062 3063 sdev->no_report_opcodes = 1; 3064 3065 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3066 * CODES is unsupported and the device has an ATA 3067 * Information VPD page (SAT). 3068 */ 3069 rcu_read_lock(); 3070 vpd = rcu_dereference(sdev->vpd_pg89); 3071 if (vpd) 3072 sdev->no_write_same = 1; 3073 rcu_read_unlock(); 3074 } 3075 3076 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3077 sdkp->ws16 = 1; 3078 3079 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3080 sdkp->ws10 = 1; 3081 } 3082 3083 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3084 { 3085 struct scsi_device *sdev = sdkp->device; 3086 3087 if (!sdev->security_supported) 3088 return; 3089 3090 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3091 SECURITY_PROTOCOL_IN) == 1 && 3092 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3093 SECURITY_PROTOCOL_OUT) == 1) 3094 sdkp->security = 1; 3095 } 3096 3097 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3098 { 3099 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3100 } 3101 3102 /** 3103 * sd_read_cpr - Query concurrent positioning ranges 3104 * @sdkp: disk to query 3105 */ 3106 static void sd_read_cpr(struct scsi_disk *sdkp) 3107 { 3108 struct blk_independent_access_ranges *iars = NULL; 3109 unsigned char *buffer = NULL; 3110 unsigned int nr_cpr = 0; 3111 int i, vpd_len, buf_len = SD_BUF_SIZE; 3112 u8 *desc; 3113 3114 /* 3115 * We need to have the capacity set first for the block layer to be 3116 * able to check the ranges. 3117 */ 3118 if (sdkp->first_scan) 3119 return; 3120 3121 if (!sdkp->capacity) 3122 goto out; 3123 3124 /* 3125 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3126 * leading to a maximum page size of 64 + 256*32 bytes. 3127 */ 3128 buf_len = 64 + 256*32; 3129 buffer = kmalloc(buf_len, GFP_KERNEL); 3130 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3131 goto out; 3132 3133 /* We must have at least a 64B header and one 32B range descriptor */ 3134 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3135 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3136 sd_printk(KERN_ERR, sdkp, 3137 "Invalid Concurrent Positioning Ranges VPD page\n"); 3138 goto out; 3139 } 3140 3141 nr_cpr = (vpd_len - 64) / 32; 3142 if (nr_cpr == 1) { 3143 nr_cpr = 0; 3144 goto out; 3145 } 3146 3147 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3148 if (!iars) { 3149 nr_cpr = 0; 3150 goto out; 3151 } 3152 3153 desc = &buffer[64]; 3154 for (i = 0; i < nr_cpr; i++, desc += 32) { 3155 if (desc[0] != i) { 3156 sd_printk(KERN_ERR, sdkp, 3157 "Invalid Concurrent Positioning Range number\n"); 3158 nr_cpr = 0; 3159 break; 3160 } 3161 3162 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3163 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3164 } 3165 3166 out: 3167 disk_set_independent_access_ranges(sdkp->disk, iars); 3168 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3169 sd_printk(KERN_NOTICE, sdkp, 3170 "%u concurrent positioning ranges\n", nr_cpr); 3171 sdkp->nr_actuators = nr_cpr; 3172 } 3173 3174 kfree(buffer); 3175 } 3176 3177 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3178 { 3179 struct scsi_device *sdp = sdkp->device; 3180 unsigned int min_xfer_bytes = 3181 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3182 3183 if (sdkp->min_xfer_blocks == 0) 3184 return false; 3185 3186 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3187 sd_first_printk(KERN_WARNING, sdkp, 3188 "Preferred minimum I/O size %u bytes not a " \ 3189 "multiple of physical block size (%u bytes)\n", 3190 min_xfer_bytes, sdkp->physical_block_size); 3191 sdkp->min_xfer_blocks = 0; 3192 return false; 3193 } 3194 3195 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3196 min_xfer_bytes); 3197 return true; 3198 } 3199 3200 /* 3201 * Determine the device's preferred I/O size for reads and writes 3202 * unless the reported value is unreasonably small, large, not a 3203 * multiple of the physical block size, or simply garbage. 3204 */ 3205 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3206 unsigned int dev_max) 3207 { 3208 struct scsi_device *sdp = sdkp->device; 3209 unsigned int opt_xfer_bytes = 3210 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3211 unsigned int min_xfer_bytes = 3212 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3213 3214 if (sdkp->opt_xfer_blocks == 0) 3215 return false; 3216 3217 if (sdkp->opt_xfer_blocks > dev_max) { 3218 sd_first_printk(KERN_WARNING, sdkp, 3219 "Optimal transfer size %u logical blocks " \ 3220 "> dev_max (%u logical blocks)\n", 3221 sdkp->opt_xfer_blocks, dev_max); 3222 return false; 3223 } 3224 3225 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3226 sd_first_printk(KERN_WARNING, sdkp, 3227 "Optimal transfer size %u logical blocks " \ 3228 "> sd driver limit (%u logical blocks)\n", 3229 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3230 return false; 3231 } 3232 3233 if (opt_xfer_bytes < PAGE_SIZE) { 3234 sd_first_printk(KERN_WARNING, sdkp, 3235 "Optimal transfer size %u bytes < " \ 3236 "PAGE_SIZE (%u bytes)\n", 3237 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3238 return false; 3239 } 3240 3241 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3242 sd_first_printk(KERN_WARNING, sdkp, 3243 "Optimal transfer size %u bytes not a " \ 3244 "multiple of preferred minimum block " \ 3245 "size (%u bytes)\n", 3246 opt_xfer_bytes, min_xfer_bytes); 3247 return false; 3248 } 3249 3250 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3251 sd_first_printk(KERN_WARNING, sdkp, 3252 "Optimal transfer size %u bytes not a " \ 3253 "multiple of physical block size (%u bytes)\n", 3254 opt_xfer_bytes, sdkp->physical_block_size); 3255 return false; 3256 } 3257 3258 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3259 opt_xfer_bytes); 3260 return true; 3261 } 3262 3263 /** 3264 * sd_revalidate_disk - called the first time a new disk is seen, 3265 * performs disk spin up, read_capacity, etc. 3266 * @disk: struct gendisk we care about 3267 **/ 3268 static int sd_revalidate_disk(struct gendisk *disk) 3269 { 3270 struct scsi_disk *sdkp = scsi_disk(disk); 3271 struct scsi_device *sdp = sdkp->device; 3272 struct request_queue *q = sdkp->disk->queue; 3273 sector_t old_capacity = sdkp->capacity; 3274 unsigned char *buffer; 3275 unsigned int dev_max, rw_max; 3276 3277 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3278 "sd_revalidate_disk\n")); 3279 3280 /* 3281 * If the device is offline, don't try and read capacity or any 3282 * of the other niceties. 3283 */ 3284 if (!scsi_device_online(sdp)) 3285 goto out; 3286 3287 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3288 if (!buffer) { 3289 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3290 "allocation failure.\n"); 3291 goto out; 3292 } 3293 3294 sd_spinup_disk(sdkp); 3295 3296 /* 3297 * Without media there is no reason to ask; moreover, some devices 3298 * react badly if we do. 3299 */ 3300 if (sdkp->media_present) { 3301 sd_read_capacity(sdkp, buffer); 3302 3303 /* 3304 * set the default to rotational. All non-rotational devices 3305 * support the block characteristics VPD page, which will 3306 * cause this to be updated correctly and any device which 3307 * doesn't support it should be treated as rotational. 3308 */ 3309 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3310 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3311 3312 if (scsi_device_supports_vpd(sdp)) { 3313 sd_read_block_provisioning(sdkp); 3314 sd_read_block_limits(sdkp); 3315 sd_read_block_characteristics(sdkp); 3316 sd_zbc_read_zones(sdkp, buffer); 3317 sd_read_cpr(sdkp); 3318 } 3319 3320 sd_print_capacity(sdkp, old_capacity); 3321 3322 sd_read_write_protect_flag(sdkp, buffer); 3323 sd_read_cache_type(sdkp, buffer); 3324 sd_read_app_tag_own(sdkp, buffer); 3325 sd_read_write_same(sdkp, buffer); 3326 sd_read_security(sdkp, buffer); 3327 sd_config_protection(sdkp); 3328 } 3329 3330 /* 3331 * We now have all cache related info, determine how we deal 3332 * with flush requests. 3333 */ 3334 sd_set_flush_flag(sdkp); 3335 3336 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3337 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3338 3339 /* Some devices report a maximum block count for READ/WRITE requests. */ 3340 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3341 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3342 3343 if (sd_validate_min_xfer_size(sdkp)) 3344 blk_queue_io_min(sdkp->disk->queue, 3345 logical_to_bytes(sdp, sdkp->min_xfer_blocks)); 3346 else 3347 blk_queue_io_min(sdkp->disk->queue, 0); 3348 3349 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3350 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3351 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3352 } else { 3353 q->limits.io_opt = 0; 3354 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3355 (sector_t)BLK_DEF_MAX_SECTORS); 3356 } 3357 3358 /* 3359 * Limit default to SCSI host optimal sector limit if set. There may be 3360 * an impact on performance for when the size of a request exceeds this 3361 * host limit. 3362 */ 3363 rw_max = min_not_zero(rw_max, sdp->host->opt_sectors); 3364 3365 /* Do not exceed controller limit */ 3366 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3367 3368 /* 3369 * Only update max_sectors if previously unset or if the current value 3370 * exceeds the capabilities of the hardware. 3371 */ 3372 if (sdkp->first_scan || 3373 q->limits.max_sectors > q->limits.max_dev_sectors || 3374 q->limits.max_sectors > q->limits.max_hw_sectors) 3375 q->limits.max_sectors = rw_max; 3376 3377 sdkp->first_scan = 0; 3378 3379 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3380 sd_config_write_same(sdkp); 3381 kfree(buffer); 3382 3383 /* 3384 * For a zoned drive, revalidating the zones can be done only once 3385 * the gendisk capacity is set. So if this fails, set back the gendisk 3386 * capacity to 0. 3387 */ 3388 if (sd_zbc_revalidate_zones(sdkp)) 3389 set_capacity_and_notify(disk, 0); 3390 3391 out: 3392 return 0; 3393 } 3394 3395 /** 3396 * sd_unlock_native_capacity - unlock native capacity 3397 * @disk: struct gendisk to set capacity for 3398 * 3399 * Block layer calls this function if it detects that partitions 3400 * on @disk reach beyond the end of the device. If the SCSI host 3401 * implements ->unlock_native_capacity() method, it's invoked to 3402 * give it a chance to adjust the device capacity. 3403 * 3404 * CONTEXT: 3405 * Defined by block layer. Might sleep. 3406 */ 3407 static void sd_unlock_native_capacity(struct gendisk *disk) 3408 { 3409 struct scsi_device *sdev = scsi_disk(disk)->device; 3410 3411 if (sdev->host->hostt->unlock_native_capacity) 3412 sdev->host->hostt->unlock_native_capacity(sdev); 3413 } 3414 3415 /** 3416 * sd_format_disk_name - format disk name 3417 * @prefix: name prefix - ie. "sd" for SCSI disks 3418 * @index: index of the disk to format name for 3419 * @buf: output buffer 3420 * @buflen: length of the output buffer 3421 * 3422 * SCSI disk names starts at sda. The 26th device is sdz and the 3423 * 27th is sdaa. The last one for two lettered suffix is sdzz 3424 * which is followed by sdaaa. 3425 * 3426 * This is basically 26 base counting with one extra 'nil' entry 3427 * at the beginning from the second digit on and can be 3428 * determined using similar method as 26 base conversion with the 3429 * index shifted -1 after each digit is computed. 3430 * 3431 * CONTEXT: 3432 * Don't care. 3433 * 3434 * RETURNS: 3435 * 0 on success, -errno on failure. 3436 */ 3437 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3438 { 3439 const int base = 'z' - 'a' + 1; 3440 char *begin = buf + strlen(prefix); 3441 char *end = buf + buflen; 3442 char *p; 3443 int unit; 3444 3445 p = end - 1; 3446 *p = '\0'; 3447 unit = base; 3448 do { 3449 if (p == begin) 3450 return -EINVAL; 3451 *--p = 'a' + (index % unit); 3452 index = (index / unit) - 1; 3453 } while (index >= 0); 3454 3455 memmove(begin, p, end - p); 3456 memcpy(buf, prefix, strlen(prefix)); 3457 3458 return 0; 3459 } 3460 3461 /** 3462 * sd_probe - called during driver initialization and whenever a 3463 * new scsi device is attached to the system. It is called once 3464 * for each scsi device (not just disks) present. 3465 * @dev: pointer to device object 3466 * 3467 * Returns 0 if successful (or not interested in this scsi device 3468 * (e.g. scanner)); 1 when there is an error. 3469 * 3470 * Note: this function is invoked from the scsi mid-level. 3471 * This function sets up the mapping between a given 3472 * <host,channel,id,lun> (found in sdp) and new device name 3473 * (e.g. /dev/sda). More precisely it is the block device major 3474 * and minor number that is chosen here. 3475 * 3476 * Assume sd_probe is not re-entrant (for time being) 3477 * Also think about sd_probe() and sd_remove() running coincidentally. 3478 **/ 3479 static int sd_probe(struct device *dev) 3480 { 3481 struct scsi_device *sdp = to_scsi_device(dev); 3482 struct scsi_disk *sdkp; 3483 struct gendisk *gd; 3484 int index; 3485 int error; 3486 3487 scsi_autopm_get_device(sdp); 3488 error = -ENODEV; 3489 if (sdp->type != TYPE_DISK && 3490 sdp->type != TYPE_ZBC && 3491 sdp->type != TYPE_MOD && 3492 sdp->type != TYPE_RBC) 3493 goto out; 3494 3495 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3496 sdev_printk(KERN_WARNING, sdp, 3497 "Unsupported ZBC host-managed device.\n"); 3498 goto out; 3499 } 3500 3501 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3502 "sd_probe\n")); 3503 3504 error = -ENOMEM; 3505 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3506 if (!sdkp) 3507 goto out; 3508 3509 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue, 3510 &sd_bio_compl_lkclass); 3511 if (!gd) 3512 goto out_free; 3513 3514 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3515 if (index < 0) { 3516 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3517 goto out_put; 3518 } 3519 3520 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3521 if (error) { 3522 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3523 goto out_free_index; 3524 } 3525 3526 sdkp->device = sdp; 3527 sdkp->disk = gd; 3528 sdkp->index = index; 3529 sdkp->max_retries = SD_MAX_RETRIES; 3530 atomic_set(&sdkp->openers, 0); 3531 atomic_set(&sdkp->device->ioerr_cnt, 0); 3532 3533 if (!sdp->request_queue->rq_timeout) { 3534 if (sdp->type != TYPE_MOD) 3535 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3536 else 3537 blk_queue_rq_timeout(sdp->request_queue, 3538 SD_MOD_TIMEOUT); 3539 } 3540 3541 device_initialize(&sdkp->disk_dev); 3542 sdkp->disk_dev.parent = get_device(dev); 3543 sdkp->disk_dev.class = &sd_disk_class; 3544 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3545 3546 error = device_add(&sdkp->disk_dev); 3547 if (error) { 3548 put_device(&sdkp->disk_dev); 3549 goto out; 3550 } 3551 3552 dev_set_drvdata(dev, sdkp); 3553 3554 gd->major = sd_major((index & 0xf0) >> 4); 3555 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3556 gd->minors = SD_MINORS; 3557 3558 gd->fops = &sd_fops; 3559 gd->private_data = sdkp; 3560 3561 /* defaults, until the device tells us otherwise */ 3562 sdp->sector_size = 512; 3563 sdkp->capacity = 0; 3564 sdkp->media_present = 1; 3565 sdkp->write_prot = 0; 3566 sdkp->cache_override = 0; 3567 sdkp->WCE = 0; 3568 sdkp->RCD = 0; 3569 sdkp->ATO = 0; 3570 sdkp->first_scan = 1; 3571 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3572 3573 sd_revalidate_disk(gd); 3574 3575 if (sdp->removable) { 3576 gd->flags |= GENHD_FL_REMOVABLE; 3577 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3578 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3579 } 3580 3581 blk_pm_runtime_init(sdp->request_queue, dev); 3582 if (sdp->rpm_autosuspend) { 3583 pm_runtime_set_autosuspend_delay(dev, 3584 sdp->host->hostt->rpm_autosuspend_delay); 3585 } 3586 3587 error = device_add_disk(dev, gd, NULL); 3588 if (error) { 3589 put_device(&sdkp->disk_dev); 3590 put_disk(gd); 3591 goto out; 3592 } 3593 3594 if (sdkp->security) { 3595 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3596 if (sdkp->opal_dev) 3597 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3598 } 3599 3600 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3601 sdp->removable ? "removable " : ""); 3602 scsi_autopm_put_device(sdp); 3603 3604 return 0; 3605 3606 out_free_index: 3607 ida_free(&sd_index_ida, index); 3608 out_put: 3609 put_disk(gd); 3610 out_free: 3611 kfree(sdkp); 3612 out: 3613 scsi_autopm_put_device(sdp); 3614 return error; 3615 } 3616 3617 /** 3618 * sd_remove - called whenever a scsi disk (previously recognized by 3619 * sd_probe) is detached from the system. It is called (potentially 3620 * multiple times) during sd module unload. 3621 * @dev: pointer to device object 3622 * 3623 * Note: this function is invoked from the scsi mid-level. 3624 * This function potentially frees up a device name (e.g. /dev/sdc) 3625 * that could be re-used by a subsequent sd_probe(). 3626 * This function is not called when the built-in sd driver is "exit-ed". 3627 **/ 3628 static int sd_remove(struct device *dev) 3629 { 3630 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3631 3632 scsi_autopm_get_device(sdkp->device); 3633 3634 device_del(&sdkp->disk_dev); 3635 del_gendisk(sdkp->disk); 3636 sd_shutdown(dev); 3637 3638 put_disk(sdkp->disk); 3639 return 0; 3640 } 3641 3642 static void scsi_disk_release(struct device *dev) 3643 { 3644 struct scsi_disk *sdkp = to_scsi_disk(dev); 3645 3646 ida_free(&sd_index_ida, sdkp->index); 3647 sd_zbc_free_zone_info(sdkp); 3648 put_device(&sdkp->device->sdev_gendev); 3649 free_opal_dev(sdkp->opal_dev); 3650 3651 kfree(sdkp); 3652 } 3653 3654 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3655 { 3656 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3657 struct scsi_sense_hdr sshdr; 3658 const struct scsi_exec_args exec_args = { 3659 .sshdr = &sshdr, 3660 .req_flags = BLK_MQ_REQ_PM, 3661 }; 3662 struct scsi_device *sdp = sdkp->device; 3663 int res; 3664 3665 if (start) 3666 cmd[4] |= 1; /* START */ 3667 3668 if (sdp->start_stop_pwr_cond) 3669 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3670 3671 if (!scsi_device_online(sdp)) 3672 return -ENODEV; 3673 3674 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, 3675 sdkp->max_retries, &exec_args); 3676 if (res) { 3677 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3678 if (res > 0 && scsi_sense_valid(&sshdr)) { 3679 sd_print_sense_hdr(sdkp, &sshdr); 3680 /* 0x3a is medium not present */ 3681 if (sshdr.asc == 0x3a) 3682 res = 0; 3683 } 3684 } 3685 3686 /* SCSI error codes must not go to the generic layer */ 3687 if (res) 3688 return -EIO; 3689 3690 return 0; 3691 } 3692 3693 /* 3694 * Send a SYNCHRONIZE CACHE instruction down to the device through 3695 * the normal SCSI command structure. Wait for the command to 3696 * complete. 3697 */ 3698 static void sd_shutdown(struct device *dev) 3699 { 3700 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3701 3702 if (!sdkp) 3703 return; /* this can happen */ 3704 3705 if (pm_runtime_suspended(dev)) 3706 return; 3707 3708 if (sdkp->WCE && sdkp->media_present) { 3709 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3710 sd_sync_cache(sdkp, NULL); 3711 } 3712 3713 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3714 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3715 sd_start_stop_device(sdkp, 0); 3716 } 3717 } 3718 3719 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3720 { 3721 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3722 struct scsi_sense_hdr sshdr; 3723 int ret = 0; 3724 3725 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3726 return 0; 3727 3728 if (sdkp->WCE && sdkp->media_present) { 3729 if (!sdkp->device->silence_suspend) 3730 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3731 ret = sd_sync_cache(sdkp, &sshdr); 3732 3733 if (ret) { 3734 /* ignore OFFLINE device */ 3735 if (ret == -ENODEV) 3736 return 0; 3737 3738 if (!scsi_sense_valid(&sshdr) || 3739 sshdr.sense_key != ILLEGAL_REQUEST) 3740 return ret; 3741 3742 /* 3743 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3744 * doesn't support sync. There's not much to do and 3745 * suspend shouldn't fail. 3746 */ 3747 ret = 0; 3748 } 3749 } 3750 3751 if (sdkp->device->manage_start_stop) { 3752 if (!sdkp->device->silence_suspend) 3753 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3754 /* an error is not worth aborting a system sleep */ 3755 ret = sd_start_stop_device(sdkp, 0); 3756 if (ignore_stop_errors) 3757 ret = 0; 3758 } 3759 3760 return ret; 3761 } 3762 3763 static int sd_suspend_system(struct device *dev) 3764 { 3765 if (pm_runtime_suspended(dev)) 3766 return 0; 3767 3768 return sd_suspend_common(dev, true); 3769 } 3770 3771 static int sd_suspend_runtime(struct device *dev) 3772 { 3773 return sd_suspend_common(dev, false); 3774 } 3775 3776 static int sd_resume(struct device *dev) 3777 { 3778 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3779 int ret; 3780 3781 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3782 return 0; 3783 3784 if (!sdkp->device->manage_start_stop) 3785 return 0; 3786 3787 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3788 ret = sd_start_stop_device(sdkp, 1); 3789 if (!ret) 3790 opal_unlock_from_suspend(sdkp->opal_dev); 3791 return ret; 3792 } 3793 3794 static int sd_resume_system(struct device *dev) 3795 { 3796 if (pm_runtime_suspended(dev)) 3797 return 0; 3798 3799 return sd_resume(dev); 3800 } 3801 3802 static int sd_resume_runtime(struct device *dev) 3803 { 3804 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3805 struct scsi_device *sdp; 3806 3807 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3808 return 0; 3809 3810 sdp = sdkp->device; 3811 3812 if (sdp->ignore_media_change) { 3813 /* clear the device's sense data */ 3814 static const u8 cmd[10] = { REQUEST_SENSE }; 3815 const struct scsi_exec_args exec_args = { 3816 .req_flags = BLK_MQ_REQ_PM, 3817 }; 3818 3819 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 3820 sdp->request_queue->rq_timeout, 1, 3821 &exec_args)) 3822 sd_printk(KERN_NOTICE, sdkp, 3823 "Failed to clear sense data\n"); 3824 } 3825 3826 return sd_resume(dev); 3827 } 3828 3829 /** 3830 * init_sd - entry point for this driver (both when built in or when 3831 * a module). 3832 * 3833 * Note: this function registers this driver with the scsi mid-level. 3834 **/ 3835 static int __init init_sd(void) 3836 { 3837 int majors = 0, i, err; 3838 3839 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3840 3841 for (i = 0; i < SD_MAJORS; i++) { 3842 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3843 continue; 3844 majors++; 3845 } 3846 3847 if (!majors) 3848 return -ENODEV; 3849 3850 err = class_register(&sd_disk_class); 3851 if (err) 3852 goto err_out; 3853 3854 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3855 0, 0, NULL); 3856 if (!sd_cdb_cache) { 3857 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3858 err = -ENOMEM; 3859 goto err_out_class; 3860 } 3861 3862 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3863 if (!sd_page_pool) { 3864 printk(KERN_ERR "sd: can't init discard page pool\n"); 3865 err = -ENOMEM; 3866 goto err_out_cache; 3867 } 3868 3869 err = scsi_register_driver(&sd_template.gendrv); 3870 if (err) 3871 goto err_out_driver; 3872 3873 return 0; 3874 3875 err_out_driver: 3876 mempool_destroy(sd_page_pool); 3877 3878 err_out_cache: 3879 kmem_cache_destroy(sd_cdb_cache); 3880 3881 err_out_class: 3882 class_unregister(&sd_disk_class); 3883 err_out: 3884 for (i = 0; i < SD_MAJORS; i++) 3885 unregister_blkdev(sd_major(i), "sd"); 3886 return err; 3887 } 3888 3889 /** 3890 * exit_sd - exit point for this driver (when it is a module). 3891 * 3892 * Note: this function unregisters this driver from the scsi mid-level. 3893 **/ 3894 static void __exit exit_sd(void) 3895 { 3896 int i; 3897 3898 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3899 3900 scsi_unregister_driver(&sd_template.gendrv); 3901 mempool_destroy(sd_page_pool); 3902 kmem_cache_destroy(sd_cdb_cache); 3903 3904 class_unregister(&sd_disk_class); 3905 3906 for (i = 0; i < SD_MAJORS; i++) 3907 unregister_blkdev(sd_major(i), "sd"); 3908 } 3909 3910 module_init(init_sd); 3911 module_exit(exit_sd); 3912 3913 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3914 { 3915 scsi_print_sense_hdr(sdkp->device, 3916 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3917 } 3918 3919 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3920 { 3921 const char *hb_string = scsi_hostbyte_string(result); 3922 3923 if (hb_string) 3924 sd_printk(KERN_INFO, sdkp, 3925 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3926 hb_string ? hb_string : "invalid", 3927 "DRIVER_OK"); 3928 else 3929 sd_printk(KERN_INFO, sdkp, 3930 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 3931 msg, host_byte(result), "DRIVER_OK"); 3932 } 3933