1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/genhd.h> 42 #include <linux/hdreg.h> 43 #include <linux/errno.h> 44 #include <linux/idr.h> 45 #include <linux/interrupt.h> 46 #include <linux/init.h> 47 #include <linux/blkdev.h> 48 #include <linux/blkpg.h> 49 #include <linux/blk-pm.h> 50 #include <linux/delay.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/async.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <asm/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_driver.h> 67 #include <scsi/scsi_eh.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_ioctl.h> 70 #include <scsi/scsicam.h> 71 72 #include "sd.h" 73 #include "scsi_priv.h" 74 #include "scsi_logging.h" 75 76 MODULE_AUTHOR("Eric Youngdale"); 77 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 78 MODULE_LICENSE("GPL"); 79 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 100 101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 102 #define SD_MINORS 16 103 #else 104 #define SD_MINORS 0 105 #endif 106 107 static void sd_config_discard(struct scsi_disk *, unsigned int); 108 static void sd_config_write_same(struct scsi_disk *); 109 static int sd_revalidate_disk(struct gendisk *); 110 static void sd_unlock_native_capacity(struct gendisk *disk); 111 static int sd_probe(struct device *); 112 static int sd_remove(struct device *); 113 static void sd_shutdown(struct device *); 114 static int sd_suspend_system(struct device *); 115 static int sd_suspend_runtime(struct device *); 116 static int sd_resume(struct device *); 117 static void sd_rescan(struct device *); 118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 119 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 120 static int sd_done(struct scsi_cmnd *); 121 static void sd_eh_reset(struct scsi_cmnd *); 122 static int sd_eh_action(struct scsi_cmnd *, int); 123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 124 static void scsi_disk_release(struct device *cdev); 125 126 static DEFINE_IDA(sd_index_ida); 127 128 /* This semaphore is used to mediate the 0->1 reference get in the 129 * face of object destruction (i.e. we can't allow a get on an 130 * object after last put) */ 131 static DEFINE_MUTEX(sd_ref_mutex); 132 133 static struct kmem_cache *sd_cdb_cache; 134 static mempool_t *sd_cdb_pool; 135 static mempool_t *sd_page_pool; 136 137 static const char *sd_cache_types[] = { 138 "write through", "none", "write back", 139 "write back, no read (daft)" 140 }; 141 142 static void sd_set_flush_flag(struct scsi_disk *sdkp) 143 { 144 bool wc = false, fua = false; 145 146 if (sdkp->WCE) { 147 wc = true; 148 if (sdkp->DPOFUA) 149 fua = true; 150 } 151 152 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 153 } 154 155 static ssize_t 156 cache_type_store(struct device *dev, struct device_attribute *attr, 157 const char *buf, size_t count) 158 { 159 int ct, rcd, wce, sp; 160 struct scsi_disk *sdkp = to_scsi_disk(dev); 161 struct scsi_device *sdp = sdkp->device; 162 char buffer[64]; 163 char *buffer_data; 164 struct scsi_mode_data data; 165 struct scsi_sense_hdr sshdr; 166 static const char temp[] = "temporary "; 167 int len; 168 169 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 170 /* no cache control on RBC devices; theoretically they 171 * can do it, but there's probably so many exceptions 172 * it's not worth the risk */ 173 return -EINVAL; 174 175 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 176 buf += sizeof(temp) - 1; 177 sdkp->cache_override = 1; 178 } else { 179 sdkp->cache_override = 0; 180 } 181 182 ct = sysfs_match_string(sd_cache_types, buf); 183 if (ct < 0) 184 return -EINVAL; 185 186 rcd = ct & 0x01 ? 1 : 0; 187 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 188 189 if (sdkp->cache_override) { 190 sdkp->WCE = wce; 191 sdkp->RCD = rcd; 192 sd_set_flush_flag(sdkp); 193 return count; 194 } 195 196 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 197 SD_MAX_RETRIES, &data, NULL)) 198 return -EINVAL; 199 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 200 data.block_descriptor_length); 201 buffer_data = buffer + data.header_length + 202 data.block_descriptor_length; 203 buffer_data[2] &= ~0x05; 204 buffer_data[2] |= wce << 2 | rcd; 205 sp = buffer_data[0] & 0x80 ? 1 : 0; 206 buffer_data[0] &= ~0x80; 207 208 /* 209 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 210 * received mode parameter buffer before doing MODE SELECT. 211 */ 212 data.device_specific = 0; 213 214 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 215 SD_MAX_RETRIES, &data, &sshdr)) { 216 if (scsi_sense_valid(&sshdr)) 217 sd_print_sense_hdr(sdkp, &sshdr); 218 return -EINVAL; 219 } 220 revalidate_disk(sdkp->disk); 221 return count; 222 } 223 224 static ssize_t 225 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 226 char *buf) 227 { 228 struct scsi_disk *sdkp = to_scsi_disk(dev); 229 struct scsi_device *sdp = sdkp->device; 230 231 return sprintf(buf, "%u\n", sdp->manage_start_stop); 232 } 233 234 static ssize_t 235 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 236 const char *buf, size_t count) 237 { 238 struct scsi_disk *sdkp = to_scsi_disk(dev); 239 struct scsi_device *sdp = sdkp->device; 240 bool v; 241 242 if (!capable(CAP_SYS_ADMIN)) 243 return -EACCES; 244 245 if (kstrtobool(buf, &v)) 246 return -EINVAL; 247 248 sdp->manage_start_stop = v; 249 250 return count; 251 } 252 static DEVICE_ATTR_RW(manage_start_stop); 253 254 static ssize_t 255 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 256 { 257 struct scsi_disk *sdkp = to_scsi_disk(dev); 258 259 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 260 } 261 262 static ssize_t 263 allow_restart_store(struct device *dev, struct device_attribute *attr, 264 const char *buf, size_t count) 265 { 266 bool v; 267 struct scsi_disk *sdkp = to_scsi_disk(dev); 268 struct scsi_device *sdp = sdkp->device; 269 270 if (!capable(CAP_SYS_ADMIN)) 271 return -EACCES; 272 273 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 274 return -EINVAL; 275 276 if (kstrtobool(buf, &v)) 277 return -EINVAL; 278 279 sdp->allow_restart = v; 280 281 return count; 282 } 283 static DEVICE_ATTR_RW(allow_restart); 284 285 static ssize_t 286 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 287 { 288 struct scsi_disk *sdkp = to_scsi_disk(dev); 289 int ct = sdkp->RCD + 2*sdkp->WCE; 290 291 return sprintf(buf, "%s\n", sd_cache_types[ct]); 292 } 293 static DEVICE_ATTR_RW(cache_type); 294 295 static ssize_t 296 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 297 { 298 struct scsi_disk *sdkp = to_scsi_disk(dev); 299 300 return sprintf(buf, "%u\n", sdkp->DPOFUA); 301 } 302 static DEVICE_ATTR_RO(FUA); 303 304 static ssize_t 305 protection_type_show(struct device *dev, struct device_attribute *attr, 306 char *buf) 307 { 308 struct scsi_disk *sdkp = to_scsi_disk(dev); 309 310 return sprintf(buf, "%u\n", sdkp->protection_type); 311 } 312 313 static ssize_t 314 protection_type_store(struct device *dev, struct device_attribute *attr, 315 const char *buf, size_t count) 316 { 317 struct scsi_disk *sdkp = to_scsi_disk(dev); 318 unsigned int val; 319 int err; 320 321 if (!capable(CAP_SYS_ADMIN)) 322 return -EACCES; 323 324 err = kstrtouint(buf, 10, &val); 325 326 if (err) 327 return err; 328 329 if (val <= T10_PI_TYPE3_PROTECTION) 330 sdkp->protection_type = val; 331 332 return count; 333 } 334 static DEVICE_ATTR_RW(protection_type); 335 336 static ssize_t 337 protection_mode_show(struct device *dev, struct device_attribute *attr, 338 char *buf) 339 { 340 struct scsi_disk *sdkp = to_scsi_disk(dev); 341 struct scsi_device *sdp = sdkp->device; 342 unsigned int dif, dix; 343 344 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 345 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 346 347 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 348 dif = 0; 349 dix = 1; 350 } 351 352 if (!dif && !dix) 353 return sprintf(buf, "none\n"); 354 355 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 356 } 357 static DEVICE_ATTR_RO(protection_mode); 358 359 static ssize_t 360 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 361 { 362 struct scsi_disk *sdkp = to_scsi_disk(dev); 363 364 return sprintf(buf, "%u\n", sdkp->ATO); 365 } 366 static DEVICE_ATTR_RO(app_tag_own); 367 368 static ssize_t 369 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 370 char *buf) 371 { 372 struct scsi_disk *sdkp = to_scsi_disk(dev); 373 374 return sprintf(buf, "%u\n", sdkp->lbpme); 375 } 376 static DEVICE_ATTR_RO(thin_provisioning); 377 378 /* sysfs_match_string() requires dense arrays */ 379 static const char *lbp_mode[] = { 380 [SD_LBP_FULL] = "full", 381 [SD_LBP_UNMAP] = "unmap", 382 [SD_LBP_WS16] = "writesame_16", 383 [SD_LBP_WS10] = "writesame_10", 384 [SD_LBP_ZERO] = "writesame_zero", 385 [SD_LBP_DISABLE] = "disabled", 386 }; 387 388 static ssize_t 389 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 390 char *buf) 391 { 392 struct scsi_disk *sdkp = to_scsi_disk(dev); 393 394 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 395 } 396 397 static ssize_t 398 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 399 const char *buf, size_t count) 400 { 401 struct scsi_disk *sdkp = to_scsi_disk(dev); 402 struct scsi_device *sdp = sdkp->device; 403 int mode; 404 405 if (!capable(CAP_SYS_ADMIN)) 406 return -EACCES; 407 408 if (sd_is_zoned(sdkp)) { 409 sd_config_discard(sdkp, SD_LBP_DISABLE); 410 return count; 411 } 412 413 if (sdp->type != TYPE_DISK) 414 return -EINVAL; 415 416 mode = sysfs_match_string(lbp_mode, buf); 417 if (mode < 0) 418 return -EINVAL; 419 420 sd_config_discard(sdkp, mode); 421 422 return count; 423 } 424 static DEVICE_ATTR_RW(provisioning_mode); 425 426 /* sysfs_match_string() requires dense arrays */ 427 static const char *zeroing_mode[] = { 428 [SD_ZERO_WRITE] = "write", 429 [SD_ZERO_WS] = "writesame", 430 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 431 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 432 }; 433 434 static ssize_t 435 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 436 char *buf) 437 { 438 struct scsi_disk *sdkp = to_scsi_disk(dev); 439 440 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 441 } 442 443 static ssize_t 444 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 445 const char *buf, size_t count) 446 { 447 struct scsi_disk *sdkp = to_scsi_disk(dev); 448 int mode; 449 450 if (!capable(CAP_SYS_ADMIN)) 451 return -EACCES; 452 453 mode = sysfs_match_string(zeroing_mode, buf); 454 if (mode < 0) 455 return -EINVAL; 456 457 sdkp->zeroing_mode = mode; 458 459 return count; 460 } 461 static DEVICE_ATTR_RW(zeroing_mode); 462 463 static ssize_t 464 max_medium_access_timeouts_show(struct device *dev, 465 struct device_attribute *attr, char *buf) 466 { 467 struct scsi_disk *sdkp = to_scsi_disk(dev); 468 469 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 470 } 471 472 static ssize_t 473 max_medium_access_timeouts_store(struct device *dev, 474 struct device_attribute *attr, const char *buf, 475 size_t count) 476 { 477 struct scsi_disk *sdkp = to_scsi_disk(dev); 478 int err; 479 480 if (!capable(CAP_SYS_ADMIN)) 481 return -EACCES; 482 483 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 484 485 return err ? err : count; 486 } 487 static DEVICE_ATTR_RW(max_medium_access_timeouts); 488 489 static ssize_t 490 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 491 char *buf) 492 { 493 struct scsi_disk *sdkp = to_scsi_disk(dev); 494 495 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 496 } 497 498 static ssize_t 499 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 500 const char *buf, size_t count) 501 { 502 struct scsi_disk *sdkp = to_scsi_disk(dev); 503 struct scsi_device *sdp = sdkp->device; 504 unsigned long max; 505 int err; 506 507 if (!capable(CAP_SYS_ADMIN)) 508 return -EACCES; 509 510 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 511 return -EINVAL; 512 513 err = kstrtoul(buf, 10, &max); 514 515 if (err) 516 return err; 517 518 if (max == 0) 519 sdp->no_write_same = 1; 520 else if (max <= SD_MAX_WS16_BLOCKS) { 521 sdp->no_write_same = 0; 522 sdkp->max_ws_blocks = max; 523 } 524 525 sd_config_write_same(sdkp); 526 527 return count; 528 } 529 static DEVICE_ATTR_RW(max_write_same_blocks); 530 531 static ssize_t 532 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 533 { 534 struct scsi_disk *sdkp = to_scsi_disk(dev); 535 536 if (sdkp->device->type == TYPE_ZBC) 537 return sprintf(buf, "host-managed\n"); 538 if (sdkp->zoned == 1) 539 return sprintf(buf, "host-aware\n"); 540 if (sdkp->zoned == 2) 541 return sprintf(buf, "drive-managed\n"); 542 return sprintf(buf, "none\n"); 543 } 544 static DEVICE_ATTR_RO(zoned_cap); 545 546 static struct attribute *sd_disk_attrs[] = { 547 &dev_attr_cache_type.attr, 548 &dev_attr_FUA.attr, 549 &dev_attr_allow_restart.attr, 550 &dev_attr_manage_start_stop.attr, 551 &dev_attr_protection_type.attr, 552 &dev_attr_protection_mode.attr, 553 &dev_attr_app_tag_own.attr, 554 &dev_attr_thin_provisioning.attr, 555 &dev_attr_provisioning_mode.attr, 556 &dev_attr_zeroing_mode.attr, 557 &dev_attr_max_write_same_blocks.attr, 558 &dev_attr_max_medium_access_timeouts.attr, 559 &dev_attr_zoned_cap.attr, 560 NULL, 561 }; 562 ATTRIBUTE_GROUPS(sd_disk); 563 564 static struct class sd_disk_class = { 565 .name = "scsi_disk", 566 .owner = THIS_MODULE, 567 .dev_release = scsi_disk_release, 568 .dev_groups = sd_disk_groups, 569 }; 570 571 static const struct dev_pm_ops sd_pm_ops = { 572 .suspend = sd_suspend_system, 573 .resume = sd_resume, 574 .poweroff = sd_suspend_system, 575 .restore = sd_resume, 576 .runtime_suspend = sd_suspend_runtime, 577 .runtime_resume = sd_resume, 578 }; 579 580 static struct scsi_driver sd_template = { 581 .gendrv = { 582 .name = "sd", 583 .owner = THIS_MODULE, 584 .probe = sd_probe, 585 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 586 .remove = sd_remove, 587 .shutdown = sd_shutdown, 588 .pm = &sd_pm_ops, 589 }, 590 .rescan = sd_rescan, 591 .init_command = sd_init_command, 592 .uninit_command = sd_uninit_command, 593 .done = sd_done, 594 .eh_action = sd_eh_action, 595 .eh_reset = sd_eh_reset, 596 }; 597 598 /* 599 * Dummy kobj_map->probe function. 600 * The default ->probe function will call modprobe, which is 601 * pointless as this module is already loaded. 602 */ 603 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 604 { 605 return NULL; 606 } 607 608 /* 609 * Device no to disk mapping: 610 * 611 * major disc2 disc p1 612 * |............|.............|....|....| <- dev_t 613 * 31 20 19 8 7 4 3 0 614 * 615 * Inside a major, we have 16k disks, however mapped non- 616 * contiguously. The first 16 disks are for major0, the next 617 * ones with major1, ... Disk 256 is for major0 again, disk 272 618 * for major1, ... 619 * As we stay compatible with our numbering scheme, we can reuse 620 * the well-know SCSI majors 8, 65--71, 136--143. 621 */ 622 static int sd_major(int major_idx) 623 { 624 switch (major_idx) { 625 case 0: 626 return SCSI_DISK0_MAJOR; 627 case 1 ... 7: 628 return SCSI_DISK1_MAJOR + major_idx - 1; 629 case 8 ... 15: 630 return SCSI_DISK8_MAJOR + major_idx - 8; 631 default: 632 BUG(); 633 return 0; /* shut up gcc */ 634 } 635 } 636 637 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 638 { 639 struct scsi_disk *sdkp = NULL; 640 641 mutex_lock(&sd_ref_mutex); 642 643 if (disk->private_data) { 644 sdkp = scsi_disk(disk); 645 if (scsi_device_get(sdkp->device) == 0) 646 get_device(&sdkp->dev); 647 else 648 sdkp = NULL; 649 } 650 mutex_unlock(&sd_ref_mutex); 651 return sdkp; 652 } 653 654 static void scsi_disk_put(struct scsi_disk *sdkp) 655 { 656 struct scsi_device *sdev = sdkp->device; 657 658 mutex_lock(&sd_ref_mutex); 659 put_device(&sdkp->dev); 660 scsi_device_put(sdev); 661 mutex_unlock(&sd_ref_mutex); 662 } 663 664 #ifdef CONFIG_BLK_SED_OPAL 665 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 666 size_t len, bool send) 667 { 668 struct scsi_device *sdev = data; 669 u8 cdb[12] = { 0, }; 670 int ret; 671 672 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 673 cdb[1] = secp; 674 put_unaligned_be16(spsp, &cdb[2]); 675 put_unaligned_be32(len, &cdb[6]); 676 677 ret = scsi_execute_req(sdev, cdb, 678 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 679 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 680 return ret <= 0 ? ret : -EIO; 681 } 682 #endif /* CONFIG_BLK_SED_OPAL */ 683 684 /* 685 * Look up the DIX operation based on whether the command is read or 686 * write and whether dix and dif are enabled. 687 */ 688 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 689 { 690 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 691 static const unsigned int ops[] = { /* wrt dix dif */ 692 SCSI_PROT_NORMAL, /* 0 0 0 */ 693 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 694 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 695 SCSI_PROT_READ_PASS, /* 0 1 1 */ 696 SCSI_PROT_NORMAL, /* 1 0 0 */ 697 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 698 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 699 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 700 }; 701 702 return ops[write << 2 | dix << 1 | dif]; 703 } 704 705 /* 706 * Returns a mask of the protection flags that are valid for a given DIX 707 * operation. 708 */ 709 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 710 { 711 static const unsigned int flag_mask[] = { 712 [SCSI_PROT_NORMAL] = 0, 713 714 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 715 SCSI_PROT_GUARD_CHECK | 716 SCSI_PROT_REF_CHECK | 717 SCSI_PROT_REF_INCREMENT, 718 719 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 720 SCSI_PROT_IP_CHECKSUM, 721 722 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 723 SCSI_PROT_GUARD_CHECK | 724 SCSI_PROT_REF_CHECK | 725 SCSI_PROT_REF_INCREMENT | 726 SCSI_PROT_IP_CHECKSUM, 727 728 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 729 SCSI_PROT_REF_INCREMENT, 730 731 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 732 SCSI_PROT_REF_CHECK | 733 SCSI_PROT_REF_INCREMENT | 734 SCSI_PROT_IP_CHECKSUM, 735 736 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 737 SCSI_PROT_GUARD_CHECK | 738 SCSI_PROT_REF_CHECK | 739 SCSI_PROT_REF_INCREMENT | 740 SCSI_PROT_IP_CHECKSUM, 741 }; 742 743 return flag_mask[prot_op]; 744 } 745 746 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 747 unsigned int dix, unsigned int dif) 748 { 749 struct bio *bio = scmd->request->bio; 750 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 751 unsigned int protect = 0; 752 753 if (dix) { /* DIX Type 0, 1, 2, 3 */ 754 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 755 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 756 757 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 758 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 759 } 760 761 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 762 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 763 764 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 765 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 766 } 767 768 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 769 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 770 771 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 772 protect = 3 << 5; /* Disable target PI checking */ 773 else 774 protect = 1 << 5; /* Enable target PI checking */ 775 } 776 777 scsi_set_prot_op(scmd, prot_op); 778 scsi_set_prot_type(scmd, dif); 779 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 780 781 return protect; 782 } 783 784 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 785 { 786 struct request_queue *q = sdkp->disk->queue; 787 unsigned int logical_block_size = sdkp->device->sector_size; 788 unsigned int max_blocks = 0; 789 790 q->limits.discard_alignment = 791 sdkp->unmap_alignment * logical_block_size; 792 q->limits.discard_granularity = 793 max(sdkp->physical_block_size, 794 sdkp->unmap_granularity * logical_block_size); 795 sdkp->provisioning_mode = mode; 796 797 switch (mode) { 798 799 case SD_LBP_FULL: 800 case SD_LBP_DISABLE: 801 blk_queue_max_discard_sectors(q, 0); 802 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 803 return; 804 805 case SD_LBP_UNMAP: 806 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 807 (u32)SD_MAX_WS16_BLOCKS); 808 break; 809 810 case SD_LBP_WS16: 811 if (sdkp->device->unmap_limit_for_ws) 812 max_blocks = sdkp->max_unmap_blocks; 813 else 814 max_blocks = sdkp->max_ws_blocks; 815 816 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 817 break; 818 819 case SD_LBP_WS10: 820 if (sdkp->device->unmap_limit_for_ws) 821 max_blocks = sdkp->max_unmap_blocks; 822 else 823 max_blocks = sdkp->max_ws_blocks; 824 825 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 826 break; 827 828 case SD_LBP_ZERO: 829 max_blocks = min_not_zero(sdkp->max_ws_blocks, 830 (u32)SD_MAX_WS10_BLOCKS); 831 break; 832 } 833 834 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 835 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 836 } 837 838 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 839 { 840 struct scsi_device *sdp = cmd->device; 841 struct request *rq = cmd->request; 842 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 843 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 844 unsigned int data_len = 24; 845 char *buf; 846 847 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 848 if (!rq->special_vec.bv_page) 849 return BLK_STS_RESOURCE; 850 clear_highpage(rq->special_vec.bv_page); 851 rq->special_vec.bv_offset = 0; 852 rq->special_vec.bv_len = data_len; 853 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 854 855 cmd->cmd_len = 10; 856 cmd->cmnd[0] = UNMAP; 857 cmd->cmnd[8] = 24; 858 859 buf = page_address(rq->special_vec.bv_page); 860 put_unaligned_be16(6 + 16, &buf[0]); 861 put_unaligned_be16(16, &buf[2]); 862 put_unaligned_be64(lba, &buf[8]); 863 put_unaligned_be32(nr_blocks, &buf[16]); 864 865 cmd->allowed = SD_MAX_RETRIES; 866 cmd->transfersize = data_len; 867 rq->timeout = SD_TIMEOUT; 868 869 return scsi_init_io(cmd); 870 } 871 872 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 873 bool unmap) 874 { 875 struct scsi_device *sdp = cmd->device; 876 struct request *rq = cmd->request; 877 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 878 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 879 u32 data_len = sdp->sector_size; 880 881 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 882 if (!rq->special_vec.bv_page) 883 return BLK_STS_RESOURCE; 884 clear_highpage(rq->special_vec.bv_page); 885 rq->special_vec.bv_offset = 0; 886 rq->special_vec.bv_len = data_len; 887 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 888 889 cmd->cmd_len = 16; 890 cmd->cmnd[0] = WRITE_SAME_16; 891 if (unmap) 892 cmd->cmnd[1] = 0x8; /* UNMAP */ 893 put_unaligned_be64(lba, &cmd->cmnd[2]); 894 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 895 896 cmd->allowed = SD_MAX_RETRIES; 897 cmd->transfersize = data_len; 898 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 899 900 return scsi_init_io(cmd); 901 } 902 903 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 904 bool unmap) 905 { 906 struct scsi_device *sdp = cmd->device; 907 struct request *rq = cmd->request; 908 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 909 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 910 u32 data_len = sdp->sector_size; 911 912 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 913 if (!rq->special_vec.bv_page) 914 return BLK_STS_RESOURCE; 915 clear_highpage(rq->special_vec.bv_page); 916 rq->special_vec.bv_offset = 0; 917 rq->special_vec.bv_len = data_len; 918 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 919 920 cmd->cmd_len = 10; 921 cmd->cmnd[0] = WRITE_SAME; 922 if (unmap) 923 cmd->cmnd[1] = 0x8; /* UNMAP */ 924 put_unaligned_be32(lba, &cmd->cmnd[2]); 925 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 926 927 cmd->allowed = SD_MAX_RETRIES; 928 cmd->transfersize = data_len; 929 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 930 931 return scsi_init_io(cmd); 932 } 933 934 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 935 { 936 struct request *rq = cmd->request; 937 struct scsi_device *sdp = cmd->device; 938 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 939 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 940 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 941 942 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 943 switch (sdkp->zeroing_mode) { 944 case SD_ZERO_WS16_UNMAP: 945 return sd_setup_write_same16_cmnd(cmd, true); 946 case SD_ZERO_WS10_UNMAP: 947 return sd_setup_write_same10_cmnd(cmd, true); 948 } 949 } 950 951 if (sdp->no_write_same) 952 return BLK_STS_TARGET; 953 954 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 955 return sd_setup_write_same16_cmnd(cmd, false); 956 957 return sd_setup_write_same10_cmnd(cmd, false); 958 } 959 960 static void sd_config_write_same(struct scsi_disk *sdkp) 961 { 962 struct request_queue *q = sdkp->disk->queue; 963 unsigned int logical_block_size = sdkp->device->sector_size; 964 965 if (sdkp->device->no_write_same) { 966 sdkp->max_ws_blocks = 0; 967 goto out; 968 } 969 970 /* Some devices can not handle block counts above 0xffff despite 971 * supporting WRITE SAME(16). Consequently we default to 64k 972 * blocks per I/O unless the device explicitly advertises a 973 * bigger limit. 974 */ 975 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 976 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 977 (u32)SD_MAX_WS16_BLOCKS); 978 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 979 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 980 (u32)SD_MAX_WS10_BLOCKS); 981 else { 982 sdkp->device->no_write_same = 1; 983 sdkp->max_ws_blocks = 0; 984 } 985 986 if (sdkp->lbprz && sdkp->lbpws) 987 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 988 else if (sdkp->lbprz && sdkp->lbpws10) 989 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 990 else if (sdkp->max_ws_blocks) 991 sdkp->zeroing_mode = SD_ZERO_WS; 992 else 993 sdkp->zeroing_mode = SD_ZERO_WRITE; 994 995 if (sdkp->max_ws_blocks && 996 sdkp->physical_block_size > logical_block_size) { 997 /* 998 * Reporting a maximum number of blocks that is not aligned 999 * on the device physical size would cause a large write same 1000 * request to be split into physically unaligned chunks by 1001 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 1002 * even if the caller of these functions took care to align the 1003 * large request. So make sure the maximum reported is aligned 1004 * to the device physical block size. This is only an optional 1005 * optimization for regular disks, but this is mandatory to 1006 * avoid failure of large write same requests directed at 1007 * sequential write required zones of host-managed ZBC disks. 1008 */ 1009 sdkp->max_ws_blocks = 1010 round_down(sdkp->max_ws_blocks, 1011 bytes_to_logical(sdkp->device, 1012 sdkp->physical_block_size)); 1013 } 1014 1015 out: 1016 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 1017 (logical_block_size >> 9)); 1018 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1019 (logical_block_size >> 9)); 1020 } 1021 1022 /** 1023 * sd_setup_write_same_cmnd - write the same data to multiple blocks 1024 * @cmd: command to prepare 1025 * 1026 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 1027 * the preference indicated by the target device. 1028 **/ 1029 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 1030 { 1031 struct request *rq = cmd->request; 1032 struct scsi_device *sdp = cmd->device; 1033 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1034 struct bio *bio = rq->bio; 1035 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1036 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1037 blk_status_t ret; 1038 1039 if (sdkp->device->no_write_same) 1040 return BLK_STS_TARGET; 1041 1042 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 1043 1044 rq->timeout = SD_WRITE_SAME_TIMEOUT; 1045 1046 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) { 1047 cmd->cmd_len = 16; 1048 cmd->cmnd[0] = WRITE_SAME_16; 1049 put_unaligned_be64(lba, &cmd->cmnd[2]); 1050 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1051 } else { 1052 cmd->cmd_len = 10; 1053 cmd->cmnd[0] = WRITE_SAME; 1054 put_unaligned_be32(lba, &cmd->cmnd[2]); 1055 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1056 } 1057 1058 cmd->transfersize = sdp->sector_size; 1059 cmd->allowed = SD_MAX_RETRIES; 1060 1061 /* 1062 * For WRITE SAME the data transferred via the DATA OUT buffer is 1063 * different from the amount of data actually written to the target. 1064 * 1065 * We set up __data_len to the amount of data transferred via the 1066 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 1067 * to transfer a single sector of data first, but then reset it to 1068 * the amount of data to be written right after so that the I/O path 1069 * knows how much to actually write. 1070 */ 1071 rq->__data_len = sdp->sector_size; 1072 ret = scsi_init_io(cmd); 1073 rq->__data_len = blk_rq_bytes(rq); 1074 1075 return ret; 1076 } 1077 1078 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1079 { 1080 struct request *rq = cmd->request; 1081 1082 /* flush requests don't perform I/O, zero the S/G table */ 1083 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1084 1085 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1086 cmd->cmd_len = 10; 1087 cmd->transfersize = 0; 1088 cmd->allowed = SD_MAX_RETRIES; 1089 1090 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1091 return BLK_STS_OK; 1092 } 1093 1094 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1095 sector_t lba, unsigned int nr_blocks, 1096 unsigned char flags) 1097 { 1098 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1099 if (unlikely(cmd->cmnd == NULL)) 1100 return BLK_STS_RESOURCE; 1101 1102 cmd->cmd_len = SD_EXT_CDB_SIZE; 1103 memset(cmd->cmnd, 0, cmd->cmd_len); 1104 1105 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1106 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1107 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1108 cmd->cmnd[10] = flags; 1109 put_unaligned_be64(lba, &cmd->cmnd[12]); 1110 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1111 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1112 1113 return BLK_STS_OK; 1114 } 1115 1116 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1117 sector_t lba, unsigned int nr_blocks, 1118 unsigned char flags) 1119 { 1120 cmd->cmd_len = 16; 1121 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1122 cmd->cmnd[1] = flags; 1123 cmd->cmnd[14] = 0; 1124 cmd->cmnd[15] = 0; 1125 put_unaligned_be64(lba, &cmd->cmnd[2]); 1126 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1127 1128 return BLK_STS_OK; 1129 } 1130 1131 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1132 sector_t lba, unsigned int nr_blocks, 1133 unsigned char flags) 1134 { 1135 cmd->cmd_len = 10; 1136 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1137 cmd->cmnd[1] = flags; 1138 cmd->cmnd[6] = 0; 1139 cmd->cmnd[9] = 0; 1140 put_unaligned_be32(lba, &cmd->cmnd[2]); 1141 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1142 1143 return BLK_STS_OK; 1144 } 1145 1146 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1147 sector_t lba, unsigned int nr_blocks, 1148 unsigned char flags) 1149 { 1150 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1151 if (WARN_ON_ONCE(nr_blocks == 0)) 1152 return BLK_STS_IOERR; 1153 1154 if (unlikely(flags & 0x8)) { 1155 /* 1156 * This happens only if this drive failed 10byte rw 1157 * command with ILLEGAL_REQUEST during operation and 1158 * thus turned off use_10_for_rw. 1159 */ 1160 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1161 return BLK_STS_IOERR; 1162 } 1163 1164 cmd->cmd_len = 6; 1165 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1166 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1167 cmd->cmnd[2] = (lba >> 8) & 0xff; 1168 cmd->cmnd[3] = lba & 0xff; 1169 cmd->cmnd[4] = nr_blocks; 1170 cmd->cmnd[5] = 0; 1171 1172 return BLK_STS_OK; 1173 } 1174 1175 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1176 { 1177 struct request *rq = cmd->request; 1178 struct scsi_device *sdp = cmd->device; 1179 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1180 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1181 sector_t threshold; 1182 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1183 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1184 bool write = rq_data_dir(rq) == WRITE; 1185 unsigned char protect, fua; 1186 blk_status_t ret; 1187 unsigned int dif; 1188 bool dix; 1189 1190 ret = scsi_init_io(cmd); 1191 if (ret != BLK_STS_OK) 1192 return ret; 1193 1194 if (!scsi_device_online(sdp) || sdp->changed) { 1195 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1196 return BLK_STS_IOERR; 1197 } 1198 1199 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) { 1200 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1201 return BLK_STS_IOERR; 1202 } 1203 1204 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1205 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1206 return BLK_STS_IOERR; 1207 } 1208 1209 /* 1210 * Some SD card readers can't handle accesses which touch the 1211 * last one or two logical blocks. Split accesses as needed. 1212 */ 1213 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1214 1215 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1216 if (lba < threshold) { 1217 /* Access up to the threshold but not beyond */ 1218 nr_blocks = threshold - lba; 1219 } else { 1220 /* Access only a single logical block */ 1221 nr_blocks = 1; 1222 } 1223 } 1224 1225 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1226 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1227 if (ret) 1228 return ret; 1229 } 1230 1231 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1232 dix = scsi_prot_sg_count(cmd); 1233 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1234 1235 if (dif || dix) 1236 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1237 else 1238 protect = 0; 1239 1240 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1241 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1242 protect | fua); 1243 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1244 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1245 protect | fua); 1246 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1247 sdp->use_10_for_rw || protect) { 1248 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1249 protect | fua); 1250 } else { 1251 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1252 protect | fua); 1253 } 1254 1255 if (unlikely(ret != BLK_STS_OK)) 1256 return ret; 1257 1258 /* 1259 * We shouldn't disconnect in the middle of a sector, so with a dumb 1260 * host adapter, it's safe to assume that we can at least transfer 1261 * this many bytes between each connect / disconnect. 1262 */ 1263 cmd->transfersize = sdp->sector_size; 1264 cmd->underflow = nr_blocks << 9; 1265 cmd->allowed = SD_MAX_RETRIES; 1266 cmd->sdb.length = nr_blocks * sdp->sector_size; 1267 1268 SCSI_LOG_HLQUEUE(1, 1269 scmd_printk(KERN_INFO, cmd, 1270 "%s: block=%llu, count=%d\n", __func__, 1271 (unsigned long long)blk_rq_pos(rq), 1272 blk_rq_sectors(rq))); 1273 SCSI_LOG_HLQUEUE(2, 1274 scmd_printk(KERN_INFO, cmd, 1275 "%s %d/%u 512 byte blocks.\n", 1276 write ? "writing" : "reading", nr_blocks, 1277 blk_rq_sectors(rq))); 1278 1279 /* 1280 * This indicates that the command is ready from our end to be 1281 * queued. 1282 */ 1283 return BLK_STS_OK; 1284 } 1285 1286 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1287 { 1288 struct request *rq = cmd->request; 1289 1290 switch (req_op(rq)) { 1291 case REQ_OP_DISCARD: 1292 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1293 case SD_LBP_UNMAP: 1294 return sd_setup_unmap_cmnd(cmd); 1295 case SD_LBP_WS16: 1296 return sd_setup_write_same16_cmnd(cmd, true); 1297 case SD_LBP_WS10: 1298 return sd_setup_write_same10_cmnd(cmd, true); 1299 case SD_LBP_ZERO: 1300 return sd_setup_write_same10_cmnd(cmd, false); 1301 default: 1302 return BLK_STS_TARGET; 1303 } 1304 case REQ_OP_WRITE_ZEROES: 1305 return sd_setup_write_zeroes_cmnd(cmd); 1306 case REQ_OP_WRITE_SAME: 1307 return sd_setup_write_same_cmnd(cmd); 1308 case REQ_OP_FLUSH: 1309 return sd_setup_flush_cmnd(cmd); 1310 case REQ_OP_READ: 1311 case REQ_OP_WRITE: 1312 case REQ_OP_ZONE_APPEND: 1313 return sd_setup_read_write_cmnd(cmd); 1314 case REQ_OP_ZONE_RESET: 1315 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1316 false); 1317 case REQ_OP_ZONE_RESET_ALL: 1318 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1319 true); 1320 case REQ_OP_ZONE_OPEN: 1321 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1322 case REQ_OP_ZONE_CLOSE: 1323 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1324 case REQ_OP_ZONE_FINISH: 1325 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1326 default: 1327 WARN_ON_ONCE(1); 1328 return BLK_STS_NOTSUPP; 1329 } 1330 } 1331 1332 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1333 { 1334 struct request *rq = SCpnt->request; 1335 u8 *cmnd; 1336 1337 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1338 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1339 1340 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1341 cmnd = SCpnt->cmnd; 1342 SCpnt->cmnd = NULL; 1343 SCpnt->cmd_len = 0; 1344 mempool_free(cmnd, sd_cdb_pool); 1345 } 1346 } 1347 1348 /** 1349 * sd_open - open a scsi disk device 1350 * @bdev: Block device of the scsi disk to open 1351 * @mode: FMODE_* mask 1352 * 1353 * Returns 0 if successful. Returns a negated errno value in case 1354 * of error. 1355 * 1356 * Note: This can be called from a user context (e.g. fsck(1) ) 1357 * or from within the kernel (e.g. as a result of a mount(1) ). 1358 * In the latter case @inode and @filp carry an abridged amount 1359 * of information as noted above. 1360 * 1361 * Locking: called with bdev->bd_mutex held. 1362 **/ 1363 static int sd_open(struct block_device *bdev, fmode_t mode) 1364 { 1365 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1366 struct scsi_device *sdev; 1367 int retval; 1368 1369 if (!sdkp) 1370 return -ENXIO; 1371 1372 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1373 1374 sdev = sdkp->device; 1375 1376 /* 1377 * If the device is in error recovery, wait until it is done. 1378 * If the device is offline, then disallow any access to it. 1379 */ 1380 retval = -ENXIO; 1381 if (!scsi_block_when_processing_errors(sdev)) 1382 goto error_out; 1383 1384 if (sdev->removable || sdkp->write_prot) 1385 check_disk_change(bdev); 1386 1387 /* 1388 * If the drive is empty, just let the open fail. 1389 */ 1390 retval = -ENOMEDIUM; 1391 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1392 goto error_out; 1393 1394 /* 1395 * If the device has the write protect tab set, have the open fail 1396 * if the user expects to be able to write to the thing. 1397 */ 1398 retval = -EROFS; 1399 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1400 goto error_out; 1401 1402 /* 1403 * It is possible that the disk changing stuff resulted in 1404 * the device being taken offline. If this is the case, 1405 * report this to the user, and don't pretend that the 1406 * open actually succeeded. 1407 */ 1408 retval = -ENXIO; 1409 if (!scsi_device_online(sdev)) 1410 goto error_out; 1411 1412 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1413 if (scsi_block_when_processing_errors(sdev)) 1414 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1415 } 1416 1417 return 0; 1418 1419 error_out: 1420 scsi_disk_put(sdkp); 1421 return retval; 1422 } 1423 1424 /** 1425 * sd_release - invoked when the (last) close(2) is called on this 1426 * scsi disk. 1427 * @disk: disk to release 1428 * @mode: FMODE_* mask 1429 * 1430 * Returns 0. 1431 * 1432 * Note: may block (uninterruptible) if error recovery is underway 1433 * on this disk. 1434 * 1435 * Locking: called with bdev->bd_mutex held. 1436 **/ 1437 static void sd_release(struct gendisk *disk, fmode_t mode) 1438 { 1439 struct scsi_disk *sdkp = scsi_disk(disk); 1440 struct scsi_device *sdev = sdkp->device; 1441 1442 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1443 1444 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1445 if (scsi_block_when_processing_errors(sdev)) 1446 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1447 } 1448 1449 scsi_disk_put(sdkp); 1450 } 1451 1452 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1453 { 1454 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1455 struct scsi_device *sdp = sdkp->device; 1456 struct Scsi_Host *host = sdp->host; 1457 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1458 int diskinfo[4]; 1459 1460 /* default to most commonly used values */ 1461 diskinfo[0] = 0x40; /* 1 << 6 */ 1462 diskinfo[1] = 0x20; /* 1 << 5 */ 1463 diskinfo[2] = capacity >> 11; 1464 1465 /* override with calculated, extended default, or driver values */ 1466 if (host->hostt->bios_param) 1467 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1468 else 1469 scsicam_bios_param(bdev, capacity, diskinfo); 1470 1471 geo->heads = diskinfo[0]; 1472 geo->sectors = diskinfo[1]; 1473 geo->cylinders = diskinfo[2]; 1474 return 0; 1475 } 1476 1477 /** 1478 * sd_ioctl - process an ioctl 1479 * @bdev: target block device 1480 * @mode: FMODE_* mask 1481 * @cmd: ioctl command number 1482 * @arg: this is third argument given to ioctl(2) system call. 1483 * Often contains a pointer. 1484 * 1485 * Returns 0 if successful (some ioctls return positive numbers on 1486 * success as well). Returns a negated errno value in case of error. 1487 * 1488 * Note: most ioctls are forward onto the block subsystem or further 1489 * down in the scsi subsystem. 1490 **/ 1491 static int sd_ioctl_common(struct block_device *bdev, fmode_t mode, 1492 unsigned int cmd, void __user *p) 1493 { 1494 struct gendisk *disk = bdev->bd_disk; 1495 struct scsi_disk *sdkp = scsi_disk(disk); 1496 struct scsi_device *sdp = sdkp->device; 1497 int error; 1498 1499 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1500 "cmd=0x%x\n", disk->disk_name, cmd)); 1501 1502 error = scsi_verify_blk_ioctl(bdev, cmd); 1503 if (error < 0) 1504 return error; 1505 1506 /* 1507 * If we are in the middle of error recovery, don't let anyone 1508 * else try and use this device. Also, if error recovery fails, it 1509 * may try and take the device offline, in which case all further 1510 * access to the device is prohibited. 1511 */ 1512 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1513 (mode & FMODE_NDELAY) != 0); 1514 if (error) 1515 goto out; 1516 1517 if (is_sed_ioctl(cmd)) 1518 return sed_ioctl(sdkp->opal_dev, cmd, p); 1519 1520 /* 1521 * Send SCSI addressing ioctls directly to mid level, send other 1522 * ioctls to block level and then onto mid level if they can't be 1523 * resolved. 1524 */ 1525 switch (cmd) { 1526 case SCSI_IOCTL_GET_IDLUN: 1527 case SCSI_IOCTL_GET_BUS_NUMBER: 1528 error = scsi_ioctl(sdp, cmd, p); 1529 break; 1530 default: 1531 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1532 break; 1533 } 1534 out: 1535 return error; 1536 } 1537 1538 static void set_media_not_present(struct scsi_disk *sdkp) 1539 { 1540 if (sdkp->media_present) 1541 sdkp->device->changed = 1; 1542 1543 if (sdkp->device->removable) { 1544 sdkp->media_present = 0; 1545 sdkp->capacity = 0; 1546 } 1547 } 1548 1549 static int media_not_present(struct scsi_disk *sdkp, 1550 struct scsi_sense_hdr *sshdr) 1551 { 1552 if (!scsi_sense_valid(sshdr)) 1553 return 0; 1554 1555 /* not invoked for commands that could return deferred errors */ 1556 switch (sshdr->sense_key) { 1557 case UNIT_ATTENTION: 1558 case NOT_READY: 1559 /* medium not present */ 1560 if (sshdr->asc == 0x3A) { 1561 set_media_not_present(sdkp); 1562 return 1; 1563 } 1564 } 1565 return 0; 1566 } 1567 1568 /** 1569 * sd_check_events - check media events 1570 * @disk: kernel device descriptor 1571 * @clearing: disk events currently being cleared 1572 * 1573 * Returns mask of DISK_EVENT_*. 1574 * 1575 * Note: this function is invoked from the block subsystem. 1576 **/ 1577 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1578 { 1579 struct scsi_disk *sdkp = scsi_disk_get(disk); 1580 struct scsi_device *sdp; 1581 int retval; 1582 1583 if (!sdkp) 1584 return 0; 1585 1586 sdp = sdkp->device; 1587 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1588 1589 /* 1590 * If the device is offline, don't send any commands - just pretend as 1591 * if the command failed. If the device ever comes back online, we 1592 * can deal with it then. It is only because of unrecoverable errors 1593 * that we would ever take a device offline in the first place. 1594 */ 1595 if (!scsi_device_online(sdp)) { 1596 set_media_not_present(sdkp); 1597 goto out; 1598 } 1599 1600 /* 1601 * Using TEST_UNIT_READY enables differentiation between drive with 1602 * no cartridge loaded - NOT READY, drive with changed cartridge - 1603 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1604 * 1605 * Drives that auto spin down. eg iomega jaz 1G, will be started 1606 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1607 * sd_revalidate() is called. 1608 */ 1609 if (scsi_block_when_processing_errors(sdp)) { 1610 struct scsi_sense_hdr sshdr = { 0, }; 1611 1612 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1613 &sshdr); 1614 1615 /* failed to execute TUR, assume media not present */ 1616 if (host_byte(retval)) { 1617 set_media_not_present(sdkp); 1618 goto out; 1619 } 1620 1621 if (media_not_present(sdkp, &sshdr)) 1622 goto out; 1623 } 1624 1625 /* 1626 * For removable scsi disk we have to recognise the presence 1627 * of a disk in the drive. 1628 */ 1629 if (!sdkp->media_present) 1630 sdp->changed = 1; 1631 sdkp->media_present = 1; 1632 out: 1633 /* 1634 * sdp->changed is set under the following conditions: 1635 * 1636 * Medium present state has changed in either direction. 1637 * Device has indicated UNIT_ATTENTION. 1638 */ 1639 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1640 sdp->changed = 0; 1641 scsi_disk_put(sdkp); 1642 return retval; 1643 } 1644 1645 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1646 { 1647 int retries, res; 1648 struct scsi_device *sdp = sdkp->device; 1649 const int timeout = sdp->request_queue->rq_timeout 1650 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1651 struct scsi_sense_hdr my_sshdr; 1652 1653 if (!scsi_device_online(sdp)) 1654 return -ENODEV; 1655 1656 /* caller might not be interested in sense, but we need it */ 1657 if (!sshdr) 1658 sshdr = &my_sshdr; 1659 1660 for (retries = 3; retries > 0; --retries) { 1661 unsigned char cmd[10] = { 0 }; 1662 1663 cmd[0] = SYNCHRONIZE_CACHE; 1664 /* 1665 * Leave the rest of the command zero to indicate 1666 * flush everything. 1667 */ 1668 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1669 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL); 1670 if (res == 0) 1671 break; 1672 } 1673 1674 if (res) { 1675 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1676 1677 if (driver_byte(res) == DRIVER_SENSE) 1678 sd_print_sense_hdr(sdkp, sshdr); 1679 1680 /* we need to evaluate the error return */ 1681 if (scsi_sense_valid(sshdr) && 1682 (sshdr->asc == 0x3a || /* medium not present */ 1683 sshdr->asc == 0x20 || /* invalid command */ 1684 (sshdr->asc == 0x74 && sshdr->ascq == 0x71))) /* drive is password locked */ 1685 /* this is no error here */ 1686 return 0; 1687 1688 switch (host_byte(res)) { 1689 /* ignore errors due to racing a disconnection */ 1690 case DID_BAD_TARGET: 1691 case DID_NO_CONNECT: 1692 return 0; 1693 /* signal the upper layer it might try again */ 1694 case DID_BUS_BUSY: 1695 case DID_IMM_RETRY: 1696 case DID_REQUEUE: 1697 case DID_SOFT_ERROR: 1698 return -EBUSY; 1699 default: 1700 return -EIO; 1701 } 1702 } 1703 return 0; 1704 } 1705 1706 static void sd_rescan(struct device *dev) 1707 { 1708 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1709 1710 revalidate_disk(sdkp->disk); 1711 } 1712 1713 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1714 unsigned int cmd, unsigned long arg) 1715 { 1716 void __user *p = (void __user *)arg; 1717 int ret; 1718 1719 ret = sd_ioctl_common(bdev, mode, cmd, p); 1720 if (ret != -ENOTTY) 1721 return ret; 1722 1723 return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p); 1724 } 1725 1726 #ifdef CONFIG_COMPAT 1727 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1728 unsigned int cmd, unsigned long arg) 1729 { 1730 void __user *p = compat_ptr(arg); 1731 int ret; 1732 1733 ret = sd_ioctl_common(bdev, mode, cmd, p); 1734 if (ret != -ENOTTY) 1735 return ret; 1736 1737 return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p); 1738 } 1739 #endif 1740 1741 static char sd_pr_type(enum pr_type type) 1742 { 1743 switch (type) { 1744 case PR_WRITE_EXCLUSIVE: 1745 return 0x01; 1746 case PR_EXCLUSIVE_ACCESS: 1747 return 0x03; 1748 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1749 return 0x05; 1750 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1751 return 0x06; 1752 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1753 return 0x07; 1754 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1755 return 0x08; 1756 default: 1757 return 0; 1758 } 1759 }; 1760 1761 static int sd_pr_command(struct block_device *bdev, u8 sa, 1762 u64 key, u64 sa_key, u8 type, u8 flags) 1763 { 1764 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1765 struct scsi_sense_hdr sshdr; 1766 int result; 1767 u8 cmd[16] = { 0, }; 1768 u8 data[24] = { 0, }; 1769 1770 cmd[0] = PERSISTENT_RESERVE_OUT; 1771 cmd[1] = sa; 1772 cmd[2] = type; 1773 put_unaligned_be32(sizeof(data), &cmd[5]); 1774 1775 put_unaligned_be64(key, &data[0]); 1776 put_unaligned_be64(sa_key, &data[8]); 1777 data[20] = flags; 1778 1779 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1780 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1781 1782 if (driver_byte(result) == DRIVER_SENSE && 1783 scsi_sense_valid(&sshdr)) { 1784 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1785 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1786 } 1787 1788 return result; 1789 } 1790 1791 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1792 u32 flags) 1793 { 1794 if (flags & ~PR_FL_IGNORE_KEY) 1795 return -EOPNOTSUPP; 1796 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1797 old_key, new_key, 0, 1798 (1 << 0) /* APTPL */); 1799 } 1800 1801 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1802 u32 flags) 1803 { 1804 if (flags) 1805 return -EOPNOTSUPP; 1806 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1807 } 1808 1809 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1810 { 1811 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1812 } 1813 1814 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1815 enum pr_type type, bool abort) 1816 { 1817 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1818 sd_pr_type(type), 0); 1819 } 1820 1821 static int sd_pr_clear(struct block_device *bdev, u64 key) 1822 { 1823 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1824 } 1825 1826 static const struct pr_ops sd_pr_ops = { 1827 .pr_register = sd_pr_register, 1828 .pr_reserve = sd_pr_reserve, 1829 .pr_release = sd_pr_release, 1830 .pr_preempt = sd_pr_preempt, 1831 .pr_clear = sd_pr_clear, 1832 }; 1833 1834 static const struct block_device_operations sd_fops = { 1835 .owner = THIS_MODULE, 1836 .open = sd_open, 1837 .release = sd_release, 1838 .ioctl = sd_ioctl, 1839 .getgeo = sd_getgeo, 1840 #ifdef CONFIG_COMPAT 1841 .compat_ioctl = sd_compat_ioctl, 1842 #endif 1843 .check_events = sd_check_events, 1844 .revalidate_disk = sd_revalidate_disk, 1845 .unlock_native_capacity = sd_unlock_native_capacity, 1846 .report_zones = sd_zbc_report_zones, 1847 .pr_ops = &sd_pr_ops, 1848 }; 1849 1850 /** 1851 * sd_eh_reset - reset error handling callback 1852 * @scmd: sd-issued command that has failed 1853 * 1854 * This function is called by the SCSI midlayer before starting 1855 * SCSI EH. When counting medium access failures we have to be 1856 * careful to register it only only once per device and SCSI EH run; 1857 * there might be several timed out commands which will cause the 1858 * 'max_medium_access_timeouts' counter to trigger after the first 1859 * SCSI EH run already and set the device to offline. 1860 * So this function resets the internal counter before starting SCSI EH. 1861 **/ 1862 static void sd_eh_reset(struct scsi_cmnd *scmd) 1863 { 1864 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1865 1866 /* New SCSI EH run, reset gate variable */ 1867 sdkp->ignore_medium_access_errors = false; 1868 } 1869 1870 /** 1871 * sd_eh_action - error handling callback 1872 * @scmd: sd-issued command that has failed 1873 * @eh_disp: The recovery disposition suggested by the midlayer 1874 * 1875 * This function is called by the SCSI midlayer upon completion of an 1876 * error test command (currently TEST UNIT READY). The result of sending 1877 * the eh command is passed in eh_disp. We're looking for devices that 1878 * fail medium access commands but are OK with non access commands like 1879 * test unit ready (so wrongly see the device as having a successful 1880 * recovery) 1881 **/ 1882 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1883 { 1884 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1885 struct scsi_device *sdev = scmd->device; 1886 1887 if (!scsi_device_online(sdev) || 1888 !scsi_medium_access_command(scmd) || 1889 host_byte(scmd->result) != DID_TIME_OUT || 1890 eh_disp != SUCCESS) 1891 return eh_disp; 1892 1893 /* 1894 * The device has timed out executing a medium access command. 1895 * However, the TEST UNIT READY command sent during error 1896 * handling completed successfully. Either the device is in the 1897 * process of recovering or has it suffered an internal failure 1898 * that prevents access to the storage medium. 1899 */ 1900 if (!sdkp->ignore_medium_access_errors) { 1901 sdkp->medium_access_timed_out++; 1902 sdkp->ignore_medium_access_errors = true; 1903 } 1904 1905 /* 1906 * If the device keeps failing read/write commands but TEST UNIT 1907 * READY always completes successfully we assume that medium 1908 * access is no longer possible and take the device offline. 1909 */ 1910 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1911 scmd_printk(KERN_ERR, scmd, 1912 "Medium access timeout failure. Offlining disk!\n"); 1913 mutex_lock(&sdev->state_mutex); 1914 scsi_device_set_state(sdev, SDEV_OFFLINE); 1915 mutex_unlock(&sdev->state_mutex); 1916 1917 return SUCCESS; 1918 } 1919 1920 return eh_disp; 1921 } 1922 1923 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1924 { 1925 struct request *req = scmd->request; 1926 struct scsi_device *sdev = scmd->device; 1927 unsigned int transferred, good_bytes; 1928 u64 start_lba, end_lba, bad_lba; 1929 1930 /* 1931 * Some commands have a payload smaller than the device logical 1932 * block size (e.g. INQUIRY on a 4K disk). 1933 */ 1934 if (scsi_bufflen(scmd) <= sdev->sector_size) 1935 return 0; 1936 1937 /* Check if we have a 'bad_lba' information */ 1938 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1939 SCSI_SENSE_BUFFERSIZE, 1940 &bad_lba)) 1941 return 0; 1942 1943 /* 1944 * If the bad lba was reported incorrectly, we have no idea where 1945 * the error is. 1946 */ 1947 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1948 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1949 if (bad_lba < start_lba || bad_lba >= end_lba) 1950 return 0; 1951 1952 /* 1953 * resid is optional but mostly filled in. When it's unused, 1954 * its value is zero, so we assume the whole buffer transferred 1955 */ 1956 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1957 1958 /* This computation should always be done in terms of the 1959 * resolution of the device's medium. 1960 */ 1961 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1962 1963 return min(good_bytes, transferred); 1964 } 1965 1966 /** 1967 * sd_done - bottom half handler: called when the lower level 1968 * driver has completed (successfully or otherwise) a scsi command. 1969 * @SCpnt: mid-level's per command structure. 1970 * 1971 * Note: potentially run from within an ISR. Must not block. 1972 **/ 1973 static int sd_done(struct scsi_cmnd *SCpnt) 1974 { 1975 int result = SCpnt->result; 1976 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1977 unsigned int sector_size = SCpnt->device->sector_size; 1978 unsigned int resid; 1979 struct scsi_sense_hdr sshdr; 1980 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1981 struct request *req = SCpnt->request; 1982 int sense_valid = 0; 1983 int sense_deferred = 0; 1984 1985 switch (req_op(req)) { 1986 case REQ_OP_DISCARD: 1987 case REQ_OP_WRITE_ZEROES: 1988 case REQ_OP_WRITE_SAME: 1989 case REQ_OP_ZONE_RESET: 1990 case REQ_OP_ZONE_RESET_ALL: 1991 case REQ_OP_ZONE_OPEN: 1992 case REQ_OP_ZONE_CLOSE: 1993 case REQ_OP_ZONE_FINISH: 1994 if (!result) { 1995 good_bytes = blk_rq_bytes(req); 1996 scsi_set_resid(SCpnt, 0); 1997 } else { 1998 good_bytes = 0; 1999 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2000 } 2001 break; 2002 default: 2003 /* 2004 * In case of bogus fw or device, we could end up having 2005 * an unaligned partial completion. Check this here and force 2006 * alignment. 2007 */ 2008 resid = scsi_get_resid(SCpnt); 2009 if (resid & (sector_size - 1)) { 2010 sd_printk(KERN_INFO, sdkp, 2011 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2012 resid, sector_size); 2013 scsi_print_command(SCpnt); 2014 resid = min(scsi_bufflen(SCpnt), 2015 round_up(resid, sector_size)); 2016 scsi_set_resid(SCpnt, resid); 2017 } 2018 } 2019 2020 if (result) { 2021 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2022 if (sense_valid) 2023 sense_deferred = scsi_sense_is_deferred(&sshdr); 2024 } 2025 sdkp->medium_access_timed_out = 0; 2026 2027 if (driver_byte(result) != DRIVER_SENSE && 2028 (!sense_valid || sense_deferred)) 2029 goto out; 2030 2031 switch (sshdr.sense_key) { 2032 case HARDWARE_ERROR: 2033 case MEDIUM_ERROR: 2034 good_bytes = sd_completed_bytes(SCpnt); 2035 break; 2036 case RECOVERED_ERROR: 2037 good_bytes = scsi_bufflen(SCpnt); 2038 break; 2039 case NO_SENSE: 2040 /* This indicates a false check condition, so ignore it. An 2041 * unknown amount of data was transferred so treat it as an 2042 * error. 2043 */ 2044 SCpnt->result = 0; 2045 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2046 break; 2047 case ABORTED_COMMAND: 2048 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2049 good_bytes = sd_completed_bytes(SCpnt); 2050 break; 2051 case ILLEGAL_REQUEST: 2052 switch (sshdr.asc) { 2053 case 0x10: /* DIX: Host detected corruption */ 2054 good_bytes = sd_completed_bytes(SCpnt); 2055 break; 2056 case 0x20: /* INVALID COMMAND OPCODE */ 2057 case 0x24: /* INVALID FIELD IN CDB */ 2058 switch (SCpnt->cmnd[0]) { 2059 case UNMAP: 2060 sd_config_discard(sdkp, SD_LBP_DISABLE); 2061 break; 2062 case WRITE_SAME_16: 2063 case WRITE_SAME: 2064 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2065 sd_config_discard(sdkp, SD_LBP_DISABLE); 2066 } else { 2067 sdkp->device->no_write_same = 1; 2068 sd_config_write_same(sdkp); 2069 req->rq_flags |= RQF_QUIET; 2070 } 2071 break; 2072 } 2073 } 2074 break; 2075 default: 2076 break; 2077 } 2078 2079 out: 2080 if (sd_is_zoned(sdkp)) 2081 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2082 2083 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2084 "sd_done: completed %d of %d bytes\n", 2085 good_bytes, scsi_bufflen(SCpnt))); 2086 2087 return good_bytes; 2088 } 2089 2090 /* 2091 * spinup disk - called only in sd_revalidate_disk() 2092 */ 2093 static void 2094 sd_spinup_disk(struct scsi_disk *sdkp) 2095 { 2096 unsigned char cmd[10]; 2097 unsigned long spintime_expire = 0; 2098 int retries, spintime; 2099 unsigned int the_result; 2100 struct scsi_sense_hdr sshdr; 2101 int sense_valid = 0; 2102 2103 spintime = 0; 2104 2105 /* Spin up drives, as required. Only do this at boot time */ 2106 /* Spinup needs to be done for module loads too. */ 2107 do { 2108 retries = 0; 2109 2110 do { 2111 cmd[0] = TEST_UNIT_READY; 2112 memset((void *) &cmd[1], 0, 9); 2113 2114 the_result = scsi_execute_req(sdkp->device, cmd, 2115 DMA_NONE, NULL, 0, 2116 &sshdr, SD_TIMEOUT, 2117 SD_MAX_RETRIES, NULL); 2118 2119 /* 2120 * If the drive has indicated to us that it 2121 * doesn't have any media in it, don't bother 2122 * with any more polling. 2123 */ 2124 if (media_not_present(sdkp, &sshdr)) 2125 return; 2126 2127 if (the_result) 2128 sense_valid = scsi_sense_valid(&sshdr); 2129 retries++; 2130 } while (retries < 3 && 2131 (!scsi_status_is_good(the_result) || 2132 ((driver_byte(the_result) == DRIVER_SENSE) && 2133 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2134 2135 if (driver_byte(the_result) != DRIVER_SENSE) { 2136 /* no sense, TUR either succeeded or failed 2137 * with a status error */ 2138 if(!spintime && !scsi_status_is_good(the_result)) { 2139 sd_print_result(sdkp, "Test Unit Ready failed", 2140 the_result); 2141 } 2142 break; 2143 } 2144 2145 /* 2146 * The device does not want the automatic start to be issued. 2147 */ 2148 if (sdkp->device->no_start_on_add) 2149 break; 2150 2151 if (sense_valid && sshdr.sense_key == NOT_READY) { 2152 if (sshdr.asc == 4 && sshdr.ascq == 3) 2153 break; /* manual intervention required */ 2154 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2155 break; /* standby */ 2156 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2157 break; /* unavailable */ 2158 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2159 break; /* sanitize in progress */ 2160 /* 2161 * Issue command to spin up drive when not ready 2162 */ 2163 if (!spintime) { 2164 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2165 cmd[0] = START_STOP; 2166 cmd[1] = 1; /* Return immediately */ 2167 memset((void *) &cmd[2], 0, 8); 2168 cmd[4] = 1; /* Start spin cycle */ 2169 if (sdkp->device->start_stop_pwr_cond) 2170 cmd[4] |= 1 << 4; 2171 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2172 NULL, 0, &sshdr, 2173 SD_TIMEOUT, SD_MAX_RETRIES, 2174 NULL); 2175 spintime_expire = jiffies + 100 * HZ; 2176 spintime = 1; 2177 } 2178 /* Wait 1 second for next try */ 2179 msleep(1000); 2180 printk(KERN_CONT "."); 2181 2182 /* 2183 * Wait for USB flash devices with slow firmware. 2184 * Yes, this sense key/ASC combination shouldn't 2185 * occur here. It's characteristic of these devices. 2186 */ 2187 } else if (sense_valid && 2188 sshdr.sense_key == UNIT_ATTENTION && 2189 sshdr.asc == 0x28) { 2190 if (!spintime) { 2191 spintime_expire = jiffies + 5 * HZ; 2192 spintime = 1; 2193 } 2194 /* Wait 1 second for next try */ 2195 msleep(1000); 2196 } else { 2197 /* we don't understand the sense code, so it's 2198 * probably pointless to loop */ 2199 if(!spintime) { 2200 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2201 sd_print_sense_hdr(sdkp, &sshdr); 2202 } 2203 break; 2204 } 2205 2206 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2207 2208 if (spintime) { 2209 if (scsi_status_is_good(the_result)) 2210 printk(KERN_CONT "ready\n"); 2211 else 2212 printk(KERN_CONT "not responding...\n"); 2213 } 2214 } 2215 2216 /* 2217 * Determine whether disk supports Data Integrity Field. 2218 */ 2219 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2220 { 2221 struct scsi_device *sdp = sdkp->device; 2222 u8 type; 2223 int ret = 0; 2224 2225 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2226 sdkp->protection_type = 0; 2227 return ret; 2228 } 2229 2230 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2231 2232 if (type > T10_PI_TYPE3_PROTECTION) 2233 ret = -ENODEV; 2234 else if (scsi_host_dif_capable(sdp->host, type)) 2235 ret = 1; 2236 2237 if (sdkp->first_scan || type != sdkp->protection_type) 2238 switch (ret) { 2239 case -ENODEV: 2240 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2241 " protection type %u. Disabling disk!\n", 2242 type); 2243 break; 2244 case 1: 2245 sd_printk(KERN_NOTICE, sdkp, 2246 "Enabling DIF Type %u protection\n", type); 2247 break; 2248 case 0: 2249 sd_printk(KERN_NOTICE, sdkp, 2250 "Disabling DIF Type %u protection\n", type); 2251 break; 2252 } 2253 2254 sdkp->protection_type = type; 2255 2256 return ret; 2257 } 2258 2259 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2260 struct scsi_sense_hdr *sshdr, int sense_valid, 2261 int the_result) 2262 { 2263 if (driver_byte(the_result) == DRIVER_SENSE) 2264 sd_print_sense_hdr(sdkp, sshdr); 2265 else 2266 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2267 2268 /* 2269 * Set dirty bit for removable devices if not ready - 2270 * sometimes drives will not report this properly. 2271 */ 2272 if (sdp->removable && 2273 sense_valid && sshdr->sense_key == NOT_READY) 2274 set_media_not_present(sdkp); 2275 2276 /* 2277 * We used to set media_present to 0 here to indicate no media 2278 * in the drive, but some drives fail read capacity even with 2279 * media present, so we can't do that. 2280 */ 2281 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2282 } 2283 2284 #define RC16_LEN 32 2285 #if RC16_LEN > SD_BUF_SIZE 2286 #error RC16_LEN must not be more than SD_BUF_SIZE 2287 #endif 2288 2289 #define READ_CAPACITY_RETRIES_ON_RESET 10 2290 2291 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2292 unsigned char *buffer) 2293 { 2294 unsigned char cmd[16]; 2295 struct scsi_sense_hdr sshdr; 2296 int sense_valid = 0; 2297 int the_result; 2298 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2299 unsigned int alignment; 2300 unsigned long long lba; 2301 unsigned sector_size; 2302 2303 if (sdp->no_read_capacity_16) 2304 return -EINVAL; 2305 2306 do { 2307 memset(cmd, 0, 16); 2308 cmd[0] = SERVICE_ACTION_IN_16; 2309 cmd[1] = SAI_READ_CAPACITY_16; 2310 cmd[13] = RC16_LEN; 2311 memset(buffer, 0, RC16_LEN); 2312 2313 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2314 buffer, RC16_LEN, &sshdr, 2315 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2316 2317 if (media_not_present(sdkp, &sshdr)) 2318 return -ENODEV; 2319 2320 if (the_result) { 2321 sense_valid = scsi_sense_valid(&sshdr); 2322 if (sense_valid && 2323 sshdr.sense_key == ILLEGAL_REQUEST && 2324 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2325 sshdr.ascq == 0x00) 2326 /* Invalid Command Operation Code or 2327 * Invalid Field in CDB, just retry 2328 * silently with RC10 */ 2329 return -EINVAL; 2330 if (sense_valid && 2331 sshdr.sense_key == UNIT_ATTENTION && 2332 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2333 /* Device reset might occur several times, 2334 * give it one more chance */ 2335 if (--reset_retries > 0) 2336 continue; 2337 } 2338 retries--; 2339 2340 } while (the_result && retries); 2341 2342 if (the_result) { 2343 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2344 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2345 return -EINVAL; 2346 } 2347 2348 sector_size = get_unaligned_be32(&buffer[8]); 2349 lba = get_unaligned_be64(&buffer[0]); 2350 2351 if (sd_read_protection_type(sdkp, buffer) < 0) { 2352 sdkp->capacity = 0; 2353 return -ENODEV; 2354 } 2355 2356 /* Logical blocks per physical block exponent */ 2357 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2358 2359 /* RC basis */ 2360 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2361 2362 /* Lowest aligned logical block */ 2363 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2364 blk_queue_alignment_offset(sdp->request_queue, alignment); 2365 if (alignment && sdkp->first_scan) 2366 sd_printk(KERN_NOTICE, sdkp, 2367 "physical block alignment offset: %u\n", alignment); 2368 2369 if (buffer[14] & 0x80) { /* LBPME */ 2370 sdkp->lbpme = 1; 2371 2372 if (buffer[14] & 0x40) /* LBPRZ */ 2373 sdkp->lbprz = 1; 2374 2375 sd_config_discard(sdkp, SD_LBP_WS16); 2376 } 2377 2378 sdkp->capacity = lba + 1; 2379 return sector_size; 2380 } 2381 2382 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2383 unsigned char *buffer) 2384 { 2385 unsigned char cmd[16]; 2386 struct scsi_sense_hdr sshdr; 2387 int sense_valid = 0; 2388 int the_result; 2389 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2390 sector_t lba; 2391 unsigned sector_size; 2392 2393 do { 2394 cmd[0] = READ_CAPACITY; 2395 memset(&cmd[1], 0, 9); 2396 memset(buffer, 0, 8); 2397 2398 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2399 buffer, 8, &sshdr, 2400 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2401 2402 if (media_not_present(sdkp, &sshdr)) 2403 return -ENODEV; 2404 2405 if (the_result) { 2406 sense_valid = scsi_sense_valid(&sshdr); 2407 if (sense_valid && 2408 sshdr.sense_key == UNIT_ATTENTION && 2409 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2410 /* Device reset might occur several times, 2411 * give it one more chance */ 2412 if (--reset_retries > 0) 2413 continue; 2414 } 2415 retries--; 2416 2417 } while (the_result && retries); 2418 2419 if (the_result) { 2420 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2421 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2422 return -EINVAL; 2423 } 2424 2425 sector_size = get_unaligned_be32(&buffer[4]); 2426 lba = get_unaligned_be32(&buffer[0]); 2427 2428 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2429 /* Some buggy (usb cardreader) devices return an lba of 2430 0xffffffff when the want to report a size of 0 (with 2431 which they really mean no media is present) */ 2432 sdkp->capacity = 0; 2433 sdkp->physical_block_size = sector_size; 2434 return sector_size; 2435 } 2436 2437 sdkp->capacity = lba + 1; 2438 sdkp->physical_block_size = sector_size; 2439 return sector_size; 2440 } 2441 2442 static int sd_try_rc16_first(struct scsi_device *sdp) 2443 { 2444 if (sdp->host->max_cmd_len < 16) 2445 return 0; 2446 if (sdp->try_rc_10_first) 2447 return 0; 2448 if (sdp->scsi_level > SCSI_SPC_2) 2449 return 1; 2450 if (scsi_device_protection(sdp)) 2451 return 1; 2452 return 0; 2453 } 2454 2455 /* 2456 * read disk capacity 2457 */ 2458 static void 2459 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2460 { 2461 int sector_size; 2462 struct scsi_device *sdp = sdkp->device; 2463 2464 if (sd_try_rc16_first(sdp)) { 2465 sector_size = read_capacity_16(sdkp, sdp, buffer); 2466 if (sector_size == -EOVERFLOW) 2467 goto got_data; 2468 if (sector_size == -ENODEV) 2469 return; 2470 if (sector_size < 0) 2471 sector_size = read_capacity_10(sdkp, sdp, buffer); 2472 if (sector_size < 0) 2473 return; 2474 } else { 2475 sector_size = read_capacity_10(sdkp, sdp, buffer); 2476 if (sector_size == -EOVERFLOW) 2477 goto got_data; 2478 if (sector_size < 0) 2479 return; 2480 if ((sizeof(sdkp->capacity) > 4) && 2481 (sdkp->capacity > 0xffffffffULL)) { 2482 int old_sector_size = sector_size; 2483 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2484 "Trying to use READ CAPACITY(16).\n"); 2485 sector_size = read_capacity_16(sdkp, sdp, buffer); 2486 if (sector_size < 0) { 2487 sd_printk(KERN_NOTICE, sdkp, 2488 "Using 0xffffffff as device size\n"); 2489 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2490 sector_size = old_sector_size; 2491 goto got_data; 2492 } 2493 /* Remember that READ CAPACITY(16) succeeded */ 2494 sdp->try_rc_10_first = 0; 2495 } 2496 } 2497 2498 /* Some devices are known to return the total number of blocks, 2499 * not the highest block number. Some devices have versions 2500 * which do this and others which do not. Some devices we might 2501 * suspect of doing this but we don't know for certain. 2502 * 2503 * If we know the reported capacity is wrong, decrement it. If 2504 * we can only guess, then assume the number of blocks is even 2505 * (usually true but not always) and err on the side of lowering 2506 * the capacity. 2507 */ 2508 if (sdp->fix_capacity || 2509 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2510 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2511 "from its reported value: %llu\n", 2512 (unsigned long long) sdkp->capacity); 2513 --sdkp->capacity; 2514 } 2515 2516 got_data: 2517 if (sector_size == 0) { 2518 sector_size = 512; 2519 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2520 "assuming 512.\n"); 2521 } 2522 2523 if (sector_size != 512 && 2524 sector_size != 1024 && 2525 sector_size != 2048 && 2526 sector_size != 4096) { 2527 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2528 sector_size); 2529 /* 2530 * The user might want to re-format the drive with 2531 * a supported sectorsize. Once this happens, it 2532 * would be relatively trivial to set the thing up. 2533 * For this reason, we leave the thing in the table. 2534 */ 2535 sdkp->capacity = 0; 2536 /* 2537 * set a bogus sector size so the normal read/write 2538 * logic in the block layer will eventually refuse any 2539 * request on this device without tripping over power 2540 * of two sector size assumptions 2541 */ 2542 sector_size = 512; 2543 } 2544 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2545 blk_queue_physical_block_size(sdp->request_queue, 2546 sdkp->physical_block_size); 2547 sdkp->device->sector_size = sector_size; 2548 2549 if (sdkp->capacity > 0xffffffff) 2550 sdp->use_16_for_rw = 1; 2551 2552 } 2553 2554 /* 2555 * Print disk capacity 2556 */ 2557 static void 2558 sd_print_capacity(struct scsi_disk *sdkp, 2559 sector_t old_capacity) 2560 { 2561 int sector_size = sdkp->device->sector_size; 2562 char cap_str_2[10], cap_str_10[10]; 2563 2564 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2565 return; 2566 2567 string_get_size(sdkp->capacity, sector_size, 2568 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2569 string_get_size(sdkp->capacity, sector_size, 2570 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2571 2572 sd_printk(KERN_NOTICE, sdkp, 2573 "%llu %d-byte logical blocks: (%s/%s)\n", 2574 (unsigned long long)sdkp->capacity, 2575 sector_size, cap_str_10, cap_str_2); 2576 2577 if (sdkp->physical_block_size != sector_size) 2578 sd_printk(KERN_NOTICE, sdkp, 2579 "%u-byte physical blocks\n", 2580 sdkp->physical_block_size); 2581 2582 sd_zbc_print_zones(sdkp); 2583 } 2584 2585 /* called with buffer of length 512 */ 2586 static inline int 2587 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2588 unsigned char *buffer, int len, struct scsi_mode_data *data, 2589 struct scsi_sense_hdr *sshdr) 2590 { 2591 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2592 SD_TIMEOUT, SD_MAX_RETRIES, data, 2593 sshdr); 2594 } 2595 2596 /* 2597 * read write protect setting, if possible - called only in sd_revalidate_disk() 2598 * called with buffer of length SD_BUF_SIZE 2599 */ 2600 static void 2601 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2602 { 2603 int res; 2604 struct scsi_device *sdp = sdkp->device; 2605 struct scsi_mode_data data; 2606 int old_wp = sdkp->write_prot; 2607 2608 set_disk_ro(sdkp->disk, 0); 2609 if (sdp->skip_ms_page_3f) { 2610 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2611 return; 2612 } 2613 2614 if (sdp->use_192_bytes_for_3f) { 2615 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2616 } else { 2617 /* 2618 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2619 * We have to start carefully: some devices hang if we ask 2620 * for more than is available. 2621 */ 2622 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2623 2624 /* 2625 * Second attempt: ask for page 0 When only page 0 is 2626 * implemented, a request for page 3F may return Sense Key 2627 * 5: Illegal Request, Sense Code 24: Invalid field in 2628 * CDB. 2629 */ 2630 if (!scsi_status_is_good(res)) 2631 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2632 2633 /* 2634 * Third attempt: ask 255 bytes, as we did earlier. 2635 */ 2636 if (!scsi_status_is_good(res)) 2637 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2638 &data, NULL); 2639 } 2640 2641 if (!scsi_status_is_good(res)) { 2642 sd_first_printk(KERN_WARNING, sdkp, 2643 "Test WP failed, assume Write Enabled\n"); 2644 } else { 2645 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2646 set_disk_ro(sdkp->disk, sdkp->write_prot); 2647 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2648 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2649 sdkp->write_prot ? "on" : "off"); 2650 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2651 } 2652 } 2653 } 2654 2655 /* 2656 * sd_read_cache_type - called only from sd_revalidate_disk() 2657 * called with buffer of length SD_BUF_SIZE 2658 */ 2659 static void 2660 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2661 { 2662 int len = 0, res; 2663 struct scsi_device *sdp = sdkp->device; 2664 2665 int dbd; 2666 int modepage; 2667 int first_len; 2668 struct scsi_mode_data data; 2669 struct scsi_sense_hdr sshdr; 2670 int old_wce = sdkp->WCE; 2671 int old_rcd = sdkp->RCD; 2672 int old_dpofua = sdkp->DPOFUA; 2673 2674 2675 if (sdkp->cache_override) 2676 return; 2677 2678 first_len = 4; 2679 if (sdp->skip_ms_page_8) { 2680 if (sdp->type == TYPE_RBC) 2681 goto defaults; 2682 else { 2683 if (sdp->skip_ms_page_3f) 2684 goto defaults; 2685 modepage = 0x3F; 2686 if (sdp->use_192_bytes_for_3f) 2687 first_len = 192; 2688 dbd = 0; 2689 } 2690 } else if (sdp->type == TYPE_RBC) { 2691 modepage = 6; 2692 dbd = 8; 2693 } else { 2694 modepage = 8; 2695 dbd = 0; 2696 } 2697 2698 /* cautiously ask */ 2699 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2700 &data, &sshdr); 2701 2702 if (!scsi_status_is_good(res)) 2703 goto bad_sense; 2704 2705 if (!data.header_length) { 2706 modepage = 6; 2707 first_len = 0; 2708 sd_first_printk(KERN_ERR, sdkp, 2709 "Missing header in MODE_SENSE response\n"); 2710 } 2711 2712 /* that went OK, now ask for the proper length */ 2713 len = data.length; 2714 2715 /* 2716 * We're only interested in the first three bytes, actually. 2717 * But the data cache page is defined for the first 20. 2718 */ 2719 if (len < 3) 2720 goto bad_sense; 2721 else if (len > SD_BUF_SIZE) { 2722 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2723 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2724 len = SD_BUF_SIZE; 2725 } 2726 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2727 len = 192; 2728 2729 /* Get the data */ 2730 if (len > first_len) 2731 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2732 &data, &sshdr); 2733 2734 if (scsi_status_is_good(res)) { 2735 int offset = data.header_length + data.block_descriptor_length; 2736 2737 while (offset < len) { 2738 u8 page_code = buffer[offset] & 0x3F; 2739 u8 spf = buffer[offset] & 0x40; 2740 2741 if (page_code == 8 || page_code == 6) { 2742 /* We're interested only in the first 3 bytes. 2743 */ 2744 if (len - offset <= 2) { 2745 sd_first_printk(KERN_ERR, sdkp, 2746 "Incomplete mode parameter " 2747 "data\n"); 2748 goto defaults; 2749 } else { 2750 modepage = page_code; 2751 goto Page_found; 2752 } 2753 } else { 2754 /* Go to the next page */ 2755 if (spf && len - offset > 3) 2756 offset += 4 + (buffer[offset+2] << 8) + 2757 buffer[offset+3]; 2758 else if (!spf && len - offset > 1) 2759 offset += 2 + buffer[offset+1]; 2760 else { 2761 sd_first_printk(KERN_ERR, sdkp, 2762 "Incomplete mode " 2763 "parameter data\n"); 2764 goto defaults; 2765 } 2766 } 2767 } 2768 2769 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2770 goto defaults; 2771 2772 Page_found: 2773 if (modepage == 8) { 2774 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2775 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2776 } else { 2777 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2778 sdkp->RCD = 0; 2779 } 2780 2781 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2782 if (sdp->broken_fua) { 2783 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2784 sdkp->DPOFUA = 0; 2785 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2786 !sdkp->device->use_16_for_rw) { 2787 sd_first_printk(KERN_NOTICE, sdkp, 2788 "Uses READ/WRITE(6), disabling FUA\n"); 2789 sdkp->DPOFUA = 0; 2790 } 2791 2792 /* No cache flush allowed for write protected devices */ 2793 if (sdkp->WCE && sdkp->write_prot) 2794 sdkp->WCE = 0; 2795 2796 if (sdkp->first_scan || old_wce != sdkp->WCE || 2797 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2798 sd_printk(KERN_NOTICE, sdkp, 2799 "Write cache: %s, read cache: %s, %s\n", 2800 sdkp->WCE ? "enabled" : "disabled", 2801 sdkp->RCD ? "disabled" : "enabled", 2802 sdkp->DPOFUA ? "supports DPO and FUA" 2803 : "doesn't support DPO or FUA"); 2804 2805 return; 2806 } 2807 2808 bad_sense: 2809 if (scsi_sense_valid(&sshdr) && 2810 sshdr.sense_key == ILLEGAL_REQUEST && 2811 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2812 /* Invalid field in CDB */ 2813 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2814 else 2815 sd_first_printk(KERN_ERR, sdkp, 2816 "Asking for cache data failed\n"); 2817 2818 defaults: 2819 if (sdp->wce_default_on) { 2820 sd_first_printk(KERN_NOTICE, sdkp, 2821 "Assuming drive cache: write back\n"); 2822 sdkp->WCE = 1; 2823 } else { 2824 sd_first_printk(KERN_ERR, sdkp, 2825 "Assuming drive cache: write through\n"); 2826 sdkp->WCE = 0; 2827 } 2828 sdkp->RCD = 0; 2829 sdkp->DPOFUA = 0; 2830 } 2831 2832 /* 2833 * The ATO bit indicates whether the DIF application tag is available 2834 * for use by the operating system. 2835 */ 2836 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2837 { 2838 int res, offset; 2839 struct scsi_device *sdp = sdkp->device; 2840 struct scsi_mode_data data; 2841 struct scsi_sense_hdr sshdr; 2842 2843 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2844 return; 2845 2846 if (sdkp->protection_type == 0) 2847 return; 2848 2849 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2850 SD_MAX_RETRIES, &data, &sshdr); 2851 2852 if (!scsi_status_is_good(res) || !data.header_length || 2853 data.length < 6) { 2854 sd_first_printk(KERN_WARNING, sdkp, 2855 "getting Control mode page failed, assume no ATO\n"); 2856 2857 if (scsi_sense_valid(&sshdr)) 2858 sd_print_sense_hdr(sdkp, &sshdr); 2859 2860 return; 2861 } 2862 2863 offset = data.header_length + data.block_descriptor_length; 2864 2865 if ((buffer[offset] & 0x3f) != 0x0a) { 2866 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2867 return; 2868 } 2869 2870 if ((buffer[offset + 5] & 0x80) == 0) 2871 return; 2872 2873 sdkp->ATO = 1; 2874 2875 return; 2876 } 2877 2878 /** 2879 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2880 * @sdkp: disk to query 2881 */ 2882 static void sd_read_block_limits(struct scsi_disk *sdkp) 2883 { 2884 unsigned int sector_sz = sdkp->device->sector_size; 2885 const int vpd_len = 64; 2886 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2887 2888 if (!buffer || 2889 /* Block Limits VPD */ 2890 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2891 goto out; 2892 2893 blk_queue_io_min(sdkp->disk->queue, 2894 get_unaligned_be16(&buffer[6]) * sector_sz); 2895 2896 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2897 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2898 2899 if (buffer[3] == 0x3c) { 2900 unsigned int lba_count, desc_count; 2901 2902 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2903 2904 if (!sdkp->lbpme) 2905 goto out; 2906 2907 lba_count = get_unaligned_be32(&buffer[20]); 2908 desc_count = get_unaligned_be32(&buffer[24]); 2909 2910 if (lba_count && desc_count) 2911 sdkp->max_unmap_blocks = lba_count; 2912 2913 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2914 2915 if (buffer[32] & 0x80) 2916 sdkp->unmap_alignment = 2917 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2918 2919 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2920 2921 if (sdkp->max_unmap_blocks) 2922 sd_config_discard(sdkp, SD_LBP_UNMAP); 2923 else 2924 sd_config_discard(sdkp, SD_LBP_WS16); 2925 2926 } else { /* LBP VPD page tells us what to use */ 2927 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2928 sd_config_discard(sdkp, SD_LBP_UNMAP); 2929 else if (sdkp->lbpws) 2930 sd_config_discard(sdkp, SD_LBP_WS16); 2931 else if (sdkp->lbpws10) 2932 sd_config_discard(sdkp, SD_LBP_WS10); 2933 else 2934 sd_config_discard(sdkp, SD_LBP_DISABLE); 2935 } 2936 } 2937 2938 out: 2939 kfree(buffer); 2940 } 2941 2942 /** 2943 * sd_read_block_characteristics - Query block dev. characteristics 2944 * @sdkp: disk to query 2945 */ 2946 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2947 { 2948 struct request_queue *q = sdkp->disk->queue; 2949 unsigned char *buffer; 2950 u16 rot; 2951 const int vpd_len = 64; 2952 2953 buffer = kmalloc(vpd_len, GFP_KERNEL); 2954 2955 if (!buffer || 2956 /* Block Device Characteristics VPD */ 2957 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2958 goto out; 2959 2960 rot = get_unaligned_be16(&buffer[4]); 2961 2962 if (rot == 1) { 2963 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2964 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2965 } 2966 2967 if (sdkp->device->type == TYPE_ZBC) { 2968 /* Host-managed */ 2969 q->limits.zoned = BLK_ZONED_HM; 2970 } else { 2971 sdkp->zoned = (buffer[8] >> 4) & 3; 2972 if (sdkp->zoned == 1 && !disk_has_partitions(sdkp->disk)) { 2973 /* Host-aware */ 2974 q->limits.zoned = BLK_ZONED_HA; 2975 } else { 2976 /* 2977 * Treat drive-managed devices and host-aware devices 2978 * with partitions as regular block devices. 2979 */ 2980 q->limits.zoned = BLK_ZONED_NONE; 2981 if (sdkp->zoned == 2 && sdkp->first_scan) 2982 sd_printk(KERN_NOTICE, sdkp, 2983 "Drive-managed SMR disk\n"); 2984 } 2985 } 2986 if (blk_queue_is_zoned(q) && sdkp->first_scan) 2987 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2988 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2989 2990 out: 2991 kfree(buffer); 2992 } 2993 2994 /** 2995 * sd_read_block_provisioning - Query provisioning VPD page 2996 * @sdkp: disk to query 2997 */ 2998 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2999 { 3000 unsigned char *buffer; 3001 const int vpd_len = 8; 3002 3003 if (sdkp->lbpme == 0) 3004 return; 3005 3006 buffer = kmalloc(vpd_len, GFP_KERNEL); 3007 3008 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 3009 goto out; 3010 3011 sdkp->lbpvpd = 1; 3012 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 3013 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 3014 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 3015 3016 out: 3017 kfree(buffer); 3018 } 3019 3020 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3021 { 3022 struct scsi_device *sdev = sdkp->device; 3023 3024 if (sdev->host->no_write_same) { 3025 sdev->no_write_same = 1; 3026 3027 return; 3028 } 3029 3030 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3031 /* too large values might cause issues with arcmsr */ 3032 int vpd_buf_len = 64; 3033 3034 sdev->no_report_opcodes = 1; 3035 3036 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3037 * CODES is unsupported and the device has an ATA 3038 * Information VPD page (SAT). 3039 */ 3040 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3041 sdev->no_write_same = 1; 3042 } 3043 3044 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3045 sdkp->ws16 = 1; 3046 3047 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3048 sdkp->ws10 = 1; 3049 } 3050 3051 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3052 { 3053 struct scsi_device *sdev = sdkp->device; 3054 3055 if (!sdev->security_supported) 3056 return; 3057 3058 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3059 SECURITY_PROTOCOL_IN) == 1 && 3060 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3061 SECURITY_PROTOCOL_OUT) == 1) 3062 sdkp->security = 1; 3063 } 3064 3065 /* 3066 * Determine the device's preferred I/O size for reads and writes 3067 * unless the reported value is unreasonably small, large, not a 3068 * multiple of the physical block size, or simply garbage. 3069 */ 3070 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3071 unsigned int dev_max) 3072 { 3073 struct scsi_device *sdp = sdkp->device; 3074 unsigned int opt_xfer_bytes = 3075 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3076 3077 if (sdkp->opt_xfer_blocks == 0) 3078 return false; 3079 3080 if (sdkp->opt_xfer_blocks > dev_max) { 3081 sd_first_printk(KERN_WARNING, sdkp, 3082 "Optimal transfer size %u logical blocks " \ 3083 "> dev_max (%u logical blocks)\n", 3084 sdkp->opt_xfer_blocks, dev_max); 3085 return false; 3086 } 3087 3088 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3089 sd_first_printk(KERN_WARNING, sdkp, 3090 "Optimal transfer size %u logical blocks " \ 3091 "> sd driver limit (%u logical blocks)\n", 3092 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3093 return false; 3094 } 3095 3096 if (opt_xfer_bytes < PAGE_SIZE) { 3097 sd_first_printk(KERN_WARNING, sdkp, 3098 "Optimal transfer size %u bytes < " \ 3099 "PAGE_SIZE (%u bytes)\n", 3100 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3101 return false; 3102 } 3103 3104 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3105 sd_first_printk(KERN_WARNING, sdkp, 3106 "Optimal transfer size %u bytes not a " \ 3107 "multiple of physical block size (%u bytes)\n", 3108 opt_xfer_bytes, sdkp->physical_block_size); 3109 return false; 3110 } 3111 3112 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3113 opt_xfer_bytes); 3114 return true; 3115 } 3116 3117 /** 3118 * sd_revalidate_disk - called the first time a new disk is seen, 3119 * performs disk spin up, read_capacity, etc. 3120 * @disk: struct gendisk we care about 3121 **/ 3122 static int sd_revalidate_disk(struct gendisk *disk) 3123 { 3124 struct scsi_disk *sdkp = scsi_disk(disk); 3125 struct scsi_device *sdp = sdkp->device; 3126 struct request_queue *q = sdkp->disk->queue; 3127 sector_t old_capacity = sdkp->capacity; 3128 unsigned char *buffer; 3129 unsigned int dev_max, rw_max; 3130 3131 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3132 "sd_revalidate_disk\n")); 3133 3134 /* 3135 * If the device is offline, don't try and read capacity or any 3136 * of the other niceties. 3137 */ 3138 if (!scsi_device_online(sdp)) 3139 goto out; 3140 3141 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3142 if (!buffer) { 3143 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3144 "allocation failure.\n"); 3145 goto out; 3146 } 3147 3148 sd_spinup_disk(sdkp); 3149 3150 /* 3151 * Without media there is no reason to ask; moreover, some devices 3152 * react badly if we do. 3153 */ 3154 if (sdkp->media_present) { 3155 sd_read_capacity(sdkp, buffer); 3156 3157 /* 3158 * set the default to rotational. All non-rotational devices 3159 * support the block characteristics VPD page, which will 3160 * cause this to be updated correctly and any device which 3161 * doesn't support it should be treated as rotational. 3162 */ 3163 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3164 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3165 3166 if (scsi_device_supports_vpd(sdp)) { 3167 sd_read_block_provisioning(sdkp); 3168 sd_read_block_limits(sdkp); 3169 sd_read_block_characteristics(sdkp); 3170 sd_zbc_read_zones(sdkp, buffer); 3171 } 3172 3173 sd_print_capacity(sdkp, old_capacity); 3174 3175 sd_read_write_protect_flag(sdkp, buffer); 3176 sd_read_cache_type(sdkp, buffer); 3177 sd_read_app_tag_own(sdkp, buffer); 3178 sd_read_write_same(sdkp, buffer); 3179 sd_read_security(sdkp, buffer); 3180 } 3181 3182 /* 3183 * We now have all cache related info, determine how we deal 3184 * with flush requests. 3185 */ 3186 sd_set_flush_flag(sdkp); 3187 3188 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3189 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3190 3191 /* Some devices report a maximum block count for READ/WRITE requests. */ 3192 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3193 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3194 3195 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3196 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3197 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3198 } else { 3199 q->limits.io_opt = 0; 3200 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3201 (sector_t)BLK_DEF_MAX_SECTORS); 3202 } 3203 3204 /* Do not exceed controller limit */ 3205 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3206 3207 /* 3208 * Only update max_sectors if previously unset or if the current value 3209 * exceeds the capabilities of the hardware. 3210 */ 3211 if (sdkp->first_scan || 3212 q->limits.max_sectors > q->limits.max_dev_sectors || 3213 q->limits.max_sectors > q->limits.max_hw_sectors) 3214 q->limits.max_sectors = rw_max; 3215 3216 sdkp->first_scan = 0; 3217 3218 set_capacity_revalidate_and_notify(disk, 3219 logical_to_sectors(sdp, sdkp->capacity), false); 3220 sd_config_write_same(sdkp); 3221 kfree(buffer); 3222 3223 out: 3224 return 0; 3225 } 3226 3227 /** 3228 * sd_unlock_native_capacity - unlock native capacity 3229 * @disk: struct gendisk to set capacity for 3230 * 3231 * Block layer calls this function if it detects that partitions 3232 * on @disk reach beyond the end of the device. If the SCSI host 3233 * implements ->unlock_native_capacity() method, it's invoked to 3234 * give it a chance to adjust the device capacity. 3235 * 3236 * CONTEXT: 3237 * Defined by block layer. Might sleep. 3238 */ 3239 static void sd_unlock_native_capacity(struct gendisk *disk) 3240 { 3241 struct scsi_device *sdev = scsi_disk(disk)->device; 3242 3243 if (sdev->host->hostt->unlock_native_capacity) 3244 sdev->host->hostt->unlock_native_capacity(sdev); 3245 } 3246 3247 /** 3248 * sd_format_disk_name - format disk name 3249 * @prefix: name prefix - ie. "sd" for SCSI disks 3250 * @index: index of the disk to format name for 3251 * @buf: output buffer 3252 * @buflen: length of the output buffer 3253 * 3254 * SCSI disk names starts at sda. The 26th device is sdz and the 3255 * 27th is sdaa. The last one for two lettered suffix is sdzz 3256 * which is followed by sdaaa. 3257 * 3258 * This is basically 26 base counting with one extra 'nil' entry 3259 * at the beginning from the second digit on and can be 3260 * determined using similar method as 26 base conversion with the 3261 * index shifted -1 after each digit is computed. 3262 * 3263 * CONTEXT: 3264 * Don't care. 3265 * 3266 * RETURNS: 3267 * 0 on success, -errno on failure. 3268 */ 3269 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3270 { 3271 const int base = 'z' - 'a' + 1; 3272 char *begin = buf + strlen(prefix); 3273 char *end = buf + buflen; 3274 char *p; 3275 int unit; 3276 3277 p = end - 1; 3278 *p = '\0'; 3279 unit = base; 3280 do { 3281 if (p == begin) 3282 return -EINVAL; 3283 *--p = 'a' + (index % unit); 3284 index = (index / unit) - 1; 3285 } while (index >= 0); 3286 3287 memmove(begin, p, end - p); 3288 memcpy(buf, prefix, strlen(prefix)); 3289 3290 return 0; 3291 } 3292 3293 /** 3294 * sd_probe - called during driver initialization and whenever a 3295 * new scsi device is attached to the system. It is called once 3296 * for each scsi device (not just disks) present. 3297 * @dev: pointer to device object 3298 * 3299 * Returns 0 if successful (or not interested in this scsi device 3300 * (e.g. scanner)); 1 when there is an error. 3301 * 3302 * Note: this function is invoked from the scsi mid-level. 3303 * This function sets up the mapping between a given 3304 * <host,channel,id,lun> (found in sdp) and new device name 3305 * (e.g. /dev/sda). More precisely it is the block device major 3306 * and minor number that is chosen here. 3307 * 3308 * Assume sd_probe is not re-entrant (for time being) 3309 * Also think about sd_probe() and sd_remove() running coincidentally. 3310 **/ 3311 static int sd_probe(struct device *dev) 3312 { 3313 struct scsi_device *sdp = to_scsi_device(dev); 3314 struct scsi_disk *sdkp; 3315 struct gendisk *gd; 3316 int index; 3317 int error; 3318 3319 scsi_autopm_get_device(sdp); 3320 error = -ENODEV; 3321 if (sdp->type != TYPE_DISK && 3322 sdp->type != TYPE_ZBC && 3323 sdp->type != TYPE_MOD && 3324 sdp->type != TYPE_RBC) 3325 goto out; 3326 3327 #ifndef CONFIG_BLK_DEV_ZONED 3328 if (sdp->type == TYPE_ZBC) 3329 goto out; 3330 #endif 3331 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3332 "sd_probe\n")); 3333 3334 error = -ENOMEM; 3335 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3336 if (!sdkp) 3337 goto out; 3338 3339 gd = alloc_disk(SD_MINORS); 3340 if (!gd) 3341 goto out_free; 3342 3343 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3344 if (index < 0) { 3345 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3346 goto out_put; 3347 } 3348 3349 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3350 if (error) { 3351 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3352 goto out_free_index; 3353 } 3354 3355 sdkp->device = sdp; 3356 sdkp->driver = &sd_template; 3357 sdkp->disk = gd; 3358 sdkp->index = index; 3359 atomic_set(&sdkp->openers, 0); 3360 atomic_set(&sdkp->device->ioerr_cnt, 0); 3361 3362 if (!sdp->request_queue->rq_timeout) { 3363 if (sdp->type != TYPE_MOD) 3364 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3365 else 3366 blk_queue_rq_timeout(sdp->request_queue, 3367 SD_MOD_TIMEOUT); 3368 } 3369 3370 device_initialize(&sdkp->dev); 3371 sdkp->dev.parent = dev; 3372 sdkp->dev.class = &sd_disk_class; 3373 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3374 3375 error = device_add(&sdkp->dev); 3376 if (error) 3377 goto out_free_index; 3378 3379 get_device(dev); 3380 dev_set_drvdata(dev, sdkp); 3381 3382 gd->major = sd_major((index & 0xf0) >> 4); 3383 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3384 3385 gd->fops = &sd_fops; 3386 gd->private_data = &sdkp->driver; 3387 gd->queue = sdkp->device->request_queue; 3388 3389 /* defaults, until the device tells us otherwise */ 3390 sdp->sector_size = 512; 3391 sdkp->capacity = 0; 3392 sdkp->media_present = 1; 3393 sdkp->write_prot = 0; 3394 sdkp->cache_override = 0; 3395 sdkp->WCE = 0; 3396 sdkp->RCD = 0; 3397 sdkp->ATO = 0; 3398 sdkp->first_scan = 1; 3399 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3400 3401 error = sd_zbc_init_disk(sdkp); 3402 if (error) 3403 goto out_free_index; 3404 3405 sd_revalidate_disk(gd); 3406 3407 gd->flags = GENHD_FL_EXT_DEVT; 3408 if (sdp->removable) { 3409 gd->flags |= GENHD_FL_REMOVABLE; 3410 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3411 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3412 } 3413 3414 blk_pm_runtime_init(sdp->request_queue, dev); 3415 if (sdp->rpm_autosuspend) { 3416 pm_runtime_set_autosuspend_delay(dev, 3417 sdp->host->hostt->rpm_autosuspend_delay); 3418 } 3419 device_add_disk(dev, gd, NULL); 3420 if (sdkp->capacity) 3421 sd_dif_config_host(sdkp); 3422 3423 sd_revalidate_disk(gd); 3424 3425 if (sdkp->security) { 3426 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit); 3427 if (sdkp->opal_dev) 3428 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3429 } 3430 3431 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3432 sdp->removable ? "removable " : ""); 3433 scsi_autopm_put_device(sdp); 3434 3435 return 0; 3436 3437 out_free_index: 3438 ida_free(&sd_index_ida, index); 3439 out_put: 3440 put_disk(gd); 3441 out_free: 3442 sd_zbc_release_disk(sdkp); 3443 kfree(sdkp); 3444 out: 3445 scsi_autopm_put_device(sdp); 3446 return error; 3447 } 3448 3449 /** 3450 * sd_remove - called whenever a scsi disk (previously recognized by 3451 * sd_probe) is detached from the system. It is called (potentially 3452 * multiple times) during sd module unload. 3453 * @dev: pointer to device object 3454 * 3455 * Note: this function is invoked from the scsi mid-level. 3456 * This function potentially frees up a device name (e.g. /dev/sdc) 3457 * that could be re-used by a subsequent sd_probe(). 3458 * This function is not called when the built-in sd driver is "exit-ed". 3459 **/ 3460 static int sd_remove(struct device *dev) 3461 { 3462 struct scsi_disk *sdkp; 3463 dev_t devt; 3464 3465 sdkp = dev_get_drvdata(dev); 3466 devt = disk_devt(sdkp->disk); 3467 scsi_autopm_get_device(sdkp->device); 3468 3469 async_synchronize_full_domain(&scsi_sd_pm_domain); 3470 device_del(&sdkp->dev); 3471 del_gendisk(sdkp->disk); 3472 sd_shutdown(dev); 3473 3474 free_opal_dev(sdkp->opal_dev); 3475 3476 blk_register_region(devt, SD_MINORS, NULL, 3477 sd_default_probe, NULL, NULL); 3478 3479 mutex_lock(&sd_ref_mutex); 3480 dev_set_drvdata(dev, NULL); 3481 put_device(&sdkp->dev); 3482 mutex_unlock(&sd_ref_mutex); 3483 3484 return 0; 3485 } 3486 3487 /** 3488 * scsi_disk_release - Called to free the scsi_disk structure 3489 * @dev: pointer to embedded class device 3490 * 3491 * sd_ref_mutex must be held entering this routine. Because it is 3492 * called on last put, you should always use the scsi_disk_get() 3493 * scsi_disk_put() helpers which manipulate the semaphore directly 3494 * and never do a direct put_device. 3495 **/ 3496 static void scsi_disk_release(struct device *dev) 3497 { 3498 struct scsi_disk *sdkp = to_scsi_disk(dev); 3499 struct gendisk *disk = sdkp->disk; 3500 struct request_queue *q = disk->queue; 3501 3502 ida_free(&sd_index_ida, sdkp->index); 3503 3504 /* 3505 * Wait until all requests that are in progress have completed. 3506 * This is necessary to avoid that e.g. scsi_end_request() crashes 3507 * due to clearing the disk->private_data pointer. Wait from inside 3508 * scsi_disk_release() instead of from sd_release() to avoid that 3509 * freezing and unfreezing the request queue affects user space I/O 3510 * in case multiple processes open a /dev/sd... node concurrently. 3511 */ 3512 blk_mq_freeze_queue(q); 3513 blk_mq_unfreeze_queue(q); 3514 3515 disk->private_data = NULL; 3516 put_disk(disk); 3517 put_device(&sdkp->device->sdev_gendev); 3518 3519 sd_zbc_release_disk(sdkp); 3520 3521 kfree(sdkp); 3522 } 3523 3524 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3525 { 3526 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3527 struct scsi_sense_hdr sshdr; 3528 struct scsi_device *sdp = sdkp->device; 3529 int res; 3530 3531 if (start) 3532 cmd[4] |= 1; /* START */ 3533 3534 if (sdp->start_stop_pwr_cond) 3535 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3536 3537 if (!scsi_device_online(sdp)) 3538 return -ENODEV; 3539 3540 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3541 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL); 3542 if (res) { 3543 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3544 if (driver_byte(res) == DRIVER_SENSE) 3545 sd_print_sense_hdr(sdkp, &sshdr); 3546 if (scsi_sense_valid(&sshdr) && 3547 /* 0x3a is medium not present */ 3548 sshdr.asc == 0x3a) 3549 res = 0; 3550 } 3551 3552 /* SCSI error codes must not go to the generic layer */ 3553 if (res) 3554 return -EIO; 3555 3556 return 0; 3557 } 3558 3559 /* 3560 * Send a SYNCHRONIZE CACHE instruction down to the device through 3561 * the normal SCSI command structure. Wait for the command to 3562 * complete. 3563 */ 3564 static void sd_shutdown(struct device *dev) 3565 { 3566 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3567 3568 if (!sdkp) 3569 return; /* this can happen */ 3570 3571 if (pm_runtime_suspended(dev)) 3572 return; 3573 3574 if (sdkp->WCE && sdkp->media_present) { 3575 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3576 sd_sync_cache(sdkp, NULL); 3577 } 3578 3579 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3580 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3581 sd_start_stop_device(sdkp, 0); 3582 } 3583 } 3584 3585 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3586 { 3587 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3588 struct scsi_sense_hdr sshdr; 3589 int ret = 0; 3590 3591 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3592 return 0; 3593 3594 if (sdkp->WCE && sdkp->media_present) { 3595 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3596 ret = sd_sync_cache(sdkp, &sshdr); 3597 3598 if (ret) { 3599 /* ignore OFFLINE device */ 3600 if (ret == -ENODEV) 3601 return 0; 3602 3603 if (!scsi_sense_valid(&sshdr) || 3604 sshdr.sense_key != ILLEGAL_REQUEST) 3605 return ret; 3606 3607 /* 3608 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3609 * doesn't support sync. There's not much to do and 3610 * suspend shouldn't fail. 3611 */ 3612 ret = 0; 3613 } 3614 } 3615 3616 if (sdkp->device->manage_start_stop) { 3617 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3618 /* an error is not worth aborting a system sleep */ 3619 ret = sd_start_stop_device(sdkp, 0); 3620 if (ignore_stop_errors) 3621 ret = 0; 3622 } 3623 3624 return ret; 3625 } 3626 3627 static int sd_suspend_system(struct device *dev) 3628 { 3629 return sd_suspend_common(dev, true); 3630 } 3631 3632 static int sd_suspend_runtime(struct device *dev) 3633 { 3634 return sd_suspend_common(dev, false); 3635 } 3636 3637 static int sd_resume(struct device *dev) 3638 { 3639 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3640 int ret; 3641 3642 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3643 return 0; 3644 3645 if (!sdkp->device->manage_start_stop) 3646 return 0; 3647 3648 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3649 ret = sd_start_stop_device(sdkp, 1); 3650 if (!ret) 3651 opal_unlock_from_suspend(sdkp->opal_dev); 3652 return ret; 3653 } 3654 3655 /** 3656 * init_sd - entry point for this driver (both when built in or when 3657 * a module). 3658 * 3659 * Note: this function registers this driver with the scsi mid-level. 3660 **/ 3661 static int __init init_sd(void) 3662 { 3663 int majors = 0, i, err; 3664 3665 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3666 3667 for (i = 0; i < SD_MAJORS; i++) { 3668 if (register_blkdev(sd_major(i), "sd") != 0) 3669 continue; 3670 majors++; 3671 blk_register_region(sd_major(i), SD_MINORS, NULL, 3672 sd_default_probe, NULL, NULL); 3673 } 3674 3675 if (!majors) 3676 return -ENODEV; 3677 3678 err = class_register(&sd_disk_class); 3679 if (err) 3680 goto err_out; 3681 3682 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3683 0, 0, NULL); 3684 if (!sd_cdb_cache) { 3685 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3686 err = -ENOMEM; 3687 goto err_out_class; 3688 } 3689 3690 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3691 if (!sd_cdb_pool) { 3692 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3693 err = -ENOMEM; 3694 goto err_out_cache; 3695 } 3696 3697 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3698 if (!sd_page_pool) { 3699 printk(KERN_ERR "sd: can't init discard page pool\n"); 3700 err = -ENOMEM; 3701 goto err_out_ppool; 3702 } 3703 3704 err = scsi_register_driver(&sd_template.gendrv); 3705 if (err) 3706 goto err_out_driver; 3707 3708 return 0; 3709 3710 err_out_driver: 3711 mempool_destroy(sd_page_pool); 3712 3713 err_out_ppool: 3714 mempool_destroy(sd_cdb_pool); 3715 3716 err_out_cache: 3717 kmem_cache_destroy(sd_cdb_cache); 3718 3719 err_out_class: 3720 class_unregister(&sd_disk_class); 3721 err_out: 3722 for (i = 0; i < SD_MAJORS; i++) 3723 unregister_blkdev(sd_major(i), "sd"); 3724 return err; 3725 } 3726 3727 /** 3728 * exit_sd - exit point for this driver (when it is a module). 3729 * 3730 * Note: this function unregisters this driver from the scsi mid-level. 3731 **/ 3732 static void __exit exit_sd(void) 3733 { 3734 int i; 3735 3736 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3737 3738 scsi_unregister_driver(&sd_template.gendrv); 3739 mempool_destroy(sd_cdb_pool); 3740 mempool_destroy(sd_page_pool); 3741 kmem_cache_destroy(sd_cdb_cache); 3742 3743 class_unregister(&sd_disk_class); 3744 3745 for (i = 0; i < SD_MAJORS; i++) { 3746 blk_unregister_region(sd_major(i), SD_MINORS); 3747 unregister_blkdev(sd_major(i), "sd"); 3748 } 3749 } 3750 3751 module_init(init_sd); 3752 module_exit(exit_sd); 3753 3754 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3755 { 3756 scsi_print_sense_hdr(sdkp->device, 3757 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3758 } 3759 3760 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3761 { 3762 const char *hb_string = scsi_hostbyte_string(result); 3763 const char *db_string = scsi_driverbyte_string(result); 3764 3765 if (hb_string || db_string) 3766 sd_printk(KERN_INFO, sdkp, 3767 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3768 hb_string ? hb_string : "invalid", 3769 db_string ? db_string : "invalid"); 3770 else 3771 sd_printk(KERN_INFO, sdkp, 3772 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3773 msg, host_byte(result), driver_byte(result)); 3774 } 3775