1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/genhd.h> 42 #include <linux/hdreg.h> 43 #include <linux/errno.h> 44 #include <linux/idr.h> 45 #include <linux/interrupt.h> 46 #include <linux/init.h> 47 #include <linux/blkdev.h> 48 #include <linux/blkpg.h> 49 #include <linux/blk-pm.h> 50 #include <linux/delay.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/async.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <asm/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_driver.h> 67 #include <scsi/scsi_eh.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_ioctl.h> 70 #include <scsi/scsicam.h> 71 72 #include "sd.h" 73 #include "scsi_priv.h" 74 #include "scsi_logging.h" 75 76 MODULE_AUTHOR("Eric Youngdale"); 77 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 78 MODULE_LICENSE("GPL"); 79 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 100 101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 102 #define SD_MINORS 16 103 #else 104 #define SD_MINORS 0 105 #endif 106 107 static void sd_config_discard(struct scsi_disk *, unsigned int); 108 static void sd_config_write_same(struct scsi_disk *); 109 static int sd_revalidate_disk(struct gendisk *); 110 static void sd_unlock_native_capacity(struct gendisk *disk); 111 static int sd_probe(struct device *); 112 static int sd_remove(struct device *); 113 static void sd_shutdown(struct device *); 114 static int sd_suspend_system(struct device *); 115 static int sd_suspend_runtime(struct device *); 116 static int sd_resume(struct device *); 117 static void sd_rescan(struct device *); 118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 119 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 120 static int sd_done(struct scsi_cmnd *); 121 static void sd_eh_reset(struct scsi_cmnd *); 122 static int sd_eh_action(struct scsi_cmnd *, int); 123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 124 static void scsi_disk_release(struct device *cdev); 125 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 126 static void sd_print_result(const struct scsi_disk *, const char *, int); 127 128 static DEFINE_IDA(sd_index_ida); 129 130 /* This semaphore is used to mediate the 0->1 reference get in the 131 * face of object destruction (i.e. we can't allow a get on an 132 * object after last put) */ 133 static DEFINE_MUTEX(sd_ref_mutex); 134 135 static struct kmem_cache *sd_cdb_cache; 136 static mempool_t *sd_cdb_pool; 137 static mempool_t *sd_page_pool; 138 139 static const char *sd_cache_types[] = { 140 "write through", "none", "write back", 141 "write back, no read (daft)" 142 }; 143 144 static void sd_set_flush_flag(struct scsi_disk *sdkp) 145 { 146 bool wc = false, fua = false; 147 148 if (sdkp->WCE) { 149 wc = true; 150 if (sdkp->DPOFUA) 151 fua = true; 152 } 153 154 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 155 } 156 157 static ssize_t 158 cache_type_store(struct device *dev, struct device_attribute *attr, 159 const char *buf, size_t count) 160 { 161 int ct, rcd, wce, sp; 162 struct scsi_disk *sdkp = to_scsi_disk(dev); 163 struct scsi_device *sdp = sdkp->device; 164 char buffer[64]; 165 char *buffer_data; 166 struct scsi_mode_data data; 167 struct scsi_sense_hdr sshdr; 168 static const char temp[] = "temporary "; 169 int len; 170 171 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 172 /* no cache control on RBC devices; theoretically they 173 * can do it, but there's probably so many exceptions 174 * it's not worth the risk */ 175 return -EINVAL; 176 177 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 178 buf += sizeof(temp) - 1; 179 sdkp->cache_override = 1; 180 } else { 181 sdkp->cache_override = 0; 182 } 183 184 ct = sysfs_match_string(sd_cache_types, buf); 185 if (ct < 0) 186 return -EINVAL; 187 188 rcd = ct & 0x01 ? 1 : 0; 189 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 190 191 if (sdkp->cache_override) { 192 sdkp->WCE = wce; 193 sdkp->RCD = rcd; 194 sd_set_flush_flag(sdkp); 195 return count; 196 } 197 198 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 199 SD_MAX_RETRIES, &data, NULL)) 200 return -EINVAL; 201 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 202 data.block_descriptor_length); 203 buffer_data = buffer + data.header_length + 204 data.block_descriptor_length; 205 buffer_data[2] &= ~0x05; 206 buffer_data[2] |= wce << 2 | rcd; 207 sp = buffer_data[0] & 0x80 ? 1 : 0; 208 buffer_data[0] &= ~0x80; 209 210 /* 211 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 212 * received mode parameter buffer before doing MODE SELECT. 213 */ 214 data.device_specific = 0; 215 216 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 217 SD_MAX_RETRIES, &data, &sshdr)) { 218 if (scsi_sense_valid(&sshdr)) 219 sd_print_sense_hdr(sdkp, &sshdr); 220 return -EINVAL; 221 } 222 revalidate_disk(sdkp->disk); 223 return count; 224 } 225 226 static ssize_t 227 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 228 char *buf) 229 { 230 struct scsi_disk *sdkp = to_scsi_disk(dev); 231 struct scsi_device *sdp = sdkp->device; 232 233 return sprintf(buf, "%u\n", sdp->manage_start_stop); 234 } 235 236 static ssize_t 237 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 238 const char *buf, size_t count) 239 { 240 struct scsi_disk *sdkp = to_scsi_disk(dev); 241 struct scsi_device *sdp = sdkp->device; 242 bool v; 243 244 if (!capable(CAP_SYS_ADMIN)) 245 return -EACCES; 246 247 if (kstrtobool(buf, &v)) 248 return -EINVAL; 249 250 sdp->manage_start_stop = v; 251 252 return count; 253 } 254 static DEVICE_ATTR_RW(manage_start_stop); 255 256 static ssize_t 257 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 258 { 259 struct scsi_disk *sdkp = to_scsi_disk(dev); 260 261 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 262 } 263 264 static ssize_t 265 allow_restart_store(struct device *dev, struct device_attribute *attr, 266 const char *buf, size_t count) 267 { 268 bool v; 269 struct scsi_disk *sdkp = to_scsi_disk(dev); 270 struct scsi_device *sdp = sdkp->device; 271 272 if (!capable(CAP_SYS_ADMIN)) 273 return -EACCES; 274 275 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 276 return -EINVAL; 277 278 if (kstrtobool(buf, &v)) 279 return -EINVAL; 280 281 sdp->allow_restart = v; 282 283 return count; 284 } 285 static DEVICE_ATTR_RW(allow_restart); 286 287 static ssize_t 288 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 289 { 290 struct scsi_disk *sdkp = to_scsi_disk(dev); 291 int ct = sdkp->RCD + 2*sdkp->WCE; 292 293 return sprintf(buf, "%s\n", sd_cache_types[ct]); 294 } 295 static DEVICE_ATTR_RW(cache_type); 296 297 static ssize_t 298 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 299 { 300 struct scsi_disk *sdkp = to_scsi_disk(dev); 301 302 return sprintf(buf, "%u\n", sdkp->DPOFUA); 303 } 304 static DEVICE_ATTR_RO(FUA); 305 306 static ssize_t 307 protection_type_show(struct device *dev, struct device_attribute *attr, 308 char *buf) 309 { 310 struct scsi_disk *sdkp = to_scsi_disk(dev); 311 312 return sprintf(buf, "%u\n", sdkp->protection_type); 313 } 314 315 static ssize_t 316 protection_type_store(struct device *dev, struct device_attribute *attr, 317 const char *buf, size_t count) 318 { 319 struct scsi_disk *sdkp = to_scsi_disk(dev); 320 unsigned int val; 321 int err; 322 323 if (!capable(CAP_SYS_ADMIN)) 324 return -EACCES; 325 326 err = kstrtouint(buf, 10, &val); 327 328 if (err) 329 return err; 330 331 if (val <= T10_PI_TYPE3_PROTECTION) 332 sdkp->protection_type = val; 333 334 return count; 335 } 336 static DEVICE_ATTR_RW(protection_type); 337 338 static ssize_t 339 protection_mode_show(struct device *dev, struct device_attribute *attr, 340 char *buf) 341 { 342 struct scsi_disk *sdkp = to_scsi_disk(dev); 343 struct scsi_device *sdp = sdkp->device; 344 unsigned int dif, dix; 345 346 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 347 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 348 349 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 350 dif = 0; 351 dix = 1; 352 } 353 354 if (!dif && !dix) 355 return sprintf(buf, "none\n"); 356 357 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 358 } 359 static DEVICE_ATTR_RO(protection_mode); 360 361 static ssize_t 362 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 363 { 364 struct scsi_disk *sdkp = to_scsi_disk(dev); 365 366 return sprintf(buf, "%u\n", sdkp->ATO); 367 } 368 static DEVICE_ATTR_RO(app_tag_own); 369 370 static ssize_t 371 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 372 char *buf) 373 { 374 struct scsi_disk *sdkp = to_scsi_disk(dev); 375 376 return sprintf(buf, "%u\n", sdkp->lbpme); 377 } 378 static DEVICE_ATTR_RO(thin_provisioning); 379 380 /* sysfs_match_string() requires dense arrays */ 381 static const char *lbp_mode[] = { 382 [SD_LBP_FULL] = "full", 383 [SD_LBP_UNMAP] = "unmap", 384 [SD_LBP_WS16] = "writesame_16", 385 [SD_LBP_WS10] = "writesame_10", 386 [SD_LBP_ZERO] = "writesame_zero", 387 [SD_LBP_DISABLE] = "disabled", 388 }; 389 390 static ssize_t 391 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 392 char *buf) 393 { 394 struct scsi_disk *sdkp = to_scsi_disk(dev); 395 396 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 397 } 398 399 static ssize_t 400 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 401 const char *buf, size_t count) 402 { 403 struct scsi_disk *sdkp = to_scsi_disk(dev); 404 struct scsi_device *sdp = sdkp->device; 405 int mode; 406 407 if (!capable(CAP_SYS_ADMIN)) 408 return -EACCES; 409 410 if (sd_is_zoned(sdkp)) { 411 sd_config_discard(sdkp, SD_LBP_DISABLE); 412 return count; 413 } 414 415 if (sdp->type != TYPE_DISK) 416 return -EINVAL; 417 418 mode = sysfs_match_string(lbp_mode, buf); 419 if (mode < 0) 420 return -EINVAL; 421 422 sd_config_discard(sdkp, mode); 423 424 return count; 425 } 426 static DEVICE_ATTR_RW(provisioning_mode); 427 428 /* sysfs_match_string() requires dense arrays */ 429 static const char *zeroing_mode[] = { 430 [SD_ZERO_WRITE] = "write", 431 [SD_ZERO_WS] = "writesame", 432 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 433 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 434 }; 435 436 static ssize_t 437 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 438 char *buf) 439 { 440 struct scsi_disk *sdkp = to_scsi_disk(dev); 441 442 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 443 } 444 445 static ssize_t 446 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 447 const char *buf, size_t count) 448 { 449 struct scsi_disk *sdkp = to_scsi_disk(dev); 450 int mode; 451 452 if (!capable(CAP_SYS_ADMIN)) 453 return -EACCES; 454 455 mode = sysfs_match_string(zeroing_mode, buf); 456 if (mode < 0) 457 return -EINVAL; 458 459 sdkp->zeroing_mode = mode; 460 461 return count; 462 } 463 static DEVICE_ATTR_RW(zeroing_mode); 464 465 static ssize_t 466 max_medium_access_timeouts_show(struct device *dev, 467 struct device_attribute *attr, char *buf) 468 { 469 struct scsi_disk *sdkp = to_scsi_disk(dev); 470 471 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 472 } 473 474 static ssize_t 475 max_medium_access_timeouts_store(struct device *dev, 476 struct device_attribute *attr, const char *buf, 477 size_t count) 478 { 479 struct scsi_disk *sdkp = to_scsi_disk(dev); 480 int err; 481 482 if (!capable(CAP_SYS_ADMIN)) 483 return -EACCES; 484 485 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 486 487 return err ? err : count; 488 } 489 static DEVICE_ATTR_RW(max_medium_access_timeouts); 490 491 static ssize_t 492 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 493 char *buf) 494 { 495 struct scsi_disk *sdkp = to_scsi_disk(dev); 496 497 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 498 } 499 500 static ssize_t 501 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 502 const char *buf, size_t count) 503 { 504 struct scsi_disk *sdkp = to_scsi_disk(dev); 505 struct scsi_device *sdp = sdkp->device; 506 unsigned long max; 507 int err; 508 509 if (!capable(CAP_SYS_ADMIN)) 510 return -EACCES; 511 512 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 513 return -EINVAL; 514 515 err = kstrtoul(buf, 10, &max); 516 517 if (err) 518 return err; 519 520 if (max == 0) 521 sdp->no_write_same = 1; 522 else if (max <= SD_MAX_WS16_BLOCKS) { 523 sdp->no_write_same = 0; 524 sdkp->max_ws_blocks = max; 525 } 526 527 sd_config_write_same(sdkp); 528 529 return count; 530 } 531 static DEVICE_ATTR_RW(max_write_same_blocks); 532 533 static struct attribute *sd_disk_attrs[] = { 534 &dev_attr_cache_type.attr, 535 &dev_attr_FUA.attr, 536 &dev_attr_allow_restart.attr, 537 &dev_attr_manage_start_stop.attr, 538 &dev_attr_protection_type.attr, 539 &dev_attr_protection_mode.attr, 540 &dev_attr_app_tag_own.attr, 541 &dev_attr_thin_provisioning.attr, 542 &dev_attr_provisioning_mode.attr, 543 &dev_attr_zeroing_mode.attr, 544 &dev_attr_max_write_same_blocks.attr, 545 &dev_attr_max_medium_access_timeouts.attr, 546 NULL, 547 }; 548 ATTRIBUTE_GROUPS(sd_disk); 549 550 static struct class sd_disk_class = { 551 .name = "scsi_disk", 552 .owner = THIS_MODULE, 553 .dev_release = scsi_disk_release, 554 .dev_groups = sd_disk_groups, 555 }; 556 557 static const struct dev_pm_ops sd_pm_ops = { 558 .suspend = sd_suspend_system, 559 .resume = sd_resume, 560 .poweroff = sd_suspend_system, 561 .restore = sd_resume, 562 .runtime_suspend = sd_suspend_runtime, 563 .runtime_resume = sd_resume, 564 }; 565 566 static struct scsi_driver sd_template = { 567 .gendrv = { 568 .name = "sd", 569 .owner = THIS_MODULE, 570 .probe = sd_probe, 571 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 572 .remove = sd_remove, 573 .shutdown = sd_shutdown, 574 .pm = &sd_pm_ops, 575 }, 576 .rescan = sd_rescan, 577 .init_command = sd_init_command, 578 .uninit_command = sd_uninit_command, 579 .done = sd_done, 580 .eh_action = sd_eh_action, 581 .eh_reset = sd_eh_reset, 582 }; 583 584 /* 585 * Dummy kobj_map->probe function. 586 * The default ->probe function will call modprobe, which is 587 * pointless as this module is already loaded. 588 */ 589 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 590 { 591 return NULL; 592 } 593 594 /* 595 * Device no to disk mapping: 596 * 597 * major disc2 disc p1 598 * |............|.............|....|....| <- dev_t 599 * 31 20 19 8 7 4 3 0 600 * 601 * Inside a major, we have 16k disks, however mapped non- 602 * contiguously. The first 16 disks are for major0, the next 603 * ones with major1, ... Disk 256 is for major0 again, disk 272 604 * for major1, ... 605 * As we stay compatible with our numbering scheme, we can reuse 606 * the well-know SCSI majors 8, 65--71, 136--143. 607 */ 608 static int sd_major(int major_idx) 609 { 610 switch (major_idx) { 611 case 0: 612 return SCSI_DISK0_MAJOR; 613 case 1 ... 7: 614 return SCSI_DISK1_MAJOR + major_idx - 1; 615 case 8 ... 15: 616 return SCSI_DISK8_MAJOR + major_idx - 8; 617 default: 618 BUG(); 619 return 0; /* shut up gcc */ 620 } 621 } 622 623 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 624 { 625 struct scsi_disk *sdkp = NULL; 626 627 mutex_lock(&sd_ref_mutex); 628 629 if (disk->private_data) { 630 sdkp = scsi_disk(disk); 631 if (scsi_device_get(sdkp->device) == 0) 632 get_device(&sdkp->dev); 633 else 634 sdkp = NULL; 635 } 636 mutex_unlock(&sd_ref_mutex); 637 return sdkp; 638 } 639 640 static void scsi_disk_put(struct scsi_disk *sdkp) 641 { 642 struct scsi_device *sdev = sdkp->device; 643 644 mutex_lock(&sd_ref_mutex); 645 put_device(&sdkp->dev); 646 scsi_device_put(sdev); 647 mutex_unlock(&sd_ref_mutex); 648 } 649 650 #ifdef CONFIG_BLK_SED_OPAL 651 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 652 size_t len, bool send) 653 { 654 struct scsi_device *sdev = data; 655 u8 cdb[12] = { 0, }; 656 int ret; 657 658 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 659 cdb[1] = secp; 660 put_unaligned_be16(spsp, &cdb[2]); 661 put_unaligned_be32(len, &cdb[6]); 662 663 ret = scsi_execute_req(sdev, cdb, 664 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 665 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 666 return ret <= 0 ? ret : -EIO; 667 } 668 #endif /* CONFIG_BLK_SED_OPAL */ 669 670 /* 671 * Look up the DIX operation based on whether the command is read or 672 * write and whether dix and dif are enabled. 673 */ 674 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 675 { 676 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 677 static const unsigned int ops[] = { /* wrt dix dif */ 678 SCSI_PROT_NORMAL, /* 0 0 0 */ 679 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 680 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 681 SCSI_PROT_READ_PASS, /* 0 1 1 */ 682 SCSI_PROT_NORMAL, /* 1 0 0 */ 683 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 684 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 685 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 686 }; 687 688 return ops[write << 2 | dix << 1 | dif]; 689 } 690 691 /* 692 * Returns a mask of the protection flags that are valid for a given DIX 693 * operation. 694 */ 695 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 696 { 697 static const unsigned int flag_mask[] = { 698 [SCSI_PROT_NORMAL] = 0, 699 700 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 701 SCSI_PROT_GUARD_CHECK | 702 SCSI_PROT_REF_CHECK | 703 SCSI_PROT_REF_INCREMENT, 704 705 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 706 SCSI_PROT_IP_CHECKSUM, 707 708 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 709 SCSI_PROT_GUARD_CHECK | 710 SCSI_PROT_REF_CHECK | 711 SCSI_PROT_REF_INCREMENT | 712 SCSI_PROT_IP_CHECKSUM, 713 714 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 715 SCSI_PROT_REF_INCREMENT, 716 717 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 718 SCSI_PROT_REF_CHECK | 719 SCSI_PROT_REF_INCREMENT | 720 SCSI_PROT_IP_CHECKSUM, 721 722 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 723 SCSI_PROT_GUARD_CHECK | 724 SCSI_PROT_REF_CHECK | 725 SCSI_PROT_REF_INCREMENT | 726 SCSI_PROT_IP_CHECKSUM, 727 }; 728 729 return flag_mask[prot_op]; 730 } 731 732 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 733 unsigned int dix, unsigned int dif) 734 { 735 struct bio *bio = scmd->request->bio; 736 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 737 unsigned int protect = 0; 738 739 if (dix) { /* DIX Type 0, 1, 2, 3 */ 740 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 741 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 742 743 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 744 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 745 } 746 747 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 748 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 749 750 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 751 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 752 } 753 754 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 755 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 756 757 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 758 protect = 3 << 5; /* Disable target PI checking */ 759 else 760 protect = 1 << 5; /* Enable target PI checking */ 761 } 762 763 scsi_set_prot_op(scmd, prot_op); 764 scsi_set_prot_type(scmd, dif); 765 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 766 767 return protect; 768 } 769 770 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 771 { 772 struct request_queue *q = sdkp->disk->queue; 773 unsigned int logical_block_size = sdkp->device->sector_size; 774 unsigned int max_blocks = 0; 775 776 q->limits.discard_alignment = 777 sdkp->unmap_alignment * logical_block_size; 778 q->limits.discard_granularity = 779 max(sdkp->physical_block_size, 780 sdkp->unmap_granularity * logical_block_size); 781 sdkp->provisioning_mode = mode; 782 783 switch (mode) { 784 785 case SD_LBP_FULL: 786 case SD_LBP_DISABLE: 787 blk_queue_max_discard_sectors(q, 0); 788 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 789 return; 790 791 case SD_LBP_UNMAP: 792 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 793 (u32)SD_MAX_WS16_BLOCKS); 794 break; 795 796 case SD_LBP_WS16: 797 if (sdkp->device->unmap_limit_for_ws) 798 max_blocks = sdkp->max_unmap_blocks; 799 else 800 max_blocks = sdkp->max_ws_blocks; 801 802 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 803 break; 804 805 case SD_LBP_WS10: 806 if (sdkp->device->unmap_limit_for_ws) 807 max_blocks = sdkp->max_unmap_blocks; 808 else 809 max_blocks = sdkp->max_ws_blocks; 810 811 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 812 break; 813 814 case SD_LBP_ZERO: 815 max_blocks = min_not_zero(sdkp->max_ws_blocks, 816 (u32)SD_MAX_WS10_BLOCKS); 817 break; 818 } 819 820 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 821 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 822 } 823 824 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 825 { 826 struct scsi_device *sdp = cmd->device; 827 struct request *rq = cmd->request; 828 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 829 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 830 unsigned int data_len = 24; 831 char *buf; 832 833 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 834 if (!rq->special_vec.bv_page) 835 return BLK_STS_RESOURCE; 836 clear_highpage(rq->special_vec.bv_page); 837 rq->special_vec.bv_offset = 0; 838 rq->special_vec.bv_len = data_len; 839 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 840 841 cmd->cmd_len = 10; 842 cmd->cmnd[0] = UNMAP; 843 cmd->cmnd[8] = 24; 844 845 buf = page_address(rq->special_vec.bv_page); 846 put_unaligned_be16(6 + 16, &buf[0]); 847 put_unaligned_be16(16, &buf[2]); 848 put_unaligned_be64(lba, &buf[8]); 849 put_unaligned_be32(nr_blocks, &buf[16]); 850 851 cmd->allowed = SD_MAX_RETRIES; 852 cmd->transfersize = data_len; 853 rq->timeout = SD_TIMEOUT; 854 855 return scsi_init_io(cmd); 856 } 857 858 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 859 bool unmap) 860 { 861 struct scsi_device *sdp = cmd->device; 862 struct request *rq = cmd->request; 863 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 864 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 865 u32 data_len = sdp->sector_size; 866 867 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 868 if (!rq->special_vec.bv_page) 869 return BLK_STS_RESOURCE; 870 clear_highpage(rq->special_vec.bv_page); 871 rq->special_vec.bv_offset = 0; 872 rq->special_vec.bv_len = data_len; 873 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 874 875 cmd->cmd_len = 16; 876 cmd->cmnd[0] = WRITE_SAME_16; 877 if (unmap) 878 cmd->cmnd[1] = 0x8; /* UNMAP */ 879 put_unaligned_be64(lba, &cmd->cmnd[2]); 880 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 881 882 cmd->allowed = SD_MAX_RETRIES; 883 cmd->transfersize = data_len; 884 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 885 886 return scsi_init_io(cmd); 887 } 888 889 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 890 bool unmap) 891 { 892 struct scsi_device *sdp = cmd->device; 893 struct request *rq = cmd->request; 894 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 895 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 896 u32 data_len = sdp->sector_size; 897 898 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 899 if (!rq->special_vec.bv_page) 900 return BLK_STS_RESOURCE; 901 clear_highpage(rq->special_vec.bv_page); 902 rq->special_vec.bv_offset = 0; 903 rq->special_vec.bv_len = data_len; 904 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 905 906 cmd->cmd_len = 10; 907 cmd->cmnd[0] = WRITE_SAME; 908 if (unmap) 909 cmd->cmnd[1] = 0x8; /* UNMAP */ 910 put_unaligned_be32(lba, &cmd->cmnd[2]); 911 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 912 913 cmd->allowed = SD_MAX_RETRIES; 914 cmd->transfersize = data_len; 915 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 916 917 return scsi_init_io(cmd); 918 } 919 920 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 921 { 922 struct request *rq = cmd->request; 923 struct scsi_device *sdp = cmd->device; 924 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 925 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 926 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 927 928 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 929 switch (sdkp->zeroing_mode) { 930 case SD_ZERO_WS16_UNMAP: 931 return sd_setup_write_same16_cmnd(cmd, true); 932 case SD_ZERO_WS10_UNMAP: 933 return sd_setup_write_same10_cmnd(cmd, true); 934 } 935 } 936 937 if (sdp->no_write_same) 938 return BLK_STS_TARGET; 939 940 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 941 return sd_setup_write_same16_cmnd(cmd, false); 942 943 return sd_setup_write_same10_cmnd(cmd, false); 944 } 945 946 static void sd_config_write_same(struct scsi_disk *sdkp) 947 { 948 struct request_queue *q = sdkp->disk->queue; 949 unsigned int logical_block_size = sdkp->device->sector_size; 950 951 if (sdkp->device->no_write_same) { 952 sdkp->max_ws_blocks = 0; 953 goto out; 954 } 955 956 /* Some devices can not handle block counts above 0xffff despite 957 * supporting WRITE SAME(16). Consequently we default to 64k 958 * blocks per I/O unless the device explicitly advertises a 959 * bigger limit. 960 */ 961 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 962 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 963 (u32)SD_MAX_WS16_BLOCKS); 964 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 965 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 966 (u32)SD_MAX_WS10_BLOCKS); 967 else { 968 sdkp->device->no_write_same = 1; 969 sdkp->max_ws_blocks = 0; 970 } 971 972 if (sdkp->lbprz && sdkp->lbpws) 973 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 974 else if (sdkp->lbprz && sdkp->lbpws10) 975 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 976 else if (sdkp->max_ws_blocks) 977 sdkp->zeroing_mode = SD_ZERO_WS; 978 else 979 sdkp->zeroing_mode = SD_ZERO_WRITE; 980 981 if (sdkp->max_ws_blocks && 982 sdkp->physical_block_size > logical_block_size) { 983 /* 984 * Reporting a maximum number of blocks that is not aligned 985 * on the device physical size would cause a large write same 986 * request to be split into physically unaligned chunks by 987 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 988 * even if the caller of these functions took care to align the 989 * large request. So make sure the maximum reported is aligned 990 * to the device physical block size. This is only an optional 991 * optimization for regular disks, but this is mandatory to 992 * avoid failure of large write same requests directed at 993 * sequential write required zones of host-managed ZBC disks. 994 */ 995 sdkp->max_ws_blocks = 996 round_down(sdkp->max_ws_blocks, 997 bytes_to_logical(sdkp->device, 998 sdkp->physical_block_size)); 999 } 1000 1001 out: 1002 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 1003 (logical_block_size >> 9)); 1004 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1005 (logical_block_size >> 9)); 1006 } 1007 1008 /** 1009 * sd_setup_write_same_cmnd - write the same data to multiple blocks 1010 * @cmd: command to prepare 1011 * 1012 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 1013 * the preference indicated by the target device. 1014 **/ 1015 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 1016 { 1017 struct request *rq = cmd->request; 1018 struct scsi_device *sdp = cmd->device; 1019 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1020 struct bio *bio = rq->bio; 1021 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1022 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1023 blk_status_t ret; 1024 1025 if (sdkp->device->no_write_same) 1026 return BLK_STS_TARGET; 1027 1028 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 1029 1030 rq->timeout = SD_WRITE_SAME_TIMEOUT; 1031 1032 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) { 1033 cmd->cmd_len = 16; 1034 cmd->cmnd[0] = WRITE_SAME_16; 1035 put_unaligned_be64(lba, &cmd->cmnd[2]); 1036 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1037 } else { 1038 cmd->cmd_len = 10; 1039 cmd->cmnd[0] = WRITE_SAME; 1040 put_unaligned_be32(lba, &cmd->cmnd[2]); 1041 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1042 } 1043 1044 cmd->transfersize = sdp->sector_size; 1045 cmd->allowed = SD_MAX_RETRIES; 1046 1047 /* 1048 * For WRITE SAME the data transferred via the DATA OUT buffer is 1049 * different from the amount of data actually written to the target. 1050 * 1051 * We set up __data_len to the amount of data transferred via the 1052 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 1053 * to transfer a single sector of data first, but then reset it to 1054 * the amount of data to be written right after so that the I/O path 1055 * knows how much to actually write. 1056 */ 1057 rq->__data_len = sdp->sector_size; 1058 ret = scsi_init_io(cmd); 1059 rq->__data_len = blk_rq_bytes(rq); 1060 1061 return ret; 1062 } 1063 1064 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1065 { 1066 struct request *rq = cmd->request; 1067 1068 /* flush requests don't perform I/O, zero the S/G table */ 1069 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1070 1071 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1072 cmd->cmd_len = 10; 1073 cmd->transfersize = 0; 1074 cmd->allowed = SD_MAX_RETRIES; 1075 1076 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1077 return BLK_STS_OK; 1078 } 1079 1080 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1081 sector_t lba, unsigned int nr_blocks, 1082 unsigned char flags) 1083 { 1084 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1085 if (unlikely(cmd->cmnd == NULL)) 1086 return BLK_STS_RESOURCE; 1087 1088 cmd->cmd_len = SD_EXT_CDB_SIZE; 1089 memset(cmd->cmnd, 0, cmd->cmd_len); 1090 1091 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1092 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1093 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1094 cmd->cmnd[10] = flags; 1095 put_unaligned_be64(lba, &cmd->cmnd[12]); 1096 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1097 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1098 1099 return BLK_STS_OK; 1100 } 1101 1102 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1103 sector_t lba, unsigned int nr_blocks, 1104 unsigned char flags) 1105 { 1106 cmd->cmd_len = 16; 1107 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1108 cmd->cmnd[1] = flags; 1109 cmd->cmnd[14] = 0; 1110 cmd->cmnd[15] = 0; 1111 put_unaligned_be64(lba, &cmd->cmnd[2]); 1112 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1113 1114 return BLK_STS_OK; 1115 } 1116 1117 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1118 sector_t lba, unsigned int nr_blocks, 1119 unsigned char flags) 1120 { 1121 cmd->cmd_len = 10; 1122 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1123 cmd->cmnd[1] = flags; 1124 cmd->cmnd[6] = 0; 1125 cmd->cmnd[9] = 0; 1126 put_unaligned_be32(lba, &cmd->cmnd[2]); 1127 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1128 1129 return BLK_STS_OK; 1130 } 1131 1132 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1133 sector_t lba, unsigned int nr_blocks, 1134 unsigned char flags) 1135 { 1136 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1137 if (WARN_ON_ONCE(nr_blocks == 0)) 1138 return BLK_STS_IOERR; 1139 1140 if (unlikely(flags & 0x8)) { 1141 /* 1142 * This happens only if this drive failed 10byte rw 1143 * command with ILLEGAL_REQUEST during operation and 1144 * thus turned off use_10_for_rw. 1145 */ 1146 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1147 return BLK_STS_IOERR; 1148 } 1149 1150 cmd->cmd_len = 6; 1151 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1152 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1153 cmd->cmnd[2] = (lba >> 8) & 0xff; 1154 cmd->cmnd[3] = lba & 0xff; 1155 cmd->cmnd[4] = nr_blocks; 1156 cmd->cmnd[5] = 0; 1157 1158 return BLK_STS_OK; 1159 } 1160 1161 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1162 { 1163 struct request *rq = cmd->request; 1164 struct scsi_device *sdp = cmd->device; 1165 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1166 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1167 sector_t threshold; 1168 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1169 bool dif, dix; 1170 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1171 bool write = rq_data_dir(rq) == WRITE; 1172 unsigned char protect, fua; 1173 blk_status_t ret; 1174 1175 ret = scsi_init_io(cmd); 1176 if (ret != BLK_STS_OK) 1177 return ret; 1178 1179 if (!scsi_device_online(sdp) || sdp->changed) { 1180 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1181 return BLK_STS_IOERR; 1182 } 1183 1184 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) { 1185 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1186 return BLK_STS_IOERR; 1187 } 1188 1189 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1190 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1191 return BLK_STS_IOERR; 1192 } 1193 1194 /* 1195 * Some SD card readers can't handle accesses which touch the 1196 * last one or two logical blocks. Split accesses as needed. 1197 */ 1198 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1199 1200 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1201 if (lba < threshold) { 1202 /* Access up to the threshold but not beyond */ 1203 nr_blocks = threshold - lba; 1204 } else { 1205 /* Access only a single logical block */ 1206 nr_blocks = 1; 1207 } 1208 } 1209 1210 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1211 dix = scsi_prot_sg_count(cmd); 1212 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1213 1214 if (dif || dix) 1215 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1216 else 1217 protect = 0; 1218 1219 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1220 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1221 protect | fua); 1222 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1223 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1224 protect | fua); 1225 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1226 sdp->use_10_for_rw || protect) { 1227 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1228 protect | fua); 1229 } else { 1230 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1231 protect | fua); 1232 } 1233 1234 if (unlikely(ret != BLK_STS_OK)) 1235 return ret; 1236 1237 /* 1238 * We shouldn't disconnect in the middle of a sector, so with a dumb 1239 * host adapter, it's safe to assume that we can at least transfer 1240 * this many bytes between each connect / disconnect. 1241 */ 1242 cmd->transfersize = sdp->sector_size; 1243 cmd->underflow = nr_blocks << 9; 1244 cmd->allowed = SD_MAX_RETRIES; 1245 cmd->sdb.length = nr_blocks * sdp->sector_size; 1246 1247 SCSI_LOG_HLQUEUE(1, 1248 scmd_printk(KERN_INFO, cmd, 1249 "%s: block=%llu, count=%d\n", __func__, 1250 (unsigned long long)blk_rq_pos(rq), 1251 blk_rq_sectors(rq))); 1252 SCSI_LOG_HLQUEUE(2, 1253 scmd_printk(KERN_INFO, cmd, 1254 "%s %d/%u 512 byte blocks.\n", 1255 write ? "writing" : "reading", nr_blocks, 1256 blk_rq_sectors(rq))); 1257 1258 /* 1259 * This indicates that the command is ready from our end to be 1260 * queued. 1261 */ 1262 return BLK_STS_OK; 1263 } 1264 1265 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1266 { 1267 struct request *rq = cmd->request; 1268 1269 switch (req_op(rq)) { 1270 case REQ_OP_DISCARD: 1271 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1272 case SD_LBP_UNMAP: 1273 return sd_setup_unmap_cmnd(cmd); 1274 case SD_LBP_WS16: 1275 return sd_setup_write_same16_cmnd(cmd, true); 1276 case SD_LBP_WS10: 1277 return sd_setup_write_same10_cmnd(cmd, true); 1278 case SD_LBP_ZERO: 1279 return sd_setup_write_same10_cmnd(cmd, false); 1280 default: 1281 return BLK_STS_TARGET; 1282 } 1283 case REQ_OP_WRITE_ZEROES: 1284 return sd_setup_write_zeroes_cmnd(cmd); 1285 case REQ_OP_WRITE_SAME: 1286 return sd_setup_write_same_cmnd(cmd); 1287 case REQ_OP_FLUSH: 1288 return sd_setup_flush_cmnd(cmd); 1289 case REQ_OP_READ: 1290 case REQ_OP_WRITE: 1291 return sd_setup_read_write_cmnd(cmd); 1292 case REQ_OP_ZONE_RESET: 1293 return sd_zbc_setup_reset_cmnd(cmd, false); 1294 case REQ_OP_ZONE_RESET_ALL: 1295 return sd_zbc_setup_reset_cmnd(cmd, true); 1296 default: 1297 WARN_ON_ONCE(1); 1298 return BLK_STS_NOTSUPP; 1299 } 1300 } 1301 1302 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1303 { 1304 struct request *rq = SCpnt->request; 1305 u8 *cmnd; 1306 1307 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1308 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1309 1310 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1311 cmnd = SCpnt->cmnd; 1312 SCpnt->cmnd = NULL; 1313 SCpnt->cmd_len = 0; 1314 mempool_free(cmnd, sd_cdb_pool); 1315 } 1316 } 1317 1318 /** 1319 * sd_open - open a scsi disk device 1320 * @bdev: Block device of the scsi disk to open 1321 * @mode: FMODE_* mask 1322 * 1323 * Returns 0 if successful. Returns a negated errno value in case 1324 * of error. 1325 * 1326 * Note: This can be called from a user context (e.g. fsck(1) ) 1327 * or from within the kernel (e.g. as a result of a mount(1) ). 1328 * In the latter case @inode and @filp carry an abridged amount 1329 * of information as noted above. 1330 * 1331 * Locking: called with bdev->bd_mutex held. 1332 **/ 1333 static int sd_open(struct block_device *bdev, fmode_t mode) 1334 { 1335 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1336 struct scsi_device *sdev; 1337 int retval; 1338 1339 if (!sdkp) 1340 return -ENXIO; 1341 1342 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1343 1344 sdev = sdkp->device; 1345 1346 /* 1347 * If the device is in error recovery, wait until it is done. 1348 * If the device is offline, then disallow any access to it. 1349 */ 1350 retval = -ENXIO; 1351 if (!scsi_block_when_processing_errors(sdev)) 1352 goto error_out; 1353 1354 if (sdev->removable || sdkp->write_prot) 1355 check_disk_change(bdev); 1356 1357 /* 1358 * If the drive is empty, just let the open fail. 1359 */ 1360 retval = -ENOMEDIUM; 1361 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1362 goto error_out; 1363 1364 /* 1365 * If the device has the write protect tab set, have the open fail 1366 * if the user expects to be able to write to the thing. 1367 */ 1368 retval = -EROFS; 1369 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1370 goto error_out; 1371 1372 /* 1373 * It is possible that the disk changing stuff resulted in 1374 * the device being taken offline. If this is the case, 1375 * report this to the user, and don't pretend that the 1376 * open actually succeeded. 1377 */ 1378 retval = -ENXIO; 1379 if (!scsi_device_online(sdev)) 1380 goto error_out; 1381 1382 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1383 if (scsi_block_when_processing_errors(sdev)) 1384 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1385 } 1386 1387 return 0; 1388 1389 error_out: 1390 scsi_disk_put(sdkp); 1391 return retval; 1392 } 1393 1394 /** 1395 * sd_release - invoked when the (last) close(2) is called on this 1396 * scsi disk. 1397 * @disk: disk to release 1398 * @mode: FMODE_* mask 1399 * 1400 * Returns 0. 1401 * 1402 * Note: may block (uninterruptible) if error recovery is underway 1403 * on this disk. 1404 * 1405 * Locking: called with bdev->bd_mutex held. 1406 **/ 1407 static void sd_release(struct gendisk *disk, fmode_t mode) 1408 { 1409 struct scsi_disk *sdkp = scsi_disk(disk); 1410 struct scsi_device *sdev = sdkp->device; 1411 1412 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1413 1414 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1415 if (scsi_block_when_processing_errors(sdev)) 1416 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1417 } 1418 1419 scsi_disk_put(sdkp); 1420 } 1421 1422 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1423 { 1424 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1425 struct scsi_device *sdp = sdkp->device; 1426 struct Scsi_Host *host = sdp->host; 1427 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1428 int diskinfo[4]; 1429 1430 /* default to most commonly used values */ 1431 diskinfo[0] = 0x40; /* 1 << 6 */ 1432 diskinfo[1] = 0x20; /* 1 << 5 */ 1433 diskinfo[2] = capacity >> 11; 1434 1435 /* override with calculated, extended default, or driver values */ 1436 if (host->hostt->bios_param) 1437 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1438 else 1439 scsicam_bios_param(bdev, capacity, diskinfo); 1440 1441 geo->heads = diskinfo[0]; 1442 geo->sectors = diskinfo[1]; 1443 geo->cylinders = diskinfo[2]; 1444 return 0; 1445 } 1446 1447 /** 1448 * sd_ioctl - process an ioctl 1449 * @bdev: target block device 1450 * @mode: FMODE_* mask 1451 * @cmd: ioctl command number 1452 * @arg: this is third argument given to ioctl(2) system call. 1453 * Often contains a pointer. 1454 * 1455 * Returns 0 if successful (some ioctls return positive numbers on 1456 * success as well). Returns a negated errno value in case of error. 1457 * 1458 * Note: most ioctls are forward onto the block subsystem or further 1459 * down in the scsi subsystem. 1460 **/ 1461 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1462 unsigned int cmd, unsigned long arg) 1463 { 1464 struct gendisk *disk = bdev->bd_disk; 1465 struct scsi_disk *sdkp = scsi_disk(disk); 1466 struct scsi_device *sdp = sdkp->device; 1467 void __user *p = (void __user *)arg; 1468 int error; 1469 1470 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1471 "cmd=0x%x\n", disk->disk_name, cmd)); 1472 1473 error = scsi_verify_blk_ioctl(bdev, cmd); 1474 if (error < 0) 1475 return error; 1476 1477 /* 1478 * If we are in the middle of error recovery, don't let anyone 1479 * else try and use this device. Also, if error recovery fails, it 1480 * may try and take the device offline, in which case all further 1481 * access to the device is prohibited. 1482 */ 1483 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1484 (mode & FMODE_NDELAY) != 0); 1485 if (error) 1486 goto out; 1487 1488 if (is_sed_ioctl(cmd)) 1489 return sed_ioctl(sdkp->opal_dev, cmd, p); 1490 1491 /* 1492 * Send SCSI addressing ioctls directly to mid level, send other 1493 * ioctls to block level and then onto mid level if they can't be 1494 * resolved. 1495 */ 1496 switch (cmd) { 1497 case SCSI_IOCTL_GET_IDLUN: 1498 case SCSI_IOCTL_GET_BUS_NUMBER: 1499 error = scsi_ioctl(sdp, cmd, p); 1500 break; 1501 default: 1502 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1503 if (error != -ENOTTY) 1504 break; 1505 error = scsi_ioctl(sdp, cmd, p); 1506 break; 1507 } 1508 out: 1509 return error; 1510 } 1511 1512 static void set_media_not_present(struct scsi_disk *sdkp) 1513 { 1514 if (sdkp->media_present) 1515 sdkp->device->changed = 1; 1516 1517 if (sdkp->device->removable) { 1518 sdkp->media_present = 0; 1519 sdkp->capacity = 0; 1520 } 1521 } 1522 1523 static int media_not_present(struct scsi_disk *sdkp, 1524 struct scsi_sense_hdr *sshdr) 1525 { 1526 if (!scsi_sense_valid(sshdr)) 1527 return 0; 1528 1529 /* not invoked for commands that could return deferred errors */ 1530 switch (sshdr->sense_key) { 1531 case UNIT_ATTENTION: 1532 case NOT_READY: 1533 /* medium not present */ 1534 if (sshdr->asc == 0x3A) { 1535 set_media_not_present(sdkp); 1536 return 1; 1537 } 1538 } 1539 return 0; 1540 } 1541 1542 /** 1543 * sd_check_events - check media events 1544 * @disk: kernel device descriptor 1545 * @clearing: disk events currently being cleared 1546 * 1547 * Returns mask of DISK_EVENT_*. 1548 * 1549 * Note: this function is invoked from the block subsystem. 1550 **/ 1551 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1552 { 1553 struct scsi_disk *sdkp = scsi_disk_get(disk); 1554 struct scsi_device *sdp; 1555 int retval; 1556 1557 if (!sdkp) 1558 return 0; 1559 1560 sdp = sdkp->device; 1561 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1562 1563 /* 1564 * If the device is offline, don't send any commands - just pretend as 1565 * if the command failed. If the device ever comes back online, we 1566 * can deal with it then. It is only because of unrecoverable errors 1567 * that we would ever take a device offline in the first place. 1568 */ 1569 if (!scsi_device_online(sdp)) { 1570 set_media_not_present(sdkp); 1571 goto out; 1572 } 1573 1574 /* 1575 * Using TEST_UNIT_READY enables differentiation between drive with 1576 * no cartridge loaded - NOT READY, drive with changed cartridge - 1577 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1578 * 1579 * Drives that auto spin down. eg iomega jaz 1G, will be started 1580 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1581 * sd_revalidate() is called. 1582 */ 1583 if (scsi_block_when_processing_errors(sdp)) { 1584 struct scsi_sense_hdr sshdr = { 0, }; 1585 1586 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1587 &sshdr); 1588 1589 /* failed to execute TUR, assume media not present */ 1590 if (host_byte(retval)) { 1591 set_media_not_present(sdkp); 1592 goto out; 1593 } 1594 1595 if (media_not_present(sdkp, &sshdr)) 1596 goto out; 1597 } 1598 1599 /* 1600 * For removable scsi disk we have to recognise the presence 1601 * of a disk in the drive. 1602 */ 1603 if (!sdkp->media_present) 1604 sdp->changed = 1; 1605 sdkp->media_present = 1; 1606 out: 1607 /* 1608 * sdp->changed is set under the following conditions: 1609 * 1610 * Medium present state has changed in either direction. 1611 * Device has indicated UNIT_ATTENTION. 1612 */ 1613 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1614 sdp->changed = 0; 1615 scsi_disk_put(sdkp); 1616 return retval; 1617 } 1618 1619 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1620 { 1621 int retries, res; 1622 struct scsi_device *sdp = sdkp->device; 1623 const int timeout = sdp->request_queue->rq_timeout 1624 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1625 struct scsi_sense_hdr my_sshdr; 1626 1627 if (!scsi_device_online(sdp)) 1628 return -ENODEV; 1629 1630 /* caller might not be interested in sense, but we need it */ 1631 if (!sshdr) 1632 sshdr = &my_sshdr; 1633 1634 for (retries = 3; retries > 0; --retries) { 1635 unsigned char cmd[10] = { 0 }; 1636 1637 cmd[0] = SYNCHRONIZE_CACHE; 1638 /* 1639 * Leave the rest of the command zero to indicate 1640 * flush everything. 1641 */ 1642 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1643 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL); 1644 if (res == 0) 1645 break; 1646 } 1647 1648 if (res) { 1649 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1650 1651 if (driver_byte(res) == DRIVER_SENSE) 1652 sd_print_sense_hdr(sdkp, sshdr); 1653 1654 /* we need to evaluate the error return */ 1655 if (scsi_sense_valid(sshdr) && 1656 (sshdr->asc == 0x3a || /* medium not present */ 1657 sshdr->asc == 0x20 || /* invalid command */ 1658 (sshdr->asc == 0x74 && sshdr->ascq == 0x71))) /* drive is password locked */ 1659 /* this is no error here */ 1660 return 0; 1661 1662 switch (host_byte(res)) { 1663 /* ignore errors due to racing a disconnection */ 1664 case DID_BAD_TARGET: 1665 case DID_NO_CONNECT: 1666 return 0; 1667 /* signal the upper layer it might try again */ 1668 case DID_BUS_BUSY: 1669 case DID_IMM_RETRY: 1670 case DID_REQUEUE: 1671 case DID_SOFT_ERROR: 1672 return -EBUSY; 1673 default: 1674 return -EIO; 1675 } 1676 } 1677 return 0; 1678 } 1679 1680 static void sd_rescan(struct device *dev) 1681 { 1682 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1683 1684 revalidate_disk(sdkp->disk); 1685 } 1686 1687 1688 #ifdef CONFIG_COMPAT 1689 /* 1690 * This gets directly called from VFS. When the ioctl 1691 * is not recognized we go back to the other translation paths. 1692 */ 1693 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1694 unsigned int cmd, unsigned long arg) 1695 { 1696 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1697 int error; 1698 1699 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1700 (mode & FMODE_NDELAY) != 0); 1701 if (error) 1702 return error; 1703 1704 /* 1705 * Let the static ioctl translation table take care of it. 1706 */ 1707 if (!sdev->host->hostt->compat_ioctl) 1708 return -ENOIOCTLCMD; 1709 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1710 } 1711 #endif 1712 1713 static char sd_pr_type(enum pr_type type) 1714 { 1715 switch (type) { 1716 case PR_WRITE_EXCLUSIVE: 1717 return 0x01; 1718 case PR_EXCLUSIVE_ACCESS: 1719 return 0x03; 1720 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1721 return 0x05; 1722 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1723 return 0x06; 1724 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1725 return 0x07; 1726 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1727 return 0x08; 1728 default: 1729 return 0; 1730 } 1731 }; 1732 1733 static int sd_pr_command(struct block_device *bdev, u8 sa, 1734 u64 key, u64 sa_key, u8 type, u8 flags) 1735 { 1736 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1737 struct scsi_sense_hdr sshdr; 1738 int result; 1739 u8 cmd[16] = { 0, }; 1740 u8 data[24] = { 0, }; 1741 1742 cmd[0] = PERSISTENT_RESERVE_OUT; 1743 cmd[1] = sa; 1744 cmd[2] = type; 1745 put_unaligned_be32(sizeof(data), &cmd[5]); 1746 1747 put_unaligned_be64(key, &data[0]); 1748 put_unaligned_be64(sa_key, &data[8]); 1749 data[20] = flags; 1750 1751 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1752 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1753 1754 if (driver_byte(result) == DRIVER_SENSE && 1755 scsi_sense_valid(&sshdr)) { 1756 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1757 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1758 } 1759 1760 return result; 1761 } 1762 1763 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1764 u32 flags) 1765 { 1766 if (flags & ~PR_FL_IGNORE_KEY) 1767 return -EOPNOTSUPP; 1768 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1769 old_key, new_key, 0, 1770 (1 << 0) /* APTPL */); 1771 } 1772 1773 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1774 u32 flags) 1775 { 1776 if (flags) 1777 return -EOPNOTSUPP; 1778 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1779 } 1780 1781 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1782 { 1783 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1784 } 1785 1786 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1787 enum pr_type type, bool abort) 1788 { 1789 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1790 sd_pr_type(type), 0); 1791 } 1792 1793 static int sd_pr_clear(struct block_device *bdev, u64 key) 1794 { 1795 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1796 } 1797 1798 static const struct pr_ops sd_pr_ops = { 1799 .pr_register = sd_pr_register, 1800 .pr_reserve = sd_pr_reserve, 1801 .pr_release = sd_pr_release, 1802 .pr_preempt = sd_pr_preempt, 1803 .pr_clear = sd_pr_clear, 1804 }; 1805 1806 static const struct block_device_operations sd_fops = { 1807 .owner = THIS_MODULE, 1808 .open = sd_open, 1809 .release = sd_release, 1810 .ioctl = sd_ioctl, 1811 .getgeo = sd_getgeo, 1812 #ifdef CONFIG_COMPAT 1813 .compat_ioctl = sd_compat_ioctl, 1814 #endif 1815 .check_events = sd_check_events, 1816 .revalidate_disk = sd_revalidate_disk, 1817 .unlock_native_capacity = sd_unlock_native_capacity, 1818 .report_zones = sd_zbc_report_zones, 1819 .pr_ops = &sd_pr_ops, 1820 }; 1821 1822 /** 1823 * sd_eh_reset - reset error handling callback 1824 * @scmd: sd-issued command that has failed 1825 * 1826 * This function is called by the SCSI midlayer before starting 1827 * SCSI EH. When counting medium access failures we have to be 1828 * careful to register it only only once per device and SCSI EH run; 1829 * there might be several timed out commands which will cause the 1830 * 'max_medium_access_timeouts' counter to trigger after the first 1831 * SCSI EH run already and set the device to offline. 1832 * So this function resets the internal counter before starting SCSI EH. 1833 **/ 1834 static void sd_eh_reset(struct scsi_cmnd *scmd) 1835 { 1836 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1837 1838 /* New SCSI EH run, reset gate variable */ 1839 sdkp->ignore_medium_access_errors = false; 1840 } 1841 1842 /** 1843 * sd_eh_action - error handling callback 1844 * @scmd: sd-issued command that has failed 1845 * @eh_disp: The recovery disposition suggested by the midlayer 1846 * 1847 * This function is called by the SCSI midlayer upon completion of an 1848 * error test command (currently TEST UNIT READY). The result of sending 1849 * the eh command is passed in eh_disp. We're looking for devices that 1850 * fail medium access commands but are OK with non access commands like 1851 * test unit ready (so wrongly see the device as having a successful 1852 * recovery) 1853 **/ 1854 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1855 { 1856 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1857 struct scsi_device *sdev = scmd->device; 1858 1859 if (!scsi_device_online(sdev) || 1860 !scsi_medium_access_command(scmd) || 1861 host_byte(scmd->result) != DID_TIME_OUT || 1862 eh_disp != SUCCESS) 1863 return eh_disp; 1864 1865 /* 1866 * The device has timed out executing a medium access command. 1867 * However, the TEST UNIT READY command sent during error 1868 * handling completed successfully. Either the device is in the 1869 * process of recovering or has it suffered an internal failure 1870 * that prevents access to the storage medium. 1871 */ 1872 if (!sdkp->ignore_medium_access_errors) { 1873 sdkp->medium_access_timed_out++; 1874 sdkp->ignore_medium_access_errors = true; 1875 } 1876 1877 /* 1878 * If the device keeps failing read/write commands but TEST UNIT 1879 * READY always completes successfully we assume that medium 1880 * access is no longer possible and take the device offline. 1881 */ 1882 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1883 scmd_printk(KERN_ERR, scmd, 1884 "Medium access timeout failure. Offlining disk!\n"); 1885 mutex_lock(&sdev->state_mutex); 1886 scsi_device_set_state(sdev, SDEV_OFFLINE); 1887 mutex_unlock(&sdev->state_mutex); 1888 1889 return SUCCESS; 1890 } 1891 1892 return eh_disp; 1893 } 1894 1895 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1896 { 1897 struct request *req = scmd->request; 1898 struct scsi_device *sdev = scmd->device; 1899 unsigned int transferred, good_bytes; 1900 u64 start_lba, end_lba, bad_lba; 1901 1902 /* 1903 * Some commands have a payload smaller than the device logical 1904 * block size (e.g. INQUIRY on a 4K disk). 1905 */ 1906 if (scsi_bufflen(scmd) <= sdev->sector_size) 1907 return 0; 1908 1909 /* Check if we have a 'bad_lba' information */ 1910 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1911 SCSI_SENSE_BUFFERSIZE, 1912 &bad_lba)) 1913 return 0; 1914 1915 /* 1916 * If the bad lba was reported incorrectly, we have no idea where 1917 * the error is. 1918 */ 1919 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1920 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1921 if (bad_lba < start_lba || bad_lba >= end_lba) 1922 return 0; 1923 1924 /* 1925 * resid is optional but mostly filled in. When it's unused, 1926 * its value is zero, so we assume the whole buffer transferred 1927 */ 1928 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1929 1930 /* This computation should always be done in terms of the 1931 * resolution of the device's medium. 1932 */ 1933 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1934 1935 return min(good_bytes, transferred); 1936 } 1937 1938 /** 1939 * sd_done - bottom half handler: called when the lower level 1940 * driver has completed (successfully or otherwise) a scsi command. 1941 * @SCpnt: mid-level's per command structure. 1942 * 1943 * Note: potentially run from within an ISR. Must not block. 1944 **/ 1945 static int sd_done(struct scsi_cmnd *SCpnt) 1946 { 1947 int result = SCpnt->result; 1948 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1949 unsigned int sector_size = SCpnt->device->sector_size; 1950 unsigned int resid; 1951 struct scsi_sense_hdr sshdr; 1952 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1953 struct request *req = SCpnt->request; 1954 int sense_valid = 0; 1955 int sense_deferred = 0; 1956 1957 switch (req_op(req)) { 1958 case REQ_OP_DISCARD: 1959 case REQ_OP_WRITE_ZEROES: 1960 case REQ_OP_WRITE_SAME: 1961 case REQ_OP_ZONE_RESET: 1962 case REQ_OP_ZONE_RESET_ALL: 1963 if (!result) { 1964 good_bytes = blk_rq_bytes(req); 1965 scsi_set_resid(SCpnt, 0); 1966 } else { 1967 good_bytes = 0; 1968 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1969 } 1970 break; 1971 default: 1972 /* 1973 * In case of bogus fw or device, we could end up having 1974 * an unaligned partial completion. Check this here and force 1975 * alignment. 1976 */ 1977 resid = scsi_get_resid(SCpnt); 1978 if (resid & (sector_size - 1)) { 1979 sd_printk(KERN_INFO, sdkp, 1980 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 1981 resid, sector_size); 1982 scsi_print_command(SCpnt); 1983 resid = min(scsi_bufflen(SCpnt), 1984 round_up(resid, sector_size)); 1985 scsi_set_resid(SCpnt, resid); 1986 } 1987 } 1988 1989 if (result) { 1990 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1991 if (sense_valid) 1992 sense_deferred = scsi_sense_is_deferred(&sshdr); 1993 } 1994 sdkp->medium_access_timed_out = 0; 1995 1996 if (driver_byte(result) != DRIVER_SENSE && 1997 (!sense_valid || sense_deferred)) 1998 goto out; 1999 2000 switch (sshdr.sense_key) { 2001 case HARDWARE_ERROR: 2002 case MEDIUM_ERROR: 2003 good_bytes = sd_completed_bytes(SCpnt); 2004 break; 2005 case RECOVERED_ERROR: 2006 good_bytes = scsi_bufflen(SCpnt); 2007 break; 2008 case NO_SENSE: 2009 /* This indicates a false check condition, so ignore it. An 2010 * unknown amount of data was transferred so treat it as an 2011 * error. 2012 */ 2013 SCpnt->result = 0; 2014 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2015 break; 2016 case ABORTED_COMMAND: 2017 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2018 good_bytes = sd_completed_bytes(SCpnt); 2019 break; 2020 case ILLEGAL_REQUEST: 2021 switch (sshdr.asc) { 2022 case 0x10: /* DIX: Host detected corruption */ 2023 good_bytes = sd_completed_bytes(SCpnt); 2024 break; 2025 case 0x20: /* INVALID COMMAND OPCODE */ 2026 case 0x24: /* INVALID FIELD IN CDB */ 2027 switch (SCpnt->cmnd[0]) { 2028 case UNMAP: 2029 sd_config_discard(sdkp, SD_LBP_DISABLE); 2030 break; 2031 case WRITE_SAME_16: 2032 case WRITE_SAME: 2033 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2034 sd_config_discard(sdkp, SD_LBP_DISABLE); 2035 } else { 2036 sdkp->device->no_write_same = 1; 2037 sd_config_write_same(sdkp); 2038 req->rq_flags |= RQF_QUIET; 2039 } 2040 break; 2041 } 2042 } 2043 break; 2044 default: 2045 break; 2046 } 2047 2048 out: 2049 if (sd_is_zoned(sdkp)) 2050 sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2051 2052 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2053 "sd_done: completed %d of %d bytes\n", 2054 good_bytes, scsi_bufflen(SCpnt))); 2055 2056 return good_bytes; 2057 } 2058 2059 /* 2060 * spinup disk - called only in sd_revalidate_disk() 2061 */ 2062 static void 2063 sd_spinup_disk(struct scsi_disk *sdkp) 2064 { 2065 unsigned char cmd[10]; 2066 unsigned long spintime_expire = 0; 2067 int retries, spintime; 2068 unsigned int the_result; 2069 struct scsi_sense_hdr sshdr; 2070 int sense_valid = 0; 2071 2072 spintime = 0; 2073 2074 /* Spin up drives, as required. Only do this at boot time */ 2075 /* Spinup needs to be done for module loads too. */ 2076 do { 2077 retries = 0; 2078 2079 do { 2080 cmd[0] = TEST_UNIT_READY; 2081 memset((void *) &cmd[1], 0, 9); 2082 2083 the_result = scsi_execute_req(sdkp->device, cmd, 2084 DMA_NONE, NULL, 0, 2085 &sshdr, SD_TIMEOUT, 2086 SD_MAX_RETRIES, NULL); 2087 2088 /* 2089 * If the drive has indicated to us that it 2090 * doesn't have any media in it, don't bother 2091 * with any more polling. 2092 */ 2093 if (media_not_present(sdkp, &sshdr)) 2094 return; 2095 2096 if (the_result) 2097 sense_valid = scsi_sense_valid(&sshdr); 2098 retries++; 2099 } while (retries < 3 && 2100 (!scsi_status_is_good(the_result) || 2101 ((driver_byte(the_result) == DRIVER_SENSE) && 2102 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2103 2104 if (driver_byte(the_result) != DRIVER_SENSE) { 2105 /* no sense, TUR either succeeded or failed 2106 * with a status error */ 2107 if(!spintime && !scsi_status_is_good(the_result)) { 2108 sd_print_result(sdkp, "Test Unit Ready failed", 2109 the_result); 2110 } 2111 break; 2112 } 2113 2114 /* 2115 * The device does not want the automatic start to be issued. 2116 */ 2117 if (sdkp->device->no_start_on_add) 2118 break; 2119 2120 if (sense_valid && sshdr.sense_key == NOT_READY) { 2121 if (sshdr.asc == 4 && sshdr.ascq == 3) 2122 break; /* manual intervention required */ 2123 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2124 break; /* standby */ 2125 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2126 break; /* unavailable */ 2127 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2128 break; /* sanitize in progress */ 2129 /* 2130 * Issue command to spin up drive when not ready 2131 */ 2132 if (!spintime) { 2133 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2134 cmd[0] = START_STOP; 2135 cmd[1] = 1; /* Return immediately */ 2136 memset((void *) &cmd[2], 0, 8); 2137 cmd[4] = 1; /* Start spin cycle */ 2138 if (sdkp->device->start_stop_pwr_cond) 2139 cmd[4] |= 1 << 4; 2140 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2141 NULL, 0, &sshdr, 2142 SD_TIMEOUT, SD_MAX_RETRIES, 2143 NULL); 2144 spintime_expire = jiffies + 100 * HZ; 2145 spintime = 1; 2146 } 2147 /* Wait 1 second for next try */ 2148 msleep(1000); 2149 printk(KERN_CONT "."); 2150 2151 /* 2152 * Wait for USB flash devices with slow firmware. 2153 * Yes, this sense key/ASC combination shouldn't 2154 * occur here. It's characteristic of these devices. 2155 */ 2156 } else if (sense_valid && 2157 sshdr.sense_key == UNIT_ATTENTION && 2158 sshdr.asc == 0x28) { 2159 if (!spintime) { 2160 spintime_expire = jiffies + 5 * HZ; 2161 spintime = 1; 2162 } 2163 /* Wait 1 second for next try */ 2164 msleep(1000); 2165 } else { 2166 /* we don't understand the sense code, so it's 2167 * probably pointless to loop */ 2168 if(!spintime) { 2169 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2170 sd_print_sense_hdr(sdkp, &sshdr); 2171 } 2172 break; 2173 } 2174 2175 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2176 2177 if (spintime) { 2178 if (scsi_status_is_good(the_result)) 2179 printk(KERN_CONT "ready\n"); 2180 else 2181 printk(KERN_CONT "not responding...\n"); 2182 } 2183 } 2184 2185 /* 2186 * Determine whether disk supports Data Integrity Field. 2187 */ 2188 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2189 { 2190 struct scsi_device *sdp = sdkp->device; 2191 u8 type; 2192 int ret = 0; 2193 2194 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 2195 return ret; 2196 2197 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2198 2199 if (type > T10_PI_TYPE3_PROTECTION) 2200 ret = -ENODEV; 2201 else if (scsi_host_dif_capable(sdp->host, type)) 2202 ret = 1; 2203 2204 if (sdkp->first_scan || type != sdkp->protection_type) 2205 switch (ret) { 2206 case -ENODEV: 2207 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2208 " protection type %u. Disabling disk!\n", 2209 type); 2210 break; 2211 case 1: 2212 sd_printk(KERN_NOTICE, sdkp, 2213 "Enabling DIF Type %u protection\n", type); 2214 break; 2215 case 0: 2216 sd_printk(KERN_NOTICE, sdkp, 2217 "Disabling DIF Type %u protection\n", type); 2218 break; 2219 } 2220 2221 sdkp->protection_type = type; 2222 2223 return ret; 2224 } 2225 2226 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2227 struct scsi_sense_hdr *sshdr, int sense_valid, 2228 int the_result) 2229 { 2230 if (driver_byte(the_result) == DRIVER_SENSE) 2231 sd_print_sense_hdr(sdkp, sshdr); 2232 else 2233 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2234 2235 /* 2236 * Set dirty bit for removable devices if not ready - 2237 * sometimes drives will not report this properly. 2238 */ 2239 if (sdp->removable && 2240 sense_valid && sshdr->sense_key == NOT_READY) 2241 set_media_not_present(sdkp); 2242 2243 /* 2244 * We used to set media_present to 0 here to indicate no media 2245 * in the drive, but some drives fail read capacity even with 2246 * media present, so we can't do that. 2247 */ 2248 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2249 } 2250 2251 #define RC16_LEN 32 2252 #if RC16_LEN > SD_BUF_SIZE 2253 #error RC16_LEN must not be more than SD_BUF_SIZE 2254 #endif 2255 2256 #define READ_CAPACITY_RETRIES_ON_RESET 10 2257 2258 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2259 unsigned char *buffer) 2260 { 2261 unsigned char cmd[16]; 2262 struct scsi_sense_hdr sshdr; 2263 int sense_valid = 0; 2264 int the_result; 2265 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2266 unsigned int alignment; 2267 unsigned long long lba; 2268 unsigned sector_size; 2269 2270 if (sdp->no_read_capacity_16) 2271 return -EINVAL; 2272 2273 do { 2274 memset(cmd, 0, 16); 2275 cmd[0] = SERVICE_ACTION_IN_16; 2276 cmd[1] = SAI_READ_CAPACITY_16; 2277 cmd[13] = RC16_LEN; 2278 memset(buffer, 0, RC16_LEN); 2279 2280 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2281 buffer, RC16_LEN, &sshdr, 2282 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2283 2284 if (media_not_present(sdkp, &sshdr)) 2285 return -ENODEV; 2286 2287 if (the_result) { 2288 sense_valid = scsi_sense_valid(&sshdr); 2289 if (sense_valid && 2290 sshdr.sense_key == ILLEGAL_REQUEST && 2291 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2292 sshdr.ascq == 0x00) 2293 /* Invalid Command Operation Code or 2294 * Invalid Field in CDB, just retry 2295 * silently with RC10 */ 2296 return -EINVAL; 2297 if (sense_valid && 2298 sshdr.sense_key == UNIT_ATTENTION && 2299 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2300 /* Device reset might occur several times, 2301 * give it one more chance */ 2302 if (--reset_retries > 0) 2303 continue; 2304 } 2305 retries--; 2306 2307 } while (the_result && retries); 2308 2309 if (the_result) { 2310 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2311 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2312 return -EINVAL; 2313 } 2314 2315 sector_size = get_unaligned_be32(&buffer[8]); 2316 lba = get_unaligned_be64(&buffer[0]); 2317 2318 if (sd_read_protection_type(sdkp, buffer) < 0) { 2319 sdkp->capacity = 0; 2320 return -ENODEV; 2321 } 2322 2323 /* Logical blocks per physical block exponent */ 2324 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2325 2326 /* RC basis */ 2327 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2328 2329 /* Lowest aligned logical block */ 2330 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2331 blk_queue_alignment_offset(sdp->request_queue, alignment); 2332 if (alignment && sdkp->first_scan) 2333 sd_printk(KERN_NOTICE, sdkp, 2334 "physical block alignment offset: %u\n", alignment); 2335 2336 if (buffer[14] & 0x80) { /* LBPME */ 2337 sdkp->lbpme = 1; 2338 2339 if (buffer[14] & 0x40) /* LBPRZ */ 2340 sdkp->lbprz = 1; 2341 2342 sd_config_discard(sdkp, SD_LBP_WS16); 2343 } 2344 2345 sdkp->capacity = lba + 1; 2346 return sector_size; 2347 } 2348 2349 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2350 unsigned char *buffer) 2351 { 2352 unsigned char cmd[16]; 2353 struct scsi_sense_hdr sshdr; 2354 int sense_valid = 0; 2355 int the_result; 2356 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2357 sector_t lba; 2358 unsigned sector_size; 2359 2360 do { 2361 cmd[0] = READ_CAPACITY; 2362 memset(&cmd[1], 0, 9); 2363 memset(buffer, 0, 8); 2364 2365 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2366 buffer, 8, &sshdr, 2367 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2368 2369 if (media_not_present(sdkp, &sshdr)) 2370 return -ENODEV; 2371 2372 if (the_result) { 2373 sense_valid = scsi_sense_valid(&sshdr); 2374 if (sense_valid && 2375 sshdr.sense_key == UNIT_ATTENTION && 2376 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2377 /* Device reset might occur several times, 2378 * give it one more chance */ 2379 if (--reset_retries > 0) 2380 continue; 2381 } 2382 retries--; 2383 2384 } while (the_result && retries); 2385 2386 if (the_result) { 2387 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2388 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2389 return -EINVAL; 2390 } 2391 2392 sector_size = get_unaligned_be32(&buffer[4]); 2393 lba = get_unaligned_be32(&buffer[0]); 2394 2395 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2396 /* Some buggy (usb cardreader) devices return an lba of 2397 0xffffffff when the want to report a size of 0 (with 2398 which they really mean no media is present) */ 2399 sdkp->capacity = 0; 2400 sdkp->physical_block_size = sector_size; 2401 return sector_size; 2402 } 2403 2404 sdkp->capacity = lba + 1; 2405 sdkp->physical_block_size = sector_size; 2406 return sector_size; 2407 } 2408 2409 static int sd_try_rc16_first(struct scsi_device *sdp) 2410 { 2411 if (sdp->host->max_cmd_len < 16) 2412 return 0; 2413 if (sdp->try_rc_10_first) 2414 return 0; 2415 if (sdp->scsi_level > SCSI_SPC_2) 2416 return 1; 2417 if (scsi_device_protection(sdp)) 2418 return 1; 2419 return 0; 2420 } 2421 2422 /* 2423 * read disk capacity 2424 */ 2425 static void 2426 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2427 { 2428 int sector_size; 2429 struct scsi_device *sdp = sdkp->device; 2430 2431 if (sd_try_rc16_first(sdp)) { 2432 sector_size = read_capacity_16(sdkp, sdp, buffer); 2433 if (sector_size == -EOVERFLOW) 2434 goto got_data; 2435 if (sector_size == -ENODEV) 2436 return; 2437 if (sector_size < 0) 2438 sector_size = read_capacity_10(sdkp, sdp, buffer); 2439 if (sector_size < 0) 2440 return; 2441 } else { 2442 sector_size = read_capacity_10(sdkp, sdp, buffer); 2443 if (sector_size == -EOVERFLOW) 2444 goto got_data; 2445 if (sector_size < 0) 2446 return; 2447 if ((sizeof(sdkp->capacity) > 4) && 2448 (sdkp->capacity > 0xffffffffULL)) { 2449 int old_sector_size = sector_size; 2450 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2451 "Trying to use READ CAPACITY(16).\n"); 2452 sector_size = read_capacity_16(sdkp, sdp, buffer); 2453 if (sector_size < 0) { 2454 sd_printk(KERN_NOTICE, sdkp, 2455 "Using 0xffffffff as device size\n"); 2456 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2457 sector_size = old_sector_size; 2458 goto got_data; 2459 } 2460 /* Remember that READ CAPACITY(16) succeeded */ 2461 sdp->try_rc_10_first = 0; 2462 } 2463 } 2464 2465 /* Some devices are known to return the total number of blocks, 2466 * not the highest block number. Some devices have versions 2467 * which do this and others which do not. Some devices we might 2468 * suspect of doing this but we don't know for certain. 2469 * 2470 * If we know the reported capacity is wrong, decrement it. If 2471 * we can only guess, then assume the number of blocks is even 2472 * (usually true but not always) and err on the side of lowering 2473 * the capacity. 2474 */ 2475 if (sdp->fix_capacity || 2476 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2477 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2478 "from its reported value: %llu\n", 2479 (unsigned long long) sdkp->capacity); 2480 --sdkp->capacity; 2481 } 2482 2483 got_data: 2484 if (sector_size == 0) { 2485 sector_size = 512; 2486 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2487 "assuming 512.\n"); 2488 } 2489 2490 if (sector_size != 512 && 2491 sector_size != 1024 && 2492 sector_size != 2048 && 2493 sector_size != 4096) { 2494 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2495 sector_size); 2496 /* 2497 * The user might want to re-format the drive with 2498 * a supported sectorsize. Once this happens, it 2499 * would be relatively trivial to set the thing up. 2500 * For this reason, we leave the thing in the table. 2501 */ 2502 sdkp->capacity = 0; 2503 /* 2504 * set a bogus sector size so the normal read/write 2505 * logic in the block layer will eventually refuse any 2506 * request on this device without tripping over power 2507 * of two sector size assumptions 2508 */ 2509 sector_size = 512; 2510 } 2511 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2512 blk_queue_physical_block_size(sdp->request_queue, 2513 sdkp->physical_block_size); 2514 sdkp->device->sector_size = sector_size; 2515 2516 if (sdkp->capacity > 0xffffffff) 2517 sdp->use_16_for_rw = 1; 2518 2519 } 2520 2521 /* 2522 * Print disk capacity 2523 */ 2524 static void 2525 sd_print_capacity(struct scsi_disk *sdkp, 2526 sector_t old_capacity) 2527 { 2528 int sector_size = sdkp->device->sector_size; 2529 char cap_str_2[10], cap_str_10[10]; 2530 2531 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2532 return; 2533 2534 string_get_size(sdkp->capacity, sector_size, 2535 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2536 string_get_size(sdkp->capacity, sector_size, 2537 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2538 2539 sd_printk(KERN_NOTICE, sdkp, 2540 "%llu %d-byte logical blocks: (%s/%s)\n", 2541 (unsigned long long)sdkp->capacity, 2542 sector_size, cap_str_10, cap_str_2); 2543 2544 if (sdkp->physical_block_size != sector_size) 2545 sd_printk(KERN_NOTICE, sdkp, 2546 "%u-byte physical blocks\n", 2547 sdkp->physical_block_size); 2548 2549 sd_zbc_print_zones(sdkp); 2550 } 2551 2552 /* called with buffer of length 512 */ 2553 static inline int 2554 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2555 unsigned char *buffer, int len, struct scsi_mode_data *data, 2556 struct scsi_sense_hdr *sshdr) 2557 { 2558 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2559 SD_TIMEOUT, SD_MAX_RETRIES, data, 2560 sshdr); 2561 } 2562 2563 /* 2564 * read write protect setting, if possible - called only in sd_revalidate_disk() 2565 * called with buffer of length SD_BUF_SIZE 2566 */ 2567 static void 2568 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2569 { 2570 int res; 2571 struct scsi_device *sdp = sdkp->device; 2572 struct scsi_mode_data data; 2573 int old_wp = sdkp->write_prot; 2574 2575 set_disk_ro(sdkp->disk, 0); 2576 if (sdp->skip_ms_page_3f) { 2577 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2578 return; 2579 } 2580 2581 if (sdp->use_192_bytes_for_3f) { 2582 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2583 } else { 2584 /* 2585 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2586 * We have to start carefully: some devices hang if we ask 2587 * for more than is available. 2588 */ 2589 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2590 2591 /* 2592 * Second attempt: ask for page 0 When only page 0 is 2593 * implemented, a request for page 3F may return Sense Key 2594 * 5: Illegal Request, Sense Code 24: Invalid field in 2595 * CDB. 2596 */ 2597 if (!scsi_status_is_good(res)) 2598 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2599 2600 /* 2601 * Third attempt: ask 255 bytes, as we did earlier. 2602 */ 2603 if (!scsi_status_is_good(res)) 2604 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2605 &data, NULL); 2606 } 2607 2608 if (!scsi_status_is_good(res)) { 2609 sd_first_printk(KERN_WARNING, sdkp, 2610 "Test WP failed, assume Write Enabled\n"); 2611 } else { 2612 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2613 set_disk_ro(sdkp->disk, sdkp->write_prot); 2614 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2615 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2616 sdkp->write_prot ? "on" : "off"); 2617 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2618 } 2619 } 2620 } 2621 2622 /* 2623 * sd_read_cache_type - called only from sd_revalidate_disk() 2624 * called with buffer of length SD_BUF_SIZE 2625 */ 2626 static void 2627 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2628 { 2629 int len = 0, res; 2630 struct scsi_device *sdp = sdkp->device; 2631 2632 int dbd; 2633 int modepage; 2634 int first_len; 2635 struct scsi_mode_data data; 2636 struct scsi_sense_hdr sshdr; 2637 int old_wce = sdkp->WCE; 2638 int old_rcd = sdkp->RCD; 2639 int old_dpofua = sdkp->DPOFUA; 2640 2641 2642 if (sdkp->cache_override) 2643 return; 2644 2645 first_len = 4; 2646 if (sdp->skip_ms_page_8) { 2647 if (sdp->type == TYPE_RBC) 2648 goto defaults; 2649 else { 2650 if (sdp->skip_ms_page_3f) 2651 goto defaults; 2652 modepage = 0x3F; 2653 if (sdp->use_192_bytes_for_3f) 2654 first_len = 192; 2655 dbd = 0; 2656 } 2657 } else if (sdp->type == TYPE_RBC) { 2658 modepage = 6; 2659 dbd = 8; 2660 } else { 2661 modepage = 8; 2662 dbd = 0; 2663 } 2664 2665 /* cautiously ask */ 2666 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2667 &data, &sshdr); 2668 2669 if (!scsi_status_is_good(res)) 2670 goto bad_sense; 2671 2672 if (!data.header_length) { 2673 modepage = 6; 2674 first_len = 0; 2675 sd_first_printk(KERN_ERR, sdkp, 2676 "Missing header in MODE_SENSE response\n"); 2677 } 2678 2679 /* that went OK, now ask for the proper length */ 2680 len = data.length; 2681 2682 /* 2683 * We're only interested in the first three bytes, actually. 2684 * But the data cache page is defined for the first 20. 2685 */ 2686 if (len < 3) 2687 goto bad_sense; 2688 else if (len > SD_BUF_SIZE) { 2689 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2690 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2691 len = SD_BUF_SIZE; 2692 } 2693 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2694 len = 192; 2695 2696 /* Get the data */ 2697 if (len > first_len) 2698 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2699 &data, &sshdr); 2700 2701 if (scsi_status_is_good(res)) { 2702 int offset = data.header_length + data.block_descriptor_length; 2703 2704 while (offset < len) { 2705 u8 page_code = buffer[offset] & 0x3F; 2706 u8 spf = buffer[offset] & 0x40; 2707 2708 if (page_code == 8 || page_code == 6) { 2709 /* We're interested only in the first 3 bytes. 2710 */ 2711 if (len - offset <= 2) { 2712 sd_first_printk(KERN_ERR, sdkp, 2713 "Incomplete mode parameter " 2714 "data\n"); 2715 goto defaults; 2716 } else { 2717 modepage = page_code; 2718 goto Page_found; 2719 } 2720 } else { 2721 /* Go to the next page */ 2722 if (spf && len - offset > 3) 2723 offset += 4 + (buffer[offset+2] << 8) + 2724 buffer[offset+3]; 2725 else if (!spf && len - offset > 1) 2726 offset += 2 + buffer[offset+1]; 2727 else { 2728 sd_first_printk(KERN_ERR, sdkp, 2729 "Incomplete mode " 2730 "parameter data\n"); 2731 goto defaults; 2732 } 2733 } 2734 } 2735 2736 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2737 goto defaults; 2738 2739 Page_found: 2740 if (modepage == 8) { 2741 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2742 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2743 } else { 2744 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2745 sdkp->RCD = 0; 2746 } 2747 2748 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2749 if (sdp->broken_fua) { 2750 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2751 sdkp->DPOFUA = 0; 2752 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2753 !sdkp->device->use_16_for_rw) { 2754 sd_first_printk(KERN_NOTICE, sdkp, 2755 "Uses READ/WRITE(6), disabling FUA\n"); 2756 sdkp->DPOFUA = 0; 2757 } 2758 2759 /* No cache flush allowed for write protected devices */ 2760 if (sdkp->WCE && sdkp->write_prot) 2761 sdkp->WCE = 0; 2762 2763 if (sdkp->first_scan || old_wce != sdkp->WCE || 2764 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2765 sd_printk(KERN_NOTICE, sdkp, 2766 "Write cache: %s, read cache: %s, %s\n", 2767 sdkp->WCE ? "enabled" : "disabled", 2768 sdkp->RCD ? "disabled" : "enabled", 2769 sdkp->DPOFUA ? "supports DPO and FUA" 2770 : "doesn't support DPO or FUA"); 2771 2772 return; 2773 } 2774 2775 bad_sense: 2776 if (scsi_sense_valid(&sshdr) && 2777 sshdr.sense_key == ILLEGAL_REQUEST && 2778 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2779 /* Invalid field in CDB */ 2780 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2781 else 2782 sd_first_printk(KERN_ERR, sdkp, 2783 "Asking for cache data failed\n"); 2784 2785 defaults: 2786 if (sdp->wce_default_on) { 2787 sd_first_printk(KERN_NOTICE, sdkp, 2788 "Assuming drive cache: write back\n"); 2789 sdkp->WCE = 1; 2790 } else { 2791 sd_first_printk(KERN_ERR, sdkp, 2792 "Assuming drive cache: write through\n"); 2793 sdkp->WCE = 0; 2794 } 2795 sdkp->RCD = 0; 2796 sdkp->DPOFUA = 0; 2797 } 2798 2799 /* 2800 * The ATO bit indicates whether the DIF application tag is available 2801 * for use by the operating system. 2802 */ 2803 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2804 { 2805 int res, offset; 2806 struct scsi_device *sdp = sdkp->device; 2807 struct scsi_mode_data data; 2808 struct scsi_sense_hdr sshdr; 2809 2810 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2811 return; 2812 2813 if (sdkp->protection_type == 0) 2814 return; 2815 2816 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2817 SD_MAX_RETRIES, &data, &sshdr); 2818 2819 if (!scsi_status_is_good(res) || !data.header_length || 2820 data.length < 6) { 2821 sd_first_printk(KERN_WARNING, sdkp, 2822 "getting Control mode page failed, assume no ATO\n"); 2823 2824 if (scsi_sense_valid(&sshdr)) 2825 sd_print_sense_hdr(sdkp, &sshdr); 2826 2827 return; 2828 } 2829 2830 offset = data.header_length + data.block_descriptor_length; 2831 2832 if ((buffer[offset] & 0x3f) != 0x0a) { 2833 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2834 return; 2835 } 2836 2837 if ((buffer[offset + 5] & 0x80) == 0) 2838 return; 2839 2840 sdkp->ATO = 1; 2841 2842 return; 2843 } 2844 2845 /** 2846 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2847 * @sdkp: disk to query 2848 */ 2849 static void sd_read_block_limits(struct scsi_disk *sdkp) 2850 { 2851 unsigned int sector_sz = sdkp->device->sector_size; 2852 const int vpd_len = 64; 2853 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2854 2855 if (!buffer || 2856 /* Block Limits VPD */ 2857 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2858 goto out; 2859 2860 blk_queue_io_min(sdkp->disk->queue, 2861 get_unaligned_be16(&buffer[6]) * sector_sz); 2862 2863 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2864 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2865 2866 if (buffer[3] == 0x3c) { 2867 unsigned int lba_count, desc_count; 2868 2869 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2870 2871 if (!sdkp->lbpme) 2872 goto out; 2873 2874 lba_count = get_unaligned_be32(&buffer[20]); 2875 desc_count = get_unaligned_be32(&buffer[24]); 2876 2877 if (lba_count && desc_count) 2878 sdkp->max_unmap_blocks = lba_count; 2879 2880 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2881 2882 if (buffer[32] & 0x80) 2883 sdkp->unmap_alignment = 2884 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2885 2886 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2887 2888 if (sdkp->max_unmap_blocks) 2889 sd_config_discard(sdkp, SD_LBP_UNMAP); 2890 else 2891 sd_config_discard(sdkp, SD_LBP_WS16); 2892 2893 } else { /* LBP VPD page tells us what to use */ 2894 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2895 sd_config_discard(sdkp, SD_LBP_UNMAP); 2896 else if (sdkp->lbpws) 2897 sd_config_discard(sdkp, SD_LBP_WS16); 2898 else if (sdkp->lbpws10) 2899 sd_config_discard(sdkp, SD_LBP_WS10); 2900 else 2901 sd_config_discard(sdkp, SD_LBP_DISABLE); 2902 } 2903 } 2904 2905 out: 2906 kfree(buffer); 2907 } 2908 2909 /** 2910 * sd_read_block_characteristics - Query block dev. characteristics 2911 * @sdkp: disk to query 2912 */ 2913 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2914 { 2915 struct request_queue *q = sdkp->disk->queue; 2916 unsigned char *buffer; 2917 u16 rot; 2918 const int vpd_len = 64; 2919 2920 buffer = kmalloc(vpd_len, GFP_KERNEL); 2921 2922 if (!buffer || 2923 /* Block Device Characteristics VPD */ 2924 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2925 goto out; 2926 2927 rot = get_unaligned_be16(&buffer[4]); 2928 2929 if (rot == 1) { 2930 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2931 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2932 } 2933 2934 if (sdkp->device->type == TYPE_ZBC) { 2935 /* Host-managed */ 2936 q->limits.zoned = BLK_ZONED_HM; 2937 } else { 2938 sdkp->zoned = (buffer[8] >> 4) & 3; 2939 if (sdkp->zoned == 1) 2940 /* Host-aware */ 2941 q->limits.zoned = BLK_ZONED_HA; 2942 else 2943 /* 2944 * Treat drive-managed devices as 2945 * regular block devices. 2946 */ 2947 q->limits.zoned = BLK_ZONED_NONE; 2948 } 2949 if (blk_queue_is_zoned(q) && sdkp->first_scan) 2950 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2951 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2952 2953 out: 2954 kfree(buffer); 2955 } 2956 2957 /** 2958 * sd_read_block_provisioning - Query provisioning VPD page 2959 * @sdkp: disk to query 2960 */ 2961 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2962 { 2963 unsigned char *buffer; 2964 const int vpd_len = 8; 2965 2966 if (sdkp->lbpme == 0) 2967 return; 2968 2969 buffer = kmalloc(vpd_len, GFP_KERNEL); 2970 2971 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2972 goto out; 2973 2974 sdkp->lbpvpd = 1; 2975 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 2976 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 2977 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 2978 2979 out: 2980 kfree(buffer); 2981 } 2982 2983 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 2984 { 2985 struct scsi_device *sdev = sdkp->device; 2986 2987 if (sdev->host->no_write_same) { 2988 sdev->no_write_same = 1; 2989 2990 return; 2991 } 2992 2993 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 2994 /* too large values might cause issues with arcmsr */ 2995 int vpd_buf_len = 64; 2996 2997 sdev->no_report_opcodes = 1; 2998 2999 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3000 * CODES is unsupported and the device has an ATA 3001 * Information VPD page (SAT). 3002 */ 3003 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3004 sdev->no_write_same = 1; 3005 } 3006 3007 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3008 sdkp->ws16 = 1; 3009 3010 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3011 sdkp->ws10 = 1; 3012 } 3013 3014 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3015 { 3016 struct scsi_device *sdev = sdkp->device; 3017 3018 if (!sdev->security_supported) 3019 return; 3020 3021 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3022 SECURITY_PROTOCOL_IN) == 1 && 3023 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3024 SECURITY_PROTOCOL_OUT) == 1) 3025 sdkp->security = 1; 3026 } 3027 3028 /* 3029 * Determine the device's preferred I/O size for reads and writes 3030 * unless the reported value is unreasonably small, large, not a 3031 * multiple of the physical block size, or simply garbage. 3032 */ 3033 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3034 unsigned int dev_max) 3035 { 3036 struct scsi_device *sdp = sdkp->device; 3037 unsigned int opt_xfer_bytes = 3038 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3039 3040 if (sdkp->opt_xfer_blocks == 0) 3041 return false; 3042 3043 if (sdkp->opt_xfer_blocks > dev_max) { 3044 sd_first_printk(KERN_WARNING, sdkp, 3045 "Optimal transfer size %u logical blocks " \ 3046 "> dev_max (%u logical blocks)\n", 3047 sdkp->opt_xfer_blocks, dev_max); 3048 return false; 3049 } 3050 3051 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3052 sd_first_printk(KERN_WARNING, sdkp, 3053 "Optimal transfer size %u logical blocks " \ 3054 "> sd driver limit (%u logical blocks)\n", 3055 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3056 return false; 3057 } 3058 3059 if (opt_xfer_bytes < PAGE_SIZE) { 3060 sd_first_printk(KERN_WARNING, sdkp, 3061 "Optimal transfer size %u bytes < " \ 3062 "PAGE_SIZE (%u bytes)\n", 3063 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3064 return false; 3065 } 3066 3067 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3068 sd_first_printk(KERN_WARNING, sdkp, 3069 "Optimal transfer size %u bytes not a " \ 3070 "multiple of physical block size (%u bytes)\n", 3071 opt_xfer_bytes, sdkp->physical_block_size); 3072 return false; 3073 } 3074 3075 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3076 opt_xfer_bytes); 3077 return true; 3078 } 3079 3080 /** 3081 * sd_revalidate_disk - called the first time a new disk is seen, 3082 * performs disk spin up, read_capacity, etc. 3083 * @disk: struct gendisk we care about 3084 **/ 3085 static int sd_revalidate_disk(struct gendisk *disk) 3086 { 3087 struct scsi_disk *sdkp = scsi_disk(disk); 3088 struct scsi_device *sdp = sdkp->device; 3089 struct request_queue *q = sdkp->disk->queue; 3090 sector_t old_capacity = sdkp->capacity; 3091 unsigned char *buffer; 3092 unsigned int dev_max, rw_max; 3093 3094 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3095 "sd_revalidate_disk\n")); 3096 3097 /* 3098 * If the device is offline, don't try and read capacity or any 3099 * of the other niceties. 3100 */ 3101 if (!scsi_device_online(sdp)) 3102 goto out; 3103 3104 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3105 if (!buffer) { 3106 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3107 "allocation failure.\n"); 3108 goto out; 3109 } 3110 3111 sd_spinup_disk(sdkp); 3112 3113 /* 3114 * Without media there is no reason to ask; moreover, some devices 3115 * react badly if we do. 3116 */ 3117 if (sdkp->media_present) { 3118 sd_read_capacity(sdkp, buffer); 3119 3120 /* 3121 * set the default to rotational. All non-rotational devices 3122 * support the block characteristics VPD page, which will 3123 * cause this to be updated correctly and any device which 3124 * doesn't support it should be treated as rotational. 3125 */ 3126 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3127 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3128 3129 if (scsi_device_supports_vpd(sdp)) { 3130 sd_read_block_provisioning(sdkp); 3131 sd_read_block_limits(sdkp); 3132 sd_read_block_characteristics(sdkp); 3133 sd_zbc_read_zones(sdkp, buffer); 3134 } 3135 3136 sd_print_capacity(sdkp, old_capacity); 3137 3138 sd_read_write_protect_flag(sdkp, buffer); 3139 sd_read_cache_type(sdkp, buffer); 3140 sd_read_app_tag_own(sdkp, buffer); 3141 sd_read_write_same(sdkp, buffer); 3142 sd_read_security(sdkp, buffer); 3143 } 3144 3145 /* 3146 * We now have all cache related info, determine how we deal 3147 * with flush requests. 3148 */ 3149 sd_set_flush_flag(sdkp); 3150 3151 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3152 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3153 3154 /* Some devices report a maximum block count for READ/WRITE requests. */ 3155 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3156 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3157 3158 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3159 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3160 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3161 } else 3162 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3163 (sector_t)BLK_DEF_MAX_SECTORS); 3164 3165 /* Do not exceed controller limit */ 3166 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3167 3168 /* 3169 * Only update max_sectors if previously unset or if the current value 3170 * exceeds the capabilities of the hardware. 3171 */ 3172 if (sdkp->first_scan || 3173 q->limits.max_sectors > q->limits.max_dev_sectors || 3174 q->limits.max_sectors > q->limits.max_hw_sectors) 3175 q->limits.max_sectors = rw_max; 3176 3177 sdkp->first_scan = 0; 3178 3179 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); 3180 sd_config_write_same(sdkp); 3181 kfree(buffer); 3182 3183 out: 3184 return 0; 3185 } 3186 3187 /** 3188 * sd_unlock_native_capacity - unlock native capacity 3189 * @disk: struct gendisk to set capacity for 3190 * 3191 * Block layer calls this function if it detects that partitions 3192 * on @disk reach beyond the end of the device. If the SCSI host 3193 * implements ->unlock_native_capacity() method, it's invoked to 3194 * give it a chance to adjust the device capacity. 3195 * 3196 * CONTEXT: 3197 * Defined by block layer. Might sleep. 3198 */ 3199 static void sd_unlock_native_capacity(struct gendisk *disk) 3200 { 3201 struct scsi_device *sdev = scsi_disk(disk)->device; 3202 3203 if (sdev->host->hostt->unlock_native_capacity) 3204 sdev->host->hostt->unlock_native_capacity(sdev); 3205 } 3206 3207 /** 3208 * sd_format_disk_name - format disk name 3209 * @prefix: name prefix - ie. "sd" for SCSI disks 3210 * @index: index of the disk to format name for 3211 * @buf: output buffer 3212 * @buflen: length of the output buffer 3213 * 3214 * SCSI disk names starts at sda. The 26th device is sdz and the 3215 * 27th is sdaa. The last one for two lettered suffix is sdzz 3216 * which is followed by sdaaa. 3217 * 3218 * This is basically 26 base counting with one extra 'nil' entry 3219 * at the beginning from the second digit on and can be 3220 * determined using similar method as 26 base conversion with the 3221 * index shifted -1 after each digit is computed. 3222 * 3223 * CONTEXT: 3224 * Don't care. 3225 * 3226 * RETURNS: 3227 * 0 on success, -errno on failure. 3228 */ 3229 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3230 { 3231 const int base = 'z' - 'a' + 1; 3232 char *begin = buf + strlen(prefix); 3233 char *end = buf + buflen; 3234 char *p; 3235 int unit; 3236 3237 p = end - 1; 3238 *p = '\0'; 3239 unit = base; 3240 do { 3241 if (p == begin) 3242 return -EINVAL; 3243 *--p = 'a' + (index % unit); 3244 index = (index / unit) - 1; 3245 } while (index >= 0); 3246 3247 memmove(begin, p, end - p); 3248 memcpy(buf, prefix, strlen(prefix)); 3249 3250 return 0; 3251 } 3252 3253 /** 3254 * sd_probe - called during driver initialization and whenever a 3255 * new scsi device is attached to the system. It is called once 3256 * for each scsi device (not just disks) present. 3257 * @dev: pointer to device object 3258 * 3259 * Returns 0 if successful (or not interested in this scsi device 3260 * (e.g. scanner)); 1 when there is an error. 3261 * 3262 * Note: this function is invoked from the scsi mid-level. 3263 * This function sets up the mapping between a given 3264 * <host,channel,id,lun> (found in sdp) and new device name 3265 * (e.g. /dev/sda). More precisely it is the block device major 3266 * and minor number that is chosen here. 3267 * 3268 * Assume sd_probe is not re-entrant (for time being) 3269 * Also think about sd_probe() and sd_remove() running coincidentally. 3270 **/ 3271 static int sd_probe(struct device *dev) 3272 { 3273 struct scsi_device *sdp = to_scsi_device(dev); 3274 struct scsi_disk *sdkp; 3275 struct gendisk *gd; 3276 int index; 3277 int error; 3278 3279 scsi_autopm_get_device(sdp); 3280 error = -ENODEV; 3281 if (sdp->type != TYPE_DISK && 3282 sdp->type != TYPE_ZBC && 3283 sdp->type != TYPE_MOD && 3284 sdp->type != TYPE_RBC) 3285 goto out; 3286 3287 #ifndef CONFIG_BLK_DEV_ZONED 3288 if (sdp->type == TYPE_ZBC) 3289 goto out; 3290 #endif 3291 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3292 "sd_probe\n")); 3293 3294 error = -ENOMEM; 3295 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3296 if (!sdkp) 3297 goto out; 3298 3299 gd = alloc_disk(SD_MINORS); 3300 if (!gd) 3301 goto out_free; 3302 3303 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3304 if (index < 0) { 3305 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3306 goto out_put; 3307 } 3308 3309 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3310 if (error) { 3311 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3312 goto out_free_index; 3313 } 3314 3315 sdkp->device = sdp; 3316 sdkp->driver = &sd_template; 3317 sdkp->disk = gd; 3318 sdkp->index = index; 3319 atomic_set(&sdkp->openers, 0); 3320 atomic_set(&sdkp->device->ioerr_cnt, 0); 3321 3322 if (!sdp->request_queue->rq_timeout) { 3323 if (sdp->type != TYPE_MOD) 3324 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3325 else 3326 blk_queue_rq_timeout(sdp->request_queue, 3327 SD_MOD_TIMEOUT); 3328 } 3329 3330 device_initialize(&sdkp->dev); 3331 sdkp->dev.parent = dev; 3332 sdkp->dev.class = &sd_disk_class; 3333 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3334 3335 error = device_add(&sdkp->dev); 3336 if (error) 3337 goto out_free_index; 3338 3339 get_device(dev); 3340 dev_set_drvdata(dev, sdkp); 3341 3342 gd->major = sd_major((index & 0xf0) >> 4); 3343 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3344 3345 gd->fops = &sd_fops; 3346 gd->private_data = &sdkp->driver; 3347 gd->queue = sdkp->device->request_queue; 3348 3349 /* defaults, until the device tells us otherwise */ 3350 sdp->sector_size = 512; 3351 sdkp->capacity = 0; 3352 sdkp->media_present = 1; 3353 sdkp->write_prot = 0; 3354 sdkp->cache_override = 0; 3355 sdkp->WCE = 0; 3356 sdkp->RCD = 0; 3357 sdkp->ATO = 0; 3358 sdkp->first_scan = 1; 3359 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3360 3361 sd_revalidate_disk(gd); 3362 3363 gd->flags = GENHD_FL_EXT_DEVT; 3364 if (sdp->removable) { 3365 gd->flags |= GENHD_FL_REMOVABLE; 3366 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3367 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3368 } 3369 3370 blk_pm_runtime_init(sdp->request_queue, dev); 3371 device_add_disk(dev, gd, NULL); 3372 if (sdkp->capacity) 3373 sd_dif_config_host(sdkp); 3374 3375 sd_revalidate_disk(gd); 3376 3377 if (sdkp->security) { 3378 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit); 3379 if (sdkp->opal_dev) 3380 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3381 } 3382 3383 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3384 sdp->removable ? "removable " : ""); 3385 scsi_autopm_put_device(sdp); 3386 3387 return 0; 3388 3389 out_free_index: 3390 ida_free(&sd_index_ida, index); 3391 out_put: 3392 put_disk(gd); 3393 out_free: 3394 kfree(sdkp); 3395 out: 3396 scsi_autopm_put_device(sdp); 3397 return error; 3398 } 3399 3400 /** 3401 * sd_remove - called whenever a scsi disk (previously recognized by 3402 * sd_probe) is detached from the system. It is called (potentially 3403 * multiple times) during sd module unload. 3404 * @dev: pointer to device object 3405 * 3406 * Note: this function is invoked from the scsi mid-level. 3407 * This function potentially frees up a device name (e.g. /dev/sdc) 3408 * that could be re-used by a subsequent sd_probe(). 3409 * This function is not called when the built-in sd driver is "exit-ed". 3410 **/ 3411 static int sd_remove(struct device *dev) 3412 { 3413 struct scsi_disk *sdkp; 3414 dev_t devt; 3415 3416 sdkp = dev_get_drvdata(dev); 3417 devt = disk_devt(sdkp->disk); 3418 scsi_autopm_get_device(sdkp->device); 3419 3420 async_synchronize_full_domain(&scsi_sd_pm_domain); 3421 device_del(&sdkp->dev); 3422 del_gendisk(sdkp->disk); 3423 sd_shutdown(dev); 3424 3425 free_opal_dev(sdkp->opal_dev); 3426 3427 blk_register_region(devt, SD_MINORS, NULL, 3428 sd_default_probe, NULL, NULL); 3429 3430 mutex_lock(&sd_ref_mutex); 3431 dev_set_drvdata(dev, NULL); 3432 put_device(&sdkp->dev); 3433 mutex_unlock(&sd_ref_mutex); 3434 3435 return 0; 3436 } 3437 3438 /** 3439 * scsi_disk_release - Called to free the scsi_disk structure 3440 * @dev: pointer to embedded class device 3441 * 3442 * sd_ref_mutex must be held entering this routine. Because it is 3443 * called on last put, you should always use the scsi_disk_get() 3444 * scsi_disk_put() helpers which manipulate the semaphore directly 3445 * and never do a direct put_device. 3446 **/ 3447 static void scsi_disk_release(struct device *dev) 3448 { 3449 struct scsi_disk *sdkp = to_scsi_disk(dev); 3450 struct gendisk *disk = sdkp->disk; 3451 struct request_queue *q = disk->queue; 3452 3453 ida_free(&sd_index_ida, sdkp->index); 3454 3455 /* 3456 * Wait until all requests that are in progress have completed. 3457 * This is necessary to avoid that e.g. scsi_end_request() crashes 3458 * due to clearing the disk->private_data pointer. Wait from inside 3459 * scsi_disk_release() instead of from sd_release() to avoid that 3460 * freezing and unfreezing the request queue affects user space I/O 3461 * in case multiple processes open a /dev/sd... node concurrently. 3462 */ 3463 blk_mq_freeze_queue(q); 3464 blk_mq_unfreeze_queue(q); 3465 3466 disk->private_data = NULL; 3467 put_disk(disk); 3468 put_device(&sdkp->device->sdev_gendev); 3469 3470 kfree(sdkp); 3471 } 3472 3473 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3474 { 3475 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3476 struct scsi_sense_hdr sshdr; 3477 struct scsi_device *sdp = sdkp->device; 3478 int res; 3479 3480 if (start) 3481 cmd[4] |= 1; /* START */ 3482 3483 if (sdp->start_stop_pwr_cond) 3484 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3485 3486 if (!scsi_device_online(sdp)) 3487 return -ENODEV; 3488 3489 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3490 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL); 3491 if (res) { 3492 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3493 if (driver_byte(res) == DRIVER_SENSE) 3494 sd_print_sense_hdr(sdkp, &sshdr); 3495 if (scsi_sense_valid(&sshdr) && 3496 /* 0x3a is medium not present */ 3497 sshdr.asc == 0x3a) 3498 res = 0; 3499 } 3500 3501 /* SCSI error codes must not go to the generic layer */ 3502 if (res) 3503 return -EIO; 3504 3505 return 0; 3506 } 3507 3508 /* 3509 * Send a SYNCHRONIZE CACHE instruction down to the device through 3510 * the normal SCSI command structure. Wait for the command to 3511 * complete. 3512 */ 3513 static void sd_shutdown(struct device *dev) 3514 { 3515 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3516 3517 if (!sdkp) 3518 return; /* this can happen */ 3519 3520 if (pm_runtime_suspended(dev)) 3521 return; 3522 3523 if (sdkp->WCE && sdkp->media_present) { 3524 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3525 sd_sync_cache(sdkp, NULL); 3526 } 3527 3528 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3529 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3530 sd_start_stop_device(sdkp, 0); 3531 } 3532 } 3533 3534 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3535 { 3536 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3537 struct scsi_sense_hdr sshdr; 3538 int ret = 0; 3539 3540 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3541 return 0; 3542 3543 if (sdkp->WCE && sdkp->media_present) { 3544 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3545 ret = sd_sync_cache(sdkp, &sshdr); 3546 3547 if (ret) { 3548 /* ignore OFFLINE device */ 3549 if (ret == -ENODEV) 3550 return 0; 3551 3552 if (!scsi_sense_valid(&sshdr) || 3553 sshdr.sense_key != ILLEGAL_REQUEST) 3554 return ret; 3555 3556 /* 3557 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3558 * doesn't support sync. There's not much to do and 3559 * suspend shouldn't fail. 3560 */ 3561 ret = 0; 3562 } 3563 } 3564 3565 if (sdkp->device->manage_start_stop) { 3566 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3567 /* an error is not worth aborting a system sleep */ 3568 ret = sd_start_stop_device(sdkp, 0); 3569 if (ignore_stop_errors) 3570 ret = 0; 3571 } 3572 3573 return ret; 3574 } 3575 3576 static int sd_suspend_system(struct device *dev) 3577 { 3578 return sd_suspend_common(dev, true); 3579 } 3580 3581 static int sd_suspend_runtime(struct device *dev) 3582 { 3583 return sd_suspend_common(dev, false); 3584 } 3585 3586 static int sd_resume(struct device *dev) 3587 { 3588 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3589 int ret; 3590 3591 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3592 return 0; 3593 3594 if (!sdkp->device->manage_start_stop) 3595 return 0; 3596 3597 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3598 ret = sd_start_stop_device(sdkp, 1); 3599 if (!ret) 3600 opal_unlock_from_suspend(sdkp->opal_dev); 3601 return ret; 3602 } 3603 3604 /** 3605 * init_sd - entry point for this driver (both when built in or when 3606 * a module). 3607 * 3608 * Note: this function registers this driver with the scsi mid-level. 3609 **/ 3610 static int __init init_sd(void) 3611 { 3612 int majors = 0, i, err; 3613 3614 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3615 3616 for (i = 0; i < SD_MAJORS; i++) { 3617 if (register_blkdev(sd_major(i), "sd") != 0) 3618 continue; 3619 majors++; 3620 blk_register_region(sd_major(i), SD_MINORS, NULL, 3621 sd_default_probe, NULL, NULL); 3622 } 3623 3624 if (!majors) 3625 return -ENODEV; 3626 3627 err = class_register(&sd_disk_class); 3628 if (err) 3629 goto err_out; 3630 3631 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3632 0, 0, NULL); 3633 if (!sd_cdb_cache) { 3634 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3635 err = -ENOMEM; 3636 goto err_out_class; 3637 } 3638 3639 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3640 if (!sd_cdb_pool) { 3641 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3642 err = -ENOMEM; 3643 goto err_out_cache; 3644 } 3645 3646 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3647 if (!sd_page_pool) { 3648 printk(KERN_ERR "sd: can't init discard page pool\n"); 3649 err = -ENOMEM; 3650 goto err_out_ppool; 3651 } 3652 3653 err = scsi_register_driver(&sd_template.gendrv); 3654 if (err) 3655 goto err_out_driver; 3656 3657 return 0; 3658 3659 err_out_driver: 3660 mempool_destroy(sd_page_pool); 3661 3662 err_out_ppool: 3663 mempool_destroy(sd_cdb_pool); 3664 3665 err_out_cache: 3666 kmem_cache_destroy(sd_cdb_cache); 3667 3668 err_out_class: 3669 class_unregister(&sd_disk_class); 3670 err_out: 3671 for (i = 0; i < SD_MAJORS; i++) 3672 unregister_blkdev(sd_major(i), "sd"); 3673 return err; 3674 } 3675 3676 /** 3677 * exit_sd - exit point for this driver (when it is a module). 3678 * 3679 * Note: this function unregisters this driver from the scsi mid-level. 3680 **/ 3681 static void __exit exit_sd(void) 3682 { 3683 int i; 3684 3685 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3686 3687 scsi_unregister_driver(&sd_template.gendrv); 3688 mempool_destroy(sd_cdb_pool); 3689 mempool_destroy(sd_page_pool); 3690 kmem_cache_destroy(sd_cdb_cache); 3691 3692 class_unregister(&sd_disk_class); 3693 3694 for (i = 0; i < SD_MAJORS; i++) { 3695 blk_unregister_region(sd_major(i), SD_MINORS); 3696 unregister_blkdev(sd_major(i), "sd"); 3697 } 3698 } 3699 3700 module_init(init_sd); 3701 module_exit(exit_sd); 3702 3703 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3704 struct scsi_sense_hdr *sshdr) 3705 { 3706 scsi_print_sense_hdr(sdkp->device, 3707 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3708 } 3709 3710 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3711 int result) 3712 { 3713 const char *hb_string = scsi_hostbyte_string(result); 3714 const char *db_string = scsi_driverbyte_string(result); 3715 3716 if (hb_string || db_string) 3717 sd_printk(KERN_INFO, sdkp, 3718 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3719 hb_string ? hb_string : "invalid", 3720 db_string ? db_string : "invalid"); 3721 else 3722 sd_printk(KERN_INFO, sdkp, 3723 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3724 msg, host_byte(result), driver_byte(result)); 3725 } 3726 3727