1 /* 2 * sd.c Copyright (C) 1992 Drew Eckhardt 3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 4 * 5 * Linux scsi disk driver 6 * Initial versions: Drew Eckhardt 7 * Subsequent revisions: Eric Youngdale 8 * Modification history: 9 * - Drew Eckhardt <drew@colorado.edu> original 10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 11 * outstanding request, and other enhancements. 12 * Support loadable low-level scsi drivers. 13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 14 * eight major numbers. 15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 17 * sd_init and cleanups. 18 * - Alex Davis <letmein@erols.com> Fix problem where partition info 19 * not being read in sd_open. Fix problem where removable media 20 * could be ejected after sd_open. 21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 24 * Support 32k/1M disks. 25 * 26 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 30 * - entering other commands: SCSI_LOG_HLQUEUE level 3 31 * Note: when the logging level is set by the user, it must be greater 32 * than the level indicated above to trigger output. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/fs.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/bio.h> 40 #include <linux/genhd.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/delay.h> 49 #include <linux/mutex.h> 50 #include <linux/string_helpers.h> 51 #include <linux/async.h> 52 #include <linux/slab.h> 53 #include <linux/pm_runtime.h> 54 #include <asm/uaccess.h> 55 #include <asm/unaligned.h> 56 57 #include <scsi/scsi.h> 58 #include <scsi/scsi_cmnd.h> 59 #include <scsi/scsi_dbg.h> 60 #include <scsi/scsi_device.h> 61 #include <scsi/scsi_driver.h> 62 #include <scsi/scsi_eh.h> 63 #include <scsi/scsi_host.h> 64 #include <scsi/scsi_ioctl.h> 65 #include <scsi/scsicam.h> 66 67 #include "sd.h" 68 #include "scsi_priv.h" 69 #include "scsi_logging.h" 70 71 MODULE_AUTHOR("Eric Youngdale"); 72 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 73 MODULE_LICENSE("GPL"); 74 75 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 76 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 91 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 92 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 93 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 94 95 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 96 #define SD_MINORS 16 97 #else 98 #define SD_MINORS 0 99 #endif 100 101 static void sd_config_discard(struct scsi_disk *, unsigned int); 102 static void sd_config_write_same(struct scsi_disk *); 103 static int sd_revalidate_disk(struct gendisk *); 104 static void sd_unlock_native_capacity(struct gendisk *disk); 105 static int sd_probe(struct device *); 106 static int sd_remove(struct device *); 107 static void sd_shutdown(struct device *); 108 static int sd_suspend_system(struct device *); 109 static int sd_suspend_runtime(struct device *); 110 static int sd_resume(struct device *); 111 static void sd_rescan(struct device *); 112 static int sd_done(struct scsi_cmnd *); 113 static int sd_eh_action(struct scsi_cmnd *, int); 114 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 115 static void scsi_disk_release(struct device *cdev); 116 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 117 static void sd_print_result(struct scsi_disk *, int); 118 119 static DEFINE_SPINLOCK(sd_index_lock); 120 static DEFINE_IDA(sd_index_ida); 121 122 /* This semaphore is used to mediate the 0->1 reference get in the 123 * face of object destruction (i.e. we can't allow a get on an 124 * object after last put) */ 125 static DEFINE_MUTEX(sd_ref_mutex); 126 127 static struct kmem_cache *sd_cdb_cache; 128 static mempool_t *sd_cdb_pool; 129 130 static const char *sd_cache_types[] = { 131 "write through", "none", "write back", 132 "write back, no read (daft)" 133 }; 134 135 static ssize_t 136 cache_type_store(struct device *dev, struct device_attribute *attr, 137 const char *buf, size_t count) 138 { 139 int i, ct = -1, rcd, wce, sp; 140 struct scsi_disk *sdkp = to_scsi_disk(dev); 141 struct scsi_device *sdp = sdkp->device; 142 char buffer[64]; 143 char *buffer_data; 144 struct scsi_mode_data data; 145 struct scsi_sense_hdr sshdr; 146 static const char temp[] = "temporary "; 147 int len; 148 149 if (sdp->type != TYPE_DISK) 150 /* no cache control on RBC devices; theoretically they 151 * can do it, but there's probably so many exceptions 152 * it's not worth the risk */ 153 return -EINVAL; 154 155 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 156 buf += sizeof(temp) - 1; 157 sdkp->cache_override = 1; 158 } else { 159 sdkp->cache_override = 0; 160 } 161 162 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) { 163 len = strlen(sd_cache_types[i]); 164 if (strncmp(sd_cache_types[i], buf, len) == 0 && 165 buf[len] == '\n') { 166 ct = i; 167 break; 168 } 169 } 170 if (ct < 0) 171 return -EINVAL; 172 rcd = ct & 0x01 ? 1 : 0; 173 wce = ct & 0x02 ? 1 : 0; 174 175 if (sdkp->cache_override) { 176 sdkp->WCE = wce; 177 sdkp->RCD = rcd; 178 return count; 179 } 180 181 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 182 SD_MAX_RETRIES, &data, NULL)) 183 return -EINVAL; 184 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 185 data.block_descriptor_length); 186 buffer_data = buffer + data.header_length + 187 data.block_descriptor_length; 188 buffer_data[2] &= ~0x05; 189 buffer_data[2] |= wce << 2 | rcd; 190 sp = buffer_data[0] & 0x80 ? 1 : 0; 191 192 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 193 SD_MAX_RETRIES, &data, &sshdr)) { 194 if (scsi_sense_valid(&sshdr)) 195 sd_print_sense_hdr(sdkp, &sshdr); 196 return -EINVAL; 197 } 198 revalidate_disk(sdkp->disk); 199 return count; 200 } 201 202 static ssize_t 203 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 204 char *buf) 205 { 206 struct scsi_disk *sdkp = to_scsi_disk(dev); 207 struct scsi_device *sdp = sdkp->device; 208 209 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop); 210 } 211 212 static ssize_t 213 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 214 const char *buf, size_t count) 215 { 216 struct scsi_disk *sdkp = to_scsi_disk(dev); 217 struct scsi_device *sdp = sdkp->device; 218 219 if (!capable(CAP_SYS_ADMIN)) 220 return -EACCES; 221 222 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10); 223 224 return count; 225 } 226 static DEVICE_ATTR_RW(manage_start_stop); 227 228 static ssize_t 229 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 230 { 231 struct scsi_disk *sdkp = to_scsi_disk(dev); 232 233 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart); 234 } 235 236 static ssize_t 237 allow_restart_store(struct device *dev, struct device_attribute *attr, 238 const char *buf, size_t count) 239 { 240 struct scsi_disk *sdkp = to_scsi_disk(dev); 241 struct scsi_device *sdp = sdkp->device; 242 243 if (!capable(CAP_SYS_ADMIN)) 244 return -EACCES; 245 246 if (sdp->type != TYPE_DISK) 247 return -EINVAL; 248 249 sdp->allow_restart = simple_strtoul(buf, NULL, 10); 250 251 return count; 252 } 253 static DEVICE_ATTR_RW(allow_restart); 254 255 static ssize_t 256 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 257 { 258 struct scsi_disk *sdkp = to_scsi_disk(dev); 259 int ct = sdkp->RCD + 2*sdkp->WCE; 260 261 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]); 262 } 263 static DEVICE_ATTR_RW(cache_type); 264 265 static ssize_t 266 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 267 { 268 struct scsi_disk *sdkp = to_scsi_disk(dev); 269 270 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA); 271 } 272 static DEVICE_ATTR_RO(FUA); 273 274 static ssize_t 275 protection_type_show(struct device *dev, struct device_attribute *attr, 276 char *buf) 277 { 278 struct scsi_disk *sdkp = to_scsi_disk(dev); 279 280 return snprintf(buf, 20, "%u\n", sdkp->protection_type); 281 } 282 283 static ssize_t 284 protection_type_store(struct device *dev, struct device_attribute *attr, 285 const char *buf, size_t count) 286 { 287 struct scsi_disk *sdkp = to_scsi_disk(dev); 288 unsigned int val; 289 int err; 290 291 if (!capable(CAP_SYS_ADMIN)) 292 return -EACCES; 293 294 err = kstrtouint(buf, 10, &val); 295 296 if (err) 297 return err; 298 299 if (val >= 0 && val <= SD_DIF_TYPE3_PROTECTION) 300 sdkp->protection_type = val; 301 302 return count; 303 } 304 static DEVICE_ATTR_RW(protection_type); 305 306 static ssize_t 307 protection_mode_show(struct device *dev, struct device_attribute *attr, 308 char *buf) 309 { 310 struct scsi_disk *sdkp = to_scsi_disk(dev); 311 struct scsi_device *sdp = sdkp->device; 312 unsigned int dif, dix; 313 314 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 315 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 316 317 if (!dix && scsi_host_dix_capable(sdp->host, SD_DIF_TYPE0_PROTECTION)) { 318 dif = 0; 319 dix = 1; 320 } 321 322 if (!dif && !dix) 323 return snprintf(buf, 20, "none\n"); 324 325 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif); 326 } 327 static DEVICE_ATTR_RO(protection_mode); 328 329 static ssize_t 330 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 331 { 332 struct scsi_disk *sdkp = to_scsi_disk(dev); 333 334 return snprintf(buf, 20, "%u\n", sdkp->ATO); 335 } 336 static DEVICE_ATTR_RO(app_tag_own); 337 338 static ssize_t 339 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 340 char *buf) 341 { 342 struct scsi_disk *sdkp = to_scsi_disk(dev); 343 344 return snprintf(buf, 20, "%u\n", sdkp->lbpme); 345 } 346 static DEVICE_ATTR_RO(thin_provisioning); 347 348 static const char *lbp_mode[] = { 349 [SD_LBP_FULL] = "full", 350 [SD_LBP_UNMAP] = "unmap", 351 [SD_LBP_WS16] = "writesame_16", 352 [SD_LBP_WS10] = "writesame_10", 353 [SD_LBP_ZERO] = "writesame_zero", 354 [SD_LBP_DISABLE] = "disabled", 355 }; 356 357 static ssize_t 358 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 359 char *buf) 360 { 361 struct scsi_disk *sdkp = to_scsi_disk(dev); 362 363 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]); 364 } 365 366 static ssize_t 367 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 368 const char *buf, size_t count) 369 { 370 struct scsi_disk *sdkp = to_scsi_disk(dev); 371 struct scsi_device *sdp = sdkp->device; 372 373 if (!capable(CAP_SYS_ADMIN)) 374 return -EACCES; 375 376 if (sdp->type != TYPE_DISK) 377 return -EINVAL; 378 379 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20)) 380 sd_config_discard(sdkp, SD_LBP_UNMAP); 381 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20)) 382 sd_config_discard(sdkp, SD_LBP_WS16); 383 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20)) 384 sd_config_discard(sdkp, SD_LBP_WS10); 385 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20)) 386 sd_config_discard(sdkp, SD_LBP_ZERO); 387 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20)) 388 sd_config_discard(sdkp, SD_LBP_DISABLE); 389 else 390 return -EINVAL; 391 392 return count; 393 } 394 static DEVICE_ATTR_RW(provisioning_mode); 395 396 static ssize_t 397 max_medium_access_timeouts_show(struct device *dev, 398 struct device_attribute *attr, char *buf) 399 { 400 struct scsi_disk *sdkp = to_scsi_disk(dev); 401 402 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts); 403 } 404 405 static ssize_t 406 max_medium_access_timeouts_store(struct device *dev, 407 struct device_attribute *attr, const char *buf, 408 size_t count) 409 { 410 struct scsi_disk *sdkp = to_scsi_disk(dev); 411 int err; 412 413 if (!capable(CAP_SYS_ADMIN)) 414 return -EACCES; 415 416 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 417 418 return err ? err : count; 419 } 420 static DEVICE_ATTR_RW(max_medium_access_timeouts); 421 422 static ssize_t 423 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 424 char *buf) 425 { 426 struct scsi_disk *sdkp = to_scsi_disk(dev); 427 428 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks); 429 } 430 431 static ssize_t 432 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 433 const char *buf, size_t count) 434 { 435 struct scsi_disk *sdkp = to_scsi_disk(dev); 436 struct scsi_device *sdp = sdkp->device; 437 unsigned long max; 438 int err; 439 440 if (!capable(CAP_SYS_ADMIN)) 441 return -EACCES; 442 443 if (sdp->type != TYPE_DISK) 444 return -EINVAL; 445 446 err = kstrtoul(buf, 10, &max); 447 448 if (err) 449 return err; 450 451 if (max == 0) 452 sdp->no_write_same = 1; 453 else if (max <= SD_MAX_WS16_BLOCKS) { 454 sdp->no_write_same = 0; 455 sdkp->max_ws_blocks = max; 456 } 457 458 sd_config_write_same(sdkp); 459 460 return count; 461 } 462 static DEVICE_ATTR_RW(max_write_same_blocks); 463 464 static struct attribute *sd_disk_attrs[] = { 465 &dev_attr_cache_type.attr, 466 &dev_attr_FUA.attr, 467 &dev_attr_allow_restart.attr, 468 &dev_attr_manage_start_stop.attr, 469 &dev_attr_protection_type.attr, 470 &dev_attr_protection_mode.attr, 471 &dev_attr_app_tag_own.attr, 472 &dev_attr_thin_provisioning.attr, 473 &dev_attr_provisioning_mode.attr, 474 &dev_attr_max_write_same_blocks.attr, 475 &dev_attr_max_medium_access_timeouts.attr, 476 NULL, 477 }; 478 ATTRIBUTE_GROUPS(sd_disk); 479 480 static struct class sd_disk_class = { 481 .name = "scsi_disk", 482 .owner = THIS_MODULE, 483 .dev_release = scsi_disk_release, 484 .dev_groups = sd_disk_groups, 485 }; 486 487 static const struct dev_pm_ops sd_pm_ops = { 488 .suspend = sd_suspend_system, 489 .resume = sd_resume, 490 .poweroff = sd_suspend_system, 491 .restore = sd_resume, 492 .runtime_suspend = sd_suspend_runtime, 493 .runtime_resume = sd_resume, 494 }; 495 496 static struct scsi_driver sd_template = { 497 .owner = THIS_MODULE, 498 .gendrv = { 499 .name = "sd", 500 .probe = sd_probe, 501 .remove = sd_remove, 502 .shutdown = sd_shutdown, 503 .pm = &sd_pm_ops, 504 }, 505 .rescan = sd_rescan, 506 .done = sd_done, 507 .eh_action = sd_eh_action, 508 }; 509 510 /* 511 * Dummy kobj_map->probe function. 512 * The default ->probe function will call modprobe, which is 513 * pointless as this module is already loaded. 514 */ 515 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 516 { 517 return NULL; 518 } 519 520 /* 521 * Device no to disk mapping: 522 * 523 * major disc2 disc p1 524 * |............|.............|....|....| <- dev_t 525 * 31 20 19 8 7 4 3 0 526 * 527 * Inside a major, we have 16k disks, however mapped non- 528 * contiguously. The first 16 disks are for major0, the next 529 * ones with major1, ... Disk 256 is for major0 again, disk 272 530 * for major1, ... 531 * As we stay compatible with our numbering scheme, we can reuse 532 * the well-know SCSI majors 8, 65--71, 136--143. 533 */ 534 static int sd_major(int major_idx) 535 { 536 switch (major_idx) { 537 case 0: 538 return SCSI_DISK0_MAJOR; 539 case 1 ... 7: 540 return SCSI_DISK1_MAJOR + major_idx - 1; 541 case 8 ... 15: 542 return SCSI_DISK8_MAJOR + major_idx - 8; 543 default: 544 BUG(); 545 return 0; /* shut up gcc */ 546 } 547 } 548 549 static struct scsi_disk *__scsi_disk_get(struct gendisk *disk) 550 { 551 struct scsi_disk *sdkp = NULL; 552 553 if (disk->private_data) { 554 sdkp = scsi_disk(disk); 555 if (scsi_device_get(sdkp->device) == 0) 556 get_device(&sdkp->dev); 557 else 558 sdkp = NULL; 559 } 560 return sdkp; 561 } 562 563 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 564 { 565 struct scsi_disk *sdkp; 566 567 mutex_lock(&sd_ref_mutex); 568 sdkp = __scsi_disk_get(disk); 569 mutex_unlock(&sd_ref_mutex); 570 return sdkp; 571 } 572 573 static struct scsi_disk *scsi_disk_get_from_dev(struct device *dev) 574 { 575 struct scsi_disk *sdkp; 576 577 mutex_lock(&sd_ref_mutex); 578 sdkp = dev_get_drvdata(dev); 579 if (sdkp) 580 sdkp = __scsi_disk_get(sdkp->disk); 581 mutex_unlock(&sd_ref_mutex); 582 return sdkp; 583 } 584 585 static void scsi_disk_put(struct scsi_disk *sdkp) 586 { 587 struct scsi_device *sdev = sdkp->device; 588 589 mutex_lock(&sd_ref_mutex); 590 put_device(&sdkp->dev); 591 scsi_device_put(sdev); 592 mutex_unlock(&sd_ref_mutex); 593 } 594 595 static void sd_prot_op(struct scsi_cmnd *scmd, unsigned int dif) 596 { 597 unsigned int prot_op = SCSI_PROT_NORMAL; 598 unsigned int dix = scsi_prot_sg_count(scmd); 599 600 if (scmd->sc_data_direction == DMA_FROM_DEVICE) { 601 if (dif && dix) 602 prot_op = SCSI_PROT_READ_PASS; 603 else if (dif && !dix) 604 prot_op = SCSI_PROT_READ_STRIP; 605 else if (!dif && dix) 606 prot_op = SCSI_PROT_READ_INSERT; 607 } else { 608 if (dif && dix) 609 prot_op = SCSI_PROT_WRITE_PASS; 610 else if (dif && !dix) 611 prot_op = SCSI_PROT_WRITE_INSERT; 612 else if (!dif && dix) 613 prot_op = SCSI_PROT_WRITE_STRIP; 614 } 615 616 scsi_set_prot_op(scmd, prot_op); 617 scsi_set_prot_type(scmd, dif); 618 } 619 620 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 621 { 622 struct request_queue *q = sdkp->disk->queue; 623 unsigned int logical_block_size = sdkp->device->sector_size; 624 unsigned int max_blocks = 0; 625 626 q->limits.discard_zeroes_data = sdkp->lbprz; 627 q->limits.discard_alignment = sdkp->unmap_alignment * 628 logical_block_size; 629 q->limits.discard_granularity = 630 max(sdkp->physical_block_size, 631 sdkp->unmap_granularity * logical_block_size); 632 633 sdkp->provisioning_mode = mode; 634 635 switch (mode) { 636 637 case SD_LBP_DISABLE: 638 q->limits.max_discard_sectors = 0; 639 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 640 return; 641 642 case SD_LBP_UNMAP: 643 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 644 (u32)SD_MAX_WS16_BLOCKS); 645 break; 646 647 case SD_LBP_WS16: 648 max_blocks = min_not_zero(sdkp->max_ws_blocks, 649 (u32)SD_MAX_WS16_BLOCKS); 650 break; 651 652 case SD_LBP_WS10: 653 max_blocks = min_not_zero(sdkp->max_ws_blocks, 654 (u32)SD_MAX_WS10_BLOCKS); 655 break; 656 657 case SD_LBP_ZERO: 658 max_blocks = min_not_zero(sdkp->max_ws_blocks, 659 (u32)SD_MAX_WS10_BLOCKS); 660 q->limits.discard_zeroes_data = 1; 661 break; 662 } 663 664 q->limits.max_discard_sectors = max_blocks * (logical_block_size >> 9); 665 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 666 } 667 668 /** 669 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device 670 * @sdp: scsi device to operate one 671 * @rq: Request to prepare 672 * 673 * Will issue either UNMAP or WRITE SAME(16) depending on preference 674 * indicated by target device. 675 **/ 676 static int sd_setup_discard_cmnd(struct scsi_device *sdp, struct request *rq) 677 { 678 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 679 sector_t sector = blk_rq_pos(rq); 680 unsigned int nr_sectors = blk_rq_sectors(rq); 681 unsigned int nr_bytes = blk_rq_bytes(rq); 682 unsigned int len; 683 int ret; 684 char *buf; 685 struct page *page; 686 687 sector >>= ilog2(sdp->sector_size) - 9; 688 nr_sectors >>= ilog2(sdp->sector_size) - 9; 689 rq->timeout = SD_TIMEOUT; 690 691 memset(rq->cmd, 0, rq->cmd_len); 692 693 page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 694 if (!page) 695 return BLKPREP_DEFER; 696 697 switch (sdkp->provisioning_mode) { 698 case SD_LBP_UNMAP: 699 buf = page_address(page); 700 701 rq->cmd_len = 10; 702 rq->cmd[0] = UNMAP; 703 rq->cmd[8] = 24; 704 705 put_unaligned_be16(6 + 16, &buf[0]); 706 put_unaligned_be16(16, &buf[2]); 707 put_unaligned_be64(sector, &buf[8]); 708 put_unaligned_be32(nr_sectors, &buf[16]); 709 710 len = 24; 711 break; 712 713 case SD_LBP_WS16: 714 rq->cmd_len = 16; 715 rq->cmd[0] = WRITE_SAME_16; 716 rq->cmd[1] = 0x8; /* UNMAP */ 717 put_unaligned_be64(sector, &rq->cmd[2]); 718 put_unaligned_be32(nr_sectors, &rq->cmd[10]); 719 720 len = sdkp->device->sector_size; 721 break; 722 723 case SD_LBP_WS10: 724 case SD_LBP_ZERO: 725 rq->cmd_len = 10; 726 rq->cmd[0] = WRITE_SAME; 727 if (sdkp->provisioning_mode == SD_LBP_WS10) 728 rq->cmd[1] = 0x8; /* UNMAP */ 729 put_unaligned_be32(sector, &rq->cmd[2]); 730 put_unaligned_be16(nr_sectors, &rq->cmd[7]); 731 732 len = sdkp->device->sector_size; 733 break; 734 735 default: 736 ret = BLKPREP_KILL; 737 goto out; 738 } 739 740 rq->completion_data = page; 741 blk_add_request_payload(rq, page, len); 742 ret = scsi_setup_blk_pc_cmnd(sdp, rq); 743 rq->__data_len = nr_bytes; 744 745 out: 746 if (ret != BLKPREP_OK) 747 __free_page(page); 748 return ret; 749 } 750 751 static void sd_config_write_same(struct scsi_disk *sdkp) 752 { 753 struct request_queue *q = sdkp->disk->queue; 754 unsigned int logical_block_size = sdkp->device->sector_size; 755 756 if (sdkp->device->no_write_same) { 757 sdkp->max_ws_blocks = 0; 758 goto out; 759 } 760 761 /* Some devices can not handle block counts above 0xffff despite 762 * supporting WRITE SAME(16). Consequently we default to 64k 763 * blocks per I/O unless the device explicitly advertises a 764 * bigger limit. 765 */ 766 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 767 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 768 (u32)SD_MAX_WS16_BLOCKS); 769 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 770 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 771 (u32)SD_MAX_WS10_BLOCKS); 772 else { 773 sdkp->device->no_write_same = 1; 774 sdkp->max_ws_blocks = 0; 775 } 776 777 out: 778 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 779 (logical_block_size >> 9)); 780 } 781 782 /** 783 * sd_setup_write_same_cmnd - write the same data to multiple blocks 784 * @sdp: scsi device to operate one 785 * @rq: Request to prepare 786 * 787 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on 788 * preference indicated by target device. 789 **/ 790 static int sd_setup_write_same_cmnd(struct scsi_device *sdp, struct request *rq) 791 { 792 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 793 struct bio *bio = rq->bio; 794 sector_t sector = blk_rq_pos(rq); 795 unsigned int nr_sectors = blk_rq_sectors(rq); 796 unsigned int nr_bytes = blk_rq_bytes(rq); 797 int ret; 798 799 if (sdkp->device->no_write_same) 800 return BLKPREP_KILL; 801 802 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 803 804 sector >>= ilog2(sdp->sector_size) - 9; 805 nr_sectors >>= ilog2(sdp->sector_size) - 9; 806 807 rq->__data_len = sdp->sector_size; 808 rq->timeout = SD_WRITE_SAME_TIMEOUT; 809 memset(rq->cmd, 0, rq->cmd_len); 810 811 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) { 812 rq->cmd_len = 16; 813 rq->cmd[0] = WRITE_SAME_16; 814 put_unaligned_be64(sector, &rq->cmd[2]); 815 put_unaligned_be32(nr_sectors, &rq->cmd[10]); 816 } else { 817 rq->cmd_len = 10; 818 rq->cmd[0] = WRITE_SAME; 819 put_unaligned_be32(sector, &rq->cmd[2]); 820 put_unaligned_be16(nr_sectors, &rq->cmd[7]); 821 } 822 823 ret = scsi_setup_blk_pc_cmnd(sdp, rq); 824 rq->__data_len = nr_bytes; 825 826 return ret; 827 } 828 829 static int scsi_setup_flush_cmnd(struct scsi_device *sdp, struct request *rq) 830 { 831 rq->timeout *= SD_FLUSH_TIMEOUT_MULTIPLIER; 832 rq->retries = SD_MAX_RETRIES; 833 rq->cmd[0] = SYNCHRONIZE_CACHE; 834 rq->cmd_len = 10; 835 836 return scsi_setup_blk_pc_cmnd(sdp, rq); 837 } 838 839 static void sd_unprep_fn(struct request_queue *q, struct request *rq) 840 { 841 struct scsi_cmnd *SCpnt = rq->special; 842 843 if (rq->cmd_flags & REQ_DISCARD) 844 __free_page(rq->completion_data); 845 846 if (SCpnt->cmnd != rq->cmd) { 847 mempool_free(SCpnt->cmnd, sd_cdb_pool); 848 SCpnt->cmnd = NULL; 849 SCpnt->cmd_len = 0; 850 } 851 } 852 853 /** 854 * sd_prep_fn - build a scsi (read or write) command from 855 * information in the request structure. 856 * @SCpnt: pointer to mid-level's per scsi command structure that 857 * contains request and into which the scsi command is written 858 * 859 * Returns 1 if successful and 0 if error (or cannot be done now). 860 **/ 861 static int sd_prep_fn(struct request_queue *q, struct request *rq) 862 { 863 struct scsi_cmnd *SCpnt; 864 struct scsi_device *sdp = q->queuedata; 865 struct gendisk *disk = rq->rq_disk; 866 struct scsi_disk *sdkp; 867 sector_t block = blk_rq_pos(rq); 868 sector_t threshold; 869 unsigned int this_count = blk_rq_sectors(rq); 870 int ret, host_dif; 871 unsigned char protect; 872 873 /* 874 * Discard request come in as REQ_TYPE_FS but we turn them into 875 * block PC requests to make life easier. 876 */ 877 if (rq->cmd_flags & REQ_DISCARD) { 878 ret = sd_setup_discard_cmnd(sdp, rq); 879 goto out; 880 } else if (rq->cmd_flags & REQ_WRITE_SAME) { 881 ret = sd_setup_write_same_cmnd(sdp, rq); 882 goto out; 883 } else if (rq->cmd_flags & REQ_FLUSH) { 884 ret = scsi_setup_flush_cmnd(sdp, rq); 885 goto out; 886 } else if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 887 ret = scsi_setup_blk_pc_cmnd(sdp, rq); 888 goto out; 889 } else if (rq->cmd_type != REQ_TYPE_FS) { 890 ret = BLKPREP_KILL; 891 goto out; 892 } 893 ret = scsi_setup_fs_cmnd(sdp, rq); 894 if (ret != BLKPREP_OK) 895 goto out; 896 SCpnt = rq->special; 897 sdkp = scsi_disk(disk); 898 899 /* from here on until we're complete, any goto out 900 * is used for a killable error condition */ 901 ret = BLKPREP_KILL; 902 903 SCSI_LOG_HLQUEUE(1, scmd_printk(KERN_INFO, SCpnt, 904 "sd_prep_fn: block=%llu, " 905 "count=%d\n", 906 (unsigned long long)block, 907 this_count)); 908 909 if (!sdp || !scsi_device_online(sdp) || 910 block + blk_rq_sectors(rq) > get_capacity(disk)) { 911 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 912 "Finishing %u sectors\n", 913 blk_rq_sectors(rq))); 914 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 915 "Retry with 0x%p\n", SCpnt)); 916 goto out; 917 } 918 919 if (sdp->changed) { 920 /* 921 * quietly refuse to do anything to a changed disc until 922 * the changed bit has been reset 923 */ 924 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */ 925 goto out; 926 } 927 928 /* 929 * Some SD card readers can't handle multi-sector accesses which touch 930 * the last one or two hardware sectors. Split accesses as needed. 931 */ 932 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS * 933 (sdp->sector_size / 512); 934 935 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) { 936 if (block < threshold) { 937 /* Access up to the threshold but not beyond */ 938 this_count = threshold - block; 939 } else { 940 /* Access only a single hardware sector */ 941 this_count = sdp->sector_size / 512; 942 } 943 } 944 945 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", 946 (unsigned long long)block)); 947 948 /* 949 * If we have a 1K hardware sectorsize, prevent access to single 950 * 512 byte sectors. In theory we could handle this - in fact 951 * the scsi cdrom driver must be able to handle this because 952 * we typically use 1K blocksizes, and cdroms typically have 953 * 2K hardware sectorsizes. Of course, things are simpler 954 * with the cdrom, since it is read-only. For performance 955 * reasons, the filesystems should be able to handle this 956 * and not force the scsi disk driver to use bounce buffers 957 * for this. 958 */ 959 if (sdp->sector_size == 1024) { 960 if ((block & 1) || (blk_rq_sectors(rq) & 1)) { 961 scmd_printk(KERN_ERR, SCpnt, 962 "Bad block number requested\n"); 963 goto out; 964 } else { 965 block = block >> 1; 966 this_count = this_count >> 1; 967 } 968 } 969 if (sdp->sector_size == 2048) { 970 if ((block & 3) || (blk_rq_sectors(rq) & 3)) { 971 scmd_printk(KERN_ERR, SCpnt, 972 "Bad block number requested\n"); 973 goto out; 974 } else { 975 block = block >> 2; 976 this_count = this_count >> 2; 977 } 978 } 979 if (sdp->sector_size == 4096) { 980 if ((block & 7) || (blk_rq_sectors(rq) & 7)) { 981 scmd_printk(KERN_ERR, SCpnt, 982 "Bad block number requested\n"); 983 goto out; 984 } else { 985 block = block >> 3; 986 this_count = this_count >> 3; 987 } 988 } 989 if (rq_data_dir(rq) == WRITE) { 990 if (!sdp->writeable) { 991 goto out; 992 } 993 SCpnt->cmnd[0] = WRITE_6; 994 SCpnt->sc_data_direction = DMA_TO_DEVICE; 995 996 if (blk_integrity_rq(rq)) 997 sd_dif_prepare(rq, block, sdp->sector_size); 998 999 } else if (rq_data_dir(rq) == READ) { 1000 SCpnt->cmnd[0] = READ_6; 1001 SCpnt->sc_data_direction = DMA_FROM_DEVICE; 1002 } else { 1003 scmd_printk(KERN_ERR, SCpnt, "Unknown command %llx\n", (unsigned long long) rq->cmd_flags); 1004 goto out; 1005 } 1006 1007 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1008 "%s %d/%u 512 byte blocks.\n", 1009 (rq_data_dir(rq) == WRITE) ? 1010 "writing" : "reading", this_count, 1011 blk_rq_sectors(rq))); 1012 1013 /* Set RDPROTECT/WRPROTECT if disk is formatted with DIF */ 1014 host_dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 1015 if (host_dif) 1016 protect = 1 << 5; 1017 else 1018 protect = 0; 1019 1020 if (host_dif == SD_DIF_TYPE2_PROTECTION) { 1021 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1022 1023 if (unlikely(SCpnt->cmnd == NULL)) { 1024 ret = BLKPREP_DEFER; 1025 goto out; 1026 } 1027 1028 SCpnt->cmd_len = SD_EXT_CDB_SIZE; 1029 memset(SCpnt->cmnd, 0, SCpnt->cmd_len); 1030 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD; 1031 SCpnt->cmnd[7] = 0x18; 1032 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32; 1033 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1034 1035 /* LBA */ 1036 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1037 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1038 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1039 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1040 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff; 1041 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff; 1042 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff; 1043 SCpnt->cmnd[19] = (unsigned char) block & 0xff; 1044 1045 /* Expected Indirect LBA */ 1046 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff; 1047 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff; 1048 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff; 1049 SCpnt->cmnd[23] = (unsigned char) block & 0xff; 1050 1051 /* Transfer length */ 1052 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff; 1053 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff; 1054 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff; 1055 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff; 1056 } else if (sdp->use_16_for_rw) { 1057 SCpnt->cmnd[0] += READ_16 - READ_6; 1058 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1059 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1060 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1061 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1062 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1063 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; 1064 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; 1065 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; 1066 SCpnt->cmnd[9] = (unsigned char) block & 0xff; 1067 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; 1068 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; 1069 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; 1070 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; 1071 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; 1072 } else if ((this_count > 0xff) || (block > 0x1fffff) || 1073 scsi_device_protection(SCpnt->device) || 1074 SCpnt->device->use_10_for_rw) { 1075 if (this_count > 0xffff) 1076 this_count = 0xffff; 1077 1078 SCpnt->cmnd[0] += READ_10 - READ_6; 1079 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1080 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; 1081 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; 1082 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; 1083 SCpnt->cmnd[5] = (unsigned char) block & 0xff; 1084 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; 1085 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; 1086 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; 1087 } else { 1088 if (unlikely(rq->cmd_flags & REQ_FUA)) { 1089 /* 1090 * This happens only if this drive failed 1091 * 10byte rw command with ILLEGAL_REQUEST 1092 * during operation and thus turned off 1093 * use_10_for_rw. 1094 */ 1095 scmd_printk(KERN_ERR, SCpnt, 1096 "FUA write on READ/WRITE(6) drive\n"); 1097 goto out; 1098 } 1099 1100 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); 1101 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); 1102 SCpnt->cmnd[3] = (unsigned char) block & 0xff; 1103 SCpnt->cmnd[4] = (unsigned char) this_count; 1104 SCpnt->cmnd[5] = 0; 1105 } 1106 SCpnt->sdb.length = this_count * sdp->sector_size; 1107 1108 /* If DIF or DIX is enabled, tell HBA how to handle request */ 1109 if (host_dif || scsi_prot_sg_count(SCpnt)) 1110 sd_prot_op(SCpnt, host_dif); 1111 1112 /* 1113 * We shouldn't disconnect in the middle of a sector, so with a dumb 1114 * host adapter, it's safe to assume that we can at least transfer 1115 * this many bytes between each connect / disconnect. 1116 */ 1117 SCpnt->transfersize = sdp->sector_size; 1118 SCpnt->underflow = this_count << 9; 1119 SCpnt->allowed = SD_MAX_RETRIES; 1120 1121 /* 1122 * This indicates that the command is ready from our end to be 1123 * queued. 1124 */ 1125 ret = BLKPREP_OK; 1126 out: 1127 return scsi_prep_return(q, rq, ret); 1128 } 1129 1130 /** 1131 * sd_open - open a scsi disk device 1132 * @inode: only i_rdev member may be used 1133 * @filp: only f_mode and f_flags may be used 1134 * 1135 * Returns 0 if successful. Returns a negated errno value in case 1136 * of error. 1137 * 1138 * Note: This can be called from a user context (e.g. fsck(1) ) 1139 * or from within the kernel (e.g. as a result of a mount(1) ). 1140 * In the latter case @inode and @filp carry an abridged amount 1141 * of information as noted above. 1142 * 1143 * Locking: called with bdev->bd_mutex held. 1144 **/ 1145 static int sd_open(struct block_device *bdev, fmode_t mode) 1146 { 1147 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1148 struct scsi_device *sdev; 1149 int retval; 1150 1151 if (!sdkp) 1152 return -ENXIO; 1153 1154 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1155 1156 sdev = sdkp->device; 1157 1158 /* 1159 * If the device is in error recovery, wait until it is done. 1160 * If the device is offline, then disallow any access to it. 1161 */ 1162 retval = -ENXIO; 1163 if (!scsi_block_when_processing_errors(sdev)) 1164 goto error_out; 1165 1166 if (sdev->removable || sdkp->write_prot) 1167 check_disk_change(bdev); 1168 1169 /* 1170 * If the drive is empty, just let the open fail. 1171 */ 1172 retval = -ENOMEDIUM; 1173 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1174 goto error_out; 1175 1176 /* 1177 * If the device has the write protect tab set, have the open fail 1178 * if the user expects to be able to write to the thing. 1179 */ 1180 retval = -EROFS; 1181 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1182 goto error_out; 1183 1184 /* 1185 * It is possible that the disk changing stuff resulted in 1186 * the device being taken offline. If this is the case, 1187 * report this to the user, and don't pretend that the 1188 * open actually succeeded. 1189 */ 1190 retval = -ENXIO; 1191 if (!scsi_device_online(sdev)) 1192 goto error_out; 1193 1194 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1195 if (scsi_block_when_processing_errors(sdev)) 1196 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1197 } 1198 1199 return 0; 1200 1201 error_out: 1202 scsi_disk_put(sdkp); 1203 return retval; 1204 } 1205 1206 /** 1207 * sd_release - invoked when the (last) close(2) is called on this 1208 * scsi disk. 1209 * @inode: only i_rdev member may be used 1210 * @filp: only f_mode and f_flags may be used 1211 * 1212 * Returns 0. 1213 * 1214 * Note: may block (uninterruptible) if error recovery is underway 1215 * on this disk. 1216 * 1217 * Locking: called with bdev->bd_mutex held. 1218 **/ 1219 static void sd_release(struct gendisk *disk, fmode_t mode) 1220 { 1221 struct scsi_disk *sdkp = scsi_disk(disk); 1222 struct scsi_device *sdev = sdkp->device; 1223 1224 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1225 1226 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1227 if (scsi_block_when_processing_errors(sdev)) 1228 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1229 } 1230 1231 /* 1232 * XXX and what if there are packets in flight and this close() 1233 * XXX is followed by a "rmmod sd_mod"? 1234 */ 1235 1236 scsi_disk_put(sdkp); 1237 } 1238 1239 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1240 { 1241 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1242 struct scsi_device *sdp = sdkp->device; 1243 struct Scsi_Host *host = sdp->host; 1244 int diskinfo[4]; 1245 1246 /* default to most commonly used values */ 1247 diskinfo[0] = 0x40; /* 1 << 6 */ 1248 diskinfo[1] = 0x20; /* 1 << 5 */ 1249 diskinfo[2] = sdkp->capacity >> 11; 1250 1251 /* override with calculated, extended default, or driver values */ 1252 if (host->hostt->bios_param) 1253 host->hostt->bios_param(sdp, bdev, sdkp->capacity, diskinfo); 1254 else 1255 scsicam_bios_param(bdev, sdkp->capacity, diskinfo); 1256 1257 geo->heads = diskinfo[0]; 1258 geo->sectors = diskinfo[1]; 1259 geo->cylinders = diskinfo[2]; 1260 return 0; 1261 } 1262 1263 /** 1264 * sd_ioctl - process an ioctl 1265 * @inode: only i_rdev/i_bdev members may be used 1266 * @filp: only f_mode and f_flags may be used 1267 * @cmd: ioctl command number 1268 * @arg: this is third argument given to ioctl(2) system call. 1269 * Often contains a pointer. 1270 * 1271 * Returns 0 if successful (some ioctls return positive numbers on 1272 * success as well). Returns a negated errno value in case of error. 1273 * 1274 * Note: most ioctls are forward onto the block subsystem or further 1275 * down in the scsi subsystem. 1276 **/ 1277 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1278 unsigned int cmd, unsigned long arg) 1279 { 1280 struct gendisk *disk = bdev->bd_disk; 1281 struct scsi_disk *sdkp = scsi_disk(disk); 1282 struct scsi_device *sdp = sdkp->device; 1283 void __user *p = (void __user *)arg; 1284 int error; 1285 1286 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1287 "cmd=0x%x\n", disk->disk_name, cmd)); 1288 1289 error = scsi_verify_blk_ioctl(bdev, cmd); 1290 if (error < 0) 1291 return error; 1292 1293 /* 1294 * If we are in the middle of error recovery, don't let anyone 1295 * else try and use this device. Also, if error recovery fails, it 1296 * may try and take the device offline, in which case all further 1297 * access to the device is prohibited. 1298 */ 1299 error = scsi_nonblockable_ioctl(sdp, cmd, p, 1300 (mode & FMODE_NDELAY) != 0); 1301 if (!scsi_block_when_processing_errors(sdp) || !error) 1302 goto out; 1303 1304 /* 1305 * Send SCSI addressing ioctls directly to mid level, send other 1306 * ioctls to block level and then onto mid level if they can't be 1307 * resolved. 1308 */ 1309 switch (cmd) { 1310 case SCSI_IOCTL_GET_IDLUN: 1311 case SCSI_IOCTL_GET_BUS_NUMBER: 1312 error = scsi_ioctl(sdp, cmd, p); 1313 break; 1314 default: 1315 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1316 if (error != -ENOTTY) 1317 break; 1318 error = scsi_ioctl(sdp, cmd, p); 1319 break; 1320 } 1321 out: 1322 return error; 1323 } 1324 1325 static void set_media_not_present(struct scsi_disk *sdkp) 1326 { 1327 if (sdkp->media_present) 1328 sdkp->device->changed = 1; 1329 1330 if (sdkp->device->removable) { 1331 sdkp->media_present = 0; 1332 sdkp->capacity = 0; 1333 } 1334 } 1335 1336 static int media_not_present(struct scsi_disk *sdkp, 1337 struct scsi_sense_hdr *sshdr) 1338 { 1339 if (!scsi_sense_valid(sshdr)) 1340 return 0; 1341 1342 /* not invoked for commands that could return deferred errors */ 1343 switch (sshdr->sense_key) { 1344 case UNIT_ATTENTION: 1345 case NOT_READY: 1346 /* medium not present */ 1347 if (sshdr->asc == 0x3A) { 1348 set_media_not_present(sdkp); 1349 return 1; 1350 } 1351 } 1352 return 0; 1353 } 1354 1355 /** 1356 * sd_check_events - check media events 1357 * @disk: kernel device descriptor 1358 * @clearing: disk events currently being cleared 1359 * 1360 * Returns mask of DISK_EVENT_*. 1361 * 1362 * Note: this function is invoked from the block subsystem. 1363 **/ 1364 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1365 { 1366 struct scsi_disk *sdkp = scsi_disk(disk); 1367 struct scsi_device *sdp = sdkp->device; 1368 struct scsi_sense_hdr *sshdr = NULL; 1369 int retval; 1370 1371 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1372 1373 /* 1374 * If the device is offline, don't send any commands - just pretend as 1375 * if the command failed. If the device ever comes back online, we 1376 * can deal with it then. It is only because of unrecoverable errors 1377 * that we would ever take a device offline in the first place. 1378 */ 1379 if (!scsi_device_online(sdp)) { 1380 set_media_not_present(sdkp); 1381 goto out; 1382 } 1383 1384 /* 1385 * Using TEST_UNIT_READY enables differentiation between drive with 1386 * no cartridge loaded - NOT READY, drive with changed cartridge - 1387 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1388 * 1389 * Drives that auto spin down. eg iomega jaz 1G, will be started 1390 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1391 * sd_revalidate() is called. 1392 */ 1393 retval = -ENODEV; 1394 1395 if (scsi_block_when_processing_errors(sdp)) { 1396 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 1397 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1398 sshdr); 1399 } 1400 1401 /* failed to execute TUR, assume media not present */ 1402 if (host_byte(retval)) { 1403 set_media_not_present(sdkp); 1404 goto out; 1405 } 1406 1407 if (media_not_present(sdkp, sshdr)) 1408 goto out; 1409 1410 /* 1411 * For removable scsi disk we have to recognise the presence 1412 * of a disk in the drive. 1413 */ 1414 if (!sdkp->media_present) 1415 sdp->changed = 1; 1416 sdkp->media_present = 1; 1417 out: 1418 /* 1419 * sdp->changed is set under the following conditions: 1420 * 1421 * Medium present state has changed in either direction. 1422 * Device has indicated UNIT_ATTENTION. 1423 */ 1424 kfree(sshdr); 1425 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1426 sdp->changed = 0; 1427 return retval; 1428 } 1429 1430 static int sd_sync_cache(struct scsi_disk *sdkp) 1431 { 1432 int retries, res; 1433 struct scsi_device *sdp = sdkp->device; 1434 const int timeout = sdp->request_queue->rq_timeout 1435 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1436 struct scsi_sense_hdr sshdr; 1437 1438 if (!scsi_device_online(sdp)) 1439 return -ENODEV; 1440 1441 for (retries = 3; retries > 0; --retries) { 1442 unsigned char cmd[10] = { 0 }; 1443 1444 cmd[0] = SYNCHRONIZE_CACHE; 1445 /* 1446 * Leave the rest of the command zero to indicate 1447 * flush everything. 1448 */ 1449 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, 1450 &sshdr, timeout, SD_MAX_RETRIES, 1451 NULL, REQ_PM); 1452 if (res == 0) 1453 break; 1454 } 1455 1456 if (res) { 1457 sd_print_result(sdkp, res); 1458 1459 if (driver_byte(res) & DRIVER_SENSE) 1460 sd_print_sense_hdr(sdkp, &sshdr); 1461 /* we need to evaluate the error return */ 1462 if (scsi_sense_valid(&sshdr) && 1463 (sshdr.asc == 0x3a || /* medium not present */ 1464 sshdr.asc == 0x20)) /* invalid command */ 1465 /* this is no error here */ 1466 return 0; 1467 1468 switch (host_byte(res)) { 1469 /* ignore errors due to racing a disconnection */ 1470 case DID_BAD_TARGET: 1471 case DID_NO_CONNECT: 1472 return 0; 1473 /* signal the upper layer it might try again */ 1474 case DID_BUS_BUSY: 1475 case DID_IMM_RETRY: 1476 case DID_REQUEUE: 1477 case DID_SOFT_ERROR: 1478 return -EBUSY; 1479 default: 1480 return -EIO; 1481 } 1482 } 1483 return 0; 1484 } 1485 1486 static void sd_rescan(struct device *dev) 1487 { 1488 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev); 1489 1490 if (sdkp) { 1491 revalidate_disk(sdkp->disk); 1492 scsi_disk_put(sdkp); 1493 } 1494 } 1495 1496 1497 #ifdef CONFIG_COMPAT 1498 /* 1499 * This gets directly called from VFS. When the ioctl 1500 * is not recognized we go back to the other translation paths. 1501 */ 1502 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1503 unsigned int cmd, unsigned long arg) 1504 { 1505 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1506 int ret; 1507 1508 ret = scsi_verify_blk_ioctl(bdev, cmd); 1509 if (ret < 0) 1510 return ret; 1511 1512 /* 1513 * If we are in the middle of error recovery, don't let anyone 1514 * else try and use this device. Also, if error recovery fails, it 1515 * may try and take the device offline, in which case all further 1516 * access to the device is prohibited. 1517 */ 1518 if (!scsi_block_when_processing_errors(sdev)) 1519 return -ENODEV; 1520 1521 if (sdev->host->hostt->compat_ioctl) { 1522 ret = sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1523 1524 return ret; 1525 } 1526 1527 /* 1528 * Let the static ioctl translation table take care of it. 1529 */ 1530 return -ENOIOCTLCMD; 1531 } 1532 #endif 1533 1534 static const struct block_device_operations sd_fops = { 1535 .owner = THIS_MODULE, 1536 .open = sd_open, 1537 .release = sd_release, 1538 .ioctl = sd_ioctl, 1539 .getgeo = sd_getgeo, 1540 #ifdef CONFIG_COMPAT 1541 .compat_ioctl = sd_compat_ioctl, 1542 #endif 1543 .check_events = sd_check_events, 1544 .revalidate_disk = sd_revalidate_disk, 1545 .unlock_native_capacity = sd_unlock_native_capacity, 1546 }; 1547 1548 /** 1549 * sd_eh_action - error handling callback 1550 * @scmd: sd-issued command that has failed 1551 * @eh_disp: The recovery disposition suggested by the midlayer 1552 * 1553 * This function is called by the SCSI midlayer upon completion of an 1554 * error test command (currently TEST UNIT READY). The result of sending 1555 * the eh command is passed in eh_disp. We're looking for devices that 1556 * fail medium access commands but are OK with non access commands like 1557 * test unit ready (so wrongly see the device as having a successful 1558 * recovery) 1559 **/ 1560 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1561 { 1562 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1563 1564 if (!scsi_device_online(scmd->device) || 1565 !scsi_medium_access_command(scmd) || 1566 host_byte(scmd->result) != DID_TIME_OUT || 1567 eh_disp != SUCCESS) 1568 return eh_disp; 1569 1570 /* 1571 * The device has timed out executing a medium access command. 1572 * However, the TEST UNIT READY command sent during error 1573 * handling completed successfully. Either the device is in the 1574 * process of recovering or has it suffered an internal failure 1575 * that prevents access to the storage medium. 1576 */ 1577 sdkp->medium_access_timed_out++; 1578 1579 /* 1580 * If the device keeps failing read/write commands but TEST UNIT 1581 * READY always completes successfully we assume that medium 1582 * access is no longer possible and take the device offline. 1583 */ 1584 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1585 scmd_printk(KERN_ERR, scmd, 1586 "Medium access timeout failure. Offlining disk!\n"); 1587 scsi_device_set_state(scmd->device, SDEV_OFFLINE); 1588 1589 return FAILED; 1590 } 1591 1592 return eh_disp; 1593 } 1594 1595 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1596 { 1597 u64 start_lba = blk_rq_pos(scmd->request); 1598 u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512); 1599 u64 bad_lba; 1600 int info_valid; 1601 /* 1602 * resid is optional but mostly filled in. When it's unused, 1603 * its value is zero, so we assume the whole buffer transferred 1604 */ 1605 unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1606 unsigned int good_bytes; 1607 1608 if (scmd->request->cmd_type != REQ_TYPE_FS) 1609 return 0; 1610 1611 info_valid = scsi_get_sense_info_fld(scmd->sense_buffer, 1612 SCSI_SENSE_BUFFERSIZE, 1613 &bad_lba); 1614 if (!info_valid) 1615 return 0; 1616 1617 if (scsi_bufflen(scmd) <= scmd->device->sector_size) 1618 return 0; 1619 1620 if (scmd->device->sector_size < 512) { 1621 /* only legitimate sector_size here is 256 */ 1622 start_lba <<= 1; 1623 end_lba <<= 1; 1624 } else { 1625 /* be careful ... don't want any overflows */ 1626 unsigned int factor = scmd->device->sector_size / 512; 1627 do_div(start_lba, factor); 1628 do_div(end_lba, factor); 1629 } 1630 1631 /* The bad lba was reported incorrectly, we have no idea where 1632 * the error is. 1633 */ 1634 if (bad_lba < start_lba || bad_lba >= end_lba) 1635 return 0; 1636 1637 /* This computation should always be done in terms of 1638 * the resolution of the device's medium. 1639 */ 1640 good_bytes = (bad_lba - start_lba) * scmd->device->sector_size; 1641 return min(good_bytes, transferred); 1642 } 1643 1644 /** 1645 * sd_done - bottom half handler: called when the lower level 1646 * driver has completed (successfully or otherwise) a scsi command. 1647 * @SCpnt: mid-level's per command structure. 1648 * 1649 * Note: potentially run from within an ISR. Must not block. 1650 **/ 1651 static int sd_done(struct scsi_cmnd *SCpnt) 1652 { 1653 int result = SCpnt->result; 1654 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1655 struct scsi_sense_hdr sshdr; 1656 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1657 struct request *req = SCpnt->request; 1658 int sense_valid = 0; 1659 int sense_deferred = 0; 1660 unsigned char op = SCpnt->cmnd[0]; 1661 unsigned char unmap = SCpnt->cmnd[1] & 8; 1662 1663 if (req->cmd_flags & REQ_DISCARD || req->cmd_flags & REQ_WRITE_SAME) { 1664 if (!result) { 1665 good_bytes = blk_rq_bytes(req); 1666 scsi_set_resid(SCpnt, 0); 1667 } else { 1668 good_bytes = 0; 1669 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1670 } 1671 } 1672 1673 if (result) { 1674 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1675 if (sense_valid) 1676 sense_deferred = scsi_sense_is_deferred(&sshdr); 1677 } 1678 #ifdef CONFIG_SCSI_LOGGING 1679 SCSI_LOG_HLCOMPLETE(1, scsi_print_result(SCpnt)); 1680 if (sense_valid) { 1681 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 1682 "sd_done: sb[respc,sk,asc," 1683 "ascq]=%x,%x,%x,%x\n", 1684 sshdr.response_code, 1685 sshdr.sense_key, sshdr.asc, 1686 sshdr.ascq)); 1687 } 1688 #endif 1689 if (driver_byte(result) != DRIVER_SENSE && 1690 (!sense_valid || sense_deferred)) 1691 goto out; 1692 1693 sdkp->medium_access_timed_out = 0; 1694 1695 switch (sshdr.sense_key) { 1696 case HARDWARE_ERROR: 1697 case MEDIUM_ERROR: 1698 good_bytes = sd_completed_bytes(SCpnt); 1699 break; 1700 case RECOVERED_ERROR: 1701 good_bytes = scsi_bufflen(SCpnt); 1702 break; 1703 case NO_SENSE: 1704 /* This indicates a false check condition, so ignore it. An 1705 * unknown amount of data was transferred so treat it as an 1706 * error. 1707 */ 1708 scsi_print_sense("sd", SCpnt); 1709 SCpnt->result = 0; 1710 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1711 break; 1712 case ABORTED_COMMAND: 1713 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 1714 good_bytes = sd_completed_bytes(SCpnt); 1715 break; 1716 case ILLEGAL_REQUEST: 1717 if (sshdr.asc == 0x10) /* DIX: Host detected corruption */ 1718 good_bytes = sd_completed_bytes(SCpnt); 1719 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 1720 if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 1721 switch (op) { 1722 case UNMAP: 1723 sd_config_discard(sdkp, SD_LBP_DISABLE); 1724 break; 1725 case WRITE_SAME_16: 1726 case WRITE_SAME: 1727 if (unmap) 1728 sd_config_discard(sdkp, SD_LBP_DISABLE); 1729 else { 1730 sdkp->device->no_write_same = 1; 1731 sd_config_write_same(sdkp); 1732 1733 good_bytes = 0; 1734 req->__data_len = blk_rq_bytes(req); 1735 req->cmd_flags |= REQ_QUIET; 1736 } 1737 } 1738 } 1739 break; 1740 default: 1741 break; 1742 } 1743 out: 1744 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt)) 1745 sd_dif_complete(SCpnt, good_bytes); 1746 1747 return good_bytes; 1748 } 1749 1750 /* 1751 * spinup disk - called only in sd_revalidate_disk() 1752 */ 1753 static void 1754 sd_spinup_disk(struct scsi_disk *sdkp) 1755 { 1756 unsigned char cmd[10]; 1757 unsigned long spintime_expire = 0; 1758 int retries, spintime; 1759 unsigned int the_result; 1760 struct scsi_sense_hdr sshdr; 1761 int sense_valid = 0; 1762 1763 spintime = 0; 1764 1765 /* Spin up drives, as required. Only do this at boot time */ 1766 /* Spinup needs to be done for module loads too. */ 1767 do { 1768 retries = 0; 1769 1770 do { 1771 cmd[0] = TEST_UNIT_READY; 1772 memset((void *) &cmd[1], 0, 9); 1773 1774 the_result = scsi_execute_req(sdkp->device, cmd, 1775 DMA_NONE, NULL, 0, 1776 &sshdr, SD_TIMEOUT, 1777 SD_MAX_RETRIES, NULL); 1778 1779 /* 1780 * If the drive has indicated to us that it 1781 * doesn't have any media in it, don't bother 1782 * with any more polling. 1783 */ 1784 if (media_not_present(sdkp, &sshdr)) 1785 return; 1786 1787 if (the_result) 1788 sense_valid = scsi_sense_valid(&sshdr); 1789 retries++; 1790 } while (retries < 3 && 1791 (!scsi_status_is_good(the_result) || 1792 ((driver_byte(the_result) & DRIVER_SENSE) && 1793 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 1794 1795 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) { 1796 /* no sense, TUR either succeeded or failed 1797 * with a status error */ 1798 if(!spintime && !scsi_status_is_good(the_result)) { 1799 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 1800 sd_print_result(sdkp, the_result); 1801 } 1802 break; 1803 } 1804 1805 /* 1806 * The device does not want the automatic start to be issued. 1807 */ 1808 if (sdkp->device->no_start_on_add) 1809 break; 1810 1811 if (sense_valid && sshdr.sense_key == NOT_READY) { 1812 if (sshdr.asc == 4 && sshdr.ascq == 3) 1813 break; /* manual intervention required */ 1814 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 1815 break; /* standby */ 1816 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 1817 break; /* unavailable */ 1818 /* 1819 * Issue command to spin up drive when not ready 1820 */ 1821 if (!spintime) { 1822 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 1823 cmd[0] = START_STOP; 1824 cmd[1] = 1; /* Return immediately */ 1825 memset((void *) &cmd[2], 0, 8); 1826 cmd[4] = 1; /* Start spin cycle */ 1827 if (sdkp->device->start_stop_pwr_cond) 1828 cmd[4] |= 1 << 4; 1829 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 1830 NULL, 0, &sshdr, 1831 SD_TIMEOUT, SD_MAX_RETRIES, 1832 NULL); 1833 spintime_expire = jiffies + 100 * HZ; 1834 spintime = 1; 1835 } 1836 /* Wait 1 second for next try */ 1837 msleep(1000); 1838 printk("."); 1839 1840 /* 1841 * Wait for USB flash devices with slow firmware. 1842 * Yes, this sense key/ASC combination shouldn't 1843 * occur here. It's characteristic of these devices. 1844 */ 1845 } else if (sense_valid && 1846 sshdr.sense_key == UNIT_ATTENTION && 1847 sshdr.asc == 0x28) { 1848 if (!spintime) { 1849 spintime_expire = jiffies + 5 * HZ; 1850 spintime = 1; 1851 } 1852 /* Wait 1 second for next try */ 1853 msleep(1000); 1854 } else { 1855 /* we don't understand the sense code, so it's 1856 * probably pointless to loop */ 1857 if(!spintime) { 1858 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 1859 sd_print_sense_hdr(sdkp, &sshdr); 1860 } 1861 break; 1862 } 1863 1864 } while (spintime && time_before_eq(jiffies, spintime_expire)); 1865 1866 if (spintime) { 1867 if (scsi_status_is_good(the_result)) 1868 printk("ready\n"); 1869 else 1870 printk("not responding...\n"); 1871 } 1872 } 1873 1874 1875 /* 1876 * Determine whether disk supports Data Integrity Field. 1877 */ 1878 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 1879 { 1880 struct scsi_device *sdp = sdkp->device; 1881 u8 type; 1882 int ret = 0; 1883 1884 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 1885 return ret; 1886 1887 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 1888 1889 if (type > SD_DIF_TYPE3_PROTECTION) 1890 ret = -ENODEV; 1891 else if (scsi_host_dif_capable(sdp->host, type)) 1892 ret = 1; 1893 1894 if (sdkp->first_scan || type != sdkp->protection_type) 1895 switch (ret) { 1896 case -ENODEV: 1897 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 1898 " protection type %u. Disabling disk!\n", 1899 type); 1900 break; 1901 case 1: 1902 sd_printk(KERN_NOTICE, sdkp, 1903 "Enabling DIF Type %u protection\n", type); 1904 break; 1905 case 0: 1906 sd_printk(KERN_NOTICE, sdkp, 1907 "Disabling DIF Type %u protection\n", type); 1908 break; 1909 } 1910 1911 sdkp->protection_type = type; 1912 1913 return ret; 1914 } 1915 1916 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 1917 struct scsi_sense_hdr *sshdr, int sense_valid, 1918 int the_result) 1919 { 1920 sd_print_result(sdkp, the_result); 1921 if (driver_byte(the_result) & DRIVER_SENSE) 1922 sd_print_sense_hdr(sdkp, sshdr); 1923 else 1924 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 1925 1926 /* 1927 * Set dirty bit for removable devices if not ready - 1928 * sometimes drives will not report this properly. 1929 */ 1930 if (sdp->removable && 1931 sense_valid && sshdr->sense_key == NOT_READY) 1932 set_media_not_present(sdkp); 1933 1934 /* 1935 * We used to set media_present to 0 here to indicate no media 1936 * in the drive, but some drives fail read capacity even with 1937 * media present, so we can't do that. 1938 */ 1939 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 1940 } 1941 1942 #define RC16_LEN 32 1943 #if RC16_LEN > SD_BUF_SIZE 1944 #error RC16_LEN must not be more than SD_BUF_SIZE 1945 #endif 1946 1947 #define READ_CAPACITY_RETRIES_ON_RESET 10 1948 1949 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 1950 unsigned char *buffer) 1951 { 1952 unsigned char cmd[16]; 1953 struct scsi_sense_hdr sshdr; 1954 int sense_valid = 0; 1955 int the_result; 1956 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 1957 unsigned int alignment; 1958 unsigned long long lba; 1959 unsigned sector_size; 1960 1961 if (sdp->no_read_capacity_16) 1962 return -EINVAL; 1963 1964 do { 1965 memset(cmd, 0, 16); 1966 cmd[0] = SERVICE_ACTION_IN; 1967 cmd[1] = SAI_READ_CAPACITY_16; 1968 cmd[13] = RC16_LEN; 1969 memset(buffer, 0, RC16_LEN); 1970 1971 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 1972 buffer, RC16_LEN, &sshdr, 1973 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1974 1975 if (media_not_present(sdkp, &sshdr)) 1976 return -ENODEV; 1977 1978 if (the_result) { 1979 sense_valid = scsi_sense_valid(&sshdr); 1980 if (sense_valid && 1981 sshdr.sense_key == ILLEGAL_REQUEST && 1982 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 1983 sshdr.ascq == 0x00) 1984 /* Invalid Command Operation Code or 1985 * Invalid Field in CDB, just retry 1986 * silently with RC10 */ 1987 return -EINVAL; 1988 if (sense_valid && 1989 sshdr.sense_key == UNIT_ATTENTION && 1990 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 1991 /* Device reset might occur several times, 1992 * give it one more chance */ 1993 if (--reset_retries > 0) 1994 continue; 1995 } 1996 retries--; 1997 1998 } while (the_result && retries); 1999 2000 if (the_result) { 2001 sd_printk(KERN_NOTICE, sdkp, "READ CAPACITY(16) failed\n"); 2002 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2003 return -EINVAL; 2004 } 2005 2006 sector_size = get_unaligned_be32(&buffer[8]); 2007 lba = get_unaligned_be64(&buffer[0]); 2008 2009 if (sd_read_protection_type(sdkp, buffer) < 0) { 2010 sdkp->capacity = 0; 2011 return -ENODEV; 2012 } 2013 2014 if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) { 2015 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2016 "kernel compiled with support for large block " 2017 "devices.\n"); 2018 sdkp->capacity = 0; 2019 return -EOVERFLOW; 2020 } 2021 2022 /* Logical blocks per physical block exponent */ 2023 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2024 2025 /* Lowest aligned logical block */ 2026 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2027 blk_queue_alignment_offset(sdp->request_queue, alignment); 2028 if (alignment && sdkp->first_scan) 2029 sd_printk(KERN_NOTICE, sdkp, 2030 "physical block alignment offset: %u\n", alignment); 2031 2032 if (buffer[14] & 0x80) { /* LBPME */ 2033 sdkp->lbpme = 1; 2034 2035 if (buffer[14] & 0x40) /* LBPRZ */ 2036 sdkp->lbprz = 1; 2037 2038 sd_config_discard(sdkp, SD_LBP_WS16); 2039 } 2040 2041 sdkp->capacity = lba + 1; 2042 return sector_size; 2043 } 2044 2045 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2046 unsigned char *buffer) 2047 { 2048 unsigned char cmd[16]; 2049 struct scsi_sense_hdr sshdr; 2050 int sense_valid = 0; 2051 int the_result; 2052 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2053 sector_t lba; 2054 unsigned sector_size; 2055 2056 do { 2057 cmd[0] = READ_CAPACITY; 2058 memset(&cmd[1], 0, 9); 2059 memset(buffer, 0, 8); 2060 2061 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2062 buffer, 8, &sshdr, 2063 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2064 2065 if (media_not_present(sdkp, &sshdr)) 2066 return -ENODEV; 2067 2068 if (the_result) { 2069 sense_valid = scsi_sense_valid(&sshdr); 2070 if (sense_valid && 2071 sshdr.sense_key == UNIT_ATTENTION && 2072 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2073 /* Device reset might occur several times, 2074 * give it one more chance */ 2075 if (--reset_retries > 0) 2076 continue; 2077 } 2078 retries--; 2079 2080 } while (the_result && retries); 2081 2082 if (the_result) { 2083 sd_printk(KERN_NOTICE, sdkp, "READ CAPACITY failed\n"); 2084 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2085 return -EINVAL; 2086 } 2087 2088 sector_size = get_unaligned_be32(&buffer[4]); 2089 lba = get_unaligned_be32(&buffer[0]); 2090 2091 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2092 /* Some buggy (usb cardreader) devices return an lba of 2093 0xffffffff when the want to report a size of 0 (with 2094 which they really mean no media is present) */ 2095 sdkp->capacity = 0; 2096 sdkp->physical_block_size = sector_size; 2097 return sector_size; 2098 } 2099 2100 if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) { 2101 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2102 "kernel compiled with support for large block " 2103 "devices.\n"); 2104 sdkp->capacity = 0; 2105 return -EOVERFLOW; 2106 } 2107 2108 sdkp->capacity = lba + 1; 2109 sdkp->physical_block_size = sector_size; 2110 return sector_size; 2111 } 2112 2113 static int sd_try_rc16_first(struct scsi_device *sdp) 2114 { 2115 if (sdp->host->max_cmd_len < 16) 2116 return 0; 2117 if (sdp->try_rc_10_first) 2118 return 0; 2119 if (sdp->scsi_level > SCSI_SPC_2) 2120 return 1; 2121 if (scsi_device_protection(sdp)) 2122 return 1; 2123 return 0; 2124 } 2125 2126 /* 2127 * read disk capacity 2128 */ 2129 static void 2130 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2131 { 2132 int sector_size; 2133 struct scsi_device *sdp = sdkp->device; 2134 sector_t old_capacity = sdkp->capacity; 2135 2136 if (sd_try_rc16_first(sdp)) { 2137 sector_size = read_capacity_16(sdkp, sdp, buffer); 2138 if (sector_size == -EOVERFLOW) 2139 goto got_data; 2140 if (sector_size == -ENODEV) 2141 return; 2142 if (sector_size < 0) 2143 sector_size = read_capacity_10(sdkp, sdp, buffer); 2144 if (sector_size < 0) 2145 return; 2146 } else { 2147 sector_size = read_capacity_10(sdkp, sdp, buffer); 2148 if (sector_size == -EOVERFLOW) 2149 goto got_data; 2150 if (sector_size < 0) 2151 return; 2152 if ((sizeof(sdkp->capacity) > 4) && 2153 (sdkp->capacity > 0xffffffffULL)) { 2154 int old_sector_size = sector_size; 2155 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2156 "Trying to use READ CAPACITY(16).\n"); 2157 sector_size = read_capacity_16(sdkp, sdp, buffer); 2158 if (sector_size < 0) { 2159 sd_printk(KERN_NOTICE, sdkp, 2160 "Using 0xffffffff as device size\n"); 2161 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2162 sector_size = old_sector_size; 2163 goto got_data; 2164 } 2165 } 2166 } 2167 2168 /* Some devices are known to return the total number of blocks, 2169 * not the highest block number. Some devices have versions 2170 * which do this and others which do not. Some devices we might 2171 * suspect of doing this but we don't know for certain. 2172 * 2173 * If we know the reported capacity is wrong, decrement it. If 2174 * we can only guess, then assume the number of blocks is even 2175 * (usually true but not always) and err on the side of lowering 2176 * the capacity. 2177 */ 2178 if (sdp->fix_capacity || 2179 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2180 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2181 "from its reported value: %llu\n", 2182 (unsigned long long) sdkp->capacity); 2183 --sdkp->capacity; 2184 } 2185 2186 got_data: 2187 if (sector_size == 0) { 2188 sector_size = 512; 2189 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2190 "assuming 512.\n"); 2191 } 2192 2193 if (sector_size != 512 && 2194 sector_size != 1024 && 2195 sector_size != 2048 && 2196 sector_size != 4096 && 2197 sector_size != 256) { 2198 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2199 sector_size); 2200 /* 2201 * The user might want to re-format the drive with 2202 * a supported sectorsize. Once this happens, it 2203 * would be relatively trivial to set the thing up. 2204 * For this reason, we leave the thing in the table. 2205 */ 2206 sdkp->capacity = 0; 2207 /* 2208 * set a bogus sector size so the normal read/write 2209 * logic in the block layer will eventually refuse any 2210 * request on this device without tripping over power 2211 * of two sector size assumptions 2212 */ 2213 sector_size = 512; 2214 } 2215 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2216 2217 { 2218 char cap_str_2[10], cap_str_10[10]; 2219 u64 sz = (u64)sdkp->capacity << ilog2(sector_size); 2220 2221 string_get_size(sz, STRING_UNITS_2, cap_str_2, 2222 sizeof(cap_str_2)); 2223 string_get_size(sz, STRING_UNITS_10, cap_str_10, 2224 sizeof(cap_str_10)); 2225 2226 if (sdkp->first_scan || old_capacity != sdkp->capacity) { 2227 sd_printk(KERN_NOTICE, sdkp, 2228 "%llu %d-byte logical blocks: (%s/%s)\n", 2229 (unsigned long long)sdkp->capacity, 2230 sector_size, cap_str_10, cap_str_2); 2231 2232 if (sdkp->physical_block_size != sector_size) 2233 sd_printk(KERN_NOTICE, sdkp, 2234 "%u-byte physical blocks\n", 2235 sdkp->physical_block_size); 2236 } 2237 } 2238 2239 sdp->use_16_for_rw = (sdkp->capacity > 0xffffffff); 2240 2241 /* Rescale capacity to 512-byte units */ 2242 if (sector_size == 4096) 2243 sdkp->capacity <<= 3; 2244 else if (sector_size == 2048) 2245 sdkp->capacity <<= 2; 2246 else if (sector_size == 1024) 2247 sdkp->capacity <<= 1; 2248 else if (sector_size == 256) 2249 sdkp->capacity >>= 1; 2250 2251 blk_queue_physical_block_size(sdp->request_queue, 2252 sdkp->physical_block_size); 2253 sdkp->device->sector_size = sector_size; 2254 } 2255 2256 /* called with buffer of length 512 */ 2257 static inline int 2258 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2259 unsigned char *buffer, int len, struct scsi_mode_data *data, 2260 struct scsi_sense_hdr *sshdr) 2261 { 2262 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2263 SD_TIMEOUT, SD_MAX_RETRIES, data, 2264 sshdr); 2265 } 2266 2267 /* 2268 * read write protect setting, if possible - called only in sd_revalidate_disk() 2269 * called with buffer of length SD_BUF_SIZE 2270 */ 2271 static void 2272 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2273 { 2274 int res; 2275 struct scsi_device *sdp = sdkp->device; 2276 struct scsi_mode_data data; 2277 int old_wp = sdkp->write_prot; 2278 2279 set_disk_ro(sdkp->disk, 0); 2280 if (sdp->skip_ms_page_3f) { 2281 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2282 return; 2283 } 2284 2285 if (sdp->use_192_bytes_for_3f) { 2286 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2287 } else { 2288 /* 2289 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2290 * We have to start carefully: some devices hang if we ask 2291 * for more than is available. 2292 */ 2293 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2294 2295 /* 2296 * Second attempt: ask for page 0 When only page 0 is 2297 * implemented, a request for page 3F may return Sense Key 2298 * 5: Illegal Request, Sense Code 24: Invalid field in 2299 * CDB. 2300 */ 2301 if (!scsi_status_is_good(res)) 2302 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2303 2304 /* 2305 * Third attempt: ask 255 bytes, as we did earlier. 2306 */ 2307 if (!scsi_status_is_good(res)) 2308 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2309 &data, NULL); 2310 } 2311 2312 if (!scsi_status_is_good(res)) { 2313 sd_first_printk(KERN_WARNING, sdkp, 2314 "Test WP failed, assume Write Enabled\n"); 2315 } else { 2316 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2317 set_disk_ro(sdkp->disk, sdkp->write_prot); 2318 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2319 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2320 sdkp->write_prot ? "on" : "off"); 2321 sd_printk(KERN_DEBUG, sdkp, 2322 "Mode Sense: %02x %02x %02x %02x\n", 2323 buffer[0], buffer[1], buffer[2], buffer[3]); 2324 } 2325 } 2326 } 2327 2328 /* 2329 * sd_read_cache_type - called only from sd_revalidate_disk() 2330 * called with buffer of length SD_BUF_SIZE 2331 */ 2332 static void 2333 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2334 { 2335 int len = 0, res; 2336 struct scsi_device *sdp = sdkp->device; 2337 2338 int dbd; 2339 int modepage; 2340 int first_len; 2341 struct scsi_mode_data data; 2342 struct scsi_sense_hdr sshdr; 2343 int old_wce = sdkp->WCE; 2344 int old_rcd = sdkp->RCD; 2345 int old_dpofua = sdkp->DPOFUA; 2346 2347 2348 if (sdkp->cache_override) 2349 return; 2350 2351 first_len = 4; 2352 if (sdp->skip_ms_page_8) { 2353 if (sdp->type == TYPE_RBC) 2354 goto defaults; 2355 else { 2356 if (sdp->skip_ms_page_3f) 2357 goto defaults; 2358 modepage = 0x3F; 2359 if (sdp->use_192_bytes_for_3f) 2360 first_len = 192; 2361 dbd = 0; 2362 } 2363 } else if (sdp->type == TYPE_RBC) { 2364 modepage = 6; 2365 dbd = 8; 2366 } else { 2367 modepage = 8; 2368 dbd = 0; 2369 } 2370 2371 /* cautiously ask */ 2372 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2373 &data, &sshdr); 2374 2375 if (!scsi_status_is_good(res)) 2376 goto bad_sense; 2377 2378 if (!data.header_length) { 2379 modepage = 6; 2380 first_len = 0; 2381 sd_first_printk(KERN_ERR, sdkp, 2382 "Missing header in MODE_SENSE response\n"); 2383 } 2384 2385 /* that went OK, now ask for the proper length */ 2386 len = data.length; 2387 2388 /* 2389 * We're only interested in the first three bytes, actually. 2390 * But the data cache page is defined for the first 20. 2391 */ 2392 if (len < 3) 2393 goto bad_sense; 2394 else if (len > SD_BUF_SIZE) { 2395 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2396 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2397 len = SD_BUF_SIZE; 2398 } 2399 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2400 len = 192; 2401 2402 /* Get the data */ 2403 if (len > first_len) 2404 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2405 &data, &sshdr); 2406 2407 if (scsi_status_is_good(res)) { 2408 int offset = data.header_length + data.block_descriptor_length; 2409 2410 while (offset < len) { 2411 u8 page_code = buffer[offset] & 0x3F; 2412 u8 spf = buffer[offset] & 0x40; 2413 2414 if (page_code == 8 || page_code == 6) { 2415 /* We're interested only in the first 3 bytes. 2416 */ 2417 if (len - offset <= 2) { 2418 sd_first_printk(KERN_ERR, sdkp, 2419 "Incomplete mode parameter " 2420 "data\n"); 2421 goto defaults; 2422 } else { 2423 modepage = page_code; 2424 goto Page_found; 2425 } 2426 } else { 2427 /* Go to the next page */ 2428 if (spf && len - offset > 3) 2429 offset += 4 + (buffer[offset+2] << 8) + 2430 buffer[offset+3]; 2431 else if (!spf && len - offset > 1) 2432 offset += 2 + buffer[offset+1]; 2433 else { 2434 sd_first_printk(KERN_ERR, sdkp, 2435 "Incomplete mode " 2436 "parameter data\n"); 2437 goto defaults; 2438 } 2439 } 2440 } 2441 2442 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2443 goto defaults; 2444 2445 Page_found: 2446 if (modepage == 8) { 2447 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2448 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2449 } else { 2450 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2451 sdkp->RCD = 0; 2452 } 2453 2454 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2455 if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) { 2456 sd_first_printk(KERN_NOTICE, sdkp, 2457 "Uses READ/WRITE(6), disabling FUA\n"); 2458 sdkp->DPOFUA = 0; 2459 } 2460 2461 if (sdkp->first_scan || old_wce != sdkp->WCE || 2462 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2463 sd_printk(KERN_NOTICE, sdkp, 2464 "Write cache: %s, read cache: %s, %s\n", 2465 sdkp->WCE ? "enabled" : "disabled", 2466 sdkp->RCD ? "disabled" : "enabled", 2467 sdkp->DPOFUA ? "supports DPO and FUA" 2468 : "doesn't support DPO or FUA"); 2469 2470 return; 2471 } 2472 2473 bad_sense: 2474 if (scsi_sense_valid(&sshdr) && 2475 sshdr.sense_key == ILLEGAL_REQUEST && 2476 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2477 /* Invalid field in CDB */ 2478 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2479 else 2480 sd_first_printk(KERN_ERR, sdkp, 2481 "Asking for cache data failed\n"); 2482 2483 defaults: 2484 if (sdp->wce_default_on) { 2485 sd_first_printk(KERN_NOTICE, sdkp, 2486 "Assuming drive cache: write back\n"); 2487 sdkp->WCE = 1; 2488 } else { 2489 sd_first_printk(KERN_ERR, sdkp, 2490 "Assuming drive cache: write through\n"); 2491 sdkp->WCE = 0; 2492 } 2493 sdkp->RCD = 0; 2494 sdkp->DPOFUA = 0; 2495 } 2496 2497 /* 2498 * The ATO bit indicates whether the DIF application tag is available 2499 * for use by the operating system. 2500 */ 2501 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2502 { 2503 int res, offset; 2504 struct scsi_device *sdp = sdkp->device; 2505 struct scsi_mode_data data; 2506 struct scsi_sense_hdr sshdr; 2507 2508 if (sdp->type != TYPE_DISK) 2509 return; 2510 2511 if (sdkp->protection_type == 0) 2512 return; 2513 2514 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2515 SD_MAX_RETRIES, &data, &sshdr); 2516 2517 if (!scsi_status_is_good(res) || !data.header_length || 2518 data.length < 6) { 2519 sd_first_printk(KERN_WARNING, sdkp, 2520 "getting Control mode page failed, assume no ATO\n"); 2521 2522 if (scsi_sense_valid(&sshdr)) 2523 sd_print_sense_hdr(sdkp, &sshdr); 2524 2525 return; 2526 } 2527 2528 offset = data.header_length + data.block_descriptor_length; 2529 2530 if ((buffer[offset] & 0x3f) != 0x0a) { 2531 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2532 return; 2533 } 2534 2535 if ((buffer[offset + 5] & 0x80) == 0) 2536 return; 2537 2538 sdkp->ATO = 1; 2539 2540 return; 2541 } 2542 2543 /** 2544 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2545 * @disk: disk to query 2546 */ 2547 static void sd_read_block_limits(struct scsi_disk *sdkp) 2548 { 2549 unsigned int sector_sz = sdkp->device->sector_size; 2550 const int vpd_len = 64; 2551 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2552 2553 if (!buffer || 2554 /* Block Limits VPD */ 2555 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2556 goto out; 2557 2558 blk_queue_io_min(sdkp->disk->queue, 2559 get_unaligned_be16(&buffer[6]) * sector_sz); 2560 blk_queue_io_opt(sdkp->disk->queue, 2561 get_unaligned_be32(&buffer[12]) * sector_sz); 2562 2563 if (buffer[3] == 0x3c) { 2564 unsigned int lba_count, desc_count; 2565 2566 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2567 2568 if (!sdkp->lbpme) 2569 goto out; 2570 2571 lba_count = get_unaligned_be32(&buffer[20]); 2572 desc_count = get_unaligned_be32(&buffer[24]); 2573 2574 if (lba_count && desc_count) 2575 sdkp->max_unmap_blocks = lba_count; 2576 2577 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2578 2579 if (buffer[32] & 0x80) 2580 sdkp->unmap_alignment = 2581 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2582 2583 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2584 2585 if (sdkp->max_unmap_blocks) 2586 sd_config_discard(sdkp, SD_LBP_UNMAP); 2587 else 2588 sd_config_discard(sdkp, SD_LBP_WS16); 2589 2590 } else { /* LBP VPD page tells us what to use */ 2591 2592 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2593 sd_config_discard(sdkp, SD_LBP_UNMAP); 2594 else if (sdkp->lbpws) 2595 sd_config_discard(sdkp, SD_LBP_WS16); 2596 else if (sdkp->lbpws10) 2597 sd_config_discard(sdkp, SD_LBP_WS10); 2598 else 2599 sd_config_discard(sdkp, SD_LBP_DISABLE); 2600 } 2601 } 2602 2603 out: 2604 kfree(buffer); 2605 } 2606 2607 /** 2608 * sd_read_block_characteristics - Query block dev. characteristics 2609 * @disk: disk to query 2610 */ 2611 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2612 { 2613 unsigned char *buffer; 2614 u16 rot; 2615 const int vpd_len = 64; 2616 2617 buffer = kmalloc(vpd_len, GFP_KERNEL); 2618 2619 if (!buffer || 2620 /* Block Device Characteristics VPD */ 2621 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2622 goto out; 2623 2624 rot = get_unaligned_be16(&buffer[4]); 2625 2626 if (rot == 1) 2627 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, sdkp->disk->queue); 2628 2629 out: 2630 kfree(buffer); 2631 } 2632 2633 /** 2634 * sd_read_block_provisioning - Query provisioning VPD page 2635 * @disk: disk to query 2636 */ 2637 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2638 { 2639 unsigned char *buffer; 2640 const int vpd_len = 8; 2641 2642 if (sdkp->lbpme == 0) 2643 return; 2644 2645 buffer = kmalloc(vpd_len, GFP_KERNEL); 2646 2647 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2648 goto out; 2649 2650 sdkp->lbpvpd = 1; 2651 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 2652 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 2653 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 2654 2655 out: 2656 kfree(buffer); 2657 } 2658 2659 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 2660 { 2661 struct scsi_device *sdev = sdkp->device; 2662 2663 if (sdev->host->no_write_same) { 2664 sdev->no_write_same = 1; 2665 2666 return; 2667 } 2668 2669 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 2670 /* too large values might cause issues with arcmsr */ 2671 int vpd_buf_len = 64; 2672 2673 sdev->no_report_opcodes = 1; 2674 2675 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 2676 * CODES is unsupported and the device has an ATA 2677 * Information VPD page (SAT). 2678 */ 2679 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 2680 sdev->no_write_same = 1; 2681 } 2682 2683 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 2684 sdkp->ws16 = 1; 2685 2686 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 2687 sdkp->ws10 = 1; 2688 } 2689 2690 static int sd_try_extended_inquiry(struct scsi_device *sdp) 2691 { 2692 /* 2693 * Although VPD inquiries can go to SCSI-2 type devices, 2694 * some USB ones crash on receiving them, and the pages 2695 * we currently ask for are for SPC-3 and beyond 2696 */ 2697 if (sdp->scsi_level > SCSI_SPC_2 && !sdp->skip_vpd_pages) 2698 return 1; 2699 return 0; 2700 } 2701 2702 /** 2703 * sd_revalidate_disk - called the first time a new disk is seen, 2704 * performs disk spin up, read_capacity, etc. 2705 * @disk: struct gendisk we care about 2706 **/ 2707 static int sd_revalidate_disk(struct gendisk *disk) 2708 { 2709 struct scsi_disk *sdkp = scsi_disk(disk); 2710 struct scsi_device *sdp = sdkp->device; 2711 unsigned char *buffer; 2712 unsigned flush = 0; 2713 2714 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 2715 "sd_revalidate_disk\n")); 2716 2717 /* 2718 * If the device is offline, don't try and read capacity or any 2719 * of the other niceties. 2720 */ 2721 if (!scsi_device_online(sdp)) 2722 goto out; 2723 2724 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 2725 if (!buffer) { 2726 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 2727 "allocation failure.\n"); 2728 goto out; 2729 } 2730 2731 sd_spinup_disk(sdkp); 2732 2733 /* 2734 * Without media there is no reason to ask; moreover, some devices 2735 * react badly if we do. 2736 */ 2737 if (sdkp->media_present) { 2738 sd_read_capacity(sdkp, buffer); 2739 2740 if (sd_try_extended_inquiry(sdp)) { 2741 sd_read_block_provisioning(sdkp); 2742 sd_read_block_limits(sdkp); 2743 sd_read_block_characteristics(sdkp); 2744 } 2745 2746 sd_read_write_protect_flag(sdkp, buffer); 2747 sd_read_cache_type(sdkp, buffer); 2748 sd_read_app_tag_own(sdkp, buffer); 2749 sd_read_write_same(sdkp, buffer); 2750 } 2751 2752 sdkp->first_scan = 0; 2753 2754 /* 2755 * We now have all cache related info, determine how we deal 2756 * with flush requests. 2757 */ 2758 if (sdkp->WCE) { 2759 flush |= REQ_FLUSH; 2760 if (sdkp->DPOFUA) 2761 flush |= REQ_FUA; 2762 } 2763 2764 blk_queue_flush(sdkp->disk->queue, flush); 2765 2766 set_capacity(disk, sdkp->capacity); 2767 sd_config_write_same(sdkp); 2768 kfree(buffer); 2769 2770 out: 2771 return 0; 2772 } 2773 2774 /** 2775 * sd_unlock_native_capacity - unlock native capacity 2776 * @disk: struct gendisk to set capacity for 2777 * 2778 * Block layer calls this function if it detects that partitions 2779 * on @disk reach beyond the end of the device. If the SCSI host 2780 * implements ->unlock_native_capacity() method, it's invoked to 2781 * give it a chance to adjust the device capacity. 2782 * 2783 * CONTEXT: 2784 * Defined by block layer. Might sleep. 2785 */ 2786 static void sd_unlock_native_capacity(struct gendisk *disk) 2787 { 2788 struct scsi_device *sdev = scsi_disk(disk)->device; 2789 2790 if (sdev->host->hostt->unlock_native_capacity) 2791 sdev->host->hostt->unlock_native_capacity(sdev); 2792 } 2793 2794 /** 2795 * sd_format_disk_name - format disk name 2796 * @prefix: name prefix - ie. "sd" for SCSI disks 2797 * @index: index of the disk to format name for 2798 * @buf: output buffer 2799 * @buflen: length of the output buffer 2800 * 2801 * SCSI disk names starts at sda. The 26th device is sdz and the 2802 * 27th is sdaa. The last one for two lettered suffix is sdzz 2803 * which is followed by sdaaa. 2804 * 2805 * This is basically 26 base counting with one extra 'nil' entry 2806 * at the beginning from the second digit on and can be 2807 * determined using similar method as 26 base conversion with the 2808 * index shifted -1 after each digit is computed. 2809 * 2810 * CONTEXT: 2811 * Don't care. 2812 * 2813 * RETURNS: 2814 * 0 on success, -errno on failure. 2815 */ 2816 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 2817 { 2818 const int base = 'z' - 'a' + 1; 2819 char *begin = buf + strlen(prefix); 2820 char *end = buf + buflen; 2821 char *p; 2822 int unit; 2823 2824 p = end - 1; 2825 *p = '\0'; 2826 unit = base; 2827 do { 2828 if (p == begin) 2829 return -EINVAL; 2830 *--p = 'a' + (index % unit); 2831 index = (index / unit) - 1; 2832 } while (index >= 0); 2833 2834 memmove(begin, p, end - p); 2835 memcpy(buf, prefix, strlen(prefix)); 2836 2837 return 0; 2838 } 2839 2840 /* 2841 * The asynchronous part of sd_probe 2842 */ 2843 static void sd_probe_async(void *data, async_cookie_t cookie) 2844 { 2845 struct scsi_disk *sdkp = data; 2846 struct scsi_device *sdp; 2847 struct gendisk *gd; 2848 u32 index; 2849 struct device *dev; 2850 2851 sdp = sdkp->device; 2852 gd = sdkp->disk; 2853 index = sdkp->index; 2854 dev = &sdp->sdev_gendev; 2855 2856 gd->major = sd_major((index & 0xf0) >> 4); 2857 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 2858 gd->minors = SD_MINORS; 2859 2860 gd->fops = &sd_fops; 2861 gd->private_data = &sdkp->driver; 2862 gd->queue = sdkp->device->request_queue; 2863 2864 /* defaults, until the device tells us otherwise */ 2865 sdp->sector_size = 512; 2866 sdkp->capacity = 0; 2867 sdkp->media_present = 1; 2868 sdkp->write_prot = 0; 2869 sdkp->cache_override = 0; 2870 sdkp->WCE = 0; 2871 sdkp->RCD = 0; 2872 sdkp->ATO = 0; 2873 sdkp->first_scan = 1; 2874 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 2875 2876 sd_revalidate_disk(gd); 2877 2878 blk_queue_prep_rq(sdp->request_queue, sd_prep_fn); 2879 blk_queue_unprep_rq(sdp->request_queue, sd_unprep_fn); 2880 2881 gd->driverfs_dev = &sdp->sdev_gendev; 2882 gd->flags = GENHD_FL_EXT_DEVT; 2883 if (sdp->removable) { 2884 gd->flags |= GENHD_FL_REMOVABLE; 2885 gd->events |= DISK_EVENT_MEDIA_CHANGE; 2886 } 2887 2888 blk_pm_runtime_init(sdp->request_queue, dev); 2889 add_disk(gd); 2890 if (sdkp->capacity) 2891 sd_dif_config_host(sdkp); 2892 2893 sd_revalidate_disk(gd); 2894 2895 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 2896 sdp->removable ? "removable " : ""); 2897 scsi_autopm_put_device(sdp); 2898 put_device(&sdkp->dev); 2899 } 2900 2901 /** 2902 * sd_probe - called during driver initialization and whenever a 2903 * new scsi device is attached to the system. It is called once 2904 * for each scsi device (not just disks) present. 2905 * @dev: pointer to device object 2906 * 2907 * Returns 0 if successful (or not interested in this scsi device 2908 * (e.g. scanner)); 1 when there is an error. 2909 * 2910 * Note: this function is invoked from the scsi mid-level. 2911 * This function sets up the mapping between a given 2912 * <host,channel,id,lun> (found in sdp) and new device name 2913 * (e.g. /dev/sda). More precisely it is the block device major 2914 * and minor number that is chosen here. 2915 * 2916 * Assume sd_probe is not re-entrant (for time being) 2917 * Also think about sd_probe() and sd_remove() running coincidentally. 2918 **/ 2919 static int sd_probe(struct device *dev) 2920 { 2921 struct scsi_device *sdp = to_scsi_device(dev); 2922 struct scsi_disk *sdkp; 2923 struct gendisk *gd; 2924 int index; 2925 int error; 2926 2927 error = -ENODEV; 2928 if (sdp->type != TYPE_DISK && sdp->type != TYPE_MOD && sdp->type != TYPE_RBC) 2929 goto out; 2930 2931 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 2932 "sd_probe\n")); 2933 2934 error = -ENOMEM; 2935 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 2936 if (!sdkp) 2937 goto out; 2938 2939 gd = alloc_disk(SD_MINORS); 2940 if (!gd) 2941 goto out_free; 2942 2943 do { 2944 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL)) 2945 goto out_put; 2946 2947 spin_lock(&sd_index_lock); 2948 error = ida_get_new(&sd_index_ida, &index); 2949 spin_unlock(&sd_index_lock); 2950 } while (error == -EAGAIN); 2951 2952 if (error) { 2953 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 2954 goto out_put; 2955 } 2956 2957 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 2958 if (error) { 2959 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 2960 goto out_free_index; 2961 } 2962 2963 sdkp->device = sdp; 2964 sdkp->driver = &sd_template; 2965 sdkp->disk = gd; 2966 sdkp->index = index; 2967 atomic_set(&sdkp->openers, 0); 2968 atomic_set(&sdkp->device->ioerr_cnt, 0); 2969 2970 if (!sdp->request_queue->rq_timeout) { 2971 if (sdp->type != TYPE_MOD) 2972 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 2973 else 2974 blk_queue_rq_timeout(sdp->request_queue, 2975 SD_MOD_TIMEOUT); 2976 } 2977 2978 device_initialize(&sdkp->dev); 2979 sdkp->dev.parent = dev; 2980 sdkp->dev.class = &sd_disk_class; 2981 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 2982 2983 if (device_add(&sdkp->dev)) 2984 goto out_free_index; 2985 2986 get_device(dev); 2987 dev_set_drvdata(dev, sdkp); 2988 2989 get_device(&sdkp->dev); /* prevent release before async_schedule */ 2990 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); 2991 2992 return 0; 2993 2994 out_free_index: 2995 spin_lock(&sd_index_lock); 2996 ida_remove(&sd_index_ida, index); 2997 spin_unlock(&sd_index_lock); 2998 out_put: 2999 put_disk(gd); 3000 out_free: 3001 kfree(sdkp); 3002 out: 3003 return error; 3004 } 3005 3006 /** 3007 * sd_remove - called whenever a scsi disk (previously recognized by 3008 * sd_probe) is detached from the system. It is called (potentially 3009 * multiple times) during sd module unload. 3010 * @sdp: pointer to mid level scsi device object 3011 * 3012 * Note: this function is invoked from the scsi mid-level. 3013 * This function potentially frees up a device name (e.g. /dev/sdc) 3014 * that could be re-used by a subsequent sd_probe(). 3015 * This function is not called when the built-in sd driver is "exit-ed". 3016 **/ 3017 static int sd_remove(struct device *dev) 3018 { 3019 struct scsi_disk *sdkp; 3020 dev_t devt; 3021 3022 sdkp = dev_get_drvdata(dev); 3023 devt = disk_devt(sdkp->disk); 3024 scsi_autopm_get_device(sdkp->device); 3025 3026 async_synchronize_full_domain(&scsi_sd_pm_domain); 3027 async_synchronize_full_domain(&scsi_sd_probe_domain); 3028 blk_queue_prep_rq(sdkp->device->request_queue, scsi_prep_fn); 3029 blk_queue_unprep_rq(sdkp->device->request_queue, NULL); 3030 device_del(&sdkp->dev); 3031 del_gendisk(sdkp->disk); 3032 sd_shutdown(dev); 3033 3034 blk_register_region(devt, SD_MINORS, NULL, 3035 sd_default_probe, NULL, NULL); 3036 3037 mutex_lock(&sd_ref_mutex); 3038 dev_set_drvdata(dev, NULL); 3039 put_device(&sdkp->dev); 3040 mutex_unlock(&sd_ref_mutex); 3041 3042 return 0; 3043 } 3044 3045 /** 3046 * scsi_disk_release - Called to free the scsi_disk structure 3047 * @dev: pointer to embedded class device 3048 * 3049 * sd_ref_mutex must be held entering this routine. Because it is 3050 * called on last put, you should always use the scsi_disk_get() 3051 * scsi_disk_put() helpers which manipulate the semaphore directly 3052 * and never do a direct put_device. 3053 **/ 3054 static void scsi_disk_release(struct device *dev) 3055 { 3056 struct scsi_disk *sdkp = to_scsi_disk(dev); 3057 struct gendisk *disk = sdkp->disk; 3058 3059 spin_lock(&sd_index_lock); 3060 ida_remove(&sd_index_ida, sdkp->index); 3061 spin_unlock(&sd_index_lock); 3062 3063 disk->private_data = NULL; 3064 put_disk(disk); 3065 put_device(&sdkp->device->sdev_gendev); 3066 3067 kfree(sdkp); 3068 } 3069 3070 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3071 { 3072 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3073 struct scsi_sense_hdr sshdr; 3074 struct scsi_device *sdp = sdkp->device; 3075 int res; 3076 3077 if (start) 3078 cmd[4] |= 1; /* START */ 3079 3080 if (sdp->start_stop_pwr_cond) 3081 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3082 3083 if (!scsi_device_online(sdp)) 3084 return -ENODEV; 3085 3086 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr, 3087 SD_TIMEOUT, SD_MAX_RETRIES, NULL, REQ_PM); 3088 if (res) { 3089 sd_printk(KERN_WARNING, sdkp, "START_STOP FAILED\n"); 3090 sd_print_result(sdkp, res); 3091 if (driver_byte(res) & DRIVER_SENSE) 3092 sd_print_sense_hdr(sdkp, &sshdr); 3093 if (scsi_sense_valid(&sshdr) && 3094 /* 0x3a is medium not present */ 3095 sshdr.asc == 0x3a) 3096 res = 0; 3097 } 3098 3099 /* SCSI error codes must not go to the generic layer */ 3100 if (res) 3101 return -EIO; 3102 3103 return 0; 3104 } 3105 3106 /* 3107 * Send a SYNCHRONIZE CACHE instruction down to the device through 3108 * the normal SCSI command structure. Wait for the command to 3109 * complete. 3110 */ 3111 static void sd_shutdown(struct device *dev) 3112 { 3113 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev); 3114 3115 if (!sdkp) 3116 return; /* this can happen */ 3117 3118 if (pm_runtime_suspended(dev)) 3119 goto exit; 3120 3121 if (sdkp->WCE && sdkp->media_present) { 3122 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3123 sd_sync_cache(sdkp); 3124 } 3125 3126 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3127 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3128 sd_start_stop_device(sdkp, 0); 3129 } 3130 3131 exit: 3132 scsi_disk_put(sdkp); 3133 } 3134 3135 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3136 { 3137 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev); 3138 int ret = 0; 3139 3140 if (!sdkp) 3141 return 0; /* this can happen */ 3142 3143 if (sdkp->WCE && sdkp->media_present) { 3144 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3145 ret = sd_sync_cache(sdkp); 3146 if (ret) { 3147 /* ignore OFFLINE device */ 3148 if (ret == -ENODEV) 3149 ret = 0; 3150 goto done; 3151 } 3152 } 3153 3154 if (sdkp->device->manage_start_stop) { 3155 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3156 /* an error is not worth aborting a system sleep */ 3157 ret = sd_start_stop_device(sdkp, 0); 3158 if (ignore_stop_errors) 3159 ret = 0; 3160 } 3161 3162 done: 3163 scsi_disk_put(sdkp); 3164 return ret; 3165 } 3166 3167 static int sd_suspend_system(struct device *dev) 3168 { 3169 return sd_suspend_common(dev, true); 3170 } 3171 3172 static int sd_suspend_runtime(struct device *dev) 3173 { 3174 return sd_suspend_common(dev, false); 3175 } 3176 3177 static int sd_resume(struct device *dev) 3178 { 3179 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev); 3180 int ret = 0; 3181 3182 if (!sdkp->device->manage_start_stop) 3183 goto done; 3184 3185 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3186 ret = sd_start_stop_device(sdkp, 1); 3187 3188 done: 3189 scsi_disk_put(sdkp); 3190 return ret; 3191 } 3192 3193 /** 3194 * init_sd - entry point for this driver (both when built in or when 3195 * a module). 3196 * 3197 * Note: this function registers this driver with the scsi mid-level. 3198 **/ 3199 static int __init init_sd(void) 3200 { 3201 int majors = 0, i, err; 3202 3203 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3204 3205 for (i = 0; i < SD_MAJORS; i++) { 3206 if (register_blkdev(sd_major(i), "sd") != 0) 3207 continue; 3208 majors++; 3209 blk_register_region(sd_major(i), SD_MINORS, NULL, 3210 sd_default_probe, NULL, NULL); 3211 } 3212 3213 if (!majors) 3214 return -ENODEV; 3215 3216 err = class_register(&sd_disk_class); 3217 if (err) 3218 goto err_out; 3219 3220 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3221 0, 0, NULL); 3222 if (!sd_cdb_cache) { 3223 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3224 goto err_out_class; 3225 } 3226 3227 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3228 if (!sd_cdb_pool) { 3229 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3230 goto err_out_cache; 3231 } 3232 3233 err = scsi_register_driver(&sd_template.gendrv); 3234 if (err) 3235 goto err_out_driver; 3236 3237 return 0; 3238 3239 err_out_driver: 3240 mempool_destroy(sd_cdb_pool); 3241 3242 err_out_cache: 3243 kmem_cache_destroy(sd_cdb_cache); 3244 3245 err_out_class: 3246 class_unregister(&sd_disk_class); 3247 err_out: 3248 for (i = 0; i < SD_MAJORS; i++) 3249 unregister_blkdev(sd_major(i), "sd"); 3250 return err; 3251 } 3252 3253 /** 3254 * exit_sd - exit point for this driver (when it is a module). 3255 * 3256 * Note: this function unregisters this driver from the scsi mid-level. 3257 **/ 3258 static void __exit exit_sd(void) 3259 { 3260 int i; 3261 3262 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3263 3264 scsi_unregister_driver(&sd_template.gendrv); 3265 mempool_destroy(sd_cdb_pool); 3266 kmem_cache_destroy(sd_cdb_cache); 3267 3268 class_unregister(&sd_disk_class); 3269 3270 for (i = 0; i < SD_MAJORS; i++) { 3271 blk_unregister_region(sd_major(i), SD_MINORS); 3272 unregister_blkdev(sd_major(i), "sd"); 3273 } 3274 } 3275 3276 module_init(init_sd); 3277 module_exit(exit_sd); 3278 3279 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3280 struct scsi_sense_hdr *sshdr) 3281 { 3282 sd_printk(KERN_INFO, sdkp, " "); 3283 scsi_show_sense_hdr(sshdr); 3284 sd_printk(KERN_INFO, sdkp, " "); 3285 scsi_show_extd_sense(sshdr->asc, sshdr->ascq); 3286 } 3287 3288 static void sd_print_result(struct scsi_disk *sdkp, int result) 3289 { 3290 sd_printk(KERN_INFO, sdkp, " "); 3291 scsi_show_result(result); 3292 } 3293 3294