1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/genhd.h> 42 #include <linux/hdreg.h> 43 #include <linux/errno.h> 44 #include <linux/idr.h> 45 #include <linux/interrupt.h> 46 #include <linux/init.h> 47 #include <linux/blkdev.h> 48 #include <linux/blkpg.h> 49 #include <linux/blk-pm.h> 50 #include <linux/delay.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/async.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <asm/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_driver.h> 67 #include <scsi/scsi_eh.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_ioctl.h> 70 #include <scsi/scsicam.h> 71 72 #include "sd.h" 73 #include "scsi_priv.h" 74 #include "scsi_logging.h" 75 76 MODULE_AUTHOR("Eric Youngdale"); 77 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 78 MODULE_LICENSE("GPL"); 79 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 100 101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 102 #define SD_MINORS 16 103 #else 104 #define SD_MINORS 0 105 #endif 106 107 static void sd_config_discard(struct scsi_disk *, unsigned int); 108 static void sd_config_write_same(struct scsi_disk *); 109 static int sd_revalidate_disk(struct gendisk *); 110 static void sd_unlock_native_capacity(struct gendisk *disk); 111 static int sd_probe(struct device *); 112 static int sd_remove(struct device *); 113 static void sd_shutdown(struct device *); 114 static int sd_suspend_system(struct device *); 115 static int sd_suspend_runtime(struct device *); 116 static int sd_resume(struct device *); 117 static void sd_rescan(struct device *); 118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 119 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 120 static int sd_done(struct scsi_cmnd *); 121 static void sd_eh_reset(struct scsi_cmnd *); 122 static int sd_eh_action(struct scsi_cmnd *, int); 123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 124 static void scsi_disk_release(struct device *cdev); 125 126 static DEFINE_IDA(sd_index_ida); 127 128 /* This semaphore is used to mediate the 0->1 reference get in the 129 * face of object destruction (i.e. we can't allow a get on an 130 * object after last put) */ 131 static DEFINE_MUTEX(sd_ref_mutex); 132 133 static struct kmem_cache *sd_cdb_cache; 134 static mempool_t *sd_cdb_pool; 135 static mempool_t *sd_page_pool; 136 137 static const char *sd_cache_types[] = { 138 "write through", "none", "write back", 139 "write back, no read (daft)" 140 }; 141 142 static void sd_set_flush_flag(struct scsi_disk *sdkp) 143 { 144 bool wc = false, fua = false; 145 146 if (sdkp->WCE) { 147 wc = true; 148 if (sdkp->DPOFUA) 149 fua = true; 150 } 151 152 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 153 } 154 155 static ssize_t 156 cache_type_store(struct device *dev, struct device_attribute *attr, 157 const char *buf, size_t count) 158 { 159 int ct, rcd, wce, sp; 160 struct scsi_disk *sdkp = to_scsi_disk(dev); 161 struct scsi_device *sdp = sdkp->device; 162 char buffer[64]; 163 char *buffer_data; 164 struct scsi_mode_data data; 165 struct scsi_sense_hdr sshdr; 166 static const char temp[] = "temporary "; 167 int len; 168 169 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 170 /* no cache control on RBC devices; theoretically they 171 * can do it, but there's probably so many exceptions 172 * it's not worth the risk */ 173 return -EINVAL; 174 175 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 176 buf += sizeof(temp) - 1; 177 sdkp->cache_override = 1; 178 } else { 179 sdkp->cache_override = 0; 180 } 181 182 ct = sysfs_match_string(sd_cache_types, buf); 183 if (ct < 0) 184 return -EINVAL; 185 186 rcd = ct & 0x01 ? 1 : 0; 187 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 188 189 if (sdkp->cache_override) { 190 sdkp->WCE = wce; 191 sdkp->RCD = rcd; 192 sd_set_flush_flag(sdkp); 193 return count; 194 } 195 196 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 197 sdkp->max_retries, &data, NULL)) 198 return -EINVAL; 199 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 200 data.block_descriptor_length); 201 buffer_data = buffer + data.header_length + 202 data.block_descriptor_length; 203 buffer_data[2] &= ~0x05; 204 buffer_data[2] |= wce << 2 | rcd; 205 sp = buffer_data[0] & 0x80 ? 1 : 0; 206 buffer_data[0] &= ~0x80; 207 208 /* 209 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 210 * received mode parameter buffer before doing MODE SELECT. 211 */ 212 data.device_specific = 0; 213 214 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 215 sdkp->max_retries, &data, &sshdr)) { 216 if (scsi_sense_valid(&sshdr)) 217 sd_print_sense_hdr(sdkp, &sshdr); 218 return -EINVAL; 219 } 220 sd_revalidate_disk(sdkp->disk); 221 return count; 222 } 223 224 static ssize_t 225 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 226 char *buf) 227 { 228 struct scsi_disk *sdkp = to_scsi_disk(dev); 229 struct scsi_device *sdp = sdkp->device; 230 231 return sprintf(buf, "%u\n", sdp->manage_start_stop); 232 } 233 234 static ssize_t 235 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 236 const char *buf, size_t count) 237 { 238 struct scsi_disk *sdkp = to_scsi_disk(dev); 239 struct scsi_device *sdp = sdkp->device; 240 bool v; 241 242 if (!capable(CAP_SYS_ADMIN)) 243 return -EACCES; 244 245 if (kstrtobool(buf, &v)) 246 return -EINVAL; 247 248 sdp->manage_start_stop = v; 249 250 return count; 251 } 252 static DEVICE_ATTR_RW(manage_start_stop); 253 254 static ssize_t 255 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 256 { 257 struct scsi_disk *sdkp = to_scsi_disk(dev); 258 259 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 260 } 261 262 static ssize_t 263 allow_restart_store(struct device *dev, struct device_attribute *attr, 264 const char *buf, size_t count) 265 { 266 bool v; 267 struct scsi_disk *sdkp = to_scsi_disk(dev); 268 struct scsi_device *sdp = sdkp->device; 269 270 if (!capable(CAP_SYS_ADMIN)) 271 return -EACCES; 272 273 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 274 return -EINVAL; 275 276 if (kstrtobool(buf, &v)) 277 return -EINVAL; 278 279 sdp->allow_restart = v; 280 281 return count; 282 } 283 static DEVICE_ATTR_RW(allow_restart); 284 285 static ssize_t 286 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 287 { 288 struct scsi_disk *sdkp = to_scsi_disk(dev); 289 int ct = sdkp->RCD + 2*sdkp->WCE; 290 291 return sprintf(buf, "%s\n", sd_cache_types[ct]); 292 } 293 static DEVICE_ATTR_RW(cache_type); 294 295 static ssize_t 296 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 297 { 298 struct scsi_disk *sdkp = to_scsi_disk(dev); 299 300 return sprintf(buf, "%u\n", sdkp->DPOFUA); 301 } 302 static DEVICE_ATTR_RO(FUA); 303 304 static ssize_t 305 protection_type_show(struct device *dev, struct device_attribute *attr, 306 char *buf) 307 { 308 struct scsi_disk *sdkp = to_scsi_disk(dev); 309 310 return sprintf(buf, "%u\n", sdkp->protection_type); 311 } 312 313 static ssize_t 314 protection_type_store(struct device *dev, struct device_attribute *attr, 315 const char *buf, size_t count) 316 { 317 struct scsi_disk *sdkp = to_scsi_disk(dev); 318 unsigned int val; 319 int err; 320 321 if (!capable(CAP_SYS_ADMIN)) 322 return -EACCES; 323 324 err = kstrtouint(buf, 10, &val); 325 326 if (err) 327 return err; 328 329 if (val <= T10_PI_TYPE3_PROTECTION) 330 sdkp->protection_type = val; 331 332 return count; 333 } 334 static DEVICE_ATTR_RW(protection_type); 335 336 static ssize_t 337 protection_mode_show(struct device *dev, struct device_attribute *attr, 338 char *buf) 339 { 340 struct scsi_disk *sdkp = to_scsi_disk(dev); 341 struct scsi_device *sdp = sdkp->device; 342 unsigned int dif, dix; 343 344 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 345 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 346 347 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 348 dif = 0; 349 dix = 1; 350 } 351 352 if (!dif && !dix) 353 return sprintf(buf, "none\n"); 354 355 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 356 } 357 static DEVICE_ATTR_RO(protection_mode); 358 359 static ssize_t 360 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 361 { 362 struct scsi_disk *sdkp = to_scsi_disk(dev); 363 364 return sprintf(buf, "%u\n", sdkp->ATO); 365 } 366 static DEVICE_ATTR_RO(app_tag_own); 367 368 static ssize_t 369 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 370 char *buf) 371 { 372 struct scsi_disk *sdkp = to_scsi_disk(dev); 373 374 return sprintf(buf, "%u\n", sdkp->lbpme); 375 } 376 static DEVICE_ATTR_RO(thin_provisioning); 377 378 /* sysfs_match_string() requires dense arrays */ 379 static const char *lbp_mode[] = { 380 [SD_LBP_FULL] = "full", 381 [SD_LBP_UNMAP] = "unmap", 382 [SD_LBP_WS16] = "writesame_16", 383 [SD_LBP_WS10] = "writesame_10", 384 [SD_LBP_ZERO] = "writesame_zero", 385 [SD_LBP_DISABLE] = "disabled", 386 }; 387 388 static ssize_t 389 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 390 char *buf) 391 { 392 struct scsi_disk *sdkp = to_scsi_disk(dev); 393 394 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 395 } 396 397 static ssize_t 398 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 399 const char *buf, size_t count) 400 { 401 struct scsi_disk *sdkp = to_scsi_disk(dev); 402 struct scsi_device *sdp = sdkp->device; 403 int mode; 404 405 if (!capable(CAP_SYS_ADMIN)) 406 return -EACCES; 407 408 if (sd_is_zoned(sdkp)) { 409 sd_config_discard(sdkp, SD_LBP_DISABLE); 410 return count; 411 } 412 413 if (sdp->type != TYPE_DISK) 414 return -EINVAL; 415 416 mode = sysfs_match_string(lbp_mode, buf); 417 if (mode < 0) 418 return -EINVAL; 419 420 sd_config_discard(sdkp, mode); 421 422 return count; 423 } 424 static DEVICE_ATTR_RW(provisioning_mode); 425 426 /* sysfs_match_string() requires dense arrays */ 427 static const char *zeroing_mode[] = { 428 [SD_ZERO_WRITE] = "write", 429 [SD_ZERO_WS] = "writesame", 430 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 431 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 432 }; 433 434 static ssize_t 435 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 436 char *buf) 437 { 438 struct scsi_disk *sdkp = to_scsi_disk(dev); 439 440 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 441 } 442 443 static ssize_t 444 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 445 const char *buf, size_t count) 446 { 447 struct scsi_disk *sdkp = to_scsi_disk(dev); 448 int mode; 449 450 if (!capable(CAP_SYS_ADMIN)) 451 return -EACCES; 452 453 mode = sysfs_match_string(zeroing_mode, buf); 454 if (mode < 0) 455 return -EINVAL; 456 457 sdkp->zeroing_mode = mode; 458 459 return count; 460 } 461 static DEVICE_ATTR_RW(zeroing_mode); 462 463 static ssize_t 464 max_medium_access_timeouts_show(struct device *dev, 465 struct device_attribute *attr, char *buf) 466 { 467 struct scsi_disk *sdkp = to_scsi_disk(dev); 468 469 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 470 } 471 472 static ssize_t 473 max_medium_access_timeouts_store(struct device *dev, 474 struct device_attribute *attr, const char *buf, 475 size_t count) 476 { 477 struct scsi_disk *sdkp = to_scsi_disk(dev); 478 int err; 479 480 if (!capable(CAP_SYS_ADMIN)) 481 return -EACCES; 482 483 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 484 485 return err ? err : count; 486 } 487 static DEVICE_ATTR_RW(max_medium_access_timeouts); 488 489 static ssize_t 490 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 491 char *buf) 492 { 493 struct scsi_disk *sdkp = to_scsi_disk(dev); 494 495 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 496 } 497 498 static ssize_t 499 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 500 const char *buf, size_t count) 501 { 502 struct scsi_disk *sdkp = to_scsi_disk(dev); 503 struct scsi_device *sdp = sdkp->device; 504 unsigned long max; 505 int err; 506 507 if (!capable(CAP_SYS_ADMIN)) 508 return -EACCES; 509 510 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 511 return -EINVAL; 512 513 err = kstrtoul(buf, 10, &max); 514 515 if (err) 516 return err; 517 518 if (max == 0) 519 sdp->no_write_same = 1; 520 else if (max <= SD_MAX_WS16_BLOCKS) { 521 sdp->no_write_same = 0; 522 sdkp->max_ws_blocks = max; 523 } 524 525 sd_config_write_same(sdkp); 526 527 return count; 528 } 529 static DEVICE_ATTR_RW(max_write_same_blocks); 530 531 static ssize_t 532 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 533 { 534 struct scsi_disk *sdkp = to_scsi_disk(dev); 535 536 if (sdkp->device->type == TYPE_ZBC) 537 return sprintf(buf, "host-managed\n"); 538 if (sdkp->zoned == 1) 539 return sprintf(buf, "host-aware\n"); 540 if (sdkp->zoned == 2) 541 return sprintf(buf, "drive-managed\n"); 542 return sprintf(buf, "none\n"); 543 } 544 static DEVICE_ATTR_RO(zoned_cap); 545 546 static ssize_t 547 max_retries_store(struct device *dev, struct device_attribute *attr, 548 const char *buf, size_t count) 549 { 550 struct scsi_disk *sdkp = to_scsi_disk(dev); 551 struct scsi_device *sdev = sdkp->device; 552 int retries, err; 553 554 err = kstrtoint(buf, 10, &retries); 555 if (err) 556 return err; 557 558 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 559 sdkp->max_retries = retries; 560 return count; 561 } 562 563 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 564 SD_MAX_RETRIES); 565 return -EINVAL; 566 } 567 568 static ssize_t 569 max_retries_show(struct device *dev, struct device_attribute *attr, 570 char *buf) 571 { 572 struct scsi_disk *sdkp = to_scsi_disk(dev); 573 574 return sprintf(buf, "%d\n", sdkp->max_retries); 575 } 576 577 static DEVICE_ATTR_RW(max_retries); 578 579 static struct attribute *sd_disk_attrs[] = { 580 &dev_attr_cache_type.attr, 581 &dev_attr_FUA.attr, 582 &dev_attr_allow_restart.attr, 583 &dev_attr_manage_start_stop.attr, 584 &dev_attr_protection_type.attr, 585 &dev_attr_protection_mode.attr, 586 &dev_attr_app_tag_own.attr, 587 &dev_attr_thin_provisioning.attr, 588 &dev_attr_provisioning_mode.attr, 589 &dev_attr_zeroing_mode.attr, 590 &dev_attr_max_write_same_blocks.attr, 591 &dev_attr_max_medium_access_timeouts.attr, 592 &dev_attr_zoned_cap.attr, 593 &dev_attr_max_retries.attr, 594 NULL, 595 }; 596 ATTRIBUTE_GROUPS(sd_disk); 597 598 static struct class sd_disk_class = { 599 .name = "scsi_disk", 600 .owner = THIS_MODULE, 601 .dev_release = scsi_disk_release, 602 .dev_groups = sd_disk_groups, 603 }; 604 605 static const struct dev_pm_ops sd_pm_ops = { 606 .suspend = sd_suspend_system, 607 .resume = sd_resume, 608 .poweroff = sd_suspend_system, 609 .restore = sd_resume, 610 .runtime_suspend = sd_suspend_runtime, 611 .runtime_resume = sd_resume, 612 }; 613 614 static struct scsi_driver sd_template = { 615 .gendrv = { 616 .name = "sd", 617 .owner = THIS_MODULE, 618 .probe = sd_probe, 619 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 620 .remove = sd_remove, 621 .shutdown = sd_shutdown, 622 .pm = &sd_pm_ops, 623 }, 624 .rescan = sd_rescan, 625 .init_command = sd_init_command, 626 .uninit_command = sd_uninit_command, 627 .done = sd_done, 628 .eh_action = sd_eh_action, 629 .eh_reset = sd_eh_reset, 630 }; 631 632 /* 633 * Dummy kobj_map->probe function. 634 * The default ->probe function will call modprobe, which is 635 * pointless as this module is already loaded. 636 */ 637 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 638 { 639 return NULL; 640 } 641 642 /* 643 * Device no to disk mapping: 644 * 645 * major disc2 disc p1 646 * |............|.............|....|....| <- dev_t 647 * 31 20 19 8 7 4 3 0 648 * 649 * Inside a major, we have 16k disks, however mapped non- 650 * contiguously. The first 16 disks are for major0, the next 651 * ones with major1, ... Disk 256 is for major0 again, disk 272 652 * for major1, ... 653 * As we stay compatible with our numbering scheme, we can reuse 654 * the well-know SCSI majors 8, 65--71, 136--143. 655 */ 656 static int sd_major(int major_idx) 657 { 658 switch (major_idx) { 659 case 0: 660 return SCSI_DISK0_MAJOR; 661 case 1 ... 7: 662 return SCSI_DISK1_MAJOR + major_idx - 1; 663 case 8 ... 15: 664 return SCSI_DISK8_MAJOR + major_idx - 8; 665 default: 666 BUG(); 667 return 0; /* shut up gcc */ 668 } 669 } 670 671 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 672 { 673 struct scsi_disk *sdkp = NULL; 674 675 mutex_lock(&sd_ref_mutex); 676 677 if (disk->private_data) { 678 sdkp = scsi_disk(disk); 679 if (scsi_device_get(sdkp->device) == 0) 680 get_device(&sdkp->dev); 681 else 682 sdkp = NULL; 683 } 684 mutex_unlock(&sd_ref_mutex); 685 return sdkp; 686 } 687 688 static void scsi_disk_put(struct scsi_disk *sdkp) 689 { 690 struct scsi_device *sdev = sdkp->device; 691 692 mutex_lock(&sd_ref_mutex); 693 put_device(&sdkp->dev); 694 scsi_device_put(sdev); 695 mutex_unlock(&sd_ref_mutex); 696 } 697 698 #ifdef CONFIG_BLK_SED_OPAL 699 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 700 size_t len, bool send) 701 { 702 struct scsi_disk *sdkp = data; 703 struct scsi_device *sdev = sdkp->device; 704 u8 cdb[12] = { 0, }; 705 int ret; 706 707 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 708 cdb[1] = secp; 709 put_unaligned_be16(spsp, &cdb[2]); 710 put_unaligned_be32(len, &cdb[6]); 711 712 ret = scsi_execute_req(sdev, cdb, 713 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 714 buffer, len, NULL, SD_TIMEOUT, sdkp->max_retries, NULL); 715 return ret <= 0 ? ret : -EIO; 716 } 717 #endif /* CONFIG_BLK_SED_OPAL */ 718 719 /* 720 * Look up the DIX operation based on whether the command is read or 721 * write and whether dix and dif are enabled. 722 */ 723 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 724 { 725 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 726 static const unsigned int ops[] = { /* wrt dix dif */ 727 SCSI_PROT_NORMAL, /* 0 0 0 */ 728 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 729 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 730 SCSI_PROT_READ_PASS, /* 0 1 1 */ 731 SCSI_PROT_NORMAL, /* 1 0 0 */ 732 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 733 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 734 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 735 }; 736 737 return ops[write << 2 | dix << 1 | dif]; 738 } 739 740 /* 741 * Returns a mask of the protection flags that are valid for a given DIX 742 * operation. 743 */ 744 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 745 { 746 static const unsigned int flag_mask[] = { 747 [SCSI_PROT_NORMAL] = 0, 748 749 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 750 SCSI_PROT_GUARD_CHECK | 751 SCSI_PROT_REF_CHECK | 752 SCSI_PROT_REF_INCREMENT, 753 754 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 755 SCSI_PROT_IP_CHECKSUM, 756 757 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 758 SCSI_PROT_GUARD_CHECK | 759 SCSI_PROT_REF_CHECK | 760 SCSI_PROT_REF_INCREMENT | 761 SCSI_PROT_IP_CHECKSUM, 762 763 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 764 SCSI_PROT_REF_INCREMENT, 765 766 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 767 SCSI_PROT_REF_CHECK | 768 SCSI_PROT_REF_INCREMENT | 769 SCSI_PROT_IP_CHECKSUM, 770 771 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 772 SCSI_PROT_GUARD_CHECK | 773 SCSI_PROT_REF_CHECK | 774 SCSI_PROT_REF_INCREMENT | 775 SCSI_PROT_IP_CHECKSUM, 776 }; 777 778 return flag_mask[prot_op]; 779 } 780 781 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 782 unsigned int dix, unsigned int dif) 783 { 784 struct bio *bio = scmd->request->bio; 785 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 786 unsigned int protect = 0; 787 788 if (dix) { /* DIX Type 0, 1, 2, 3 */ 789 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 790 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 791 792 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 793 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 794 } 795 796 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 797 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 798 799 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 800 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 801 } 802 803 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 804 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 805 806 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 807 protect = 3 << 5; /* Disable target PI checking */ 808 else 809 protect = 1 << 5; /* Enable target PI checking */ 810 } 811 812 scsi_set_prot_op(scmd, prot_op); 813 scsi_set_prot_type(scmd, dif); 814 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 815 816 return protect; 817 } 818 819 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 820 { 821 struct request_queue *q = sdkp->disk->queue; 822 unsigned int logical_block_size = sdkp->device->sector_size; 823 unsigned int max_blocks = 0; 824 825 q->limits.discard_alignment = 826 sdkp->unmap_alignment * logical_block_size; 827 q->limits.discard_granularity = 828 max(sdkp->physical_block_size, 829 sdkp->unmap_granularity * logical_block_size); 830 sdkp->provisioning_mode = mode; 831 832 switch (mode) { 833 834 case SD_LBP_FULL: 835 case SD_LBP_DISABLE: 836 blk_queue_max_discard_sectors(q, 0); 837 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 838 return; 839 840 case SD_LBP_UNMAP: 841 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 842 (u32)SD_MAX_WS16_BLOCKS); 843 break; 844 845 case SD_LBP_WS16: 846 if (sdkp->device->unmap_limit_for_ws) 847 max_blocks = sdkp->max_unmap_blocks; 848 else 849 max_blocks = sdkp->max_ws_blocks; 850 851 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 852 break; 853 854 case SD_LBP_WS10: 855 if (sdkp->device->unmap_limit_for_ws) 856 max_blocks = sdkp->max_unmap_blocks; 857 else 858 max_blocks = sdkp->max_ws_blocks; 859 860 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 861 break; 862 863 case SD_LBP_ZERO: 864 max_blocks = min_not_zero(sdkp->max_ws_blocks, 865 (u32)SD_MAX_WS10_BLOCKS); 866 break; 867 } 868 869 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 870 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 871 } 872 873 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 874 { 875 struct scsi_device *sdp = cmd->device; 876 struct request *rq = cmd->request; 877 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 878 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 879 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 880 unsigned int data_len = 24; 881 char *buf; 882 883 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 884 if (!rq->special_vec.bv_page) 885 return BLK_STS_RESOURCE; 886 clear_highpage(rq->special_vec.bv_page); 887 rq->special_vec.bv_offset = 0; 888 rq->special_vec.bv_len = data_len; 889 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 890 891 cmd->cmd_len = 10; 892 cmd->cmnd[0] = UNMAP; 893 cmd->cmnd[8] = 24; 894 895 buf = page_address(rq->special_vec.bv_page); 896 put_unaligned_be16(6 + 16, &buf[0]); 897 put_unaligned_be16(16, &buf[2]); 898 put_unaligned_be64(lba, &buf[8]); 899 put_unaligned_be32(nr_blocks, &buf[16]); 900 901 cmd->allowed = sdkp->max_retries; 902 cmd->transfersize = data_len; 903 rq->timeout = SD_TIMEOUT; 904 905 return scsi_init_io(cmd); 906 } 907 908 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 909 bool unmap) 910 { 911 struct scsi_device *sdp = cmd->device; 912 struct request *rq = cmd->request; 913 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 914 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 915 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 916 u32 data_len = sdp->sector_size; 917 918 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 919 if (!rq->special_vec.bv_page) 920 return BLK_STS_RESOURCE; 921 clear_highpage(rq->special_vec.bv_page); 922 rq->special_vec.bv_offset = 0; 923 rq->special_vec.bv_len = data_len; 924 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 925 926 cmd->cmd_len = 16; 927 cmd->cmnd[0] = WRITE_SAME_16; 928 if (unmap) 929 cmd->cmnd[1] = 0x8; /* UNMAP */ 930 put_unaligned_be64(lba, &cmd->cmnd[2]); 931 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 932 933 cmd->allowed = sdkp->max_retries; 934 cmd->transfersize = data_len; 935 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 936 937 return scsi_init_io(cmd); 938 } 939 940 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 941 bool unmap) 942 { 943 struct scsi_device *sdp = cmd->device; 944 struct request *rq = cmd->request; 945 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 946 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 947 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 948 u32 data_len = sdp->sector_size; 949 950 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 951 if (!rq->special_vec.bv_page) 952 return BLK_STS_RESOURCE; 953 clear_highpage(rq->special_vec.bv_page); 954 rq->special_vec.bv_offset = 0; 955 rq->special_vec.bv_len = data_len; 956 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 957 958 cmd->cmd_len = 10; 959 cmd->cmnd[0] = WRITE_SAME; 960 if (unmap) 961 cmd->cmnd[1] = 0x8; /* UNMAP */ 962 put_unaligned_be32(lba, &cmd->cmnd[2]); 963 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 964 965 cmd->allowed = sdkp->max_retries; 966 cmd->transfersize = data_len; 967 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 968 969 return scsi_init_io(cmd); 970 } 971 972 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 973 { 974 struct request *rq = cmd->request; 975 struct scsi_device *sdp = cmd->device; 976 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 977 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 978 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 979 980 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 981 switch (sdkp->zeroing_mode) { 982 case SD_ZERO_WS16_UNMAP: 983 return sd_setup_write_same16_cmnd(cmd, true); 984 case SD_ZERO_WS10_UNMAP: 985 return sd_setup_write_same10_cmnd(cmd, true); 986 } 987 } 988 989 if (sdp->no_write_same) 990 return BLK_STS_TARGET; 991 992 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 993 return sd_setup_write_same16_cmnd(cmd, false); 994 995 return sd_setup_write_same10_cmnd(cmd, false); 996 } 997 998 static void sd_config_write_same(struct scsi_disk *sdkp) 999 { 1000 struct request_queue *q = sdkp->disk->queue; 1001 unsigned int logical_block_size = sdkp->device->sector_size; 1002 1003 if (sdkp->device->no_write_same) { 1004 sdkp->max_ws_blocks = 0; 1005 goto out; 1006 } 1007 1008 /* Some devices can not handle block counts above 0xffff despite 1009 * supporting WRITE SAME(16). Consequently we default to 64k 1010 * blocks per I/O unless the device explicitly advertises a 1011 * bigger limit. 1012 */ 1013 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 1014 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1015 (u32)SD_MAX_WS16_BLOCKS); 1016 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 1017 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1018 (u32)SD_MAX_WS10_BLOCKS); 1019 else { 1020 sdkp->device->no_write_same = 1; 1021 sdkp->max_ws_blocks = 0; 1022 } 1023 1024 if (sdkp->lbprz && sdkp->lbpws) 1025 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 1026 else if (sdkp->lbprz && sdkp->lbpws10) 1027 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 1028 else if (sdkp->max_ws_blocks) 1029 sdkp->zeroing_mode = SD_ZERO_WS; 1030 else 1031 sdkp->zeroing_mode = SD_ZERO_WRITE; 1032 1033 if (sdkp->max_ws_blocks && 1034 sdkp->physical_block_size > logical_block_size) { 1035 /* 1036 * Reporting a maximum number of blocks that is not aligned 1037 * on the device physical size would cause a large write same 1038 * request to be split into physically unaligned chunks by 1039 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 1040 * even if the caller of these functions took care to align the 1041 * large request. So make sure the maximum reported is aligned 1042 * to the device physical block size. This is only an optional 1043 * optimization for regular disks, but this is mandatory to 1044 * avoid failure of large write same requests directed at 1045 * sequential write required zones of host-managed ZBC disks. 1046 */ 1047 sdkp->max_ws_blocks = 1048 round_down(sdkp->max_ws_blocks, 1049 bytes_to_logical(sdkp->device, 1050 sdkp->physical_block_size)); 1051 } 1052 1053 out: 1054 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 1055 (logical_block_size >> 9)); 1056 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1057 (logical_block_size >> 9)); 1058 } 1059 1060 /** 1061 * sd_setup_write_same_cmnd - write the same data to multiple blocks 1062 * @cmd: command to prepare 1063 * 1064 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 1065 * the preference indicated by the target device. 1066 **/ 1067 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 1068 { 1069 struct request *rq = cmd->request; 1070 struct scsi_device *sdp = cmd->device; 1071 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1072 struct bio *bio = rq->bio; 1073 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1074 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1075 blk_status_t ret; 1076 1077 if (sdkp->device->no_write_same) 1078 return BLK_STS_TARGET; 1079 1080 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 1081 1082 rq->timeout = SD_WRITE_SAME_TIMEOUT; 1083 1084 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) { 1085 cmd->cmd_len = 16; 1086 cmd->cmnd[0] = WRITE_SAME_16; 1087 put_unaligned_be64(lba, &cmd->cmnd[2]); 1088 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1089 } else { 1090 cmd->cmd_len = 10; 1091 cmd->cmnd[0] = WRITE_SAME; 1092 put_unaligned_be32(lba, &cmd->cmnd[2]); 1093 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1094 } 1095 1096 cmd->transfersize = sdp->sector_size; 1097 cmd->allowed = sdkp->max_retries; 1098 1099 /* 1100 * For WRITE SAME the data transferred via the DATA OUT buffer is 1101 * different from the amount of data actually written to the target. 1102 * 1103 * We set up __data_len to the amount of data transferred via the 1104 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 1105 * to transfer a single sector of data first, but then reset it to 1106 * the amount of data to be written right after so that the I/O path 1107 * knows how much to actually write. 1108 */ 1109 rq->__data_len = sdp->sector_size; 1110 ret = scsi_init_io(cmd); 1111 rq->__data_len = blk_rq_bytes(rq); 1112 1113 return ret; 1114 } 1115 1116 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1117 { 1118 struct request *rq = cmd->request; 1119 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1120 1121 /* flush requests don't perform I/O, zero the S/G table */ 1122 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1123 1124 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1125 cmd->cmd_len = 10; 1126 cmd->transfersize = 0; 1127 cmd->allowed = sdkp->max_retries; 1128 1129 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1130 return BLK_STS_OK; 1131 } 1132 1133 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1134 sector_t lba, unsigned int nr_blocks, 1135 unsigned char flags) 1136 { 1137 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1138 if (unlikely(cmd->cmnd == NULL)) 1139 return BLK_STS_RESOURCE; 1140 1141 cmd->cmd_len = SD_EXT_CDB_SIZE; 1142 memset(cmd->cmnd, 0, cmd->cmd_len); 1143 1144 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1145 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1146 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1147 cmd->cmnd[10] = flags; 1148 put_unaligned_be64(lba, &cmd->cmnd[12]); 1149 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1150 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1151 1152 return BLK_STS_OK; 1153 } 1154 1155 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1156 sector_t lba, unsigned int nr_blocks, 1157 unsigned char flags) 1158 { 1159 cmd->cmd_len = 16; 1160 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1161 cmd->cmnd[1] = flags; 1162 cmd->cmnd[14] = 0; 1163 cmd->cmnd[15] = 0; 1164 put_unaligned_be64(lba, &cmd->cmnd[2]); 1165 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1166 1167 return BLK_STS_OK; 1168 } 1169 1170 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1171 sector_t lba, unsigned int nr_blocks, 1172 unsigned char flags) 1173 { 1174 cmd->cmd_len = 10; 1175 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1176 cmd->cmnd[1] = flags; 1177 cmd->cmnd[6] = 0; 1178 cmd->cmnd[9] = 0; 1179 put_unaligned_be32(lba, &cmd->cmnd[2]); 1180 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1181 1182 return BLK_STS_OK; 1183 } 1184 1185 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1186 sector_t lba, unsigned int nr_blocks, 1187 unsigned char flags) 1188 { 1189 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1190 if (WARN_ON_ONCE(nr_blocks == 0)) 1191 return BLK_STS_IOERR; 1192 1193 if (unlikely(flags & 0x8)) { 1194 /* 1195 * This happens only if this drive failed 10byte rw 1196 * command with ILLEGAL_REQUEST during operation and 1197 * thus turned off use_10_for_rw. 1198 */ 1199 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1200 return BLK_STS_IOERR; 1201 } 1202 1203 cmd->cmd_len = 6; 1204 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1205 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1206 cmd->cmnd[2] = (lba >> 8) & 0xff; 1207 cmd->cmnd[3] = lba & 0xff; 1208 cmd->cmnd[4] = nr_blocks; 1209 cmd->cmnd[5] = 0; 1210 1211 return BLK_STS_OK; 1212 } 1213 1214 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1215 { 1216 struct request *rq = cmd->request; 1217 struct scsi_device *sdp = cmd->device; 1218 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1219 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1220 sector_t threshold; 1221 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1222 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1223 bool write = rq_data_dir(rq) == WRITE; 1224 unsigned char protect, fua; 1225 blk_status_t ret; 1226 unsigned int dif; 1227 bool dix; 1228 1229 ret = scsi_init_io(cmd); 1230 if (ret != BLK_STS_OK) 1231 return ret; 1232 1233 if (!scsi_device_online(sdp) || sdp->changed) { 1234 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1235 return BLK_STS_IOERR; 1236 } 1237 1238 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) { 1239 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1240 return BLK_STS_IOERR; 1241 } 1242 1243 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1244 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1245 return BLK_STS_IOERR; 1246 } 1247 1248 /* 1249 * Some SD card readers can't handle accesses which touch the 1250 * last one or two logical blocks. Split accesses as needed. 1251 */ 1252 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1253 1254 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1255 if (lba < threshold) { 1256 /* Access up to the threshold but not beyond */ 1257 nr_blocks = threshold - lba; 1258 } else { 1259 /* Access only a single logical block */ 1260 nr_blocks = 1; 1261 } 1262 } 1263 1264 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1265 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1266 if (ret) 1267 return ret; 1268 } 1269 1270 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1271 dix = scsi_prot_sg_count(cmd); 1272 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1273 1274 if (dif || dix) 1275 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1276 else 1277 protect = 0; 1278 1279 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1280 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1281 protect | fua); 1282 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1283 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1284 protect | fua); 1285 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1286 sdp->use_10_for_rw || protect) { 1287 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1288 protect | fua); 1289 } else { 1290 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1291 protect | fua); 1292 } 1293 1294 if (unlikely(ret != BLK_STS_OK)) 1295 return ret; 1296 1297 /* 1298 * We shouldn't disconnect in the middle of a sector, so with a dumb 1299 * host adapter, it's safe to assume that we can at least transfer 1300 * this many bytes between each connect / disconnect. 1301 */ 1302 cmd->transfersize = sdp->sector_size; 1303 cmd->underflow = nr_blocks << 9; 1304 cmd->allowed = sdkp->max_retries; 1305 cmd->sdb.length = nr_blocks * sdp->sector_size; 1306 1307 SCSI_LOG_HLQUEUE(1, 1308 scmd_printk(KERN_INFO, cmd, 1309 "%s: block=%llu, count=%d\n", __func__, 1310 (unsigned long long)blk_rq_pos(rq), 1311 blk_rq_sectors(rq))); 1312 SCSI_LOG_HLQUEUE(2, 1313 scmd_printk(KERN_INFO, cmd, 1314 "%s %d/%u 512 byte blocks.\n", 1315 write ? "writing" : "reading", nr_blocks, 1316 blk_rq_sectors(rq))); 1317 1318 /* 1319 * This indicates that the command is ready from our end to be 1320 * queued. 1321 */ 1322 return BLK_STS_OK; 1323 } 1324 1325 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1326 { 1327 struct request *rq = cmd->request; 1328 1329 switch (req_op(rq)) { 1330 case REQ_OP_DISCARD: 1331 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1332 case SD_LBP_UNMAP: 1333 return sd_setup_unmap_cmnd(cmd); 1334 case SD_LBP_WS16: 1335 return sd_setup_write_same16_cmnd(cmd, true); 1336 case SD_LBP_WS10: 1337 return sd_setup_write_same10_cmnd(cmd, true); 1338 case SD_LBP_ZERO: 1339 return sd_setup_write_same10_cmnd(cmd, false); 1340 default: 1341 return BLK_STS_TARGET; 1342 } 1343 case REQ_OP_WRITE_ZEROES: 1344 return sd_setup_write_zeroes_cmnd(cmd); 1345 case REQ_OP_WRITE_SAME: 1346 return sd_setup_write_same_cmnd(cmd); 1347 case REQ_OP_FLUSH: 1348 return sd_setup_flush_cmnd(cmd); 1349 case REQ_OP_READ: 1350 case REQ_OP_WRITE: 1351 case REQ_OP_ZONE_APPEND: 1352 return sd_setup_read_write_cmnd(cmd); 1353 case REQ_OP_ZONE_RESET: 1354 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1355 false); 1356 case REQ_OP_ZONE_RESET_ALL: 1357 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1358 true); 1359 case REQ_OP_ZONE_OPEN: 1360 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1361 case REQ_OP_ZONE_CLOSE: 1362 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1363 case REQ_OP_ZONE_FINISH: 1364 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1365 default: 1366 WARN_ON_ONCE(1); 1367 return BLK_STS_NOTSUPP; 1368 } 1369 } 1370 1371 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1372 { 1373 struct request *rq = SCpnt->request; 1374 u8 *cmnd; 1375 1376 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1377 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1378 1379 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1380 cmnd = SCpnt->cmnd; 1381 SCpnt->cmnd = NULL; 1382 SCpnt->cmd_len = 0; 1383 mempool_free(cmnd, sd_cdb_pool); 1384 } 1385 } 1386 1387 /** 1388 * sd_open - open a scsi disk device 1389 * @bdev: Block device of the scsi disk to open 1390 * @mode: FMODE_* mask 1391 * 1392 * Returns 0 if successful. Returns a negated errno value in case 1393 * of error. 1394 * 1395 * Note: This can be called from a user context (e.g. fsck(1) ) 1396 * or from within the kernel (e.g. as a result of a mount(1) ). 1397 * In the latter case @inode and @filp carry an abridged amount 1398 * of information as noted above. 1399 * 1400 * Locking: called with bdev->bd_mutex held. 1401 **/ 1402 static int sd_open(struct block_device *bdev, fmode_t mode) 1403 { 1404 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1405 struct scsi_device *sdev; 1406 int retval; 1407 1408 if (!sdkp) 1409 return -ENXIO; 1410 1411 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1412 1413 sdev = sdkp->device; 1414 1415 /* 1416 * If the device is in error recovery, wait until it is done. 1417 * If the device is offline, then disallow any access to it. 1418 */ 1419 retval = -ENXIO; 1420 if (!scsi_block_when_processing_errors(sdev)) 1421 goto error_out; 1422 1423 if (sdev->removable || sdkp->write_prot) { 1424 if (bdev_check_media_change(bdev)) 1425 sd_revalidate_disk(bdev->bd_disk); 1426 } 1427 1428 /* 1429 * If the drive is empty, just let the open fail. 1430 */ 1431 retval = -ENOMEDIUM; 1432 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1433 goto error_out; 1434 1435 /* 1436 * If the device has the write protect tab set, have the open fail 1437 * if the user expects to be able to write to the thing. 1438 */ 1439 retval = -EROFS; 1440 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1441 goto error_out; 1442 1443 /* 1444 * It is possible that the disk changing stuff resulted in 1445 * the device being taken offline. If this is the case, 1446 * report this to the user, and don't pretend that the 1447 * open actually succeeded. 1448 */ 1449 retval = -ENXIO; 1450 if (!scsi_device_online(sdev)) 1451 goto error_out; 1452 1453 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1454 if (scsi_block_when_processing_errors(sdev)) 1455 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1456 } 1457 1458 return 0; 1459 1460 error_out: 1461 scsi_disk_put(sdkp); 1462 return retval; 1463 } 1464 1465 /** 1466 * sd_release - invoked when the (last) close(2) is called on this 1467 * scsi disk. 1468 * @disk: disk to release 1469 * @mode: FMODE_* mask 1470 * 1471 * Returns 0. 1472 * 1473 * Note: may block (uninterruptible) if error recovery is underway 1474 * on this disk. 1475 * 1476 * Locking: called with bdev->bd_mutex held. 1477 **/ 1478 static void sd_release(struct gendisk *disk, fmode_t mode) 1479 { 1480 struct scsi_disk *sdkp = scsi_disk(disk); 1481 struct scsi_device *sdev = sdkp->device; 1482 1483 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1484 1485 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1486 if (scsi_block_when_processing_errors(sdev)) 1487 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1488 } 1489 1490 scsi_disk_put(sdkp); 1491 } 1492 1493 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1494 { 1495 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1496 struct scsi_device *sdp = sdkp->device; 1497 struct Scsi_Host *host = sdp->host; 1498 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1499 int diskinfo[4]; 1500 1501 /* default to most commonly used values */ 1502 diskinfo[0] = 0x40; /* 1 << 6 */ 1503 diskinfo[1] = 0x20; /* 1 << 5 */ 1504 diskinfo[2] = capacity >> 11; 1505 1506 /* override with calculated, extended default, or driver values */ 1507 if (host->hostt->bios_param) 1508 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1509 else 1510 scsicam_bios_param(bdev, capacity, diskinfo); 1511 1512 geo->heads = diskinfo[0]; 1513 geo->sectors = diskinfo[1]; 1514 geo->cylinders = diskinfo[2]; 1515 return 0; 1516 } 1517 1518 /** 1519 * sd_ioctl - process an ioctl 1520 * @bdev: target block device 1521 * @mode: FMODE_* mask 1522 * @cmd: ioctl command number 1523 * @p: this is third argument given to ioctl(2) system call. 1524 * Often contains a pointer. 1525 * 1526 * Returns 0 if successful (some ioctls return positive numbers on 1527 * success as well). Returns a negated errno value in case of error. 1528 * 1529 * Note: most ioctls are forward onto the block subsystem or further 1530 * down in the scsi subsystem. 1531 **/ 1532 static int sd_ioctl_common(struct block_device *bdev, fmode_t mode, 1533 unsigned int cmd, void __user *p) 1534 { 1535 struct gendisk *disk = bdev->bd_disk; 1536 struct scsi_disk *sdkp = scsi_disk(disk); 1537 struct scsi_device *sdp = sdkp->device; 1538 int error; 1539 1540 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1541 "cmd=0x%x\n", disk->disk_name, cmd)); 1542 1543 error = scsi_verify_blk_ioctl(bdev, cmd); 1544 if (error < 0) 1545 return error; 1546 1547 /* 1548 * If we are in the middle of error recovery, don't let anyone 1549 * else try and use this device. Also, if error recovery fails, it 1550 * may try and take the device offline, in which case all further 1551 * access to the device is prohibited. 1552 */ 1553 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1554 (mode & FMODE_NDELAY) != 0); 1555 if (error) 1556 goto out; 1557 1558 if (is_sed_ioctl(cmd)) 1559 return sed_ioctl(sdkp->opal_dev, cmd, p); 1560 1561 /* 1562 * Send SCSI addressing ioctls directly to mid level, send other 1563 * ioctls to block level and then onto mid level if they can't be 1564 * resolved. 1565 */ 1566 switch (cmd) { 1567 case SCSI_IOCTL_GET_IDLUN: 1568 case SCSI_IOCTL_GET_BUS_NUMBER: 1569 error = scsi_ioctl(sdp, cmd, p); 1570 break; 1571 default: 1572 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1573 break; 1574 } 1575 out: 1576 return error; 1577 } 1578 1579 static void set_media_not_present(struct scsi_disk *sdkp) 1580 { 1581 if (sdkp->media_present) 1582 sdkp->device->changed = 1; 1583 1584 if (sdkp->device->removable) { 1585 sdkp->media_present = 0; 1586 sdkp->capacity = 0; 1587 } 1588 } 1589 1590 static int media_not_present(struct scsi_disk *sdkp, 1591 struct scsi_sense_hdr *sshdr) 1592 { 1593 if (!scsi_sense_valid(sshdr)) 1594 return 0; 1595 1596 /* not invoked for commands that could return deferred errors */ 1597 switch (sshdr->sense_key) { 1598 case UNIT_ATTENTION: 1599 case NOT_READY: 1600 /* medium not present */ 1601 if (sshdr->asc == 0x3A) { 1602 set_media_not_present(sdkp); 1603 return 1; 1604 } 1605 } 1606 return 0; 1607 } 1608 1609 /** 1610 * sd_check_events - check media events 1611 * @disk: kernel device descriptor 1612 * @clearing: disk events currently being cleared 1613 * 1614 * Returns mask of DISK_EVENT_*. 1615 * 1616 * Note: this function is invoked from the block subsystem. 1617 **/ 1618 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1619 { 1620 struct scsi_disk *sdkp = scsi_disk_get(disk); 1621 struct scsi_device *sdp; 1622 int retval; 1623 1624 if (!sdkp) 1625 return 0; 1626 1627 sdp = sdkp->device; 1628 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1629 1630 /* 1631 * If the device is offline, don't send any commands - just pretend as 1632 * if the command failed. If the device ever comes back online, we 1633 * can deal with it then. It is only because of unrecoverable errors 1634 * that we would ever take a device offline in the first place. 1635 */ 1636 if (!scsi_device_online(sdp)) { 1637 set_media_not_present(sdkp); 1638 goto out; 1639 } 1640 1641 /* 1642 * Using TEST_UNIT_READY enables differentiation between drive with 1643 * no cartridge loaded - NOT READY, drive with changed cartridge - 1644 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1645 * 1646 * Drives that auto spin down. eg iomega jaz 1G, will be started 1647 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1648 * sd_revalidate() is called. 1649 */ 1650 if (scsi_block_when_processing_errors(sdp)) { 1651 struct scsi_sense_hdr sshdr = { 0, }; 1652 1653 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1654 &sshdr); 1655 1656 /* failed to execute TUR, assume media not present */ 1657 if (host_byte(retval)) { 1658 set_media_not_present(sdkp); 1659 goto out; 1660 } 1661 1662 if (media_not_present(sdkp, &sshdr)) 1663 goto out; 1664 } 1665 1666 /* 1667 * For removable scsi disk we have to recognise the presence 1668 * of a disk in the drive. 1669 */ 1670 if (!sdkp->media_present) 1671 sdp->changed = 1; 1672 sdkp->media_present = 1; 1673 out: 1674 /* 1675 * sdp->changed is set under the following conditions: 1676 * 1677 * Medium present state has changed in either direction. 1678 * Device has indicated UNIT_ATTENTION. 1679 */ 1680 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1681 sdp->changed = 0; 1682 scsi_disk_put(sdkp); 1683 return retval; 1684 } 1685 1686 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1687 { 1688 int retries, res; 1689 struct scsi_device *sdp = sdkp->device; 1690 const int timeout = sdp->request_queue->rq_timeout 1691 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1692 struct scsi_sense_hdr my_sshdr; 1693 1694 if (!scsi_device_online(sdp)) 1695 return -ENODEV; 1696 1697 /* caller might not be interested in sense, but we need it */ 1698 if (!sshdr) 1699 sshdr = &my_sshdr; 1700 1701 for (retries = 3; retries > 0; --retries) { 1702 unsigned char cmd[10] = { 0 }; 1703 1704 cmd[0] = SYNCHRONIZE_CACHE; 1705 /* 1706 * Leave the rest of the command zero to indicate 1707 * flush everything. 1708 */ 1709 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1710 timeout, sdkp->max_retries, 0, RQF_PM, NULL); 1711 if (res == 0) 1712 break; 1713 } 1714 1715 if (res) { 1716 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1717 1718 if (driver_byte(res) == DRIVER_SENSE) 1719 sd_print_sense_hdr(sdkp, sshdr); 1720 1721 /* we need to evaluate the error return */ 1722 if (scsi_sense_valid(sshdr) && 1723 (sshdr->asc == 0x3a || /* medium not present */ 1724 sshdr->asc == 0x20 || /* invalid command */ 1725 (sshdr->asc == 0x74 && sshdr->ascq == 0x71))) /* drive is password locked */ 1726 /* this is no error here */ 1727 return 0; 1728 1729 switch (host_byte(res)) { 1730 /* ignore errors due to racing a disconnection */ 1731 case DID_BAD_TARGET: 1732 case DID_NO_CONNECT: 1733 return 0; 1734 /* signal the upper layer it might try again */ 1735 case DID_BUS_BUSY: 1736 case DID_IMM_RETRY: 1737 case DID_REQUEUE: 1738 case DID_SOFT_ERROR: 1739 return -EBUSY; 1740 default: 1741 return -EIO; 1742 } 1743 } 1744 return 0; 1745 } 1746 1747 static void sd_rescan(struct device *dev) 1748 { 1749 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1750 int ret; 1751 1752 ret = sd_revalidate_disk(sdkp->disk); 1753 revalidate_disk_size(sdkp->disk, ret == 0); 1754 } 1755 1756 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1757 unsigned int cmd, unsigned long arg) 1758 { 1759 void __user *p = (void __user *)arg; 1760 int ret; 1761 1762 ret = sd_ioctl_common(bdev, mode, cmd, p); 1763 if (ret != -ENOTTY) 1764 return ret; 1765 1766 return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p); 1767 } 1768 1769 #ifdef CONFIG_COMPAT 1770 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1771 unsigned int cmd, unsigned long arg) 1772 { 1773 void __user *p = compat_ptr(arg); 1774 int ret; 1775 1776 ret = sd_ioctl_common(bdev, mode, cmd, p); 1777 if (ret != -ENOTTY) 1778 return ret; 1779 1780 return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p); 1781 } 1782 #endif 1783 1784 static char sd_pr_type(enum pr_type type) 1785 { 1786 switch (type) { 1787 case PR_WRITE_EXCLUSIVE: 1788 return 0x01; 1789 case PR_EXCLUSIVE_ACCESS: 1790 return 0x03; 1791 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1792 return 0x05; 1793 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1794 return 0x06; 1795 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1796 return 0x07; 1797 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1798 return 0x08; 1799 default: 1800 return 0; 1801 } 1802 }; 1803 1804 static int sd_pr_command(struct block_device *bdev, u8 sa, 1805 u64 key, u64 sa_key, u8 type, u8 flags) 1806 { 1807 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1808 struct scsi_device *sdev = sdkp->device; 1809 struct scsi_sense_hdr sshdr; 1810 int result; 1811 u8 cmd[16] = { 0, }; 1812 u8 data[24] = { 0, }; 1813 1814 cmd[0] = PERSISTENT_RESERVE_OUT; 1815 cmd[1] = sa; 1816 cmd[2] = type; 1817 put_unaligned_be32(sizeof(data), &cmd[5]); 1818 1819 put_unaligned_be64(key, &data[0]); 1820 put_unaligned_be64(sa_key, &data[8]); 1821 data[20] = flags; 1822 1823 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1824 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL); 1825 1826 if (driver_byte(result) == DRIVER_SENSE && 1827 scsi_sense_valid(&sshdr)) { 1828 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1829 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1830 } 1831 1832 return result; 1833 } 1834 1835 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1836 u32 flags) 1837 { 1838 if (flags & ~PR_FL_IGNORE_KEY) 1839 return -EOPNOTSUPP; 1840 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1841 old_key, new_key, 0, 1842 (1 << 0) /* APTPL */); 1843 } 1844 1845 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1846 u32 flags) 1847 { 1848 if (flags) 1849 return -EOPNOTSUPP; 1850 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1851 } 1852 1853 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1854 { 1855 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1856 } 1857 1858 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1859 enum pr_type type, bool abort) 1860 { 1861 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1862 sd_pr_type(type), 0); 1863 } 1864 1865 static int sd_pr_clear(struct block_device *bdev, u64 key) 1866 { 1867 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1868 } 1869 1870 static const struct pr_ops sd_pr_ops = { 1871 .pr_register = sd_pr_register, 1872 .pr_reserve = sd_pr_reserve, 1873 .pr_release = sd_pr_release, 1874 .pr_preempt = sd_pr_preempt, 1875 .pr_clear = sd_pr_clear, 1876 }; 1877 1878 static const struct block_device_operations sd_fops = { 1879 .owner = THIS_MODULE, 1880 .open = sd_open, 1881 .release = sd_release, 1882 .ioctl = sd_ioctl, 1883 .getgeo = sd_getgeo, 1884 #ifdef CONFIG_COMPAT 1885 .compat_ioctl = sd_compat_ioctl, 1886 #endif 1887 .check_events = sd_check_events, 1888 .unlock_native_capacity = sd_unlock_native_capacity, 1889 .report_zones = sd_zbc_report_zones, 1890 .pr_ops = &sd_pr_ops, 1891 }; 1892 1893 /** 1894 * sd_eh_reset - reset error handling callback 1895 * @scmd: sd-issued command that has failed 1896 * 1897 * This function is called by the SCSI midlayer before starting 1898 * SCSI EH. When counting medium access failures we have to be 1899 * careful to register it only only once per device and SCSI EH run; 1900 * there might be several timed out commands which will cause the 1901 * 'max_medium_access_timeouts' counter to trigger after the first 1902 * SCSI EH run already and set the device to offline. 1903 * So this function resets the internal counter before starting SCSI EH. 1904 **/ 1905 static void sd_eh_reset(struct scsi_cmnd *scmd) 1906 { 1907 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1908 1909 /* New SCSI EH run, reset gate variable */ 1910 sdkp->ignore_medium_access_errors = false; 1911 } 1912 1913 /** 1914 * sd_eh_action - error handling callback 1915 * @scmd: sd-issued command that has failed 1916 * @eh_disp: The recovery disposition suggested by the midlayer 1917 * 1918 * This function is called by the SCSI midlayer upon completion of an 1919 * error test command (currently TEST UNIT READY). The result of sending 1920 * the eh command is passed in eh_disp. We're looking for devices that 1921 * fail medium access commands but are OK with non access commands like 1922 * test unit ready (so wrongly see the device as having a successful 1923 * recovery) 1924 **/ 1925 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1926 { 1927 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1928 struct scsi_device *sdev = scmd->device; 1929 1930 if (!scsi_device_online(sdev) || 1931 !scsi_medium_access_command(scmd) || 1932 host_byte(scmd->result) != DID_TIME_OUT || 1933 eh_disp != SUCCESS) 1934 return eh_disp; 1935 1936 /* 1937 * The device has timed out executing a medium access command. 1938 * However, the TEST UNIT READY command sent during error 1939 * handling completed successfully. Either the device is in the 1940 * process of recovering or has it suffered an internal failure 1941 * that prevents access to the storage medium. 1942 */ 1943 if (!sdkp->ignore_medium_access_errors) { 1944 sdkp->medium_access_timed_out++; 1945 sdkp->ignore_medium_access_errors = true; 1946 } 1947 1948 /* 1949 * If the device keeps failing read/write commands but TEST UNIT 1950 * READY always completes successfully we assume that medium 1951 * access is no longer possible and take the device offline. 1952 */ 1953 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1954 scmd_printk(KERN_ERR, scmd, 1955 "Medium access timeout failure. Offlining disk!\n"); 1956 mutex_lock(&sdev->state_mutex); 1957 scsi_device_set_state(sdev, SDEV_OFFLINE); 1958 mutex_unlock(&sdev->state_mutex); 1959 1960 return SUCCESS; 1961 } 1962 1963 return eh_disp; 1964 } 1965 1966 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1967 { 1968 struct request *req = scmd->request; 1969 struct scsi_device *sdev = scmd->device; 1970 unsigned int transferred, good_bytes; 1971 u64 start_lba, end_lba, bad_lba; 1972 1973 /* 1974 * Some commands have a payload smaller than the device logical 1975 * block size (e.g. INQUIRY on a 4K disk). 1976 */ 1977 if (scsi_bufflen(scmd) <= sdev->sector_size) 1978 return 0; 1979 1980 /* Check if we have a 'bad_lba' information */ 1981 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1982 SCSI_SENSE_BUFFERSIZE, 1983 &bad_lba)) 1984 return 0; 1985 1986 /* 1987 * If the bad lba was reported incorrectly, we have no idea where 1988 * the error is. 1989 */ 1990 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1991 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1992 if (bad_lba < start_lba || bad_lba >= end_lba) 1993 return 0; 1994 1995 /* 1996 * resid is optional but mostly filled in. When it's unused, 1997 * its value is zero, so we assume the whole buffer transferred 1998 */ 1999 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 2000 2001 /* This computation should always be done in terms of the 2002 * resolution of the device's medium. 2003 */ 2004 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2005 2006 return min(good_bytes, transferred); 2007 } 2008 2009 /** 2010 * sd_done - bottom half handler: called when the lower level 2011 * driver has completed (successfully or otherwise) a scsi command. 2012 * @SCpnt: mid-level's per command structure. 2013 * 2014 * Note: potentially run from within an ISR. Must not block. 2015 **/ 2016 static int sd_done(struct scsi_cmnd *SCpnt) 2017 { 2018 int result = SCpnt->result; 2019 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2020 unsigned int sector_size = SCpnt->device->sector_size; 2021 unsigned int resid; 2022 struct scsi_sense_hdr sshdr; 2023 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 2024 struct request *req = SCpnt->request; 2025 int sense_valid = 0; 2026 int sense_deferred = 0; 2027 2028 switch (req_op(req)) { 2029 case REQ_OP_DISCARD: 2030 case REQ_OP_WRITE_ZEROES: 2031 case REQ_OP_WRITE_SAME: 2032 case REQ_OP_ZONE_RESET: 2033 case REQ_OP_ZONE_RESET_ALL: 2034 case REQ_OP_ZONE_OPEN: 2035 case REQ_OP_ZONE_CLOSE: 2036 case REQ_OP_ZONE_FINISH: 2037 if (!result) { 2038 good_bytes = blk_rq_bytes(req); 2039 scsi_set_resid(SCpnt, 0); 2040 } else { 2041 good_bytes = 0; 2042 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2043 } 2044 break; 2045 default: 2046 /* 2047 * In case of bogus fw or device, we could end up having 2048 * an unaligned partial completion. Check this here and force 2049 * alignment. 2050 */ 2051 resid = scsi_get_resid(SCpnt); 2052 if (resid & (sector_size - 1)) { 2053 sd_printk(KERN_INFO, sdkp, 2054 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2055 resid, sector_size); 2056 scsi_print_command(SCpnt); 2057 resid = min(scsi_bufflen(SCpnt), 2058 round_up(resid, sector_size)); 2059 scsi_set_resid(SCpnt, resid); 2060 } 2061 } 2062 2063 if (result) { 2064 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2065 if (sense_valid) 2066 sense_deferred = scsi_sense_is_deferred(&sshdr); 2067 } 2068 sdkp->medium_access_timed_out = 0; 2069 2070 if (driver_byte(result) != DRIVER_SENSE && 2071 (!sense_valid || sense_deferred)) 2072 goto out; 2073 2074 switch (sshdr.sense_key) { 2075 case HARDWARE_ERROR: 2076 case MEDIUM_ERROR: 2077 good_bytes = sd_completed_bytes(SCpnt); 2078 break; 2079 case RECOVERED_ERROR: 2080 good_bytes = scsi_bufflen(SCpnt); 2081 break; 2082 case NO_SENSE: 2083 /* This indicates a false check condition, so ignore it. An 2084 * unknown amount of data was transferred so treat it as an 2085 * error. 2086 */ 2087 SCpnt->result = 0; 2088 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2089 break; 2090 case ABORTED_COMMAND: 2091 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2092 good_bytes = sd_completed_bytes(SCpnt); 2093 break; 2094 case ILLEGAL_REQUEST: 2095 switch (sshdr.asc) { 2096 case 0x10: /* DIX: Host detected corruption */ 2097 good_bytes = sd_completed_bytes(SCpnt); 2098 break; 2099 case 0x20: /* INVALID COMMAND OPCODE */ 2100 case 0x24: /* INVALID FIELD IN CDB */ 2101 switch (SCpnt->cmnd[0]) { 2102 case UNMAP: 2103 sd_config_discard(sdkp, SD_LBP_DISABLE); 2104 break; 2105 case WRITE_SAME_16: 2106 case WRITE_SAME: 2107 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2108 sd_config_discard(sdkp, SD_LBP_DISABLE); 2109 } else { 2110 sdkp->device->no_write_same = 1; 2111 sd_config_write_same(sdkp); 2112 req->rq_flags |= RQF_QUIET; 2113 } 2114 break; 2115 } 2116 } 2117 break; 2118 default: 2119 break; 2120 } 2121 2122 out: 2123 if (sd_is_zoned(sdkp)) 2124 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2125 2126 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2127 "sd_done: completed %d of %d bytes\n", 2128 good_bytes, scsi_bufflen(SCpnt))); 2129 2130 return good_bytes; 2131 } 2132 2133 /* 2134 * spinup disk - called only in sd_revalidate_disk() 2135 */ 2136 static void 2137 sd_spinup_disk(struct scsi_disk *sdkp) 2138 { 2139 unsigned char cmd[10]; 2140 unsigned long spintime_expire = 0; 2141 int retries, spintime; 2142 unsigned int the_result; 2143 struct scsi_sense_hdr sshdr; 2144 int sense_valid = 0; 2145 2146 spintime = 0; 2147 2148 /* Spin up drives, as required. Only do this at boot time */ 2149 /* Spinup needs to be done for module loads too. */ 2150 do { 2151 retries = 0; 2152 2153 do { 2154 cmd[0] = TEST_UNIT_READY; 2155 memset((void *) &cmd[1], 0, 9); 2156 2157 the_result = scsi_execute_req(sdkp->device, cmd, 2158 DMA_NONE, NULL, 0, 2159 &sshdr, SD_TIMEOUT, 2160 sdkp->max_retries, NULL); 2161 2162 /* 2163 * If the drive has indicated to us that it 2164 * doesn't have any media in it, don't bother 2165 * with any more polling. 2166 */ 2167 if (media_not_present(sdkp, &sshdr)) 2168 return; 2169 2170 if (the_result) 2171 sense_valid = scsi_sense_valid(&sshdr); 2172 retries++; 2173 } while (retries < 3 && 2174 (!scsi_status_is_good(the_result) || 2175 ((driver_byte(the_result) == DRIVER_SENSE) && 2176 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2177 2178 if (driver_byte(the_result) != DRIVER_SENSE) { 2179 /* no sense, TUR either succeeded or failed 2180 * with a status error */ 2181 if(!spintime && !scsi_status_is_good(the_result)) { 2182 sd_print_result(sdkp, "Test Unit Ready failed", 2183 the_result); 2184 } 2185 break; 2186 } 2187 2188 /* 2189 * The device does not want the automatic start to be issued. 2190 */ 2191 if (sdkp->device->no_start_on_add) 2192 break; 2193 2194 if (sense_valid && sshdr.sense_key == NOT_READY) { 2195 if (sshdr.asc == 4 && sshdr.ascq == 3) 2196 break; /* manual intervention required */ 2197 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2198 break; /* standby */ 2199 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2200 break; /* unavailable */ 2201 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2202 break; /* sanitize in progress */ 2203 /* 2204 * Issue command to spin up drive when not ready 2205 */ 2206 if (!spintime) { 2207 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2208 cmd[0] = START_STOP; 2209 cmd[1] = 1; /* Return immediately */ 2210 memset((void *) &cmd[2], 0, 8); 2211 cmd[4] = 1; /* Start spin cycle */ 2212 if (sdkp->device->start_stop_pwr_cond) 2213 cmd[4] |= 1 << 4; 2214 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2215 NULL, 0, &sshdr, 2216 SD_TIMEOUT, sdkp->max_retries, 2217 NULL); 2218 spintime_expire = jiffies + 100 * HZ; 2219 spintime = 1; 2220 } 2221 /* Wait 1 second for next try */ 2222 msleep(1000); 2223 printk(KERN_CONT "."); 2224 2225 /* 2226 * Wait for USB flash devices with slow firmware. 2227 * Yes, this sense key/ASC combination shouldn't 2228 * occur here. It's characteristic of these devices. 2229 */ 2230 } else if (sense_valid && 2231 sshdr.sense_key == UNIT_ATTENTION && 2232 sshdr.asc == 0x28) { 2233 if (!spintime) { 2234 spintime_expire = jiffies + 5 * HZ; 2235 spintime = 1; 2236 } 2237 /* Wait 1 second for next try */ 2238 msleep(1000); 2239 } else { 2240 /* we don't understand the sense code, so it's 2241 * probably pointless to loop */ 2242 if(!spintime) { 2243 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2244 sd_print_sense_hdr(sdkp, &sshdr); 2245 } 2246 break; 2247 } 2248 2249 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2250 2251 if (spintime) { 2252 if (scsi_status_is_good(the_result)) 2253 printk(KERN_CONT "ready\n"); 2254 else 2255 printk(KERN_CONT "not responding...\n"); 2256 } 2257 } 2258 2259 /* 2260 * Determine whether disk supports Data Integrity Field. 2261 */ 2262 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2263 { 2264 struct scsi_device *sdp = sdkp->device; 2265 u8 type; 2266 int ret = 0; 2267 2268 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2269 sdkp->protection_type = 0; 2270 return ret; 2271 } 2272 2273 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2274 2275 if (type > T10_PI_TYPE3_PROTECTION) 2276 ret = -ENODEV; 2277 else if (scsi_host_dif_capable(sdp->host, type)) 2278 ret = 1; 2279 2280 if (sdkp->first_scan || type != sdkp->protection_type) 2281 switch (ret) { 2282 case -ENODEV: 2283 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2284 " protection type %u. Disabling disk!\n", 2285 type); 2286 break; 2287 case 1: 2288 sd_printk(KERN_NOTICE, sdkp, 2289 "Enabling DIF Type %u protection\n", type); 2290 break; 2291 case 0: 2292 sd_printk(KERN_NOTICE, sdkp, 2293 "Disabling DIF Type %u protection\n", type); 2294 break; 2295 } 2296 2297 sdkp->protection_type = type; 2298 2299 return ret; 2300 } 2301 2302 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2303 struct scsi_sense_hdr *sshdr, int sense_valid, 2304 int the_result) 2305 { 2306 if (driver_byte(the_result) == DRIVER_SENSE) 2307 sd_print_sense_hdr(sdkp, sshdr); 2308 else 2309 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2310 2311 /* 2312 * Set dirty bit for removable devices if not ready - 2313 * sometimes drives will not report this properly. 2314 */ 2315 if (sdp->removable && 2316 sense_valid && sshdr->sense_key == NOT_READY) 2317 set_media_not_present(sdkp); 2318 2319 /* 2320 * We used to set media_present to 0 here to indicate no media 2321 * in the drive, but some drives fail read capacity even with 2322 * media present, so we can't do that. 2323 */ 2324 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2325 } 2326 2327 #define RC16_LEN 32 2328 #if RC16_LEN > SD_BUF_SIZE 2329 #error RC16_LEN must not be more than SD_BUF_SIZE 2330 #endif 2331 2332 #define READ_CAPACITY_RETRIES_ON_RESET 10 2333 2334 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2335 unsigned char *buffer) 2336 { 2337 unsigned char cmd[16]; 2338 struct scsi_sense_hdr sshdr; 2339 int sense_valid = 0; 2340 int the_result; 2341 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2342 unsigned int alignment; 2343 unsigned long long lba; 2344 unsigned sector_size; 2345 2346 if (sdp->no_read_capacity_16) 2347 return -EINVAL; 2348 2349 do { 2350 memset(cmd, 0, 16); 2351 cmd[0] = SERVICE_ACTION_IN_16; 2352 cmd[1] = SAI_READ_CAPACITY_16; 2353 cmd[13] = RC16_LEN; 2354 memset(buffer, 0, RC16_LEN); 2355 2356 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2357 buffer, RC16_LEN, &sshdr, 2358 SD_TIMEOUT, sdkp->max_retries, NULL); 2359 2360 if (media_not_present(sdkp, &sshdr)) 2361 return -ENODEV; 2362 2363 if (the_result) { 2364 sense_valid = scsi_sense_valid(&sshdr); 2365 if (sense_valid && 2366 sshdr.sense_key == ILLEGAL_REQUEST && 2367 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2368 sshdr.ascq == 0x00) 2369 /* Invalid Command Operation Code or 2370 * Invalid Field in CDB, just retry 2371 * silently with RC10 */ 2372 return -EINVAL; 2373 if (sense_valid && 2374 sshdr.sense_key == UNIT_ATTENTION && 2375 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2376 /* Device reset might occur several times, 2377 * give it one more chance */ 2378 if (--reset_retries > 0) 2379 continue; 2380 } 2381 retries--; 2382 2383 } while (the_result && retries); 2384 2385 if (the_result) { 2386 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2387 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2388 return -EINVAL; 2389 } 2390 2391 sector_size = get_unaligned_be32(&buffer[8]); 2392 lba = get_unaligned_be64(&buffer[0]); 2393 2394 if (sd_read_protection_type(sdkp, buffer) < 0) { 2395 sdkp->capacity = 0; 2396 return -ENODEV; 2397 } 2398 2399 /* Logical blocks per physical block exponent */ 2400 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2401 2402 /* RC basis */ 2403 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2404 2405 /* Lowest aligned logical block */ 2406 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2407 blk_queue_alignment_offset(sdp->request_queue, alignment); 2408 if (alignment && sdkp->first_scan) 2409 sd_printk(KERN_NOTICE, sdkp, 2410 "physical block alignment offset: %u\n", alignment); 2411 2412 if (buffer[14] & 0x80) { /* LBPME */ 2413 sdkp->lbpme = 1; 2414 2415 if (buffer[14] & 0x40) /* LBPRZ */ 2416 sdkp->lbprz = 1; 2417 2418 sd_config_discard(sdkp, SD_LBP_WS16); 2419 } 2420 2421 sdkp->capacity = lba + 1; 2422 return sector_size; 2423 } 2424 2425 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2426 unsigned char *buffer) 2427 { 2428 unsigned char cmd[16]; 2429 struct scsi_sense_hdr sshdr; 2430 int sense_valid = 0; 2431 int the_result; 2432 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2433 sector_t lba; 2434 unsigned sector_size; 2435 2436 do { 2437 cmd[0] = READ_CAPACITY; 2438 memset(&cmd[1], 0, 9); 2439 memset(buffer, 0, 8); 2440 2441 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2442 buffer, 8, &sshdr, 2443 SD_TIMEOUT, sdkp->max_retries, NULL); 2444 2445 if (media_not_present(sdkp, &sshdr)) 2446 return -ENODEV; 2447 2448 if (the_result) { 2449 sense_valid = scsi_sense_valid(&sshdr); 2450 if (sense_valid && 2451 sshdr.sense_key == UNIT_ATTENTION && 2452 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2453 /* Device reset might occur several times, 2454 * give it one more chance */ 2455 if (--reset_retries > 0) 2456 continue; 2457 } 2458 retries--; 2459 2460 } while (the_result && retries); 2461 2462 if (the_result) { 2463 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2464 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2465 return -EINVAL; 2466 } 2467 2468 sector_size = get_unaligned_be32(&buffer[4]); 2469 lba = get_unaligned_be32(&buffer[0]); 2470 2471 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2472 /* Some buggy (usb cardreader) devices return an lba of 2473 0xffffffff when the want to report a size of 0 (with 2474 which they really mean no media is present) */ 2475 sdkp->capacity = 0; 2476 sdkp->physical_block_size = sector_size; 2477 return sector_size; 2478 } 2479 2480 sdkp->capacity = lba + 1; 2481 sdkp->physical_block_size = sector_size; 2482 return sector_size; 2483 } 2484 2485 static int sd_try_rc16_first(struct scsi_device *sdp) 2486 { 2487 if (sdp->host->max_cmd_len < 16) 2488 return 0; 2489 if (sdp->try_rc_10_first) 2490 return 0; 2491 if (sdp->scsi_level > SCSI_SPC_2) 2492 return 1; 2493 if (scsi_device_protection(sdp)) 2494 return 1; 2495 return 0; 2496 } 2497 2498 /* 2499 * read disk capacity 2500 */ 2501 static void 2502 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2503 { 2504 int sector_size; 2505 struct scsi_device *sdp = sdkp->device; 2506 2507 if (sd_try_rc16_first(sdp)) { 2508 sector_size = read_capacity_16(sdkp, sdp, buffer); 2509 if (sector_size == -EOVERFLOW) 2510 goto got_data; 2511 if (sector_size == -ENODEV) 2512 return; 2513 if (sector_size < 0) 2514 sector_size = read_capacity_10(sdkp, sdp, buffer); 2515 if (sector_size < 0) 2516 return; 2517 } else { 2518 sector_size = read_capacity_10(sdkp, sdp, buffer); 2519 if (sector_size == -EOVERFLOW) 2520 goto got_data; 2521 if (sector_size < 0) 2522 return; 2523 if ((sizeof(sdkp->capacity) > 4) && 2524 (sdkp->capacity > 0xffffffffULL)) { 2525 int old_sector_size = sector_size; 2526 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2527 "Trying to use READ CAPACITY(16).\n"); 2528 sector_size = read_capacity_16(sdkp, sdp, buffer); 2529 if (sector_size < 0) { 2530 sd_printk(KERN_NOTICE, sdkp, 2531 "Using 0xffffffff as device size\n"); 2532 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2533 sector_size = old_sector_size; 2534 goto got_data; 2535 } 2536 /* Remember that READ CAPACITY(16) succeeded */ 2537 sdp->try_rc_10_first = 0; 2538 } 2539 } 2540 2541 /* Some devices are known to return the total number of blocks, 2542 * not the highest block number. Some devices have versions 2543 * which do this and others which do not. Some devices we might 2544 * suspect of doing this but we don't know for certain. 2545 * 2546 * If we know the reported capacity is wrong, decrement it. If 2547 * we can only guess, then assume the number of blocks is even 2548 * (usually true but not always) and err on the side of lowering 2549 * the capacity. 2550 */ 2551 if (sdp->fix_capacity || 2552 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2553 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2554 "from its reported value: %llu\n", 2555 (unsigned long long) sdkp->capacity); 2556 --sdkp->capacity; 2557 } 2558 2559 got_data: 2560 if (sector_size == 0) { 2561 sector_size = 512; 2562 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2563 "assuming 512.\n"); 2564 } 2565 2566 if (sector_size != 512 && 2567 sector_size != 1024 && 2568 sector_size != 2048 && 2569 sector_size != 4096) { 2570 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2571 sector_size); 2572 /* 2573 * The user might want to re-format the drive with 2574 * a supported sectorsize. Once this happens, it 2575 * would be relatively trivial to set the thing up. 2576 * For this reason, we leave the thing in the table. 2577 */ 2578 sdkp->capacity = 0; 2579 /* 2580 * set a bogus sector size so the normal read/write 2581 * logic in the block layer will eventually refuse any 2582 * request on this device without tripping over power 2583 * of two sector size assumptions 2584 */ 2585 sector_size = 512; 2586 } 2587 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2588 blk_queue_physical_block_size(sdp->request_queue, 2589 sdkp->physical_block_size); 2590 sdkp->device->sector_size = sector_size; 2591 2592 if (sdkp->capacity > 0xffffffff) 2593 sdp->use_16_for_rw = 1; 2594 2595 } 2596 2597 /* 2598 * Print disk capacity 2599 */ 2600 static void 2601 sd_print_capacity(struct scsi_disk *sdkp, 2602 sector_t old_capacity) 2603 { 2604 int sector_size = sdkp->device->sector_size; 2605 char cap_str_2[10], cap_str_10[10]; 2606 2607 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2608 return; 2609 2610 string_get_size(sdkp->capacity, sector_size, 2611 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2612 string_get_size(sdkp->capacity, sector_size, 2613 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2614 2615 sd_printk(KERN_NOTICE, sdkp, 2616 "%llu %d-byte logical blocks: (%s/%s)\n", 2617 (unsigned long long)sdkp->capacity, 2618 sector_size, cap_str_10, cap_str_2); 2619 2620 if (sdkp->physical_block_size != sector_size) 2621 sd_printk(KERN_NOTICE, sdkp, 2622 "%u-byte physical blocks\n", 2623 sdkp->physical_block_size); 2624 } 2625 2626 /* called with buffer of length 512 */ 2627 static inline int 2628 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2629 unsigned char *buffer, int len, struct scsi_mode_data *data, 2630 struct scsi_sense_hdr *sshdr) 2631 { 2632 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2633 SD_TIMEOUT, sdkp->max_retries, data, 2634 sshdr); 2635 } 2636 2637 /* 2638 * read write protect setting, if possible - called only in sd_revalidate_disk() 2639 * called with buffer of length SD_BUF_SIZE 2640 */ 2641 static void 2642 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2643 { 2644 int res; 2645 struct scsi_device *sdp = sdkp->device; 2646 struct scsi_mode_data data; 2647 int old_wp = sdkp->write_prot; 2648 2649 set_disk_ro(sdkp->disk, 0); 2650 if (sdp->skip_ms_page_3f) { 2651 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2652 return; 2653 } 2654 2655 if (sdp->use_192_bytes_for_3f) { 2656 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2657 } else { 2658 /* 2659 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2660 * We have to start carefully: some devices hang if we ask 2661 * for more than is available. 2662 */ 2663 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2664 2665 /* 2666 * Second attempt: ask for page 0 When only page 0 is 2667 * implemented, a request for page 3F may return Sense Key 2668 * 5: Illegal Request, Sense Code 24: Invalid field in 2669 * CDB. 2670 */ 2671 if (!scsi_status_is_good(res)) 2672 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2673 2674 /* 2675 * Third attempt: ask 255 bytes, as we did earlier. 2676 */ 2677 if (!scsi_status_is_good(res)) 2678 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2679 &data, NULL); 2680 } 2681 2682 if (!scsi_status_is_good(res)) { 2683 sd_first_printk(KERN_WARNING, sdkp, 2684 "Test WP failed, assume Write Enabled\n"); 2685 } else { 2686 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2687 set_disk_ro(sdkp->disk, sdkp->write_prot); 2688 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2689 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2690 sdkp->write_prot ? "on" : "off"); 2691 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2692 } 2693 } 2694 } 2695 2696 /* 2697 * sd_read_cache_type - called only from sd_revalidate_disk() 2698 * called with buffer of length SD_BUF_SIZE 2699 */ 2700 static void 2701 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2702 { 2703 int len = 0, res; 2704 struct scsi_device *sdp = sdkp->device; 2705 2706 int dbd; 2707 int modepage; 2708 int first_len; 2709 struct scsi_mode_data data; 2710 struct scsi_sense_hdr sshdr; 2711 int old_wce = sdkp->WCE; 2712 int old_rcd = sdkp->RCD; 2713 int old_dpofua = sdkp->DPOFUA; 2714 2715 2716 if (sdkp->cache_override) 2717 return; 2718 2719 first_len = 4; 2720 if (sdp->skip_ms_page_8) { 2721 if (sdp->type == TYPE_RBC) 2722 goto defaults; 2723 else { 2724 if (sdp->skip_ms_page_3f) 2725 goto defaults; 2726 modepage = 0x3F; 2727 if (sdp->use_192_bytes_for_3f) 2728 first_len = 192; 2729 dbd = 0; 2730 } 2731 } else if (sdp->type == TYPE_RBC) { 2732 modepage = 6; 2733 dbd = 8; 2734 } else { 2735 modepage = 8; 2736 dbd = 0; 2737 } 2738 2739 /* cautiously ask */ 2740 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2741 &data, &sshdr); 2742 2743 if (!scsi_status_is_good(res)) 2744 goto bad_sense; 2745 2746 if (!data.header_length) { 2747 modepage = 6; 2748 first_len = 0; 2749 sd_first_printk(KERN_ERR, sdkp, 2750 "Missing header in MODE_SENSE response\n"); 2751 } 2752 2753 /* that went OK, now ask for the proper length */ 2754 len = data.length; 2755 2756 /* 2757 * We're only interested in the first three bytes, actually. 2758 * But the data cache page is defined for the first 20. 2759 */ 2760 if (len < 3) 2761 goto bad_sense; 2762 else if (len > SD_BUF_SIZE) { 2763 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2764 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2765 len = SD_BUF_SIZE; 2766 } 2767 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2768 len = 192; 2769 2770 /* Get the data */ 2771 if (len > first_len) 2772 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2773 &data, &sshdr); 2774 2775 if (scsi_status_is_good(res)) { 2776 int offset = data.header_length + data.block_descriptor_length; 2777 2778 while (offset < len) { 2779 u8 page_code = buffer[offset] & 0x3F; 2780 u8 spf = buffer[offset] & 0x40; 2781 2782 if (page_code == 8 || page_code == 6) { 2783 /* We're interested only in the first 3 bytes. 2784 */ 2785 if (len - offset <= 2) { 2786 sd_first_printk(KERN_ERR, sdkp, 2787 "Incomplete mode parameter " 2788 "data\n"); 2789 goto defaults; 2790 } else { 2791 modepage = page_code; 2792 goto Page_found; 2793 } 2794 } else { 2795 /* Go to the next page */ 2796 if (spf && len - offset > 3) 2797 offset += 4 + (buffer[offset+2] << 8) + 2798 buffer[offset+3]; 2799 else if (!spf && len - offset > 1) 2800 offset += 2 + buffer[offset+1]; 2801 else { 2802 sd_first_printk(KERN_ERR, sdkp, 2803 "Incomplete mode " 2804 "parameter data\n"); 2805 goto defaults; 2806 } 2807 } 2808 } 2809 2810 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2811 goto defaults; 2812 2813 Page_found: 2814 if (modepage == 8) { 2815 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2816 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2817 } else { 2818 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2819 sdkp->RCD = 0; 2820 } 2821 2822 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2823 if (sdp->broken_fua) { 2824 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2825 sdkp->DPOFUA = 0; 2826 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2827 !sdkp->device->use_16_for_rw) { 2828 sd_first_printk(KERN_NOTICE, sdkp, 2829 "Uses READ/WRITE(6), disabling FUA\n"); 2830 sdkp->DPOFUA = 0; 2831 } 2832 2833 /* No cache flush allowed for write protected devices */ 2834 if (sdkp->WCE && sdkp->write_prot) 2835 sdkp->WCE = 0; 2836 2837 if (sdkp->first_scan || old_wce != sdkp->WCE || 2838 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2839 sd_printk(KERN_NOTICE, sdkp, 2840 "Write cache: %s, read cache: %s, %s\n", 2841 sdkp->WCE ? "enabled" : "disabled", 2842 sdkp->RCD ? "disabled" : "enabled", 2843 sdkp->DPOFUA ? "supports DPO and FUA" 2844 : "doesn't support DPO or FUA"); 2845 2846 return; 2847 } 2848 2849 bad_sense: 2850 if (scsi_sense_valid(&sshdr) && 2851 sshdr.sense_key == ILLEGAL_REQUEST && 2852 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2853 /* Invalid field in CDB */ 2854 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2855 else 2856 sd_first_printk(KERN_ERR, sdkp, 2857 "Asking for cache data failed\n"); 2858 2859 defaults: 2860 if (sdp->wce_default_on) { 2861 sd_first_printk(KERN_NOTICE, sdkp, 2862 "Assuming drive cache: write back\n"); 2863 sdkp->WCE = 1; 2864 } else { 2865 sd_first_printk(KERN_ERR, sdkp, 2866 "Assuming drive cache: write through\n"); 2867 sdkp->WCE = 0; 2868 } 2869 sdkp->RCD = 0; 2870 sdkp->DPOFUA = 0; 2871 } 2872 2873 /* 2874 * The ATO bit indicates whether the DIF application tag is available 2875 * for use by the operating system. 2876 */ 2877 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2878 { 2879 int res, offset; 2880 struct scsi_device *sdp = sdkp->device; 2881 struct scsi_mode_data data; 2882 struct scsi_sense_hdr sshdr; 2883 2884 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2885 return; 2886 2887 if (sdkp->protection_type == 0) 2888 return; 2889 2890 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2891 sdkp->max_retries, &data, &sshdr); 2892 2893 if (!scsi_status_is_good(res) || !data.header_length || 2894 data.length < 6) { 2895 sd_first_printk(KERN_WARNING, sdkp, 2896 "getting Control mode page failed, assume no ATO\n"); 2897 2898 if (scsi_sense_valid(&sshdr)) 2899 sd_print_sense_hdr(sdkp, &sshdr); 2900 2901 return; 2902 } 2903 2904 offset = data.header_length + data.block_descriptor_length; 2905 2906 if ((buffer[offset] & 0x3f) != 0x0a) { 2907 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2908 return; 2909 } 2910 2911 if ((buffer[offset + 5] & 0x80) == 0) 2912 return; 2913 2914 sdkp->ATO = 1; 2915 2916 return; 2917 } 2918 2919 /** 2920 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2921 * @sdkp: disk to query 2922 */ 2923 static void sd_read_block_limits(struct scsi_disk *sdkp) 2924 { 2925 unsigned int sector_sz = sdkp->device->sector_size; 2926 const int vpd_len = 64; 2927 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2928 2929 if (!buffer || 2930 /* Block Limits VPD */ 2931 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2932 goto out; 2933 2934 blk_queue_io_min(sdkp->disk->queue, 2935 get_unaligned_be16(&buffer[6]) * sector_sz); 2936 2937 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2938 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2939 2940 if (buffer[3] == 0x3c) { 2941 unsigned int lba_count, desc_count; 2942 2943 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2944 2945 if (!sdkp->lbpme) 2946 goto out; 2947 2948 lba_count = get_unaligned_be32(&buffer[20]); 2949 desc_count = get_unaligned_be32(&buffer[24]); 2950 2951 if (lba_count && desc_count) 2952 sdkp->max_unmap_blocks = lba_count; 2953 2954 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2955 2956 if (buffer[32] & 0x80) 2957 sdkp->unmap_alignment = 2958 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2959 2960 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2961 2962 if (sdkp->max_unmap_blocks) 2963 sd_config_discard(sdkp, SD_LBP_UNMAP); 2964 else 2965 sd_config_discard(sdkp, SD_LBP_WS16); 2966 2967 } else { /* LBP VPD page tells us what to use */ 2968 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2969 sd_config_discard(sdkp, SD_LBP_UNMAP); 2970 else if (sdkp->lbpws) 2971 sd_config_discard(sdkp, SD_LBP_WS16); 2972 else if (sdkp->lbpws10) 2973 sd_config_discard(sdkp, SD_LBP_WS10); 2974 else 2975 sd_config_discard(sdkp, SD_LBP_DISABLE); 2976 } 2977 } 2978 2979 out: 2980 kfree(buffer); 2981 } 2982 2983 /** 2984 * sd_read_block_characteristics - Query block dev. characteristics 2985 * @sdkp: disk to query 2986 */ 2987 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2988 { 2989 struct request_queue *q = sdkp->disk->queue; 2990 unsigned char *buffer; 2991 u16 rot; 2992 const int vpd_len = 64; 2993 2994 buffer = kmalloc(vpd_len, GFP_KERNEL); 2995 2996 if (!buffer || 2997 /* Block Device Characteristics VPD */ 2998 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2999 goto out; 3000 3001 rot = get_unaligned_be16(&buffer[4]); 3002 3003 if (rot == 1) { 3004 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 3005 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 3006 } 3007 3008 if (sdkp->device->type == TYPE_ZBC) { 3009 /* Host-managed */ 3010 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM); 3011 } else { 3012 sdkp->zoned = (buffer[8] >> 4) & 3; 3013 if (sdkp->zoned == 1) { 3014 /* Host-aware */ 3015 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA); 3016 } else { 3017 /* Regular disk or drive managed disk */ 3018 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3019 } 3020 } 3021 3022 if (!sdkp->first_scan) 3023 goto out; 3024 3025 if (blk_queue_is_zoned(q)) { 3026 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3027 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3028 } else { 3029 if (sdkp->zoned == 1) 3030 sd_printk(KERN_NOTICE, sdkp, 3031 "Host-aware SMR disk used as regular disk\n"); 3032 else if (sdkp->zoned == 2) 3033 sd_printk(KERN_NOTICE, sdkp, 3034 "Drive-managed SMR disk\n"); 3035 } 3036 3037 out: 3038 kfree(buffer); 3039 } 3040 3041 /** 3042 * sd_read_block_provisioning - Query provisioning VPD page 3043 * @sdkp: disk to query 3044 */ 3045 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3046 { 3047 unsigned char *buffer; 3048 const int vpd_len = 8; 3049 3050 if (sdkp->lbpme == 0) 3051 return; 3052 3053 buffer = kmalloc(vpd_len, GFP_KERNEL); 3054 3055 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 3056 goto out; 3057 3058 sdkp->lbpvpd = 1; 3059 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 3060 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 3061 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 3062 3063 out: 3064 kfree(buffer); 3065 } 3066 3067 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3068 { 3069 struct scsi_device *sdev = sdkp->device; 3070 3071 if (sdev->host->no_write_same) { 3072 sdev->no_write_same = 1; 3073 3074 return; 3075 } 3076 3077 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3078 /* too large values might cause issues with arcmsr */ 3079 int vpd_buf_len = 64; 3080 3081 sdev->no_report_opcodes = 1; 3082 3083 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3084 * CODES is unsupported and the device has an ATA 3085 * Information VPD page (SAT). 3086 */ 3087 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3088 sdev->no_write_same = 1; 3089 } 3090 3091 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3092 sdkp->ws16 = 1; 3093 3094 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3095 sdkp->ws10 = 1; 3096 } 3097 3098 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3099 { 3100 struct scsi_device *sdev = sdkp->device; 3101 3102 if (!sdev->security_supported) 3103 return; 3104 3105 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3106 SECURITY_PROTOCOL_IN) == 1 && 3107 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3108 SECURITY_PROTOCOL_OUT) == 1) 3109 sdkp->security = 1; 3110 } 3111 3112 /* 3113 * Determine the device's preferred I/O size for reads and writes 3114 * unless the reported value is unreasonably small, large, not a 3115 * multiple of the physical block size, or simply garbage. 3116 */ 3117 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3118 unsigned int dev_max) 3119 { 3120 struct scsi_device *sdp = sdkp->device; 3121 unsigned int opt_xfer_bytes = 3122 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3123 3124 if (sdkp->opt_xfer_blocks == 0) 3125 return false; 3126 3127 if (sdkp->opt_xfer_blocks > dev_max) { 3128 sd_first_printk(KERN_WARNING, sdkp, 3129 "Optimal transfer size %u logical blocks " \ 3130 "> dev_max (%u logical blocks)\n", 3131 sdkp->opt_xfer_blocks, dev_max); 3132 return false; 3133 } 3134 3135 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3136 sd_first_printk(KERN_WARNING, sdkp, 3137 "Optimal transfer size %u logical blocks " \ 3138 "> sd driver limit (%u logical blocks)\n", 3139 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3140 return false; 3141 } 3142 3143 if (opt_xfer_bytes < PAGE_SIZE) { 3144 sd_first_printk(KERN_WARNING, sdkp, 3145 "Optimal transfer size %u bytes < " \ 3146 "PAGE_SIZE (%u bytes)\n", 3147 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3148 return false; 3149 } 3150 3151 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3152 sd_first_printk(KERN_WARNING, sdkp, 3153 "Optimal transfer size %u bytes not a " \ 3154 "multiple of physical block size (%u bytes)\n", 3155 opt_xfer_bytes, sdkp->physical_block_size); 3156 return false; 3157 } 3158 3159 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3160 opt_xfer_bytes); 3161 return true; 3162 } 3163 3164 /** 3165 * sd_revalidate_disk - called the first time a new disk is seen, 3166 * performs disk spin up, read_capacity, etc. 3167 * @disk: struct gendisk we care about 3168 **/ 3169 static int sd_revalidate_disk(struct gendisk *disk) 3170 { 3171 struct scsi_disk *sdkp = scsi_disk(disk); 3172 struct scsi_device *sdp = sdkp->device; 3173 struct request_queue *q = sdkp->disk->queue; 3174 sector_t old_capacity = sdkp->capacity; 3175 unsigned char *buffer; 3176 unsigned int dev_max, rw_max; 3177 3178 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3179 "sd_revalidate_disk\n")); 3180 3181 /* 3182 * If the device is offline, don't try and read capacity or any 3183 * of the other niceties. 3184 */ 3185 if (!scsi_device_online(sdp)) 3186 goto out; 3187 3188 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3189 if (!buffer) { 3190 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3191 "allocation failure.\n"); 3192 goto out; 3193 } 3194 3195 sd_spinup_disk(sdkp); 3196 3197 /* 3198 * Without media there is no reason to ask; moreover, some devices 3199 * react badly if we do. 3200 */ 3201 if (sdkp->media_present) { 3202 sd_read_capacity(sdkp, buffer); 3203 3204 /* 3205 * set the default to rotational. All non-rotational devices 3206 * support the block characteristics VPD page, which will 3207 * cause this to be updated correctly and any device which 3208 * doesn't support it should be treated as rotational. 3209 */ 3210 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3211 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3212 3213 if (scsi_device_supports_vpd(sdp)) { 3214 sd_read_block_provisioning(sdkp); 3215 sd_read_block_limits(sdkp); 3216 sd_read_block_characteristics(sdkp); 3217 sd_zbc_read_zones(sdkp, buffer); 3218 } 3219 3220 sd_print_capacity(sdkp, old_capacity); 3221 3222 sd_read_write_protect_flag(sdkp, buffer); 3223 sd_read_cache_type(sdkp, buffer); 3224 sd_read_app_tag_own(sdkp, buffer); 3225 sd_read_write_same(sdkp, buffer); 3226 sd_read_security(sdkp, buffer); 3227 } 3228 3229 /* 3230 * We now have all cache related info, determine how we deal 3231 * with flush requests. 3232 */ 3233 sd_set_flush_flag(sdkp); 3234 3235 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3236 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3237 3238 /* Some devices report a maximum block count for READ/WRITE requests. */ 3239 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3240 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3241 3242 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3243 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3244 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3245 } else { 3246 q->limits.io_opt = 0; 3247 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3248 (sector_t)BLK_DEF_MAX_SECTORS); 3249 } 3250 3251 /* Do not exceed controller limit */ 3252 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3253 3254 /* 3255 * Only update max_sectors if previously unset or if the current value 3256 * exceeds the capabilities of the hardware. 3257 */ 3258 if (sdkp->first_scan || 3259 q->limits.max_sectors > q->limits.max_dev_sectors || 3260 q->limits.max_sectors > q->limits.max_hw_sectors) 3261 q->limits.max_sectors = rw_max; 3262 3263 sdkp->first_scan = 0; 3264 3265 set_capacity_revalidate_and_notify(disk, 3266 logical_to_sectors(sdp, sdkp->capacity), false); 3267 sd_config_write_same(sdkp); 3268 kfree(buffer); 3269 3270 /* 3271 * For a zoned drive, revalidating the zones can be done only once 3272 * the gendisk capacity is set. So if this fails, set back the gendisk 3273 * capacity to 0. 3274 */ 3275 if (sd_zbc_revalidate_zones(sdkp)) 3276 set_capacity_revalidate_and_notify(disk, 0, false); 3277 3278 out: 3279 return 0; 3280 } 3281 3282 /** 3283 * sd_unlock_native_capacity - unlock native capacity 3284 * @disk: struct gendisk to set capacity for 3285 * 3286 * Block layer calls this function if it detects that partitions 3287 * on @disk reach beyond the end of the device. If the SCSI host 3288 * implements ->unlock_native_capacity() method, it's invoked to 3289 * give it a chance to adjust the device capacity. 3290 * 3291 * CONTEXT: 3292 * Defined by block layer. Might sleep. 3293 */ 3294 static void sd_unlock_native_capacity(struct gendisk *disk) 3295 { 3296 struct scsi_device *sdev = scsi_disk(disk)->device; 3297 3298 if (sdev->host->hostt->unlock_native_capacity) 3299 sdev->host->hostt->unlock_native_capacity(sdev); 3300 } 3301 3302 /** 3303 * sd_format_disk_name - format disk name 3304 * @prefix: name prefix - ie. "sd" for SCSI disks 3305 * @index: index of the disk to format name for 3306 * @buf: output buffer 3307 * @buflen: length of the output buffer 3308 * 3309 * SCSI disk names starts at sda. The 26th device is sdz and the 3310 * 27th is sdaa. The last one for two lettered suffix is sdzz 3311 * which is followed by sdaaa. 3312 * 3313 * This is basically 26 base counting with one extra 'nil' entry 3314 * at the beginning from the second digit on and can be 3315 * determined using similar method as 26 base conversion with the 3316 * index shifted -1 after each digit is computed. 3317 * 3318 * CONTEXT: 3319 * Don't care. 3320 * 3321 * RETURNS: 3322 * 0 on success, -errno on failure. 3323 */ 3324 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3325 { 3326 const int base = 'z' - 'a' + 1; 3327 char *begin = buf + strlen(prefix); 3328 char *end = buf + buflen; 3329 char *p; 3330 int unit; 3331 3332 p = end - 1; 3333 *p = '\0'; 3334 unit = base; 3335 do { 3336 if (p == begin) 3337 return -EINVAL; 3338 *--p = 'a' + (index % unit); 3339 index = (index / unit) - 1; 3340 } while (index >= 0); 3341 3342 memmove(begin, p, end - p); 3343 memcpy(buf, prefix, strlen(prefix)); 3344 3345 return 0; 3346 } 3347 3348 /** 3349 * sd_probe - called during driver initialization and whenever a 3350 * new scsi device is attached to the system. It is called once 3351 * for each scsi device (not just disks) present. 3352 * @dev: pointer to device object 3353 * 3354 * Returns 0 if successful (or not interested in this scsi device 3355 * (e.g. scanner)); 1 when there is an error. 3356 * 3357 * Note: this function is invoked from the scsi mid-level. 3358 * This function sets up the mapping between a given 3359 * <host,channel,id,lun> (found in sdp) and new device name 3360 * (e.g. /dev/sda). More precisely it is the block device major 3361 * and minor number that is chosen here. 3362 * 3363 * Assume sd_probe is not re-entrant (for time being) 3364 * Also think about sd_probe() and sd_remove() running coincidentally. 3365 **/ 3366 static int sd_probe(struct device *dev) 3367 { 3368 struct scsi_device *sdp = to_scsi_device(dev); 3369 struct scsi_disk *sdkp; 3370 struct gendisk *gd; 3371 int index; 3372 int error; 3373 3374 scsi_autopm_get_device(sdp); 3375 error = -ENODEV; 3376 if (sdp->type != TYPE_DISK && 3377 sdp->type != TYPE_ZBC && 3378 sdp->type != TYPE_MOD && 3379 sdp->type != TYPE_RBC) 3380 goto out; 3381 3382 #ifndef CONFIG_BLK_DEV_ZONED 3383 if (sdp->type == TYPE_ZBC) 3384 goto out; 3385 #endif 3386 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3387 "sd_probe\n")); 3388 3389 error = -ENOMEM; 3390 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3391 if (!sdkp) 3392 goto out; 3393 3394 gd = alloc_disk(SD_MINORS); 3395 if (!gd) 3396 goto out_free; 3397 3398 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3399 if (index < 0) { 3400 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3401 goto out_put; 3402 } 3403 3404 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3405 if (error) { 3406 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3407 goto out_free_index; 3408 } 3409 3410 sdkp->device = sdp; 3411 sdkp->driver = &sd_template; 3412 sdkp->disk = gd; 3413 sdkp->index = index; 3414 sdkp->max_retries = SD_MAX_RETRIES; 3415 atomic_set(&sdkp->openers, 0); 3416 atomic_set(&sdkp->device->ioerr_cnt, 0); 3417 3418 if (!sdp->request_queue->rq_timeout) { 3419 if (sdp->type != TYPE_MOD) 3420 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3421 else 3422 blk_queue_rq_timeout(sdp->request_queue, 3423 SD_MOD_TIMEOUT); 3424 } 3425 3426 device_initialize(&sdkp->dev); 3427 sdkp->dev.parent = dev; 3428 sdkp->dev.class = &sd_disk_class; 3429 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3430 3431 error = device_add(&sdkp->dev); 3432 if (error) 3433 goto out_free_index; 3434 3435 get_device(dev); 3436 dev_set_drvdata(dev, sdkp); 3437 3438 gd->major = sd_major((index & 0xf0) >> 4); 3439 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3440 3441 gd->fops = &sd_fops; 3442 gd->private_data = &sdkp->driver; 3443 gd->queue = sdkp->device->request_queue; 3444 3445 /* defaults, until the device tells us otherwise */ 3446 sdp->sector_size = 512; 3447 sdkp->capacity = 0; 3448 sdkp->media_present = 1; 3449 sdkp->write_prot = 0; 3450 sdkp->cache_override = 0; 3451 sdkp->WCE = 0; 3452 sdkp->RCD = 0; 3453 sdkp->ATO = 0; 3454 sdkp->first_scan = 1; 3455 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3456 3457 sd_revalidate_disk(gd); 3458 3459 gd->flags = GENHD_FL_EXT_DEVT; 3460 if (sdp->removable) { 3461 gd->flags |= GENHD_FL_REMOVABLE; 3462 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3463 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3464 } 3465 3466 blk_pm_runtime_init(sdp->request_queue, dev); 3467 if (sdp->rpm_autosuspend) { 3468 pm_runtime_set_autosuspend_delay(dev, 3469 sdp->host->hostt->rpm_autosuspend_delay); 3470 } 3471 device_add_disk(dev, gd, NULL); 3472 if (sdkp->capacity) 3473 sd_dif_config_host(sdkp); 3474 3475 sd_revalidate_disk(gd); 3476 3477 if (sdkp->security) { 3478 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3479 if (sdkp->opal_dev) 3480 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3481 } 3482 3483 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3484 sdp->removable ? "removable " : ""); 3485 scsi_autopm_put_device(sdp); 3486 3487 return 0; 3488 3489 out_free_index: 3490 ida_free(&sd_index_ida, index); 3491 out_put: 3492 put_disk(gd); 3493 out_free: 3494 sd_zbc_release_disk(sdkp); 3495 kfree(sdkp); 3496 out: 3497 scsi_autopm_put_device(sdp); 3498 return error; 3499 } 3500 3501 /** 3502 * sd_remove - called whenever a scsi disk (previously recognized by 3503 * sd_probe) is detached from the system. It is called (potentially 3504 * multiple times) during sd module unload. 3505 * @dev: pointer to device object 3506 * 3507 * Note: this function is invoked from the scsi mid-level. 3508 * This function potentially frees up a device name (e.g. /dev/sdc) 3509 * that could be re-used by a subsequent sd_probe(). 3510 * This function is not called when the built-in sd driver is "exit-ed". 3511 **/ 3512 static int sd_remove(struct device *dev) 3513 { 3514 struct scsi_disk *sdkp; 3515 dev_t devt; 3516 3517 sdkp = dev_get_drvdata(dev); 3518 devt = disk_devt(sdkp->disk); 3519 scsi_autopm_get_device(sdkp->device); 3520 3521 async_synchronize_full_domain(&scsi_sd_pm_domain); 3522 device_del(&sdkp->dev); 3523 del_gendisk(sdkp->disk); 3524 sd_shutdown(dev); 3525 3526 free_opal_dev(sdkp->opal_dev); 3527 3528 blk_register_region(devt, SD_MINORS, NULL, 3529 sd_default_probe, NULL, NULL); 3530 3531 mutex_lock(&sd_ref_mutex); 3532 dev_set_drvdata(dev, NULL); 3533 put_device(&sdkp->dev); 3534 mutex_unlock(&sd_ref_mutex); 3535 3536 return 0; 3537 } 3538 3539 /** 3540 * scsi_disk_release - Called to free the scsi_disk structure 3541 * @dev: pointer to embedded class device 3542 * 3543 * sd_ref_mutex must be held entering this routine. Because it is 3544 * called on last put, you should always use the scsi_disk_get() 3545 * scsi_disk_put() helpers which manipulate the semaphore directly 3546 * and never do a direct put_device. 3547 **/ 3548 static void scsi_disk_release(struct device *dev) 3549 { 3550 struct scsi_disk *sdkp = to_scsi_disk(dev); 3551 struct gendisk *disk = sdkp->disk; 3552 struct request_queue *q = disk->queue; 3553 3554 ida_free(&sd_index_ida, sdkp->index); 3555 3556 /* 3557 * Wait until all requests that are in progress have completed. 3558 * This is necessary to avoid that e.g. scsi_end_request() crashes 3559 * due to clearing the disk->private_data pointer. Wait from inside 3560 * scsi_disk_release() instead of from sd_release() to avoid that 3561 * freezing and unfreezing the request queue affects user space I/O 3562 * in case multiple processes open a /dev/sd... node concurrently. 3563 */ 3564 blk_mq_freeze_queue(q); 3565 blk_mq_unfreeze_queue(q); 3566 3567 disk->private_data = NULL; 3568 put_disk(disk); 3569 put_device(&sdkp->device->sdev_gendev); 3570 3571 sd_zbc_release_disk(sdkp); 3572 3573 kfree(sdkp); 3574 } 3575 3576 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3577 { 3578 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3579 struct scsi_sense_hdr sshdr; 3580 struct scsi_device *sdp = sdkp->device; 3581 int res; 3582 3583 if (start) 3584 cmd[4] |= 1; /* START */ 3585 3586 if (sdp->start_stop_pwr_cond) 3587 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3588 3589 if (!scsi_device_online(sdp)) 3590 return -ENODEV; 3591 3592 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3593 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL); 3594 if (res) { 3595 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3596 if (driver_byte(res) == DRIVER_SENSE) 3597 sd_print_sense_hdr(sdkp, &sshdr); 3598 if (scsi_sense_valid(&sshdr) && 3599 /* 0x3a is medium not present */ 3600 sshdr.asc == 0x3a) 3601 res = 0; 3602 } 3603 3604 /* SCSI error codes must not go to the generic layer */ 3605 if (res) 3606 return -EIO; 3607 3608 return 0; 3609 } 3610 3611 /* 3612 * Send a SYNCHRONIZE CACHE instruction down to the device through 3613 * the normal SCSI command structure. Wait for the command to 3614 * complete. 3615 */ 3616 static void sd_shutdown(struct device *dev) 3617 { 3618 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3619 3620 if (!sdkp) 3621 return; /* this can happen */ 3622 3623 if (pm_runtime_suspended(dev)) 3624 return; 3625 3626 if (sdkp->WCE && sdkp->media_present) { 3627 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3628 sd_sync_cache(sdkp, NULL); 3629 } 3630 3631 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3632 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3633 sd_start_stop_device(sdkp, 0); 3634 } 3635 } 3636 3637 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3638 { 3639 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3640 struct scsi_sense_hdr sshdr; 3641 int ret = 0; 3642 3643 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3644 return 0; 3645 3646 if (sdkp->WCE && sdkp->media_present) { 3647 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3648 ret = sd_sync_cache(sdkp, &sshdr); 3649 3650 if (ret) { 3651 /* ignore OFFLINE device */ 3652 if (ret == -ENODEV) 3653 return 0; 3654 3655 if (!scsi_sense_valid(&sshdr) || 3656 sshdr.sense_key != ILLEGAL_REQUEST) 3657 return ret; 3658 3659 /* 3660 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3661 * doesn't support sync. There's not much to do and 3662 * suspend shouldn't fail. 3663 */ 3664 ret = 0; 3665 } 3666 } 3667 3668 if (sdkp->device->manage_start_stop) { 3669 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3670 /* an error is not worth aborting a system sleep */ 3671 ret = sd_start_stop_device(sdkp, 0); 3672 if (ignore_stop_errors) 3673 ret = 0; 3674 } 3675 3676 return ret; 3677 } 3678 3679 static int sd_suspend_system(struct device *dev) 3680 { 3681 return sd_suspend_common(dev, true); 3682 } 3683 3684 static int sd_suspend_runtime(struct device *dev) 3685 { 3686 return sd_suspend_common(dev, false); 3687 } 3688 3689 static int sd_resume(struct device *dev) 3690 { 3691 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3692 int ret; 3693 3694 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3695 return 0; 3696 3697 if (!sdkp->device->manage_start_stop) 3698 return 0; 3699 3700 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3701 ret = sd_start_stop_device(sdkp, 1); 3702 if (!ret) 3703 opal_unlock_from_suspend(sdkp->opal_dev); 3704 return ret; 3705 } 3706 3707 /** 3708 * init_sd - entry point for this driver (both when built in or when 3709 * a module). 3710 * 3711 * Note: this function registers this driver with the scsi mid-level. 3712 **/ 3713 static int __init init_sd(void) 3714 { 3715 int majors = 0, i, err; 3716 3717 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3718 3719 for (i = 0; i < SD_MAJORS; i++) { 3720 if (register_blkdev(sd_major(i), "sd") != 0) 3721 continue; 3722 majors++; 3723 blk_register_region(sd_major(i), SD_MINORS, NULL, 3724 sd_default_probe, NULL, NULL); 3725 } 3726 3727 if (!majors) 3728 return -ENODEV; 3729 3730 err = class_register(&sd_disk_class); 3731 if (err) 3732 goto err_out; 3733 3734 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3735 0, 0, NULL); 3736 if (!sd_cdb_cache) { 3737 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3738 err = -ENOMEM; 3739 goto err_out_class; 3740 } 3741 3742 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3743 if (!sd_cdb_pool) { 3744 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3745 err = -ENOMEM; 3746 goto err_out_cache; 3747 } 3748 3749 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3750 if (!sd_page_pool) { 3751 printk(KERN_ERR "sd: can't init discard page pool\n"); 3752 err = -ENOMEM; 3753 goto err_out_ppool; 3754 } 3755 3756 err = scsi_register_driver(&sd_template.gendrv); 3757 if (err) 3758 goto err_out_driver; 3759 3760 return 0; 3761 3762 err_out_driver: 3763 mempool_destroy(sd_page_pool); 3764 3765 err_out_ppool: 3766 mempool_destroy(sd_cdb_pool); 3767 3768 err_out_cache: 3769 kmem_cache_destroy(sd_cdb_cache); 3770 3771 err_out_class: 3772 class_unregister(&sd_disk_class); 3773 err_out: 3774 for (i = 0; i < SD_MAJORS; i++) 3775 unregister_blkdev(sd_major(i), "sd"); 3776 return err; 3777 } 3778 3779 /** 3780 * exit_sd - exit point for this driver (when it is a module). 3781 * 3782 * Note: this function unregisters this driver from the scsi mid-level. 3783 **/ 3784 static void __exit exit_sd(void) 3785 { 3786 int i; 3787 3788 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3789 3790 scsi_unregister_driver(&sd_template.gendrv); 3791 mempool_destroy(sd_cdb_pool); 3792 mempool_destroy(sd_page_pool); 3793 kmem_cache_destroy(sd_cdb_cache); 3794 3795 class_unregister(&sd_disk_class); 3796 3797 for (i = 0; i < SD_MAJORS; i++) { 3798 blk_unregister_region(sd_major(i), SD_MINORS); 3799 unregister_blkdev(sd_major(i), "sd"); 3800 } 3801 } 3802 3803 module_init(init_sd); 3804 module_exit(exit_sd); 3805 3806 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3807 { 3808 scsi_print_sense_hdr(sdkp->device, 3809 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3810 } 3811 3812 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3813 { 3814 const char *hb_string = scsi_hostbyte_string(result); 3815 const char *db_string = scsi_driverbyte_string(result); 3816 3817 if (hb_string || db_string) 3818 sd_printk(KERN_INFO, sdkp, 3819 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3820 hb_string ? hb_string : "invalid", 3821 db_string ? db_string : "invalid"); 3822 else 3823 sd_printk(KERN_INFO, sdkp, 3824 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3825 msg, host_byte(result), driver_byte(result)); 3826 } 3827