1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/genhd.h> 42 #include <linux/hdreg.h> 43 #include <linux/errno.h> 44 #include <linux/idr.h> 45 #include <linux/interrupt.h> 46 #include <linux/init.h> 47 #include <linux/blkdev.h> 48 #include <linux/blkpg.h> 49 #include <linux/blk-pm.h> 50 #include <linux/delay.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/async.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <asm/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_driver.h> 67 #include <scsi/scsi_eh.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_ioctl.h> 70 #include <scsi/scsicam.h> 71 72 #include "sd.h" 73 #include "scsi_priv.h" 74 #include "scsi_logging.h" 75 76 MODULE_AUTHOR("Eric Youngdale"); 77 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 78 MODULE_LICENSE("GPL"); 79 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 100 101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 102 #define SD_MINORS 16 103 #else 104 #define SD_MINORS 0 105 #endif 106 107 static void sd_config_discard(struct scsi_disk *, unsigned int); 108 static void sd_config_write_same(struct scsi_disk *); 109 static int sd_revalidate_disk(struct gendisk *); 110 static void sd_unlock_native_capacity(struct gendisk *disk); 111 static int sd_probe(struct device *); 112 static int sd_remove(struct device *); 113 static void sd_shutdown(struct device *); 114 static int sd_suspend_system(struct device *); 115 static int sd_suspend_runtime(struct device *); 116 static int sd_resume(struct device *); 117 static void sd_rescan(struct device *); 118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 119 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 120 static int sd_done(struct scsi_cmnd *); 121 static void sd_eh_reset(struct scsi_cmnd *); 122 static int sd_eh_action(struct scsi_cmnd *, int); 123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 124 static void scsi_disk_release(struct device *cdev); 125 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 126 static void sd_print_result(const struct scsi_disk *, const char *, int); 127 128 static DEFINE_IDA(sd_index_ida); 129 130 /* This semaphore is used to mediate the 0->1 reference get in the 131 * face of object destruction (i.e. we can't allow a get on an 132 * object after last put) */ 133 static DEFINE_MUTEX(sd_ref_mutex); 134 135 static struct kmem_cache *sd_cdb_cache; 136 static mempool_t *sd_cdb_pool; 137 static mempool_t *sd_page_pool; 138 139 static const char *sd_cache_types[] = { 140 "write through", "none", "write back", 141 "write back, no read (daft)" 142 }; 143 144 static void sd_set_flush_flag(struct scsi_disk *sdkp) 145 { 146 bool wc = false, fua = false; 147 148 if (sdkp->WCE) { 149 wc = true; 150 if (sdkp->DPOFUA) 151 fua = true; 152 } 153 154 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 155 } 156 157 static ssize_t 158 cache_type_store(struct device *dev, struct device_attribute *attr, 159 const char *buf, size_t count) 160 { 161 int ct, rcd, wce, sp; 162 struct scsi_disk *sdkp = to_scsi_disk(dev); 163 struct scsi_device *sdp = sdkp->device; 164 char buffer[64]; 165 char *buffer_data; 166 struct scsi_mode_data data; 167 struct scsi_sense_hdr sshdr; 168 static const char temp[] = "temporary "; 169 int len; 170 171 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 172 /* no cache control on RBC devices; theoretically they 173 * can do it, but there's probably so many exceptions 174 * it's not worth the risk */ 175 return -EINVAL; 176 177 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 178 buf += sizeof(temp) - 1; 179 sdkp->cache_override = 1; 180 } else { 181 sdkp->cache_override = 0; 182 } 183 184 ct = sysfs_match_string(sd_cache_types, buf); 185 if (ct < 0) 186 return -EINVAL; 187 188 rcd = ct & 0x01 ? 1 : 0; 189 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 190 191 if (sdkp->cache_override) { 192 sdkp->WCE = wce; 193 sdkp->RCD = rcd; 194 sd_set_flush_flag(sdkp); 195 return count; 196 } 197 198 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 199 SD_MAX_RETRIES, &data, NULL)) 200 return -EINVAL; 201 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 202 data.block_descriptor_length); 203 buffer_data = buffer + data.header_length + 204 data.block_descriptor_length; 205 buffer_data[2] &= ~0x05; 206 buffer_data[2] |= wce << 2 | rcd; 207 sp = buffer_data[0] & 0x80 ? 1 : 0; 208 buffer_data[0] &= ~0x80; 209 210 /* 211 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 212 * received mode parameter buffer before doing MODE SELECT. 213 */ 214 data.device_specific = 0; 215 216 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 217 SD_MAX_RETRIES, &data, &sshdr)) { 218 if (scsi_sense_valid(&sshdr)) 219 sd_print_sense_hdr(sdkp, &sshdr); 220 return -EINVAL; 221 } 222 revalidate_disk(sdkp->disk); 223 return count; 224 } 225 226 static ssize_t 227 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 228 char *buf) 229 { 230 struct scsi_disk *sdkp = to_scsi_disk(dev); 231 struct scsi_device *sdp = sdkp->device; 232 233 return sprintf(buf, "%u\n", sdp->manage_start_stop); 234 } 235 236 static ssize_t 237 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 238 const char *buf, size_t count) 239 { 240 struct scsi_disk *sdkp = to_scsi_disk(dev); 241 struct scsi_device *sdp = sdkp->device; 242 bool v; 243 244 if (!capable(CAP_SYS_ADMIN)) 245 return -EACCES; 246 247 if (kstrtobool(buf, &v)) 248 return -EINVAL; 249 250 sdp->manage_start_stop = v; 251 252 return count; 253 } 254 static DEVICE_ATTR_RW(manage_start_stop); 255 256 static ssize_t 257 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 258 { 259 struct scsi_disk *sdkp = to_scsi_disk(dev); 260 261 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 262 } 263 264 static ssize_t 265 allow_restart_store(struct device *dev, struct device_attribute *attr, 266 const char *buf, size_t count) 267 { 268 bool v; 269 struct scsi_disk *sdkp = to_scsi_disk(dev); 270 struct scsi_device *sdp = sdkp->device; 271 272 if (!capable(CAP_SYS_ADMIN)) 273 return -EACCES; 274 275 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 276 return -EINVAL; 277 278 if (kstrtobool(buf, &v)) 279 return -EINVAL; 280 281 sdp->allow_restart = v; 282 283 return count; 284 } 285 static DEVICE_ATTR_RW(allow_restart); 286 287 static ssize_t 288 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 289 { 290 struct scsi_disk *sdkp = to_scsi_disk(dev); 291 int ct = sdkp->RCD + 2*sdkp->WCE; 292 293 return sprintf(buf, "%s\n", sd_cache_types[ct]); 294 } 295 static DEVICE_ATTR_RW(cache_type); 296 297 static ssize_t 298 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 299 { 300 struct scsi_disk *sdkp = to_scsi_disk(dev); 301 302 return sprintf(buf, "%u\n", sdkp->DPOFUA); 303 } 304 static DEVICE_ATTR_RO(FUA); 305 306 static ssize_t 307 protection_type_show(struct device *dev, struct device_attribute *attr, 308 char *buf) 309 { 310 struct scsi_disk *sdkp = to_scsi_disk(dev); 311 312 return sprintf(buf, "%u\n", sdkp->protection_type); 313 } 314 315 static ssize_t 316 protection_type_store(struct device *dev, struct device_attribute *attr, 317 const char *buf, size_t count) 318 { 319 struct scsi_disk *sdkp = to_scsi_disk(dev); 320 unsigned int val; 321 int err; 322 323 if (!capable(CAP_SYS_ADMIN)) 324 return -EACCES; 325 326 err = kstrtouint(buf, 10, &val); 327 328 if (err) 329 return err; 330 331 if (val <= T10_PI_TYPE3_PROTECTION) 332 sdkp->protection_type = val; 333 334 return count; 335 } 336 static DEVICE_ATTR_RW(protection_type); 337 338 static ssize_t 339 protection_mode_show(struct device *dev, struct device_attribute *attr, 340 char *buf) 341 { 342 struct scsi_disk *sdkp = to_scsi_disk(dev); 343 struct scsi_device *sdp = sdkp->device; 344 unsigned int dif, dix; 345 346 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 347 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 348 349 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 350 dif = 0; 351 dix = 1; 352 } 353 354 if (!dif && !dix) 355 return sprintf(buf, "none\n"); 356 357 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 358 } 359 static DEVICE_ATTR_RO(protection_mode); 360 361 static ssize_t 362 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 363 { 364 struct scsi_disk *sdkp = to_scsi_disk(dev); 365 366 return sprintf(buf, "%u\n", sdkp->ATO); 367 } 368 static DEVICE_ATTR_RO(app_tag_own); 369 370 static ssize_t 371 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 372 char *buf) 373 { 374 struct scsi_disk *sdkp = to_scsi_disk(dev); 375 376 return sprintf(buf, "%u\n", sdkp->lbpme); 377 } 378 static DEVICE_ATTR_RO(thin_provisioning); 379 380 /* sysfs_match_string() requires dense arrays */ 381 static const char *lbp_mode[] = { 382 [SD_LBP_FULL] = "full", 383 [SD_LBP_UNMAP] = "unmap", 384 [SD_LBP_WS16] = "writesame_16", 385 [SD_LBP_WS10] = "writesame_10", 386 [SD_LBP_ZERO] = "writesame_zero", 387 [SD_LBP_DISABLE] = "disabled", 388 }; 389 390 static ssize_t 391 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 392 char *buf) 393 { 394 struct scsi_disk *sdkp = to_scsi_disk(dev); 395 396 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 397 } 398 399 static ssize_t 400 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 401 const char *buf, size_t count) 402 { 403 struct scsi_disk *sdkp = to_scsi_disk(dev); 404 struct scsi_device *sdp = sdkp->device; 405 int mode; 406 407 if (!capable(CAP_SYS_ADMIN)) 408 return -EACCES; 409 410 if (sd_is_zoned(sdkp)) { 411 sd_config_discard(sdkp, SD_LBP_DISABLE); 412 return count; 413 } 414 415 if (sdp->type != TYPE_DISK) 416 return -EINVAL; 417 418 mode = sysfs_match_string(lbp_mode, buf); 419 if (mode < 0) 420 return -EINVAL; 421 422 sd_config_discard(sdkp, mode); 423 424 return count; 425 } 426 static DEVICE_ATTR_RW(provisioning_mode); 427 428 /* sysfs_match_string() requires dense arrays */ 429 static const char *zeroing_mode[] = { 430 [SD_ZERO_WRITE] = "write", 431 [SD_ZERO_WS] = "writesame", 432 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 433 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 434 }; 435 436 static ssize_t 437 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 438 char *buf) 439 { 440 struct scsi_disk *sdkp = to_scsi_disk(dev); 441 442 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 443 } 444 445 static ssize_t 446 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 447 const char *buf, size_t count) 448 { 449 struct scsi_disk *sdkp = to_scsi_disk(dev); 450 int mode; 451 452 if (!capable(CAP_SYS_ADMIN)) 453 return -EACCES; 454 455 mode = sysfs_match_string(zeroing_mode, buf); 456 if (mode < 0) 457 return -EINVAL; 458 459 sdkp->zeroing_mode = mode; 460 461 return count; 462 } 463 static DEVICE_ATTR_RW(zeroing_mode); 464 465 static ssize_t 466 max_medium_access_timeouts_show(struct device *dev, 467 struct device_attribute *attr, char *buf) 468 { 469 struct scsi_disk *sdkp = to_scsi_disk(dev); 470 471 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 472 } 473 474 static ssize_t 475 max_medium_access_timeouts_store(struct device *dev, 476 struct device_attribute *attr, const char *buf, 477 size_t count) 478 { 479 struct scsi_disk *sdkp = to_scsi_disk(dev); 480 int err; 481 482 if (!capable(CAP_SYS_ADMIN)) 483 return -EACCES; 484 485 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 486 487 return err ? err : count; 488 } 489 static DEVICE_ATTR_RW(max_medium_access_timeouts); 490 491 static ssize_t 492 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 493 char *buf) 494 { 495 struct scsi_disk *sdkp = to_scsi_disk(dev); 496 497 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 498 } 499 500 static ssize_t 501 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 502 const char *buf, size_t count) 503 { 504 struct scsi_disk *sdkp = to_scsi_disk(dev); 505 struct scsi_device *sdp = sdkp->device; 506 unsigned long max; 507 int err; 508 509 if (!capable(CAP_SYS_ADMIN)) 510 return -EACCES; 511 512 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 513 return -EINVAL; 514 515 err = kstrtoul(buf, 10, &max); 516 517 if (err) 518 return err; 519 520 if (max == 0) 521 sdp->no_write_same = 1; 522 else if (max <= SD_MAX_WS16_BLOCKS) { 523 sdp->no_write_same = 0; 524 sdkp->max_ws_blocks = max; 525 } 526 527 sd_config_write_same(sdkp); 528 529 return count; 530 } 531 static DEVICE_ATTR_RW(max_write_same_blocks); 532 533 static struct attribute *sd_disk_attrs[] = { 534 &dev_attr_cache_type.attr, 535 &dev_attr_FUA.attr, 536 &dev_attr_allow_restart.attr, 537 &dev_attr_manage_start_stop.attr, 538 &dev_attr_protection_type.attr, 539 &dev_attr_protection_mode.attr, 540 &dev_attr_app_tag_own.attr, 541 &dev_attr_thin_provisioning.attr, 542 &dev_attr_provisioning_mode.attr, 543 &dev_attr_zeroing_mode.attr, 544 &dev_attr_max_write_same_blocks.attr, 545 &dev_attr_max_medium_access_timeouts.attr, 546 NULL, 547 }; 548 ATTRIBUTE_GROUPS(sd_disk); 549 550 static struct class sd_disk_class = { 551 .name = "scsi_disk", 552 .owner = THIS_MODULE, 553 .dev_release = scsi_disk_release, 554 .dev_groups = sd_disk_groups, 555 }; 556 557 static const struct dev_pm_ops sd_pm_ops = { 558 .suspend = sd_suspend_system, 559 .resume = sd_resume, 560 .poweroff = sd_suspend_system, 561 .restore = sd_resume, 562 .runtime_suspend = sd_suspend_runtime, 563 .runtime_resume = sd_resume, 564 }; 565 566 static struct scsi_driver sd_template = { 567 .gendrv = { 568 .name = "sd", 569 .owner = THIS_MODULE, 570 .probe = sd_probe, 571 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 572 .remove = sd_remove, 573 .shutdown = sd_shutdown, 574 .pm = &sd_pm_ops, 575 }, 576 .rescan = sd_rescan, 577 .init_command = sd_init_command, 578 .uninit_command = sd_uninit_command, 579 .done = sd_done, 580 .eh_action = sd_eh_action, 581 .eh_reset = sd_eh_reset, 582 }; 583 584 /* 585 * Dummy kobj_map->probe function. 586 * The default ->probe function will call modprobe, which is 587 * pointless as this module is already loaded. 588 */ 589 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 590 { 591 return NULL; 592 } 593 594 /* 595 * Device no to disk mapping: 596 * 597 * major disc2 disc p1 598 * |............|.............|....|....| <- dev_t 599 * 31 20 19 8 7 4 3 0 600 * 601 * Inside a major, we have 16k disks, however mapped non- 602 * contiguously. The first 16 disks are for major0, the next 603 * ones with major1, ... Disk 256 is for major0 again, disk 272 604 * for major1, ... 605 * As we stay compatible with our numbering scheme, we can reuse 606 * the well-know SCSI majors 8, 65--71, 136--143. 607 */ 608 static int sd_major(int major_idx) 609 { 610 switch (major_idx) { 611 case 0: 612 return SCSI_DISK0_MAJOR; 613 case 1 ... 7: 614 return SCSI_DISK1_MAJOR + major_idx - 1; 615 case 8 ... 15: 616 return SCSI_DISK8_MAJOR + major_idx - 8; 617 default: 618 BUG(); 619 return 0; /* shut up gcc */ 620 } 621 } 622 623 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 624 { 625 struct scsi_disk *sdkp = NULL; 626 627 mutex_lock(&sd_ref_mutex); 628 629 if (disk->private_data) { 630 sdkp = scsi_disk(disk); 631 if (scsi_device_get(sdkp->device) == 0) 632 get_device(&sdkp->dev); 633 else 634 sdkp = NULL; 635 } 636 mutex_unlock(&sd_ref_mutex); 637 return sdkp; 638 } 639 640 static void scsi_disk_put(struct scsi_disk *sdkp) 641 { 642 struct scsi_device *sdev = sdkp->device; 643 644 mutex_lock(&sd_ref_mutex); 645 put_device(&sdkp->dev); 646 scsi_device_put(sdev); 647 mutex_unlock(&sd_ref_mutex); 648 } 649 650 #ifdef CONFIG_BLK_SED_OPAL 651 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 652 size_t len, bool send) 653 { 654 struct scsi_device *sdev = data; 655 u8 cdb[12] = { 0, }; 656 int ret; 657 658 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 659 cdb[1] = secp; 660 put_unaligned_be16(spsp, &cdb[2]); 661 put_unaligned_be32(len, &cdb[6]); 662 663 ret = scsi_execute_req(sdev, cdb, 664 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 665 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 666 return ret <= 0 ? ret : -EIO; 667 } 668 #endif /* CONFIG_BLK_SED_OPAL */ 669 670 /* 671 * Look up the DIX operation based on whether the command is read or 672 * write and whether dix and dif are enabled. 673 */ 674 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 675 { 676 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 677 static const unsigned int ops[] = { /* wrt dix dif */ 678 SCSI_PROT_NORMAL, /* 0 0 0 */ 679 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 680 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 681 SCSI_PROT_READ_PASS, /* 0 1 1 */ 682 SCSI_PROT_NORMAL, /* 1 0 0 */ 683 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 684 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 685 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 686 }; 687 688 return ops[write << 2 | dix << 1 | dif]; 689 } 690 691 /* 692 * Returns a mask of the protection flags that are valid for a given DIX 693 * operation. 694 */ 695 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 696 { 697 static const unsigned int flag_mask[] = { 698 [SCSI_PROT_NORMAL] = 0, 699 700 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 701 SCSI_PROT_GUARD_CHECK | 702 SCSI_PROT_REF_CHECK | 703 SCSI_PROT_REF_INCREMENT, 704 705 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 706 SCSI_PROT_IP_CHECKSUM, 707 708 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 709 SCSI_PROT_GUARD_CHECK | 710 SCSI_PROT_REF_CHECK | 711 SCSI_PROT_REF_INCREMENT | 712 SCSI_PROT_IP_CHECKSUM, 713 714 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 715 SCSI_PROT_REF_INCREMENT, 716 717 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 718 SCSI_PROT_REF_CHECK | 719 SCSI_PROT_REF_INCREMENT | 720 SCSI_PROT_IP_CHECKSUM, 721 722 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 723 SCSI_PROT_GUARD_CHECK | 724 SCSI_PROT_REF_CHECK | 725 SCSI_PROT_REF_INCREMENT | 726 SCSI_PROT_IP_CHECKSUM, 727 }; 728 729 return flag_mask[prot_op]; 730 } 731 732 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 733 unsigned int dix, unsigned int dif) 734 { 735 struct bio *bio = scmd->request->bio; 736 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 737 unsigned int protect = 0; 738 739 if (dix) { /* DIX Type 0, 1, 2, 3 */ 740 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 741 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 742 743 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 744 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 745 } 746 747 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 748 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 749 750 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 751 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 752 } 753 754 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 755 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 756 757 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 758 protect = 3 << 5; /* Disable target PI checking */ 759 else 760 protect = 1 << 5; /* Enable target PI checking */ 761 } 762 763 scsi_set_prot_op(scmd, prot_op); 764 scsi_set_prot_type(scmd, dif); 765 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 766 767 return protect; 768 } 769 770 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 771 { 772 struct request_queue *q = sdkp->disk->queue; 773 unsigned int logical_block_size = sdkp->device->sector_size; 774 unsigned int max_blocks = 0; 775 776 q->limits.discard_alignment = 777 sdkp->unmap_alignment * logical_block_size; 778 q->limits.discard_granularity = 779 max(sdkp->physical_block_size, 780 sdkp->unmap_granularity * logical_block_size); 781 sdkp->provisioning_mode = mode; 782 783 switch (mode) { 784 785 case SD_LBP_FULL: 786 case SD_LBP_DISABLE: 787 blk_queue_max_discard_sectors(q, 0); 788 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 789 return; 790 791 case SD_LBP_UNMAP: 792 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 793 (u32)SD_MAX_WS16_BLOCKS); 794 break; 795 796 case SD_LBP_WS16: 797 if (sdkp->device->unmap_limit_for_ws) 798 max_blocks = sdkp->max_unmap_blocks; 799 else 800 max_blocks = sdkp->max_ws_blocks; 801 802 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 803 break; 804 805 case SD_LBP_WS10: 806 if (sdkp->device->unmap_limit_for_ws) 807 max_blocks = sdkp->max_unmap_blocks; 808 else 809 max_blocks = sdkp->max_ws_blocks; 810 811 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 812 break; 813 814 case SD_LBP_ZERO: 815 max_blocks = min_not_zero(sdkp->max_ws_blocks, 816 (u32)SD_MAX_WS10_BLOCKS); 817 break; 818 } 819 820 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 821 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 822 } 823 824 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 825 { 826 struct scsi_device *sdp = cmd->device; 827 struct request *rq = cmd->request; 828 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 829 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 830 unsigned int data_len = 24; 831 char *buf; 832 833 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 834 if (!rq->special_vec.bv_page) 835 return BLK_STS_RESOURCE; 836 clear_highpage(rq->special_vec.bv_page); 837 rq->special_vec.bv_offset = 0; 838 rq->special_vec.bv_len = data_len; 839 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 840 841 cmd->cmd_len = 10; 842 cmd->cmnd[0] = UNMAP; 843 cmd->cmnd[8] = 24; 844 845 buf = page_address(rq->special_vec.bv_page); 846 put_unaligned_be16(6 + 16, &buf[0]); 847 put_unaligned_be16(16, &buf[2]); 848 put_unaligned_be64(lba, &buf[8]); 849 put_unaligned_be32(nr_blocks, &buf[16]); 850 851 cmd->allowed = SD_MAX_RETRIES; 852 cmd->transfersize = data_len; 853 rq->timeout = SD_TIMEOUT; 854 855 return scsi_init_io(cmd); 856 } 857 858 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 859 bool unmap) 860 { 861 struct scsi_device *sdp = cmd->device; 862 struct request *rq = cmd->request; 863 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 864 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 865 u32 data_len = sdp->sector_size; 866 867 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 868 if (!rq->special_vec.bv_page) 869 return BLK_STS_RESOURCE; 870 clear_highpage(rq->special_vec.bv_page); 871 rq->special_vec.bv_offset = 0; 872 rq->special_vec.bv_len = data_len; 873 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 874 875 cmd->cmd_len = 16; 876 cmd->cmnd[0] = WRITE_SAME_16; 877 if (unmap) 878 cmd->cmnd[1] = 0x8; /* UNMAP */ 879 put_unaligned_be64(lba, &cmd->cmnd[2]); 880 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 881 882 cmd->allowed = SD_MAX_RETRIES; 883 cmd->transfersize = data_len; 884 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 885 886 return scsi_init_io(cmd); 887 } 888 889 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 890 bool unmap) 891 { 892 struct scsi_device *sdp = cmd->device; 893 struct request *rq = cmd->request; 894 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 895 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 896 u32 data_len = sdp->sector_size; 897 898 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 899 if (!rq->special_vec.bv_page) 900 return BLK_STS_RESOURCE; 901 clear_highpage(rq->special_vec.bv_page); 902 rq->special_vec.bv_offset = 0; 903 rq->special_vec.bv_len = data_len; 904 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 905 906 cmd->cmd_len = 10; 907 cmd->cmnd[0] = WRITE_SAME; 908 if (unmap) 909 cmd->cmnd[1] = 0x8; /* UNMAP */ 910 put_unaligned_be32(lba, &cmd->cmnd[2]); 911 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 912 913 cmd->allowed = SD_MAX_RETRIES; 914 cmd->transfersize = data_len; 915 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 916 917 return scsi_init_io(cmd); 918 } 919 920 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 921 { 922 struct request *rq = cmd->request; 923 struct scsi_device *sdp = cmd->device; 924 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 925 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 926 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 927 928 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 929 switch (sdkp->zeroing_mode) { 930 case SD_ZERO_WS16_UNMAP: 931 return sd_setup_write_same16_cmnd(cmd, true); 932 case SD_ZERO_WS10_UNMAP: 933 return sd_setup_write_same10_cmnd(cmd, true); 934 } 935 } 936 937 if (sdp->no_write_same) 938 return BLK_STS_TARGET; 939 940 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 941 return sd_setup_write_same16_cmnd(cmd, false); 942 943 return sd_setup_write_same10_cmnd(cmd, false); 944 } 945 946 static void sd_config_write_same(struct scsi_disk *sdkp) 947 { 948 struct request_queue *q = sdkp->disk->queue; 949 unsigned int logical_block_size = sdkp->device->sector_size; 950 951 if (sdkp->device->no_write_same) { 952 sdkp->max_ws_blocks = 0; 953 goto out; 954 } 955 956 /* Some devices can not handle block counts above 0xffff despite 957 * supporting WRITE SAME(16). Consequently we default to 64k 958 * blocks per I/O unless the device explicitly advertises a 959 * bigger limit. 960 */ 961 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 962 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 963 (u32)SD_MAX_WS16_BLOCKS); 964 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 965 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 966 (u32)SD_MAX_WS10_BLOCKS); 967 else { 968 sdkp->device->no_write_same = 1; 969 sdkp->max_ws_blocks = 0; 970 } 971 972 if (sdkp->lbprz && sdkp->lbpws) 973 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 974 else if (sdkp->lbprz && sdkp->lbpws10) 975 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 976 else if (sdkp->max_ws_blocks) 977 sdkp->zeroing_mode = SD_ZERO_WS; 978 else 979 sdkp->zeroing_mode = SD_ZERO_WRITE; 980 981 if (sdkp->max_ws_blocks && 982 sdkp->physical_block_size > logical_block_size) { 983 /* 984 * Reporting a maximum number of blocks that is not aligned 985 * on the device physical size would cause a large write same 986 * request to be split into physically unaligned chunks by 987 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 988 * even if the caller of these functions took care to align the 989 * large request. So make sure the maximum reported is aligned 990 * to the device physical block size. This is only an optional 991 * optimization for regular disks, but this is mandatory to 992 * avoid failure of large write same requests directed at 993 * sequential write required zones of host-managed ZBC disks. 994 */ 995 sdkp->max_ws_blocks = 996 round_down(sdkp->max_ws_blocks, 997 bytes_to_logical(sdkp->device, 998 sdkp->physical_block_size)); 999 } 1000 1001 out: 1002 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 1003 (logical_block_size >> 9)); 1004 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1005 (logical_block_size >> 9)); 1006 } 1007 1008 /** 1009 * sd_setup_write_same_cmnd - write the same data to multiple blocks 1010 * @cmd: command to prepare 1011 * 1012 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 1013 * the preference indicated by the target device. 1014 **/ 1015 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 1016 { 1017 struct request *rq = cmd->request; 1018 struct scsi_device *sdp = cmd->device; 1019 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1020 struct bio *bio = rq->bio; 1021 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1022 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1023 blk_status_t ret; 1024 1025 if (sdkp->device->no_write_same) 1026 return BLK_STS_TARGET; 1027 1028 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 1029 1030 rq->timeout = SD_WRITE_SAME_TIMEOUT; 1031 1032 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) { 1033 cmd->cmd_len = 16; 1034 cmd->cmnd[0] = WRITE_SAME_16; 1035 put_unaligned_be64(lba, &cmd->cmnd[2]); 1036 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1037 } else { 1038 cmd->cmd_len = 10; 1039 cmd->cmnd[0] = WRITE_SAME; 1040 put_unaligned_be32(lba, &cmd->cmnd[2]); 1041 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1042 } 1043 1044 cmd->transfersize = sdp->sector_size; 1045 cmd->allowed = SD_MAX_RETRIES; 1046 1047 /* 1048 * For WRITE SAME the data transferred via the DATA OUT buffer is 1049 * different from the amount of data actually written to the target. 1050 * 1051 * We set up __data_len to the amount of data transferred via the 1052 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 1053 * to transfer a single sector of data first, but then reset it to 1054 * the amount of data to be written right after so that the I/O path 1055 * knows how much to actually write. 1056 */ 1057 rq->__data_len = sdp->sector_size; 1058 ret = scsi_init_io(cmd); 1059 rq->__data_len = blk_rq_bytes(rq); 1060 1061 return ret; 1062 } 1063 1064 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1065 { 1066 struct request *rq = cmd->request; 1067 1068 /* flush requests don't perform I/O, zero the S/G table */ 1069 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1070 1071 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1072 cmd->cmd_len = 10; 1073 cmd->transfersize = 0; 1074 cmd->allowed = SD_MAX_RETRIES; 1075 1076 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1077 return BLK_STS_OK; 1078 } 1079 1080 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1081 sector_t lba, unsigned int nr_blocks, 1082 unsigned char flags) 1083 { 1084 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1085 if (unlikely(cmd->cmnd == NULL)) 1086 return BLK_STS_RESOURCE; 1087 1088 cmd->cmd_len = SD_EXT_CDB_SIZE; 1089 memset(cmd->cmnd, 0, cmd->cmd_len); 1090 1091 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1092 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1093 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1094 cmd->cmnd[10] = flags; 1095 put_unaligned_be64(lba, &cmd->cmnd[12]); 1096 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1097 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1098 1099 return BLK_STS_OK; 1100 } 1101 1102 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1103 sector_t lba, unsigned int nr_blocks, 1104 unsigned char flags) 1105 { 1106 cmd->cmd_len = 16; 1107 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1108 cmd->cmnd[1] = flags; 1109 cmd->cmnd[14] = 0; 1110 cmd->cmnd[15] = 0; 1111 put_unaligned_be64(lba, &cmd->cmnd[2]); 1112 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1113 1114 return BLK_STS_OK; 1115 } 1116 1117 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1118 sector_t lba, unsigned int nr_blocks, 1119 unsigned char flags) 1120 { 1121 cmd->cmd_len = 10; 1122 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1123 cmd->cmnd[1] = flags; 1124 cmd->cmnd[6] = 0; 1125 cmd->cmnd[9] = 0; 1126 put_unaligned_be32(lba, &cmd->cmnd[2]); 1127 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1128 1129 return BLK_STS_OK; 1130 } 1131 1132 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1133 sector_t lba, unsigned int nr_blocks, 1134 unsigned char flags) 1135 { 1136 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1137 if (WARN_ON_ONCE(nr_blocks == 0)) 1138 return BLK_STS_IOERR; 1139 1140 if (unlikely(flags & 0x8)) { 1141 /* 1142 * This happens only if this drive failed 10byte rw 1143 * command with ILLEGAL_REQUEST during operation and 1144 * thus turned off use_10_for_rw. 1145 */ 1146 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1147 return BLK_STS_IOERR; 1148 } 1149 1150 cmd->cmd_len = 6; 1151 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1152 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1153 cmd->cmnd[2] = (lba >> 8) & 0xff; 1154 cmd->cmnd[3] = lba & 0xff; 1155 cmd->cmnd[4] = nr_blocks; 1156 cmd->cmnd[5] = 0; 1157 1158 return BLK_STS_OK; 1159 } 1160 1161 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1162 { 1163 struct request *rq = cmd->request; 1164 struct scsi_device *sdp = cmd->device; 1165 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1166 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1167 sector_t threshold; 1168 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1169 bool dif, dix; 1170 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1171 bool write = rq_data_dir(rq) == WRITE; 1172 unsigned char protect, fua; 1173 blk_status_t ret; 1174 1175 ret = scsi_init_io(cmd); 1176 if (ret != BLK_STS_OK) 1177 return ret; 1178 1179 if (!scsi_device_online(sdp) || sdp->changed) { 1180 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1181 return BLK_STS_IOERR; 1182 } 1183 1184 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) { 1185 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1186 return BLK_STS_IOERR; 1187 } 1188 1189 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1190 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1191 return BLK_STS_IOERR; 1192 } 1193 1194 /* 1195 * Some SD card readers can't handle accesses which touch the 1196 * last one or two logical blocks. Split accesses as needed. 1197 */ 1198 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1199 1200 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1201 if (lba < threshold) { 1202 /* Access up to the threshold but not beyond */ 1203 nr_blocks = threshold - lba; 1204 } else { 1205 /* Access only a single logical block */ 1206 nr_blocks = 1; 1207 } 1208 } 1209 1210 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1211 dix = scsi_prot_sg_count(cmd); 1212 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1213 1214 if (write && dix) 1215 t10_pi_prepare(cmd->request, sdkp->protection_type); 1216 1217 if (dif || dix) 1218 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1219 else 1220 protect = 0; 1221 1222 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1223 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1224 protect | fua); 1225 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1226 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1227 protect | fua); 1228 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1229 sdp->use_10_for_rw || protect) { 1230 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1231 protect | fua); 1232 } else { 1233 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1234 protect | fua); 1235 } 1236 1237 if (unlikely(ret != BLK_STS_OK)) 1238 return ret; 1239 1240 /* 1241 * We shouldn't disconnect in the middle of a sector, so with a dumb 1242 * host adapter, it's safe to assume that we can at least transfer 1243 * this many bytes between each connect / disconnect. 1244 */ 1245 cmd->transfersize = sdp->sector_size; 1246 cmd->underflow = nr_blocks << 9; 1247 cmd->allowed = SD_MAX_RETRIES; 1248 cmd->sdb.length = nr_blocks * sdp->sector_size; 1249 1250 SCSI_LOG_HLQUEUE(1, 1251 scmd_printk(KERN_INFO, cmd, 1252 "%s: block=%llu, count=%d\n", __func__, 1253 (unsigned long long)blk_rq_pos(rq), 1254 blk_rq_sectors(rq))); 1255 SCSI_LOG_HLQUEUE(2, 1256 scmd_printk(KERN_INFO, cmd, 1257 "%s %d/%u 512 byte blocks.\n", 1258 write ? "writing" : "reading", nr_blocks, 1259 blk_rq_sectors(rq))); 1260 1261 /* 1262 * This indicates that the command is ready from our end to be 1263 * queued. 1264 */ 1265 return BLK_STS_OK; 1266 } 1267 1268 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1269 { 1270 struct request *rq = cmd->request; 1271 1272 switch (req_op(rq)) { 1273 case REQ_OP_DISCARD: 1274 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1275 case SD_LBP_UNMAP: 1276 return sd_setup_unmap_cmnd(cmd); 1277 case SD_LBP_WS16: 1278 return sd_setup_write_same16_cmnd(cmd, true); 1279 case SD_LBP_WS10: 1280 return sd_setup_write_same10_cmnd(cmd, true); 1281 case SD_LBP_ZERO: 1282 return sd_setup_write_same10_cmnd(cmd, false); 1283 default: 1284 return BLK_STS_TARGET; 1285 } 1286 case REQ_OP_WRITE_ZEROES: 1287 return sd_setup_write_zeroes_cmnd(cmd); 1288 case REQ_OP_WRITE_SAME: 1289 return sd_setup_write_same_cmnd(cmd); 1290 case REQ_OP_FLUSH: 1291 return sd_setup_flush_cmnd(cmd); 1292 case REQ_OP_READ: 1293 case REQ_OP_WRITE: 1294 return sd_setup_read_write_cmnd(cmd); 1295 case REQ_OP_ZONE_RESET: 1296 return sd_zbc_setup_reset_cmnd(cmd, false); 1297 case REQ_OP_ZONE_RESET_ALL: 1298 return sd_zbc_setup_reset_cmnd(cmd, true); 1299 default: 1300 WARN_ON_ONCE(1); 1301 return BLK_STS_NOTSUPP; 1302 } 1303 } 1304 1305 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1306 { 1307 struct request *rq = SCpnt->request; 1308 u8 *cmnd; 1309 1310 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1311 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1312 1313 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1314 cmnd = SCpnt->cmnd; 1315 SCpnt->cmnd = NULL; 1316 SCpnt->cmd_len = 0; 1317 mempool_free(cmnd, sd_cdb_pool); 1318 } 1319 } 1320 1321 /** 1322 * sd_open - open a scsi disk device 1323 * @bdev: Block device of the scsi disk to open 1324 * @mode: FMODE_* mask 1325 * 1326 * Returns 0 if successful. Returns a negated errno value in case 1327 * of error. 1328 * 1329 * Note: This can be called from a user context (e.g. fsck(1) ) 1330 * or from within the kernel (e.g. as a result of a mount(1) ). 1331 * In the latter case @inode and @filp carry an abridged amount 1332 * of information as noted above. 1333 * 1334 * Locking: called with bdev->bd_mutex held. 1335 **/ 1336 static int sd_open(struct block_device *bdev, fmode_t mode) 1337 { 1338 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1339 struct scsi_device *sdev; 1340 int retval; 1341 1342 if (!sdkp) 1343 return -ENXIO; 1344 1345 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1346 1347 sdev = sdkp->device; 1348 1349 /* 1350 * If the device is in error recovery, wait until it is done. 1351 * If the device is offline, then disallow any access to it. 1352 */ 1353 retval = -ENXIO; 1354 if (!scsi_block_when_processing_errors(sdev)) 1355 goto error_out; 1356 1357 if (sdev->removable || sdkp->write_prot) 1358 check_disk_change(bdev); 1359 1360 /* 1361 * If the drive is empty, just let the open fail. 1362 */ 1363 retval = -ENOMEDIUM; 1364 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1365 goto error_out; 1366 1367 /* 1368 * If the device has the write protect tab set, have the open fail 1369 * if the user expects to be able to write to the thing. 1370 */ 1371 retval = -EROFS; 1372 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1373 goto error_out; 1374 1375 /* 1376 * It is possible that the disk changing stuff resulted in 1377 * the device being taken offline. If this is the case, 1378 * report this to the user, and don't pretend that the 1379 * open actually succeeded. 1380 */ 1381 retval = -ENXIO; 1382 if (!scsi_device_online(sdev)) 1383 goto error_out; 1384 1385 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1386 if (scsi_block_when_processing_errors(sdev)) 1387 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1388 } 1389 1390 return 0; 1391 1392 error_out: 1393 scsi_disk_put(sdkp); 1394 return retval; 1395 } 1396 1397 /** 1398 * sd_release - invoked when the (last) close(2) is called on this 1399 * scsi disk. 1400 * @disk: disk to release 1401 * @mode: FMODE_* mask 1402 * 1403 * Returns 0. 1404 * 1405 * Note: may block (uninterruptible) if error recovery is underway 1406 * on this disk. 1407 * 1408 * Locking: called with bdev->bd_mutex held. 1409 **/ 1410 static void sd_release(struct gendisk *disk, fmode_t mode) 1411 { 1412 struct scsi_disk *sdkp = scsi_disk(disk); 1413 struct scsi_device *sdev = sdkp->device; 1414 1415 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1416 1417 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1418 if (scsi_block_when_processing_errors(sdev)) 1419 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1420 } 1421 1422 scsi_disk_put(sdkp); 1423 } 1424 1425 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1426 { 1427 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1428 struct scsi_device *sdp = sdkp->device; 1429 struct Scsi_Host *host = sdp->host; 1430 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1431 int diskinfo[4]; 1432 1433 /* default to most commonly used values */ 1434 diskinfo[0] = 0x40; /* 1 << 6 */ 1435 diskinfo[1] = 0x20; /* 1 << 5 */ 1436 diskinfo[2] = capacity >> 11; 1437 1438 /* override with calculated, extended default, or driver values */ 1439 if (host->hostt->bios_param) 1440 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1441 else 1442 scsicam_bios_param(bdev, capacity, diskinfo); 1443 1444 geo->heads = diskinfo[0]; 1445 geo->sectors = diskinfo[1]; 1446 geo->cylinders = diskinfo[2]; 1447 return 0; 1448 } 1449 1450 /** 1451 * sd_ioctl - process an ioctl 1452 * @bdev: target block device 1453 * @mode: FMODE_* mask 1454 * @cmd: ioctl command number 1455 * @arg: this is third argument given to ioctl(2) system call. 1456 * Often contains a pointer. 1457 * 1458 * Returns 0 if successful (some ioctls return positive numbers on 1459 * success as well). Returns a negated errno value in case of error. 1460 * 1461 * Note: most ioctls are forward onto the block subsystem or further 1462 * down in the scsi subsystem. 1463 **/ 1464 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1465 unsigned int cmd, unsigned long arg) 1466 { 1467 struct gendisk *disk = bdev->bd_disk; 1468 struct scsi_disk *sdkp = scsi_disk(disk); 1469 struct scsi_device *sdp = sdkp->device; 1470 void __user *p = (void __user *)arg; 1471 int error; 1472 1473 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1474 "cmd=0x%x\n", disk->disk_name, cmd)); 1475 1476 error = scsi_verify_blk_ioctl(bdev, cmd); 1477 if (error < 0) 1478 return error; 1479 1480 /* 1481 * If we are in the middle of error recovery, don't let anyone 1482 * else try and use this device. Also, if error recovery fails, it 1483 * may try and take the device offline, in which case all further 1484 * access to the device is prohibited. 1485 */ 1486 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1487 (mode & FMODE_NDELAY) != 0); 1488 if (error) 1489 goto out; 1490 1491 if (is_sed_ioctl(cmd)) 1492 return sed_ioctl(sdkp->opal_dev, cmd, p); 1493 1494 /* 1495 * Send SCSI addressing ioctls directly to mid level, send other 1496 * ioctls to block level and then onto mid level if they can't be 1497 * resolved. 1498 */ 1499 switch (cmd) { 1500 case SCSI_IOCTL_GET_IDLUN: 1501 case SCSI_IOCTL_GET_BUS_NUMBER: 1502 error = scsi_ioctl(sdp, cmd, p); 1503 break; 1504 default: 1505 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1506 if (error != -ENOTTY) 1507 break; 1508 error = scsi_ioctl(sdp, cmd, p); 1509 break; 1510 } 1511 out: 1512 return error; 1513 } 1514 1515 static void set_media_not_present(struct scsi_disk *sdkp) 1516 { 1517 if (sdkp->media_present) 1518 sdkp->device->changed = 1; 1519 1520 if (sdkp->device->removable) { 1521 sdkp->media_present = 0; 1522 sdkp->capacity = 0; 1523 } 1524 } 1525 1526 static int media_not_present(struct scsi_disk *sdkp, 1527 struct scsi_sense_hdr *sshdr) 1528 { 1529 if (!scsi_sense_valid(sshdr)) 1530 return 0; 1531 1532 /* not invoked for commands that could return deferred errors */ 1533 switch (sshdr->sense_key) { 1534 case UNIT_ATTENTION: 1535 case NOT_READY: 1536 /* medium not present */ 1537 if (sshdr->asc == 0x3A) { 1538 set_media_not_present(sdkp); 1539 return 1; 1540 } 1541 } 1542 return 0; 1543 } 1544 1545 /** 1546 * sd_check_events - check media events 1547 * @disk: kernel device descriptor 1548 * @clearing: disk events currently being cleared 1549 * 1550 * Returns mask of DISK_EVENT_*. 1551 * 1552 * Note: this function is invoked from the block subsystem. 1553 **/ 1554 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1555 { 1556 struct scsi_disk *sdkp = scsi_disk_get(disk); 1557 struct scsi_device *sdp; 1558 int retval; 1559 1560 if (!sdkp) 1561 return 0; 1562 1563 sdp = sdkp->device; 1564 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1565 1566 /* 1567 * If the device is offline, don't send any commands - just pretend as 1568 * if the command failed. If the device ever comes back online, we 1569 * can deal with it then. It is only because of unrecoverable errors 1570 * that we would ever take a device offline in the first place. 1571 */ 1572 if (!scsi_device_online(sdp)) { 1573 set_media_not_present(sdkp); 1574 goto out; 1575 } 1576 1577 /* 1578 * Using TEST_UNIT_READY enables differentiation between drive with 1579 * no cartridge loaded - NOT READY, drive with changed cartridge - 1580 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1581 * 1582 * Drives that auto spin down. eg iomega jaz 1G, will be started 1583 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1584 * sd_revalidate() is called. 1585 */ 1586 if (scsi_block_when_processing_errors(sdp)) { 1587 struct scsi_sense_hdr sshdr = { 0, }; 1588 1589 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1590 &sshdr); 1591 1592 /* failed to execute TUR, assume media not present */ 1593 if (host_byte(retval)) { 1594 set_media_not_present(sdkp); 1595 goto out; 1596 } 1597 1598 if (media_not_present(sdkp, &sshdr)) 1599 goto out; 1600 } 1601 1602 /* 1603 * For removable scsi disk we have to recognise the presence 1604 * of a disk in the drive. 1605 */ 1606 if (!sdkp->media_present) 1607 sdp->changed = 1; 1608 sdkp->media_present = 1; 1609 out: 1610 /* 1611 * sdp->changed is set under the following conditions: 1612 * 1613 * Medium present state has changed in either direction. 1614 * Device has indicated UNIT_ATTENTION. 1615 */ 1616 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1617 sdp->changed = 0; 1618 scsi_disk_put(sdkp); 1619 return retval; 1620 } 1621 1622 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1623 { 1624 int retries, res; 1625 struct scsi_device *sdp = sdkp->device; 1626 const int timeout = sdp->request_queue->rq_timeout 1627 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1628 struct scsi_sense_hdr my_sshdr; 1629 1630 if (!scsi_device_online(sdp)) 1631 return -ENODEV; 1632 1633 /* caller might not be interested in sense, but we need it */ 1634 if (!sshdr) 1635 sshdr = &my_sshdr; 1636 1637 for (retries = 3; retries > 0; --retries) { 1638 unsigned char cmd[10] = { 0 }; 1639 1640 cmd[0] = SYNCHRONIZE_CACHE; 1641 /* 1642 * Leave the rest of the command zero to indicate 1643 * flush everything. 1644 */ 1645 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1646 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL); 1647 if (res == 0) 1648 break; 1649 } 1650 1651 if (res) { 1652 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1653 1654 if (driver_byte(res) == DRIVER_SENSE) 1655 sd_print_sense_hdr(sdkp, sshdr); 1656 1657 /* we need to evaluate the error return */ 1658 if (scsi_sense_valid(sshdr) && 1659 (sshdr->asc == 0x3a || /* medium not present */ 1660 sshdr->asc == 0x20)) /* invalid command */ 1661 /* this is no error here */ 1662 return 0; 1663 1664 switch (host_byte(res)) { 1665 /* ignore errors due to racing a disconnection */ 1666 case DID_BAD_TARGET: 1667 case DID_NO_CONNECT: 1668 return 0; 1669 /* signal the upper layer it might try again */ 1670 case DID_BUS_BUSY: 1671 case DID_IMM_RETRY: 1672 case DID_REQUEUE: 1673 case DID_SOFT_ERROR: 1674 return -EBUSY; 1675 default: 1676 return -EIO; 1677 } 1678 } 1679 return 0; 1680 } 1681 1682 static void sd_rescan(struct device *dev) 1683 { 1684 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1685 1686 revalidate_disk(sdkp->disk); 1687 } 1688 1689 1690 #ifdef CONFIG_COMPAT 1691 /* 1692 * This gets directly called from VFS. When the ioctl 1693 * is not recognized we go back to the other translation paths. 1694 */ 1695 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1696 unsigned int cmd, unsigned long arg) 1697 { 1698 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1699 int error; 1700 1701 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1702 (mode & FMODE_NDELAY) != 0); 1703 if (error) 1704 return error; 1705 1706 /* 1707 * Let the static ioctl translation table take care of it. 1708 */ 1709 if (!sdev->host->hostt->compat_ioctl) 1710 return -ENOIOCTLCMD; 1711 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1712 } 1713 #endif 1714 1715 static char sd_pr_type(enum pr_type type) 1716 { 1717 switch (type) { 1718 case PR_WRITE_EXCLUSIVE: 1719 return 0x01; 1720 case PR_EXCLUSIVE_ACCESS: 1721 return 0x03; 1722 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1723 return 0x05; 1724 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1725 return 0x06; 1726 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1727 return 0x07; 1728 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1729 return 0x08; 1730 default: 1731 return 0; 1732 } 1733 }; 1734 1735 static int sd_pr_command(struct block_device *bdev, u8 sa, 1736 u64 key, u64 sa_key, u8 type, u8 flags) 1737 { 1738 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1739 struct scsi_sense_hdr sshdr; 1740 int result; 1741 u8 cmd[16] = { 0, }; 1742 u8 data[24] = { 0, }; 1743 1744 cmd[0] = PERSISTENT_RESERVE_OUT; 1745 cmd[1] = sa; 1746 cmd[2] = type; 1747 put_unaligned_be32(sizeof(data), &cmd[5]); 1748 1749 put_unaligned_be64(key, &data[0]); 1750 put_unaligned_be64(sa_key, &data[8]); 1751 data[20] = flags; 1752 1753 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1754 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1755 1756 if (driver_byte(result) == DRIVER_SENSE && 1757 scsi_sense_valid(&sshdr)) { 1758 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1759 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1760 } 1761 1762 return result; 1763 } 1764 1765 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1766 u32 flags) 1767 { 1768 if (flags & ~PR_FL_IGNORE_KEY) 1769 return -EOPNOTSUPP; 1770 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1771 old_key, new_key, 0, 1772 (1 << 0) /* APTPL */); 1773 } 1774 1775 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1776 u32 flags) 1777 { 1778 if (flags) 1779 return -EOPNOTSUPP; 1780 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1781 } 1782 1783 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1784 { 1785 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1786 } 1787 1788 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1789 enum pr_type type, bool abort) 1790 { 1791 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1792 sd_pr_type(type), 0); 1793 } 1794 1795 static int sd_pr_clear(struct block_device *bdev, u64 key) 1796 { 1797 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1798 } 1799 1800 static const struct pr_ops sd_pr_ops = { 1801 .pr_register = sd_pr_register, 1802 .pr_reserve = sd_pr_reserve, 1803 .pr_release = sd_pr_release, 1804 .pr_preempt = sd_pr_preempt, 1805 .pr_clear = sd_pr_clear, 1806 }; 1807 1808 static const struct block_device_operations sd_fops = { 1809 .owner = THIS_MODULE, 1810 .open = sd_open, 1811 .release = sd_release, 1812 .ioctl = sd_ioctl, 1813 .getgeo = sd_getgeo, 1814 #ifdef CONFIG_COMPAT 1815 .compat_ioctl = sd_compat_ioctl, 1816 #endif 1817 .check_events = sd_check_events, 1818 .revalidate_disk = sd_revalidate_disk, 1819 .unlock_native_capacity = sd_unlock_native_capacity, 1820 .report_zones = sd_zbc_report_zones, 1821 .pr_ops = &sd_pr_ops, 1822 }; 1823 1824 /** 1825 * sd_eh_reset - reset error handling callback 1826 * @scmd: sd-issued command that has failed 1827 * 1828 * This function is called by the SCSI midlayer before starting 1829 * SCSI EH. When counting medium access failures we have to be 1830 * careful to register it only only once per device and SCSI EH run; 1831 * there might be several timed out commands which will cause the 1832 * 'max_medium_access_timeouts' counter to trigger after the first 1833 * SCSI EH run already and set the device to offline. 1834 * So this function resets the internal counter before starting SCSI EH. 1835 **/ 1836 static void sd_eh_reset(struct scsi_cmnd *scmd) 1837 { 1838 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1839 1840 /* New SCSI EH run, reset gate variable */ 1841 sdkp->ignore_medium_access_errors = false; 1842 } 1843 1844 /** 1845 * sd_eh_action - error handling callback 1846 * @scmd: sd-issued command that has failed 1847 * @eh_disp: The recovery disposition suggested by the midlayer 1848 * 1849 * This function is called by the SCSI midlayer upon completion of an 1850 * error test command (currently TEST UNIT READY). The result of sending 1851 * the eh command is passed in eh_disp. We're looking for devices that 1852 * fail medium access commands but are OK with non access commands like 1853 * test unit ready (so wrongly see the device as having a successful 1854 * recovery) 1855 **/ 1856 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1857 { 1858 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1859 struct scsi_device *sdev = scmd->device; 1860 1861 if (!scsi_device_online(sdev) || 1862 !scsi_medium_access_command(scmd) || 1863 host_byte(scmd->result) != DID_TIME_OUT || 1864 eh_disp != SUCCESS) 1865 return eh_disp; 1866 1867 /* 1868 * The device has timed out executing a medium access command. 1869 * However, the TEST UNIT READY command sent during error 1870 * handling completed successfully. Either the device is in the 1871 * process of recovering or has it suffered an internal failure 1872 * that prevents access to the storage medium. 1873 */ 1874 if (!sdkp->ignore_medium_access_errors) { 1875 sdkp->medium_access_timed_out++; 1876 sdkp->ignore_medium_access_errors = true; 1877 } 1878 1879 /* 1880 * If the device keeps failing read/write commands but TEST UNIT 1881 * READY always completes successfully we assume that medium 1882 * access is no longer possible and take the device offline. 1883 */ 1884 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1885 scmd_printk(KERN_ERR, scmd, 1886 "Medium access timeout failure. Offlining disk!\n"); 1887 mutex_lock(&sdev->state_mutex); 1888 scsi_device_set_state(sdev, SDEV_OFFLINE); 1889 mutex_unlock(&sdev->state_mutex); 1890 1891 return SUCCESS; 1892 } 1893 1894 return eh_disp; 1895 } 1896 1897 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1898 { 1899 struct request *req = scmd->request; 1900 struct scsi_device *sdev = scmd->device; 1901 unsigned int transferred, good_bytes; 1902 u64 start_lba, end_lba, bad_lba; 1903 1904 /* 1905 * Some commands have a payload smaller than the device logical 1906 * block size (e.g. INQUIRY on a 4K disk). 1907 */ 1908 if (scsi_bufflen(scmd) <= sdev->sector_size) 1909 return 0; 1910 1911 /* Check if we have a 'bad_lba' information */ 1912 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1913 SCSI_SENSE_BUFFERSIZE, 1914 &bad_lba)) 1915 return 0; 1916 1917 /* 1918 * If the bad lba was reported incorrectly, we have no idea where 1919 * the error is. 1920 */ 1921 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1922 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1923 if (bad_lba < start_lba || bad_lba >= end_lba) 1924 return 0; 1925 1926 /* 1927 * resid is optional but mostly filled in. When it's unused, 1928 * its value is zero, so we assume the whole buffer transferred 1929 */ 1930 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1931 1932 /* This computation should always be done in terms of the 1933 * resolution of the device's medium. 1934 */ 1935 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1936 1937 return min(good_bytes, transferred); 1938 } 1939 1940 /** 1941 * sd_done - bottom half handler: called when the lower level 1942 * driver has completed (successfully or otherwise) a scsi command. 1943 * @SCpnt: mid-level's per command structure. 1944 * 1945 * Note: potentially run from within an ISR. Must not block. 1946 **/ 1947 static int sd_done(struct scsi_cmnd *SCpnt) 1948 { 1949 int result = SCpnt->result; 1950 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1951 unsigned int sector_size = SCpnt->device->sector_size; 1952 unsigned int resid; 1953 struct scsi_sense_hdr sshdr; 1954 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1955 struct request *req = SCpnt->request; 1956 int sense_valid = 0; 1957 int sense_deferred = 0; 1958 1959 switch (req_op(req)) { 1960 case REQ_OP_DISCARD: 1961 case REQ_OP_WRITE_ZEROES: 1962 case REQ_OP_WRITE_SAME: 1963 case REQ_OP_ZONE_RESET: 1964 case REQ_OP_ZONE_RESET_ALL: 1965 if (!result) { 1966 good_bytes = blk_rq_bytes(req); 1967 scsi_set_resid(SCpnt, 0); 1968 } else { 1969 good_bytes = 0; 1970 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1971 } 1972 break; 1973 default: 1974 /* 1975 * In case of bogus fw or device, we could end up having 1976 * an unaligned partial completion. Check this here and force 1977 * alignment. 1978 */ 1979 resid = scsi_get_resid(SCpnt); 1980 if (resid & (sector_size - 1)) { 1981 sd_printk(KERN_INFO, sdkp, 1982 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 1983 resid, sector_size); 1984 resid = min(scsi_bufflen(SCpnt), 1985 round_up(resid, sector_size)); 1986 scsi_set_resid(SCpnt, resid); 1987 } 1988 } 1989 1990 if (result) { 1991 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1992 if (sense_valid) 1993 sense_deferred = scsi_sense_is_deferred(&sshdr); 1994 } 1995 sdkp->medium_access_timed_out = 0; 1996 1997 if (driver_byte(result) != DRIVER_SENSE && 1998 (!sense_valid || sense_deferred)) 1999 goto out; 2000 2001 switch (sshdr.sense_key) { 2002 case HARDWARE_ERROR: 2003 case MEDIUM_ERROR: 2004 good_bytes = sd_completed_bytes(SCpnt); 2005 break; 2006 case RECOVERED_ERROR: 2007 good_bytes = scsi_bufflen(SCpnt); 2008 break; 2009 case NO_SENSE: 2010 /* This indicates a false check condition, so ignore it. An 2011 * unknown amount of data was transferred so treat it as an 2012 * error. 2013 */ 2014 SCpnt->result = 0; 2015 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2016 break; 2017 case ABORTED_COMMAND: 2018 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2019 good_bytes = sd_completed_bytes(SCpnt); 2020 break; 2021 case ILLEGAL_REQUEST: 2022 switch (sshdr.asc) { 2023 case 0x10: /* DIX: Host detected corruption */ 2024 good_bytes = sd_completed_bytes(SCpnt); 2025 break; 2026 case 0x20: /* INVALID COMMAND OPCODE */ 2027 case 0x24: /* INVALID FIELD IN CDB */ 2028 switch (SCpnt->cmnd[0]) { 2029 case UNMAP: 2030 sd_config_discard(sdkp, SD_LBP_DISABLE); 2031 break; 2032 case WRITE_SAME_16: 2033 case WRITE_SAME: 2034 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2035 sd_config_discard(sdkp, SD_LBP_DISABLE); 2036 } else { 2037 sdkp->device->no_write_same = 1; 2038 sd_config_write_same(sdkp); 2039 req->rq_flags |= RQF_QUIET; 2040 } 2041 break; 2042 } 2043 } 2044 break; 2045 default: 2046 break; 2047 } 2048 2049 out: 2050 if (sd_is_zoned(sdkp)) 2051 sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2052 2053 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2054 "sd_done: completed %d of %d bytes\n", 2055 good_bytes, scsi_bufflen(SCpnt))); 2056 2057 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt) && 2058 good_bytes) 2059 t10_pi_complete(SCpnt->request, sdkp->protection_type, 2060 good_bytes / scsi_prot_interval(SCpnt)); 2061 2062 return good_bytes; 2063 } 2064 2065 /* 2066 * spinup disk - called only in sd_revalidate_disk() 2067 */ 2068 static void 2069 sd_spinup_disk(struct scsi_disk *sdkp) 2070 { 2071 unsigned char cmd[10]; 2072 unsigned long spintime_expire = 0; 2073 int retries, spintime; 2074 unsigned int the_result; 2075 struct scsi_sense_hdr sshdr; 2076 int sense_valid = 0; 2077 2078 spintime = 0; 2079 2080 /* Spin up drives, as required. Only do this at boot time */ 2081 /* Spinup needs to be done for module loads too. */ 2082 do { 2083 retries = 0; 2084 2085 do { 2086 cmd[0] = TEST_UNIT_READY; 2087 memset((void *) &cmd[1], 0, 9); 2088 2089 the_result = scsi_execute_req(sdkp->device, cmd, 2090 DMA_NONE, NULL, 0, 2091 &sshdr, SD_TIMEOUT, 2092 SD_MAX_RETRIES, NULL); 2093 2094 /* 2095 * If the drive has indicated to us that it 2096 * doesn't have any media in it, don't bother 2097 * with any more polling. 2098 */ 2099 if (media_not_present(sdkp, &sshdr)) 2100 return; 2101 2102 if (the_result) 2103 sense_valid = scsi_sense_valid(&sshdr); 2104 retries++; 2105 } while (retries < 3 && 2106 (!scsi_status_is_good(the_result) || 2107 ((driver_byte(the_result) == DRIVER_SENSE) && 2108 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2109 2110 if (driver_byte(the_result) != DRIVER_SENSE) { 2111 /* no sense, TUR either succeeded or failed 2112 * with a status error */ 2113 if(!spintime && !scsi_status_is_good(the_result)) { 2114 sd_print_result(sdkp, "Test Unit Ready failed", 2115 the_result); 2116 } 2117 break; 2118 } 2119 2120 /* 2121 * The device does not want the automatic start to be issued. 2122 */ 2123 if (sdkp->device->no_start_on_add) 2124 break; 2125 2126 if (sense_valid && sshdr.sense_key == NOT_READY) { 2127 if (sshdr.asc == 4 && sshdr.ascq == 3) 2128 break; /* manual intervention required */ 2129 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2130 break; /* standby */ 2131 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2132 break; /* unavailable */ 2133 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2134 break; /* sanitize in progress */ 2135 /* 2136 * Issue command to spin up drive when not ready 2137 */ 2138 if (!spintime) { 2139 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2140 cmd[0] = START_STOP; 2141 cmd[1] = 1; /* Return immediately */ 2142 memset((void *) &cmd[2], 0, 8); 2143 cmd[4] = 1; /* Start spin cycle */ 2144 if (sdkp->device->start_stop_pwr_cond) 2145 cmd[4] |= 1 << 4; 2146 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2147 NULL, 0, &sshdr, 2148 SD_TIMEOUT, SD_MAX_RETRIES, 2149 NULL); 2150 spintime_expire = jiffies + 100 * HZ; 2151 spintime = 1; 2152 } 2153 /* Wait 1 second for next try */ 2154 msleep(1000); 2155 printk(KERN_CONT "."); 2156 2157 /* 2158 * Wait for USB flash devices with slow firmware. 2159 * Yes, this sense key/ASC combination shouldn't 2160 * occur here. It's characteristic of these devices. 2161 */ 2162 } else if (sense_valid && 2163 sshdr.sense_key == UNIT_ATTENTION && 2164 sshdr.asc == 0x28) { 2165 if (!spintime) { 2166 spintime_expire = jiffies + 5 * HZ; 2167 spintime = 1; 2168 } 2169 /* Wait 1 second for next try */ 2170 msleep(1000); 2171 } else { 2172 /* we don't understand the sense code, so it's 2173 * probably pointless to loop */ 2174 if(!spintime) { 2175 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2176 sd_print_sense_hdr(sdkp, &sshdr); 2177 } 2178 break; 2179 } 2180 2181 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2182 2183 if (spintime) { 2184 if (scsi_status_is_good(the_result)) 2185 printk(KERN_CONT "ready\n"); 2186 else 2187 printk(KERN_CONT "not responding...\n"); 2188 } 2189 } 2190 2191 /* 2192 * Determine whether disk supports Data Integrity Field. 2193 */ 2194 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2195 { 2196 struct scsi_device *sdp = sdkp->device; 2197 u8 type; 2198 int ret = 0; 2199 2200 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 2201 return ret; 2202 2203 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2204 2205 if (type > T10_PI_TYPE3_PROTECTION) 2206 ret = -ENODEV; 2207 else if (scsi_host_dif_capable(sdp->host, type)) 2208 ret = 1; 2209 2210 if (sdkp->first_scan || type != sdkp->protection_type) 2211 switch (ret) { 2212 case -ENODEV: 2213 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2214 " protection type %u. Disabling disk!\n", 2215 type); 2216 break; 2217 case 1: 2218 sd_printk(KERN_NOTICE, sdkp, 2219 "Enabling DIF Type %u protection\n", type); 2220 break; 2221 case 0: 2222 sd_printk(KERN_NOTICE, sdkp, 2223 "Disabling DIF Type %u protection\n", type); 2224 break; 2225 } 2226 2227 sdkp->protection_type = type; 2228 2229 return ret; 2230 } 2231 2232 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2233 struct scsi_sense_hdr *sshdr, int sense_valid, 2234 int the_result) 2235 { 2236 if (driver_byte(the_result) == DRIVER_SENSE) 2237 sd_print_sense_hdr(sdkp, sshdr); 2238 else 2239 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2240 2241 /* 2242 * Set dirty bit for removable devices if not ready - 2243 * sometimes drives will not report this properly. 2244 */ 2245 if (sdp->removable && 2246 sense_valid && sshdr->sense_key == NOT_READY) 2247 set_media_not_present(sdkp); 2248 2249 /* 2250 * We used to set media_present to 0 here to indicate no media 2251 * in the drive, but some drives fail read capacity even with 2252 * media present, so we can't do that. 2253 */ 2254 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2255 } 2256 2257 #define RC16_LEN 32 2258 #if RC16_LEN > SD_BUF_SIZE 2259 #error RC16_LEN must not be more than SD_BUF_SIZE 2260 #endif 2261 2262 #define READ_CAPACITY_RETRIES_ON_RESET 10 2263 2264 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2265 unsigned char *buffer) 2266 { 2267 unsigned char cmd[16]; 2268 struct scsi_sense_hdr sshdr; 2269 int sense_valid = 0; 2270 int the_result; 2271 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2272 unsigned int alignment; 2273 unsigned long long lba; 2274 unsigned sector_size; 2275 2276 if (sdp->no_read_capacity_16) 2277 return -EINVAL; 2278 2279 do { 2280 memset(cmd, 0, 16); 2281 cmd[0] = SERVICE_ACTION_IN_16; 2282 cmd[1] = SAI_READ_CAPACITY_16; 2283 cmd[13] = RC16_LEN; 2284 memset(buffer, 0, RC16_LEN); 2285 2286 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2287 buffer, RC16_LEN, &sshdr, 2288 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2289 2290 if (media_not_present(sdkp, &sshdr)) 2291 return -ENODEV; 2292 2293 if (the_result) { 2294 sense_valid = scsi_sense_valid(&sshdr); 2295 if (sense_valid && 2296 sshdr.sense_key == ILLEGAL_REQUEST && 2297 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2298 sshdr.ascq == 0x00) 2299 /* Invalid Command Operation Code or 2300 * Invalid Field in CDB, just retry 2301 * silently with RC10 */ 2302 return -EINVAL; 2303 if (sense_valid && 2304 sshdr.sense_key == UNIT_ATTENTION && 2305 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2306 /* Device reset might occur several times, 2307 * give it one more chance */ 2308 if (--reset_retries > 0) 2309 continue; 2310 } 2311 retries--; 2312 2313 } while (the_result && retries); 2314 2315 if (the_result) { 2316 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2317 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2318 return -EINVAL; 2319 } 2320 2321 sector_size = get_unaligned_be32(&buffer[8]); 2322 lba = get_unaligned_be64(&buffer[0]); 2323 2324 if (sd_read_protection_type(sdkp, buffer) < 0) { 2325 sdkp->capacity = 0; 2326 return -ENODEV; 2327 } 2328 2329 /* Logical blocks per physical block exponent */ 2330 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2331 2332 /* RC basis */ 2333 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2334 2335 /* Lowest aligned logical block */ 2336 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2337 blk_queue_alignment_offset(sdp->request_queue, alignment); 2338 if (alignment && sdkp->first_scan) 2339 sd_printk(KERN_NOTICE, sdkp, 2340 "physical block alignment offset: %u\n", alignment); 2341 2342 if (buffer[14] & 0x80) { /* LBPME */ 2343 sdkp->lbpme = 1; 2344 2345 if (buffer[14] & 0x40) /* LBPRZ */ 2346 sdkp->lbprz = 1; 2347 2348 sd_config_discard(sdkp, SD_LBP_WS16); 2349 } 2350 2351 sdkp->capacity = lba + 1; 2352 return sector_size; 2353 } 2354 2355 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2356 unsigned char *buffer) 2357 { 2358 unsigned char cmd[16]; 2359 struct scsi_sense_hdr sshdr; 2360 int sense_valid = 0; 2361 int the_result; 2362 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2363 sector_t lba; 2364 unsigned sector_size; 2365 2366 do { 2367 cmd[0] = READ_CAPACITY; 2368 memset(&cmd[1], 0, 9); 2369 memset(buffer, 0, 8); 2370 2371 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2372 buffer, 8, &sshdr, 2373 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2374 2375 if (media_not_present(sdkp, &sshdr)) 2376 return -ENODEV; 2377 2378 if (the_result) { 2379 sense_valid = scsi_sense_valid(&sshdr); 2380 if (sense_valid && 2381 sshdr.sense_key == UNIT_ATTENTION && 2382 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2383 /* Device reset might occur several times, 2384 * give it one more chance */ 2385 if (--reset_retries > 0) 2386 continue; 2387 } 2388 retries--; 2389 2390 } while (the_result && retries); 2391 2392 if (the_result) { 2393 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2394 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2395 return -EINVAL; 2396 } 2397 2398 sector_size = get_unaligned_be32(&buffer[4]); 2399 lba = get_unaligned_be32(&buffer[0]); 2400 2401 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2402 /* Some buggy (usb cardreader) devices return an lba of 2403 0xffffffff when the want to report a size of 0 (with 2404 which they really mean no media is present) */ 2405 sdkp->capacity = 0; 2406 sdkp->physical_block_size = sector_size; 2407 return sector_size; 2408 } 2409 2410 sdkp->capacity = lba + 1; 2411 sdkp->physical_block_size = sector_size; 2412 return sector_size; 2413 } 2414 2415 static int sd_try_rc16_first(struct scsi_device *sdp) 2416 { 2417 if (sdp->host->max_cmd_len < 16) 2418 return 0; 2419 if (sdp->try_rc_10_first) 2420 return 0; 2421 if (sdp->scsi_level > SCSI_SPC_2) 2422 return 1; 2423 if (scsi_device_protection(sdp)) 2424 return 1; 2425 return 0; 2426 } 2427 2428 /* 2429 * read disk capacity 2430 */ 2431 static void 2432 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2433 { 2434 int sector_size; 2435 struct scsi_device *sdp = sdkp->device; 2436 2437 if (sd_try_rc16_first(sdp)) { 2438 sector_size = read_capacity_16(sdkp, sdp, buffer); 2439 if (sector_size == -EOVERFLOW) 2440 goto got_data; 2441 if (sector_size == -ENODEV) 2442 return; 2443 if (sector_size < 0) 2444 sector_size = read_capacity_10(sdkp, sdp, buffer); 2445 if (sector_size < 0) 2446 return; 2447 } else { 2448 sector_size = read_capacity_10(sdkp, sdp, buffer); 2449 if (sector_size == -EOVERFLOW) 2450 goto got_data; 2451 if (sector_size < 0) 2452 return; 2453 if ((sizeof(sdkp->capacity) > 4) && 2454 (sdkp->capacity > 0xffffffffULL)) { 2455 int old_sector_size = sector_size; 2456 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2457 "Trying to use READ CAPACITY(16).\n"); 2458 sector_size = read_capacity_16(sdkp, sdp, buffer); 2459 if (sector_size < 0) { 2460 sd_printk(KERN_NOTICE, sdkp, 2461 "Using 0xffffffff as device size\n"); 2462 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2463 sector_size = old_sector_size; 2464 goto got_data; 2465 } 2466 /* Remember that READ CAPACITY(16) succeeded */ 2467 sdp->try_rc_10_first = 0; 2468 } 2469 } 2470 2471 /* Some devices are known to return the total number of blocks, 2472 * not the highest block number. Some devices have versions 2473 * which do this and others which do not. Some devices we might 2474 * suspect of doing this but we don't know for certain. 2475 * 2476 * If we know the reported capacity is wrong, decrement it. If 2477 * we can only guess, then assume the number of blocks is even 2478 * (usually true but not always) and err on the side of lowering 2479 * the capacity. 2480 */ 2481 if (sdp->fix_capacity || 2482 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2483 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2484 "from its reported value: %llu\n", 2485 (unsigned long long) sdkp->capacity); 2486 --sdkp->capacity; 2487 } 2488 2489 got_data: 2490 if (sector_size == 0) { 2491 sector_size = 512; 2492 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2493 "assuming 512.\n"); 2494 } 2495 2496 if (sector_size != 512 && 2497 sector_size != 1024 && 2498 sector_size != 2048 && 2499 sector_size != 4096) { 2500 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2501 sector_size); 2502 /* 2503 * The user might want to re-format the drive with 2504 * a supported sectorsize. Once this happens, it 2505 * would be relatively trivial to set the thing up. 2506 * For this reason, we leave the thing in the table. 2507 */ 2508 sdkp->capacity = 0; 2509 /* 2510 * set a bogus sector size so the normal read/write 2511 * logic in the block layer will eventually refuse any 2512 * request on this device without tripping over power 2513 * of two sector size assumptions 2514 */ 2515 sector_size = 512; 2516 } 2517 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2518 blk_queue_physical_block_size(sdp->request_queue, 2519 sdkp->physical_block_size); 2520 sdkp->device->sector_size = sector_size; 2521 2522 if (sdkp->capacity > 0xffffffff) 2523 sdp->use_16_for_rw = 1; 2524 2525 } 2526 2527 /* 2528 * Print disk capacity 2529 */ 2530 static void 2531 sd_print_capacity(struct scsi_disk *sdkp, 2532 sector_t old_capacity) 2533 { 2534 int sector_size = sdkp->device->sector_size; 2535 char cap_str_2[10], cap_str_10[10]; 2536 2537 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2538 return; 2539 2540 string_get_size(sdkp->capacity, sector_size, 2541 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2542 string_get_size(sdkp->capacity, sector_size, 2543 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2544 2545 sd_printk(KERN_NOTICE, sdkp, 2546 "%llu %d-byte logical blocks: (%s/%s)\n", 2547 (unsigned long long)sdkp->capacity, 2548 sector_size, cap_str_10, cap_str_2); 2549 2550 if (sdkp->physical_block_size != sector_size) 2551 sd_printk(KERN_NOTICE, sdkp, 2552 "%u-byte physical blocks\n", 2553 sdkp->physical_block_size); 2554 2555 sd_zbc_print_zones(sdkp); 2556 } 2557 2558 /* called with buffer of length 512 */ 2559 static inline int 2560 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2561 unsigned char *buffer, int len, struct scsi_mode_data *data, 2562 struct scsi_sense_hdr *sshdr) 2563 { 2564 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2565 SD_TIMEOUT, SD_MAX_RETRIES, data, 2566 sshdr); 2567 } 2568 2569 /* 2570 * read write protect setting, if possible - called only in sd_revalidate_disk() 2571 * called with buffer of length SD_BUF_SIZE 2572 */ 2573 static void 2574 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2575 { 2576 int res; 2577 struct scsi_device *sdp = sdkp->device; 2578 struct scsi_mode_data data; 2579 int old_wp = sdkp->write_prot; 2580 2581 set_disk_ro(sdkp->disk, 0); 2582 if (sdp->skip_ms_page_3f) { 2583 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2584 return; 2585 } 2586 2587 if (sdp->use_192_bytes_for_3f) { 2588 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2589 } else { 2590 /* 2591 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2592 * We have to start carefully: some devices hang if we ask 2593 * for more than is available. 2594 */ 2595 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2596 2597 /* 2598 * Second attempt: ask for page 0 When only page 0 is 2599 * implemented, a request for page 3F may return Sense Key 2600 * 5: Illegal Request, Sense Code 24: Invalid field in 2601 * CDB. 2602 */ 2603 if (!scsi_status_is_good(res)) 2604 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2605 2606 /* 2607 * Third attempt: ask 255 bytes, as we did earlier. 2608 */ 2609 if (!scsi_status_is_good(res)) 2610 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2611 &data, NULL); 2612 } 2613 2614 if (!scsi_status_is_good(res)) { 2615 sd_first_printk(KERN_WARNING, sdkp, 2616 "Test WP failed, assume Write Enabled\n"); 2617 } else { 2618 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2619 set_disk_ro(sdkp->disk, sdkp->write_prot); 2620 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2621 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2622 sdkp->write_prot ? "on" : "off"); 2623 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2624 } 2625 } 2626 } 2627 2628 /* 2629 * sd_read_cache_type - called only from sd_revalidate_disk() 2630 * called with buffer of length SD_BUF_SIZE 2631 */ 2632 static void 2633 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2634 { 2635 int len = 0, res; 2636 struct scsi_device *sdp = sdkp->device; 2637 2638 int dbd; 2639 int modepage; 2640 int first_len; 2641 struct scsi_mode_data data; 2642 struct scsi_sense_hdr sshdr; 2643 int old_wce = sdkp->WCE; 2644 int old_rcd = sdkp->RCD; 2645 int old_dpofua = sdkp->DPOFUA; 2646 2647 2648 if (sdkp->cache_override) 2649 return; 2650 2651 first_len = 4; 2652 if (sdp->skip_ms_page_8) { 2653 if (sdp->type == TYPE_RBC) 2654 goto defaults; 2655 else { 2656 if (sdp->skip_ms_page_3f) 2657 goto defaults; 2658 modepage = 0x3F; 2659 if (sdp->use_192_bytes_for_3f) 2660 first_len = 192; 2661 dbd = 0; 2662 } 2663 } else if (sdp->type == TYPE_RBC) { 2664 modepage = 6; 2665 dbd = 8; 2666 } else { 2667 modepage = 8; 2668 dbd = 0; 2669 } 2670 2671 /* cautiously ask */ 2672 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2673 &data, &sshdr); 2674 2675 if (!scsi_status_is_good(res)) 2676 goto bad_sense; 2677 2678 if (!data.header_length) { 2679 modepage = 6; 2680 first_len = 0; 2681 sd_first_printk(KERN_ERR, sdkp, 2682 "Missing header in MODE_SENSE response\n"); 2683 } 2684 2685 /* that went OK, now ask for the proper length */ 2686 len = data.length; 2687 2688 /* 2689 * We're only interested in the first three bytes, actually. 2690 * But the data cache page is defined for the first 20. 2691 */ 2692 if (len < 3) 2693 goto bad_sense; 2694 else if (len > SD_BUF_SIZE) { 2695 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2696 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2697 len = SD_BUF_SIZE; 2698 } 2699 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2700 len = 192; 2701 2702 /* Get the data */ 2703 if (len > first_len) 2704 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2705 &data, &sshdr); 2706 2707 if (scsi_status_is_good(res)) { 2708 int offset = data.header_length + data.block_descriptor_length; 2709 2710 while (offset < len) { 2711 u8 page_code = buffer[offset] & 0x3F; 2712 u8 spf = buffer[offset] & 0x40; 2713 2714 if (page_code == 8 || page_code == 6) { 2715 /* We're interested only in the first 3 bytes. 2716 */ 2717 if (len - offset <= 2) { 2718 sd_first_printk(KERN_ERR, sdkp, 2719 "Incomplete mode parameter " 2720 "data\n"); 2721 goto defaults; 2722 } else { 2723 modepage = page_code; 2724 goto Page_found; 2725 } 2726 } else { 2727 /* Go to the next page */ 2728 if (spf && len - offset > 3) 2729 offset += 4 + (buffer[offset+2] << 8) + 2730 buffer[offset+3]; 2731 else if (!spf && len - offset > 1) 2732 offset += 2 + buffer[offset+1]; 2733 else { 2734 sd_first_printk(KERN_ERR, sdkp, 2735 "Incomplete mode " 2736 "parameter data\n"); 2737 goto defaults; 2738 } 2739 } 2740 } 2741 2742 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2743 goto defaults; 2744 2745 Page_found: 2746 if (modepage == 8) { 2747 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2748 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2749 } else { 2750 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2751 sdkp->RCD = 0; 2752 } 2753 2754 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2755 if (sdp->broken_fua) { 2756 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2757 sdkp->DPOFUA = 0; 2758 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2759 !sdkp->device->use_16_for_rw) { 2760 sd_first_printk(KERN_NOTICE, sdkp, 2761 "Uses READ/WRITE(6), disabling FUA\n"); 2762 sdkp->DPOFUA = 0; 2763 } 2764 2765 /* No cache flush allowed for write protected devices */ 2766 if (sdkp->WCE && sdkp->write_prot) 2767 sdkp->WCE = 0; 2768 2769 if (sdkp->first_scan || old_wce != sdkp->WCE || 2770 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2771 sd_printk(KERN_NOTICE, sdkp, 2772 "Write cache: %s, read cache: %s, %s\n", 2773 sdkp->WCE ? "enabled" : "disabled", 2774 sdkp->RCD ? "disabled" : "enabled", 2775 sdkp->DPOFUA ? "supports DPO and FUA" 2776 : "doesn't support DPO or FUA"); 2777 2778 return; 2779 } 2780 2781 bad_sense: 2782 if (scsi_sense_valid(&sshdr) && 2783 sshdr.sense_key == ILLEGAL_REQUEST && 2784 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2785 /* Invalid field in CDB */ 2786 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2787 else 2788 sd_first_printk(KERN_ERR, sdkp, 2789 "Asking for cache data failed\n"); 2790 2791 defaults: 2792 if (sdp->wce_default_on) { 2793 sd_first_printk(KERN_NOTICE, sdkp, 2794 "Assuming drive cache: write back\n"); 2795 sdkp->WCE = 1; 2796 } else { 2797 sd_first_printk(KERN_ERR, sdkp, 2798 "Assuming drive cache: write through\n"); 2799 sdkp->WCE = 0; 2800 } 2801 sdkp->RCD = 0; 2802 sdkp->DPOFUA = 0; 2803 } 2804 2805 /* 2806 * The ATO bit indicates whether the DIF application tag is available 2807 * for use by the operating system. 2808 */ 2809 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2810 { 2811 int res, offset; 2812 struct scsi_device *sdp = sdkp->device; 2813 struct scsi_mode_data data; 2814 struct scsi_sense_hdr sshdr; 2815 2816 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2817 return; 2818 2819 if (sdkp->protection_type == 0) 2820 return; 2821 2822 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2823 SD_MAX_RETRIES, &data, &sshdr); 2824 2825 if (!scsi_status_is_good(res) || !data.header_length || 2826 data.length < 6) { 2827 sd_first_printk(KERN_WARNING, sdkp, 2828 "getting Control mode page failed, assume no ATO\n"); 2829 2830 if (scsi_sense_valid(&sshdr)) 2831 sd_print_sense_hdr(sdkp, &sshdr); 2832 2833 return; 2834 } 2835 2836 offset = data.header_length + data.block_descriptor_length; 2837 2838 if ((buffer[offset] & 0x3f) != 0x0a) { 2839 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2840 return; 2841 } 2842 2843 if ((buffer[offset + 5] & 0x80) == 0) 2844 return; 2845 2846 sdkp->ATO = 1; 2847 2848 return; 2849 } 2850 2851 /** 2852 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2853 * @sdkp: disk to query 2854 */ 2855 static void sd_read_block_limits(struct scsi_disk *sdkp) 2856 { 2857 unsigned int sector_sz = sdkp->device->sector_size; 2858 const int vpd_len = 64; 2859 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2860 2861 if (!buffer || 2862 /* Block Limits VPD */ 2863 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2864 goto out; 2865 2866 blk_queue_io_min(sdkp->disk->queue, 2867 get_unaligned_be16(&buffer[6]) * sector_sz); 2868 2869 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2870 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2871 2872 if (buffer[3] == 0x3c) { 2873 unsigned int lba_count, desc_count; 2874 2875 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2876 2877 if (!sdkp->lbpme) 2878 goto out; 2879 2880 lba_count = get_unaligned_be32(&buffer[20]); 2881 desc_count = get_unaligned_be32(&buffer[24]); 2882 2883 if (lba_count && desc_count) 2884 sdkp->max_unmap_blocks = lba_count; 2885 2886 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2887 2888 if (buffer[32] & 0x80) 2889 sdkp->unmap_alignment = 2890 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2891 2892 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2893 2894 if (sdkp->max_unmap_blocks) 2895 sd_config_discard(sdkp, SD_LBP_UNMAP); 2896 else 2897 sd_config_discard(sdkp, SD_LBP_WS16); 2898 2899 } else { /* LBP VPD page tells us what to use */ 2900 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2901 sd_config_discard(sdkp, SD_LBP_UNMAP); 2902 else if (sdkp->lbpws) 2903 sd_config_discard(sdkp, SD_LBP_WS16); 2904 else if (sdkp->lbpws10) 2905 sd_config_discard(sdkp, SD_LBP_WS10); 2906 else 2907 sd_config_discard(sdkp, SD_LBP_DISABLE); 2908 } 2909 } 2910 2911 out: 2912 kfree(buffer); 2913 } 2914 2915 /** 2916 * sd_read_block_characteristics - Query block dev. characteristics 2917 * @sdkp: disk to query 2918 */ 2919 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2920 { 2921 struct request_queue *q = sdkp->disk->queue; 2922 unsigned char *buffer; 2923 u16 rot; 2924 const int vpd_len = 64; 2925 2926 buffer = kmalloc(vpd_len, GFP_KERNEL); 2927 2928 if (!buffer || 2929 /* Block Device Characteristics VPD */ 2930 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2931 goto out; 2932 2933 rot = get_unaligned_be16(&buffer[4]); 2934 2935 if (rot == 1) { 2936 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2937 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2938 } 2939 2940 if (sdkp->device->type == TYPE_ZBC) { 2941 /* Host-managed */ 2942 q->limits.zoned = BLK_ZONED_HM; 2943 } else { 2944 sdkp->zoned = (buffer[8] >> 4) & 3; 2945 if (sdkp->zoned == 1) 2946 /* Host-aware */ 2947 q->limits.zoned = BLK_ZONED_HA; 2948 else 2949 /* 2950 * Treat drive-managed devices as 2951 * regular block devices. 2952 */ 2953 q->limits.zoned = BLK_ZONED_NONE; 2954 } 2955 if (blk_queue_is_zoned(q) && sdkp->first_scan) 2956 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2957 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2958 2959 out: 2960 kfree(buffer); 2961 } 2962 2963 /** 2964 * sd_read_block_provisioning - Query provisioning VPD page 2965 * @sdkp: disk to query 2966 */ 2967 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2968 { 2969 unsigned char *buffer; 2970 const int vpd_len = 8; 2971 2972 if (sdkp->lbpme == 0) 2973 return; 2974 2975 buffer = kmalloc(vpd_len, GFP_KERNEL); 2976 2977 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2978 goto out; 2979 2980 sdkp->lbpvpd = 1; 2981 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 2982 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 2983 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 2984 2985 out: 2986 kfree(buffer); 2987 } 2988 2989 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 2990 { 2991 struct scsi_device *sdev = sdkp->device; 2992 2993 if (sdev->host->no_write_same) { 2994 sdev->no_write_same = 1; 2995 2996 return; 2997 } 2998 2999 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3000 /* too large values might cause issues with arcmsr */ 3001 int vpd_buf_len = 64; 3002 3003 sdev->no_report_opcodes = 1; 3004 3005 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3006 * CODES is unsupported and the device has an ATA 3007 * Information VPD page (SAT). 3008 */ 3009 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3010 sdev->no_write_same = 1; 3011 } 3012 3013 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3014 sdkp->ws16 = 1; 3015 3016 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3017 sdkp->ws10 = 1; 3018 } 3019 3020 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3021 { 3022 struct scsi_device *sdev = sdkp->device; 3023 3024 if (!sdev->security_supported) 3025 return; 3026 3027 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3028 SECURITY_PROTOCOL_IN) == 1 && 3029 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3030 SECURITY_PROTOCOL_OUT) == 1) 3031 sdkp->security = 1; 3032 } 3033 3034 /* 3035 * Determine the device's preferred I/O size for reads and writes 3036 * unless the reported value is unreasonably small, large, not a 3037 * multiple of the physical block size, or simply garbage. 3038 */ 3039 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3040 unsigned int dev_max) 3041 { 3042 struct scsi_device *sdp = sdkp->device; 3043 unsigned int opt_xfer_bytes = 3044 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3045 3046 if (sdkp->opt_xfer_blocks == 0) 3047 return false; 3048 3049 if (sdkp->opt_xfer_blocks > dev_max) { 3050 sd_first_printk(KERN_WARNING, sdkp, 3051 "Optimal transfer size %u logical blocks " \ 3052 "> dev_max (%u logical blocks)\n", 3053 sdkp->opt_xfer_blocks, dev_max); 3054 return false; 3055 } 3056 3057 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3058 sd_first_printk(KERN_WARNING, sdkp, 3059 "Optimal transfer size %u logical blocks " \ 3060 "> sd driver limit (%u logical blocks)\n", 3061 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3062 return false; 3063 } 3064 3065 if (opt_xfer_bytes < PAGE_SIZE) { 3066 sd_first_printk(KERN_WARNING, sdkp, 3067 "Optimal transfer size %u bytes < " \ 3068 "PAGE_SIZE (%u bytes)\n", 3069 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3070 return false; 3071 } 3072 3073 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3074 sd_first_printk(KERN_WARNING, sdkp, 3075 "Optimal transfer size %u bytes not a " \ 3076 "multiple of physical block size (%u bytes)\n", 3077 opt_xfer_bytes, sdkp->physical_block_size); 3078 return false; 3079 } 3080 3081 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3082 opt_xfer_bytes); 3083 return true; 3084 } 3085 3086 /** 3087 * sd_revalidate_disk - called the first time a new disk is seen, 3088 * performs disk spin up, read_capacity, etc. 3089 * @disk: struct gendisk we care about 3090 **/ 3091 static int sd_revalidate_disk(struct gendisk *disk) 3092 { 3093 struct scsi_disk *sdkp = scsi_disk(disk); 3094 struct scsi_device *sdp = sdkp->device; 3095 struct request_queue *q = sdkp->disk->queue; 3096 sector_t old_capacity = sdkp->capacity; 3097 unsigned char *buffer; 3098 unsigned int dev_max, rw_max; 3099 3100 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3101 "sd_revalidate_disk\n")); 3102 3103 /* 3104 * If the device is offline, don't try and read capacity or any 3105 * of the other niceties. 3106 */ 3107 if (!scsi_device_online(sdp)) 3108 goto out; 3109 3110 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3111 if (!buffer) { 3112 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3113 "allocation failure.\n"); 3114 goto out; 3115 } 3116 3117 sd_spinup_disk(sdkp); 3118 3119 /* 3120 * Without media there is no reason to ask; moreover, some devices 3121 * react badly if we do. 3122 */ 3123 if (sdkp->media_present) { 3124 sd_read_capacity(sdkp, buffer); 3125 3126 /* 3127 * set the default to rotational. All non-rotational devices 3128 * support the block characteristics VPD page, which will 3129 * cause this to be updated correctly and any device which 3130 * doesn't support it should be treated as rotational. 3131 */ 3132 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3133 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3134 3135 if (scsi_device_supports_vpd(sdp)) { 3136 sd_read_block_provisioning(sdkp); 3137 sd_read_block_limits(sdkp); 3138 sd_read_block_characteristics(sdkp); 3139 sd_zbc_read_zones(sdkp, buffer); 3140 } 3141 3142 sd_print_capacity(sdkp, old_capacity); 3143 3144 sd_read_write_protect_flag(sdkp, buffer); 3145 sd_read_cache_type(sdkp, buffer); 3146 sd_read_app_tag_own(sdkp, buffer); 3147 sd_read_write_same(sdkp, buffer); 3148 sd_read_security(sdkp, buffer); 3149 } 3150 3151 /* 3152 * We now have all cache related info, determine how we deal 3153 * with flush requests. 3154 */ 3155 sd_set_flush_flag(sdkp); 3156 3157 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3158 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3159 3160 /* Some devices report a maximum block count for READ/WRITE requests. */ 3161 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3162 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3163 3164 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3165 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3166 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3167 } else 3168 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3169 (sector_t)BLK_DEF_MAX_SECTORS); 3170 3171 /* Do not exceed controller limit */ 3172 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3173 3174 /* 3175 * Only update max_sectors if previously unset or if the current value 3176 * exceeds the capabilities of the hardware. 3177 */ 3178 if (sdkp->first_scan || 3179 q->limits.max_sectors > q->limits.max_dev_sectors || 3180 q->limits.max_sectors > q->limits.max_hw_sectors) 3181 q->limits.max_sectors = rw_max; 3182 3183 sdkp->first_scan = 0; 3184 3185 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); 3186 sd_config_write_same(sdkp); 3187 kfree(buffer); 3188 3189 out: 3190 return 0; 3191 } 3192 3193 /** 3194 * sd_unlock_native_capacity - unlock native capacity 3195 * @disk: struct gendisk to set capacity for 3196 * 3197 * Block layer calls this function if it detects that partitions 3198 * on @disk reach beyond the end of the device. If the SCSI host 3199 * implements ->unlock_native_capacity() method, it's invoked to 3200 * give it a chance to adjust the device capacity. 3201 * 3202 * CONTEXT: 3203 * Defined by block layer. Might sleep. 3204 */ 3205 static void sd_unlock_native_capacity(struct gendisk *disk) 3206 { 3207 struct scsi_device *sdev = scsi_disk(disk)->device; 3208 3209 if (sdev->host->hostt->unlock_native_capacity) 3210 sdev->host->hostt->unlock_native_capacity(sdev); 3211 } 3212 3213 /** 3214 * sd_format_disk_name - format disk name 3215 * @prefix: name prefix - ie. "sd" for SCSI disks 3216 * @index: index of the disk to format name for 3217 * @buf: output buffer 3218 * @buflen: length of the output buffer 3219 * 3220 * SCSI disk names starts at sda. The 26th device is sdz and the 3221 * 27th is sdaa. The last one for two lettered suffix is sdzz 3222 * which is followed by sdaaa. 3223 * 3224 * This is basically 26 base counting with one extra 'nil' entry 3225 * at the beginning from the second digit on and can be 3226 * determined using similar method as 26 base conversion with the 3227 * index shifted -1 after each digit is computed. 3228 * 3229 * CONTEXT: 3230 * Don't care. 3231 * 3232 * RETURNS: 3233 * 0 on success, -errno on failure. 3234 */ 3235 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3236 { 3237 const int base = 'z' - 'a' + 1; 3238 char *begin = buf + strlen(prefix); 3239 char *end = buf + buflen; 3240 char *p; 3241 int unit; 3242 3243 p = end - 1; 3244 *p = '\0'; 3245 unit = base; 3246 do { 3247 if (p == begin) 3248 return -EINVAL; 3249 *--p = 'a' + (index % unit); 3250 index = (index / unit) - 1; 3251 } while (index >= 0); 3252 3253 memmove(begin, p, end - p); 3254 memcpy(buf, prefix, strlen(prefix)); 3255 3256 return 0; 3257 } 3258 3259 /** 3260 * sd_probe - called during driver initialization and whenever a 3261 * new scsi device is attached to the system. It is called once 3262 * for each scsi device (not just disks) present. 3263 * @dev: pointer to device object 3264 * 3265 * Returns 0 if successful (or not interested in this scsi device 3266 * (e.g. scanner)); 1 when there is an error. 3267 * 3268 * Note: this function is invoked from the scsi mid-level. 3269 * This function sets up the mapping between a given 3270 * <host,channel,id,lun> (found in sdp) and new device name 3271 * (e.g. /dev/sda). More precisely it is the block device major 3272 * and minor number that is chosen here. 3273 * 3274 * Assume sd_probe is not re-entrant (for time being) 3275 * Also think about sd_probe() and sd_remove() running coincidentally. 3276 **/ 3277 static int sd_probe(struct device *dev) 3278 { 3279 struct scsi_device *sdp = to_scsi_device(dev); 3280 struct scsi_disk *sdkp; 3281 struct gendisk *gd; 3282 int index; 3283 int error; 3284 3285 scsi_autopm_get_device(sdp); 3286 error = -ENODEV; 3287 if (sdp->type != TYPE_DISK && 3288 sdp->type != TYPE_ZBC && 3289 sdp->type != TYPE_MOD && 3290 sdp->type != TYPE_RBC) 3291 goto out; 3292 3293 #ifndef CONFIG_BLK_DEV_ZONED 3294 if (sdp->type == TYPE_ZBC) 3295 goto out; 3296 #endif 3297 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3298 "sd_probe\n")); 3299 3300 error = -ENOMEM; 3301 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3302 if (!sdkp) 3303 goto out; 3304 3305 gd = alloc_disk(SD_MINORS); 3306 if (!gd) 3307 goto out_free; 3308 3309 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3310 if (index < 0) { 3311 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3312 goto out_put; 3313 } 3314 3315 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3316 if (error) { 3317 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3318 goto out_free_index; 3319 } 3320 3321 sdkp->device = sdp; 3322 sdkp->driver = &sd_template; 3323 sdkp->disk = gd; 3324 sdkp->index = index; 3325 atomic_set(&sdkp->openers, 0); 3326 atomic_set(&sdkp->device->ioerr_cnt, 0); 3327 3328 if (!sdp->request_queue->rq_timeout) { 3329 if (sdp->type != TYPE_MOD) 3330 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3331 else 3332 blk_queue_rq_timeout(sdp->request_queue, 3333 SD_MOD_TIMEOUT); 3334 } 3335 3336 device_initialize(&sdkp->dev); 3337 sdkp->dev.parent = dev; 3338 sdkp->dev.class = &sd_disk_class; 3339 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3340 3341 error = device_add(&sdkp->dev); 3342 if (error) 3343 goto out_free_index; 3344 3345 get_device(dev); 3346 dev_set_drvdata(dev, sdkp); 3347 3348 gd->major = sd_major((index & 0xf0) >> 4); 3349 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3350 3351 gd->fops = &sd_fops; 3352 gd->private_data = &sdkp->driver; 3353 gd->queue = sdkp->device->request_queue; 3354 3355 /* defaults, until the device tells us otherwise */ 3356 sdp->sector_size = 512; 3357 sdkp->capacity = 0; 3358 sdkp->media_present = 1; 3359 sdkp->write_prot = 0; 3360 sdkp->cache_override = 0; 3361 sdkp->WCE = 0; 3362 sdkp->RCD = 0; 3363 sdkp->ATO = 0; 3364 sdkp->first_scan = 1; 3365 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3366 3367 sd_revalidate_disk(gd); 3368 3369 gd->flags = GENHD_FL_EXT_DEVT; 3370 if (sdp->removable) { 3371 gd->flags |= GENHD_FL_REMOVABLE; 3372 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3373 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3374 } 3375 3376 blk_pm_runtime_init(sdp->request_queue, dev); 3377 device_add_disk(dev, gd, NULL); 3378 if (sdkp->capacity) 3379 sd_dif_config_host(sdkp); 3380 3381 sd_revalidate_disk(gd); 3382 3383 if (sdkp->security) { 3384 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit); 3385 if (sdkp->opal_dev) 3386 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3387 } 3388 3389 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3390 sdp->removable ? "removable " : ""); 3391 scsi_autopm_put_device(sdp); 3392 3393 return 0; 3394 3395 out_free_index: 3396 ida_free(&sd_index_ida, index); 3397 out_put: 3398 put_disk(gd); 3399 out_free: 3400 kfree(sdkp); 3401 out: 3402 scsi_autopm_put_device(sdp); 3403 return error; 3404 } 3405 3406 /** 3407 * sd_remove - called whenever a scsi disk (previously recognized by 3408 * sd_probe) is detached from the system. It is called (potentially 3409 * multiple times) during sd module unload. 3410 * @dev: pointer to device object 3411 * 3412 * Note: this function is invoked from the scsi mid-level. 3413 * This function potentially frees up a device name (e.g. /dev/sdc) 3414 * that could be re-used by a subsequent sd_probe(). 3415 * This function is not called when the built-in sd driver is "exit-ed". 3416 **/ 3417 static int sd_remove(struct device *dev) 3418 { 3419 struct scsi_disk *sdkp; 3420 dev_t devt; 3421 3422 sdkp = dev_get_drvdata(dev); 3423 devt = disk_devt(sdkp->disk); 3424 scsi_autopm_get_device(sdkp->device); 3425 3426 async_synchronize_full_domain(&scsi_sd_pm_domain); 3427 device_del(&sdkp->dev); 3428 del_gendisk(sdkp->disk); 3429 sd_shutdown(dev); 3430 3431 free_opal_dev(sdkp->opal_dev); 3432 3433 blk_register_region(devt, SD_MINORS, NULL, 3434 sd_default_probe, NULL, NULL); 3435 3436 mutex_lock(&sd_ref_mutex); 3437 dev_set_drvdata(dev, NULL); 3438 put_device(&sdkp->dev); 3439 mutex_unlock(&sd_ref_mutex); 3440 3441 return 0; 3442 } 3443 3444 /** 3445 * scsi_disk_release - Called to free the scsi_disk structure 3446 * @dev: pointer to embedded class device 3447 * 3448 * sd_ref_mutex must be held entering this routine. Because it is 3449 * called on last put, you should always use the scsi_disk_get() 3450 * scsi_disk_put() helpers which manipulate the semaphore directly 3451 * and never do a direct put_device. 3452 **/ 3453 static void scsi_disk_release(struct device *dev) 3454 { 3455 struct scsi_disk *sdkp = to_scsi_disk(dev); 3456 struct gendisk *disk = sdkp->disk; 3457 struct request_queue *q = disk->queue; 3458 3459 ida_free(&sd_index_ida, sdkp->index); 3460 3461 /* 3462 * Wait until all requests that are in progress have completed. 3463 * This is necessary to avoid that e.g. scsi_end_request() crashes 3464 * due to clearing the disk->private_data pointer. Wait from inside 3465 * scsi_disk_release() instead of from sd_release() to avoid that 3466 * freezing and unfreezing the request queue affects user space I/O 3467 * in case multiple processes open a /dev/sd... node concurrently. 3468 */ 3469 blk_mq_freeze_queue(q); 3470 blk_mq_unfreeze_queue(q); 3471 3472 disk->private_data = NULL; 3473 put_disk(disk); 3474 put_device(&sdkp->device->sdev_gendev); 3475 3476 kfree(sdkp); 3477 } 3478 3479 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3480 { 3481 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3482 struct scsi_sense_hdr sshdr; 3483 struct scsi_device *sdp = sdkp->device; 3484 int res; 3485 3486 if (start) 3487 cmd[4] |= 1; /* START */ 3488 3489 if (sdp->start_stop_pwr_cond) 3490 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3491 3492 if (!scsi_device_online(sdp)) 3493 return -ENODEV; 3494 3495 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3496 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL); 3497 if (res) { 3498 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3499 if (driver_byte(res) == DRIVER_SENSE) 3500 sd_print_sense_hdr(sdkp, &sshdr); 3501 if (scsi_sense_valid(&sshdr) && 3502 /* 0x3a is medium not present */ 3503 sshdr.asc == 0x3a) 3504 res = 0; 3505 } 3506 3507 /* SCSI error codes must not go to the generic layer */ 3508 if (res) 3509 return -EIO; 3510 3511 return 0; 3512 } 3513 3514 /* 3515 * Send a SYNCHRONIZE CACHE instruction down to the device through 3516 * the normal SCSI command structure. Wait for the command to 3517 * complete. 3518 */ 3519 static void sd_shutdown(struct device *dev) 3520 { 3521 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3522 3523 if (!sdkp) 3524 return; /* this can happen */ 3525 3526 if (pm_runtime_suspended(dev)) 3527 return; 3528 3529 if (sdkp->WCE && sdkp->media_present) { 3530 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3531 sd_sync_cache(sdkp, NULL); 3532 } 3533 3534 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3535 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3536 sd_start_stop_device(sdkp, 0); 3537 } 3538 } 3539 3540 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3541 { 3542 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3543 struct scsi_sense_hdr sshdr; 3544 int ret = 0; 3545 3546 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3547 return 0; 3548 3549 if (sdkp->WCE && sdkp->media_present) { 3550 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3551 ret = sd_sync_cache(sdkp, &sshdr); 3552 3553 if (ret) { 3554 /* ignore OFFLINE device */ 3555 if (ret == -ENODEV) 3556 return 0; 3557 3558 if (!scsi_sense_valid(&sshdr) || 3559 sshdr.sense_key != ILLEGAL_REQUEST) 3560 return ret; 3561 3562 /* 3563 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3564 * doesn't support sync. There's not much to do and 3565 * suspend shouldn't fail. 3566 */ 3567 ret = 0; 3568 } 3569 } 3570 3571 if (sdkp->device->manage_start_stop) { 3572 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3573 /* an error is not worth aborting a system sleep */ 3574 ret = sd_start_stop_device(sdkp, 0); 3575 if (ignore_stop_errors) 3576 ret = 0; 3577 } 3578 3579 return ret; 3580 } 3581 3582 static int sd_suspend_system(struct device *dev) 3583 { 3584 return sd_suspend_common(dev, true); 3585 } 3586 3587 static int sd_suspend_runtime(struct device *dev) 3588 { 3589 return sd_suspend_common(dev, false); 3590 } 3591 3592 static int sd_resume(struct device *dev) 3593 { 3594 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3595 int ret; 3596 3597 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3598 return 0; 3599 3600 if (!sdkp->device->manage_start_stop) 3601 return 0; 3602 3603 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3604 ret = sd_start_stop_device(sdkp, 1); 3605 if (!ret) 3606 opal_unlock_from_suspend(sdkp->opal_dev); 3607 return ret; 3608 } 3609 3610 /** 3611 * init_sd - entry point for this driver (both when built in or when 3612 * a module). 3613 * 3614 * Note: this function registers this driver with the scsi mid-level. 3615 **/ 3616 static int __init init_sd(void) 3617 { 3618 int majors = 0, i, err; 3619 3620 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3621 3622 for (i = 0; i < SD_MAJORS; i++) { 3623 if (register_blkdev(sd_major(i), "sd") != 0) 3624 continue; 3625 majors++; 3626 blk_register_region(sd_major(i), SD_MINORS, NULL, 3627 sd_default_probe, NULL, NULL); 3628 } 3629 3630 if (!majors) 3631 return -ENODEV; 3632 3633 err = class_register(&sd_disk_class); 3634 if (err) 3635 goto err_out; 3636 3637 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3638 0, 0, NULL); 3639 if (!sd_cdb_cache) { 3640 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3641 err = -ENOMEM; 3642 goto err_out_class; 3643 } 3644 3645 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3646 if (!sd_cdb_pool) { 3647 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3648 err = -ENOMEM; 3649 goto err_out_cache; 3650 } 3651 3652 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3653 if (!sd_page_pool) { 3654 printk(KERN_ERR "sd: can't init discard page pool\n"); 3655 err = -ENOMEM; 3656 goto err_out_ppool; 3657 } 3658 3659 err = scsi_register_driver(&sd_template.gendrv); 3660 if (err) 3661 goto err_out_driver; 3662 3663 return 0; 3664 3665 err_out_driver: 3666 mempool_destroy(sd_page_pool); 3667 3668 err_out_ppool: 3669 mempool_destroy(sd_cdb_pool); 3670 3671 err_out_cache: 3672 kmem_cache_destroy(sd_cdb_cache); 3673 3674 err_out_class: 3675 class_unregister(&sd_disk_class); 3676 err_out: 3677 for (i = 0; i < SD_MAJORS; i++) 3678 unregister_blkdev(sd_major(i), "sd"); 3679 return err; 3680 } 3681 3682 /** 3683 * exit_sd - exit point for this driver (when it is a module). 3684 * 3685 * Note: this function unregisters this driver from the scsi mid-level. 3686 **/ 3687 static void __exit exit_sd(void) 3688 { 3689 int i; 3690 3691 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3692 3693 scsi_unregister_driver(&sd_template.gendrv); 3694 mempool_destroy(sd_cdb_pool); 3695 mempool_destroy(sd_page_pool); 3696 kmem_cache_destroy(sd_cdb_cache); 3697 3698 class_unregister(&sd_disk_class); 3699 3700 for (i = 0; i < SD_MAJORS; i++) { 3701 blk_unregister_region(sd_major(i), SD_MINORS); 3702 unregister_blkdev(sd_major(i), "sd"); 3703 } 3704 } 3705 3706 module_init(init_sd); 3707 module_exit(exit_sd); 3708 3709 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3710 struct scsi_sense_hdr *sshdr) 3711 { 3712 scsi_print_sense_hdr(sdkp->device, 3713 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3714 } 3715 3716 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3717 int result) 3718 { 3719 const char *hb_string = scsi_hostbyte_string(result); 3720 const char *db_string = scsi_driverbyte_string(result); 3721 3722 if (hb_string || db_string) 3723 sd_printk(KERN_INFO, sdkp, 3724 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3725 hb_string ? hb_string : "invalid", 3726 db_string ? db_string : "invalid"); 3727 else 3728 sd_printk(KERN_INFO, sdkp, 3729 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3730 msg, host_byte(result), driver_byte(result)); 3731 } 3732 3733