1 /* 2 * sd.c Copyright (C) 1992 Drew Eckhardt 3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 4 * 5 * Linux scsi disk driver 6 * Initial versions: Drew Eckhardt 7 * Subsequent revisions: Eric Youngdale 8 * Modification history: 9 * - Drew Eckhardt <drew@colorado.edu> original 10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 11 * outstanding request, and other enhancements. 12 * Support loadable low-level scsi drivers. 13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 14 * eight major numbers. 15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 17 * sd_init and cleanups. 18 * - Alex Davis <letmein@erols.com> Fix problem where partition info 19 * not being read in sd_open. Fix problem where removable media 20 * could be ejected after sd_open. 21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 24 * Support 32k/1M disks. 25 * 26 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 30 * - entering other commands: SCSI_LOG_HLQUEUE level 3 31 * Note: when the logging level is set by the user, it must be greater 32 * than the level indicated above to trigger output. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/fs.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/bio.h> 40 #include <linux/genhd.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/delay.h> 49 #include <linux/mutex.h> 50 #include <linux/string_helpers.h> 51 #include <linux/async.h> 52 #include <linux/slab.h> 53 #include <linux/pm_runtime.h> 54 #include <linux/pr.h> 55 #include <asm/uaccess.h> 56 #include <asm/unaligned.h> 57 58 #include <scsi/scsi.h> 59 #include <scsi/scsi_cmnd.h> 60 #include <scsi/scsi_dbg.h> 61 #include <scsi/scsi_device.h> 62 #include <scsi/scsi_driver.h> 63 #include <scsi/scsi_eh.h> 64 #include <scsi/scsi_host.h> 65 #include <scsi/scsi_ioctl.h> 66 #include <scsi/scsicam.h> 67 68 #include "sd.h" 69 #include "scsi_priv.h" 70 #include "scsi_logging.h" 71 72 MODULE_AUTHOR("Eric Youngdale"); 73 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 74 MODULE_LICENSE("GPL"); 75 76 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 92 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 93 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 94 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 95 96 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 97 #define SD_MINORS 16 98 #else 99 #define SD_MINORS 0 100 #endif 101 102 static void sd_config_discard(struct scsi_disk *, unsigned int); 103 static void sd_config_write_same(struct scsi_disk *); 104 static int sd_revalidate_disk(struct gendisk *); 105 static void sd_unlock_native_capacity(struct gendisk *disk); 106 static int sd_probe(struct device *); 107 static int sd_remove(struct device *); 108 static void sd_shutdown(struct device *); 109 static int sd_suspend_system(struct device *); 110 static int sd_suspend_runtime(struct device *); 111 static int sd_resume(struct device *); 112 static void sd_rescan(struct device *); 113 static int sd_init_command(struct scsi_cmnd *SCpnt); 114 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 115 static int sd_done(struct scsi_cmnd *); 116 static int sd_eh_action(struct scsi_cmnd *, int); 117 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 118 static void scsi_disk_release(struct device *cdev); 119 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 120 static void sd_print_result(const struct scsi_disk *, const char *, int); 121 122 static DEFINE_SPINLOCK(sd_index_lock); 123 static DEFINE_IDA(sd_index_ida); 124 125 /* This semaphore is used to mediate the 0->1 reference get in the 126 * face of object destruction (i.e. we can't allow a get on an 127 * object after last put) */ 128 static DEFINE_MUTEX(sd_ref_mutex); 129 130 static struct kmem_cache *sd_cdb_cache; 131 static mempool_t *sd_cdb_pool; 132 133 static const char *sd_cache_types[] = { 134 "write through", "none", "write back", 135 "write back, no read (daft)" 136 }; 137 138 static void sd_set_flush_flag(struct scsi_disk *sdkp) 139 { 140 bool wc = false, fua = false; 141 142 if (sdkp->WCE) { 143 wc = true; 144 if (sdkp->DPOFUA) 145 fua = true; 146 } 147 148 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 149 } 150 151 static ssize_t 152 cache_type_store(struct device *dev, struct device_attribute *attr, 153 const char *buf, size_t count) 154 { 155 int i, ct = -1, rcd, wce, sp; 156 struct scsi_disk *sdkp = to_scsi_disk(dev); 157 struct scsi_device *sdp = sdkp->device; 158 char buffer[64]; 159 char *buffer_data; 160 struct scsi_mode_data data; 161 struct scsi_sense_hdr sshdr; 162 static const char temp[] = "temporary "; 163 int len; 164 165 if (sdp->type != TYPE_DISK) 166 /* no cache control on RBC devices; theoretically they 167 * can do it, but there's probably so many exceptions 168 * it's not worth the risk */ 169 return -EINVAL; 170 171 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 172 buf += sizeof(temp) - 1; 173 sdkp->cache_override = 1; 174 } else { 175 sdkp->cache_override = 0; 176 } 177 178 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) { 179 len = strlen(sd_cache_types[i]); 180 if (strncmp(sd_cache_types[i], buf, len) == 0 && 181 buf[len] == '\n') { 182 ct = i; 183 break; 184 } 185 } 186 if (ct < 0) 187 return -EINVAL; 188 rcd = ct & 0x01 ? 1 : 0; 189 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 190 191 if (sdkp->cache_override) { 192 sdkp->WCE = wce; 193 sdkp->RCD = rcd; 194 sd_set_flush_flag(sdkp); 195 return count; 196 } 197 198 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 199 SD_MAX_RETRIES, &data, NULL)) 200 return -EINVAL; 201 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 202 data.block_descriptor_length); 203 buffer_data = buffer + data.header_length + 204 data.block_descriptor_length; 205 buffer_data[2] &= ~0x05; 206 buffer_data[2] |= wce << 2 | rcd; 207 sp = buffer_data[0] & 0x80 ? 1 : 0; 208 buffer_data[0] &= ~0x80; 209 210 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 211 SD_MAX_RETRIES, &data, &sshdr)) { 212 if (scsi_sense_valid(&sshdr)) 213 sd_print_sense_hdr(sdkp, &sshdr); 214 return -EINVAL; 215 } 216 revalidate_disk(sdkp->disk); 217 return count; 218 } 219 220 static ssize_t 221 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 222 char *buf) 223 { 224 struct scsi_disk *sdkp = to_scsi_disk(dev); 225 struct scsi_device *sdp = sdkp->device; 226 227 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop); 228 } 229 230 static ssize_t 231 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 232 const char *buf, size_t count) 233 { 234 struct scsi_disk *sdkp = to_scsi_disk(dev); 235 struct scsi_device *sdp = sdkp->device; 236 237 if (!capable(CAP_SYS_ADMIN)) 238 return -EACCES; 239 240 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10); 241 242 return count; 243 } 244 static DEVICE_ATTR_RW(manage_start_stop); 245 246 static ssize_t 247 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 248 { 249 struct scsi_disk *sdkp = to_scsi_disk(dev); 250 251 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart); 252 } 253 254 static ssize_t 255 allow_restart_store(struct device *dev, struct device_attribute *attr, 256 const char *buf, size_t count) 257 { 258 struct scsi_disk *sdkp = to_scsi_disk(dev); 259 struct scsi_device *sdp = sdkp->device; 260 261 if (!capable(CAP_SYS_ADMIN)) 262 return -EACCES; 263 264 if (sdp->type != TYPE_DISK) 265 return -EINVAL; 266 267 sdp->allow_restart = simple_strtoul(buf, NULL, 10); 268 269 return count; 270 } 271 static DEVICE_ATTR_RW(allow_restart); 272 273 static ssize_t 274 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 275 { 276 struct scsi_disk *sdkp = to_scsi_disk(dev); 277 int ct = sdkp->RCD + 2*sdkp->WCE; 278 279 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]); 280 } 281 static DEVICE_ATTR_RW(cache_type); 282 283 static ssize_t 284 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 285 { 286 struct scsi_disk *sdkp = to_scsi_disk(dev); 287 288 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA); 289 } 290 static DEVICE_ATTR_RO(FUA); 291 292 static ssize_t 293 protection_type_show(struct device *dev, struct device_attribute *attr, 294 char *buf) 295 { 296 struct scsi_disk *sdkp = to_scsi_disk(dev); 297 298 return snprintf(buf, 20, "%u\n", sdkp->protection_type); 299 } 300 301 static ssize_t 302 protection_type_store(struct device *dev, struct device_attribute *attr, 303 const char *buf, size_t count) 304 { 305 struct scsi_disk *sdkp = to_scsi_disk(dev); 306 unsigned int val; 307 int err; 308 309 if (!capable(CAP_SYS_ADMIN)) 310 return -EACCES; 311 312 err = kstrtouint(buf, 10, &val); 313 314 if (err) 315 return err; 316 317 if (val >= 0 && val <= SD_DIF_TYPE3_PROTECTION) 318 sdkp->protection_type = val; 319 320 return count; 321 } 322 static DEVICE_ATTR_RW(protection_type); 323 324 static ssize_t 325 protection_mode_show(struct device *dev, struct device_attribute *attr, 326 char *buf) 327 { 328 struct scsi_disk *sdkp = to_scsi_disk(dev); 329 struct scsi_device *sdp = sdkp->device; 330 unsigned int dif, dix; 331 332 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 333 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 334 335 if (!dix && scsi_host_dix_capable(sdp->host, SD_DIF_TYPE0_PROTECTION)) { 336 dif = 0; 337 dix = 1; 338 } 339 340 if (!dif && !dix) 341 return snprintf(buf, 20, "none\n"); 342 343 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif); 344 } 345 static DEVICE_ATTR_RO(protection_mode); 346 347 static ssize_t 348 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 349 { 350 struct scsi_disk *sdkp = to_scsi_disk(dev); 351 352 return snprintf(buf, 20, "%u\n", sdkp->ATO); 353 } 354 static DEVICE_ATTR_RO(app_tag_own); 355 356 static ssize_t 357 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 358 char *buf) 359 { 360 struct scsi_disk *sdkp = to_scsi_disk(dev); 361 362 return snprintf(buf, 20, "%u\n", sdkp->lbpme); 363 } 364 static DEVICE_ATTR_RO(thin_provisioning); 365 366 static const char *lbp_mode[] = { 367 [SD_LBP_FULL] = "full", 368 [SD_LBP_UNMAP] = "unmap", 369 [SD_LBP_WS16] = "writesame_16", 370 [SD_LBP_WS10] = "writesame_10", 371 [SD_LBP_ZERO] = "writesame_zero", 372 [SD_LBP_DISABLE] = "disabled", 373 }; 374 375 static ssize_t 376 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 377 char *buf) 378 { 379 struct scsi_disk *sdkp = to_scsi_disk(dev); 380 381 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]); 382 } 383 384 static ssize_t 385 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 386 const char *buf, size_t count) 387 { 388 struct scsi_disk *sdkp = to_scsi_disk(dev); 389 struct scsi_device *sdp = sdkp->device; 390 391 if (!capable(CAP_SYS_ADMIN)) 392 return -EACCES; 393 394 if (sdp->type != TYPE_DISK) 395 return -EINVAL; 396 397 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20)) 398 sd_config_discard(sdkp, SD_LBP_UNMAP); 399 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20)) 400 sd_config_discard(sdkp, SD_LBP_WS16); 401 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20)) 402 sd_config_discard(sdkp, SD_LBP_WS10); 403 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20)) 404 sd_config_discard(sdkp, SD_LBP_ZERO); 405 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20)) 406 sd_config_discard(sdkp, SD_LBP_DISABLE); 407 else 408 return -EINVAL; 409 410 return count; 411 } 412 static DEVICE_ATTR_RW(provisioning_mode); 413 414 static ssize_t 415 max_medium_access_timeouts_show(struct device *dev, 416 struct device_attribute *attr, char *buf) 417 { 418 struct scsi_disk *sdkp = to_scsi_disk(dev); 419 420 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts); 421 } 422 423 static ssize_t 424 max_medium_access_timeouts_store(struct device *dev, 425 struct device_attribute *attr, const char *buf, 426 size_t count) 427 { 428 struct scsi_disk *sdkp = to_scsi_disk(dev); 429 int err; 430 431 if (!capable(CAP_SYS_ADMIN)) 432 return -EACCES; 433 434 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 435 436 return err ? err : count; 437 } 438 static DEVICE_ATTR_RW(max_medium_access_timeouts); 439 440 static ssize_t 441 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 442 char *buf) 443 { 444 struct scsi_disk *sdkp = to_scsi_disk(dev); 445 446 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks); 447 } 448 449 static ssize_t 450 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 451 const char *buf, size_t count) 452 { 453 struct scsi_disk *sdkp = to_scsi_disk(dev); 454 struct scsi_device *sdp = sdkp->device; 455 unsigned long max; 456 int err; 457 458 if (!capable(CAP_SYS_ADMIN)) 459 return -EACCES; 460 461 if (sdp->type != TYPE_DISK) 462 return -EINVAL; 463 464 err = kstrtoul(buf, 10, &max); 465 466 if (err) 467 return err; 468 469 if (max == 0) 470 sdp->no_write_same = 1; 471 else if (max <= SD_MAX_WS16_BLOCKS) { 472 sdp->no_write_same = 0; 473 sdkp->max_ws_blocks = max; 474 } 475 476 sd_config_write_same(sdkp); 477 478 return count; 479 } 480 static DEVICE_ATTR_RW(max_write_same_blocks); 481 482 static struct attribute *sd_disk_attrs[] = { 483 &dev_attr_cache_type.attr, 484 &dev_attr_FUA.attr, 485 &dev_attr_allow_restart.attr, 486 &dev_attr_manage_start_stop.attr, 487 &dev_attr_protection_type.attr, 488 &dev_attr_protection_mode.attr, 489 &dev_attr_app_tag_own.attr, 490 &dev_attr_thin_provisioning.attr, 491 &dev_attr_provisioning_mode.attr, 492 &dev_attr_max_write_same_blocks.attr, 493 &dev_attr_max_medium_access_timeouts.attr, 494 NULL, 495 }; 496 ATTRIBUTE_GROUPS(sd_disk); 497 498 static struct class sd_disk_class = { 499 .name = "scsi_disk", 500 .owner = THIS_MODULE, 501 .dev_release = scsi_disk_release, 502 .dev_groups = sd_disk_groups, 503 }; 504 505 static const struct dev_pm_ops sd_pm_ops = { 506 .suspend = sd_suspend_system, 507 .resume = sd_resume, 508 .poweroff = sd_suspend_system, 509 .restore = sd_resume, 510 .runtime_suspend = sd_suspend_runtime, 511 .runtime_resume = sd_resume, 512 }; 513 514 static struct scsi_driver sd_template = { 515 .gendrv = { 516 .name = "sd", 517 .owner = THIS_MODULE, 518 .probe = sd_probe, 519 .remove = sd_remove, 520 .shutdown = sd_shutdown, 521 .pm = &sd_pm_ops, 522 }, 523 .rescan = sd_rescan, 524 .init_command = sd_init_command, 525 .uninit_command = sd_uninit_command, 526 .done = sd_done, 527 .eh_action = sd_eh_action, 528 }; 529 530 /* 531 * Dummy kobj_map->probe function. 532 * The default ->probe function will call modprobe, which is 533 * pointless as this module is already loaded. 534 */ 535 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 536 { 537 return NULL; 538 } 539 540 /* 541 * Device no to disk mapping: 542 * 543 * major disc2 disc p1 544 * |............|.............|....|....| <- dev_t 545 * 31 20 19 8 7 4 3 0 546 * 547 * Inside a major, we have 16k disks, however mapped non- 548 * contiguously. The first 16 disks are for major0, the next 549 * ones with major1, ... Disk 256 is for major0 again, disk 272 550 * for major1, ... 551 * As we stay compatible with our numbering scheme, we can reuse 552 * the well-know SCSI majors 8, 65--71, 136--143. 553 */ 554 static int sd_major(int major_idx) 555 { 556 switch (major_idx) { 557 case 0: 558 return SCSI_DISK0_MAJOR; 559 case 1 ... 7: 560 return SCSI_DISK1_MAJOR + major_idx - 1; 561 case 8 ... 15: 562 return SCSI_DISK8_MAJOR + major_idx - 8; 563 default: 564 BUG(); 565 return 0; /* shut up gcc */ 566 } 567 } 568 569 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 570 { 571 struct scsi_disk *sdkp = NULL; 572 573 mutex_lock(&sd_ref_mutex); 574 575 if (disk->private_data) { 576 sdkp = scsi_disk(disk); 577 if (scsi_device_get(sdkp->device) == 0) 578 get_device(&sdkp->dev); 579 else 580 sdkp = NULL; 581 } 582 mutex_unlock(&sd_ref_mutex); 583 return sdkp; 584 } 585 586 static void scsi_disk_put(struct scsi_disk *sdkp) 587 { 588 struct scsi_device *sdev = sdkp->device; 589 590 mutex_lock(&sd_ref_mutex); 591 put_device(&sdkp->dev); 592 scsi_device_put(sdev); 593 mutex_unlock(&sd_ref_mutex); 594 } 595 596 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 597 unsigned int dix, unsigned int dif) 598 { 599 struct bio *bio = scmd->request->bio; 600 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 601 unsigned int protect = 0; 602 603 if (dix) { /* DIX Type 0, 1, 2, 3 */ 604 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 605 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 606 607 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 608 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 609 } 610 611 if (dif != SD_DIF_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 612 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 613 614 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 615 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 616 } 617 618 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 619 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 620 621 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 622 protect = 3 << 5; /* Disable target PI checking */ 623 else 624 protect = 1 << 5; /* Enable target PI checking */ 625 } 626 627 scsi_set_prot_op(scmd, prot_op); 628 scsi_set_prot_type(scmd, dif); 629 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 630 631 return protect; 632 } 633 634 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 635 { 636 struct request_queue *q = sdkp->disk->queue; 637 unsigned int logical_block_size = sdkp->device->sector_size; 638 unsigned int max_blocks = 0; 639 640 q->limits.discard_zeroes_data = 0; 641 642 /* 643 * When LBPRZ is reported, discard alignment and granularity 644 * must be fixed to the logical block size. Otherwise the block 645 * layer will drop misaligned portions of the request which can 646 * lead to data corruption. If LBPRZ is not set, we honor the 647 * device preference. 648 */ 649 if (sdkp->lbprz) { 650 q->limits.discard_alignment = 0; 651 q->limits.discard_granularity = logical_block_size; 652 } else { 653 q->limits.discard_alignment = sdkp->unmap_alignment * 654 logical_block_size; 655 q->limits.discard_granularity = 656 max(sdkp->physical_block_size, 657 sdkp->unmap_granularity * logical_block_size); 658 } 659 660 sdkp->provisioning_mode = mode; 661 662 switch (mode) { 663 664 case SD_LBP_DISABLE: 665 blk_queue_max_discard_sectors(q, 0); 666 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 667 return; 668 669 case SD_LBP_UNMAP: 670 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 671 (u32)SD_MAX_WS16_BLOCKS); 672 break; 673 674 case SD_LBP_WS16: 675 max_blocks = min_not_zero(sdkp->max_ws_blocks, 676 (u32)SD_MAX_WS16_BLOCKS); 677 q->limits.discard_zeroes_data = sdkp->lbprz; 678 break; 679 680 case SD_LBP_WS10: 681 max_blocks = min_not_zero(sdkp->max_ws_blocks, 682 (u32)SD_MAX_WS10_BLOCKS); 683 q->limits.discard_zeroes_data = sdkp->lbprz; 684 break; 685 686 case SD_LBP_ZERO: 687 max_blocks = min_not_zero(sdkp->max_ws_blocks, 688 (u32)SD_MAX_WS10_BLOCKS); 689 q->limits.discard_zeroes_data = 1; 690 break; 691 } 692 693 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 694 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 695 } 696 697 /** 698 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device 699 * @sdp: scsi device to operate one 700 * @rq: Request to prepare 701 * 702 * Will issue either UNMAP or WRITE SAME(16) depending on preference 703 * indicated by target device. 704 **/ 705 static int sd_setup_discard_cmnd(struct scsi_cmnd *cmd) 706 { 707 struct request *rq = cmd->request; 708 struct scsi_device *sdp = cmd->device; 709 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 710 sector_t sector = blk_rq_pos(rq); 711 unsigned int nr_sectors = blk_rq_sectors(rq); 712 unsigned int nr_bytes = blk_rq_bytes(rq); 713 unsigned int len; 714 int ret; 715 char *buf; 716 struct page *page; 717 718 sector >>= ilog2(sdp->sector_size) - 9; 719 nr_sectors >>= ilog2(sdp->sector_size) - 9; 720 721 page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 722 if (!page) 723 return BLKPREP_DEFER; 724 725 switch (sdkp->provisioning_mode) { 726 case SD_LBP_UNMAP: 727 buf = page_address(page); 728 729 cmd->cmd_len = 10; 730 cmd->cmnd[0] = UNMAP; 731 cmd->cmnd[8] = 24; 732 733 put_unaligned_be16(6 + 16, &buf[0]); 734 put_unaligned_be16(16, &buf[2]); 735 put_unaligned_be64(sector, &buf[8]); 736 put_unaligned_be32(nr_sectors, &buf[16]); 737 738 len = 24; 739 break; 740 741 case SD_LBP_WS16: 742 cmd->cmd_len = 16; 743 cmd->cmnd[0] = WRITE_SAME_16; 744 cmd->cmnd[1] = 0x8; /* UNMAP */ 745 put_unaligned_be64(sector, &cmd->cmnd[2]); 746 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 747 748 len = sdkp->device->sector_size; 749 break; 750 751 case SD_LBP_WS10: 752 case SD_LBP_ZERO: 753 cmd->cmd_len = 10; 754 cmd->cmnd[0] = WRITE_SAME; 755 if (sdkp->provisioning_mode == SD_LBP_WS10) 756 cmd->cmnd[1] = 0x8; /* UNMAP */ 757 put_unaligned_be32(sector, &cmd->cmnd[2]); 758 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 759 760 len = sdkp->device->sector_size; 761 break; 762 763 default: 764 ret = BLKPREP_INVALID; 765 goto out; 766 } 767 768 rq->completion_data = page; 769 rq->timeout = SD_TIMEOUT; 770 771 cmd->transfersize = len; 772 cmd->allowed = SD_MAX_RETRIES; 773 774 /* 775 * Initially __data_len is set to the amount of data that needs to be 776 * transferred to the target. This amount depends on whether WRITE SAME 777 * or UNMAP is being used. After the scatterlist has been mapped by 778 * scsi_init_io() we set __data_len to the size of the area to be 779 * discarded on disk. This allows us to report completion on the full 780 * amount of blocks described by the request. 781 */ 782 blk_add_request_payload(rq, page, 0, len); 783 ret = scsi_init_io(cmd); 784 rq->__data_len = nr_bytes; 785 786 out: 787 if (ret != BLKPREP_OK) 788 __free_page(page); 789 return ret; 790 } 791 792 static void sd_config_write_same(struct scsi_disk *sdkp) 793 { 794 struct request_queue *q = sdkp->disk->queue; 795 unsigned int logical_block_size = sdkp->device->sector_size; 796 797 if (sdkp->device->no_write_same) { 798 sdkp->max_ws_blocks = 0; 799 goto out; 800 } 801 802 /* Some devices can not handle block counts above 0xffff despite 803 * supporting WRITE SAME(16). Consequently we default to 64k 804 * blocks per I/O unless the device explicitly advertises a 805 * bigger limit. 806 */ 807 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 808 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 809 (u32)SD_MAX_WS16_BLOCKS); 810 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 811 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 812 (u32)SD_MAX_WS10_BLOCKS); 813 else { 814 sdkp->device->no_write_same = 1; 815 sdkp->max_ws_blocks = 0; 816 } 817 818 out: 819 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 820 (logical_block_size >> 9)); 821 } 822 823 /** 824 * sd_setup_write_same_cmnd - write the same data to multiple blocks 825 * @cmd: command to prepare 826 * 827 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on 828 * preference indicated by target device. 829 **/ 830 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 831 { 832 struct request *rq = cmd->request; 833 struct scsi_device *sdp = cmd->device; 834 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 835 struct bio *bio = rq->bio; 836 sector_t sector = blk_rq_pos(rq); 837 unsigned int nr_sectors = blk_rq_sectors(rq); 838 unsigned int nr_bytes = blk_rq_bytes(rq); 839 int ret; 840 841 if (sdkp->device->no_write_same) 842 return BLKPREP_INVALID; 843 844 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 845 846 sector >>= ilog2(sdp->sector_size) - 9; 847 nr_sectors >>= ilog2(sdp->sector_size) - 9; 848 849 rq->timeout = SD_WRITE_SAME_TIMEOUT; 850 851 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) { 852 cmd->cmd_len = 16; 853 cmd->cmnd[0] = WRITE_SAME_16; 854 put_unaligned_be64(sector, &cmd->cmnd[2]); 855 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 856 } else { 857 cmd->cmd_len = 10; 858 cmd->cmnd[0] = WRITE_SAME; 859 put_unaligned_be32(sector, &cmd->cmnd[2]); 860 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 861 } 862 863 cmd->transfersize = sdp->sector_size; 864 cmd->allowed = SD_MAX_RETRIES; 865 866 /* 867 * For WRITE_SAME the data transferred in the DATA IN buffer is 868 * different from the amount of data actually written to the target. 869 * 870 * We set up __data_len to the amount of data transferred from the 871 * DATA IN buffer so that blk_rq_map_sg set up the proper S/G list 872 * to transfer a single sector of data first, but then reset it to 873 * the amount of data to be written right after so that the I/O path 874 * knows how much to actually write. 875 */ 876 rq->__data_len = sdp->sector_size; 877 ret = scsi_init_io(cmd); 878 rq->__data_len = nr_bytes; 879 return ret; 880 } 881 882 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 883 { 884 struct request *rq = cmd->request; 885 886 /* flush requests don't perform I/O, zero the S/G table */ 887 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 888 889 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 890 cmd->cmd_len = 10; 891 cmd->transfersize = 0; 892 cmd->allowed = SD_MAX_RETRIES; 893 894 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 895 return BLKPREP_OK; 896 } 897 898 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt) 899 { 900 struct request *rq = SCpnt->request; 901 struct scsi_device *sdp = SCpnt->device; 902 struct gendisk *disk = rq->rq_disk; 903 struct scsi_disk *sdkp; 904 sector_t block = blk_rq_pos(rq); 905 sector_t threshold; 906 unsigned int this_count = blk_rq_sectors(rq); 907 unsigned int dif, dix; 908 int ret; 909 unsigned char protect; 910 911 ret = scsi_init_io(SCpnt); 912 if (ret != BLKPREP_OK) 913 goto out; 914 SCpnt = rq->special; 915 sdkp = scsi_disk(disk); 916 917 /* from here on until we're complete, any goto out 918 * is used for a killable error condition */ 919 ret = BLKPREP_KILL; 920 921 SCSI_LOG_HLQUEUE(1, 922 scmd_printk(KERN_INFO, SCpnt, 923 "%s: block=%llu, count=%d\n", 924 __func__, (unsigned long long)block, this_count)); 925 926 if (!sdp || !scsi_device_online(sdp) || 927 block + blk_rq_sectors(rq) > get_capacity(disk)) { 928 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 929 "Finishing %u sectors\n", 930 blk_rq_sectors(rq))); 931 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 932 "Retry with 0x%p\n", SCpnt)); 933 goto out; 934 } 935 936 if (sdp->changed) { 937 /* 938 * quietly refuse to do anything to a changed disc until 939 * the changed bit has been reset 940 */ 941 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */ 942 goto out; 943 } 944 945 /* 946 * Some SD card readers can't handle multi-sector accesses which touch 947 * the last one or two hardware sectors. Split accesses as needed. 948 */ 949 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS * 950 (sdp->sector_size / 512); 951 952 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) { 953 if (block < threshold) { 954 /* Access up to the threshold but not beyond */ 955 this_count = threshold - block; 956 } else { 957 /* Access only a single hardware sector */ 958 this_count = sdp->sector_size / 512; 959 } 960 } 961 962 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", 963 (unsigned long long)block)); 964 965 /* 966 * If we have a 1K hardware sectorsize, prevent access to single 967 * 512 byte sectors. In theory we could handle this - in fact 968 * the scsi cdrom driver must be able to handle this because 969 * we typically use 1K blocksizes, and cdroms typically have 970 * 2K hardware sectorsizes. Of course, things are simpler 971 * with the cdrom, since it is read-only. For performance 972 * reasons, the filesystems should be able to handle this 973 * and not force the scsi disk driver to use bounce buffers 974 * for this. 975 */ 976 if (sdp->sector_size == 1024) { 977 if ((block & 1) || (blk_rq_sectors(rq) & 1)) { 978 scmd_printk(KERN_ERR, SCpnt, 979 "Bad block number requested\n"); 980 goto out; 981 } else { 982 block = block >> 1; 983 this_count = this_count >> 1; 984 } 985 } 986 if (sdp->sector_size == 2048) { 987 if ((block & 3) || (blk_rq_sectors(rq) & 3)) { 988 scmd_printk(KERN_ERR, SCpnt, 989 "Bad block number requested\n"); 990 goto out; 991 } else { 992 block = block >> 2; 993 this_count = this_count >> 2; 994 } 995 } 996 if (sdp->sector_size == 4096) { 997 if ((block & 7) || (blk_rq_sectors(rq) & 7)) { 998 scmd_printk(KERN_ERR, SCpnt, 999 "Bad block number requested\n"); 1000 goto out; 1001 } else { 1002 block = block >> 3; 1003 this_count = this_count >> 3; 1004 } 1005 } 1006 if (rq_data_dir(rq) == WRITE) { 1007 SCpnt->cmnd[0] = WRITE_6; 1008 1009 if (blk_integrity_rq(rq)) 1010 sd_dif_prepare(SCpnt); 1011 1012 } else if (rq_data_dir(rq) == READ) { 1013 SCpnt->cmnd[0] = READ_6; 1014 } else { 1015 scmd_printk(KERN_ERR, SCpnt, "Unknown command %llu,%llx\n", 1016 req_op(rq), (unsigned long long) rq->cmd_flags); 1017 goto out; 1018 } 1019 1020 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1021 "%s %d/%u 512 byte blocks.\n", 1022 (rq_data_dir(rq) == WRITE) ? 1023 "writing" : "reading", this_count, 1024 blk_rq_sectors(rq))); 1025 1026 dix = scsi_prot_sg_count(SCpnt); 1027 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type); 1028 1029 if (dif || dix) 1030 protect = sd_setup_protect_cmnd(SCpnt, dix, dif); 1031 else 1032 protect = 0; 1033 1034 if (protect && sdkp->protection_type == SD_DIF_TYPE2_PROTECTION) { 1035 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1036 1037 if (unlikely(SCpnt->cmnd == NULL)) { 1038 ret = BLKPREP_DEFER; 1039 goto out; 1040 } 1041 1042 SCpnt->cmd_len = SD_EXT_CDB_SIZE; 1043 memset(SCpnt->cmnd, 0, SCpnt->cmd_len); 1044 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD; 1045 SCpnt->cmnd[7] = 0x18; 1046 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32; 1047 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1048 1049 /* LBA */ 1050 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1051 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1052 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1053 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1054 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff; 1055 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff; 1056 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff; 1057 SCpnt->cmnd[19] = (unsigned char) block & 0xff; 1058 1059 /* Expected Indirect LBA */ 1060 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff; 1061 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff; 1062 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff; 1063 SCpnt->cmnd[23] = (unsigned char) block & 0xff; 1064 1065 /* Transfer length */ 1066 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff; 1067 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff; 1068 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff; 1069 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff; 1070 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) { 1071 SCpnt->cmnd[0] += READ_16 - READ_6; 1072 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1073 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1074 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1075 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1076 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1077 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; 1078 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; 1079 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; 1080 SCpnt->cmnd[9] = (unsigned char) block & 0xff; 1081 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; 1082 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; 1083 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; 1084 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; 1085 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; 1086 } else if ((this_count > 0xff) || (block > 0x1fffff) || 1087 scsi_device_protection(SCpnt->device) || 1088 SCpnt->device->use_10_for_rw) { 1089 SCpnt->cmnd[0] += READ_10 - READ_6; 1090 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1091 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; 1092 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; 1093 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; 1094 SCpnt->cmnd[5] = (unsigned char) block & 0xff; 1095 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; 1096 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; 1097 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; 1098 } else { 1099 if (unlikely(rq->cmd_flags & REQ_FUA)) { 1100 /* 1101 * This happens only if this drive failed 1102 * 10byte rw command with ILLEGAL_REQUEST 1103 * during operation and thus turned off 1104 * use_10_for_rw. 1105 */ 1106 scmd_printk(KERN_ERR, SCpnt, 1107 "FUA write on READ/WRITE(6) drive\n"); 1108 goto out; 1109 } 1110 1111 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); 1112 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); 1113 SCpnt->cmnd[3] = (unsigned char) block & 0xff; 1114 SCpnt->cmnd[4] = (unsigned char) this_count; 1115 SCpnt->cmnd[5] = 0; 1116 } 1117 SCpnt->sdb.length = this_count * sdp->sector_size; 1118 1119 /* 1120 * We shouldn't disconnect in the middle of a sector, so with a dumb 1121 * host adapter, it's safe to assume that we can at least transfer 1122 * this many bytes between each connect / disconnect. 1123 */ 1124 SCpnt->transfersize = sdp->sector_size; 1125 SCpnt->underflow = this_count << 9; 1126 SCpnt->allowed = SD_MAX_RETRIES; 1127 1128 /* 1129 * This indicates that the command is ready from our end to be 1130 * queued. 1131 */ 1132 ret = BLKPREP_OK; 1133 out: 1134 return ret; 1135 } 1136 1137 static int sd_init_command(struct scsi_cmnd *cmd) 1138 { 1139 struct request *rq = cmd->request; 1140 1141 switch (req_op(rq)) { 1142 case REQ_OP_DISCARD: 1143 return sd_setup_discard_cmnd(cmd); 1144 case REQ_OP_WRITE_SAME: 1145 return sd_setup_write_same_cmnd(cmd); 1146 case REQ_OP_FLUSH: 1147 return sd_setup_flush_cmnd(cmd); 1148 case REQ_OP_READ: 1149 case REQ_OP_WRITE: 1150 return sd_setup_read_write_cmnd(cmd); 1151 default: 1152 BUG(); 1153 } 1154 } 1155 1156 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1157 { 1158 struct request *rq = SCpnt->request; 1159 1160 if (req_op(rq) == REQ_OP_DISCARD) 1161 __free_page(rq->completion_data); 1162 1163 if (SCpnt->cmnd != rq->cmd) { 1164 mempool_free(SCpnt->cmnd, sd_cdb_pool); 1165 SCpnt->cmnd = NULL; 1166 SCpnt->cmd_len = 0; 1167 } 1168 } 1169 1170 /** 1171 * sd_open - open a scsi disk device 1172 * @inode: only i_rdev member may be used 1173 * @filp: only f_mode and f_flags may be used 1174 * 1175 * Returns 0 if successful. Returns a negated errno value in case 1176 * of error. 1177 * 1178 * Note: This can be called from a user context (e.g. fsck(1) ) 1179 * or from within the kernel (e.g. as a result of a mount(1) ). 1180 * In the latter case @inode and @filp carry an abridged amount 1181 * of information as noted above. 1182 * 1183 * Locking: called with bdev->bd_mutex held. 1184 **/ 1185 static int sd_open(struct block_device *bdev, fmode_t mode) 1186 { 1187 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1188 struct scsi_device *sdev; 1189 int retval; 1190 1191 if (!sdkp) 1192 return -ENXIO; 1193 1194 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1195 1196 sdev = sdkp->device; 1197 1198 /* 1199 * If the device is in error recovery, wait until it is done. 1200 * If the device is offline, then disallow any access to it. 1201 */ 1202 retval = -ENXIO; 1203 if (!scsi_block_when_processing_errors(sdev)) 1204 goto error_out; 1205 1206 if (sdev->removable || sdkp->write_prot) 1207 check_disk_change(bdev); 1208 1209 /* 1210 * If the drive is empty, just let the open fail. 1211 */ 1212 retval = -ENOMEDIUM; 1213 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1214 goto error_out; 1215 1216 /* 1217 * If the device has the write protect tab set, have the open fail 1218 * if the user expects to be able to write to the thing. 1219 */ 1220 retval = -EROFS; 1221 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1222 goto error_out; 1223 1224 /* 1225 * It is possible that the disk changing stuff resulted in 1226 * the device being taken offline. If this is the case, 1227 * report this to the user, and don't pretend that the 1228 * open actually succeeded. 1229 */ 1230 retval = -ENXIO; 1231 if (!scsi_device_online(sdev)) 1232 goto error_out; 1233 1234 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1235 if (scsi_block_when_processing_errors(sdev)) 1236 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1237 } 1238 1239 return 0; 1240 1241 error_out: 1242 scsi_disk_put(sdkp); 1243 return retval; 1244 } 1245 1246 /** 1247 * sd_release - invoked when the (last) close(2) is called on this 1248 * scsi disk. 1249 * @inode: only i_rdev member may be used 1250 * @filp: only f_mode and f_flags may be used 1251 * 1252 * Returns 0. 1253 * 1254 * Note: may block (uninterruptible) if error recovery is underway 1255 * on this disk. 1256 * 1257 * Locking: called with bdev->bd_mutex held. 1258 **/ 1259 static void sd_release(struct gendisk *disk, fmode_t mode) 1260 { 1261 struct scsi_disk *sdkp = scsi_disk(disk); 1262 struct scsi_device *sdev = sdkp->device; 1263 1264 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1265 1266 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1267 if (scsi_block_when_processing_errors(sdev)) 1268 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1269 } 1270 1271 /* 1272 * XXX and what if there are packets in flight and this close() 1273 * XXX is followed by a "rmmod sd_mod"? 1274 */ 1275 1276 scsi_disk_put(sdkp); 1277 } 1278 1279 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1280 { 1281 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1282 struct scsi_device *sdp = sdkp->device; 1283 struct Scsi_Host *host = sdp->host; 1284 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1285 int diskinfo[4]; 1286 1287 /* default to most commonly used values */ 1288 diskinfo[0] = 0x40; /* 1 << 6 */ 1289 diskinfo[1] = 0x20; /* 1 << 5 */ 1290 diskinfo[2] = capacity >> 11; 1291 1292 /* override with calculated, extended default, or driver values */ 1293 if (host->hostt->bios_param) 1294 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1295 else 1296 scsicam_bios_param(bdev, capacity, diskinfo); 1297 1298 geo->heads = diskinfo[0]; 1299 geo->sectors = diskinfo[1]; 1300 geo->cylinders = diskinfo[2]; 1301 return 0; 1302 } 1303 1304 /** 1305 * sd_ioctl - process an ioctl 1306 * @inode: only i_rdev/i_bdev members may be used 1307 * @filp: only f_mode and f_flags may be used 1308 * @cmd: ioctl command number 1309 * @arg: this is third argument given to ioctl(2) system call. 1310 * Often contains a pointer. 1311 * 1312 * Returns 0 if successful (some ioctls return positive numbers on 1313 * success as well). Returns a negated errno value in case of error. 1314 * 1315 * Note: most ioctls are forward onto the block subsystem or further 1316 * down in the scsi subsystem. 1317 **/ 1318 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1319 unsigned int cmd, unsigned long arg) 1320 { 1321 struct gendisk *disk = bdev->bd_disk; 1322 struct scsi_disk *sdkp = scsi_disk(disk); 1323 struct scsi_device *sdp = sdkp->device; 1324 void __user *p = (void __user *)arg; 1325 int error; 1326 1327 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1328 "cmd=0x%x\n", disk->disk_name, cmd)); 1329 1330 error = scsi_verify_blk_ioctl(bdev, cmd); 1331 if (error < 0) 1332 return error; 1333 1334 /* 1335 * If we are in the middle of error recovery, don't let anyone 1336 * else try and use this device. Also, if error recovery fails, it 1337 * may try and take the device offline, in which case all further 1338 * access to the device is prohibited. 1339 */ 1340 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1341 (mode & FMODE_NDELAY) != 0); 1342 if (error) 1343 goto out; 1344 1345 /* 1346 * Send SCSI addressing ioctls directly to mid level, send other 1347 * ioctls to block level and then onto mid level if they can't be 1348 * resolved. 1349 */ 1350 switch (cmd) { 1351 case SCSI_IOCTL_GET_IDLUN: 1352 case SCSI_IOCTL_GET_BUS_NUMBER: 1353 error = scsi_ioctl(sdp, cmd, p); 1354 break; 1355 default: 1356 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1357 if (error != -ENOTTY) 1358 break; 1359 error = scsi_ioctl(sdp, cmd, p); 1360 break; 1361 } 1362 out: 1363 return error; 1364 } 1365 1366 static void set_media_not_present(struct scsi_disk *sdkp) 1367 { 1368 if (sdkp->media_present) 1369 sdkp->device->changed = 1; 1370 1371 if (sdkp->device->removable) { 1372 sdkp->media_present = 0; 1373 sdkp->capacity = 0; 1374 } 1375 } 1376 1377 static int media_not_present(struct scsi_disk *sdkp, 1378 struct scsi_sense_hdr *sshdr) 1379 { 1380 if (!scsi_sense_valid(sshdr)) 1381 return 0; 1382 1383 /* not invoked for commands that could return deferred errors */ 1384 switch (sshdr->sense_key) { 1385 case UNIT_ATTENTION: 1386 case NOT_READY: 1387 /* medium not present */ 1388 if (sshdr->asc == 0x3A) { 1389 set_media_not_present(sdkp); 1390 return 1; 1391 } 1392 } 1393 return 0; 1394 } 1395 1396 /** 1397 * sd_check_events - check media events 1398 * @disk: kernel device descriptor 1399 * @clearing: disk events currently being cleared 1400 * 1401 * Returns mask of DISK_EVENT_*. 1402 * 1403 * Note: this function is invoked from the block subsystem. 1404 **/ 1405 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1406 { 1407 struct scsi_disk *sdkp = scsi_disk_get(disk); 1408 struct scsi_device *sdp; 1409 struct scsi_sense_hdr *sshdr = NULL; 1410 int retval; 1411 1412 if (!sdkp) 1413 return 0; 1414 1415 sdp = sdkp->device; 1416 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1417 1418 /* 1419 * If the device is offline, don't send any commands - just pretend as 1420 * if the command failed. If the device ever comes back online, we 1421 * can deal with it then. It is only because of unrecoverable errors 1422 * that we would ever take a device offline in the first place. 1423 */ 1424 if (!scsi_device_online(sdp)) { 1425 set_media_not_present(sdkp); 1426 goto out; 1427 } 1428 1429 /* 1430 * Using TEST_UNIT_READY enables differentiation between drive with 1431 * no cartridge loaded - NOT READY, drive with changed cartridge - 1432 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1433 * 1434 * Drives that auto spin down. eg iomega jaz 1G, will be started 1435 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1436 * sd_revalidate() is called. 1437 */ 1438 retval = -ENODEV; 1439 1440 if (scsi_block_when_processing_errors(sdp)) { 1441 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 1442 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1443 sshdr); 1444 } 1445 1446 /* failed to execute TUR, assume media not present */ 1447 if (host_byte(retval)) { 1448 set_media_not_present(sdkp); 1449 goto out; 1450 } 1451 1452 if (media_not_present(sdkp, sshdr)) 1453 goto out; 1454 1455 /* 1456 * For removable scsi disk we have to recognise the presence 1457 * of a disk in the drive. 1458 */ 1459 if (!sdkp->media_present) 1460 sdp->changed = 1; 1461 sdkp->media_present = 1; 1462 out: 1463 /* 1464 * sdp->changed is set under the following conditions: 1465 * 1466 * Medium present state has changed in either direction. 1467 * Device has indicated UNIT_ATTENTION. 1468 */ 1469 kfree(sshdr); 1470 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1471 sdp->changed = 0; 1472 scsi_disk_put(sdkp); 1473 return retval; 1474 } 1475 1476 static int sd_sync_cache(struct scsi_disk *sdkp) 1477 { 1478 int retries, res; 1479 struct scsi_device *sdp = sdkp->device; 1480 const int timeout = sdp->request_queue->rq_timeout 1481 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1482 struct scsi_sense_hdr sshdr; 1483 1484 if (!scsi_device_online(sdp)) 1485 return -ENODEV; 1486 1487 for (retries = 3; retries > 0; --retries) { 1488 unsigned char cmd[10] = { 0 }; 1489 1490 cmd[0] = SYNCHRONIZE_CACHE; 1491 /* 1492 * Leave the rest of the command zero to indicate 1493 * flush everything. 1494 */ 1495 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, 1496 &sshdr, timeout, SD_MAX_RETRIES, 1497 NULL, REQ_PM); 1498 if (res == 0) 1499 break; 1500 } 1501 1502 if (res) { 1503 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1504 1505 if (driver_byte(res) & DRIVER_SENSE) 1506 sd_print_sense_hdr(sdkp, &sshdr); 1507 /* we need to evaluate the error return */ 1508 if (scsi_sense_valid(&sshdr) && 1509 (sshdr.asc == 0x3a || /* medium not present */ 1510 sshdr.asc == 0x20)) /* invalid command */ 1511 /* this is no error here */ 1512 return 0; 1513 1514 switch (host_byte(res)) { 1515 /* ignore errors due to racing a disconnection */ 1516 case DID_BAD_TARGET: 1517 case DID_NO_CONNECT: 1518 return 0; 1519 /* signal the upper layer it might try again */ 1520 case DID_BUS_BUSY: 1521 case DID_IMM_RETRY: 1522 case DID_REQUEUE: 1523 case DID_SOFT_ERROR: 1524 return -EBUSY; 1525 default: 1526 return -EIO; 1527 } 1528 } 1529 return 0; 1530 } 1531 1532 static void sd_rescan(struct device *dev) 1533 { 1534 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1535 1536 revalidate_disk(sdkp->disk); 1537 } 1538 1539 1540 #ifdef CONFIG_COMPAT 1541 /* 1542 * This gets directly called from VFS. When the ioctl 1543 * is not recognized we go back to the other translation paths. 1544 */ 1545 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1546 unsigned int cmd, unsigned long arg) 1547 { 1548 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1549 int error; 1550 1551 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1552 (mode & FMODE_NDELAY) != 0); 1553 if (error) 1554 return error; 1555 1556 /* 1557 * Let the static ioctl translation table take care of it. 1558 */ 1559 if (!sdev->host->hostt->compat_ioctl) 1560 return -ENOIOCTLCMD; 1561 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1562 } 1563 #endif 1564 1565 static char sd_pr_type(enum pr_type type) 1566 { 1567 switch (type) { 1568 case PR_WRITE_EXCLUSIVE: 1569 return 0x01; 1570 case PR_EXCLUSIVE_ACCESS: 1571 return 0x03; 1572 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1573 return 0x05; 1574 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1575 return 0x06; 1576 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1577 return 0x07; 1578 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1579 return 0x08; 1580 default: 1581 return 0; 1582 } 1583 }; 1584 1585 static int sd_pr_command(struct block_device *bdev, u8 sa, 1586 u64 key, u64 sa_key, u8 type, u8 flags) 1587 { 1588 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1589 struct scsi_sense_hdr sshdr; 1590 int result; 1591 u8 cmd[16] = { 0, }; 1592 u8 data[24] = { 0, }; 1593 1594 cmd[0] = PERSISTENT_RESERVE_OUT; 1595 cmd[1] = sa; 1596 cmd[2] = type; 1597 put_unaligned_be32(sizeof(data), &cmd[5]); 1598 1599 put_unaligned_be64(key, &data[0]); 1600 put_unaligned_be64(sa_key, &data[8]); 1601 data[20] = flags; 1602 1603 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1604 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1605 1606 if ((driver_byte(result) & DRIVER_SENSE) && 1607 (scsi_sense_valid(&sshdr))) { 1608 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1609 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1610 } 1611 1612 return result; 1613 } 1614 1615 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1616 u32 flags) 1617 { 1618 if (flags & ~PR_FL_IGNORE_KEY) 1619 return -EOPNOTSUPP; 1620 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1621 old_key, new_key, 0, 1622 (1 << 0) /* APTPL */); 1623 } 1624 1625 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1626 u32 flags) 1627 { 1628 if (flags) 1629 return -EOPNOTSUPP; 1630 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1631 } 1632 1633 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1634 { 1635 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1636 } 1637 1638 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1639 enum pr_type type, bool abort) 1640 { 1641 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1642 sd_pr_type(type), 0); 1643 } 1644 1645 static int sd_pr_clear(struct block_device *bdev, u64 key) 1646 { 1647 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1648 } 1649 1650 static const struct pr_ops sd_pr_ops = { 1651 .pr_register = sd_pr_register, 1652 .pr_reserve = sd_pr_reserve, 1653 .pr_release = sd_pr_release, 1654 .pr_preempt = sd_pr_preempt, 1655 .pr_clear = sd_pr_clear, 1656 }; 1657 1658 static const struct block_device_operations sd_fops = { 1659 .owner = THIS_MODULE, 1660 .open = sd_open, 1661 .release = sd_release, 1662 .ioctl = sd_ioctl, 1663 .getgeo = sd_getgeo, 1664 #ifdef CONFIG_COMPAT 1665 .compat_ioctl = sd_compat_ioctl, 1666 #endif 1667 .check_events = sd_check_events, 1668 .revalidate_disk = sd_revalidate_disk, 1669 .unlock_native_capacity = sd_unlock_native_capacity, 1670 .pr_ops = &sd_pr_ops, 1671 }; 1672 1673 /** 1674 * sd_eh_action - error handling callback 1675 * @scmd: sd-issued command that has failed 1676 * @eh_disp: The recovery disposition suggested by the midlayer 1677 * 1678 * This function is called by the SCSI midlayer upon completion of an 1679 * error test command (currently TEST UNIT READY). The result of sending 1680 * the eh command is passed in eh_disp. We're looking for devices that 1681 * fail medium access commands but are OK with non access commands like 1682 * test unit ready (so wrongly see the device as having a successful 1683 * recovery) 1684 **/ 1685 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1686 { 1687 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1688 1689 if (!scsi_device_online(scmd->device) || 1690 !scsi_medium_access_command(scmd) || 1691 host_byte(scmd->result) != DID_TIME_OUT || 1692 eh_disp != SUCCESS) 1693 return eh_disp; 1694 1695 /* 1696 * The device has timed out executing a medium access command. 1697 * However, the TEST UNIT READY command sent during error 1698 * handling completed successfully. Either the device is in the 1699 * process of recovering or has it suffered an internal failure 1700 * that prevents access to the storage medium. 1701 */ 1702 sdkp->medium_access_timed_out++; 1703 1704 /* 1705 * If the device keeps failing read/write commands but TEST UNIT 1706 * READY always completes successfully we assume that medium 1707 * access is no longer possible and take the device offline. 1708 */ 1709 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1710 scmd_printk(KERN_ERR, scmd, 1711 "Medium access timeout failure. Offlining disk!\n"); 1712 scsi_device_set_state(scmd->device, SDEV_OFFLINE); 1713 1714 return FAILED; 1715 } 1716 1717 return eh_disp; 1718 } 1719 1720 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1721 { 1722 u64 start_lba = blk_rq_pos(scmd->request); 1723 u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512); 1724 u64 factor = scmd->device->sector_size / 512; 1725 u64 bad_lba; 1726 int info_valid; 1727 /* 1728 * resid is optional but mostly filled in. When it's unused, 1729 * its value is zero, so we assume the whole buffer transferred 1730 */ 1731 unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1732 unsigned int good_bytes; 1733 1734 if (scmd->request->cmd_type != REQ_TYPE_FS) 1735 return 0; 1736 1737 info_valid = scsi_get_sense_info_fld(scmd->sense_buffer, 1738 SCSI_SENSE_BUFFERSIZE, 1739 &bad_lba); 1740 if (!info_valid) 1741 return 0; 1742 1743 if (scsi_bufflen(scmd) <= scmd->device->sector_size) 1744 return 0; 1745 1746 /* be careful ... don't want any overflows */ 1747 do_div(start_lba, factor); 1748 do_div(end_lba, factor); 1749 1750 /* The bad lba was reported incorrectly, we have no idea where 1751 * the error is. 1752 */ 1753 if (bad_lba < start_lba || bad_lba >= end_lba) 1754 return 0; 1755 1756 /* This computation should always be done in terms of 1757 * the resolution of the device's medium. 1758 */ 1759 good_bytes = (bad_lba - start_lba) * scmd->device->sector_size; 1760 return min(good_bytes, transferred); 1761 } 1762 1763 /** 1764 * sd_done - bottom half handler: called when the lower level 1765 * driver has completed (successfully or otherwise) a scsi command. 1766 * @SCpnt: mid-level's per command structure. 1767 * 1768 * Note: potentially run from within an ISR. Must not block. 1769 **/ 1770 static int sd_done(struct scsi_cmnd *SCpnt) 1771 { 1772 int result = SCpnt->result; 1773 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1774 struct scsi_sense_hdr sshdr; 1775 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1776 struct request *req = SCpnt->request; 1777 int sense_valid = 0; 1778 int sense_deferred = 0; 1779 unsigned char op = SCpnt->cmnd[0]; 1780 unsigned char unmap = SCpnt->cmnd[1] & 8; 1781 1782 if (req_op(req) == REQ_OP_DISCARD || req_op(req) == REQ_OP_WRITE_SAME) { 1783 if (!result) { 1784 good_bytes = blk_rq_bytes(req); 1785 scsi_set_resid(SCpnt, 0); 1786 } else { 1787 good_bytes = 0; 1788 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1789 } 1790 } 1791 1792 if (result) { 1793 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1794 if (sense_valid) 1795 sense_deferred = scsi_sense_is_deferred(&sshdr); 1796 } 1797 sdkp->medium_access_timed_out = 0; 1798 1799 if (driver_byte(result) != DRIVER_SENSE && 1800 (!sense_valid || sense_deferred)) 1801 goto out; 1802 1803 switch (sshdr.sense_key) { 1804 case HARDWARE_ERROR: 1805 case MEDIUM_ERROR: 1806 good_bytes = sd_completed_bytes(SCpnt); 1807 break; 1808 case RECOVERED_ERROR: 1809 good_bytes = scsi_bufflen(SCpnt); 1810 break; 1811 case NO_SENSE: 1812 /* This indicates a false check condition, so ignore it. An 1813 * unknown amount of data was transferred so treat it as an 1814 * error. 1815 */ 1816 SCpnt->result = 0; 1817 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1818 break; 1819 case ABORTED_COMMAND: 1820 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 1821 good_bytes = sd_completed_bytes(SCpnt); 1822 break; 1823 case ILLEGAL_REQUEST: 1824 if (sshdr.asc == 0x10) /* DIX: Host detected corruption */ 1825 good_bytes = sd_completed_bytes(SCpnt); 1826 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 1827 if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 1828 switch (op) { 1829 case UNMAP: 1830 sd_config_discard(sdkp, SD_LBP_DISABLE); 1831 break; 1832 case WRITE_SAME_16: 1833 case WRITE_SAME: 1834 if (unmap) 1835 sd_config_discard(sdkp, SD_LBP_DISABLE); 1836 else { 1837 sdkp->device->no_write_same = 1; 1838 sd_config_write_same(sdkp); 1839 1840 good_bytes = 0; 1841 req->__data_len = blk_rq_bytes(req); 1842 req->cmd_flags |= REQ_QUIET; 1843 } 1844 } 1845 } 1846 break; 1847 default: 1848 break; 1849 } 1850 out: 1851 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 1852 "sd_done: completed %d of %d bytes\n", 1853 good_bytes, scsi_bufflen(SCpnt))); 1854 1855 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt)) 1856 sd_dif_complete(SCpnt, good_bytes); 1857 1858 return good_bytes; 1859 } 1860 1861 /* 1862 * spinup disk - called only in sd_revalidate_disk() 1863 */ 1864 static void 1865 sd_spinup_disk(struct scsi_disk *sdkp) 1866 { 1867 unsigned char cmd[10]; 1868 unsigned long spintime_expire = 0; 1869 int retries, spintime; 1870 unsigned int the_result; 1871 struct scsi_sense_hdr sshdr; 1872 int sense_valid = 0; 1873 1874 spintime = 0; 1875 1876 /* Spin up drives, as required. Only do this at boot time */ 1877 /* Spinup needs to be done for module loads too. */ 1878 do { 1879 retries = 0; 1880 1881 do { 1882 cmd[0] = TEST_UNIT_READY; 1883 memset((void *) &cmd[1], 0, 9); 1884 1885 the_result = scsi_execute_req(sdkp->device, cmd, 1886 DMA_NONE, NULL, 0, 1887 &sshdr, SD_TIMEOUT, 1888 SD_MAX_RETRIES, NULL); 1889 1890 /* 1891 * If the drive has indicated to us that it 1892 * doesn't have any media in it, don't bother 1893 * with any more polling. 1894 */ 1895 if (media_not_present(sdkp, &sshdr)) 1896 return; 1897 1898 if (the_result) 1899 sense_valid = scsi_sense_valid(&sshdr); 1900 retries++; 1901 } while (retries < 3 && 1902 (!scsi_status_is_good(the_result) || 1903 ((driver_byte(the_result) & DRIVER_SENSE) && 1904 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 1905 1906 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) { 1907 /* no sense, TUR either succeeded or failed 1908 * with a status error */ 1909 if(!spintime && !scsi_status_is_good(the_result)) { 1910 sd_print_result(sdkp, "Test Unit Ready failed", 1911 the_result); 1912 } 1913 break; 1914 } 1915 1916 /* 1917 * The device does not want the automatic start to be issued. 1918 */ 1919 if (sdkp->device->no_start_on_add) 1920 break; 1921 1922 if (sense_valid && sshdr.sense_key == NOT_READY) { 1923 if (sshdr.asc == 4 && sshdr.ascq == 3) 1924 break; /* manual intervention required */ 1925 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 1926 break; /* standby */ 1927 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 1928 break; /* unavailable */ 1929 /* 1930 * Issue command to spin up drive when not ready 1931 */ 1932 if (!spintime) { 1933 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 1934 cmd[0] = START_STOP; 1935 cmd[1] = 1; /* Return immediately */ 1936 memset((void *) &cmd[2], 0, 8); 1937 cmd[4] = 1; /* Start spin cycle */ 1938 if (sdkp->device->start_stop_pwr_cond) 1939 cmd[4] |= 1 << 4; 1940 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 1941 NULL, 0, &sshdr, 1942 SD_TIMEOUT, SD_MAX_RETRIES, 1943 NULL); 1944 spintime_expire = jiffies + 100 * HZ; 1945 spintime = 1; 1946 } 1947 /* Wait 1 second for next try */ 1948 msleep(1000); 1949 printk("."); 1950 1951 /* 1952 * Wait for USB flash devices with slow firmware. 1953 * Yes, this sense key/ASC combination shouldn't 1954 * occur here. It's characteristic of these devices. 1955 */ 1956 } else if (sense_valid && 1957 sshdr.sense_key == UNIT_ATTENTION && 1958 sshdr.asc == 0x28) { 1959 if (!spintime) { 1960 spintime_expire = jiffies + 5 * HZ; 1961 spintime = 1; 1962 } 1963 /* Wait 1 second for next try */ 1964 msleep(1000); 1965 } else { 1966 /* we don't understand the sense code, so it's 1967 * probably pointless to loop */ 1968 if(!spintime) { 1969 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 1970 sd_print_sense_hdr(sdkp, &sshdr); 1971 } 1972 break; 1973 } 1974 1975 } while (spintime && time_before_eq(jiffies, spintime_expire)); 1976 1977 if (spintime) { 1978 if (scsi_status_is_good(the_result)) 1979 printk("ready\n"); 1980 else 1981 printk("not responding...\n"); 1982 } 1983 } 1984 1985 1986 /* 1987 * Determine whether disk supports Data Integrity Field. 1988 */ 1989 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 1990 { 1991 struct scsi_device *sdp = sdkp->device; 1992 u8 type; 1993 int ret = 0; 1994 1995 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 1996 return ret; 1997 1998 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 1999 2000 if (type > SD_DIF_TYPE3_PROTECTION) 2001 ret = -ENODEV; 2002 else if (scsi_host_dif_capable(sdp->host, type)) 2003 ret = 1; 2004 2005 if (sdkp->first_scan || type != sdkp->protection_type) 2006 switch (ret) { 2007 case -ENODEV: 2008 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2009 " protection type %u. Disabling disk!\n", 2010 type); 2011 break; 2012 case 1: 2013 sd_printk(KERN_NOTICE, sdkp, 2014 "Enabling DIF Type %u protection\n", type); 2015 break; 2016 case 0: 2017 sd_printk(KERN_NOTICE, sdkp, 2018 "Disabling DIF Type %u protection\n", type); 2019 break; 2020 } 2021 2022 sdkp->protection_type = type; 2023 2024 return ret; 2025 } 2026 2027 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2028 struct scsi_sense_hdr *sshdr, int sense_valid, 2029 int the_result) 2030 { 2031 if (driver_byte(the_result) & DRIVER_SENSE) 2032 sd_print_sense_hdr(sdkp, sshdr); 2033 else 2034 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2035 2036 /* 2037 * Set dirty bit for removable devices if not ready - 2038 * sometimes drives will not report this properly. 2039 */ 2040 if (sdp->removable && 2041 sense_valid && sshdr->sense_key == NOT_READY) 2042 set_media_not_present(sdkp); 2043 2044 /* 2045 * We used to set media_present to 0 here to indicate no media 2046 * in the drive, but some drives fail read capacity even with 2047 * media present, so we can't do that. 2048 */ 2049 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2050 } 2051 2052 #define RC16_LEN 32 2053 #if RC16_LEN > SD_BUF_SIZE 2054 #error RC16_LEN must not be more than SD_BUF_SIZE 2055 #endif 2056 2057 #define READ_CAPACITY_RETRIES_ON_RESET 10 2058 2059 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2060 unsigned char *buffer) 2061 { 2062 unsigned char cmd[16]; 2063 struct scsi_sense_hdr sshdr; 2064 int sense_valid = 0; 2065 int the_result; 2066 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2067 unsigned int alignment; 2068 unsigned long long lba; 2069 unsigned sector_size; 2070 2071 if (sdp->no_read_capacity_16) 2072 return -EINVAL; 2073 2074 do { 2075 memset(cmd, 0, 16); 2076 cmd[0] = SERVICE_ACTION_IN_16; 2077 cmd[1] = SAI_READ_CAPACITY_16; 2078 cmd[13] = RC16_LEN; 2079 memset(buffer, 0, RC16_LEN); 2080 2081 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2082 buffer, RC16_LEN, &sshdr, 2083 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2084 2085 if (media_not_present(sdkp, &sshdr)) 2086 return -ENODEV; 2087 2088 if (the_result) { 2089 sense_valid = scsi_sense_valid(&sshdr); 2090 if (sense_valid && 2091 sshdr.sense_key == ILLEGAL_REQUEST && 2092 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2093 sshdr.ascq == 0x00) 2094 /* Invalid Command Operation Code or 2095 * Invalid Field in CDB, just retry 2096 * silently with RC10 */ 2097 return -EINVAL; 2098 if (sense_valid && 2099 sshdr.sense_key == UNIT_ATTENTION && 2100 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2101 /* Device reset might occur several times, 2102 * give it one more chance */ 2103 if (--reset_retries > 0) 2104 continue; 2105 } 2106 retries--; 2107 2108 } while (the_result && retries); 2109 2110 if (the_result) { 2111 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2112 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2113 return -EINVAL; 2114 } 2115 2116 sector_size = get_unaligned_be32(&buffer[8]); 2117 lba = get_unaligned_be64(&buffer[0]); 2118 2119 if (sd_read_protection_type(sdkp, buffer) < 0) { 2120 sdkp->capacity = 0; 2121 return -ENODEV; 2122 } 2123 2124 if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) { 2125 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2126 "kernel compiled with support for large block " 2127 "devices.\n"); 2128 sdkp->capacity = 0; 2129 return -EOVERFLOW; 2130 } 2131 2132 /* Logical blocks per physical block exponent */ 2133 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2134 2135 /* Lowest aligned logical block */ 2136 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2137 blk_queue_alignment_offset(sdp->request_queue, alignment); 2138 if (alignment && sdkp->first_scan) 2139 sd_printk(KERN_NOTICE, sdkp, 2140 "physical block alignment offset: %u\n", alignment); 2141 2142 if (buffer[14] & 0x80) { /* LBPME */ 2143 sdkp->lbpme = 1; 2144 2145 if (buffer[14] & 0x40) /* LBPRZ */ 2146 sdkp->lbprz = 1; 2147 2148 sd_config_discard(sdkp, SD_LBP_WS16); 2149 } 2150 2151 sdkp->capacity = lba + 1; 2152 return sector_size; 2153 } 2154 2155 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2156 unsigned char *buffer) 2157 { 2158 unsigned char cmd[16]; 2159 struct scsi_sense_hdr sshdr; 2160 int sense_valid = 0; 2161 int the_result; 2162 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2163 sector_t lba; 2164 unsigned sector_size; 2165 2166 do { 2167 cmd[0] = READ_CAPACITY; 2168 memset(&cmd[1], 0, 9); 2169 memset(buffer, 0, 8); 2170 2171 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2172 buffer, 8, &sshdr, 2173 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2174 2175 if (media_not_present(sdkp, &sshdr)) 2176 return -ENODEV; 2177 2178 if (the_result) { 2179 sense_valid = scsi_sense_valid(&sshdr); 2180 if (sense_valid && 2181 sshdr.sense_key == UNIT_ATTENTION && 2182 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2183 /* Device reset might occur several times, 2184 * give it one more chance */ 2185 if (--reset_retries > 0) 2186 continue; 2187 } 2188 retries--; 2189 2190 } while (the_result && retries); 2191 2192 if (the_result) { 2193 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2194 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2195 return -EINVAL; 2196 } 2197 2198 sector_size = get_unaligned_be32(&buffer[4]); 2199 lba = get_unaligned_be32(&buffer[0]); 2200 2201 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2202 /* Some buggy (usb cardreader) devices return an lba of 2203 0xffffffff when the want to report a size of 0 (with 2204 which they really mean no media is present) */ 2205 sdkp->capacity = 0; 2206 sdkp->physical_block_size = sector_size; 2207 return sector_size; 2208 } 2209 2210 if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) { 2211 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2212 "kernel compiled with support for large block " 2213 "devices.\n"); 2214 sdkp->capacity = 0; 2215 return -EOVERFLOW; 2216 } 2217 2218 sdkp->capacity = lba + 1; 2219 sdkp->physical_block_size = sector_size; 2220 return sector_size; 2221 } 2222 2223 static int sd_try_rc16_first(struct scsi_device *sdp) 2224 { 2225 if (sdp->host->max_cmd_len < 16) 2226 return 0; 2227 if (sdp->try_rc_10_first) 2228 return 0; 2229 if (sdp->scsi_level > SCSI_SPC_2) 2230 return 1; 2231 if (scsi_device_protection(sdp)) 2232 return 1; 2233 return 0; 2234 } 2235 2236 /* 2237 * read disk capacity 2238 */ 2239 static void 2240 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2241 { 2242 int sector_size; 2243 struct scsi_device *sdp = sdkp->device; 2244 sector_t old_capacity = sdkp->capacity; 2245 2246 if (sd_try_rc16_first(sdp)) { 2247 sector_size = read_capacity_16(sdkp, sdp, buffer); 2248 if (sector_size == -EOVERFLOW) 2249 goto got_data; 2250 if (sector_size == -ENODEV) 2251 return; 2252 if (sector_size < 0) 2253 sector_size = read_capacity_10(sdkp, sdp, buffer); 2254 if (sector_size < 0) 2255 return; 2256 } else { 2257 sector_size = read_capacity_10(sdkp, sdp, buffer); 2258 if (sector_size == -EOVERFLOW) 2259 goto got_data; 2260 if (sector_size < 0) 2261 return; 2262 if ((sizeof(sdkp->capacity) > 4) && 2263 (sdkp->capacity > 0xffffffffULL)) { 2264 int old_sector_size = sector_size; 2265 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2266 "Trying to use READ CAPACITY(16).\n"); 2267 sector_size = read_capacity_16(sdkp, sdp, buffer); 2268 if (sector_size < 0) { 2269 sd_printk(KERN_NOTICE, sdkp, 2270 "Using 0xffffffff as device size\n"); 2271 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2272 sector_size = old_sector_size; 2273 goto got_data; 2274 } 2275 } 2276 } 2277 2278 /* Some devices are known to return the total number of blocks, 2279 * not the highest block number. Some devices have versions 2280 * which do this and others which do not. Some devices we might 2281 * suspect of doing this but we don't know for certain. 2282 * 2283 * If we know the reported capacity is wrong, decrement it. If 2284 * we can only guess, then assume the number of blocks is even 2285 * (usually true but not always) and err on the side of lowering 2286 * the capacity. 2287 */ 2288 if (sdp->fix_capacity || 2289 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2290 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2291 "from its reported value: %llu\n", 2292 (unsigned long long) sdkp->capacity); 2293 --sdkp->capacity; 2294 } 2295 2296 got_data: 2297 if (sector_size == 0) { 2298 sector_size = 512; 2299 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2300 "assuming 512.\n"); 2301 } 2302 2303 if (sector_size != 512 && 2304 sector_size != 1024 && 2305 sector_size != 2048 && 2306 sector_size != 4096) { 2307 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2308 sector_size); 2309 /* 2310 * The user might want to re-format the drive with 2311 * a supported sectorsize. Once this happens, it 2312 * would be relatively trivial to set the thing up. 2313 * For this reason, we leave the thing in the table. 2314 */ 2315 sdkp->capacity = 0; 2316 /* 2317 * set a bogus sector size so the normal read/write 2318 * logic in the block layer will eventually refuse any 2319 * request on this device without tripping over power 2320 * of two sector size assumptions 2321 */ 2322 sector_size = 512; 2323 } 2324 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2325 2326 { 2327 char cap_str_2[10], cap_str_10[10]; 2328 2329 string_get_size(sdkp->capacity, sector_size, 2330 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2331 string_get_size(sdkp->capacity, sector_size, 2332 STRING_UNITS_10, cap_str_10, 2333 sizeof(cap_str_10)); 2334 2335 if (sdkp->first_scan || old_capacity != sdkp->capacity) { 2336 sd_printk(KERN_NOTICE, sdkp, 2337 "%llu %d-byte logical blocks: (%s/%s)\n", 2338 (unsigned long long)sdkp->capacity, 2339 sector_size, cap_str_10, cap_str_2); 2340 2341 if (sdkp->physical_block_size != sector_size) 2342 sd_printk(KERN_NOTICE, sdkp, 2343 "%u-byte physical blocks\n", 2344 sdkp->physical_block_size); 2345 } 2346 } 2347 2348 if (sdkp->capacity > 0xffffffff) 2349 sdp->use_16_for_rw = 1; 2350 2351 blk_queue_physical_block_size(sdp->request_queue, 2352 sdkp->physical_block_size); 2353 sdkp->device->sector_size = sector_size; 2354 } 2355 2356 /* called with buffer of length 512 */ 2357 static inline int 2358 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2359 unsigned char *buffer, int len, struct scsi_mode_data *data, 2360 struct scsi_sense_hdr *sshdr) 2361 { 2362 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2363 SD_TIMEOUT, SD_MAX_RETRIES, data, 2364 sshdr); 2365 } 2366 2367 /* 2368 * read write protect setting, if possible - called only in sd_revalidate_disk() 2369 * called with buffer of length SD_BUF_SIZE 2370 */ 2371 static void 2372 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2373 { 2374 int res; 2375 struct scsi_device *sdp = sdkp->device; 2376 struct scsi_mode_data data; 2377 int old_wp = sdkp->write_prot; 2378 2379 set_disk_ro(sdkp->disk, 0); 2380 if (sdp->skip_ms_page_3f) { 2381 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2382 return; 2383 } 2384 2385 if (sdp->use_192_bytes_for_3f) { 2386 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2387 } else { 2388 /* 2389 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2390 * We have to start carefully: some devices hang if we ask 2391 * for more than is available. 2392 */ 2393 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2394 2395 /* 2396 * Second attempt: ask for page 0 When only page 0 is 2397 * implemented, a request for page 3F may return Sense Key 2398 * 5: Illegal Request, Sense Code 24: Invalid field in 2399 * CDB. 2400 */ 2401 if (!scsi_status_is_good(res)) 2402 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2403 2404 /* 2405 * Third attempt: ask 255 bytes, as we did earlier. 2406 */ 2407 if (!scsi_status_is_good(res)) 2408 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2409 &data, NULL); 2410 } 2411 2412 if (!scsi_status_is_good(res)) { 2413 sd_first_printk(KERN_WARNING, sdkp, 2414 "Test WP failed, assume Write Enabled\n"); 2415 } else { 2416 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2417 set_disk_ro(sdkp->disk, sdkp->write_prot); 2418 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2419 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2420 sdkp->write_prot ? "on" : "off"); 2421 sd_printk(KERN_DEBUG, sdkp, 2422 "Mode Sense: %02x %02x %02x %02x\n", 2423 buffer[0], buffer[1], buffer[2], buffer[3]); 2424 } 2425 } 2426 } 2427 2428 /* 2429 * sd_read_cache_type - called only from sd_revalidate_disk() 2430 * called with buffer of length SD_BUF_SIZE 2431 */ 2432 static void 2433 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2434 { 2435 int len = 0, res; 2436 struct scsi_device *sdp = sdkp->device; 2437 2438 int dbd; 2439 int modepage; 2440 int first_len; 2441 struct scsi_mode_data data; 2442 struct scsi_sense_hdr sshdr; 2443 int old_wce = sdkp->WCE; 2444 int old_rcd = sdkp->RCD; 2445 int old_dpofua = sdkp->DPOFUA; 2446 2447 2448 if (sdkp->cache_override) 2449 return; 2450 2451 first_len = 4; 2452 if (sdp->skip_ms_page_8) { 2453 if (sdp->type == TYPE_RBC) 2454 goto defaults; 2455 else { 2456 if (sdp->skip_ms_page_3f) 2457 goto defaults; 2458 modepage = 0x3F; 2459 if (sdp->use_192_bytes_for_3f) 2460 first_len = 192; 2461 dbd = 0; 2462 } 2463 } else if (sdp->type == TYPE_RBC) { 2464 modepage = 6; 2465 dbd = 8; 2466 } else { 2467 modepage = 8; 2468 dbd = 0; 2469 } 2470 2471 /* cautiously ask */ 2472 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2473 &data, &sshdr); 2474 2475 if (!scsi_status_is_good(res)) 2476 goto bad_sense; 2477 2478 if (!data.header_length) { 2479 modepage = 6; 2480 first_len = 0; 2481 sd_first_printk(KERN_ERR, sdkp, 2482 "Missing header in MODE_SENSE response\n"); 2483 } 2484 2485 /* that went OK, now ask for the proper length */ 2486 len = data.length; 2487 2488 /* 2489 * We're only interested in the first three bytes, actually. 2490 * But the data cache page is defined for the first 20. 2491 */ 2492 if (len < 3) 2493 goto bad_sense; 2494 else if (len > SD_BUF_SIZE) { 2495 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2496 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2497 len = SD_BUF_SIZE; 2498 } 2499 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2500 len = 192; 2501 2502 /* Get the data */ 2503 if (len > first_len) 2504 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2505 &data, &sshdr); 2506 2507 if (scsi_status_is_good(res)) { 2508 int offset = data.header_length + data.block_descriptor_length; 2509 2510 while (offset < len) { 2511 u8 page_code = buffer[offset] & 0x3F; 2512 u8 spf = buffer[offset] & 0x40; 2513 2514 if (page_code == 8 || page_code == 6) { 2515 /* We're interested only in the first 3 bytes. 2516 */ 2517 if (len - offset <= 2) { 2518 sd_first_printk(KERN_ERR, sdkp, 2519 "Incomplete mode parameter " 2520 "data\n"); 2521 goto defaults; 2522 } else { 2523 modepage = page_code; 2524 goto Page_found; 2525 } 2526 } else { 2527 /* Go to the next page */ 2528 if (spf && len - offset > 3) 2529 offset += 4 + (buffer[offset+2] << 8) + 2530 buffer[offset+3]; 2531 else if (!spf && len - offset > 1) 2532 offset += 2 + buffer[offset+1]; 2533 else { 2534 sd_first_printk(KERN_ERR, sdkp, 2535 "Incomplete mode " 2536 "parameter data\n"); 2537 goto defaults; 2538 } 2539 } 2540 } 2541 2542 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2543 goto defaults; 2544 2545 Page_found: 2546 if (modepage == 8) { 2547 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2548 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2549 } else { 2550 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2551 sdkp->RCD = 0; 2552 } 2553 2554 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2555 if (sdp->broken_fua) { 2556 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2557 sdkp->DPOFUA = 0; 2558 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) { 2559 sd_first_printk(KERN_NOTICE, sdkp, 2560 "Uses READ/WRITE(6), disabling FUA\n"); 2561 sdkp->DPOFUA = 0; 2562 } 2563 2564 /* No cache flush allowed for write protected devices */ 2565 if (sdkp->WCE && sdkp->write_prot) 2566 sdkp->WCE = 0; 2567 2568 if (sdkp->first_scan || old_wce != sdkp->WCE || 2569 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2570 sd_printk(KERN_NOTICE, sdkp, 2571 "Write cache: %s, read cache: %s, %s\n", 2572 sdkp->WCE ? "enabled" : "disabled", 2573 sdkp->RCD ? "disabled" : "enabled", 2574 sdkp->DPOFUA ? "supports DPO and FUA" 2575 : "doesn't support DPO or FUA"); 2576 2577 return; 2578 } 2579 2580 bad_sense: 2581 if (scsi_sense_valid(&sshdr) && 2582 sshdr.sense_key == ILLEGAL_REQUEST && 2583 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2584 /* Invalid field in CDB */ 2585 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2586 else 2587 sd_first_printk(KERN_ERR, sdkp, 2588 "Asking for cache data failed\n"); 2589 2590 defaults: 2591 if (sdp->wce_default_on) { 2592 sd_first_printk(KERN_NOTICE, sdkp, 2593 "Assuming drive cache: write back\n"); 2594 sdkp->WCE = 1; 2595 } else { 2596 sd_first_printk(KERN_ERR, sdkp, 2597 "Assuming drive cache: write through\n"); 2598 sdkp->WCE = 0; 2599 } 2600 sdkp->RCD = 0; 2601 sdkp->DPOFUA = 0; 2602 } 2603 2604 /* 2605 * The ATO bit indicates whether the DIF application tag is available 2606 * for use by the operating system. 2607 */ 2608 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2609 { 2610 int res, offset; 2611 struct scsi_device *sdp = sdkp->device; 2612 struct scsi_mode_data data; 2613 struct scsi_sense_hdr sshdr; 2614 2615 if (sdp->type != TYPE_DISK) 2616 return; 2617 2618 if (sdkp->protection_type == 0) 2619 return; 2620 2621 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2622 SD_MAX_RETRIES, &data, &sshdr); 2623 2624 if (!scsi_status_is_good(res) || !data.header_length || 2625 data.length < 6) { 2626 sd_first_printk(KERN_WARNING, sdkp, 2627 "getting Control mode page failed, assume no ATO\n"); 2628 2629 if (scsi_sense_valid(&sshdr)) 2630 sd_print_sense_hdr(sdkp, &sshdr); 2631 2632 return; 2633 } 2634 2635 offset = data.header_length + data.block_descriptor_length; 2636 2637 if ((buffer[offset] & 0x3f) != 0x0a) { 2638 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2639 return; 2640 } 2641 2642 if ((buffer[offset + 5] & 0x80) == 0) 2643 return; 2644 2645 sdkp->ATO = 1; 2646 2647 return; 2648 } 2649 2650 /** 2651 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2652 * @disk: disk to query 2653 */ 2654 static void sd_read_block_limits(struct scsi_disk *sdkp) 2655 { 2656 unsigned int sector_sz = sdkp->device->sector_size; 2657 const int vpd_len = 64; 2658 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2659 2660 if (!buffer || 2661 /* Block Limits VPD */ 2662 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2663 goto out; 2664 2665 blk_queue_io_min(sdkp->disk->queue, 2666 get_unaligned_be16(&buffer[6]) * sector_sz); 2667 2668 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2669 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2670 2671 if (buffer[3] == 0x3c) { 2672 unsigned int lba_count, desc_count; 2673 2674 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2675 2676 if (!sdkp->lbpme) 2677 goto out; 2678 2679 lba_count = get_unaligned_be32(&buffer[20]); 2680 desc_count = get_unaligned_be32(&buffer[24]); 2681 2682 if (lba_count && desc_count) 2683 sdkp->max_unmap_blocks = lba_count; 2684 2685 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2686 2687 if (buffer[32] & 0x80) 2688 sdkp->unmap_alignment = 2689 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2690 2691 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2692 2693 if (sdkp->max_unmap_blocks) 2694 sd_config_discard(sdkp, SD_LBP_UNMAP); 2695 else 2696 sd_config_discard(sdkp, SD_LBP_WS16); 2697 2698 } else { /* LBP VPD page tells us what to use */ 2699 if (sdkp->lbpu && sdkp->max_unmap_blocks && !sdkp->lbprz) 2700 sd_config_discard(sdkp, SD_LBP_UNMAP); 2701 else if (sdkp->lbpws) 2702 sd_config_discard(sdkp, SD_LBP_WS16); 2703 else if (sdkp->lbpws10) 2704 sd_config_discard(sdkp, SD_LBP_WS10); 2705 else if (sdkp->lbpu && sdkp->max_unmap_blocks) 2706 sd_config_discard(sdkp, SD_LBP_UNMAP); 2707 else 2708 sd_config_discard(sdkp, SD_LBP_DISABLE); 2709 } 2710 } 2711 2712 out: 2713 kfree(buffer); 2714 } 2715 2716 /** 2717 * sd_read_block_characteristics - Query block dev. characteristics 2718 * @disk: disk to query 2719 */ 2720 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2721 { 2722 unsigned char *buffer; 2723 u16 rot; 2724 const int vpd_len = 64; 2725 2726 buffer = kmalloc(vpd_len, GFP_KERNEL); 2727 2728 if (!buffer || 2729 /* Block Device Characteristics VPD */ 2730 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2731 goto out; 2732 2733 rot = get_unaligned_be16(&buffer[4]); 2734 2735 if (rot == 1) { 2736 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, sdkp->disk->queue); 2737 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, sdkp->disk->queue); 2738 } 2739 2740 out: 2741 kfree(buffer); 2742 } 2743 2744 /** 2745 * sd_read_block_provisioning - Query provisioning VPD page 2746 * @disk: disk to query 2747 */ 2748 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2749 { 2750 unsigned char *buffer; 2751 const int vpd_len = 8; 2752 2753 if (sdkp->lbpme == 0) 2754 return; 2755 2756 buffer = kmalloc(vpd_len, GFP_KERNEL); 2757 2758 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2759 goto out; 2760 2761 sdkp->lbpvpd = 1; 2762 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 2763 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 2764 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 2765 2766 out: 2767 kfree(buffer); 2768 } 2769 2770 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 2771 { 2772 struct scsi_device *sdev = sdkp->device; 2773 2774 if (sdev->host->no_write_same) { 2775 sdev->no_write_same = 1; 2776 2777 return; 2778 } 2779 2780 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 2781 /* too large values might cause issues with arcmsr */ 2782 int vpd_buf_len = 64; 2783 2784 sdev->no_report_opcodes = 1; 2785 2786 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 2787 * CODES is unsupported and the device has an ATA 2788 * Information VPD page (SAT). 2789 */ 2790 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 2791 sdev->no_write_same = 1; 2792 } 2793 2794 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 2795 sdkp->ws16 = 1; 2796 2797 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 2798 sdkp->ws10 = 1; 2799 } 2800 2801 /** 2802 * sd_revalidate_disk - called the first time a new disk is seen, 2803 * performs disk spin up, read_capacity, etc. 2804 * @disk: struct gendisk we care about 2805 **/ 2806 static int sd_revalidate_disk(struct gendisk *disk) 2807 { 2808 struct scsi_disk *sdkp = scsi_disk(disk); 2809 struct scsi_device *sdp = sdkp->device; 2810 struct request_queue *q = sdkp->disk->queue; 2811 unsigned char *buffer; 2812 unsigned int dev_max, rw_max; 2813 2814 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 2815 "sd_revalidate_disk\n")); 2816 2817 /* 2818 * If the device is offline, don't try and read capacity or any 2819 * of the other niceties. 2820 */ 2821 if (!scsi_device_online(sdp)) 2822 goto out; 2823 2824 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 2825 if (!buffer) { 2826 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 2827 "allocation failure.\n"); 2828 goto out; 2829 } 2830 2831 sd_spinup_disk(sdkp); 2832 2833 /* 2834 * Without media there is no reason to ask; moreover, some devices 2835 * react badly if we do. 2836 */ 2837 if (sdkp->media_present) { 2838 sd_read_capacity(sdkp, buffer); 2839 2840 if (scsi_device_supports_vpd(sdp)) { 2841 sd_read_block_provisioning(sdkp); 2842 sd_read_block_limits(sdkp); 2843 sd_read_block_characteristics(sdkp); 2844 } 2845 2846 sd_read_write_protect_flag(sdkp, buffer); 2847 sd_read_cache_type(sdkp, buffer); 2848 sd_read_app_tag_own(sdkp, buffer); 2849 sd_read_write_same(sdkp, buffer); 2850 } 2851 2852 sdkp->first_scan = 0; 2853 2854 /* 2855 * We now have all cache related info, determine how we deal 2856 * with flush requests. 2857 */ 2858 sd_set_flush_flag(sdkp); 2859 2860 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 2861 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 2862 2863 /* Some devices report a maximum block count for READ/WRITE requests. */ 2864 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 2865 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 2866 2867 /* 2868 * Use the device's preferred I/O size for reads and writes 2869 * unless the reported value is unreasonably small, large, or 2870 * garbage. 2871 */ 2872 if (sdkp->opt_xfer_blocks && 2873 sdkp->opt_xfer_blocks <= dev_max && 2874 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS && 2875 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) { 2876 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 2877 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 2878 } else 2879 rw_max = BLK_DEF_MAX_SECTORS; 2880 2881 /* Combine with controller limits */ 2882 q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q)); 2883 2884 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); 2885 sd_config_write_same(sdkp); 2886 kfree(buffer); 2887 2888 out: 2889 return 0; 2890 } 2891 2892 /** 2893 * sd_unlock_native_capacity - unlock native capacity 2894 * @disk: struct gendisk to set capacity for 2895 * 2896 * Block layer calls this function if it detects that partitions 2897 * on @disk reach beyond the end of the device. If the SCSI host 2898 * implements ->unlock_native_capacity() method, it's invoked to 2899 * give it a chance to adjust the device capacity. 2900 * 2901 * CONTEXT: 2902 * Defined by block layer. Might sleep. 2903 */ 2904 static void sd_unlock_native_capacity(struct gendisk *disk) 2905 { 2906 struct scsi_device *sdev = scsi_disk(disk)->device; 2907 2908 if (sdev->host->hostt->unlock_native_capacity) 2909 sdev->host->hostt->unlock_native_capacity(sdev); 2910 } 2911 2912 /** 2913 * sd_format_disk_name - format disk name 2914 * @prefix: name prefix - ie. "sd" for SCSI disks 2915 * @index: index of the disk to format name for 2916 * @buf: output buffer 2917 * @buflen: length of the output buffer 2918 * 2919 * SCSI disk names starts at sda. The 26th device is sdz and the 2920 * 27th is sdaa. The last one for two lettered suffix is sdzz 2921 * which is followed by sdaaa. 2922 * 2923 * This is basically 26 base counting with one extra 'nil' entry 2924 * at the beginning from the second digit on and can be 2925 * determined using similar method as 26 base conversion with the 2926 * index shifted -1 after each digit is computed. 2927 * 2928 * CONTEXT: 2929 * Don't care. 2930 * 2931 * RETURNS: 2932 * 0 on success, -errno on failure. 2933 */ 2934 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 2935 { 2936 const int base = 'z' - 'a' + 1; 2937 char *begin = buf + strlen(prefix); 2938 char *end = buf + buflen; 2939 char *p; 2940 int unit; 2941 2942 p = end - 1; 2943 *p = '\0'; 2944 unit = base; 2945 do { 2946 if (p == begin) 2947 return -EINVAL; 2948 *--p = 'a' + (index % unit); 2949 index = (index / unit) - 1; 2950 } while (index >= 0); 2951 2952 memmove(begin, p, end - p); 2953 memcpy(buf, prefix, strlen(prefix)); 2954 2955 return 0; 2956 } 2957 2958 /* 2959 * The asynchronous part of sd_probe 2960 */ 2961 static void sd_probe_async(void *data, async_cookie_t cookie) 2962 { 2963 struct scsi_disk *sdkp = data; 2964 struct scsi_device *sdp; 2965 struct gendisk *gd; 2966 u32 index; 2967 struct device *dev; 2968 2969 sdp = sdkp->device; 2970 gd = sdkp->disk; 2971 index = sdkp->index; 2972 dev = &sdp->sdev_gendev; 2973 2974 gd->major = sd_major((index & 0xf0) >> 4); 2975 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 2976 gd->minors = SD_MINORS; 2977 2978 gd->fops = &sd_fops; 2979 gd->private_data = &sdkp->driver; 2980 gd->queue = sdkp->device->request_queue; 2981 2982 /* defaults, until the device tells us otherwise */ 2983 sdp->sector_size = 512; 2984 sdkp->capacity = 0; 2985 sdkp->media_present = 1; 2986 sdkp->write_prot = 0; 2987 sdkp->cache_override = 0; 2988 sdkp->WCE = 0; 2989 sdkp->RCD = 0; 2990 sdkp->ATO = 0; 2991 sdkp->first_scan = 1; 2992 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 2993 2994 sd_revalidate_disk(gd); 2995 2996 gd->flags = GENHD_FL_EXT_DEVT; 2997 if (sdp->removable) { 2998 gd->flags |= GENHD_FL_REMOVABLE; 2999 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3000 } 3001 3002 blk_pm_runtime_init(sdp->request_queue, dev); 3003 device_add_disk(dev, gd); 3004 if (sdkp->capacity) 3005 sd_dif_config_host(sdkp); 3006 3007 sd_revalidate_disk(gd); 3008 3009 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3010 sdp->removable ? "removable " : ""); 3011 scsi_autopm_put_device(sdp); 3012 put_device(&sdkp->dev); 3013 } 3014 3015 /** 3016 * sd_probe - called during driver initialization and whenever a 3017 * new scsi device is attached to the system. It is called once 3018 * for each scsi device (not just disks) present. 3019 * @dev: pointer to device object 3020 * 3021 * Returns 0 if successful (or not interested in this scsi device 3022 * (e.g. scanner)); 1 when there is an error. 3023 * 3024 * Note: this function is invoked from the scsi mid-level. 3025 * This function sets up the mapping between a given 3026 * <host,channel,id,lun> (found in sdp) and new device name 3027 * (e.g. /dev/sda). More precisely it is the block device major 3028 * and minor number that is chosen here. 3029 * 3030 * Assume sd_probe is not re-entrant (for time being) 3031 * Also think about sd_probe() and sd_remove() running coincidentally. 3032 **/ 3033 static int sd_probe(struct device *dev) 3034 { 3035 struct scsi_device *sdp = to_scsi_device(dev); 3036 struct scsi_disk *sdkp; 3037 struct gendisk *gd; 3038 int index; 3039 int error; 3040 3041 scsi_autopm_get_device(sdp); 3042 error = -ENODEV; 3043 if (sdp->type != TYPE_DISK && sdp->type != TYPE_MOD && sdp->type != TYPE_RBC) 3044 goto out; 3045 3046 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3047 "sd_probe\n")); 3048 3049 error = -ENOMEM; 3050 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3051 if (!sdkp) 3052 goto out; 3053 3054 gd = alloc_disk(SD_MINORS); 3055 if (!gd) 3056 goto out_free; 3057 3058 do { 3059 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL)) 3060 goto out_put; 3061 3062 spin_lock(&sd_index_lock); 3063 error = ida_get_new(&sd_index_ida, &index); 3064 spin_unlock(&sd_index_lock); 3065 } while (error == -EAGAIN); 3066 3067 if (error) { 3068 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3069 goto out_put; 3070 } 3071 3072 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3073 if (error) { 3074 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3075 goto out_free_index; 3076 } 3077 3078 sdkp->device = sdp; 3079 sdkp->driver = &sd_template; 3080 sdkp->disk = gd; 3081 sdkp->index = index; 3082 atomic_set(&sdkp->openers, 0); 3083 atomic_set(&sdkp->device->ioerr_cnt, 0); 3084 3085 if (!sdp->request_queue->rq_timeout) { 3086 if (sdp->type != TYPE_MOD) 3087 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3088 else 3089 blk_queue_rq_timeout(sdp->request_queue, 3090 SD_MOD_TIMEOUT); 3091 } 3092 3093 device_initialize(&sdkp->dev); 3094 sdkp->dev.parent = dev; 3095 sdkp->dev.class = &sd_disk_class; 3096 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3097 3098 error = device_add(&sdkp->dev); 3099 if (error) 3100 goto out_free_index; 3101 3102 get_device(dev); 3103 dev_set_drvdata(dev, sdkp); 3104 3105 get_device(&sdkp->dev); /* prevent release before async_schedule */ 3106 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); 3107 3108 return 0; 3109 3110 out_free_index: 3111 spin_lock(&sd_index_lock); 3112 ida_remove(&sd_index_ida, index); 3113 spin_unlock(&sd_index_lock); 3114 out_put: 3115 put_disk(gd); 3116 out_free: 3117 kfree(sdkp); 3118 out: 3119 scsi_autopm_put_device(sdp); 3120 return error; 3121 } 3122 3123 /** 3124 * sd_remove - called whenever a scsi disk (previously recognized by 3125 * sd_probe) is detached from the system. It is called (potentially 3126 * multiple times) during sd module unload. 3127 * @sdp: pointer to mid level scsi device object 3128 * 3129 * Note: this function is invoked from the scsi mid-level. 3130 * This function potentially frees up a device name (e.g. /dev/sdc) 3131 * that could be re-used by a subsequent sd_probe(). 3132 * This function is not called when the built-in sd driver is "exit-ed". 3133 **/ 3134 static int sd_remove(struct device *dev) 3135 { 3136 struct scsi_disk *sdkp; 3137 dev_t devt; 3138 3139 sdkp = dev_get_drvdata(dev); 3140 devt = disk_devt(sdkp->disk); 3141 scsi_autopm_get_device(sdkp->device); 3142 3143 async_synchronize_full_domain(&scsi_sd_pm_domain); 3144 async_synchronize_full_domain(&scsi_sd_probe_domain); 3145 device_del(&sdkp->dev); 3146 del_gendisk(sdkp->disk); 3147 sd_shutdown(dev); 3148 3149 blk_register_region(devt, SD_MINORS, NULL, 3150 sd_default_probe, NULL, NULL); 3151 3152 mutex_lock(&sd_ref_mutex); 3153 dev_set_drvdata(dev, NULL); 3154 put_device(&sdkp->dev); 3155 mutex_unlock(&sd_ref_mutex); 3156 3157 return 0; 3158 } 3159 3160 /** 3161 * scsi_disk_release - Called to free the scsi_disk structure 3162 * @dev: pointer to embedded class device 3163 * 3164 * sd_ref_mutex must be held entering this routine. Because it is 3165 * called on last put, you should always use the scsi_disk_get() 3166 * scsi_disk_put() helpers which manipulate the semaphore directly 3167 * and never do a direct put_device. 3168 **/ 3169 static void scsi_disk_release(struct device *dev) 3170 { 3171 struct scsi_disk *sdkp = to_scsi_disk(dev); 3172 struct gendisk *disk = sdkp->disk; 3173 3174 spin_lock(&sd_index_lock); 3175 ida_remove(&sd_index_ida, sdkp->index); 3176 spin_unlock(&sd_index_lock); 3177 3178 disk->private_data = NULL; 3179 put_disk(disk); 3180 put_device(&sdkp->device->sdev_gendev); 3181 3182 kfree(sdkp); 3183 } 3184 3185 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3186 { 3187 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3188 struct scsi_sense_hdr sshdr; 3189 struct scsi_device *sdp = sdkp->device; 3190 int res; 3191 3192 if (start) 3193 cmd[4] |= 1; /* START */ 3194 3195 if (sdp->start_stop_pwr_cond) 3196 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3197 3198 if (!scsi_device_online(sdp)) 3199 return -ENODEV; 3200 3201 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr, 3202 SD_TIMEOUT, SD_MAX_RETRIES, NULL, REQ_PM); 3203 if (res) { 3204 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3205 if (driver_byte(res) & DRIVER_SENSE) 3206 sd_print_sense_hdr(sdkp, &sshdr); 3207 if (scsi_sense_valid(&sshdr) && 3208 /* 0x3a is medium not present */ 3209 sshdr.asc == 0x3a) 3210 res = 0; 3211 } 3212 3213 /* SCSI error codes must not go to the generic layer */ 3214 if (res) 3215 return -EIO; 3216 3217 return 0; 3218 } 3219 3220 /* 3221 * Send a SYNCHRONIZE CACHE instruction down to the device through 3222 * the normal SCSI command structure. Wait for the command to 3223 * complete. 3224 */ 3225 static void sd_shutdown(struct device *dev) 3226 { 3227 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3228 3229 if (!sdkp) 3230 return; /* this can happen */ 3231 3232 if (pm_runtime_suspended(dev)) 3233 return; 3234 3235 if (sdkp->WCE && sdkp->media_present) { 3236 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3237 sd_sync_cache(sdkp); 3238 } 3239 3240 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3241 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3242 sd_start_stop_device(sdkp, 0); 3243 } 3244 } 3245 3246 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3247 { 3248 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3249 int ret = 0; 3250 3251 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3252 return 0; 3253 3254 if (sdkp->WCE && sdkp->media_present) { 3255 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3256 ret = sd_sync_cache(sdkp); 3257 if (ret) { 3258 /* ignore OFFLINE device */ 3259 if (ret == -ENODEV) 3260 ret = 0; 3261 goto done; 3262 } 3263 } 3264 3265 if (sdkp->device->manage_start_stop) { 3266 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3267 /* an error is not worth aborting a system sleep */ 3268 ret = sd_start_stop_device(sdkp, 0); 3269 if (ignore_stop_errors) 3270 ret = 0; 3271 } 3272 3273 done: 3274 return ret; 3275 } 3276 3277 static int sd_suspend_system(struct device *dev) 3278 { 3279 return sd_suspend_common(dev, true); 3280 } 3281 3282 static int sd_suspend_runtime(struct device *dev) 3283 { 3284 return sd_suspend_common(dev, false); 3285 } 3286 3287 static int sd_resume(struct device *dev) 3288 { 3289 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3290 3291 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3292 return 0; 3293 3294 if (!sdkp->device->manage_start_stop) 3295 return 0; 3296 3297 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3298 return sd_start_stop_device(sdkp, 1); 3299 } 3300 3301 /** 3302 * init_sd - entry point for this driver (both when built in or when 3303 * a module). 3304 * 3305 * Note: this function registers this driver with the scsi mid-level. 3306 **/ 3307 static int __init init_sd(void) 3308 { 3309 int majors = 0, i, err; 3310 3311 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3312 3313 for (i = 0; i < SD_MAJORS; i++) { 3314 if (register_blkdev(sd_major(i), "sd") != 0) 3315 continue; 3316 majors++; 3317 blk_register_region(sd_major(i), SD_MINORS, NULL, 3318 sd_default_probe, NULL, NULL); 3319 } 3320 3321 if (!majors) 3322 return -ENODEV; 3323 3324 err = class_register(&sd_disk_class); 3325 if (err) 3326 goto err_out; 3327 3328 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3329 0, 0, NULL); 3330 if (!sd_cdb_cache) { 3331 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3332 err = -ENOMEM; 3333 goto err_out_class; 3334 } 3335 3336 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3337 if (!sd_cdb_pool) { 3338 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3339 err = -ENOMEM; 3340 goto err_out_cache; 3341 } 3342 3343 err = scsi_register_driver(&sd_template.gendrv); 3344 if (err) 3345 goto err_out_driver; 3346 3347 return 0; 3348 3349 err_out_driver: 3350 mempool_destroy(sd_cdb_pool); 3351 3352 err_out_cache: 3353 kmem_cache_destroy(sd_cdb_cache); 3354 3355 err_out_class: 3356 class_unregister(&sd_disk_class); 3357 err_out: 3358 for (i = 0; i < SD_MAJORS; i++) 3359 unregister_blkdev(sd_major(i), "sd"); 3360 return err; 3361 } 3362 3363 /** 3364 * exit_sd - exit point for this driver (when it is a module). 3365 * 3366 * Note: this function unregisters this driver from the scsi mid-level. 3367 **/ 3368 static void __exit exit_sd(void) 3369 { 3370 int i; 3371 3372 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3373 3374 scsi_unregister_driver(&sd_template.gendrv); 3375 mempool_destroy(sd_cdb_pool); 3376 kmem_cache_destroy(sd_cdb_cache); 3377 3378 class_unregister(&sd_disk_class); 3379 3380 for (i = 0; i < SD_MAJORS; i++) { 3381 blk_unregister_region(sd_major(i), SD_MINORS); 3382 unregister_blkdev(sd_major(i), "sd"); 3383 } 3384 } 3385 3386 module_init(init_sd); 3387 module_exit(exit_sd); 3388 3389 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3390 struct scsi_sense_hdr *sshdr) 3391 { 3392 scsi_print_sense_hdr(sdkp->device, 3393 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3394 } 3395 3396 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3397 int result) 3398 { 3399 const char *hb_string = scsi_hostbyte_string(result); 3400 const char *db_string = scsi_driverbyte_string(result); 3401 3402 if (hb_string || db_string) 3403 sd_printk(KERN_INFO, sdkp, 3404 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3405 hb_string ? hb_string : "invalid", 3406 db_string ? db_string : "invalid"); 3407 else 3408 sd_printk(KERN_INFO, sdkp, 3409 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3410 msg, host_byte(result), driver_byte(result)); 3411 } 3412 3413