1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/genhd.h> 42 #include <linux/hdreg.h> 43 #include <linux/errno.h> 44 #include <linux/idr.h> 45 #include <linux/interrupt.h> 46 #include <linux/init.h> 47 #include <linux/blkdev.h> 48 #include <linux/blkpg.h> 49 #include <linux/blk-pm.h> 50 #include <linux/delay.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/async.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <asm/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_driver.h> 67 #include <scsi/scsi_eh.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_ioctl.h> 70 #include <scsi/scsicam.h> 71 72 #include "sd.h" 73 #include "scsi_priv.h" 74 #include "scsi_logging.h" 75 76 MODULE_AUTHOR("Eric Youngdale"); 77 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 78 MODULE_LICENSE("GPL"); 79 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 100 101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 102 #define SD_MINORS 16 103 #else 104 #define SD_MINORS 0 105 #endif 106 107 static void sd_config_discard(struct scsi_disk *, unsigned int); 108 static void sd_config_write_same(struct scsi_disk *); 109 static int sd_revalidate_disk(struct gendisk *); 110 static void sd_unlock_native_capacity(struct gendisk *disk); 111 static int sd_probe(struct device *); 112 static int sd_remove(struct device *); 113 static void sd_shutdown(struct device *); 114 static int sd_suspend_system(struct device *); 115 static int sd_suspend_runtime(struct device *); 116 static int sd_resume(struct device *); 117 static void sd_rescan(struct device *); 118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 119 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 120 static int sd_done(struct scsi_cmnd *); 121 static void sd_eh_reset(struct scsi_cmnd *); 122 static int sd_eh_action(struct scsi_cmnd *, int); 123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 124 static void scsi_disk_release(struct device *cdev); 125 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 126 static void sd_print_result(const struct scsi_disk *, const char *, int); 127 128 static DEFINE_IDA(sd_index_ida); 129 130 /* This semaphore is used to mediate the 0->1 reference get in the 131 * face of object destruction (i.e. we can't allow a get on an 132 * object after last put) */ 133 static DEFINE_MUTEX(sd_ref_mutex); 134 135 static struct kmem_cache *sd_cdb_cache; 136 static mempool_t *sd_cdb_pool; 137 static mempool_t *sd_page_pool; 138 139 static const char *sd_cache_types[] = { 140 "write through", "none", "write back", 141 "write back, no read (daft)" 142 }; 143 144 static void sd_set_flush_flag(struct scsi_disk *sdkp) 145 { 146 bool wc = false, fua = false; 147 148 if (sdkp->WCE) { 149 wc = true; 150 if (sdkp->DPOFUA) 151 fua = true; 152 } 153 154 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 155 } 156 157 static ssize_t 158 cache_type_store(struct device *dev, struct device_attribute *attr, 159 const char *buf, size_t count) 160 { 161 int ct, rcd, wce, sp; 162 struct scsi_disk *sdkp = to_scsi_disk(dev); 163 struct scsi_device *sdp = sdkp->device; 164 char buffer[64]; 165 char *buffer_data; 166 struct scsi_mode_data data; 167 struct scsi_sense_hdr sshdr; 168 static const char temp[] = "temporary "; 169 int len; 170 171 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 172 /* no cache control on RBC devices; theoretically they 173 * can do it, but there's probably so many exceptions 174 * it's not worth the risk */ 175 return -EINVAL; 176 177 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 178 buf += sizeof(temp) - 1; 179 sdkp->cache_override = 1; 180 } else { 181 sdkp->cache_override = 0; 182 } 183 184 ct = sysfs_match_string(sd_cache_types, buf); 185 if (ct < 0) 186 return -EINVAL; 187 188 rcd = ct & 0x01 ? 1 : 0; 189 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 190 191 if (sdkp->cache_override) { 192 sdkp->WCE = wce; 193 sdkp->RCD = rcd; 194 sd_set_flush_flag(sdkp); 195 return count; 196 } 197 198 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 199 SD_MAX_RETRIES, &data, NULL)) 200 return -EINVAL; 201 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 202 data.block_descriptor_length); 203 buffer_data = buffer + data.header_length + 204 data.block_descriptor_length; 205 buffer_data[2] &= ~0x05; 206 buffer_data[2] |= wce << 2 | rcd; 207 sp = buffer_data[0] & 0x80 ? 1 : 0; 208 buffer_data[0] &= ~0x80; 209 210 /* 211 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 212 * received mode parameter buffer before doing MODE SELECT. 213 */ 214 data.device_specific = 0; 215 216 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 217 SD_MAX_RETRIES, &data, &sshdr)) { 218 if (scsi_sense_valid(&sshdr)) 219 sd_print_sense_hdr(sdkp, &sshdr); 220 return -EINVAL; 221 } 222 revalidate_disk(sdkp->disk); 223 return count; 224 } 225 226 static ssize_t 227 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 228 char *buf) 229 { 230 struct scsi_disk *sdkp = to_scsi_disk(dev); 231 struct scsi_device *sdp = sdkp->device; 232 233 return sprintf(buf, "%u\n", sdp->manage_start_stop); 234 } 235 236 static ssize_t 237 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 238 const char *buf, size_t count) 239 { 240 struct scsi_disk *sdkp = to_scsi_disk(dev); 241 struct scsi_device *sdp = sdkp->device; 242 bool v; 243 244 if (!capable(CAP_SYS_ADMIN)) 245 return -EACCES; 246 247 if (kstrtobool(buf, &v)) 248 return -EINVAL; 249 250 sdp->manage_start_stop = v; 251 252 return count; 253 } 254 static DEVICE_ATTR_RW(manage_start_stop); 255 256 static ssize_t 257 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 258 { 259 struct scsi_disk *sdkp = to_scsi_disk(dev); 260 261 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 262 } 263 264 static ssize_t 265 allow_restart_store(struct device *dev, struct device_attribute *attr, 266 const char *buf, size_t count) 267 { 268 bool v; 269 struct scsi_disk *sdkp = to_scsi_disk(dev); 270 struct scsi_device *sdp = sdkp->device; 271 272 if (!capable(CAP_SYS_ADMIN)) 273 return -EACCES; 274 275 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 276 return -EINVAL; 277 278 if (kstrtobool(buf, &v)) 279 return -EINVAL; 280 281 sdp->allow_restart = v; 282 283 return count; 284 } 285 static DEVICE_ATTR_RW(allow_restart); 286 287 static ssize_t 288 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 289 { 290 struct scsi_disk *sdkp = to_scsi_disk(dev); 291 int ct = sdkp->RCD + 2*sdkp->WCE; 292 293 return sprintf(buf, "%s\n", sd_cache_types[ct]); 294 } 295 static DEVICE_ATTR_RW(cache_type); 296 297 static ssize_t 298 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 299 { 300 struct scsi_disk *sdkp = to_scsi_disk(dev); 301 302 return sprintf(buf, "%u\n", sdkp->DPOFUA); 303 } 304 static DEVICE_ATTR_RO(FUA); 305 306 static ssize_t 307 protection_type_show(struct device *dev, struct device_attribute *attr, 308 char *buf) 309 { 310 struct scsi_disk *sdkp = to_scsi_disk(dev); 311 312 return sprintf(buf, "%u\n", sdkp->protection_type); 313 } 314 315 static ssize_t 316 protection_type_store(struct device *dev, struct device_attribute *attr, 317 const char *buf, size_t count) 318 { 319 struct scsi_disk *sdkp = to_scsi_disk(dev); 320 unsigned int val; 321 int err; 322 323 if (!capable(CAP_SYS_ADMIN)) 324 return -EACCES; 325 326 err = kstrtouint(buf, 10, &val); 327 328 if (err) 329 return err; 330 331 if (val <= T10_PI_TYPE3_PROTECTION) 332 sdkp->protection_type = val; 333 334 return count; 335 } 336 static DEVICE_ATTR_RW(protection_type); 337 338 static ssize_t 339 protection_mode_show(struct device *dev, struct device_attribute *attr, 340 char *buf) 341 { 342 struct scsi_disk *sdkp = to_scsi_disk(dev); 343 struct scsi_device *sdp = sdkp->device; 344 unsigned int dif, dix; 345 346 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 347 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 348 349 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 350 dif = 0; 351 dix = 1; 352 } 353 354 if (!dif && !dix) 355 return sprintf(buf, "none\n"); 356 357 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 358 } 359 static DEVICE_ATTR_RO(protection_mode); 360 361 static ssize_t 362 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 363 { 364 struct scsi_disk *sdkp = to_scsi_disk(dev); 365 366 return sprintf(buf, "%u\n", sdkp->ATO); 367 } 368 static DEVICE_ATTR_RO(app_tag_own); 369 370 static ssize_t 371 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 372 char *buf) 373 { 374 struct scsi_disk *sdkp = to_scsi_disk(dev); 375 376 return sprintf(buf, "%u\n", sdkp->lbpme); 377 } 378 static DEVICE_ATTR_RO(thin_provisioning); 379 380 /* sysfs_match_string() requires dense arrays */ 381 static const char *lbp_mode[] = { 382 [SD_LBP_FULL] = "full", 383 [SD_LBP_UNMAP] = "unmap", 384 [SD_LBP_WS16] = "writesame_16", 385 [SD_LBP_WS10] = "writesame_10", 386 [SD_LBP_ZERO] = "writesame_zero", 387 [SD_LBP_DISABLE] = "disabled", 388 }; 389 390 static ssize_t 391 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 392 char *buf) 393 { 394 struct scsi_disk *sdkp = to_scsi_disk(dev); 395 396 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 397 } 398 399 static ssize_t 400 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 401 const char *buf, size_t count) 402 { 403 struct scsi_disk *sdkp = to_scsi_disk(dev); 404 struct scsi_device *sdp = sdkp->device; 405 int mode; 406 407 if (!capable(CAP_SYS_ADMIN)) 408 return -EACCES; 409 410 if (sd_is_zoned(sdkp)) { 411 sd_config_discard(sdkp, SD_LBP_DISABLE); 412 return count; 413 } 414 415 if (sdp->type != TYPE_DISK) 416 return -EINVAL; 417 418 mode = sysfs_match_string(lbp_mode, buf); 419 if (mode < 0) 420 return -EINVAL; 421 422 sd_config_discard(sdkp, mode); 423 424 return count; 425 } 426 static DEVICE_ATTR_RW(provisioning_mode); 427 428 /* sysfs_match_string() requires dense arrays */ 429 static const char *zeroing_mode[] = { 430 [SD_ZERO_WRITE] = "write", 431 [SD_ZERO_WS] = "writesame", 432 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 433 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 434 }; 435 436 static ssize_t 437 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 438 char *buf) 439 { 440 struct scsi_disk *sdkp = to_scsi_disk(dev); 441 442 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 443 } 444 445 static ssize_t 446 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 447 const char *buf, size_t count) 448 { 449 struct scsi_disk *sdkp = to_scsi_disk(dev); 450 int mode; 451 452 if (!capable(CAP_SYS_ADMIN)) 453 return -EACCES; 454 455 mode = sysfs_match_string(zeroing_mode, buf); 456 if (mode < 0) 457 return -EINVAL; 458 459 sdkp->zeroing_mode = mode; 460 461 return count; 462 } 463 static DEVICE_ATTR_RW(zeroing_mode); 464 465 static ssize_t 466 max_medium_access_timeouts_show(struct device *dev, 467 struct device_attribute *attr, char *buf) 468 { 469 struct scsi_disk *sdkp = to_scsi_disk(dev); 470 471 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 472 } 473 474 static ssize_t 475 max_medium_access_timeouts_store(struct device *dev, 476 struct device_attribute *attr, const char *buf, 477 size_t count) 478 { 479 struct scsi_disk *sdkp = to_scsi_disk(dev); 480 int err; 481 482 if (!capable(CAP_SYS_ADMIN)) 483 return -EACCES; 484 485 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 486 487 return err ? err : count; 488 } 489 static DEVICE_ATTR_RW(max_medium_access_timeouts); 490 491 static ssize_t 492 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 493 char *buf) 494 { 495 struct scsi_disk *sdkp = to_scsi_disk(dev); 496 497 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 498 } 499 500 static ssize_t 501 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 502 const char *buf, size_t count) 503 { 504 struct scsi_disk *sdkp = to_scsi_disk(dev); 505 struct scsi_device *sdp = sdkp->device; 506 unsigned long max; 507 int err; 508 509 if (!capable(CAP_SYS_ADMIN)) 510 return -EACCES; 511 512 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 513 return -EINVAL; 514 515 err = kstrtoul(buf, 10, &max); 516 517 if (err) 518 return err; 519 520 if (max == 0) 521 sdp->no_write_same = 1; 522 else if (max <= SD_MAX_WS16_BLOCKS) { 523 sdp->no_write_same = 0; 524 sdkp->max_ws_blocks = max; 525 } 526 527 sd_config_write_same(sdkp); 528 529 return count; 530 } 531 static DEVICE_ATTR_RW(max_write_same_blocks); 532 533 static struct attribute *sd_disk_attrs[] = { 534 &dev_attr_cache_type.attr, 535 &dev_attr_FUA.attr, 536 &dev_attr_allow_restart.attr, 537 &dev_attr_manage_start_stop.attr, 538 &dev_attr_protection_type.attr, 539 &dev_attr_protection_mode.attr, 540 &dev_attr_app_tag_own.attr, 541 &dev_attr_thin_provisioning.attr, 542 &dev_attr_provisioning_mode.attr, 543 &dev_attr_zeroing_mode.attr, 544 &dev_attr_max_write_same_blocks.attr, 545 &dev_attr_max_medium_access_timeouts.attr, 546 NULL, 547 }; 548 ATTRIBUTE_GROUPS(sd_disk); 549 550 static struct class sd_disk_class = { 551 .name = "scsi_disk", 552 .owner = THIS_MODULE, 553 .dev_release = scsi_disk_release, 554 .dev_groups = sd_disk_groups, 555 }; 556 557 static const struct dev_pm_ops sd_pm_ops = { 558 .suspend = sd_suspend_system, 559 .resume = sd_resume, 560 .poweroff = sd_suspend_system, 561 .restore = sd_resume, 562 .runtime_suspend = sd_suspend_runtime, 563 .runtime_resume = sd_resume, 564 }; 565 566 static struct scsi_driver sd_template = { 567 .gendrv = { 568 .name = "sd", 569 .owner = THIS_MODULE, 570 .probe = sd_probe, 571 .remove = sd_remove, 572 .shutdown = sd_shutdown, 573 .pm = &sd_pm_ops, 574 }, 575 .rescan = sd_rescan, 576 .init_command = sd_init_command, 577 .uninit_command = sd_uninit_command, 578 .done = sd_done, 579 .eh_action = sd_eh_action, 580 .eh_reset = sd_eh_reset, 581 }; 582 583 /* 584 * Dummy kobj_map->probe function. 585 * The default ->probe function will call modprobe, which is 586 * pointless as this module is already loaded. 587 */ 588 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 589 { 590 return NULL; 591 } 592 593 /* 594 * Device no to disk mapping: 595 * 596 * major disc2 disc p1 597 * |............|.............|....|....| <- dev_t 598 * 31 20 19 8 7 4 3 0 599 * 600 * Inside a major, we have 16k disks, however mapped non- 601 * contiguously. The first 16 disks are for major0, the next 602 * ones with major1, ... Disk 256 is for major0 again, disk 272 603 * for major1, ... 604 * As we stay compatible with our numbering scheme, we can reuse 605 * the well-know SCSI majors 8, 65--71, 136--143. 606 */ 607 static int sd_major(int major_idx) 608 { 609 switch (major_idx) { 610 case 0: 611 return SCSI_DISK0_MAJOR; 612 case 1 ... 7: 613 return SCSI_DISK1_MAJOR + major_idx - 1; 614 case 8 ... 15: 615 return SCSI_DISK8_MAJOR + major_idx - 8; 616 default: 617 BUG(); 618 return 0; /* shut up gcc */ 619 } 620 } 621 622 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 623 { 624 struct scsi_disk *sdkp = NULL; 625 626 mutex_lock(&sd_ref_mutex); 627 628 if (disk->private_data) { 629 sdkp = scsi_disk(disk); 630 if (scsi_device_get(sdkp->device) == 0) 631 get_device(&sdkp->dev); 632 else 633 sdkp = NULL; 634 } 635 mutex_unlock(&sd_ref_mutex); 636 return sdkp; 637 } 638 639 static void scsi_disk_put(struct scsi_disk *sdkp) 640 { 641 struct scsi_device *sdev = sdkp->device; 642 643 mutex_lock(&sd_ref_mutex); 644 put_device(&sdkp->dev); 645 scsi_device_put(sdev); 646 mutex_unlock(&sd_ref_mutex); 647 } 648 649 #ifdef CONFIG_BLK_SED_OPAL 650 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 651 size_t len, bool send) 652 { 653 struct scsi_device *sdev = data; 654 u8 cdb[12] = { 0, }; 655 int ret; 656 657 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 658 cdb[1] = secp; 659 put_unaligned_be16(spsp, &cdb[2]); 660 put_unaligned_be32(len, &cdb[6]); 661 662 ret = scsi_execute_req(sdev, cdb, 663 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 664 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 665 return ret <= 0 ? ret : -EIO; 666 } 667 #endif /* CONFIG_BLK_SED_OPAL */ 668 669 /* 670 * Look up the DIX operation based on whether the command is read or 671 * write and whether dix and dif are enabled. 672 */ 673 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 674 { 675 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 676 static const unsigned int ops[] = { /* wrt dix dif */ 677 SCSI_PROT_NORMAL, /* 0 0 0 */ 678 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 679 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 680 SCSI_PROT_READ_PASS, /* 0 1 1 */ 681 SCSI_PROT_NORMAL, /* 1 0 0 */ 682 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 683 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 684 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 685 }; 686 687 return ops[write << 2 | dix << 1 | dif]; 688 } 689 690 /* 691 * Returns a mask of the protection flags that are valid for a given DIX 692 * operation. 693 */ 694 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 695 { 696 static const unsigned int flag_mask[] = { 697 [SCSI_PROT_NORMAL] = 0, 698 699 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 700 SCSI_PROT_GUARD_CHECK | 701 SCSI_PROT_REF_CHECK | 702 SCSI_PROT_REF_INCREMENT, 703 704 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 705 SCSI_PROT_IP_CHECKSUM, 706 707 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 708 SCSI_PROT_GUARD_CHECK | 709 SCSI_PROT_REF_CHECK | 710 SCSI_PROT_REF_INCREMENT | 711 SCSI_PROT_IP_CHECKSUM, 712 713 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 714 SCSI_PROT_REF_INCREMENT, 715 716 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 717 SCSI_PROT_REF_CHECK | 718 SCSI_PROT_REF_INCREMENT | 719 SCSI_PROT_IP_CHECKSUM, 720 721 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 722 SCSI_PROT_GUARD_CHECK | 723 SCSI_PROT_REF_CHECK | 724 SCSI_PROT_REF_INCREMENT | 725 SCSI_PROT_IP_CHECKSUM, 726 }; 727 728 return flag_mask[prot_op]; 729 } 730 731 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 732 unsigned int dix, unsigned int dif) 733 { 734 struct bio *bio = scmd->request->bio; 735 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 736 unsigned int protect = 0; 737 738 if (dix) { /* DIX Type 0, 1, 2, 3 */ 739 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 740 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 741 742 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 743 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 744 } 745 746 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 747 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 748 749 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 750 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 751 } 752 753 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 754 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 755 756 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 757 protect = 3 << 5; /* Disable target PI checking */ 758 else 759 protect = 1 << 5; /* Enable target PI checking */ 760 } 761 762 scsi_set_prot_op(scmd, prot_op); 763 scsi_set_prot_type(scmd, dif); 764 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 765 766 return protect; 767 } 768 769 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 770 { 771 struct request_queue *q = sdkp->disk->queue; 772 unsigned int logical_block_size = sdkp->device->sector_size; 773 unsigned int max_blocks = 0; 774 775 q->limits.discard_alignment = 776 sdkp->unmap_alignment * logical_block_size; 777 q->limits.discard_granularity = 778 max(sdkp->physical_block_size, 779 sdkp->unmap_granularity * logical_block_size); 780 sdkp->provisioning_mode = mode; 781 782 switch (mode) { 783 784 case SD_LBP_FULL: 785 case SD_LBP_DISABLE: 786 blk_queue_max_discard_sectors(q, 0); 787 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 788 return; 789 790 case SD_LBP_UNMAP: 791 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 792 (u32)SD_MAX_WS16_BLOCKS); 793 break; 794 795 case SD_LBP_WS16: 796 if (sdkp->device->unmap_limit_for_ws) 797 max_blocks = sdkp->max_unmap_blocks; 798 else 799 max_blocks = sdkp->max_ws_blocks; 800 801 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 802 break; 803 804 case SD_LBP_WS10: 805 if (sdkp->device->unmap_limit_for_ws) 806 max_blocks = sdkp->max_unmap_blocks; 807 else 808 max_blocks = sdkp->max_ws_blocks; 809 810 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 811 break; 812 813 case SD_LBP_ZERO: 814 max_blocks = min_not_zero(sdkp->max_ws_blocks, 815 (u32)SD_MAX_WS10_BLOCKS); 816 break; 817 } 818 819 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 820 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 821 } 822 823 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 824 { 825 struct scsi_device *sdp = cmd->device; 826 struct request *rq = cmd->request; 827 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 828 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 829 unsigned int data_len = 24; 830 char *buf; 831 832 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 833 if (!rq->special_vec.bv_page) 834 return BLK_STS_RESOURCE; 835 clear_highpage(rq->special_vec.bv_page); 836 rq->special_vec.bv_offset = 0; 837 rq->special_vec.bv_len = data_len; 838 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 839 840 cmd->cmd_len = 10; 841 cmd->cmnd[0] = UNMAP; 842 cmd->cmnd[8] = 24; 843 844 buf = page_address(rq->special_vec.bv_page); 845 put_unaligned_be16(6 + 16, &buf[0]); 846 put_unaligned_be16(16, &buf[2]); 847 put_unaligned_be64(lba, &buf[8]); 848 put_unaligned_be32(nr_blocks, &buf[16]); 849 850 cmd->allowed = SD_MAX_RETRIES; 851 cmd->transfersize = data_len; 852 rq->timeout = SD_TIMEOUT; 853 854 return scsi_init_io(cmd); 855 } 856 857 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 858 bool unmap) 859 { 860 struct scsi_device *sdp = cmd->device; 861 struct request *rq = cmd->request; 862 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 863 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 864 u32 data_len = sdp->sector_size; 865 866 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 867 if (!rq->special_vec.bv_page) 868 return BLK_STS_RESOURCE; 869 clear_highpage(rq->special_vec.bv_page); 870 rq->special_vec.bv_offset = 0; 871 rq->special_vec.bv_len = data_len; 872 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 873 874 cmd->cmd_len = 16; 875 cmd->cmnd[0] = WRITE_SAME_16; 876 if (unmap) 877 cmd->cmnd[1] = 0x8; /* UNMAP */ 878 put_unaligned_be64(lba, &cmd->cmnd[2]); 879 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 880 881 cmd->allowed = SD_MAX_RETRIES; 882 cmd->transfersize = data_len; 883 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 884 885 return scsi_init_io(cmd); 886 } 887 888 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 889 bool unmap) 890 { 891 struct scsi_device *sdp = cmd->device; 892 struct request *rq = cmd->request; 893 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 894 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 895 u32 data_len = sdp->sector_size; 896 897 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 898 if (!rq->special_vec.bv_page) 899 return BLK_STS_RESOURCE; 900 clear_highpage(rq->special_vec.bv_page); 901 rq->special_vec.bv_offset = 0; 902 rq->special_vec.bv_len = data_len; 903 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 904 905 cmd->cmd_len = 10; 906 cmd->cmnd[0] = WRITE_SAME; 907 if (unmap) 908 cmd->cmnd[1] = 0x8; /* UNMAP */ 909 put_unaligned_be32(lba, &cmd->cmnd[2]); 910 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 911 912 cmd->allowed = SD_MAX_RETRIES; 913 cmd->transfersize = data_len; 914 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 915 916 return scsi_init_io(cmd); 917 } 918 919 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 920 { 921 struct request *rq = cmd->request; 922 struct scsi_device *sdp = cmd->device; 923 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 924 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 925 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 926 927 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 928 switch (sdkp->zeroing_mode) { 929 case SD_ZERO_WS16_UNMAP: 930 return sd_setup_write_same16_cmnd(cmd, true); 931 case SD_ZERO_WS10_UNMAP: 932 return sd_setup_write_same10_cmnd(cmd, true); 933 } 934 } 935 936 if (sdp->no_write_same) 937 return BLK_STS_TARGET; 938 939 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 940 return sd_setup_write_same16_cmnd(cmd, false); 941 942 return sd_setup_write_same10_cmnd(cmd, false); 943 } 944 945 static void sd_config_write_same(struct scsi_disk *sdkp) 946 { 947 struct request_queue *q = sdkp->disk->queue; 948 unsigned int logical_block_size = sdkp->device->sector_size; 949 950 if (sdkp->device->no_write_same) { 951 sdkp->max_ws_blocks = 0; 952 goto out; 953 } 954 955 /* Some devices can not handle block counts above 0xffff despite 956 * supporting WRITE SAME(16). Consequently we default to 64k 957 * blocks per I/O unless the device explicitly advertises a 958 * bigger limit. 959 */ 960 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 961 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 962 (u32)SD_MAX_WS16_BLOCKS); 963 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 964 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 965 (u32)SD_MAX_WS10_BLOCKS); 966 else { 967 sdkp->device->no_write_same = 1; 968 sdkp->max_ws_blocks = 0; 969 } 970 971 if (sdkp->lbprz && sdkp->lbpws) 972 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 973 else if (sdkp->lbprz && sdkp->lbpws10) 974 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 975 else if (sdkp->max_ws_blocks) 976 sdkp->zeroing_mode = SD_ZERO_WS; 977 else 978 sdkp->zeroing_mode = SD_ZERO_WRITE; 979 980 if (sdkp->max_ws_blocks && 981 sdkp->physical_block_size > logical_block_size) { 982 /* 983 * Reporting a maximum number of blocks that is not aligned 984 * on the device physical size would cause a large write same 985 * request to be split into physically unaligned chunks by 986 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 987 * even if the caller of these functions took care to align the 988 * large request. So make sure the maximum reported is aligned 989 * to the device physical block size. This is only an optional 990 * optimization for regular disks, but this is mandatory to 991 * avoid failure of large write same requests directed at 992 * sequential write required zones of host-managed ZBC disks. 993 */ 994 sdkp->max_ws_blocks = 995 round_down(sdkp->max_ws_blocks, 996 bytes_to_logical(sdkp->device, 997 sdkp->physical_block_size)); 998 } 999 1000 out: 1001 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 1002 (logical_block_size >> 9)); 1003 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1004 (logical_block_size >> 9)); 1005 } 1006 1007 /** 1008 * sd_setup_write_same_cmnd - write the same data to multiple blocks 1009 * @cmd: command to prepare 1010 * 1011 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 1012 * the preference indicated by the target device. 1013 **/ 1014 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 1015 { 1016 struct request *rq = cmd->request; 1017 struct scsi_device *sdp = cmd->device; 1018 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1019 struct bio *bio = rq->bio; 1020 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1021 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1022 blk_status_t ret; 1023 1024 if (sdkp->device->no_write_same) 1025 return BLK_STS_TARGET; 1026 1027 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 1028 1029 rq->timeout = SD_WRITE_SAME_TIMEOUT; 1030 1031 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) { 1032 cmd->cmd_len = 16; 1033 cmd->cmnd[0] = WRITE_SAME_16; 1034 put_unaligned_be64(lba, &cmd->cmnd[2]); 1035 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1036 } else { 1037 cmd->cmd_len = 10; 1038 cmd->cmnd[0] = WRITE_SAME; 1039 put_unaligned_be32(lba, &cmd->cmnd[2]); 1040 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1041 } 1042 1043 cmd->transfersize = sdp->sector_size; 1044 cmd->allowed = SD_MAX_RETRIES; 1045 1046 /* 1047 * For WRITE SAME the data transferred via the DATA OUT buffer is 1048 * different from the amount of data actually written to the target. 1049 * 1050 * We set up __data_len to the amount of data transferred via the 1051 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 1052 * to transfer a single sector of data first, but then reset it to 1053 * the amount of data to be written right after so that the I/O path 1054 * knows how much to actually write. 1055 */ 1056 rq->__data_len = sdp->sector_size; 1057 ret = scsi_init_io(cmd); 1058 rq->__data_len = blk_rq_bytes(rq); 1059 1060 return ret; 1061 } 1062 1063 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1064 { 1065 struct request *rq = cmd->request; 1066 1067 /* flush requests don't perform I/O, zero the S/G table */ 1068 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1069 1070 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1071 cmd->cmd_len = 10; 1072 cmd->transfersize = 0; 1073 cmd->allowed = SD_MAX_RETRIES; 1074 1075 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1076 return BLK_STS_OK; 1077 } 1078 1079 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1080 sector_t lba, unsigned int nr_blocks, 1081 unsigned char flags) 1082 { 1083 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1084 if (unlikely(cmd->cmnd == NULL)) 1085 return BLK_STS_RESOURCE; 1086 1087 cmd->cmd_len = SD_EXT_CDB_SIZE; 1088 memset(cmd->cmnd, 0, cmd->cmd_len); 1089 1090 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1091 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1092 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1093 cmd->cmnd[10] = flags; 1094 put_unaligned_be64(lba, &cmd->cmnd[12]); 1095 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1096 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1097 1098 return BLK_STS_OK; 1099 } 1100 1101 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1102 sector_t lba, unsigned int nr_blocks, 1103 unsigned char flags) 1104 { 1105 cmd->cmd_len = 16; 1106 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1107 cmd->cmnd[1] = flags; 1108 cmd->cmnd[14] = 0; 1109 cmd->cmnd[15] = 0; 1110 put_unaligned_be64(lba, &cmd->cmnd[2]); 1111 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1112 1113 return BLK_STS_OK; 1114 } 1115 1116 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1117 sector_t lba, unsigned int nr_blocks, 1118 unsigned char flags) 1119 { 1120 cmd->cmd_len = 10; 1121 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1122 cmd->cmnd[1] = flags; 1123 cmd->cmnd[6] = 0; 1124 cmd->cmnd[9] = 0; 1125 put_unaligned_be32(lba, &cmd->cmnd[2]); 1126 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1127 1128 return BLK_STS_OK; 1129 } 1130 1131 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1132 sector_t lba, unsigned int nr_blocks, 1133 unsigned char flags) 1134 { 1135 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1136 if (WARN_ON_ONCE(nr_blocks == 0)) 1137 return BLK_STS_IOERR; 1138 1139 if (unlikely(flags & 0x8)) { 1140 /* 1141 * This happens only if this drive failed 10byte rw 1142 * command with ILLEGAL_REQUEST during operation and 1143 * thus turned off use_10_for_rw. 1144 */ 1145 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1146 return BLK_STS_IOERR; 1147 } 1148 1149 cmd->cmd_len = 6; 1150 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1151 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1152 cmd->cmnd[2] = (lba >> 8) & 0xff; 1153 cmd->cmnd[3] = lba & 0xff; 1154 cmd->cmnd[4] = nr_blocks; 1155 cmd->cmnd[5] = 0; 1156 1157 return BLK_STS_OK; 1158 } 1159 1160 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1161 { 1162 struct request *rq = cmd->request; 1163 struct scsi_device *sdp = cmd->device; 1164 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1165 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1166 sector_t threshold; 1167 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1168 bool dif, dix; 1169 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1170 bool write = rq_data_dir(rq) == WRITE; 1171 unsigned char protect, fua; 1172 blk_status_t ret; 1173 1174 ret = scsi_init_io(cmd); 1175 if (ret != BLK_STS_OK) 1176 return ret; 1177 1178 if (!scsi_device_online(sdp) || sdp->changed) { 1179 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1180 return BLK_STS_IOERR; 1181 } 1182 1183 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) { 1184 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1185 return BLK_STS_IOERR; 1186 } 1187 1188 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1189 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1190 return BLK_STS_IOERR; 1191 } 1192 1193 /* 1194 * Some SD card readers can't handle accesses which touch the 1195 * last one or two logical blocks. Split accesses as needed. 1196 */ 1197 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1198 1199 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1200 if (lba < threshold) { 1201 /* Access up to the threshold but not beyond */ 1202 nr_blocks = threshold - lba; 1203 } else { 1204 /* Access only a single logical block */ 1205 nr_blocks = 1; 1206 } 1207 } 1208 1209 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1210 dix = scsi_prot_sg_count(cmd); 1211 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1212 1213 if (write && dix) 1214 t10_pi_prepare(cmd->request, sdkp->protection_type); 1215 1216 if (dif || dix) 1217 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1218 else 1219 protect = 0; 1220 1221 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1222 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1223 protect | fua); 1224 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1225 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1226 protect | fua); 1227 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1228 sdp->use_10_for_rw || protect) { 1229 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1230 protect | fua); 1231 } else { 1232 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1233 protect | fua); 1234 } 1235 1236 if (unlikely(ret != BLK_STS_OK)) 1237 return ret; 1238 1239 /* 1240 * We shouldn't disconnect in the middle of a sector, so with a dumb 1241 * host adapter, it's safe to assume that we can at least transfer 1242 * this many bytes between each connect / disconnect. 1243 */ 1244 cmd->transfersize = sdp->sector_size; 1245 cmd->underflow = nr_blocks << 9; 1246 cmd->allowed = SD_MAX_RETRIES; 1247 cmd->sdb.length = nr_blocks * sdp->sector_size; 1248 1249 SCSI_LOG_HLQUEUE(1, 1250 scmd_printk(KERN_INFO, cmd, 1251 "%s: block=%llu, count=%d\n", __func__, 1252 (unsigned long long)blk_rq_pos(rq), 1253 blk_rq_sectors(rq))); 1254 SCSI_LOG_HLQUEUE(2, 1255 scmd_printk(KERN_INFO, cmd, 1256 "%s %d/%u 512 byte blocks.\n", 1257 write ? "writing" : "reading", nr_blocks, 1258 blk_rq_sectors(rq))); 1259 1260 /* 1261 * This indicates that the command is ready from our end to be 1262 * queued. 1263 */ 1264 return BLK_STS_OK; 1265 } 1266 1267 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1268 { 1269 struct request *rq = cmd->request; 1270 1271 switch (req_op(rq)) { 1272 case REQ_OP_DISCARD: 1273 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1274 case SD_LBP_UNMAP: 1275 return sd_setup_unmap_cmnd(cmd); 1276 case SD_LBP_WS16: 1277 return sd_setup_write_same16_cmnd(cmd, true); 1278 case SD_LBP_WS10: 1279 return sd_setup_write_same10_cmnd(cmd, true); 1280 case SD_LBP_ZERO: 1281 return sd_setup_write_same10_cmnd(cmd, false); 1282 default: 1283 return BLK_STS_TARGET; 1284 } 1285 case REQ_OP_WRITE_ZEROES: 1286 return sd_setup_write_zeroes_cmnd(cmd); 1287 case REQ_OP_WRITE_SAME: 1288 return sd_setup_write_same_cmnd(cmd); 1289 case REQ_OP_FLUSH: 1290 return sd_setup_flush_cmnd(cmd); 1291 case REQ_OP_READ: 1292 case REQ_OP_WRITE: 1293 return sd_setup_read_write_cmnd(cmd); 1294 case REQ_OP_ZONE_RESET: 1295 return sd_zbc_setup_reset_cmnd(cmd); 1296 default: 1297 WARN_ON_ONCE(1); 1298 return BLK_STS_NOTSUPP; 1299 } 1300 } 1301 1302 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1303 { 1304 struct request *rq = SCpnt->request; 1305 u8 *cmnd; 1306 1307 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1308 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1309 1310 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1311 cmnd = SCpnt->cmnd; 1312 SCpnt->cmnd = NULL; 1313 SCpnt->cmd_len = 0; 1314 mempool_free(cmnd, sd_cdb_pool); 1315 } 1316 } 1317 1318 /** 1319 * sd_open - open a scsi disk device 1320 * @bdev: Block device of the scsi disk to open 1321 * @mode: FMODE_* mask 1322 * 1323 * Returns 0 if successful. Returns a negated errno value in case 1324 * of error. 1325 * 1326 * Note: This can be called from a user context (e.g. fsck(1) ) 1327 * or from within the kernel (e.g. as a result of a mount(1) ). 1328 * In the latter case @inode and @filp carry an abridged amount 1329 * of information as noted above. 1330 * 1331 * Locking: called with bdev->bd_mutex held. 1332 **/ 1333 static int sd_open(struct block_device *bdev, fmode_t mode) 1334 { 1335 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1336 struct scsi_device *sdev; 1337 int retval; 1338 1339 if (!sdkp) 1340 return -ENXIO; 1341 1342 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1343 1344 sdev = sdkp->device; 1345 1346 /* 1347 * If the device is in error recovery, wait until it is done. 1348 * If the device is offline, then disallow any access to it. 1349 */ 1350 retval = -ENXIO; 1351 if (!scsi_block_when_processing_errors(sdev)) 1352 goto error_out; 1353 1354 if (sdev->removable || sdkp->write_prot) 1355 check_disk_change(bdev); 1356 1357 /* 1358 * If the drive is empty, just let the open fail. 1359 */ 1360 retval = -ENOMEDIUM; 1361 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1362 goto error_out; 1363 1364 /* 1365 * If the device has the write protect tab set, have the open fail 1366 * if the user expects to be able to write to the thing. 1367 */ 1368 retval = -EROFS; 1369 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1370 goto error_out; 1371 1372 /* 1373 * It is possible that the disk changing stuff resulted in 1374 * the device being taken offline. If this is the case, 1375 * report this to the user, and don't pretend that the 1376 * open actually succeeded. 1377 */ 1378 retval = -ENXIO; 1379 if (!scsi_device_online(sdev)) 1380 goto error_out; 1381 1382 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1383 if (scsi_block_when_processing_errors(sdev)) 1384 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1385 } 1386 1387 return 0; 1388 1389 error_out: 1390 scsi_disk_put(sdkp); 1391 return retval; 1392 } 1393 1394 /** 1395 * sd_release - invoked when the (last) close(2) is called on this 1396 * scsi disk. 1397 * @disk: disk to release 1398 * @mode: FMODE_* mask 1399 * 1400 * Returns 0. 1401 * 1402 * Note: may block (uninterruptible) if error recovery is underway 1403 * on this disk. 1404 * 1405 * Locking: called with bdev->bd_mutex held. 1406 **/ 1407 static void sd_release(struct gendisk *disk, fmode_t mode) 1408 { 1409 struct scsi_disk *sdkp = scsi_disk(disk); 1410 struct scsi_device *sdev = sdkp->device; 1411 1412 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1413 1414 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1415 if (scsi_block_when_processing_errors(sdev)) 1416 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1417 } 1418 1419 scsi_disk_put(sdkp); 1420 } 1421 1422 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1423 { 1424 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1425 struct scsi_device *sdp = sdkp->device; 1426 struct Scsi_Host *host = sdp->host; 1427 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1428 int diskinfo[4]; 1429 1430 /* default to most commonly used values */ 1431 diskinfo[0] = 0x40; /* 1 << 6 */ 1432 diskinfo[1] = 0x20; /* 1 << 5 */ 1433 diskinfo[2] = capacity >> 11; 1434 1435 /* override with calculated, extended default, or driver values */ 1436 if (host->hostt->bios_param) 1437 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1438 else 1439 scsicam_bios_param(bdev, capacity, diskinfo); 1440 1441 geo->heads = diskinfo[0]; 1442 geo->sectors = diskinfo[1]; 1443 geo->cylinders = diskinfo[2]; 1444 return 0; 1445 } 1446 1447 /** 1448 * sd_ioctl - process an ioctl 1449 * @bdev: target block device 1450 * @mode: FMODE_* mask 1451 * @cmd: ioctl command number 1452 * @arg: this is third argument given to ioctl(2) system call. 1453 * Often contains a pointer. 1454 * 1455 * Returns 0 if successful (some ioctls return positive numbers on 1456 * success as well). Returns a negated errno value in case of error. 1457 * 1458 * Note: most ioctls are forward onto the block subsystem or further 1459 * down in the scsi subsystem. 1460 **/ 1461 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1462 unsigned int cmd, unsigned long arg) 1463 { 1464 struct gendisk *disk = bdev->bd_disk; 1465 struct scsi_disk *sdkp = scsi_disk(disk); 1466 struct scsi_device *sdp = sdkp->device; 1467 void __user *p = (void __user *)arg; 1468 int error; 1469 1470 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1471 "cmd=0x%x\n", disk->disk_name, cmd)); 1472 1473 error = scsi_verify_blk_ioctl(bdev, cmd); 1474 if (error < 0) 1475 return error; 1476 1477 /* 1478 * If we are in the middle of error recovery, don't let anyone 1479 * else try and use this device. Also, if error recovery fails, it 1480 * may try and take the device offline, in which case all further 1481 * access to the device is prohibited. 1482 */ 1483 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1484 (mode & FMODE_NDELAY) != 0); 1485 if (error) 1486 goto out; 1487 1488 if (is_sed_ioctl(cmd)) 1489 return sed_ioctl(sdkp->opal_dev, cmd, p); 1490 1491 /* 1492 * Send SCSI addressing ioctls directly to mid level, send other 1493 * ioctls to block level and then onto mid level if they can't be 1494 * resolved. 1495 */ 1496 switch (cmd) { 1497 case SCSI_IOCTL_GET_IDLUN: 1498 case SCSI_IOCTL_GET_BUS_NUMBER: 1499 error = scsi_ioctl(sdp, cmd, p); 1500 break; 1501 default: 1502 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1503 if (error != -ENOTTY) 1504 break; 1505 error = scsi_ioctl(sdp, cmd, p); 1506 break; 1507 } 1508 out: 1509 return error; 1510 } 1511 1512 static void set_media_not_present(struct scsi_disk *sdkp) 1513 { 1514 if (sdkp->media_present) 1515 sdkp->device->changed = 1; 1516 1517 if (sdkp->device->removable) { 1518 sdkp->media_present = 0; 1519 sdkp->capacity = 0; 1520 } 1521 } 1522 1523 static int media_not_present(struct scsi_disk *sdkp, 1524 struct scsi_sense_hdr *sshdr) 1525 { 1526 if (!scsi_sense_valid(sshdr)) 1527 return 0; 1528 1529 /* not invoked for commands that could return deferred errors */ 1530 switch (sshdr->sense_key) { 1531 case UNIT_ATTENTION: 1532 case NOT_READY: 1533 /* medium not present */ 1534 if (sshdr->asc == 0x3A) { 1535 set_media_not_present(sdkp); 1536 return 1; 1537 } 1538 } 1539 return 0; 1540 } 1541 1542 /** 1543 * sd_check_events - check media events 1544 * @disk: kernel device descriptor 1545 * @clearing: disk events currently being cleared 1546 * 1547 * Returns mask of DISK_EVENT_*. 1548 * 1549 * Note: this function is invoked from the block subsystem. 1550 **/ 1551 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1552 { 1553 struct scsi_disk *sdkp = scsi_disk_get(disk); 1554 struct scsi_device *sdp; 1555 int retval; 1556 1557 if (!sdkp) 1558 return 0; 1559 1560 sdp = sdkp->device; 1561 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1562 1563 /* 1564 * If the device is offline, don't send any commands - just pretend as 1565 * if the command failed. If the device ever comes back online, we 1566 * can deal with it then. It is only because of unrecoverable errors 1567 * that we would ever take a device offline in the first place. 1568 */ 1569 if (!scsi_device_online(sdp)) { 1570 set_media_not_present(sdkp); 1571 goto out; 1572 } 1573 1574 /* 1575 * Using TEST_UNIT_READY enables differentiation between drive with 1576 * no cartridge loaded - NOT READY, drive with changed cartridge - 1577 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1578 * 1579 * Drives that auto spin down. eg iomega jaz 1G, will be started 1580 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1581 * sd_revalidate() is called. 1582 */ 1583 if (scsi_block_when_processing_errors(sdp)) { 1584 struct scsi_sense_hdr sshdr = { 0, }; 1585 1586 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1587 &sshdr); 1588 1589 /* failed to execute TUR, assume media not present */ 1590 if (host_byte(retval)) { 1591 set_media_not_present(sdkp); 1592 goto out; 1593 } 1594 1595 if (media_not_present(sdkp, &sshdr)) 1596 goto out; 1597 } 1598 1599 /* 1600 * For removable scsi disk we have to recognise the presence 1601 * of a disk in the drive. 1602 */ 1603 if (!sdkp->media_present) 1604 sdp->changed = 1; 1605 sdkp->media_present = 1; 1606 out: 1607 /* 1608 * sdp->changed is set under the following conditions: 1609 * 1610 * Medium present state has changed in either direction. 1611 * Device has indicated UNIT_ATTENTION. 1612 */ 1613 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1614 sdp->changed = 0; 1615 scsi_disk_put(sdkp); 1616 return retval; 1617 } 1618 1619 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1620 { 1621 int retries, res; 1622 struct scsi_device *sdp = sdkp->device; 1623 const int timeout = sdp->request_queue->rq_timeout 1624 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1625 struct scsi_sense_hdr my_sshdr; 1626 1627 if (!scsi_device_online(sdp)) 1628 return -ENODEV; 1629 1630 /* caller might not be interested in sense, but we need it */ 1631 if (!sshdr) 1632 sshdr = &my_sshdr; 1633 1634 for (retries = 3; retries > 0; --retries) { 1635 unsigned char cmd[10] = { 0 }; 1636 1637 cmd[0] = SYNCHRONIZE_CACHE; 1638 /* 1639 * Leave the rest of the command zero to indicate 1640 * flush everything. 1641 */ 1642 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1643 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL); 1644 if (res == 0) 1645 break; 1646 } 1647 1648 if (res) { 1649 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1650 1651 if (driver_byte(res) == DRIVER_SENSE) 1652 sd_print_sense_hdr(sdkp, sshdr); 1653 1654 /* we need to evaluate the error return */ 1655 if (scsi_sense_valid(sshdr) && 1656 (sshdr->asc == 0x3a || /* medium not present */ 1657 sshdr->asc == 0x20)) /* invalid command */ 1658 /* this is no error here */ 1659 return 0; 1660 1661 switch (host_byte(res)) { 1662 /* ignore errors due to racing a disconnection */ 1663 case DID_BAD_TARGET: 1664 case DID_NO_CONNECT: 1665 return 0; 1666 /* signal the upper layer it might try again */ 1667 case DID_BUS_BUSY: 1668 case DID_IMM_RETRY: 1669 case DID_REQUEUE: 1670 case DID_SOFT_ERROR: 1671 return -EBUSY; 1672 default: 1673 return -EIO; 1674 } 1675 } 1676 return 0; 1677 } 1678 1679 static void sd_rescan(struct device *dev) 1680 { 1681 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1682 1683 revalidate_disk(sdkp->disk); 1684 } 1685 1686 1687 #ifdef CONFIG_COMPAT 1688 /* 1689 * This gets directly called from VFS. When the ioctl 1690 * is not recognized we go back to the other translation paths. 1691 */ 1692 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1693 unsigned int cmd, unsigned long arg) 1694 { 1695 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1696 int error; 1697 1698 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1699 (mode & FMODE_NDELAY) != 0); 1700 if (error) 1701 return error; 1702 1703 /* 1704 * Let the static ioctl translation table take care of it. 1705 */ 1706 if (!sdev->host->hostt->compat_ioctl) 1707 return -ENOIOCTLCMD; 1708 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1709 } 1710 #endif 1711 1712 static char sd_pr_type(enum pr_type type) 1713 { 1714 switch (type) { 1715 case PR_WRITE_EXCLUSIVE: 1716 return 0x01; 1717 case PR_EXCLUSIVE_ACCESS: 1718 return 0x03; 1719 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1720 return 0x05; 1721 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1722 return 0x06; 1723 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1724 return 0x07; 1725 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1726 return 0x08; 1727 default: 1728 return 0; 1729 } 1730 }; 1731 1732 static int sd_pr_command(struct block_device *bdev, u8 sa, 1733 u64 key, u64 sa_key, u8 type, u8 flags) 1734 { 1735 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1736 struct scsi_sense_hdr sshdr; 1737 int result; 1738 u8 cmd[16] = { 0, }; 1739 u8 data[24] = { 0, }; 1740 1741 cmd[0] = PERSISTENT_RESERVE_OUT; 1742 cmd[1] = sa; 1743 cmd[2] = type; 1744 put_unaligned_be32(sizeof(data), &cmd[5]); 1745 1746 put_unaligned_be64(key, &data[0]); 1747 put_unaligned_be64(sa_key, &data[8]); 1748 data[20] = flags; 1749 1750 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1751 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1752 1753 if (driver_byte(result) == DRIVER_SENSE && 1754 scsi_sense_valid(&sshdr)) { 1755 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1756 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1757 } 1758 1759 return result; 1760 } 1761 1762 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1763 u32 flags) 1764 { 1765 if (flags & ~PR_FL_IGNORE_KEY) 1766 return -EOPNOTSUPP; 1767 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1768 old_key, new_key, 0, 1769 (1 << 0) /* APTPL */); 1770 } 1771 1772 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1773 u32 flags) 1774 { 1775 if (flags) 1776 return -EOPNOTSUPP; 1777 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1778 } 1779 1780 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1781 { 1782 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1783 } 1784 1785 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1786 enum pr_type type, bool abort) 1787 { 1788 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1789 sd_pr_type(type), 0); 1790 } 1791 1792 static int sd_pr_clear(struct block_device *bdev, u64 key) 1793 { 1794 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1795 } 1796 1797 static const struct pr_ops sd_pr_ops = { 1798 .pr_register = sd_pr_register, 1799 .pr_reserve = sd_pr_reserve, 1800 .pr_release = sd_pr_release, 1801 .pr_preempt = sd_pr_preempt, 1802 .pr_clear = sd_pr_clear, 1803 }; 1804 1805 static const struct block_device_operations sd_fops = { 1806 .owner = THIS_MODULE, 1807 .open = sd_open, 1808 .release = sd_release, 1809 .ioctl = sd_ioctl, 1810 .getgeo = sd_getgeo, 1811 #ifdef CONFIG_COMPAT 1812 .compat_ioctl = sd_compat_ioctl, 1813 #endif 1814 .check_events = sd_check_events, 1815 .revalidate_disk = sd_revalidate_disk, 1816 .unlock_native_capacity = sd_unlock_native_capacity, 1817 .report_zones = sd_zbc_report_zones, 1818 .pr_ops = &sd_pr_ops, 1819 }; 1820 1821 /** 1822 * sd_eh_reset - reset error handling callback 1823 * @scmd: sd-issued command that has failed 1824 * 1825 * This function is called by the SCSI midlayer before starting 1826 * SCSI EH. When counting medium access failures we have to be 1827 * careful to register it only only once per device and SCSI EH run; 1828 * there might be several timed out commands which will cause the 1829 * 'max_medium_access_timeouts' counter to trigger after the first 1830 * SCSI EH run already and set the device to offline. 1831 * So this function resets the internal counter before starting SCSI EH. 1832 **/ 1833 static void sd_eh_reset(struct scsi_cmnd *scmd) 1834 { 1835 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1836 1837 /* New SCSI EH run, reset gate variable */ 1838 sdkp->ignore_medium_access_errors = false; 1839 } 1840 1841 /** 1842 * sd_eh_action - error handling callback 1843 * @scmd: sd-issued command that has failed 1844 * @eh_disp: The recovery disposition suggested by the midlayer 1845 * 1846 * This function is called by the SCSI midlayer upon completion of an 1847 * error test command (currently TEST UNIT READY). The result of sending 1848 * the eh command is passed in eh_disp. We're looking for devices that 1849 * fail medium access commands but are OK with non access commands like 1850 * test unit ready (so wrongly see the device as having a successful 1851 * recovery) 1852 **/ 1853 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1854 { 1855 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1856 struct scsi_device *sdev = scmd->device; 1857 1858 if (!scsi_device_online(sdev) || 1859 !scsi_medium_access_command(scmd) || 1860 host_byte(scmd->result) != DID_TIME_OUT || 1861 eh_disp != SUCCESS) 1862 return eh_disp; 1863 1864 /* 1865 * The device has timed out executing a medium access command. 1866 * However, the TEST UNIT READY command sent during error 1867 * handling completed successfully. Either the device is in the 1868 * process of recovering or has it suffered an internal failure 1869 * that prevents access to the storage medium. 1870 */ 1871 if (!sdkp->ignore_medium_access_errors) { 1872 sdkp->medium_access_timed_out++; 1873 sdkp->ignore_medium_access_errors = true; 1874 } 1875 1876 /* 1877 * If the device keeps failing read/write commands but TEST UNIT 1878 * READY always completes successfully we assume that medium 1879 * access is no longer possible and take the device offline. 1880 */ 1881 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1882 scmd_printk(KERN_ERR, scmd, 1883 "Medium access timeout failure. Offlining disk!\n"); 1884 mutex_lock(&sdev->state_mutex); 1885 scsi_device_set_state(sdev, SDEV_OFFLINE); 1886 mutex_unlock(&sdev->state_mutex); 1887 1888 return SUCCESS; 1889 } 1890 1891 return eh_disp; 1892 } 1893 1894 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1895 { 1896 struct request *req = scmd->request; 1897 struct scsi_device *sdev = scmd->device; 1898 unsigned int transferred, good_bytes; 1899 u64 start_lba, end_lba, bad_lba; 1900 1901 /* 1902 * Some commands have a payload smaller than the device logical 1903 * block size (e.g. INQUIRY on a 4K disk). 1904 */ 1905 if (scsi_bufflen(scmd) <= sdev->sector_size) 1906 return 0; 1907 1908 /* Check if we have a 'bad_lba' information */ 1909 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1910 SCSI_SENSE_BUFFERSIZE, 1911 &bad_lba)) 1912 return 0; 1913 1914 /* 1915 * If the bad lba was reported incorrectly, we have no idea where 1916 * the error is. 1917 */ 1918 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1919 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1920 if (bad_lba < start_lba || bad_lba >= end_lba) 1921 return 0; 1922 1923 /* 1924 * resid is optional but mostly filled in. When it's unused, 1925 * its value is zero, so we assume the whole buffer transferred 1926 */ 1927 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1928 1929 /* This computation should always be done in terms of the 1930 * resolution of the device's medium. 1931 */ 1932 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1933 1934 return min(good_bytes, transferred); 1935 } 1936 1937 /** 1938 * sd_done - bottom half handler: called when the lower level 1939 * driver has completed (successfully or otherwise) a scsi command. 1940 * @SCpnt: mid-level's per command structure. 1941 * 1942 * Note: potentially run from within an ISR. Must not block. 1943 **/ 1944 static int sd_done(struct scsi_cmnd *SCpnt) 1945 { 1946 int result = SCpnt->result; 1947 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1948 unsigned int sector_size = SCpnt->device->sector_size; 1949 unsigned int resid; 1950 struct scsi_sense_hdr sshdr; 1951 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1952 struct request *req = SCpnt->request; 1953 int sense_valid = 0; 1954 int sense_deferred = 0; 1955 1956 switch (req_op(req)) { 1957 case REQ_OP_DISCARD: 1958 case REQ_OP_WRITE_ZEROES: 1959 case REQ_OP_WRITE_SAME: 1960 case REQ_OP_ZONE_RESET: 1961 if (!result) { 1962 good_bytes = blk_rq_bytes(req); 1963 scsi_set_resid(SCpnt, 0); 1964 } else { 1965 good_bytes = 0; 1966 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1967 } 1968 break; 1969 default: 1970 /* 1971 * In case of bogus fw or device, we could end up having 1972 * an unaligned partial completion. Check this here and force 1973 * alignment. 1974 */ 1975 resid = scsi_get_resid(SCpnt); 1976 if (resid & (sector_size - 1)) { 1977 sd_printk(KERN_INFO, sdkp, 1978 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 1979 resid, sector_size); 1980 resid = min(scsi_bufflen(SCpnt), 1981 round_up(resid, sector_size)); 1982 scsi_set_resid(SCpnt, resid); 1983 } 1984 } 1985 1986 if (result) { 1987 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1988 if (sense_valid) 1989 sense_deferred = scsi_sense_is_deferred(&sshdr); 1990 } 1991 sdkp->medium_access_timed_out = 0; 1992 1993 if (driver_byte(result) != DRIVER_SENSE && 1994 (!sense_valid || sense_deferred)) 1995 goto out; 1996 1997 switch (sshdr.sense_key) { 1998 case HARDWARE_ERROR: 1999 case MEDIUM_ERROR: 2000 good_bytes = sd_completed_bytes(SCpnt); 2001 break; 2002 case RECOVERED_ERROR: 2003 good_bytes = scsi_bufflen(SCpnt); 2004 break; 2005 case NO_SENSE: 2006 /* This indicates a false check condition, so ignore it. An 2007 * unknown amount of data was transferred so treat it as an 2008 * error. 2009 */ 2010 SCpnt->result = 0; 2011 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2012 break; 2013 case ABORTED_COMMAND: 2014 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2015 good_bytes = sd_completed_bytes(SCpnt); 2016 break; 2017 case ILLEGAL_REQUEST: 2018 switch (sshdr.asc) { 2019 case 0x10: /* DIX: Host detected corruption */ 2020 good_bytes = sd_completed_bytes(SCpnt); 2021 break; 2022 case 0x20: /* INVALID COMMAND OPCODE */ 2023 case 0x24: /* INVALID FIELD IN CDB */ 2024 switch (SCpnt->cmnd[0]) { 2025 case UNMAP: 2026 sd_config_discard(sdkp, SD_LBP_DISABLE); 2027 break; 2028 case WRITE_SAME_16: 2029 case WRITE_SAME: 2030 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2031 sd_config_discard(sdkp, SD_LBP_DISABLE); 2032 } else { 2033 sdkp->device->no_write_same = 1; 2034 sd_config_write_same(sdkp); 2035 req->rq_flags |= RQF_QUIET; 2036 } 2037 break; 2038 } 2039 } 2040 break; 2041 default: 2042 break; 2043 } 2044 2045 out: 2046 if (sd_is_zoned(sdkp)) 2047 sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2048 2049 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2050 "sd_done: completed %d of %d bytes\n", 2051 good_bytes, scsi_bufflen(SCpnt))); 2052 2053 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt) && 2054 good_bytes) 2055 t10_pi_complete(SCpnt->request, sdkp->protection_type, 2056 good_bytes / scsi_prot_interval(SCpnt)); 2057 2058 return good_bytes; 2059 } 2060 2061 /* 2062 * spinup disk - called only in sd_revalidate_disk() 2063 */ 2064 static void 2065 sd_spinup_disk(struct scsi_disk *sdkp) 2066 { 2067 unsigned char cmd[10]; 2068 unsigned long spintime_expire = 0; 2069 int retries, spintime; 2070 unsigned int the_result; 2071 struct scsi_sense_hdr sshdr; 2072 int sense_valid = 0; 2073 2074 spintime = 0; 2075 2076 /* Spin up drives, as required. Only do this at boot time */ 2077 /* Spinup needs to be done for module loads too. */ 2078 do { 2079 retries = 0; 2080 2081 do { 2082 cmd[0] = TEST_UNIT_READY; 2083 memset((void *) &cmd[1], 0, 9); 2084 2085 the_result = scsi_execute_req(sdkp->device, cmd, 2086 DMA_NONE, NULL, 0, 2087 &sshdr, SD_TIMEOUT, 2088 SD_MAX_RETRIES, NULL); 2089 2090 /* 2091 * If the drive has indicated to us that it 2092 * doesn't have any media in it, don't bother 2093 * with any more polling. 2094 */ 2095 if (media_not_present(sdkp, &sshdr)) 2096 return; 2097 2098 if (the_result) 2099 sense_valid = scsi_sense_valid(&sshdr); 2100 retries++; 2101 } while (retries < 3 && 2102 (!scsi_status_is_good(the_result) || 2103 ((driver_byte(the_result) == DRIVER_SENSE) && 2104 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2105 2106 if (driver_byte(the_result) != DRIVER_SENSE) { 2107 /* no sense, TUR either succeeded or failed 2108 * with a status error */ 2109 if(!spintime && !scsi_status_is_good(the_result)) { 2110 sd_print_result(sdkp, "Test Unit Ready failed", 2111 the_result); 2112 } 2113 break; 2114 } 2115 2116 /* 2117 * The device does not want the automatic start to be issued. 2118 */ 2119 if (sdkp->device->no_start_on_add) 2120 break; 2121 2122 if (sense_valid && sshdr.sense_key == NOT_READY) { 2123 if (sshdr.asc == 4 && sshdr.ascq == 3) 2124 break; /* manual intervention required */ 2125 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2126 break; /* standby */ 2127 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2128 break; /* unavailable */ 2129 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2130 break; /* sanitize in progress */ 2131 /* 2132 * Issue command to spin up drive when not ready 2133 */ 2134 if (!spintime) { 2135 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2136 cmd[0] = START_STOP; 2137 cmd[1] = 1; /* Return immediately */ 2138 memset((void *) &cmd[2], 0, 8); 2139 cmd[4] = 1; /* Start spin cycle */ 2140 if (sdkp->device->start_stop_pwr_cond) 2141 cmd[4] |= 1 << 4; 2142 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2143 NULL, 0, &sshdr, 2144 SD_TIMEOUT, SD_MAX_RETRIES, 2145 NULL); 2146 spintime_expire = jiffies + 100 * HZ; 2147 spintime = 1; 2148 } 2149 /* Wait 1 second for next try */ 2150 msleep(1000); 2151 printk(KERN_CONT "."); 2152 2153 /* 2154 * Wait for USB flash devices with slow firmware. 2155 * Yes, this sense key/ASC combination shouldn't 2156 * occur here. It's characteristic of these devices. 2157 */ 2158 } else if (sense_valid && 2159 sshdr.sense_key == UNIT_ATTENTION && 2160 sshdr.asc == 0x28) { 2161 if (!spintime) { 2162 spintime_expire = jiffies + 5 * HZ; 2163 spintime = 1; 2164 } 2165 /* Wait 1 second for next try */ 2166 msleep(1000); 2167 } else { 2168 /* we don't understand the sense code, so it's 2169 * probably pointless to loop */ 2170 if(!spintime) { 2171 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2172 sd_print_sense_hdr(sdkp, &sshdr); 2173 } 2174 break; 2175 } 2176 2177 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2178 2179 if (spintime) { 2180 if (scsi_status_is_good(the_result)) 2181 printk(KERN_CONT "ready\n"); 2182 else 2183 printk(KERN_CONT "not responding...\n"); 2184 } 2185 } 2186 2187 /* 2188 * Determine whether disk supports Data Integrity Field. 2189 */ 2190 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2191 { 2192 struct scsi_device *sdp = sdkp->device; 2193 u8 type; 2194 int ret = 0; 2195 2196 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 2197 return ret; 2198 2199 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2200 2201 if (type > T10_PI_TYPE3_PROTECTION) 2202 ret = -ENODEV; 2203 else if (scsi_host_dif_capable(sdp->host, type)) 2204 ret = 1; 2205 2206 if (sdkp->first_scan || type != sdkp->protection_type) 2207 switch (ret) { 2208 case -ENODEV: 2209 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2210 " protection type %u. Disabling disk!\n", 2211 type); 2212 break; 2213 case 1: 2214 sd_printk(KERN_NOTICE, sdkp, 2215 "Enabling DIF Type %u protection\n", type); 2216 break; 2217 case 0: 2218 sd_printk(KERN_NOTICE, sdkp, 2219 "Disabling DIF Type %u protection\n", type); 2220 break; 2221 } 2222 2223 sdkp->protection_type = type; 2224 2225 return ret; 2226 } 2227 2228 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2229 struct scsi_sense_hdr *sshdr, int sense_valid, 2230 int the_result) 2231 { 2232 if (driver_byte(the_result) == DRIVER_SENSE) 2233 sd_print_sense_hdr(sdkp, sshdr); 2234 else 2235 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2236 2237 /* 2238 * Set dirty bit for removable devices if not ready - 2239 * sometimes drives will not report this properly. 2240 */ 2241 if (sdp->removable && 2242 sense_valid && sshdr->sense_key == NOT_READY) 2243 set_media_not_present(sdkp); 2244 2245 /* 2246 * We used to set media_present to 0 here to indicate no media 2247 * in the drive, but some drives fail read capacity even with 2248 * media present, so we can't do that. 2249 */ 2250 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2251 } 2252 2253 #define RC16_LEN 32 2254 #if RC16_LEN > SD_BUF_SIZE 2255 #error RC16_LEN must not be more than SD_BUF_SIZE 2256 #endif 2257 2258 #define READ_CAPACITY_RETRIES_ON_RESET 10 2259 2260 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2261 unsigned char *buffer) 2262 { 2263 unsigned char cmd[16]; 2264 struct scsi_sense_hdr sshdr; 2265 int sense_valid = 0; 2266 int the_result; 2267 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2268 unsigned int alignment; 2269 unsigned long long lba; 2270 unsigned sector_size; 2271 2272 if (sdp->no_read_capacity_16) 2273 return -EINVAL; 2274 2275 do { 2276 memset(cmd, 0, 16); 2277 cmd[0] = SERVICE_ACTION_IN_16; 2278 cmd[1] = SAI_READ_CAPACITY_16; 2279 cmd[13] = RC16_LEN; 2280 memset(buffer, 0, RC16_LEN); 2281 2282 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2283 buffer, RC16_LEN, &sshdr, 2284 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2285 2286 if (media_not_present(sdkp, &sshdr)) 2287 return -ENODEV; 2288 2289 if (the_result) { 2290 sense_valid = scsi_sense_valid(&sshdr); 2291 if (sense_valid && 2292 sshdr.sense_key == ILLEGAL_REQUEST && 2293 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2294 sshdr.ascq == 0x00) 2295 /* Invalid Command Operation Code or 2296 * Invalid Field in CDB, just retry 2297 * silently with RC10 */ 2298 return -EINVAL; 2299 if (sense_valid && 2300 sshdr.sense_key == UNIT_ATTENTION && 2301 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2302 /* Device reset might occur several times, 2303 * give it one more chance */ 2304 if (--reset_retries > 0) 2305 continue; 2306 } 2307 retries--; 2308 2309 } while (the_result && retries); 2310 2311 if (the_result) { 2312 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2313 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2314 return -EINVAL; 2315 } 2316 2317 sector_size = get_unaligned_be32(&buffer[8]); 2318 lba = get_unaligned_be64(&buffer[0]); 2319 2320 if (sd_read_protection_type(sdkp, buffer) < 0) { 2321 sdkp->capacity = 0; 2322 return -ENODEV; 2323 } 2324 2325 /* Logical blocks per physical block exponent */ 2326 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2327 2328 /* RC basis */ 2329 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2330 2331 /* Lowest aligned logical block */ 2332 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2333 blk_queue_alignment_offset(sdp->request_queue, alignment); 2334 if (alignment && sdkp->first_scan) 2335 sd_printk(KERN_NOTICE, sdkp, 2336 "physical block alignment offset: %u\n", alignment); 2337 2338 if (buffer[14] & 0x80) { /* LBPME */ 2339 sdkp->lbpme = 1; 2340 2341 if (buffer[14] & 0x40) /* LBPRZ */ 2342 sdkp->lbprz = 1; 2343 2344 sd_config_discard(sdkp, SD_LBP_WS16); 2345 } 2346 2347 sdkp->capacity = lba + 1; 2348 return sector_size; 2349 } 2350 2351 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2352 unsigned char *buffer) 2353 { 2354 unsigned char cmd[16]; 2355 struct scsi_sense_hdr sshdr; 2356 int sense_valid = 0; 2357 int the_result; 2358 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2359 sector_t lba; 2360 unsigned sector_size; 2361 2362 do { 2363 cmd[0] = READ_CAPACITY; 2364 memset(&cmd[1], 0, 9); 2365 memset(buffer, 0, 8); 2366 2367 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2368 buffer, 8, &sshdr, 2369 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2370 2371 if (media_not_present(sdkp, &sshdr)) 2372 return -ENODEV; 2373 2374 if (the_result) { 2375 sense_valid = scsi_sense_valid(&sshdr); 2376 if (sense_valid && 2377 sshdr.sense_key == UNIT_ATTENTION && 2378 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2379 /* Device reset might occur several times, 2380 * give it one more chance */ 2381 if (--reset_retries > 0) 2382 continue; 2383 } 2384 retries--; 2385 2386 } while (the_result && retries); 2387 2388 if (the_result) { 2389 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2390 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2391 return -EINVAL; 2392 } 2393 2394 sector_size = get_unaligned_be32(&buffer[4]); 2395 lba = get_unaligned_be32(&buffer[0]); 2396 2397 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2398 /* Some buggy (usb cardreader) devices return an lba of 2399 0xffffffff when the want to report a size of 0 (with 2400 which they really mean no media is present) */ 2401 sdkp->capacity = 0; 2402 sdkp->physical_block_size = sector_size; 2403 return sector_size; 2404 } 2405 2406 sdkp->capacity = lba + 1; 2407 sdkp->physical_block_size = sector_size; 2408 return sector_size; 2409 } 2410 2411 static int sd_try_rc16_first(struct scsi_device *sdp) 2412 { 2413 if (sdp->host->max_cmd_len < 16) 2414 return 0; 2415 if (sdp->try_rc_10_first) 2416 return 0; 2417 if (sdp->scsi_level > SCSI_SPC_2) 2418 return 1; 2419 if (scsi_device_protection(sdp)) 2420 return 1; 2421 return 0; 2422 } 2423 2424 /* 2425 * read disk capacity 2426 */ 2427 static void 2428 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2429 { 2430 int sector_size; 2431 struct scsi_device *sdp = sdkp->device; 2432 2433 if (sd_try_rc16_first(sdp)) { 2434 sector_size = read_capacity_16(sdkp, sdp, buffer); 2435 if (sector_size == -EOVERFLOW) 2436 goto got_data; 2437 if (sector_size == -ENODEV) 2438 return; 2439 if (sector_size < 0) 2440 sector_size = read_capacity_10(sdkp, sdp, buffer); 2441 if (sector_size < 0) 2442 return; 2443 } else { 2444 sector_size = read_capacity_10(sdkp, sdp, buffer); 2445 if (sector_size == -EOVERFLOW) 2446 goto got_data; 2447 if (sector_size < 0) 2448 return; 2449 if ((sizeof(sdkp->capacity) > 4) && 2450 (sdkp->capacity > 0xffffffffULL)) { 2451 int old_sector_size = sector_size; 2452 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2453 "Trying to use READ CAPACITY(16).\n"); 2454 sector_size = read_capacity_16(sdkp, sdp, buffer); 2455 if (sector_size < 0) { 2456 sd_printk(KERN_NOTICE, sdkp, 2457 "Using 0xffffffff as device size\n"); 2458 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2459 sector_size = old_sector_size; 2460 goto got_data; 2461 } 2462 /* Remember that READ CAPACITY(16) succeeded */ 2463 sdp->try_rc_10_first = 0; 2464 } 2465 } 2466 2467 /* Some devices are known to return the total number of blocks, 2468 * not the highest block number. Some devices have versions 2469 * which do this and others which do not. Some devices we might 2470 * suspect of doing this but we don't know for certain. 2471 * 2472 * If we know the reported capacity is wrong, decrement it. If 2473 * we can only guess, then assume the number of blocks is even 2474 * (usually true but not always) and err on the side of lowering 2475 * the capacity. 2476 */ 2477 if (sdp->fix_capacity || 2478 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2479 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2480 "from its reported value: %llu\n", 2481 (unsigned long long) sdkp->capacity); 2482 --sdkp->capacity; 2483 } 2484 2485 got_data: 2486 if (sector_size == 0) { 2487 sector_size = 512; 2488 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2489 "assuming 512.\n"); 2490 } 2491 2492 if (sector_size != 512 && 2493 sector_size != 1024 && 2494 sector_size != 2048 && 2495 sector_size != 4096) { 2496 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2497 sector_size); 2498 /* 2499 * The user might want to re-format the drive with 2500 * a supported sectorsize. Once this happens, it 2501 * would be relatively trivial to set the thing up. 2502 * For this reason, we leave the thing in the table. 2503 */ 2504 sdkp->capacity = 0; 2505 /* 2506 * set a bogus sector size so the normal read/write 2507 * logic in the block layer will eventually refuse any 2508 * request on this device without tripping over power 2509 * of two sector size assumptions 2510 */ 2511 sector_size = 512; 2512 } 2513 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2514 blk_queue_physical_block_size(sdp->request_queue, 2515 sdkp->physical_block_size); 2516 sdkp->device->sector_size = sector_size; 2517 2518 if (sdkp->capacity > 0xffffffff) 2519 sdp->use_16_for_rw = 1; 2520 2521 } 2522 2523 /* 2524 * Print disk capacity 2525 */ 2526 static void 2527 sd_print_capacity(struct scsi_disk *sdkp, 2528 sector_t old_capacity) 2529 { 2530 int sector_size = sdkp->device->sector_size; 2531 char cap_str_2[10], cap_str_10[10]; 2532 2533 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2534 return; 2535 2536 string_get_size(sdkp->capacity, sector_size, 2537 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2538 string_get_size(sdkp->capacity, sector_size, 2539 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2540 2541 sd_printk(KERN_NOTICE, sdkp, 2542 "%llu %d-byte logical blocks: (%s/%s)\n", 2543 (unsigned long long)sdkp->capacity, 2544 sector_size, cap_str_10, cap_str_2); 2545 2546 if (sdkp->physical_block_size != sector_size) 2547 sd_printk(KERN_NOTICE, sdkp, 2548 "%u-byte physical blocks\n", 2549 sdkp->physical_block_size); 2550 2551 sd_zbc_print_zones(sdkp); 2552 } 2553 2554 /* called with buffer of length 512 */ 2555 static inline int 2556 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2557 unsigned char *buffer, int len, struct scsi_mode_data *data, 2558 struct scsi_sense_hdr *sshdr) 2559 { 2560 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2561 SD_TIMEOUT, SD_MAX_RETRIES, data, 2562 sshdr); 2563 } 2564 2565 /* 2566 * read write protect setting, if possible - called only in sd_revalidate_disk() 2567 * called with buffer of length SD_BUF_SIZE 2568 */ 2569 static void 2570 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2571 { 2572 int res; 2573 struct scsi_device *sdp = sdkp->device; 2574 struct scsi_mode_data data; 2575 int disk_ro = get_disk_ro(sdkp->disk); 2576 int old_wp = sdkp->write_prot; 2577 2578 set_disk_ro(sdkp->disk, 0); 2579 if (sdp->skip_ms_page_3f) { 2580 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2581 return; 2582 } 2583 2584 if (sdp->use_192_bytes_for_3f) { 2585 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2586 } else { 2587 /* 2588 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2589 * We have to start carefully: some devices hang if we ask 2590 * for more than is available. 2591 */ 2592 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2593 2594 /* 2595 * Second attempt: ask for page 0 When only page 0 is 2596 * implemented, a request for page 3F may return Sense Key 2597 * 5: Illegal Request, Sense Code 24: Invalid field in 2598 * CDB. 2599 */ 2600 if (!scsi_status_is_good(res)) 2601 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2602 2603 /* 2604 * Third attempt: ask 255 bytes, as we did earlier. 2605 */ 2606 if (!scsi_status_is_good(res)) 2607 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2608 &data, NULL); 2609 } 2610 2611 if (!scsi_status_is_good(res)) { 2612 sd_first_printk(KERN_WARNING, sdkp, 2613 "Test WP failed, assume Write Enabled\n"); 2614 } else { 2615 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2616 set_disk_ro(sdkp->disk, sdkp->write_prot || disk_ro); 2617 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2618 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2619 sdkp->write_prot ? "on" : "off"); 2620 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2621 } 2622 } 2623 } 2624 2625 /* 2626 * sd_read_cache_type - called only from sd_revalidate_disk() 2627 * called with buffer of length SD_BUF_SIZE 2628 */ 2629 static void 2630 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2631 { 2632 int len = 0, res; 2633 struct scsi_device *sdp = sdkp->device; 2634 2635 int dbd; 2636 int modepage; 2637 int first_len; 2638 struct scsi_mode_data data; 2639 struct scsi_sense_hdr sshdr; 2640 int old_wce = sdkp->WCE; 2641 int old_rcd = sdkp->RCD; 2642 int old_dpofua = sdkp->DPOFUA; 2643 2644 2645 if (sdkp->cache_override) 2646 return; 2647 2648 first_len = 4; 2649 if (sdp->skip_ms_page_8) { 2650 if (sdp->type == TYPE_RBC) 2651 goto defaults; 2652 else { 2653 if (sdp->skip_ms_page_3f) 2654 goto defaults; 2655 modepage = 0x3F; 2656 if (sdp->use_192_bytes_for_3f) 2657 first_len = 192; 2658 dbd = 0; 2659 } 2660 } else if (sdp->type == TYPE_RBC) { 2661 modepage = 6; 2662 dbd = 8; 2663 } else { 2664 modepage = 8; 2665 dbd = 0; 2666 } 2667 2668 /* cautiously ask */ 2669 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2670 &data, &sshdr); 2671 2672 if (!scsi_status_is_good(res)) 2673 goto bad_sense; 2674 2675 if (!data.header_length) { 2676 modepage = 6; 2677 first_len = 0; 2678 sd_first_printk(KERN_ERR, sdkp, 2679 "Missing header in MODE_SENSE response\n"); 2680 } 2681 2682 /* that went OK, now ask for the proper length */ 2683 len = data.length; 2684 2685 /* 2686 * We're only interested in the first three bytes, actually. 2687 * But the data cache page is defined for the first 20. 2688 */ 2689 if (len < 3) 2690 goto bad_sense; 2691 else if (len > SD_BUF_SIZE) { 2692 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2693 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2694 len = SD_BUF_SIZE; 2695 } 2696 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2697 len = 192; 2698 2699 /* Get the data */ 2700 if (len > first_len) 2701 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2702 &data, &sshdr); 2703 2704 if (scsi_status_is_good(res)) { 2705 int offset = data.header_length + data.block_descriptor_length; 2706 2707 while (offset < len) { 2708 u8 page_code = buffer[offset] & 0x3F; 2709 u8 spf = buffer[offset] & 0x40; 2710 2711 if (page_code == 8 || page_code == 6) { 2712 /* We're interested only in the first 3 bytes. 2713 */ 2714 if (len - offset <= 2) { 2715 sd_first_printk(KERN_ERR, sdkp, 2716 "Incomplete mode parameter " 2717 "data\n"); 2718 goto defaults; 2719 } else { 2720 modepage = page_code; 2721 goto Page_found; 2722 } 2723 } else { 2724 /* Go to the next page */ 2725 if (spf && len - offset > 3) 2726 offset += 4 + (buffer[offset+2] << 8) + 2727 buffer[offset+3]; 2728 else if (!spf && len - offset > 1) 2729 offset += 2 + buffer[offset+1]; 2730 else { 2731 sd_first_printk(KERN_ERR, sdkp, 2732 "Incomplete mode " 2733 "parameter data\n"); 2734 goto defaults; 2735 } 2736 } 2737 } 2738 2739 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2740 goto defaults; 2741 2742 Page_found: 2743 if (modepage == 8) { 2744 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2745 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2746 } else { 2747 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2748 sdkp->RCD = 0; 2749 } 2750 2751 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2752 if (sdp->broken_fua) { 2753 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2754 sdkp->DPOFUA = 0; 2755 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2756 !sdkp->device->use_16_for_rw) { 2757 sd_first_printk(KERN_NOTICE, sdkp, 2758 "Uses READ/WRITE(6), disabling FUA\n"); 2759 sdkp->DPOFUA = 0; 2760 } 2761 2762 /* No cache flush allowed for write protected devices */ 2763 if (sdkp->WCE && sdkp->write_prot) 2764 sdkp->WCE = 0; 2765 2766 if (sdkp->first_scan || old_wce != sdkp->WCE || 2767 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2768 sd_printk(KERN_NOTICE, sdkp, 2769 "Write cache: %s, read cache: %s, %s\n", 2770 sdkp->WCE ? "enabled" : "disabled", 2771 sdkp->RCD ? "disabled" : "enabled", 2772 sdkp->DPOFUA ? "supports DPO and FUA" 2773 : "doesn't support DPO or FUA"); 2774 2775 return; 2776 } 2777 2778 bad_sense: 2779 if (scsi_sense_valid(&sshdr) && 2780 sshdr.sense_key == ILLEGAL_REQUEST && 2781 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2782 /* Invalid field in CDB */ 2783 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2784 else 2785 sd_first_printk(KERN_ERR, sdkp, 2786 "Asking for cache data failed\n"); 2787 2788 defaults: 2789 if (sdp->wce_default_on) { 2790 sd_first_printk(KERN_NOTICE, sdkp, 2791 "Assuming drive cache: write back\n"); 2792 sdkp->WCE = 1; 2793 } else { 2794 sd_first_printk(KERN_ERR, sdkp, 2795 "Assuming drive cache: write through\n"); 2796 sdkp->WCE = 0; 2797 } 2798 sdkp->RCD = 0; 2799 sdkp->DPOFUA = 0; 2800 } 2801 2802 /* 2803 * The ATO bit indicates whether the DIF application tag is available 2804 * for use by the operating system. 2805 */ 2806 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2807 { 2808 int res, offset; 2809 struct scsi_device *sdp = sdkp->device; 2810 struct scsi_mode_data data; 2811 struct scsi_sense_hdr sshdr; 2812 2813 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2814 return; 2815 2816 if (sdkp->protection_type == 0) 2817 return; 2818 2819 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2820 SD_MAX_RETRIES, &data, &sshdr); 2821 2822 if (!scsi_status_is_good(res) || !data.header_length || 2823 data.length < 6) { 2824 sd_first_printk(KERN_WARNING, sdkp, 2825 "getting Control mode page failed, assume no ATO\n"); 2826 2827 if (scsi_sense_valid(&sshdr)) 2828 sd_print_sense_hdr(sdkp, &sshdr); 2829 2830 return; 2831 } 2832 2833 offset = data.header_length + data.block_descriptor_length; 2834 2835 if ((buffer[offset] & 0x3f) != 0x0a) { 2836 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2837 return; 2838 } 2839 2840 if ((buffer[offset + 5] & 0x80) == 0) 2841 return; 2842 2843 sdkp->ATO = 1; 2844 2845 return; 2846 } 2847 2848 /** 2849 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2850 * @sdkp: disk to query 2851 */ 2852 static void sd_read_block_limits(struct scsi_disk *sdkp) 2853 { 2854 unsigned int sector_sz = sdkp->device->sector_size; 2855 const int vpd_len = 64; 2856 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2857 2858 if (!buffer || 2859 /* Block Limits VPD */ 2860 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2861 goto out; 2862 2863 blk_queue_io_min(sdkp->disk->queue, 2864 get_unaligned_be16(&buffer[6]) * sector_sz); 2865 2866 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2867 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2868 2869 if (buffer[3] == 0x3c) { 2870 unsigned int lba_count, desc_count; 2871 2872 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2873 2874 if (!sdkp->lbpme) 2875 goto out; 2876 2877 lba_count = get_unaligned_be32(&buffer[20]); 2878 desc_count = get_unaligned_be32(&buffer[24]); 2879 2880 if (lba_count && desc_count) 2881 sdkp->max_unmap_blocks = lba_count; 2882 2883 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2884 2885 if (buffer[32] & 0x80) 2886 sdkp->unmap_alignment = 2887 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2888 2889 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2890 2891 if (sdkp->max_unmap_blocks) 2892 sd_config_discard(sdkp, SD_LBP_UNMAP); 2893 else 2894 sd_config_discard(sdkp, SD_LBP_WS16); 2895 2896 } else { /* LBP VPD page tells us what to use */ 2897 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2898 sd_config_discard(sdkp, SD_LBP_UNMAP); 2899 else if (sdkp->lbpws) 2900 sd_config_discard(sdkp, SD_LBP_WS16); 2901 else if (sdkp->lbpws10) 2902 sd_config_discard(sdkp, SD_LBP_WS10); 2903 else 2904 sd_config_discard(sdkp, SD_LBP_DISABLE); 2905 } 2906 } 2907 2908 out: 2909 kfree(buffer); 2910 } 2911 2912 /** 2913 * sd_read_block_characteristics - Query block dev. characteristics 2914 * @sdkp: disk to query 2915 */ 2916 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2917 { 2918 struct request_queue *q = sdkp->disk->queue; 2919 unsigned char *buffer; 2920 u16 rot; 2921 const int vpd_len = 64; 2922 2923 buffer = kmalloc(vpd_len, GFP_KERNEL); 2924 2925 if (!buffer || 2926 /* Block Device Characteristics VPD */ 2927 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2928 goto out; 2929 2930 rot = get_unaligned_be16(&buffer[4]); 2931 2932 if (rot == 1) { 2933 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2934 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2935 } 2936 2937 if (sdkp->device->type == TYPE_ZBC) { 2938 /* Host-managed */ 2939 q->limits.zoned = BLK_ZONED_HM; 2940 } else { 2941 sdkp->zoned = (buffer[8] >> 4) & 3; 2942 if (sdkp->zoned == 1) 2943 /* Host-aware */ 2944 q->limits.zoned = BLK_ZONED_HA; 2945 else 2946 /* 2947 * Treat drive-managed devices as 2948 * regular block devices. 2949 */ 2950 q->limits.zoned = BLK_ZONED_NONE; 2951 } 2952 if (blk_queue_is_zoned(q) && sdkp->first_scan) 2953 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2954 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2955 2956 out: 2957 kfree(buffer); 2958 } 2959 2960 /** 2961 * sd_read_block_provisioning - Query provisioning VPD page 2962 * @sdkp: disk to query 2963 */ 2964 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2965 { 2966 unsigned char *buffer; 2967 const int vpd_len = 8; 2968 2969 if (sdkp->lbpme == 0) 2970 return; 2971 2972 buffer = kmalloc(vpd_len, GFP_KERNEL); 2973 2974 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2975 goto out; 2976 2977 sdkp->lbpvpd = 1; 2978 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 2979 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 2980 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 2981 2982 out: 2983 kfree(buffer); 2984 } 2985 2986 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 2987 { 2988 struct scsi_device *sdev = sdkp->device; 2989 2990 if (sdev->host->no_write_same) { 2991 sdev->no_write_same = 1; 2992 2993 return; 2994 } 2995 2996 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 2997 /* too large values might cause issues with arcmsr */ 2998 int vpd_buf_len = 64; 2999 3000 sdev->no_report_opcodes = 1; 3001 3002 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3003 * CODES is unsupported and the device has an ATA 3004 * Information VPD page (SAT). 3005 */ 3006 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3007 sdev->no_write_same = 1; 3008 } 3009 3010 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3011 sdkp->ws16 = 1; 3012 3013 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3014 sdkp->ws10 = 1; 3015 } 3016 3017 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3018 { 3019 struct scsi_device *sdev = sdkp->device; 3020 3021 if (!sdev->security_supported) 3022 return; 3023 3024 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3025 SECURITY_PROTOCOL_IN) == 1 && 3026 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3027 SECURITY_PROTOCOL_OUT) == 1) 3028 sdkp->security = 1; 3029 } 3030 3031 /* 3032 * Determine the device's preferred I/O size for reads and writes 3033 * unless the reported value is unreasonably small, large, not a 3034 * multiple of the physical block size, or simply garbage. 3035 */ 3036 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3037 unsigned int dev_max) 3038 { 3039 struct scsi_device *sdp = sdkp->device; 3040 unsigned int opt_xfer_bytes = 3041 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3042 3043 if (sdkp->opt_xfer_blocks == 0) 3044 return false; 3045 3046 if (sdkp->opt_xfer_blocks > dev_max) { 3047 sd_first_printk(KERN_WARNING, sdkp, 3048 "Optimal transfer size %u logical blocks " \ 3049 "> dev_max (%u logical blocks)\n", 3050 sdkp->opt_xfer_blocks, dev_max); 3051 return false; 3052 } 3053 3054 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3055 sd_first_printk(KERN_WARNING, sdkp, 3056 "Optimal transfer size %u logical blocks " \ 3057 "> sd driver limit (%u logical blocks)\n", 3058 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3059 return false; 3060 } 3061 3062 if (opt_xfer_bytes < PAGE_SIZE) { 3063 sd_first_printk(KERN_WARNING, sdkp, 3064 "Optimal transfer size %u bytes < " \ 3065 "PAGE_SIZE (%u bytes)\n", 3066 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3067 return false; 3068 } 3069 3070 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3071 sd_first_printk(KERN_WARNING, sdkp, 3072 "Optimal transfer size %u bytes not a " \ 3073 "multiple of physical block size (%u bytes)\n", 3074 opt_xfer_bytes, sdkp->physical_block_size); 3075 return false; 3076 } 3077 3078 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3079 opt_xfer_bytes); 3080 return true; 3081 } 3082 3083 /** 3084 * sd_revalidate_disk - called the first time a new disk is seen, 3085 * performs disk spin up, read_capacity, etc. 3086 * @disk: struct gendisk we care about 3087 **/ 3088 static int sd_revalidate_disk(struct gendisk *disk) 3089 { 3090 struct scsi_disk *sdkp = scsi_disk(disk); 3091 struct scsi_device *sdp = sdkp->device; 3092 struct request_queue *q = sdkp->disk->queue; 3093 sector_t old_capacity = sdkp->capacity; 3094 unsigned char *buffer; 3095 unsigned int dev_max, rw_max; 3096 3097 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3098 "sd_revalidate_disk\n")); 3099 3100 /* 3101 * If the device is offline, don't try and read capacity or any 3102 * of the other niceties. 3103 */ 3104 if (!scsi_device_online(sdp)) 3105 goto out; 3106 3107 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3108 if (!buffer) { 3109 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3110 "allocation failure.\n"); 3111 goto out; 3112 } 3113 3114 sd_spinup_disk(sdkp); 3115 3116 /* 3117 * Without media there is no reason to ask; moreover, some devices 3118 * react badly if we do. 3119 */ 3120 if (sdkp->media_present) { 3121 sd_read_capacity(sdkp, buffer); 3122 3123 /* 3124 * set the default to rotational. All non-rotational devices 3125 * support the block characteristics VPD page, which will 3126 * cause this to be updated correctly and any device which 3127 * doesn't support it should be treated as rotational. 3128 */ 3129 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3130 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3131 3132 if (scsi_device_supports_vpd(sdp)) { 3133 sd_read_block_provisioning(sdkp); 3134 sd_read_block_limits(sdkp); 3135 sd_read_block_characteristics(sdkp); 3136 sd_zbc_read_zones(sdkp, buffer); 3137 } 3138 3139 sd_print_capacity(sdkp, old_capacity); 3140 3141 sd_read_write_protect_flag(sdkp, buffer); 3142 sd_read_cache_type(sdkp, buffer); 3143 sd_read_app_tag_own(sdkp, buffer); 3144 sd_read_write_same(sdkp, buffer); 3145 sd_read_security(sdkp, buffer); 3146 } 3147 3148 /* 3149 * We now have all cache related info, determine how we deal 3150 * with flush requests. 3151 */ 3152 sd_set_flush_flag(sdkp); 3153 3154 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3155 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3156 3157 /* Some devices report a maximum block count for READ/WRITE requests. */ 3158 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3159 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3160 3161 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3162 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3163 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3164 } else 3165 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3166 (sector_t)BLK_DEF_MAX_SECTORS); 3167 3168 /* Do not exceed controller limit */ 3169 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3170 3171 /* 3172 * Only update max_sectors if previously unset or if the current value 3173 * exceeds the capabilities of the hardware. 3174 */ 3175 if (sdkp->first_scan || 3176 q->limits.max_sectors > q->limits.max_dev_sectors || 3177 q->limits.max_sectors > q->limits.max_hw_sectors) 3178 q->limits.max_sectors = rw_max; 3179 3180 sdkp->first_scan = 0; 3181 3182 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); 3183 sd_config_write_same(sdkp); 3184 kfree(buffer); 3185 3186 out: 3187 return 0; 3188 } 3189 3190 /** 3191 * sd_unlock_native_capacity - unlock native capacity 3192 * @disk: struct gendisk to set capacity for 3193 * 3194 * Block layer calls this function if it detects that partitions 3195 * on @disk reach beyond the end of the device. If the SCSI host 3196 * implements ->unlock_native_capacity() method, it's invoked to 3197 * give it a chance to adjust the device capacity. 3198 * 3199 * CONTEXT: 3200 * Defined by block layer. Might sleep. 3201 */ 3202 static void sd_unlock_native_capacity(struct gendisk *disk) 3203 { 3204 struct scsi_device *sdev = scsi_disk(disk)->device; 3205 3206 if (sdev->host->hostt->unlock_native_capacity) 3207 sdev->host->hostt->unlock_native_capacity(sdev); 3208 } 3209 3210 /** 3211 * sd_format_disk_name - format disk name 3212 * @prefix: name prefix - ie. "sd" for SCSI disks 3213 * @index: index of the disk to format name for 3214 * @buf: output buffer 3215 * @buflen: length of the output buffer 3216 * 3217 * SCSI disk names starts at sda. The 26th device is sdz and the 3218 * 27th is sdaa. The last one for two lettered suffix is sdzz 3219 * which is followed by sdaaa. 3220 * 3221 * This is basically 26 base counting with one extra 'nil' entry 3222 * at the beginning from the second digit on and can be 3223 * determined using similar method as 26 base conversion with the 3224 * index shifted -1 after each digit is computed. 3225 * 3226 * CONTEXT: 3227 * Don't care. 3228 * 3229 * RETURNS: 3230 * 0 on success, -errno on failure. 3231 */ 3232 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3233 { 3234 const int base = 'z' - 'a' + 1; 3235 char *begin = buf + strlen(prefix); 3236 char *end = buf + buflen; 3237 char *p; 3238 int unit; 3239 3240 p = end - 1; 3241 *p = '\0'; 3242 unit = base; 3243 do { 3244 if (p == begin) 3245 return -EINVAL; 3246 *--p = 'a' + (index % unit); 3247 index = (index / unit) - 1; 3248 } while (index >= 0); 3249 3250 memmove(begin, p, end - p); 3251 memcpy(buf, prefix, strlen(prefix)); 3252 3253 return 0; 3254 } 3255 3256 /* 3257 * The asynchronous part of sd_probe 3258 */ 3259 static void sd_probe_async(void *data, async_cookie_t cookie) 3260 { 3261 struct scsi_disk *sdkp = data; 3262 struct scsi_device *sdp; 3263 struct gendisk *gd; 3264 u32 index; 3265 struct device *dev; 3266 3267 sdp = sdkp->device; 3268 gd = sdkp->disk; 3269 index = sdkp->index; 3270 dev = &sdp->sdev_gendev; 3271 3272 gd->major = sd_major((index & 0xf0) >> 4); 3273 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3274 3275 gd->fops = &sd_fops; 3276 gd->private_data = &sdkp->driver; 3277 gd->queue = sdkp->device->request_queue; 3278 3279 /* defaults, until the device tells us otherwise */ 3280 sdp->sector_size = 512; 3281 sdkp->capacity = 0; 3282 sdkp->media_present = 1; 3283 sdkp->write_prot = 0; 3284 sdkp->cache_override = 0; 3285 sdkp->WCE = 0; 3286 sdkp->RCD = 0; 3287 sdkp->ATO = 0; 3288 sdkp->first_scan = 1; 3289 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3290 3291 sd_revalidate_disk(gd); 3292 3293 gd->flags = GENHD_FL_EXT_DEVT; 3294 if (sdp->removable) { 3295 gd->flags |= GENHD_FL_REMOVABLE; 3296 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3297 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3298 } 3299 3300 blk_pm_runtime_init(sdp->request_queue, dev); 3301 device_add_disk(dev, gd, NULL); 3302 if (sdkp->capacity) 3303 sd_dif_config_host(sdkp); 3304 3305 sd_revalidate_disk(gd); 3306 3307 if (sdkp->security) { 3308 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit); 3309 if (sdkp->opal_dev) 3310 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3311 } 3312 3313 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3314 sdp->removable ? "removable " : ""); 3315 scsi_autopm_put_device(sdp); 3316 put_device(&sdkp->dev); 3317 } 3318 3319 /** 3320 * sd_probe - called during driver initialization and whenever a 3321 * new scsi device is attached to the system. It is called once 3322 * for each scsi device (not just disks) present. 3323 * @dev: pointer to device object 3324 * 3325 * Returns 0 if successful (or not interested in this scsi device 3326 * (e.g. scanner)); 1 when there is an error. 3327 * 3328 * Note: this function is invoked from the scsi mid-level. 3329 * This function sets up the mapping between a given 3330 * <host,channel,id,lun> (found in sdp) and new device name 3331 * (e.g. /dev/sda). More precisely it is the block device major 3332 * and minor number that is chosen here. 3333 * 3334 * Assume sd_probe is not re-entrant (for time being) 3335 * Also think about sd_probe() and sd_remove() running coincidentally. 3336 **/ 3337 static int sd_probe(struct device *dev) 3338 { 3339 struct scsi_device *sdp = to_scsi_device(dev); 3340 struct scsi_disk *sdkp; 3341 struct gendisk *gd; 3342 int index; 3343 int error; 3344 3345 scsi_autopm_get_device(sdp); 3346 error = -ENODEV; 3347 if (sdp->type != TYPE_DISK && 3348 sdp->type != TYPE_ZBC && 3349 sdp->type != TYPE_MOD && 3350 sdp->type != TYPE_RBC) 3351 goto out; 3352 3353 #ifndef CONFIG_BLK_DEV_ZONED 3354 if (sdp->type == TYPE_ZBC) 3355 goto out; 3356 #endif 3357 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3358 "sd_probe\n")); 3359 3360 error = -ENOMEM; 3361 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3362 if (!sdkp) 3363 goto out; 3364 3365 gd = alloc_disk(SD_MINORS); 3366 if (!gd) 3367 goto out_free; 3368 3369 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3370 if (index < 0) { 3371 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3372 goto out_put; 3373 } 3374 3375 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3376 if (error) { 3377 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3378 goto out_free_index; 3379 } 3380 3381 sdkp->device = sdp; 3382 sdkp->driver = &sd_template; 3383 sdkp->disk = gd; 3384 sdkp->index = index; 3385 atomic_set(&sdkp->openers, 0); 3386 atomic_set(&sdkp->device->ioerr_cnt, 0); 3387 3388 if (!sdp->request_queue->rq_timeout) { 3389 if (sdp->type != TYPE_MOD) 3390 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3391 else 3392 blk_queue_rq_timeout(sdp->request_queue, 3393 SD_MOD_TIMEOUT); 3394 } 3395 3396 device_initialize(&sdkp->dev); 3397 sdkp->dev.parent = dev; 3398 sdkp->dev.class = &sd_disk_class; 3399 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3400 3401 error = device_add(&sdkp->dev); 3402 if (error) 3403 goto out_free_index; 3404 3405 get_device(dev); 3406 dev_set_drvdata(dev, sdkp); 3407 3408 get_device(&sdkp->dev); /* prevent release before async_schedule */ 3409 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); 3410 3411 return 0; 3412 3413 out_free_index: 3414 ida_free(&sd_index_ida, index); 3415 out_put: 3416 put_disk(gd); 3417 out_free: 3418 kfree(sdkp); 3419 out: 3420 scsi_autopm_put_device(sdp); 3421 return error; 3422 } 3423 3424 /** 3425 * sd_remove - called whenever a scsi disk (previously recognized by 3426 * sd_probe) is detached from the system. It is called (potentially 3427 * multiple times) during sd module unload. 3428 * @dev: pointer to device object 3429 * 3430 * Note: this function is invoked from the scsi mid-level. 3431 * This function potentially frees up a device name (e.g. /dev/sdc) 3432 * that could be re-used by a subsequent sd_probe(). 3433 * This function is not called when the built-in sd driver is "exit-ed". 3434 **/ 3435 static int sd_remove(struct device *dev) 3436 { 3437 struct scsi_disk *sdkp; 3438 dev_t devt; 3439 3440 sdkp = dev_get_drvdata(dev); 3441 devt = disk_devt(sdkp->disk); 3442 scsi_autopm_get_device(sdkp->device); 3443 3444 async_synchronize_full_domain(&scsi_sd_pm_domain); 3445 async_synchronize_full_domain(&scsi_sd_probe_domain); 3446 device_del(&sdkp->dev); 3447 del_gendisk(sdkp->disk); 3448 sd_shutdown(dev); 3449 3450 free_opal_dev(sdkp->opal_dev); 3451 3452 blk_register_region(devt, SD_MINORS, NULL, 3453 sd_default_probe, NULL, NULL); 3454 3455 mutex_lock(&sd_ref_mutex); 3456 dev_set_drvdata(dev, NULL); 3457 put_device(&sdkp->dev); 3458 mutex_unlock(&sd_ref_mutex); 3459 3460 return 0; 3461 } 3462 3463 /** 3464 * scsi_disk_release - Called to free the scsi_disk structure 3465 * @dev: pointer to embedded class device 3466 * 3467 * sd_ref_mutex must be held entering this routine. Because it is 3468 * called on last put, you should always use the scsi_disk_get() 3469 * scsi_disk_put() helpers which manipulate the semaphore directly 3470 * and never do a direct put_device. 3471 **/ 3472 static void scsi_disk_release(struct device *dev) 3473 { 3474 struct scsi_disk *sdkp = to_scsi_disk(dev); 3475 struct gendisk *disk = sdkp->disk; 3476 struct request_queue *q = disk->queue; 3477 3478 ida_free(&sd_index_ida, sdkp->index); 3479 3480 /* 3481 * Wait until all requests that are in progress have completed. 3482 * This is necessary to avoid that e.g. scsi_end_request() crashes 3483 * due to clearing the disk->private_data pointer. Wait from inside 3484 * scsi_disk_release() instead of from sd_release() to avoid that 3485 * freezing and unfreezing the request queue affects user space I/O 3486 * in case multiple processes open a /dev/sd... node concurrently. 3487 */ 3488 blk_mq_freeze_queue(q); 3489 blk_mq_unfreeze_queue(q); 3490 3491 disk->private_data = NULL; 3492 put_disk(disk); 3493 put_device(&sdkp->device->sdev_gendev); 3494 3495 kfree(sdkp); 3496 } 3497 3498 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3499 { 3500 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3501 struct scsi_sense_hdr sshdr; 3502 struct scsi_device *sdp = sdkp->device; 3503 int res; 3504 3505 if (start) 3506 cmd[4] |= 1; /* START */ 3507 3508 if (sdp->start_stop_pwr_cond) 3509 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3510 3511 if (!scsi_device_online(sdp)) 3512 return -ENODEV; 3513 3514 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3515 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL); 3516 if (res) { 3517 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3518 if (driver_byte(res) == DRIVER_SENSE) 3519 sd_print_sense_hdr(sdkp, &sshdr); 3520 if (scsi_sense_valid(&sshdr) && 3521 /* 0x3a is medium not present */ 3522 sshdr.asc == 0x3a) 3523 res = 0; 3524 } 3525 3526 /* SCSI error codes must not go to the generic layer */ 3527 if (res) 3528 return -EIO; 3529 3530 return 0; 3531 } 3532 3533 /* 3534 * Send a SYNCHRONIZE CACHE instruction down to the device through 3535 * the normal SCSI command structure. Wait for the command to 3536 * complete. 3537 */ 3538 static void sd_shutdown(struct device *dev) 3539 { 3540 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3541 3542 if (!sdkp) 3543 return; /* this can happen */ 3544 3545 if (pm_runtime_suspended(dev)) 3546 return; 3547 3548 if (sdkp->WCE && sdkp->media_present) { 3549 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3550 sd_sync_cache(sdkp, NULL); 3551 } 3552 3553 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3554 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3555 sd_start_stop_device(sdkp, 0); 3556 } 3557 } 3558 3559 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3560 { 3561 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3562 struct scsi_sense_hdr sshdr; 3563 int ret = 0; 3564 3565 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3566 return 0; 3567 3568 if (sdkp->WCE && sdkp->media_present) { 3569 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3570 ret = sd_sync_cache(sdkp, &sshdr); 3571 3572 if (ret) { 3573 /* ignore OFFLINE device */ 3574 if (ret == -ENODEV) 3575 return 0; 3576 3577 if (!scsi_sense_valid(&sshdr) || 3578 sshdr.sense_key != ILLEGAL_REQUEST) 3579 return ret; 3580 3581 /* 3582 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3583 * doesn't support sync. There's not much to do and 3584 * suspend shouldn't fail. 3585 */ 3586 ret = 0; 3587 } 3588 } 3589 3590 if (sdkp->device->manage_start_stop) { 3591 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3592 /* an error is not worth aborting a system sleep */ 3593 ret = sd_start_stop_device(sdkp, 0); 3594 if (ignore_stop_errors) 3595 ret = 0; 3596 } 3597 3598 return ret; 3599 } 3600 3601 static int sd_suspend_system(struct device *dev) 3602 { 3603 return sd_suspend_common(dev, true); 3604 } 3605 3606 static int sd_suspend_runtime(struct device *dev) 3607 { 3608 return sd_suspend_common(dev, false); 3609 } 3610 3611 static int sd_resume(struct device *dev) 3612 { 3613 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3614 int ret; 3615 3616 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3617 return 0; 3618 3619 if (!sdkp->device->manage_start_stop) 3620 return 0; 3621 3622 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3623 ret = sd_start_stop_device(sdkp, 1); 3624 if (!ret) 3625 opal_unlock_from_suspend(sdkp->opal_dev); 3626 return ret; 3627 } 3628 3629 /** 3630 * init_sd - entry point for this driver (both when built in or when 3631 * a module). 3632 * 3633 * Note: this function registers this driver with the scsi mid-level. 3634 **/ 3635 static int __init init_sd(void) 3636 { 3637 int majors = 0, i, err; 3638 3639 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3640 3641 for (i = 0; i < SD_MAJORS; i++) { 3642 if (register_blkdev(sd_major(i), "sd") != 0) 3643 continue; 3644 majors++; 3645 blk_register_region(sd_major(i), SD_MINORS, NULL, 3646 sd_default_probe, NULL, NULL); 3647 } 3648 3649 if (!majors) 3650 return -ENODEV; 3651 3652 err = class_register(&sd_disk_class); 3653 if (err) 3654 goto err_out; 3655 3656 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3657 0, 0, NULL); 3658 if (!sd_cdb_cache) { 3659 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3660 err = -ENOMEM; 3661 goto err_out_class; 3662 } 3663 3664 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3665 if (!sd_cdb_pool) { 3666 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3667 err = -ENOMEM; 3668 goto err_out_cache; 3669 } 3670 3671 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3672 if (!sd_page_pool) { 3673 printk(KERN_ERR "sd: can't init discard page pool\n"); 3674 err = -ENOMEM; 3675 goto err_out_ppool; 3676 } 3677 3678 err = scsi_register_driver(&sd_template.gendrv); 3679 if (err) 3680 goto err_out_driver; 3681 3682 return 0; 3683 3684 err_out_driver: 3685 mempool_destroy(sd_page_pool); 3686 3687 err_out_ppool: 3688 mempool_destroy(sd_cdb_pool); 3689 3690 err_out_cache: 3691 kmem_cache_destroy(sd_cdb_cache); 3692 3693 err_out_class: 3694 class_unregister(&sd_disk_class); 3695 err_out: 3696 for (i = 0; i < SD_MAJORS; i++) 3697 unregister_blkdev(sd_major(i), "sd"); 3698 return err; 3699 } 3700 3701 /** 3702 * exit_sd - exit point for this driver (when it is a module). 3703 * 3704 * Note: this function unregisters this driver from the scsi mid-level. 3705 **/ 3706 static void __exit exit_sd(void) 3707 { 3708 int i; 3709 3710 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3711 3712 scsi_unregister_driver(&sd_template.gendrv); 3713 mempool_destroy(sd_cdb_pool); 3714 mempool_destroy(sd_page_pool); 3715 kmem_cache_destroy(sd_cdb_cache); 3716 3717 class_unregister(&sd_disk_class); 3718 3719 for (i = 0; i < SD_MAJORS; i++) { 3720 blk_unregister_region(sd_major(i), SD_MINORS); 3721 unregister_blkdev(sd_major(i), "sd"); 3722 } 3723 } 3724 3725 module_init(init_sd); 3726 module_exit(exit_sd); 3727 3728 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3729 struct scsi_sense_hdr *sshdr) 3730 { 3731 scsi_print_sense_hdr(sdkp->device, 3732 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3733 } 3734 3735 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3736 int result) 3737 { 3738 const char *hb_string = scsi_hostbyte_string(result); 3739 const char *db_string = scsi_driverbyte_string(result); 3740 3741 if (hb_string || db_string) 3742 sd_printk(KERN_INFO, sdkp, 3743 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3744 hb_string ? hb_string : "invalid", 3745 db_string ? db_string : "invalid"); 3746 else 3747 sd_printk(KERN_INFO, sdkp, 3748 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3749 msg, host_byte(result), driver_byte(result)); 3750 } 3751 3752