xref: /openbmc/linux/drivers/scsi/sd.c (revision 6cbefbdc)
1 /*
2  *      sd.c Copyright (C) 1992 Drew Eckhardt
3  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4  *
5  *      Linux scsi disk driver
6  *              Initial versions: Drew Eckhardt
7  *              Subsequent revisions: Eric Youngdale
8  *	Modification history:
9  *       - Drew Eckhardt <drew@colorado.edu> original
10  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11  *         outstanding request, and other enhancements.
12  *         Support loadable low-level scsi drivers.
13  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14  *         eight major numbers.
15  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17  *	   sd_init and cleanups.
18  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
19  *	   not being read in sd_open. Fix problem where removable media
20  *	   could be ejected after sd_open.
21  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24  *	   Support 32k/1M disks.
25  *
26  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
27  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
31  *	Note: when the logging level is set by the user, it must be greater
32  *	than the level indicated above to trigger output.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/sed-opal.h>
54 #include <linux/pm_runtime.h>
55 #include <linux/pr.h>
56 #include <linux/t10-pi.h>
57 #include <linux/uaccess.h>
58 #include <asm/unaligned.h>
59 
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_dbg.h>
63 #include <scsi/scsi_device.h>
64 #include <scsi/scsi_driver.h>
65 #include <scsi/scsi_eh.h>
66 #include <scsi/scsi_host.h>
67 #include <scsi/scsi_ioctl.h>
68 #include <scsi/scsicam.h>
69 
70 #include "sd.h"
71 #include "scsi_priv.h"
72 #include "scsi_logging.h"
73 
74 MODULE_AUTHOR("Eric Youngdale");
75 MODULE_DESCRIPTION("SCSI disk (sd) driver");
76 MODULE_LICENSE("GPL");
77 
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
98 
99 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
100 #define SD_MINORS	16
101 #else
102 #define SD_MINORS	0
103 #endif
104 
105 static void sd_config_discard(struct scsi_disk *, unsigned int);
106 static void sd_config_write_same(struct scsi_disk *);
107 static int  sd_revalidate_disk(struct gendisk *);
108 static void sd_unlock_native_capacity(struct gendisk *disk);
109 static int  sd_probe(struct device *);
110 static int  sd_remove(struct device *);
111 static void sd_shutdown(struct device *);
112 static int sd_suspend_system(struct device *);
113 static int sd_suspend_runtime(struct device *);
114 static int sd_resume(struct device *);
115 static void sd_rescan(struct device *);
116 static int sd_init_command(struct scsi_cmnd *SCpnt);
117 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
118 static int sd_done(struct scsi_cmnd *);
119 static void sd_eh_reset(struct scsi_cmnd *);
120 static int sd_eh_action(struct scsi_cmnd *, int);
121 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
122 static void scsi_disk_release(struct device *cdev);
123 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
124 static void sd_print_result(const struct scsi_disk *, const char *, int);
125 
126 static DEFINE_SPINLOCK(sd_index_lock);
127 static DEFINE_IDA(sd_index_ida);
128 
129 /* This semaphore is used to mediate the 0->1 reference get in the
130  * face of object destruction (i.e. we can't allow a get on an
131  * object after last put) */
132 static DEFINE_MUTEX(sd_ref_mutex);
133 
134 static struct kmem_cache *sd_cdb_cache;
135 static mempool_t *sd_cdb_pool;
136 
137 static const char *sd_cache_types[] = {
138 	"write through", "none", "write back",
139 	"write back, no read (daft)"
140 };
141 
142 static void sd_set_flush_flag(struct scsi_disk *sdkp)
143 {
144 	bool wc = false, fua = false;
145 
146 	if (sdkp->WCE) {
147 		wc = true;
148 		if (sdkp->DPOFUA)
149 			fua = true;
150 	}
151 
152 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
153 }
154 
155 static ssize_t
156 cache_type_store(struct device *dev, struct device_attribute *attr,
157 		 const char *buf, size_t count)
158 {
159 	int ct, rcd, wce, sp;
160 	struct scsi_disk *sdkp = to_scsi_disk(dev);
161 	struct scsi_device *sdp = sdkp->device;
162 	char buffer[64];
163 	char *buffer_data;
164 	struct scsi_mode_data data;
165 	struct scsi_sense_hdr sshdr;
166 	static const char temp[] = "temporary ";
167 	int len;
168 
169 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
170 		/* no cache control on RBC devices; theoretically they
171 		 * can do it, but there's probably so many exceptions
172 		 * it's not worth the risk */
173 		return -EINVAL;
174 
175 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
176 		buf += sizeof(temp) - 1;
177 		sdkp->cache_override = 1;
178 	} else {
179 		sdkp->cache_override = 0;
180 	}
181 
182 	ct = sysfs_match_string(sd_cache_types, buf);
183 	if (ct < 0)
184 		return -EINVAL;
185 
186 	rcd = ct & 0x01 ? 1 : 0;
187 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
188 
189 	if (sdkp->cache_override) {
190 		sdkp->WCE = wce;
191 		sdkp->RCD = rcd;
192 		sd_set_flush_flag(sdkp);
193 		return count;
194 	}
195 
196 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
197 			    SD_MAX_RETRIES, &data, NULL))
198 		return -EINVAL;
199 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
200 		  data.block_descriptor_length);
201 	buffer_data = buffer + data.header_length +
202 		data.block_descriptor_length;
203 	buffer_data[2] &= ~0x05;
204 	buffer_data[2] |= wce << 2 | rcd;
205 	sp = buffer_data[0] & 0x80 ? 1 : 0;
206 	buffer_data[0] &= ~0x80;
207 
208 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
209 			     SD_MAX_RETRIES, &data, &sshdr)) {
210 		if (scsi_sense_valid(&sshdr))
211 			sd_print_sense_hdr(sdkp, &sshdr);
212 		return -EINVAL;
213 	}
214 	revalidate_disk(sdkp->disk);
215 	return count;
216 }
217 
218 static ssize_t
219 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
220 		       char *buf)
221 {
222 	struct scsi_disk *sdkp = to_scsi_disk(dev);
223 	struct scsi_device *sdp = sdkp->device;
224 
225 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
226 }
227 
228 static ssize_t
229 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
230 			const char *buf, size_t count)
231 {
232 	struct scsi_disk *sdkp = to_scsi_disk(dev);
233 	struct scsi_device *sdp = sdkp->device;
234 	bool v;
235 
236 	if (!capable(CAP_SYS_ADMIN))
237 		return -EACCES;
238 
239 	if (kstrtobool(buf, &v))
240 		return -EINVAL;
241 
242 	sdp->manage_start_stop = v;
243 
244 	return count;
245 }
246 static DEVICE_ATTR_RW(manage_start_stop);
247 
248 static ssize_t
249 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
250 {
251 	struct scsi_disk *sdkp = to_scsi_disk(dev);
252 
253 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
254 }
255 
256 static ssize_t
257 allow_restart_store(struct device *dev, struct device_attribute *attr,
258 		    const char *buf, size_t count)
259 {
260 	bool v;
261 	struct scsi_disk *sdkp = to_scsi_disk(dev);
262 	struct scsi_device *sdp = sdkp->device;
263 
264 	if (!capable(CAP_SYS_ADMIN))
265 		return -EACCES;
266 
267 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
268 		return -EINVAL;
269 
270 	if (kstrtobool(buf, &v))
271 		return -EINVAL;
272 
273 	sdp->allow_restart = v;
274 
275 	return count;
276 }
277 static DEVICE_ATTR_RW(allow_restart);
278 
279 static ssize_t
280 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
281 {
282 	struct scsi_disk *sdkp = to_scsi_disk(dev);
283 	int ct = sdkp->RCD + 2*sdkp->WCE;
284 
285 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
286 }
287 static DEVICE_ATTR_RW(cache_type);
288 
289 static ssize_t
290 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
291 {
292 	struct scsi_disk *sdkp = to_scsi_disk(dev);
293 
294 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
295 }
296 static DEVICE_ATTR_RO(FUA);
297 
298 static ssize_t
299 protection_type_show(struct device *dev, struct device_attribute *attr,
300 		     char *buf)
301 {
302 	struct scsi_disk *sdkp = to_scsi_disk(dev);
303 
304 	return sprintf(buf, "%u\n", sdkp->protection_type);
305 }
306 
307 static ssize_t
308 protection_type_store(struct device *dev, struct device_attribute *attr,
309 		      const char *buf, size_t count)
310 {
311 	struct scsi_disk *sdkp = to_scsi_disk(dev);
312 	unsigned int val;
313 	int err;
314 
315 	if (!capable(CAP_SYS_ADMIN))
316 		return -EACCES;
317 
318 	err = kstrtouint(buf, 10, &val);
319 
320 	if (err)
321 		return err;
322 
323 	if (val <= T10_PI_TYPE3_PROTECTION)
324 		sdkp->protection_type = val;
325 
326 	return count;
327 }
328 static DEVICE_ATTR_RW(protection_type);
329 
330 static ssize_t
331 protection_mode_show(struct device *dev, struct device_attribute *attr,
332 		     char *buf)
333 {
334 	struct scsi_disk *sdkp = to_scsi_disk(dev);
335 	struct scsi_device *sdp = sdkp->device;
336 	unsigned int dif, dix;
337 
338 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
339 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
340 
341 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
342 		dif = 0;
343 		dix = 1;
344 	}
345 
346 	if (!dif && !dix)
347 		return sprintf(buf, "none\n");
348 
349 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
350 }
351 static DEVICE_ATTR_RO(protection_mode);
352 
353 static ssize_t
354 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
355 {
356 	struct scsi_disk *sdkp = to_scsi_disk(dev);
357 
358 	return sprintf(buf, "%u\n", sdkp->ATO);
359 }
360 static DEVICE_ATTR_RO(app_tag_own);
361 
362 static ssize_t
363 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
364 		       char *buf)
365 {
366 	struct scsi_disk *sdkp = to_scsi_disk(dev);
367 
368 	return sprintf(buf, "%u\n", sdkp->lbpme);
369 }
370 static DEVICE_ATTR_RO(thin_provisioning);
371 
372 /* sysfs_match_string() requires dense arrays */
373 static const char *lbp_mode[] = {
374 	[SD_LBP_FULL]		= "full",
375 	[SD_LBP_UNMAP]		= "unmap",
376 	[SD_LBP_WS16]		= "writesame_16",
377 	[SD_LBP_WS10]		= "writesame_10",
378 	[SD_LBP_ZERO]		= "writesame_zero",
379 	[SD_LBP_DISABLE]	= "disabled",
380 };
381 
382 static ssize_t
383 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
384 		       char *buf)
385 {
386 	struct scsi_disk *sdkp = to_scsi_disk(dev);
387 
388 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
389 }
390 
391 static ssize_t
392 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
393 			const char *buf, size_t count)
394 {
395 	struct scsi_disk *sdkp = to_scsi_disk(dev);
396 	struct scsi_device *sdp = sdkp->device;
397 	int mode;
398 
399 	if (!capable(CAP_SYS_ADMIN))
400 		return -EACCES;
401 
402 	if (sd_is_zoned(sdkp)) {
403 		sd_config_discard(sdkp, SD_LBP_DISABLE);
404 		return count;
405 	}
406 
407 	if (sdp->type != TYPE_DISK)
408 		return -EINVAL;
409 
410 	mode = sysfs_match_string(lbp_mode, buf);
411 	if (mode < 0)
412 		return -EINVAL;
413 
414 	sd_config_discard(sdkp, mode);
415 
416 	return count;
417 }
418 static DEVICE_ATTR_RW(provisioning_mode);
419 
420 /* sysfs_match_string() requires dense arrays */
421 static const char *zeroing_mode[] = {
422 	[SD_ZERO_WRITE]		= "write",
423 	[SD_ZERO_WS]		= "writesame",
424 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
425 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
426 };
427 
428 static ssize_t
429 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
430 		  char *buf)
431 {
432 	struct scsi_disk *sdkp = to_scsi_disk(dev);
433 
434 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
435 }
436 
437 static ssize_t
438 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
439 		   const char *buf, size_t count)
440 {
441 	struct scsi_disk *sdkp = to_scsi_disk(dev);
442 	int mode;
443 
444 	if (!capable(CAP_SYS_ADMIN))
445 		return -EACCES;
446 
447 	mode = sysfs_match_string(zeroing_mode, buf);
448 	if (mode < 0)
449 		return -EINVAL;
450 
451 	sdkp->zeroing_mode = mode;
452 
453 	return count;
454 }
455 static DEVICE_ATTR_RW(zeroing_mode);
456 
457 static ssize_t
458 max_medium_access_timeouts_show(struct device *dev,
459 				struct device_attribute *attr, char *buf)
460 {
461 	struct scsi_disk *sdkp = to_scsi_disk(dev);
462 
463 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
464 }
465 
466 static ssize_t
467 max_medium_access_timeouts_store(struct device *dev,
468 				 struct device_attribute *attr, const char *buf,
469 				 size_t count)
470 {
471 	struct scsi_disk *sdkp = to_scsi_disk(dev);
472 	int err;
473 
474 	if (!capable(CAP_SYS_ADMIN))
475 		return -EACCES;
476 
477 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
478 
479 	return err ? err : count;
480 }
481 static DEVICE_ATTR_RW(max_medium_access_timeouts);
482 
483 static ssize_t
484 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
485 			   char *buf)
486 {
487 	struct scsi_disk *sdkp = to_scsi_disk(dev);
488 
489 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
490 }
491 
492 static ssize_t
493 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
494 			    const char *buf, size_t count)
495 {
496 	struct scsi_disk *sdkp = to_scsi_disk(dev);
497 	struct scsi_device *sdp = sdkp->device;
498 	unsigned long max;
499 	int err;
500 
501 	if (!capable(CAP_SYS_ADMIN))
502 		return -EACCES;
503 
504 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
505 		return -EINVAL;
506 
507 	err = kstrtoul(buf, 10, &max);
508 
509 	if (err)
510 		return err;
511 
512 	if (max == 0)
513 		sdp->no_write_same = 1;
514 	else if (max <= SD_MAX_WS16_BLOCKS) {
515 		sdp->no_write_same = 0;
516 		sdkp->max_ws_blocks = max;
517 	}
518 
519 	sd_config_write_same(sdkp);
520 
521 	return count;
522 }
523 static DEVICE_ATTR_RW(max_write_same_blocks);
524 
525 static struct attribute *sd_disk_attrs[] = {
526 	&dev_attr_cache_type.attr,
527 	&dev_attr_FUA.attr,
528 	&dev_attr_allow_restart.attr,
529 	&dev_attr_manage_start_stop.attr,
530 	&dev_attr_protection_type.attr,
531 	&dev_attr_protection_mode.attr,
532 	&dev_attr_app_tag_own.attr,
533 	&dev_attr_thin_provisioning.attr,
534 	&dev_attr_provisioning_mode.attr,
535 	&dev_attr_zeroing_mode.attr,
536 	&dev_attr_max_write_same_blocks.attr,
537 	&dev_attr_max_medium_access_timeouts.attr,
538 	NULL,
539 };
540 ATTRIBUTE_GROUPS(sd_disk);
541 
542 static struct class sd_disk_class = {
543 	.name		= "scsi_disk",
544 	.owner		= THIS_MODULE,
545 	.dev_release	= scsi_disk_release,
546 	.dev_groups	= sd_disk_groups,
547 };
548 
549 static const struct dev_pm_ops sd_pm_ops = {
550 	.suspend		= sd_suspend_system,
551 	.resume			= sd_resume,
552 	.poweroff		= sd_suspend_system,
553 	.restore		= sd_resume,
554 	.runtime_suspend	= sd_suspend_runtime,
555 	.runtime_resume		= sd_resume,
556 };
557 
558 static struct scsi_driver sd_template = {
559 	.gendrv = {
560 		.name		= "sd",
561 		.owner		= THIS_MODULE,
562 		.probe		= sd_probe,
563 		.remove		= sd_remove,
564 		.shutdown	= sd_shutdown,
565 		.pm		= &sd_pm_ops,
566 	},
567 	.rescan			= sd_rescan,
568 	.init_command		= sd_init_command,
569 	.uninit_command		= sd_uninit_command,
570 	.done			= sd_done,
571 	.eh_action		= sd_eh_action,
572 	.eh_reset		= sd_eh_reset,
573 };
574 
575 /*
576  * Dummy kobj_map->probe function.
577  * The default ->probe function will call modprobe, which is
578  * pointless as this module is already loaded.
579  */
580 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
581 {
582 	return NULL;
583 }
584 
585 /*
586  * Device no to disk mapping:
587  *
588  *       major         disc2     disc  p1
589  *   |............|.............|....|....| <- dev_t
590  *    31        20 19          8 7  4 3  0
591  *
592  * Inside a major, we have 16k disks, however mapped non-
593  * contiguously. The first 16 disks are for major0, the next
594  * ones with major1, ... Disk 256 is for major0 again, disk 272
595  * for major1, ...
596  * As we stay compatible with our numbering scheme, we can reuse
597  * the well-know SCSI majors 8, 65--71, 136--143.
598  */
599 static int sd_major(int major_idx)
600 {
601 	switch (major_idx) {
602 	case 0:
603 		return SCSI_DISK0_MAJOR;
604 	case 1 ... 7:
605 		return SCSI_DISK1_MAJOR + major_idx - 1;
606 	case 8 ... 15:
607 		return SCSI_DISK8_MAJOR + major_idx - 8;
608 	default:
609 		BUG();
610 		return 0;	/* shut up gcc */
611 	}
612 }
613 
614 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
615 {
616 	struct scsi_disk *sdkp = NULL;
617 
618 	mutex_lock(&sd_ref_mutex);
619 
620 	if (disk->private_data) {
621 		sdkp = scsi_disk(disk);
622 		if (scsi_device_get(sdkp->device) == 0)
623 			get_device(&sdkp->dev);
624 		else
625 			sdkp = NULL;
626 	}
627 	mutex_unlock(&sd_ref_mutex);
628 	return sdkp;
629 }
630 
631 static void scsi_disk_put(struct scsi_disk *sdkp)
632 {
633 	struct scsi_device *sdev = sdkp->device;
634 
635 	mutex_lock(&sd_ref_mutex);
636 	put_device(&sdkp->dev);
637 	scsi_device_put(sdev);
638 	mutex_unlock(&sd_ref_mutex);
639 }
640 
641 #ifdef CONFIG_BLK_SED_OPAL
642 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
643 		size_t len, bool send)
644 {
645 	struct scsi_device *sdev = data;
646 	u8 cdb[12] = { 0, };
647 	int ret;
648 
649 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
650 	cdb[1] = secp;
651 	put_unaligned_be16(spsp, &cdb[2]);
652 	put_unaligned_be32(len, &cdb[6]);
653 
654 	ret = scsi_execute_req(sdev, cdb,
655 			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
656 			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
657 	return ret <= 0 ? ret : -EIO;
658 }
659 #endif /* CONFIG_BLK_SED_OPAL */
660 
661 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
662 					   unsigned int dix, unsigned int dif)
663 {
664 	struct bio *bio = scmd->request->bio;
665 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
666 	unsigned int protect = 0;
667 
668 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
669 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
670 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
671 
672 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
673 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
674 	}
675 
676 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
677 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
678 
679 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
680 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
681 	}
682 
683 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
684 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
685 
686 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
687 			protect = 3 << 5;	/* Disable target PI checking */
688 		else
689 			protect = 1 << 5;	/* Enable target PI checking */
690 	}
691 
692 	scsi_set_prot_op(scmd, prot_op);
693 	scsi_set_prot_type(scmd, dif);
694 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
695 
696 	return protect;
697 }
698 
699 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
700 {
701 	struct request_queue *q = sdkp->disk->queue;
702 	unsigned int logical_block_size = sdkp->device->sector_size;
703 	unsigned int max_blocks = 0;
704 
705 	q->limits.discard_alignment =
706 		sdkp->unmap_alignment * logical_block_size;
707 	q->limits.discard_granularity =
708 		max(sdkp->physical_block_size,
709 		    sdkp->unmap_granularity * logical_block_size);
710 	sdkp->provisioning_mode = mode;
711 
712 	switch (mode) {
713 
714 	case SD_LBP_FULL:
715 	case SD_LBP_DISABLE:
716 		blk_queue_max_discard_sectors(q, 0);
717 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
718 		return;
719 
720 	case SD_LBP_UNMAP:
721 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
722 					  (u32)SD_MAX_WS16_BLOCKS);
723 		break;
724 
725 	case SD_LBP_WS16:
726 		if (sdkp->device->unmap_limit_for_ws)
727 			max_blocks = sdkp->max_unmap_blocks;
728 		else
729 			max_blocks = sdkp->max_ws_blocks;
730 
731 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
732 		break;
733 
734 	case SD_LBP_WS10:
735 		if (sdkp->device->unmap_limit_for_ws)
736 			max_blocks = sdkp->max_unmap_blocks;
737 		else
738 			max_blocks = sdkp->max_ws_blocks;
739 
740 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
741 		break;
742 
743 	case SD_LBP_ZERO:
744 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
745 					  (u32)SD_MAX_WS10_BLOCKS);
746 		break;
747 	}
748 
749 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
750 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
751 }
752 
753 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
754 {
755 	struct scsi_device *sdp = cmd->device;
756 	struct request *rq = cmd->request;
757 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
758 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
759 	unsigned int data_len = 24;
760 	char *buf;
761 
762 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
763 	if (!rq->special_vec.bv_page)
764 		return BLKPREP_DEFER;
765 	rq->special_vec.bv_offset = 0;
766 	rq->special_vec.bv_len = data_len;
767 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
768 
769 	cmd->cmd_len = 10;
770 	cmd->cmnd[0] = UNMAP;
771 	cmd->cmnd[8] = 24;
772 
773 	buf = page_address(rq->special_vec.bv_page);
774 	put_unaligned_be16(6 + 16, &buf[0]);
775 	put_unaligned_be16(16, &buf[2]);
776 	put_unaligned_be64(sector, &buf[8]);
777 	put_unaligned_be32(nr_sectors, &buf[16]);
778 
779 	cmd->allowed = SD_MAX_RETRIES;
780 	cmd->transfersize = data_len;
781 	rq->timeout = SD_TIMEOUT;
782 	scsi_req(rq)->resid_len = data_len;
783 
784 	return scsi_init_io(cmd);
785 }
786 
787 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap)
788 {
789 	struct scsi_device *sdp = cmd->device;
790 	struct request *rq = cmd->request;
791 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
792 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
793 	u32 data_len = sdp->sector_size;
794 
795 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
796 	if (!rq->special_vec.bv_page)
797 		return BLKPREP_DEFER;
798 	rq->special_vec.bv_offset = 0;
799 	rq->special_vec.bv_len = data_len;
800 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
801 
802 	cmd->cmd_len = 16;
803 	cmd->cmnd[0] = WRITE_SAME_16;
804 	if (unmap)
805 		cmd->cmnd[1] = 0x8; /* UNMAP */
806 	put_unaligned_be64(sector, &cmd->cmnd[2]);
807 	put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
808 
809 	cmd->allowed = SD_MAX_RETRIES;
810 	cmd->transfersize = data_len;
811 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
812 	scsi_req(rq)->resid_len = data_len;
813 
814 	return scsi_init_io(cmd);
815 }
816 
817 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap)
818 {
819 	struct scsi_device *sdp = cmd->device;
820 	struct request *rq = cmd->request;
821 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
822 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
823 	u32 data_len = sdp->sector_size;
824 
825 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
826 	if (!rq->special_vec.bv_page)
827 		return BLKPREP_DEFER;
828 	rq->special_vec.bv_offset = 0;
829 	rq->special_vec.bv_len = data_len;
830 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
831 
832 	cmd->cmd_len = 10;
833 	cmd->cmnd[0] = WRITE_SAME;
834 	if (unmap)
835 		cmd->cmnd[1] = 0x8; /* UNMAP */
836 	put_unaligned_be32(sector, &cmd->cmnd[2]);
837 	put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
838 
839 	cmd->allowed = SD_MAX_RETRIES;
840 	cmd->transfersize = data_len;
841 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
842 	scsi_req(rq)->resid_len = data_len;
843 
844 	return scsi_init_io(cmd);
845 }
846 
847 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
848 {
849 	struct request *rq = cmd->request;
850 	struct scsi_device *sdp = cmd->device;
851 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
852 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
853 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
854 	int ret;
855 
856 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
857 		switch (sdkp->zeroing_mode) {
858 		case SD_ZERO_WS16_UNMAP:
859 			ret = sd_setup_write_same16_cmnd(cmd, true);
860 			goto out;
861 		case SD_ZERO_WS10_UNMAP:
862 			ret = sd_setup_write_same10_cmnd(cmd, true);
863 			goto out;
864 		}
865 	}
866 
867 	if (sdp->no_write_same)
868 		return BLKPREP_INVALID;
869 
870 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
871 		ret = sd_setup_write_same16_cmnd(cmd, false);
872 	else
873 		ret = sd_setup_write_same10_cmnd(cmd, false);
874 
875 out:
876 	if (sd_is_zoned(sdkp) && ret == BLKPREP_OK)
877 		return sd_zbc_write_lock_zone(cmd);
878 
879 	return ret;
880 }
881 
882 static void sd_config_write_same(struct scsi_disk *sdkp)
883 {
884 	struct request_queue *q = sdkp->disk->queue;
885 	unsigned int logical_block_size = sdkp->device->sector_size;
886 
887 	if (sdkp->device->no_write_same) {
888 		sdkp->max_ws_blocks = 0;
889 		goto out;
890 	}
891 
892 	/* Some devices can not handle block counts above 0xffff despite
893 	 * supporting WRITE SAME(16). Consequently we default to 64k
894 	 * blocks per I/O unless the device explicitly advertises a
895 	 * bigger limit.
896 	 */
897 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
898 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
899 						   (u32)SD_MAX_WS16_BLOCKS);
900 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
901 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
902 						   (u32)SD_MAX_WS10_BLOCKS);
903 	else {
904 		sdkp->device->no_write_same = 1;
905 		sdkp->max_ws_blocks = 0;
906 	}
907 
908 	if (sdkp->lbprz && sdkp->lbpws)
909 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
910 	else if (sdkp->lbprz && sdkp->lbpws10)
911 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
912 	else if (sdkp->max_ws_blocks)
913 		sdkp->zeroing_mode = SD_ZERO_WS;
914 	else
915 		sdkp->zeroing_mode = SD_ZERO_WRITE;
916 
917 	if (sdkp->max_ws_blocks &&
918 	    sdkp->physical_block_size > logical_block_size) {
919 		/*
920 		 * Reporting a maximum number of blocks that is not aligned
921 		 * on the device physical size would cause a large write same
922 		 * request to be split into physically unaligned chunks by
923 		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
924 		 * even if the caller of these functions took care to align the
925 		 * large request. So make sure the maximum reported is aligned
926 		 * to the device physical block size. This is only an optional
927 		 * optimization for regular disks, but this is mandatory to
928 		 * avoid failure of large write same requests directed at
929 		 * sequential write required zones of host-managed ZBC disks.
930 		 */
931 		sdkp->max_ws_blocks =
932 			round_down(sdkp->max_ws_blocks,
933 				   bytes_to_logical(sdkp->device,
934 						    sdkp->physical_block_size));
935 	}
936 
937 out:
938 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
939 					 (logical_block_size >> 9));
940 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
941 					 (logical_block_size >> 9));
942 }
943 
944 /**
945  * sd_setup_write_same_cmnd - write the same data to multiple blocks
946  * @cmd: command to prepare
947  *
948  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
949  * the preference indicated by the target device.
950  **/
951 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
952 {
953 	struct request *rq = cmd->request;
954 	struct scsi_device *sdp = cmd->device;
955 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
956 	struct bio *bio = rq->bio;
957 	sector_t sector = blk_rq_pos(rq);
958 	unsigned int nr_sectors = blk_rq_sectors(rq);
959 	unsigned int nr_bytes = blk_rq_bytes(rq);
960 	int ret;
961 
962 	if (sdkp->device->no_write_same)
963 		return BLKPREP_INVALID;
964 
965 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
966 
967 	if (sd_is_zoned(sdkp)) {
968 		ret = sd_zbc_write_lock_zone(cmd);
969 		if (ret != BLKPREP_OK)
970 			return ret;
971 	}
972 
973 	sector >>= ilog2(sdp->sector_size) - 9;
974 	nr_sectors >>= ilog2(sdp->sector_size) - 9;
975 
976 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
977 
978 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
979 		cmd->cmd_len = 16;
980 		cmd->cmnd[0] = WRITE_SAME_16;
981 		put_unaligned_be64(sector, &cmd->cmnd[2]);
982 		put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
983 	} else {
984 		cmd->cmd_len = 10;
985 		cmd->cmnd[0] = WRITE_SAME;
986 		put_unaligned_be32(sector, &cmd->cmnd[2]);
987 		put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
988 	}
989 
990 	cmd->transfersize = sdp->sector_size;
991 	cmd->allowed = SD_MAX_RETRIES;
992 
993 	/*
994 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
995 	 * different from the amount of data actually written to the target.
996 	 *
997 	 * We set up __data_len to the amount of data transferred via the
998 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
999 	 * to transfer a single sector of data first, but then reset it to
1000 	 * the amount of data to be written right after so that the I/O path
1001 	 * knows how much to actually write.
1002 	 */
1003 	rq->__data_len = sdp->sector_size;
1004 	ret = scsi_init_io(cmd);
1005 	rq->__data_len = nr_bytes;
1006 
1007 	if (sd_is_zoned(sdkp) && ret != BLKPREP_OK)
1008 		sd_zbc_write_unlock_zone(cmd);
1009 
1010 	return ret;
1011 }
1012 
1013 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1014 {
1015 	struct request *rq = cmd->request;
1016 
1017 	/* flush requests don't perform I/O, zero the S/G table */
1018 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1019 
1020 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1021 	cmd->cmd_len = 10;
1022 	cmd->transfersize = 0;
1023 	cmd->allowed = SD_MAX_RETRIES;
1024 
1025 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1026 	return BLKPREP_OK;
1027 }
1028 
1029 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
1030 {
1031 	struct request *rq = SCpnt->request;
1032 	struct scsi_device *sdp = SCpnt->device;
1033 	struct gendisk *disk = rq->rq_disk;
1034 	struct scsi_disk *sdkp = scsi_disk(disk);
1035 	sector_t block = blk_rq_pos(rq);
1036 	sector_t threshold;
1037 	unsigned int this_count = blk_rq_sectors(rq);
1038 	unsigned int dif, dix;
1039 	bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE;
1040 	int ret;
1041 	unsigned char protect;
1042 
1043 	if (zoned_write) {
1044 		ret = sd_zbc_write_lock_zone(SCpnt);
1045 		if (ret != BLKPREP_OK)
1046 			return ret;
1047 	}
1048 
1049 	ret = scsi_init_io(SCpnt);
1050 	if (ret != BLKPREP_OK)
1051 		goto out;
1052 	WARN_ON_ONCE(SCpnt != rq->special);
1053 
1054 	/* from here on until we're complete, any goto out
1055 	 * is used for a killable error condition */
1056 	ret = BLKPREP_KILL;
1057 
1058 	SCSI_LOG_HLQUEUE(1,
1059 		scmd_printk(KERN_INFO, SCpnt,
1060 			"%s: block=%llu, count=%d\n",
1061 			__func__, (unsigned long long)block, this_count));
1062 
1063 	if (!sdp || !scsi_device_online(sdp) ||
1064 	    block + blk_rq_sectors(rq) > get_capacity(disk)) {
1065 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1066 						"Finishing %u sectors\n",
1067 						blk_rq_sectors(rq)));
1068 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1069 						"Retry with 0x%p\n", SCpnt));
1070 		goto out;
1071 	}
1072 
1073 	if (sdp->changed) {
1074 		/*
1075 		 * quietly refuse to do anything to a changed disc until
1076 		 * the changed bit has been reset
1077 		 */
1078 		/* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1079 		goto out;
1080 	}
1081 
1082 	/*
1083 	 * Some SD card readers can't handle multi-sector accesses which touch
1084 	 * the last one or two hardware sectors.  Split accesses as needed.
1085 	 */
1086 	threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1087 		(sdp->sector_size / 512);
1088 
1089 	if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1090 		if (block < threshold) {
1091 			/* Access up to the threshold but not beyond */
1092 			this_count = threshold - block;
1093 		} else {
1094 			/* Access only a single hardware sector */
1095 			this_count = sdp->sector_size / 512;
1096 		}
1097 	}
1098 
1099 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1100 					(unsigned long long)block));
1101 
1102 	/*
1103 	 * If we have a 1K hardware sectorsize, prevent access to single
1104 	 * 512 byte sectors.  In theory we could handle this - in fact
1105 	 * the scsi cdrom driver must be able to handle this because
1106 	 * we typically use 1K blocksizes, and cdroms typically have
1107 	 * 2K hardware sectorsizes.  Of course, things are simpler
1108 	 * with the cdrom, since it is read-only.  For performance
1109 	 * reasons, the filesystems should be able to handle this
1110 	 * and not force the scsi disk driver to use bounce buffers
1111 	 * for this.
1112 	 */
1113 	if (sdp->sector_size == 1024) {
1114 		if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1115 			scmd_printk(KERN_ERR, SCpnt,
1116 				    "Bad block number requested\n");
1117 			goto out;
1118 		} else {
1119 			block = block >> 1;
1120 			this_count = this_count >> 1;
1121 		}
1122 	}
1123 	if (sdp->sector_size == 2048) {
1124 		if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1125 			scmd_printk(KERN_ERR, SCpnt,
1126 				    "Bad block number requested\n");
1127 			goto out;
1128 		} else {
1129 			block = block >> 2;
1130 			this_count = this_count >> 2;
1131 		}
1132 	}
1133 	if (sdp->sector_size == 4096) {
1134 		if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1135 			scmd_printk(KERN_ERR, SCpnt,
1136 				    "Bad block number requested\n");
1137 			goto out;
1138 		} else {
1139 			block = block >> 3;
1140 			this_count = this_count >> 3;
1141 		}
1142 	}
1143 	if (rq_data_dir(rq) == WRITE) {
1144 		SCpnt->cmnd[0] = WRITE_6;
1145 
1146 		if (blk_integrity_rq(rq))
1147 			sd_dif_prepare(SCpnt);
1148 
1149 	} else if (rq_data_dir(rq) == READ) {
1150 		SCpnt->cmnd[0] = READ_6;
1151 	} else {
1152 		scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1153 		goto out;
1154 	}
1155 
1156 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1157 					"%s %d/%u 512 byte blocks.\n",
1158 					(rq_data_dir(rq) == WRITE) ?
1159 					"writing" : "reading", this_count,
1160 					blk_rq_sectors(rq)));
1161 
1162 	dix = scsi_prot_sg_count(SCpnt);
1163 	dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1164 
1165 	if (dif || dix)
1166 		protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1167 	else
1168 		protect = 0;
1169 
1170 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1171 		SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1172 
1173 		if (unlikely(SCpnt->cmnd == NULL)) {
1174 			ret = BLKPREP_DEFER;
1175 			goto out;
1176 		}
1177 
1178 		SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1179 		memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1180 		SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1181 		SCpnt->cmnd[7] = 0x18;
1182 		SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1183 		SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1184 
1185 		/* LBA */
1186 		SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1187 		SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1188 		SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1189 		SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1190 		SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1191 		SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1192 		SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1193 		SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1194 
1195 		/* Expected Indirect LBA */
1196 		SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1197 		SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1198 		SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1199 		SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1200 
1201 		/* Transfer length */
1202 		SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1203 		SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1204 		SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1205 		SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1206 	} else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1207 		SCpnt->cmnd[0] += READ_16 - READ_6;
1208 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1209 		SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1210 		SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1211 		SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1212 		SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1213 		SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1214 		SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1215 		SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1216 		SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1217 		SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1218 		SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1219 		SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1220 		SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1221 		SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1222 	} else if ((this_count > 0xff) || (block > 0x1fffff) ||
1223 		   scsi_device_protection(SCpnt->device) ||
1224 		   SCpnt->device->use_10_for_rw) {
1225 		SCpnt->cmnd[0] += READ_10 - READ_6;
1226 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1227 		SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1228 		SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1229 		SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1230 		SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1231 		SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1232 		SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1233 		SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1234 	} else {
1235 		if (unlikely(rq->cmd_flags & REQ_FUA)) {
1236 			/*
1237 			 * This happens only if this drive failed
1238 			 * 10byte rw command with ILLEGAL_REQUEST
1239 			 * during operation and thus turned off
1240 			 * use_10_for_rw.
1241 			 */
1242 			scmd_printk(KERN_ERR, SCpnt,
1243 				    "FUA write on READ/WRITE(6) drive\n");
1244 			goto out;
1245 		}
1246 
1247 		SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1248 		SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1249 		SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1250 		SCpnt->cmnd[4] = (unsigned char) this_count;
1251 		SCpnt->cmnd[5] = 0;
1252 	}
1253 	SCpnt->sdb.length = this_count * sdp->sector_size;
1254 
1255 	/*
1256 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1257 	 * host adapter, it's safe to assume that we can at least transfer
1258 	 * this many bytes between each connect / disconnect.
1259 	 */
1260 	SCpnt->transfersize = sdp->sector_size;
1261 	SCpnt->underflow = this_count << 9;
1262 	SCpnt->allowed = SD_MAX_RETRIES;
1263 
1264 	/*
1265 	 * This indicates that the command is ready from our end to be
1266 	 * queued.
1267 	 */
1268 	ret = BLKPREP_OK;
1269  out:
1270 	if (zoned_write && ret != BLKPREP_OK)
1271 		sd_zbc_write_unlock_zone(SCpnt);
1272 
1273 	return ret;
1274 }
1275 
1276 static int sd_init_command(struct scsi_cmnd *cmd)
1277 {
1278 	struct request *rq = cmd->request;
1279 
1280 	switch (req_op(rq)) {
1281 	case REQ_OP_DISCARD:
1282 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1283 		case SD_LBP_UNMAP:
1284 			return sd_setup_unmap_cmnd(cmd);
1285 		case SD_LBP_WS16:
1286 			return sd_setup_write_same16_cmnd(cmd, true);
1287 		case SD_LBP_WS10:
1288 			return sd_setup_write_same10_cmnd(cmd, true);
1289 		case SD_LBP_ZERO:
1290 			return sd_setup_write_same10_cmnd(cmd, false);
1291 		default:
1292 			return BLKPREP_INVALID;
1293 		}
1294 	case REQ_OP_WRITE_ZEROES:
1295 		return sd_setup_write_zeroes_cmnd(cmd);
1296 	case REQ_OP_WRITE_SAME:
1297 		return sd_setup_write_same_cmnd(cmd);
1298 	case REQ_OP_FLUSH:
1299 		return sd_setup_flush_cmnd(cmd);
1300 	case REQ_OP_READ:
1301 	case REQ_OP_WRITE:
1302 		return sd_setup_read_write_cmnd(cmd);
1303 	case REQ_OP_ZONE_REPORT:
1304 		return sd_zbc_setup_report_cmnd(cmd);
1305 	case REQ_OP_ZONE_RESET:
1306 		return sd_zbc_setup_reset_cmnd(cmd);
1307 	default:
1308 		BUG();
1309 	}
1310 }
1311 
1312 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1313 {
1314 	struct request *rq = SCpnt->request;
1315 
1316 	if (SCpnt->flags & SCMD_ZONE_WRITE_LOCK)
1317 		sd_zbc_write_unlock_zone(SCpnt);
1318 
1319 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1320 		__free_page(rq->special_vec.bv_page);
1321 
1322 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1323 		mempool_free(SCpnt->cmnd, sd_cdb_pool);
1324 		SCpnt->cmnd = NULL;
1325 		SCpnt->cmd_len = 0;
1326 	}
1327 }
1328 
1329 /**
1330  *	sd_open - open a scsi disk device
1331  *	@bdev: Block device of the scsi disk to open
1332  *	@mode: FMODE_* mask
1333  *
1334  *	Returns 0 if successful. Returns a negated errno value in case
1335  *	of error.
1336  *
1337  *	Note: This can be called from a user context (e.g. fsck(1) )
1338  *	or from within the kernel (e.g. as a result of a mount(1) ).
1339  *	In the latter case @inode and @filp carry an abridged amount
1340  *	of information as noted above.
1341  *
1342  *	Locking: called with bdev->bd_mutex held.
1343  **/
1344 static int sd_open(struct block_device *bdev, fmode_t mode)
1345 {
1346 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1347 	struct scsi_device *sdev;
1348 	int retval;
1349 
1350 	if (!sdkp)
1351 		return -ENXIO;
1352 
1353 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1354 
1355 	sdev = sdkp->device;
1356 
1357 	/*
1358 	 * If the device is in error recovery, wait until it is done.
1359 	 * If the device is offline, then disallow any access to it.
1360 	 */
1361 	retval = -ENXIO;
1362 	if (!scsi_block_when_processing_errors(sdev))
1363 		goto error_out;
1364 
1365 	if (sdev->removable || sdkp->write_prot)
1366 		check_disk_change(bdev);
1367 
1368 	/*
1369 	 * If the drive is empty, just let the open fail.
1370 	 */
1371 	retval = -ENOMEDIUM;
1372 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1373 		goto error_out;
1374 
1375 	/*
1376 	 * If the device has the write protect tab set, have the open fail
1377 	 * if the user expects to be able to write to the thing.
1378 	 */
1379 	retval = -EROFS;
1380 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1381 		goto error_out;
1382 
1383 	/*
1384 	 * It is possible that the disk changing stuff resulted in
1385 	 * the device being taken offline.  If this is the case,
1386 	 * report this to the user, and don't pretend that the
1387 	 * open actually succeeded.
1388 	 */
1389 	retval = -ENXIO;
1390 	if (!scsi_device_online(sdev))
1391 		goto error_out;
1392 
1393 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1394 		if (scsi_block_when_processing_errors(sdev))
1395 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1396 	}
1397 
1398 	return 0;
1399 
1400 error_out:
1401 	scsi_disk_put(sdkp);
1402 	return retval;
1403 }
1404 
1405 /**
1406  *	sd_release - invoked when the (last) close(2) is called on this
1407  *	scsi disk.
1408  *	@disk: disk to release
1409  *	@mode: FMODE_* mask
1410  *
1411  *	Returns 0.
1412  *
1413  *	Note: may block (uninterruptible) if error recovery is underway
1414  *	on this disk.
1415  *
1416  *	Locking: called with bdev->bd_mutex held.
1417  **/
1418 static void sd_release(struct gendisk *disk, fmode_t mode)
1419 {
1420 	struct scsi_disk *sdkp = scsi_disk(disk);
1421 	struct scsi_device *sdev = sdkp->device;
1422 
1423 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1424 
1425 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1426 		if (scsi_block_when_processing_errors(sdev))
1427 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1428 	}
1429 
1430 	/*
1431 	 * XXX and what if there are packets in flight and this close()
1432 	 * XXX is followed by a "rmmod sd_mod"?
1433 	 */
1434 
1435 	scsi_disk_put(sdkp);
1436 }
1437 
1438 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1439 {
1440 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1441 	struct scsi_device *sdp = sdkp->device;
1442 	struct Scsi_Host *host = sdp->host;
1443 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1444 	int diskinfo[4];
1445 
1446 	/* default to most commonly used values */
1447 	diskinfo[0] = 0x40;	/* 1 << 6 */
1448 	diskinfo[1] = 0x20;	/* 1 << 5 */
1449 	diskinfo[2] = capacity >> 11;
1450 
1451 	/* override with calculated, extended default, or driver values */
1452 	if (host->hostt->bios_param)
1453 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1454 	else
1455 		scsicam_bios_param(bdev, capacity, diskinfo);
1456 
1457 	geo->heads = diskinfo[0];
1458 	geo->sectors = diskinfo[1];
1459 	geo->cylinders = diskinfo[2];
1460 	return 0;
1461 }
1462 
1463 /**
1464  *	sd_ioctl - process an ioctl
1465  *	@bdev: target block device
1466  *	@mode: FMODE_* mask
1467  *	@cmd: ioctl command number
1468  *	@arg: this is third argument given to ioctl(2) system call.
1469  *	Often contains a pointer.
1470  *
1471  *	Returns 0 if successful (some ioctls return positive numbers on
1472  *	success as well). Returns a negated errno value in case of error.
1473  *
1474  *	Note: most ioctls are forward onto the block subsystem or further
1475  *	down in the scsi subsystem.
1476  **/
1477 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1478 		    unsigned int cmd, unsigned long arg)
1479 {
1480 	struct gendisk *disk = bdev->bd_disk;
1481 	struct scsi_disk *sdkp = scsi_disk(disk);
1482 	struct scsi_device *sdp = sdkp->device;
1483 	void __user *p = (void __user *)arg;
1484 	int error;
1485 
1486 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1487 				    "cmd=0x%x\n", disk->disk_name, cmd));
1488 
1489 	error = scsi_verify_blk_ioctl(bdev, cmd);
1490 	if (error < 0)
1491 		return error;
1492 
1493 	/*
1494 	 * If we are in the middle of error recovery, don't let anyone
1495 	 * else try and use this device.  Also, if error recovery fails, it
1496 	 * may try and take the device offline, in which case all further
1497 	 * access to the device is prohibited.
1498 	 */
1499 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1500 			(mode & FMODE_NDELAY) != 0);
1501 	if (error)
1502 		goto out;
1503 
1504 	if (is_sed_ioctl(cmd))
1505 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1506 
1507 	/*
1508 	 * Send SCSI addressing ioctls directly to mid level, send other
1509 	 * ioctls to block level and then onto mid level if they can't be
1510 	 * resolved.
1511 	 */
1512 	switch (cmd) {
1513 		case SCSI_IOCTL_GET_IDLUN:
1514 		case SCSI_IOCTL_GET_BUS_NUMBER:
1515 			error = scsi_ioctl(sdp, cmd, p);
1516 			break;
1517 		default:
1518 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1519 			if (error != -ENOTTY)
1520 				break;
1521 			error = scsi_ioctl(sdp, cmd, p);
1522 			break;
1523 	}
1524 out:
1525 	return error;
1526 }
1527 
1528 static void set_media_not_present(struct scsi_disk *sdkp)
1529 {
1530 	if (sdkp->media_present)
1531 		sdkp->device->changed = 1;
1532 
1533 	if (sdkp->device->removable) {
1534 		sdkp->media_present = 0;
1535 		sdkp->capacity = 0;
1536 	}
1537 }
1538 
1539 static int media_not_present(struct scsi_disk *sdkp,
1540 			     struct scsi_sense_hdr *sshdr)
1541 {
1542 	if (!scsi_sense_valid(sshdr))
1543 		return 0;
1544 
1545 	/* not invoked for commands that could return deferred errors */
1546 	switch (sshdr->sense_key) {
1547 	case UNIT_ATTENTION:
1548 	case NOT_READY:
1549 		/* medium not present */
1550 		if (sshdr->asc == 0x3A) {
1551 			set_media_not_present(sdkp);
1552 			return 1;
1553 		}
1554 	}
1555 	return 0;
1556 }
1557 
1558 /**
1559  *	sd_check_events - check media events
1560  *	@disk: kernel device descriptor
1561  *	@clearing: disk events currently being cleared
1562  *
1563  *	Returns mask of DISK_EVENT_*.
1564  *
1565  *	Note: this function is invoked from the block subsystem.
1566  **/
1567 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1568 {
1569 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1570 	struct scsi_device *sdp;
1571 	int retval;
1572 
1573 	if (!sdkp)
1574 		return 0;
1575 
1576 	sdp = sdkp->device;
1577 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1578 
1579 	/*
1580 	 * If the device is offline, don't send any commands - just pretend as
1581 	 * if the command failed.  If the device ever comes back online, we
1582 	 * can deal with it then.  It is only because of unrecoverable errors
1583 	 * that we would ever take a device offline in the first place.
1584 	 */
1585 	if (!scsi_device_online(sdp)) {
1586 		set_media_not_present(sdkp);
1587 		goto out;
1588 	}
1589 
1590 	/*
1591 	 * Using TEST_UNIT_READY enables differentiation between drive with
1592 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1593 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1594 	 *
1595 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1596 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1597 	 * sd_revalidate() is called.
1598 	 */
1599 	if (scsi_block_when_processing_errors(sdp)) {
1600 		struct scsi_sense_hdr sshdr = { 0, };
1601 
1602 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1603 					      &sshdr);
1604 
1605 		/* failed to execute TUR, assume media not present */
1606 		if (host_byte(retval)) {
1607 			set_media_not_present(sdkp);
1608 			goto out;
1609 		}
1610 
1611 		if (media_not_present(sdkp, &sshdr))
1612 			goto out;
1613 	}
1614 
1615 	/*
1616 	 * For removable scsi disk we have to recognise the presence
1617 	 * of a disk in the drive.
1618 	 */
1619 	if (!sdkp->media_present)
1620 		sdp->changed = 1;
1621 	sdkp->media_present = 1;
1622 out:
1623 	/*
1624 	 * sdp->changed is set under the following conditions:
1625 	 *
1626 	 *	Medium present state has changed in either direction.
1627 	 *	Device has indicated UNIT_ATTENTION.
1628 	 */
1629 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1630 	sdp->changed = 0;
1631 	scsi_disk_put(sdkp);
1632 	return retval;
1633 }
1634 
1635 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1636 {
1637 	int retries, res;
1638 	struct scsi_device *sdp = sdkp->device;
1639 	const int timeout = sdp->request_queue->rq_timeout
1640 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1641 	struct scsi_sense_hdr my_sshdr;
1642 
1643 	if (!scsi_device_online(sdp))
1644 		return -ENODEV;
1645 
1646 	/* caller might not be interested in sense, but we need it */
1647 	if (!sshdr)
1648 		sshdr = &my_sshdr;
1649 
1650 	for (retries = 3; retries > 0; --retries) {
1651 		unsigned char cmd[10] = { 0 };
1652 
1653 		cmd[0] = SYNCHRONIZE_CACHE;
1654 		/*
1655 		 * Leave the rest of the command zero to indicate
1656 		 * flush everything.
1657 		 */
1658 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1659 				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1660 		if (res == 0)
1661 			break;
1662 	}
1663 
1664 	if (res) {
1665 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1666 
1667 		if (driver_byte(res) & DRIVER_SENSE)
1668 			sd_print_sense_hdr(sdkp, sshdr);
1669 
1670 		/* we need to evaluate the error return  */
1671 		if (scsi_sense_valid(sshdr) &&
1672 			(sshdr->asc == 0x3a ||	/* medium not present */
1673 			 sshdr->asc == 0x20))	/* invalid command */
1674 				/* this is no error here */
1675 				return 0;
1676 
1677 		switch (host_byte(res)) {
1678 		/* ignore errors due to racing a disconnection */
1679 		case DID_BAD_TARGET:
1680 		case DID_NO_CONNECT:
1681 			return 0;
1682 		/* signal the upper layer it might try again */
1683 		case DID_BUS_BUSY:
1684 		case DID_IMM_RETRY:
1685 		case DID_REQUEUE:
1686 		case DID_SOFT_ERROR:
1687 			return -EBUSY;
1688 		default:
1689 			return -EIO;
1690 		}
1691 	}
1692 	return 0;
1693 }
1694 
1695 static void sd_rescan(struct device *dev)
1696 {
1697 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1698 
1699 	revalidate_disk(sdkp->disk);
1700 }
1701 
1702 
1703 #ifdef CONFIG_COMPAT
1704 /*
1705  * This gets directly called from VFS. When the ioctl
1706  * is not recognized we go back to the other translation paths.
1707  */
1708 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1709 			   unsigned int cmd, unsigned long arg)
1710 {
1711 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1712 	int error;
1713 
1714 	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1715 			(mode & FMODE_NDELAY) != 0);
1716 	if (error)
1717 		return error;
1718 
1719 	/*
1720 	 * Let the static ioctl translation table take care of it.
1721 	 */
1722 	if (!sdev->host->hostt->compat_ioctl)
1723 		return -ENOIOCTLCMD;
1724 	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1725 }
1726 #endif
1727 
1728 static char sd_pr_type(enum pr_type type)
1729 {
1730 	switch (type) {
1731 	case PR_WRITE_EXCLUSIVE:
1732 		return 0x01;
1733 	case PR_EXCLUSIVE_ACCESS:
1734 		return 0x03;
1735 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1736 		return 0x05;
1737 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1738 		return 0x06;
1739 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1740 		return 0x07;
1741 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1742 		return 0x08;
1743 	default:
1744 		return 0;
1745 	}
1746 };
1747 
1748 static int sd_pr_command(struct block_device *bdev, u8 sa,
1749 		u64 key, u64 sa_key, u8 type, u8 flags)
1750 {
1751 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1752 	struct scsi_sense_hdr sshdr;
1753 	int result;
1754 	u8 cmd[16] = { 0, };
1755 	u8 data[24] = { 0, };
1756 
1757 	cmd[0] = PERSISTENT_RESERVE_OUT;
1758 	cmd[1] = sa;
1759 	cmd[2] = type;
1760 	put_unaligned_be32(sizeof(data), &cmd[5]);
1761 
1762 	put_unaligned_be64(key, &data[0]);
1763 	put_unaligned_be64(sa_key, &data[8]);
1764 	data[20] = flags;
1765 
1766 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1767 			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1768 
1769 	if ((driver_byte(result) & DRIVER_SENSE) &&
1770 	    (scsi_sense_valid(&sshdr))) {
1771 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1772 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1773 	}
1774 
1775 	return result;
1776 }
1777 
1778 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1779 		u32 flags)
1780 {
1781 	if (flags & ~PR_FL_IGNORE_KEY)
1782 		return -EOPNOTSUPP;
1783 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1784 			old_key, new_key, 0,
1785 			(1 << 0) /* APTPL */);
1786 }
1787 
1788 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1789 		u32 flags)
1790 {
1791 	if (flags)
1792 		return -EOPNOTSUPP;
1793 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1794 }
1795 
1796 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1797 {
1798 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1799 }
1800 
1801 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1802 		enum pr_type type, bool abort)
1803 {
1804 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1805 			     sd_pr_type(type), 0);
1806 }
1807 
1808 static int sd_pr_clear(struct block_device *bdev, u64 key)
1809 {
1810 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1811 }
1812 
1813 static const struct pr_ops sd_pr_ops = {
1814 	.pr_register	= sd_pr_register,
1815 	.pr_reserve	= sd_pr_reserve,
1816 	.pr_release	= sd_pr_release,
1817 	.pr_preempt	= sd_pr_preempt,
1818 	.pr_clear	= sd_pr_clear,
1819 };
1820 
1821 static const struct block_device_operations sd_fops = {
1822 	.owner			= THIS_MODULE,
1823 	.open			= sd_open,
1824 	.release		= sd_release,
1825 	.ioctl			= sd_ioctl,
1826 	.getgeo			= sd_getgeo,
1827 #ifdef CONFIG_COMPAT
1828 	.compat_ioctl		= sd_compat_ioctl,
1829 #endif
1830 	.check_events		= sd_check_events,
1831 	.revalidate_disk	= sd_revalidate_disk,
1832 	.unlock_native_capacity	= sd_unlock_native_capacity,
1833 	.pr_ops			= &sd_pr_ops,
1834 };
1835 
1836 /**
1837  *	sd_eh_reset - reset error handling callback
1838  *	@scmd:		sd-issued command that has failed
1839  *
1840  *	This function is called by the SCSI midlayer before starting
1841  *	SCSI EH. When counting medium access failures we have to be
1842  *	careful to register it only only once per device and SCSI EH run;
1843  *	there might be several timed out commands which will cause the
1844  *	'max_medium_access_timeouts' counter to trigger after the first
1845  *	SCSI EH run already and set the device to offline.
1846  *	So this function resets the internal counter before starting SCSI EH.
1847  **/
1848 static void sd_eh_reset(struct scsi_cmnd *scmd)
1849 {
1850 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1851 
1852 	/* New SCSI EH run, reset gate variable */
1853 	sdkp->ignore_medium_access_errors = false;
1854 }
1855 
1856 /**
1857  *	sd_eh_action - error handling callback
1858  *	@scmd:		sd-issued command that has failed
1859  *	@eh_disp:	The recovery disposition suggested by the midlayer
1860  *
1861  *	This function is called by the SCSI midlayer upon completion of an
1862  *	error test command (currently TEST UNIT READY). The result of sending
1863  *	the eh command is passed in eh_disp.  We're looking for devices that
1864  *	fail medium access commands but are OK with non access commands like
1865  *	test unit ready (so wrongly see the device as having a successful
1866  *	recovery)
1867  **/
1868 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1869 {
1870 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1871 	struct scsi_device *sdev = scmd->device;
1872 
1873 	if (!scsi_device_online(sdev) ||
1874 	    !scsi_medium_access_command(scmd) ||
1875 	    host_byte(scmd->result) != DID_TIME_OUT ||
1876 	    eh_disp != SUCCESS)
1877 		return eh_disp;
1878 
1879 	/*
1880 	 * The device has timed out executing a medium access command.
1881 	 * However, the TEST UNIT READY command sent during error
1882 	 * handling completed successfully. Either the device is in the
1883 	 * process of recovering or has it suffered an internal failure
1884 	 * that prevents access to the storage medium.
1885 	 */
1886 	if (!sdkp->ignore_medium_access_errors) {
1887 		sdkp->medium_access_timed_out++;
1888 		sdkp->ignore_medium_access_errors = true;
1889 	}
1890 
1891 	/*
1892 	 * If the device keeps failing read/write commands but TEST UNIT
1893 	 * READY always completes successfully we assume that medium
1894 	 * access is no longer possible and take the device offline.
1895 	 */
1896 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1897 		scmd_printk(KERN_ERR, scmd,
1898 			    "Medium access timeout failure. Offlining disk!\n");
1899 		mutex_lock(&sdev->state_mutex);
1900 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1901 		mutex_unlock(&sdev->state_mutex);
1902 
1903 		return SUCCESS;
1904 	}
1905 
1906 	return eh_disp;
1907 }
1908 
1909 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1910 {
1911 	struct request *req = scmd->request;
1912 	struct scsi_device *sdev = scmd->device;
1913 	unsigned int transferred, good_bytes;
1914 	u64 start_lba, end_lba, bad_lba;
1915 
1916 	/*
1917 	 * Some commands have a payload smaller than the device logical
1918 	 * block size (e.g. INQUIRY on a 4K disk).
1919 	 */
1920 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1921 		return 0;
1922 
1923 	/* Check if we have a 'bad_lba' information */
1924 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1925 				     SCSI_SENSE_BUFFERSIZE,
1926 				     &bad_lba))
1927 		return 0;
1928 
1929 	/*
1930 	 * If the bad lba was reported incorrectly, we have no idea where
1931 	 * the error is.
1932 	 */
1933 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1934 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1935 	if (bad_lba < start_lba || bad_lba >= end_lba)
1936 		return 0;
1937 
1938 	/*
1939 	 * resid is optional but mostly filled in.  When it's unused,
1940 	 * its value is zero, so we assume the whole buffer transferred
1941 	 */
1942 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1943 
1944 	/* This computation should always be done in terms of the
1945 	 * resolution of the device's medium.
1946 	 */
1947 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1948 
1949 	return min(good_bytes, transferred);
1950 }
1951 
1952 /**
1953  *	sd_done - bottom half handler: called when the lower level
1954  *	driver has completed (successfully or otherwise) a scsi command.
1955  *	@SCpnt: mid-level's per command structure.
1956  *
1957  *	Note: potentially run from within an ISR. Must not block.
1958  **/
1959 static int sd_done(struct scsi_cmnd *SCpnt)
1960 {
1961 	int result = SCpnt->result;
1962 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1963 	unsigned int sector_size = SCpnt->device->sector_size;
1964 	unsigned int resid;
1965 	struct scsi_sense_hdr sshdr;
1966 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1967 	struct request *req = SCpnt->request;
1968 	int sense_valid = 0;
1969 	int sense_deferred = 0;
1970 
1971 	switch (req_op(req)) {
1972 	case REQ_OP_DISCARD:
1973 	case REQ_OP_WRITE_ZEROES:
1974 	case REQ_OP_WRITE_SAME:
1975 	case REQ_OP_ZONE_RESET:
1976 		if (!result) {
1977 			good_bytes = blk_rq_bytes(req);
1978 			scsi_set_resid(SCpnt, 0);
1979 		} else {
1980 			good_bytes = 0;
1981 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1982 		}
1983 		break;
1984 	case REQ_OP_ZONE_REPORT:
1985 		if (!result) {
1986 			good_bytes = scsi_bufflen(SCpnt)
1987 				- scsi_get_resid(SCpnt);
1988 			scsi_set_resid(SCpnt, 0);
1989 		} else {
1990 			good_bytes = 0;
1991 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1992 		}
1993 		break;
1994 	default:
1995 		/*
1996 		 * In case of bogus fw or device, we could end up having
1997 		 * an unaligned partial completion. Check this here and force
1998 		 * alignment.
1999 		 */
2000 		resid = scsi_get_resid(SCpnt);
2001 		if (resid & (sector_size - 1)) {
2002 			sd_printk(KERN_INFO, sdkp,
2003 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2004 				resid, sector_size);
2005 			resid = min(scsi_bufflen(SCpnt),
2006 				    round_up(resid, sector_size));
2007 			scsi_set_resid(SCpnt, resid);
2008 		}
2009 	}
2010 
2011 	if (result) {
2012 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2013 		if (sense_valid)
2014 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2015 	}
2016 	sdkp->medium_access_timed_out = 0;
2017 
2018 	if (driver_byte(result) != DRIVER_SENSE &&
2019 	    (!sense_valid || sense_deferred))
2020 		goto out;
2021 
2022 	switch (sshdr.sense_key) {
2023 	case HARDWARE_ERROR:
2024 	case MEDIUM_ERROR:
2025 		good_bytes = sd_completed_bytes(SCpnt);
2026 		break;
2027 	case RECOVERED_ERROR:
2028 		good_bytes = scsi_bufflen(SCpnt);
2029 		break;
2030 	case NO_SENSE:
2031 		/* This indicates a false check condition, so ignore it.  An
2032 		 * unknown amount of data was transferred so treat it as an
2033 		 * error.
2034 		 */
2035 		SCpnt->result = 0;
2036 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2037 		break;
2038 	case ABORTED_COMMAND:
2039 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2040 			good_bytes = sd_completed_bytes(SCpnt);
2041 		break;
2042 	case ILLEGAL_REQUEST:
2043 		switch (sshdr.asc) {
2044 		case 0x10:	/* DIX: Host detected corruption */
2045 			good_bytes = sd_completed_bytes(SCpnt);
2046 			break;
2047 		case 0x20:	/* INVALID COMMAND OPCODE */
2048 		case 0x24:	/* INVALID FIELD IN CDB */
2049 			switch (SCpnt->cmnd[0]) {
2050 			case UNMAP:
2051 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2052 				break;
2053 			case WRITE_SAME_16:
2054 			case WRITE_SAME:
2055 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2056 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2057 				} else {
2058 					sdkp->device->no_write_same = 1;
2059 					sd_config_write_same(sdkp);
2060 					req->__data_len = blk_rq_bytes(req);
2061 					req->rq_flags |= RQF_QUIET;
2062 				}
2063 				break;
2064 			}
2065 		}
2066 		break;
2067 	default:
2068 		break;
2069 	}
2070 
2071  out:
2072 	if (sd_is_zoned(sdkp))
2073 		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2074 
2075 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2076 					   "sd_done: completed %d of %d bytes\n",
2077 					   good_bytes, scsi_bufflen(SCpnt)));
2078 
2079 	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
2080 		sd_dif_complete(SCpnt, good_bytes);
2081 
2082 	return good_bytes;
2083 }
2084 
2085 /*
2086  * spinup disk - called only in sd_revalidate_disk()
2087  */
2088 static void
2089 sd_spinup_disk(struct scsi_disk *sdkp)
2090 {
2091 	unsigned char cmd[10];
2092 	unsigned long spintime_expire = 0;
2093 	int retries, spintime;
2094 	unsigned int the_result;
2095 	struct scsi_sense_hdr sshdr;
2096 	int sense_valid = 0;
2097 
2098 	spintime = 0;
2099 
2100 	/* Spin up drives, as required.  Only do this at boot time */
2101 	/* Spinup needs to be done for module loads too. */
2102 	do {
2103 		retries = 0;
2104 
2105 		do {
2106 			cmd[0] = TEST_UNIT_READY;
2107 			memset((void *) &cmd[1], 0, 9);
2108 
2109 			the_result = scsi_execute_req(sdkp->device, cmd,
2110 						      DMA_NONE, NULL, 0,
2111 						      &sshdr, SD_TIMEOUT,
2112 						      SD_MAX_RETRIES, NULL);
2113 
2114 			/*
2115 			 * If the drive has indicated to us that it
2116 			 * doesn't have any media in it, don't bother
2117 			 * with any more polling.
2118 			 */
2119 			if (media_not_present(sdkp, &sshdr))
2120 				return;
2121 
2122 			if (the_result)
2123 				sense_valid = scsi_sense_valid(&sshdr);
2124 			retries++;
2125 		} while (retries < 3 &&
2126 			 (!scsi_status_is_good(the_result) ||
2127 			  ((driver_byte(the_result) & DRIVER_SENSE) &&
2128 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2129 
2130 		if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
2131 			/* no sense, TUR either succeeded or failed
2132 			 * with a status error */
2133 			if(!spintime && !scsi_status_is_good(the_result)) {
2134 				sd_print_result(sdkp, "Test Unit Ready failed",
2135 						the_result);
2136 			}
2137 			break;
2138 		}
2139 
2140 		/*
2141 		 * The device does not want the automatic start to be issued.
2142 		 */
2143 		if (sdkp->device->no_start_on_add)
2144 			break;
2145 
2146 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2147 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2148 				break;	/* manual intervention required */
2149 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2150 				break;	/* standby */
2151 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2152 				break;	/* unavailable */
2153 			/*
2154 			 * Issue command to spin up drive when not ready
2155 			 */
2156 			if (!spintime) {
2157 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2158 				cmd[0] = START_STOP;
2159 				cmd[1] = 1;	/* Return immediately */
2160 				memset((void *) &cmd[2], 0, 8);
2161 				cmd[4] = 1;	/* Start spin cycle */
2162 				if (sdkp->device->start_stop_pwr_cond)
2163 					cmd[4] |= 1 << 4;
2164 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2165 						 NULL, 0, &sshdr,
2166 						 SD_TIMEOUT, SD_MAX_RETRIES,
2167 						 NULL);
2168 				spintime_expire = jiffies + 100 * HZ;
2169 				spintime = 1;
2170 			}
2171 			/* Wait 1 second for next try */
2172 			msleep(1000);
2173 			printk(".");
2174 
2175 		/*
2176 		 * Wait for USB flash devices with slow firmware.
2177 		 * Yes, this sense key/ASC combination shouldn't
2178 		 * occur here.  It's characteristic of these devices.
2179 		 */
2180 		} else if (sense_valid &&
2181 				sshdr.sense_key == UNIT_ATTENTION &&
2182 				sshdr.asc == 0x28) {
2183 			if (!spintime) {
2184 				spintime_expire = jiffies + 5 * HZ;
2185 				spintime = 1;
2186 			}
2187 			/* Wait 1 second for next try */
2188 			msleep(1000);
2189 		} else {
2190 			/* we don't understand the sense code, so it's
2191 			 * probably pointless to loop */
2192 			if(!spintime) {
2193 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2194 				sd_print_sense_hdr(sdkp, &sshdr);
2195 			}
2196 			break;
2197 		}
2198 
2199 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2200 
2201 	if (spintime) {
2202 		if (scsi_status_is_good(the_result))
2203 			printk("ready\n");
2204 		else
2205 			printk("not responding...\n");
2206 	}
2207 }
2208 
2209 /*
2210  * Determine whether disk supports Data Integrity Field.
2211  */
2212 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2213 {
2214 	struct scsi_device *sdp = sdkp->device;
2215 	u8 type;
2216 	int ret = 0;
2217 
2218 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2219 		return ret;
2220 
2221 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2222 
2223 	if (type > T10_PI_TYPE3_PROTECTION)
2224 		ret = -ENODEV;
2225 	else if (scsi_host_dif_capable(sdp->host, type))
2226 		ret = 1;
2227 
2228 	if (sdkp->first_scan || type != sdkp->protection_type)
2229 		switch (ret) {
2230 		case -ENODEV:
2231 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2232 				  " protection type %u. Disabling disk!\n",
2233 				  type);
2234 			break;
2235 		case 1:
2236 			sd_printk(KERN_NOTICE, sdkp,
2237 				  "Enabling DIF Type %u protection\n", type);
2238 			break;
2239 		case 0:
2240 			sd_printk(KERN_NOTICE, sdkp,
2241 				  "Disabling DIF Type %u protection\n", type);
2242 			break;
2243 		}
2244 
2245 	sdkp->protection_type = type;
2246 
2247 	return ret;
2248 }
2249 
2250 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2251 			struct scsi_sense_hdr *sshdr, int sense_valid,
2252 			int the_result)
2253 {
2254 	if (driver_byte(the_result) & DRIVER_SENSE)
2255 		sd_print_sense_hdr(sdkp, sshdr);
2256 	else
2257 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2258 
2259 	/*
2260 	 * Set dirty bit for removable devices if not ready -
2261 	 * sometimes drives will not report this properly.
2262 	 */
2263 	if (sdp->removable &&
2264 	    sense_valid && sshdr->sense_key == NOT_READY)
2265 		set_media_not_present(sdkp);
2266 
2267 	/*
2268 	 * We used to set media_present to 0 here to indicate no media
2269 	 * in the drive, but some drives fail read capacity even with
2270 	 * media present, so we can't do that.
2271 	 */
2272 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2273 }
2274 
2275 #define RC16_LEN 32
2276 #if RC16_LEN > SD_BUF_SIZE
2277 #error RC16_LEN must not be more than SD_BUF_SIZE
2278 #endif
2279 
2280 #define READ_CAPACITY_RETRIES_ON_RESET	10
2281 
2282 /*
2283  * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2284  * and the reported logical block size is bigger than 512 bytes. Note
2285  * that last_sector is a u64 and therefore logical_to_sectors() is not
2286  * applicable.
2287  */
2288 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2289 {
2290 	u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2291 
2292 	if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2293 		return false;
2294 
2295 	return true;
2296 }
2297 
2298 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2299 						unsigned char *buffer)
2300 {
2301 	unsigned char cmd[16];
2302 	struct scsi_sense_hdr sshdr;
2303 	int sense_valid = 0;
2304 	int the_result;
2305 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2306 	unsigned int alignment;
2307 	unsigned long long lba;
2308 	unsigned sector_size;
2309 
2310 	if (sdp->no_read_capacity_16)
2311 		return -EINVAL;
2312 
2313 	do {
2314 		memset(cmd, 0, 16);
2315 		cmd[0] = SERVICE_ACTION_IN_16;
2316 		cmd[1] = SAI_READ_CAPACITY_16;
2317 		cmd[13] = RC16_LEN;
2318 		memset(buffer, 0, RC16_LEN);
2319 
2320 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2321 					buffer, RC16_LEN, &sshdr,
2322 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2323 
2324 		if (media_not_present(sdkp, &sshdr))
2325 			return -ENODEV;
2326 
2327 		if (the_result) {
2328 			sense_valid = scsi_sense_valid(&sshdr);
2329 			if (sense_valid &&
2330 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2331 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2332 			    sshdr.ascq == 0x00)
2333 				/* Invalid Command Operation Code or
2334 				 * Invalid Field in CDB, just retry
2335 				 * silently with RC10 */
2336 				return -EINVAL;
2337 			if (sense_valid &&
2338 			    sshdr.sense_key == UNIT_ATTENTION &&
2339 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2340 				/* Device reset might occur several times,
2341 				 * give it one more chance */
2342 				if (--reset_retries > 0)
2343 					continue;
2344 		}
2345 		retries--;
2346 
2347 	} while (the_result && retries);
2348 
2349 	if (the_result) {
2350 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2351 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2352 		return -EINVAL;
2353 	}
2354 
2355 	sector_size = get_unaligned_be32(&buffer[8]);
2356 	lba = get_unaligned_be64(&buffer[0]);
2357 
2358 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2359 		sdkp->capacity = 0;
2360 		return -ENODEV;
2361 	}
2362 
2363 	if (!sd_addressable_capacity(lba, sector_size)) {
2364 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2365 			"kernel compiled with support for large block "
2366 			"devices.\n");
2367 		sdkp->capacity = 0;
2368 		return -EOVERFLOW;
2369 	}
2370 
2371 	/* Logical blocks per physical block exponent */
2372 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2373 
2374 	/* RC basis */
2375 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2376 
2377 	/* Lowest aligned logical block */
2378 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2379 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2380 	if (alignment && sdkp->first_scan)
2381 		sd_printk(KERN_NOTICE, sdkp,
2382 			  "physical block alignment offset: %u\n", alignment);
2383 
2384 	if (buffer[14] & 0x80) { /* LBPME */
2385 		sdkp->lbpme = 1;
2386 
2387 		if (buffer[14] & 0x40) /* LBPRZ */
2388 			sdkp->lbprz = 1;
2389 
2390 		sd_config_discard(sdkp, SD_LBP_WS16);
2391 	}
2392 
2393 	sdkp->capacity = lba + 1;
2394 	return sector_size;
2395 }
2396 
2397 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2398 						unsigned char *buffer)
2399 {
2400 	unsigned char cmd[16];
2401 	struct scsi_sense_hdr sshdr;
2402 	int sense_valid = 0;
2403 	int the_result;
2404 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2405 	sector_t lba;
2406 	unsigned sector_size;
2407 
2408 	do {
2409 		cmd[0] = READ_CAPACITY;
2410 		memset(&cmd[1], 0, 9);
2411 		memset(buffer, 0, 8);
2412 
2413 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2414 					buffer, 8, &sshdr,
2415 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2416 
2417 		if (media_not_present(sdkp, &sshdr))
2418 			return -ENODEV;
2419 
2420 		if (the_result) {
2421 			sense_valid = scsi_sense_valid(&sshdr);
2422 			if (sense_valid &&
2423 			    sshdr.sense_key == UNIT_ATTENTION &&
2424 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2425 				/* Device reset might occur several times,
2426 				 * give it one more chance */
2427 				if (--reset_retries > 0)
2428 					continue;
2429 		}
2430 		retries--;
2431 
2432 	} while (the_result && retries);
2433 
2434 	if (the_result) {
2435 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2436 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2437 		return -EINVAL;
2438 	}
2439 
2440 	sector_size = get_unaligned_be32(&buffer[4]);
2441 	lba = get_unaligned_be32(&buffer[0]);
2442 
2443 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2444 		/* Some buggy (usb cardreader) devices return an lba of
2445 		   0xffffffff when the want to report a size of 0 (with
2446 		   which they really mean no media is present) */
2447 		sdkp->capacity = 0;
2448 		sdkp->physical_block_size = sector_size;
2449 		return sector_size;
2450 	}
2451 
2452 	if (!sd_addressable_capacity(lba, sector_size)) {
2453 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2454 			"kernel compiled with support for large block "
2455 			"devices.\n");
2456 		sdkp->capacity = 0;
2457 		return -EOVERFLOW;
2458 	}
2459 
2460 	sdkp->capacity = lba + 1;
2461 	sdkp->physical_block_size = sector_size;
2462 	return sector_size;
2463 }
2464 
2465 static int sd_try_rc16_first(struct scsi_device *sdp)
2466 {
2467 	if (sdp->host->max_cmd_len < 16)
2468 		return 0;
2469 	if (sdp->try_rc_10_first)
2470 		return 0;
2471 	if (sdp->scsi_level > SCSI_SPC_2)
2472 		return 1;
2473 	if (scsi_device_protection(sdp))
2474 		return 1;
2475 	return 0;
2476 }
2477 
2478 /*
2479  * read disk capacity
2480  */
2481 static void
2482 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2483 {
2484 	int sector_size;
2485 	struct scsi_device *sdp = sdkp->device;
2486 
2487 	if (sd_try_rc16_first(sdp)) {
2488 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2489 		if (sector_size == -EOVERFLOW)
2490 			goto got_data;
2491 		if (sector_size == -ENODEV)
2492 			return;
2493 		if (sector_size < 0)
2494 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2495 		if (sector_size < 0)
2496 			return;
2497 	} else {
2498 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2499 		if (sector_size == -EOVERFLOW)
2500 			goto got_data;
2501 		if (sector_size < 0)
2502 			return;
2503 		if ((sizeof(sdkp->capacity) > 4) &&
2504 		    (sdkp->capacity > 0xffffffffULL)) {
2505 			int old_sector_size = sector_size;
2506 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2507 					"Trying to use READ CAPACITY(16).\n");
2508 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2509 			if (sector_size < 0) {
2510 				sd_printk(KERN_NOTICE, sdkp,
2511 					"Using 0xffffffff as device size\n");
2512 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2513 				sector_size = old_sector_size;
2514 				goto got_data;
2515 			}
2516 		}
2517 	}
2518 
2519 	/* Some devices are known to return the total number of blocks,
2520 	 * not the highest block number.  Some devices have versions
2521 	 * which do this and others which do not.  Some devices we might
2522 	 * suspect of doing this but we don't know for certain.
2523 	 *
2524 	 * If we know the reported capacity is wrong, decrement it.  If
2525 	 * we can only guess, then assume the number of blocks is even
2526 	 * (usually true but not always) and err on the side of lowering
2527 	 * the capacity.
2528 	 */
2529 	if (sdp->fix_capacity ||
2530 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2531 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2532 				"from its reported value: %llu\n",
2533 				(unsigned long long) sdkp->capacity);
2534 		--sdkp->capacity;
2535 	}
2536 
2537 got_data:
2538 	if (sector_size == 0) {
2539 		sector_size = 512;
2540 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2541 			  "assuming 512.\n");
2542 	}
2543 
2544 	if (sector_size != 512 &&
2545 	    sector_size != 1024 &&
2546 	    sector_size != 2048 &&
2547 	    sector_size != 4096) {
2548 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2549 			  sector_size);
2550 		/*
2551 		 * The user might want to re-format the drive with
2552 		 * a supported sectorsize.  Once this happens, it
2553 		 * would be relatively trivial to set the thing up.
2554 		 * For this reason, we leave the thing in the table.
2555 		 */
2556 		sdkp->capacity = 0;
2557 		/*
2558 		 * set a bogus sector size so the normal read/write
2559 		 * logic in the block layer will eventually refuse any
2560 		 * request on this device without tripping over power
2561 		 * of two sector size assumptions
2562 		 */
2563 		sector_size = 512;
2564 	}
2565 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2566 	blk_queue_physical_block_size(sdp->request_queue,
2567 				      sdkp->physical_block_size);
2568 	sdkp->device->sector_size = sector_size;
2569 
2570 	if (sdkp->capacity > 0xffffffff)
2571 		sdp->use_16_for_rw = 1;
2572 
2573 }
2574 
2575 /*
2576  * Print disk capacity
2577  */
2578 static void
2579 sd_print_capacity(struct scsi_disk *sdkp,
2580 		  sector_t old_capacity)
2581 {
2582 	int sector_size = sdkp->device->sector_size;
2583 	char cap_str_2[10], cap_str_10[10];
2584 
2585 	string_get_size(sdkp->capacity, sector_size,
2586 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2587 	string_get_size(sdkp->capacity, sector_size,
2588 			STRING_UNITS_10, cap_str_10,
2589 			sizeof(cap_str_10));
2590 
2591 	if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2592 		sd_printk(KERN_NOTICE, sdkp,
2593 			  "%llu %d-byte logical blocks: (%s/%s)\n",
2594 			  (unsigned long long)sdkp->capacity,
2595 			  sector_size, cap_str_10, cap_str_2);
2596 
2597 		if (sdkp->physical_block_size != sector_size)
2598 			sd_printk(KERN_NOTICE, sdkp,
2599 				  "%u-byte physical blocks\n",
2600 				  sdkp->physical_block_size);
2601 
2602 		sd_zbc_print_zones(sdkp);
2603 	}
2604 }
2605 
2606 /* called with buffer of length 512 */
2607 static inline int
2608 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2609 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2610 		 struct scsi_sense_hdr *sshdr)
2611 {
2612 	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2613 			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2614 			       sshdr);
2615 }
2616 
2617 /*
2618  * read write protect setting, if possible - called only in sd_revalidate_disk()
2619  * called with buffer of length SD_BUF_SIZE
2620  */
2621 static void
2622 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2623 {
2624 	int res;
2625 	struct scsi_device *sdp = sdkp->device;
2626 	struct scsi_mode_data data;
2627 	int old_wp = sdkp->write_prot;
2628 
2629 	set_disk_ro(sdkp->disk, 0);
2630 	if (sdp->skip_ms_page_3f) {
2631 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2632 		return;
2633 	}
2634 
2635 	if (sdp->use_192_bytes_for_3f) {
2636 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2637 	} else {
2638 		/*
2639 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2640 		 * We have to start carefully: some devices hang if we ask
2641 		 * for more than is available.
2642 		 */
2643 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2644 
2645 		/*
2646 		 * Second attempt: ask for page 0 When only page 0 is
2647 		 * implemented, a request for page 3F may return Sense Key
2648 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2649 		 * CDB.
2650 		 */
2651 		if (!scsi_status_is_good(res))
2652 			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2653 
2654 		/*
2655 		 * Third attempt: ask 255 bytes, as we did earlier.
2656 		 */
2657 		if (!scsi_status_is_good(res))
2658 			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2659 					       &data, NULL);
2660 	}
2661 
2662 	if (!scsi_status_is_good(res)) {
2663 		sd_first_printk(KERN_WARNING, sdkp,
2664 			  "Test WP failed, assume Write Enabled\n");
2665 	} else {
2666 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2667 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2668 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2669 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2670 				  sdkp->write_prot ? "on" : "off");
2671 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2672 		}
2673 	}
2674 }
2675 
2676 /*
2677  * sd_read_cache_type - called only from sd_revalidate_disk()
2678  * called with buffer of length SD_BUF_SIZE
2679  */
2680 static void
2681 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2682 {
2683 	int len = 0, res;
2684 	struct scsi_device *sdp = sdkp->device;
2685 
2686 	int dbd;
2687 	int modepage;
2688 	int first_len;
2689 	struct scsi_mode_data data;
2690 	struct scsi_sense_hdr sshdr;
2691 	int old_wce = sdkp->WCE;
2692 	int old_rcd = sdkp->RCD;
2693 	int old_dpofua = sdkp->DPOFUA;
2694 
2695 
2696 	if (sdkp->cache_override)
2697 		return;
2698 
2699 	first_len = 4;
2700 	if (sdp->skip_ms_page_8) {
2701 		if (sdp->type == TYPE_RBC)
2702 			goto defaults;
2703 		else {
2704 			if (sdp->skip_ms_page_3f)
2705 				goto defaults;
2706 			modepage = 0x3F;
2707 			if (sdp->use_192_bytes_for_3f)
2708 				first_len = 192;
2709 			dbd = 0;
2710 		}
2711 	} else if (sdp->type == TYPE_RBC) {
2712 		modepage = 6;
2713 		dbd = 8;
2714 	} else {
2715 		modepage = 8;
2716 		dbd = 0;
2717 	}
2718 
2719 	/* cautiously ask */
2720 	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2721 			&data, &sshdr);
2722 
2723 	if (!scsi_status_is_good(res))
2724 		goto bad_sense;
2725 
2726 	if (!data.header_length) {
2727 		modepage = 6;
2728 		first_len = 0;
2729 		sd_first_printk(KERN_ERR, sdkp,
2730 				"Missing header in MODE_SENSE response\n");
2731 	}
2732 
2733 	/* that went OK, now ask for the proper length */
2734 	len = data.length;
2735 
2736 	/*
2737 	 * We're only interested in the first three bytes, actually.
2738 	 * But the data cache page is defined for the first 20.
2739 	 */
2740 	if (len < 3)
2741 		goto bad_sense;
2742 	else if (len > SD_BUF_SIZE) {
2743 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2744 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2745 		len = SD_BUF_SIZE;
2746 	}
2747 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2748 		len = 192;
2749 
2750 	/* Get the data */
2751 	if (len > first_len)
2752 		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2753 				&data, &sshdr);
2754 
2755 	if (scsi_status_is_good(res)) {
2756 		int offset = data.header_length + data.block_descriptor_length;
2757 
2758 		while (offset < len) {
2759 			u8 page_code = buffer[offset] & 0x3F;
2760 			u8 spf       = buffer[offset] & 0x40;
2761 
2762 			if (page_code == 8 || page_code == 6) {
2763 				/* We're interested only in the first 3 bytes.
2764 				 */
2765 				if (len - offset <= 2) {
2766 					sd_first_printk(KERN_ERR, sdkp,
2767 						"Incomplete mode parameter "
2768 							"data\n");
2769 					goto defaults;
2770 				} else {
2771 					modepage = page_code;
2772 					goto Page_found;
2773 				}
2774 			} else {
2775 				/* Go to the next page */
2776 				if (spf && len - offset > 3)
2777 					offset += 4 + (buffer[offset+2] << 8) +
2778 						buffer[offset+3];
2779 				else if (!spf && len - offset > 1)
2780 					offset += 2 + buffer[offset+1];
2781 				else {
2782 					sd_first_printk(KERN_ERR, sdkp,
2783 							"Incomplete mode "
2784 							"parameter data\n");
2785 					goto defaults;
2786 				}
2787 			}
2788 		}
2789 
2790 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2791 		goto defaults;
2792 
2793 	Page_found:
2794 		if (modepage == 8) {
2795 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2796 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2797 		} else {
2798 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2799 			sdkp->RCD = 0;
2800 		}
2801 
2802 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2803 		if (sdp->broken_fua) {
2804 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2805 			sdkp->DPOFUA = 0;
2806 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2807 			   !sdkp->device->use_16_for_rw) {
2808 			sd_first_printk(KERN_NOTICE, sdkp,
2809 				  "Uses READ/WRITE(6), disabling FUA\n");
2810 			sdkp->DPOFUA = 0;
2811 		}
2812 
2813 		/* No cache flush allowed for write protected devices */
2814 		if (sdkp->WCE && sdkp->write_prot)
2815 			sdkp->WCE = 0;
2816 
2817 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2818 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2819 			sd_printk(KERN_NOTICE, sdkp,
2820 				  "Write cache: %s, read cache: %s, %s\n",
2821 				  sdkp->WCE ? "enabled" : "disabled",
2822 				  sdkp->RCD ? "disabled" : "enabled",
2823 				  sdkp->DPOFUA ? "supports DPO and FUA"
2824 				  : "doesn't support DPO or FUA");
2825 
2826 		return;
2827 	}
2828 
2829 bad_sense:
2830 	if (scsi_sense_valid(&sshdr) &&
2831 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2832 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2833 		/* Invalid field in CDB */
2834 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2835 	else
2836 		sd_first_printk(KERN_ERR, sdkp,
2837 				"Asking for cache data failed\n");
2838 
2839 defaults:
2840 	if (sdp->wce_default_on) {
2841 		sd_first_printk(KERN_NOTICE, sdkp,
2842 				"Assuming drive cache: write back\n");
2843 		sdkp->WCE = 1;
2844 	} else {
2845 		sd_first_printk(KERN_ERR, sdkp,
2846 				"Assuming drive cache: write through\n");
2847 		sdkp->WCE = 0;
2848 	}
2849 	sdkp->RCD = 0;
2850 	sdkp->DPOFUA = 0;
2851 }
2852 
2853 /*
2854  * The ATO bit indicates whether the DIF application tag is available
2855  * for use by the operating system.
2856  */
2857 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2858 {
2859 	int res, offset;
2860 	struct scsi_device *sdp = sdkp->device;
2861 	struct scsi_mode_data data;
2862 	struct scsi_sense_hdr sshdr;
2863 
2864 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2865 		return;
2866 
2867 	if (sdkp->protection_type == 0)
2868 		return;
2869 
2870 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2871 			      SD_MAX_RETRIES, &data, &sshdr);
2872 
2873 	if (!scsi_status_is_good(res) || !data.header_length ||
2874 	    data.length < 6) {
2875 		sd_first_printk(KERN_WARNING, sdkp,
2876 			  "getting Control mode page failed, assume no ATO\n");
2877 
2878 		if (scsi_sense_valid(&sshdr))
2879 			sd_print_sense_hdr(sdkp, &sshdr);
2880 
2881 		return;
2882 	}
2883 
2884 	offset = data.header_length + data.block_descriptor_length;
2885 
2886 	if ((buffer[offset] & 0x3f) != 0x0a) {
2887 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2888 		return;
2889 	}
2890 
2891 	if ((buffer[offset + 5] & 0x80) == 0)
2892 		return;
2893 
2894 	sdkp->ATO = 1;
2895 
2896 	return;
2897 }
2898 
2899 /**
2900  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2901  * @sdkp: disk to query
2902  */
2903 static void sd_read_block_limits(struct scsi_disk *sdkp)
2904 {
2905 	unsigned int sector_sz = sdkp->device->sector_size;
2906 	const int vpd_len = 64;
2907 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2908 
2909 	if (!buffer ||
2910 	    /* Block Limits VPD */
2911 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2912 		goto out;
2913 
2914 	blk_queue_io_min(sdkp->disk->queue,
2915 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2916 
2917 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2918 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2919 
2920 	if (buffer[3] == 0x3c) {
2921 		unsigned int lba_count, desc_count;
2922 
2923 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2924 
2925 		if (!sdkp->lbpme)
2926 			goto out;
2927 
2928 		lba_count = get_unaligned_be32(&buffer[20]);
2929 		desc_count = get_unaligned_be32(&buffer[24]);
2930 
2931 		if (lba_count && desc_count)
2932 			sdkp->max_unmap_blocks = lba_count;
2933 
2934 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2935 
2936 		if (buffer[32] & 0x80)
2937 			sdkp->unmap_alignment =
2938 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2939 
2940 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2941 
2942 			if (sdkp->max_unmap_blocks)
2943 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2944 			else
2945 				sd_config_discard(sdkp, SD_LBP_WS16);
2946 
2947 		} else {	/* LBP VPD page tells us what to use */
2948 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2949 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2950 			else if (sdkp->lbpws)
2951 				sd_config_discard(sdkp, SD_LBP_WS16);
2952 			else if (sdkp->lbpws10)
2953 				sd_config_discard(sdkp, SD_LBP_WS10);
2954 			else
2955 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2956 		}
2957 	}
2958 
2959  out:
2960 	kfree(buffer);
2961 }
2962 
2963 /**
2964  * sd_read_block_characteristics - Query block dev. characteristics
2965  * @sdkp: disk to query
2966  */
2967 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2968 {
2969 	struct request_queue *q = sdkp->disk->queue;
2970 	unsigned char *buffer;
2971 	u16 rot;
2972 	const int vpd_len = 64;
2973 
2974 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2975 
2976 	if (!buffer ||
2977 	    /* Block Device Characteristics VPD */
2978 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2979 		goto out;
2980 
2981 	rot = get_unaligned_be16(&buffer[4]);
2982 
2983 	if (rot == 1) {
2984 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2985 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2986 	}
2987 
2988 	if (sdkp->device->type == TYPE_ZBC) {
2989 		/* Host-managed */
2990 		q->limits.zoned = BLK_ZONED_HM;
2991 	} else {
2992 		sdkp->zoned = (buffer[8] >> 4) & 3;
2993 		if (sdkp->zoned == 1)
2994 			/* Host-aware */
2995 			q->limits.zoned = BLK_ZONED_HA;
2996 		else
2997 			/*
2998 			 * Treat drive-managed devices as
2999 			 * regular block devices.
3000 			 */
3001 			q->limits.zoned = BLK_ZONED_NONE;
3002 	}
3003 	if (blk_queue_is_zoned(q) && sdkp->first_scan)
3004 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3005 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3006 
3007  out:
3008 	kfree(buffer);
3009 }
3010 
3011 /**
3012  * sd_read_block_provisioning - Query provisioning VPD page
3013  * @sdkp: disk to query
3014  */
3015 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3016 {
3017 	unsigned char *buffer;
3018 	const int vpd_len = 8;
3019 
3020 	if (sdkp->lbpme == 0)
3021 		return;
3022 
3023 	buffer = kmalloc(vpd_len, GFP_KERNEL);
3024 
3025 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3026 		goto out;
3027 
3028 	sdkp->lbpvpd	= 1;
3029 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
3030 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
3031 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
3032 
3033  out:
3034 	kfree(buffer);
3035 }
3036 
3037 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3038 {
3039 	struct scsi_device *sdev = sdkp->device;
3040 
3041 	if (sdev->host->no_write_same) {
3042 		sdev->no_write_same = 1;
3043 
3044 		return;
3045 	}
3046 
3047 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3048 		/* too large values might cause issues with arcmsr */
3049 		int vpd_buf_len = 64;
3050 
3051 		sdev->no_report_opcodes = 1;
3052 
3053 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3054 		 * CODES is unsupported and the device has an ATA
3055 		 * Information VPD page (SAT).
3056 		 */
3057 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3058 			sdev->no_write_same = 1;
3059 	}
3060 
3061 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3062 		sdkp->ws16 = 1;
3063 
3064 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3065 		sdkp->ws10 = 1;
3066 }
3067 
3068 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3069 {
3070 	struct scsi_device *sdev = sdkp->device;
3071 
3072 	if (!sdev->security_supported)
3073 		return;
3074 
3075 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3076 			SECURITY_PROTOCOL_IN) == 1 &&
3077 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3078 			SECURITY_PROTOCOL_OUT) == 1)
3079 		sdkp->security = 1;
3080 }
3081 
3082 /**
3083  *	sd_revalidate_disk - called the first time a new disk is seen,
3084  *	performs disk spin up, read_capacity, etc.
3085  *	@disk: struct gendisk we care about
3086  **/
3087 static int sd_revalidate_disk(struct gendisk *disk)
3088 {
3089 	struct scsi_disk *sdkp = scsi_disk(disk);
3090 	struct scsi_device *sdp = sdkp->device;
3091 	struct request_queue *q = sdkp->disk->queue;
3092 	sector_t old_capacity = sdkp->capacity;
3093 	unsigned char *buffer;
3094 	unsigned int dev_max, rw_max;
3095 
3096 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3097 				      "sd_revalidate_disk\n"));
3098 
3099 	/*
3100 	 * If the device is offline, don't try and read capacity or any
3101 	 * of the other niceties.
3102 	 */
3103 	if (!scsi_device_online(sdp))
3104 		goto out;
3105 
3106 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3107 	if (!buffer) {
3108 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3109 			  "allocation failure.\n");
3110 		goto out;
3111 	}
3112 
3113 	sd_spinup_disk(sdkp);
3114 
3115 	/*
3116 	 * Without media there is no reason to ask; moreover, some devices
3117 	 * react badly if we do.
3118 	 */
3119 	if (sdkp->media_present) {
3120 		sd_read_capacity(sdkp, buffer);
3121 
3122 		if (scsi_device_supports_vpd(sdp)) {
3123 			sd_read_block_provisioning(sdkp);
3124 			sd_read_block_limits(sdkp);
3125 			sd_read_block_characteristics(sdkp);
3126 			sd_zbc_read_zones(sdkp, buffer);
3127 		}
3128 
3129 		sd_print_capacity(sdkp, old_capacity);
3130 
3131 		sd_read_write_protect_flag(sdkp, buffer);
3132 		sd_read_cache_type(sdkp, buffer);
3133 		sd_read_app_tag_own(sdkp, buffer);
3134 		sd_read_write_same(sdkp, buffer);
3135 		sd_read_security(sdkp, buffer);
3136 	}
3137 
3138 	/*
3139 	 * We now have all cache related info, determine how we deal
3140 	 * with flush requests.
3141 	 */
3142 	sd_set_flush_flag(sdkp);
3143 
3144 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3145 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3146 
3147 	/* Some devices report a maximum block count for READ/WRITE requests. */
3148 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3149 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3150 
3151 	/*
3152 	 * Determine the device's preferred I/O size for reads and writes
3153 	 * unless the reported value is unreasonably small, large, or
3154 	 * garbage.
3155 	 */
3156 	if (sdkp->opt_xfer_blocks &&
3157 	    sdkp->opt_xfer_blocks <= dev_max &&
3158 	    sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3159 	    logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3160 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3161 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3162 	} else
3163 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3164 				      (sector_t)BLK_DEF_MAX_SECTORS);
3165 
3166 	/* Do not exceed controller limit */
3167 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3168 
3169 	/*
3170 	 * Only update max_sectors if previously unset or if the current value
3171 	 * exceeds the capabilities of the hardware.
3172 	 */
3173 	if (sdkp->first_scan ||
3174 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3175 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3176 		q->limits.max_sectors = rw_max;
3177 
3178 	sdkp->first_scan = 0;
3179 
3180 	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3181 	sd_config_write_same(sdkp);
3182 	kfree(buffer);
3183 
3184  out:
3185 	return 0;
3186 }
3187 
3188 /**
3189  *	sd_unlock_native_capacity - unlock native capacity
3190  *	@disk: struct gendisk to set capacity for
3191  *
3192  *	Block layer calls this function if it detects that partitions
3193  *	on @disk reach beyond the end of the device.  If the SCSI host
3194  *	implements ->unlock_native_capacity() method, it's invoked to
3195  *	give it a chance to adjust the device capacity.
3196  *
3197  *	CONTEXT:
3198  *	Defined by block layer.  Might sleep.
3199  */
3200 static void sd_unlock_native_capacity(struct gendisk *disk)
3201 {
3202 	struct scsi_device *sdev = scsi_disk(disk)->device;
3203 
3204 	if (sdev->host->hostt->unlock_native_capacity)
3205 		sdev->host->hostt->unlock_native_capacity(sdev);
3206 }
3207 
3208 /**
3209  *	sd_format_disk_name - format disk name
3210  *	@prefix: name prefix - ie. "sd" for SCSI disks
3211  *	@index: index of the disk to format name for
3212  *	@buf: output buffer
3213  *	@buflen: length of the output buffer
3214  *
3215  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3216  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3217  *	which is followed by sdaaa.
3218  *
3219  *	This is basically 26 base counting with one extra 'nil' entry
3220  *	at the beginning from the second digit on and can be
3221  *	determined using similar method as 26 base conversion with the
3222  *	index shifted -1 after each digit is computed.
3223  *
3224  *	CONTEXT:
3225  *	Don't care.
3226  *
3227  *	RETURNS:
3228  *	0 on success, -errno on failure.
3229  */
3230 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3231 {
3232 	const int base = 'z' - 'a' + 1;
3233 	char *begin = buf + strlen(prefix);
3234 	char *end = buf + buflen;
3235 	char *p;
3236 	int unit;
3237 
3238 	p = end - 1;
3239 	*p = '\0';
3240 	unit = base;
3241 	do {
3242 		if (p == begin)
3243 			return -EINVAL;
3244 		*--p = 'a' + (index % unit);
3245 		index = (index / unit) - 1;
3246 	} while (index >= 0);
3247 
3248 	memmove(begin, p, end - p);
3249 	memcpy(buf, prefix, strlen(prefix));
3250 
3251 	return 0;
3252 }
3253 
3254 /*
3255  * The asynchronous part of sd_probe
3256  */
3257 static void sd_probe_async(void *data, async_cookie_t cookie)
3258 {
3259 	struct scsi_disk *sdkp = data;
3260 	struct scsi_device *sdp;
3261 	struct gendisk *gd;
3262 	u32 index;
3263 	struct device *dev;
3264 
3265 	sdp = sdkp->device;
3266 	gd = sdkp->disk;
3267 	index = sdkp->index;
3268 	dev = &sdp->sdev_gendev;
3269 
3270 	gd->major = sd_major((index & 0xf0) >> 4);
3271 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3272 
3273 	gd->fops = &sd_fops;
3274 	gd->private_data = &sdkp->driver;
3275 	gd->queue = sdkp->device->request_queue;
3276 
3277 	/* defaults, until the device tells us otherwise */
3278 	sdp->sector_size = 512;
3279 	sdkp->capacity = 0;
3280 	sdkp->media_present = 1;
3281 	sdkp->write_prot = 0;
3282 	sdkp->cache_override = 0;
3283 	sdkp->WCE = 0;
3284 	sdkp->RCD = 0;
3285 	sdkp->ATO = 0;
3286 	sdkp->first_scan = 1;
3287 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3288 
3289 	sd_revalidate_disk(gd);
3290 
3291 	gd->flags = GENHD_FL_EXT_DEVT;
3292 	if (sdp->removable) {
3293 		gd->flags |= GENHD_FL_REMOVABLE;
3294 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3295 	}
3296 
3297 	blk_pm_runtime_init(sdp->request_queue, dev);
3298 	device_add_disk(dev, gd);
3299 	if (sdkp->capacity)
3300 		sd_dif_config_host(sdkp);
3301 
3302 	sd_revalidate_disk(gd);
3303 
3304 	if (sdkp->security) {
3305 		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3306 		if (sdkp->opal_dev)
3307 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3308 	}
3309 
3310 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3311 		  sdp->removable ? "removable " : "");
3312 	scsi_autopm_put_device(sdp);
3313 	put_device(&sdkp->dev);
3314 }
3315 
3316 /**
3317  *	sd_probe - called during driver initialization and whenever a
3318  *	new scsi device is attached to the system. It is called once
3319  *	for each scsi device (not just disks) present.
3320  *	@dev: pointer to device object
3321  *
3322  *	Returns 0 if successful (or not interested in this scsi device
3323  *	(e.g. scanner)); 1 when there is an error.
3324  *
3325  *	Note: this function is invoked from the scsi mid-level.
3326  *	This function sets up the mapping between a given
3327  *	<host,channel,id,lun> (found in sdp) and new device name
3328  *	(e.g. /dev/sda). More precisely it is the block device major
3329  *	and minor number that is chosen here.
3330  *
3331  *	Assume sd_probe is not re-entrant (for time being)
3332  *	Also think about sd_probe() and sd_remove() running coincidentally.
3333  **/
3334 static int sd_probe(struct device *dev)
3335 {
3336 	struct scsi_device *sdp = to_scsi_device(dev);
3337 	struct scsi_disk *sdkp;
3338 	struct gendisk *gd;
3339 	int index;
3340 	int error;
3341 
3342 	scsi_autopm_get_device(sdp);
3343 	error = -ENODEV;
3344 	if (sdp->type != TYPE_DISK &&
3345 	    sdp->type != TYPE_ZBC &&
3346 	    sdp->type != TYPE_MOD &&
3347 	    sdp->type != TYPE_RBC)
3348 		goto out;
3349 
3350 #ifndef CONFIG_BLK_DEV_ZONED
3351 	if (sdp->type == TYPE_ZBC)
3352 		goto out;
3353 #endif
3354 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3355 					"sd_probe\n"));
3356 
3357 	error = -ENOMEM;
3358 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3359 	if (!sdkp)
3360 		goto out;
3361 
3362 	gd = alloc_disk(SD_MINORS);
3363 	if (!gd)
3364 		goto out_free;
3365 
3366 	do {
3367 		if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3368 			goto out_put;
3369 
3370 		spin_lock(&sd_index_lock);
3371 		error = ida_get_new(&sd_index_ida, &index);
3372 		spin_unlock(&sd_index_lock);
3373 	} while (error == -EAGAIN);
3374 
3375 	if (error) {
3376 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3377 		goto out_put;
3378 	}
3379 
3380 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3381 	if (error) {
3382 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3383 		goto out_free_index;
3384 	}
3385 
3386 	sdkp->device = sdp;
3387 	sdkp->driver = &sd_template;
3388 	sdkp->disk = gd;
3389 	sdkp->index = index;
3390 	atomic_set(&sdkp->openers, 0);
3391 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3392 
3393 	if (!sdp->request_queue->rq_timeout) {
3394 		if (sdp->type != TYPE_MOD)
3395 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3396 		else
3397 			blk_queue_rq_timeout(sdp->request_queue,
3398 					     SD_MOD_TIMEOUT);
3399 	}
3400 
3401 	device_initialize(&sdkp->dev);
3402 	sdkp->dev.parent = dev;
3403 	sdkp->dev.class = &sd_disk_class;
3404 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3405 
3406 	error = device_add(&sdkp->dev);
3407 	if (error)
3408 		goto out_free_index;
3409 
3410 	get_device(dev);
3411 	dev_set_drvdata(dev, sdkp);
3412 
3413 	get_device(&sdkp->dev);	/* prevent release before async_schedule */
3414 	async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3415 
3416 	return 0;
3417 
3418  out_free_index:
3419 	spin_lock(&sd_index_lock);
3420 	ida_remove(&sd_index_ida, index);
3421 	spin_unlock(&sd_index_lock);
3422  out_put:
3423 	put_disk(gd);
3424  out_free:
3425 	kfree(sdkp);
3426  out:
3427 	scsi_autopm_put_device(sdp);
3428 	return error;
3429 }
3430 
3431 /**
3432  *	sd_remove - called whenever a scsi disk (previously recognized by
3433  *	sd_probe) is detached from the system. It is called (potentially
3434  *	multiple times) during sd module unload.
3435  *	@dev: pointer to device object
3436  *
3437  *	Note: this function is invoked from the scsi mid-level.
3438  *	This function potentially frees up a device name (e.g. /dev/sdc)
3439  *	that could be re-used by a subsequent sd_probe().
3440  *	This function is not called when the built-in sd driver is "exit-ed".
3441  **/
3442 static int sd_remove(struct device *dev)
3443 {
3444 	struct scsi_disk *sdkp;
3445 	dev_t devt;
3446 
3447 	sdkp = dev_get_drvdata(dev);
3448 	devt = disk_devt(sdkp->disk);
3449 	scsi_autopm_get_device(sdkp->device);
3450 
3451 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3452 	async_synchronize_full_domain(&scsi_sd_probe_domain);
3453 	device_del(&sdkp->dev);
3454 	del_gendisk(sdkp->disk);
3455 	sd_shutdown(dev);
3456 
3457 	sd_zbc_remove(sdkp);
3458 
3459 	free_opal_dev(sdkp->opal_dev);
3460 
3461 	blk_register_region(devt, SD_MINORS, NULL,
3462 			    sd_default_probe, NULL, NULL);
3463 
3464 	mutex_lock(&sd_ref_mutex);
3465 	dev_set_drvdata(dev, NULL);
3466 	put_device(&sdkp->dev);
3467 	mutex_unlock(&sd_ref_mutex);
3468 
3469 	return 0;
3470 }
3471 
3472 /**
3473  *	scsi_disk_release - Called to free the scsi_disk structure
3474  *	@dev: pointer to embedded class device
3475  *
3476  *	sd_ref_mutex must be held entering this routine.  Because it is
3477  *	called on last put, you should always use the scsi_disk_get()
3478  *	scsi_disk_put() helpers which manipulate the semaphore directly
3479  *	and never do a direct put_device.
3480  **/
3481 static void scsi_disk_release(struct device *dev)
3482 {
3483 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3484 	struct gendisk *disk = sdkp->disk;
3485 
3486 	spin_lock(&sd_index_lock);
3487 	ida_remove(&sd_index_ida, sdkp->index);
3488 	spin_unlock(&sd_index_lock);
3489 
3490 	disk->private_data = NULL;
3491 	put_disk(disk);
3492 	put_device(&sdkp->device->sdev_gendev);
3493 
3494 	kfree(sdkp);
3495 }
3496 
3497 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3498 {
3499 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3500 	struct scsi_sense_hdr sshdr;
3501 	struct scsi_device *sdp = sdkp->device;
3502 	int res;
3503 
3504 	if (start)
3505 		cmd[4] |= 1;	/* START */
3506 
3507 	if (sdp->start_stop_pwr_cond)
3508 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3509 
3510 	if (!scsi_device_online(sdp))
3511 		return -ENODEV;
3512 
3513 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3514 			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3515 	if (res) {
3516 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3517 		if (driver_byte(res) & DRIVER_SENSE)
3518 			sd_print_sense_hdr(sdkp, &sshdr);
3519 		if (scsi_sense_valid(&sshdr) &&
3520 			/* 0x3a is medium not present */
3521 			sshdr.asc == 0x3a)
3522 			res = 0;
3523 	}
3524 
3525 	/* SCSI error codes must not go to the generic layer */
3526 	if (res)
3527 		return -EIO;
3528 
3529 	return 0;
3530 }
3531 
3532 /*
3533  * Send a SYNCHRONIZE CACHE instruction down to the device through
3534  * the normal SCSI command structure.  Wait for the command to
3535  * complete.
3536  */
3537 static void sd_shutdown(struct device *dev)
3538 {
3539 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3540 
3541 	if (!sdkp)
3542 		return;         /* this can happen */
3543 
3544 	if (pm_runtime_suspended(dev))
3545 		return;
3546 
3547 	if (sdkp->WCE && sdkp->media_present) {
3548 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3549 		sd_sync_cache(sdkp, NULL);
3550 	}
3551 
3552 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3553 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3554 		sd_start_stop_device(sdkp, 0);
3555 	}
3556 }
3557 
3558 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3559 {
3560 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3561 	struct scsi_sense_hdr sshdr;
3562 	int ret = 0;
3563 
3564 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3565 		return 0;
3566 
3567 	if (sdkp->WCE && sdkp->media_present) {
3568 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3569 		ret = sd_sync_cache(sdkp, &sshdr);
3570 
3571 		if (ret) {
3572 			/* ignore OFFLINE device */
3573 			if (ret == -ENODEV)
3574 				return 0;
3575 
3576 			if (!scsi_sense_valid(&sshdr) ||
3577 			    sshdr.sense_key != ILLEGAL_REQUEST)
3578 				return ret;
3579 
3580 			/*
3581 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3582 			 * doesn't support sync. There's not much to do and
3583 			 * suspend shouldn't fail.
3584 			 */
3585 			ret = 0;
3586 		}
3587 	}
3588 
3589 	if (sdkp->device->manage_start_stop) {
3590 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3591 		/* an error is not worth aborting a system sleep */
3592 		ret = sd_start_stop_device(sdkp, 0);
3593 		if (ignore_stop_errors)
3594 			ret = 0;
3595 	}
3596 
3597 	return ret;
3598 }
3599 
3600 static int sd_suspend_system(struct device *dev)
3601 {
3602 	return sd_suspend_common(dev, true);
3603 }
3604 
3605 static int sd_suspend_runtime(struct device *dev)
3606 {
3607 	return sd_suspend_common(dev, false);
3608 }
3609 
3610 static int sd_resume(struct device *dev)
3611 {
3612 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3613 	int ret;
3614 
3615 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3616 		return 0;
3617 
3618 	if (!sdkp->device->manage_start_stop)
3619 		return 0;
3620 
3621 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3622 	ret = sd_start_stop_device(sdkp, 1);
3623 	if (!ret)
3624 		opal_unlock_from_suspend(sdkp->opal_dev);
3625 	return ret;
3626 }
3627 
3628 /**
3629  *	init_sd - entry point for this driver (both when built in or when
3630  *	a module).
3631  *
3632  *	Note: this function registers this driver with the scsi mid-level.
3633  **/
3634 static int __init init_sd(void)
3635 {
3636 	int majors = 0, i, err;
3637 
3638 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3639 
3640 	for (i = 0; i < SD_MAJORS; i++) {
3641 		if (register_blkdev(sd_major(i), "sd") != 0)
3642 			continue;
3643 		majors++;
3644 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3645 				    sd_default_probe, NULL, NULL);
3646 	}
3647 
3648 	if (!majors)
3649 		return -ENODEV;
3650 
3651 	err = class_register(&sd_disk_class);
3652 	if (err)
3653 		goto err_out;
3654 
3655 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3656 					 0, 0, NULL);
3657 	if (!sd_cdb_cache) {
3658 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3659 		err = -ENOMEM;
3660 		goto err_out_class;
3661 	}
3662 
3663 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3664 	if (!sd_cdb_pool) {
3665 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3666 		err = -ENOMEM;
3667 		goto err_out_cache;
3668 	}
3669 
3670 	err = scsi_register_driver(&sd_template.gendrv);
3671 	if (err)
3672 		goto err_out_driver;
3673 
3674 	return 0;
3675 
3676 err_out_driver:
3677 	mempool_destroy(sd_cdb_pool);
3678 
3679 err_out_cache:
3680 	kmem_cache_destroy(sd_cdb_cache);
3681 
3682 err_out_class:
3683 	class_unregister(&sd_disk_class);
3684 err_out:
3685 	for (i = 0; i < SD_MAJORS; i++)
3686 		unregister_blkdev(sd_major(i), "sd");
3687 	return err;
3688 }
3689 
3690 /**
3691  *	exit_sd - exit point for this driver (when it is a module).
3692  *
3693  *	Note: this function unregisters this driver from the scsi mid-level.
3694  **/
3695 static void __exit exit_sd(void)
3696 {
3697 	int i;
3698 
3699 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3700 
3701 	scsi_unregister_driver(&sd_template.gendrv);
3702 	mempool_destroy(sd_cdb_pool);
3703 	kmem_cache_destroy(sd_cdb_cache);
3704 
3705 	class_unregister(&sd_disk_class);
3706 
3707 	for (i = 0; i < SD_MAJORS; i++) {
3708 		blk_unregister_region(sd_major(i), SD_MINORS);
3709 		unregister_blkdev(sd_major(i), "sd");
3710 	}
3711 }
3712 
3713 module_init(init_sd);
3714 module_exit(exit_sd);
3715 
3716 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3717 			       struct scsi_sense_hdr *sshdr)
3718 {
3719 	scsi_print_sense_hdr(sdkp->device,
3720 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3721 }
3722 
3723 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3724 			    int result)
3725 {
3726 	const char *hb_string = scsi_hostbyte_string(result);
3727 	const char *db_string = scsi_driverbyte_string(result);
3728 
3729 	if (hb_string || db_string)
3730 		sd_printk(KERN_INFO, sdkp,
3731 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3732 			  hb_string ? hb_string : "invalid",
3733 			  db_string ? db_string : "invalid");
3734 	else
3735 		sd_printk(KERN_INFO, sdkp,
3736 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3737 			  msg, host_byte(result), driver_byte(result));
3738 }
3739 
3740