xref: /openbmc/linux/drivers/scsi/sd.c (revision 69868c3b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/async.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61 
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71 
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75 
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79 
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100 
101 #define SD_MINORS	16
102 
103 static void sd_config_discard(struct scsi_disk *, unsigned int);
104 static void sd_config_write_same(struct scsi_disk *);
105 static int  sd_revalidate_disk(struct gendisk *);
106 static void sd_unlock_native_capacity(struct gendisk *disk);
107 static int  sd_probe(struct device *);
108 static int  sd_remove(struct device *);
109 static void sd_shutdown(struct device *);
110 static int sd_suspend_system(struct device *);
111 static int sd_suspend_runtime(struct device *);
112 static int sd_resume(struct device *);
113 static int sd_resume_runtime(struct device *);
114 static void sd_rescan(struct device *);
115 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
116 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
117 static int sd_done(struct scsi_cmnd *);
118 static void sd_eh_reset(struct scsi_cmnd *);
119 static int sd_eh_action(struct scsi_cmnd *, int);
120 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
121 static void scsi_disk_release(struct device *cdev);
122 
123 static DEFINE_IDA(sd_index_ida);
124 
125 /* This semaphore is used to mediate the 0->1 reference get in the
126  * face of object destruction (i.e. we can't allow a get on an
127  * object after last put) */
128 static DEFINE_MUTEX(sd_ref_mutex);
129 
130 static struct kmem_cache *sd_cdb_cache;
131 static mempool_t *sd_cdb_pool;
132 static mempool_t *sd_page_pool;
133 
134 static const char *sd_cache_types[] = {
135 	"write through", "none", "write back",
136 	"write back, no read (daft)"
137 };
138 
139 static void sd_set_flush_flag(struct scsi_disk *sdkp)
140 {
141 	bool wc = false, fua = false;
142 
143 	if (sdkp->WCE) {
144 		wc = true;
145 		if (sdkp->DPOFUA)
146 			fua = true;
147 	}
148 
149 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
150 }
151 
152 static ssize_t
153 cache_type_store(struct device *dev, struct device_attribute *attr,
154 		 const char *buf, size_t count)
155 {
156 	int ct, rcd, wce, sp;
157 	struct scsi_disk *sdkp = to_scsi_disk(dev);
158 	struct scsi_device *sdp = sdkp->device;
159 	char buffer[64];
160 	char *buffer_data;
161 	struct scsi_mode_data data;
162 	struct scsi_sense_hdr sshdr;
163 	static const char temp[] = "temporary ";
164 	int len;
165 
166 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
167 		/* no cache control on RBC devices; theoretically they
168 		 * can do it, but there's probably so many exceptions
169 		 * it's not worth the risk */
170 		return -EINVAL;
171 
172 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
173 		buf += sizeof(temp) - 1;
174 		sdkp->cache_override = 1;
175 	} else {
176 		sdkp->cache_override = 0;
177 	}
178 
179 	ct = sysfs_match_string(sd_cache_types, buf);
180 	if (ct < 0)
181 		return -EINVAL;
182 
183 	rcd = ct & 0x01 ? 1 : 0;
184 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
185 
186 	if (sdkp->cache_override) {
187 		sdkp->WCE = wce;
188 		sdkp->RCD = rcd;
189 		sd_set_flush_flag(sdkp);
190 		return count;
191 	}
192 
193 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
194 			    sdkp->max_retries, &data, NULL))
195 		return -EINVAL;
196 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
197 		  data.block_descriptor_length);
198 	buffer_data = buffer + data.header_length +
199 		data.block_descriptor_length;
200 	buffer_data[2] &= ~0x05;
201 	buffer_data[2] |= wce << 2 | rcd;
202 	sp = buffer_data[0] & 0x80 ? 1 : 0;
203 	buffer_data[0] &= ~0x80;
204 
205 	/*
206 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
207 	 * received mode parameter buffer before doing MODE SELECT.
208 	 */
209 	data.device_specific = 0;
210 
211 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
212 			     sdkp->max_retries, &data, &sshdr)) {
213 		if (scsi_sense_valid(&sshdr))
214 			sd_print_sense_hdr(sdkp, &sshdr);
215 		return -EINVAL;
216 	}
217 	sd_revalidate_disk(sdkp->disk);
218 	return count;
219 }
220 
221 static ssize_t
222 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
223 		       char *buf)
224 {
225 	struct scsi_disk *sdkp = to_scsi_disk(dev);
226 	struct scsi_device *sdp = sdkp->device;
227 
228 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
229 }
230 
231 static ssize_t
232 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
233 			const char *buf, size_t count)
234 {
235 	struct scsi_disk *sdkp = to_scsi_disk(dev);
236 	struct scsi_device *sdp = sdkp->device;
237 	bool v;
238 
239 	if (!capable(CAP_SYS_ADMIN))
240 		return -EACCES;
241 
242 	if (kstrtobool(buf, &v))
243 		return -EINVAL;
244 
245 	sdp->manage_start_stop = v;
246 
247 	return count;
248 }
249 static DEVICE_ATTR_RW(manage_start_stop);
250 
251 static ssize_t
252 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
253 {
254 	struct scsi_disk *sdkp = to_scsi_disk(dev);
255 
256 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
257 }
258 
259 static ssize_t
260 allow_restart_store(struct device *dev, struct device_attribute *attr,
261 		    const char *buf, size_t count)
262 {
263 	bool v;
264 	struct scsi_disk *sdkp = to_scsi_disk(dev);
265 	struct scsi_device *sdp = sdkp->device;
266 
267 	if (!capable(CAP_SYS_ADMIN))
268 		return -EACCES;
269 
270 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
271 		return -EINVAL;
272 
273 	if (kstrtobool(buf, &v))
274 		return -EINVAL;
275 
276 	sdp->allow_restart = v;
277 
278 	return count;
279 }
280 static DEVICE_ATTR_RW(allow_restart);
281 
282 static ssize_t
283 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
284 {
285 	struct scsi_disk *sdkp = to_scsi_disk(dev);
286 	int ct = sdkp->RCD + 2*sdkp->WCE;
287 
288 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
289 }
290 static DEVICE_ATTR_RW(cache_type);
291 
292 static ssize_t
293 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
294 {
295 	struct scsi_disk *sdkp = to_scsi_disk(dev);
296 
297 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
298 }
299 static DEVICE_ATTR_RO(FUA);
300 
301 static ssize_t
302 protection_type_show(struct device *dev, struct device_attribute *attr,
303 		     char *buf)
304 {
305 	struct scsi_disk *sdkp = to_scsi_disk(dev);
306 
307 	return sprintf(buf, "%u\n", sdkp->protection_type);
308 }
309 
310 static ssize_t
311 protection_type_store(struct device *dev, struct device_attribute *attr,
312 		      const char *buf, size_t count)
313 {
314 	struct scsi_disk *sdkp = to_scsi_disk(dev);
315 	unsigned int val;
316 	int err;
317 
318 	if (!capable(CAP_SYS_ADMIN))
319 		return -EACCES;
320 
321 	err = kstrtouint(buf, 10, &val);
322 
323 	if (err)
324 		return err;
325 
326 	if (val <= T10_PI_TYPE3_PROTECTION)
327 		sdkp->protection_type = val;
328 
329 	return count;
330 }
331 static DEVICE_ATTR_RW(protection_type);
332 
333 static ssize_t
334 protection_mode_show(struct device *dev, struct device_attribute *attr,
335 		     char *buf)
336 {
337 	struct scsi_disk *sdkp = to_scsi_disk(dev);
338 	struct scsi_device *sdp = sdkp->device;
339 	unsigned int dif, dix;
340 
341 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
342 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
343 
344 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
345 		dif = 0;
346 		dix = 1;
347 	}
348 
349 	if (!dif && !dix)
350 		return sprintf(buf, "none\n");
351 
352 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
353 }
354 static DEVICE_ATTR_RO(protection_mode);
355 
356 static ssize_t
357 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
358 {
359 	struct scsi_disk *sdkp = to_scsi_disk(dev);
360 
361 	return sprintf(buf, "%u\n", sdkp->ATO);
362 }
363 static DEVICE_ATTR_RO(app_tag_own);
364 
365 static ssize_t
366 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
367 		       char *buf)
368 {
369 	struct scsi_disk *sdkp = to_scsi_disk(dev);
370 
371 	return sprintf(buf, "%u\n", sdkp->lbpme);
372 }
373 static DEVICE_ATTR_RO(thin_provisioning);
374 
375 /* sysfs_match_string() requires dense arrays */
376 static const char *lbp_mode[] = {
377 	[SD_LBP_FULL]		= "full",
378 	[SD_LBP_UNMAP]		= "unmap",
379 	[SD_LBP_WS16]		= "writesame_16",
380 	[SD_LBP_WS10]		= "writesame_10",
381 	[SD_LBP_ZERO]		= "writesame_zero",
382 	[SD_LBP_DISABLE]	= "disabled",
383 };
384 
385 static ssize_t
386 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
387 		       char *buf)
388 {
389 	struct scsi_disk *sdkp = to_scsi_disk(dev);
390 
391 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
392 }
393 
394 static ssize_t
395 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
396 			const char *buf, size_t count)
397 {
398 	struct scsi_disk *sdkp = to_scsi_disk(dev);
399 	struct scsi_device *sdp = sdkp->device;
400 	int mode;
401 
402 	if (!capable(CAP_SYS_ADMIN))
403 		return -EACCES;
404 
405 	if (sd_is_zoned(sdkp)) {
406 		sd_config_discard(sdkp, SD_LBP_DISABLE);
407 		return count;
408 	}
409 
410 	if (sdp->type != TYPE_DISK)
411 		return -EINVAL;
412 
413 	mode = sysfs_match_string(lbp_mode, buf);
414 	if (mode < 0)
415 		return -EINVAL;
416 
417 	sd_config_discard(sdkp, mode);
418 
419 	return count;
420 }
421 static DEVICE_ATTR_RW(provisioning_mode);
422 
423 /* sysfs_match_string() requires dense arrays */
424 static const char *zeroing_mode[] = {
425 	[SD_ZERO_WRITE]		= "write",
426 	[SD_ZERO_WS]		= "writesame",
427 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
428 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
429 };
430 
431 static ssize_t
432 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
433 		  char *buf)
434 {
435 	struct scsi_disk *sdkp = to_scsi_disk(dev);
436 
437 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
438 }
439 
440 static ssize_t
441 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
442 		   const char *buf, size_t count)
443 {
444 	struct scsi_disk *sdkp = to_scsi_disk(dev);
445 	int mode;
446 
447 	if (!capable(CAP_SYS_ADMIN))
448 		return -EACCES;
449 
450 	mode = sysfs_match_string(zeroing_mode, buf);
451 	if (mode < 0)
452 		return -EINVAL;
453 
454 	sdkp->zeroing_mode = mode;
455 
456 	return count;
457 }
458 static DEVICE_ATTR_RW(zeroing_mode);
459 
460 static ssize_t
461 max_medium_access_timeouts_show(struct device *dev,
462 				struct device_attribute *attr, char *buf)
463 {
464 	struct scsi_disk *sdkp = to_scsi_disk(dev);
465 
466 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
467 }
468 
469 static ssize_t
470 max_medium_access_timeouts_store(struct device *dev,
471 				 struct device_attribute *attr, const char *buf,
472 				 size_t count)
473 {
474 	struct scsi_disk *sdkp = to_scsi_disk(dev);
475 	int err;
476 
477 	if (!capable(CAP_SYS_ADMIN))
478 		return -EACCES;
479 
480 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
481 
482 	return err ? err : count;
483 }
484 static DEVICE_ATTR_RW(max_medium_access_timeouts);
485 
486 static ssize_t
487 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
488 			   char *buf)
489 {
490 	struct scsi_disk *sdkp = to_scsi_disk(dev);
491 
492 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
493 }
494 
495 static ssize_t
496 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
497 			    const char *buf, size_t count)
498 {
499 	struct scsi_disk *sdkp = to_scsi_disk(dev);
500 	struct scsi_device *sdp = sdkp->device;
501 	unsigned long max;
502 	int err;
503 
504 	if (!capable(CAP_SYS_ADMIN))
505 		return -EACCES;
506 
507 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
508 		return -EINVAL;
509 
510 	err = kstrtoul(buf, 10, &max);
511 
512 	if (err)
513 		return err;
514 
515 	if (max == 0)
516 		sdp->no_write_same = 1;
517 	else if (max <= SD_MAX_WS16_BLOCKS) {
518 		sdp->no_write_same = 0;
519 		sdkp->max_ws_blocks = max;
520 	}
521 
522 	sd_config_write_same(sdkp);
523 
524 	return count;
525 }
526 static DEVICE_ATTR_RW(max_write_same_blocks);
527 
528 static ssize_t
529 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
530 {
531 	struct scsi_disk *sdkp = to_scsi_disk(dev);
532 
533 	if (sdkp->device->type == TYPE_ZBC)
534 		return sprintf(buf, "host-managed\n");
535 	if (sdkp->zoned == 1)
536 		return sprintf(buf, "host-aware\n");
537 	if (sdkp->zoned == 2)
538 		return sprintf(buf, "drive-managed\n");
539 	return sprintf(buf, "none\n");
540 }
541 static DEVICE_ATTR_RO(zoned_cap);
542 
543 static ssize_t
544 max_retries_store(struct device *dev, struct device_attribute *attr,
545 		  const char *buf, size_t count)
546 {
547 	struct scsi_disk *sdkp = to_scsi_disk(dev);
548 	struct scsi_device *sdev = sdkp->device;
549 	int retries, err;
550 
551 	err = kstrtoint(buf, 10, &retries);
552 	if (err)
553 		return err;
554 
555 	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
556 		sdkp->max_retries = retries;
557 		return count;
558 	}
559 
560 	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
561 		    SD_MAX_RETRIES);
562 	return -EINVAL;
563 }
564 
565 static ssize_t
566 max_retries_show(struct device *dev, struct device_attribute *attr,
567 		 char *buf)
568 {
569 	struct scsi_disk *sdkp = to_scsi_disk(dev);
570 
571 	return sprintf(buf, "%d\n", sdkp->max_retries);
572 }
573 
574 static DEVICE_ATTR_RW(max_retries);
575 
576 static struct attribute *sd_disk_attrs[] = {
577 	&dev_attr_cache_type.attr,
578 	&dev_attr_FUA.attr,
579 	&dev_attr_allow_restart.attr,
580 	&dev_attr_manage_start_stop.attr,
581 	&dev_attr_protection_type.attr,
582 	&dev_attr_protection_mode.attr,
583 	&dev_attr_app_tag_own.attr,
584 	&dev_attr_thin_provisioning.attr,
585 	&dev_attr_provisioning_mode.attr,
586 	&dev_attr_zeroing_mode.attr,
587 	&dev_attr_max_write_same_blocks.attr,
588 	&dev_attr_max_medium_access_timeouts.attr,
589 	&dev_attr_zoned_cap.attr,
590 	&dev_attr_max_retries.attr,
591 	NULL,
592 };
593 ATTRIBUTE_GROUPS(sd_disk);
594 
595 static struct class sd_disk_class = {
596 	.name		= "scsi_disk",
597 	.owner		= THIS_MODULE,
598 	.dev_release	= scsi_disk_release,
599 	.dev_groups	= sd_disk_groups,
600 };
601 
602 static const struct dev_pm_ops sd_pm_ops = {
603 	.suspend		= sd_suspend_system,
604 	.resume			= sd_resume,
605 	.poweroff		= sd_suspend_system,
606 	.restore		= sd_resume,
607 	.runtime_suspend	= sd_suspend_runtime,
608 	.runtime_resume		= sd_resume_runtime,
609 };
610 
611 static struct scsi_driver sd_template = {
612 	.gendrv = {
613 		.name		= "sd",
614 		.owner		= THIS_MODULE,
615 		.probe		= sd_probe,
616 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
617 		.remove		= sd_remove,
618 		.shutdown	= sd_shutdown,
619 		.pm		= &sd_pm_ops,
620 	},
621 	.rescan			= sd_rescan,
622 	.init_command		= sd_init_command,
623 	.uninit_command		= sd_uninit_command,
624 	.done			= sd_done,
625 	.eh_action		= sd_eh_action,
626 	.eh_reset		= sd_eh_reset,
627 };
628 
629 /*
630  * Don't request a new module, as that could deadlock in multipath
631  * environment.
632  */
633 static void sd_default_probe(dev_t devt)
634 {
635 }
636 
637 /*
638  * Device no to disk mapping:
639  *
640  *       major         disc2     disc  p1
641  *   |............|.............|....|....| <- dev_t
642  *    31        20 19          8 7  4 3  0
643  *
644  * Inside a major, we have 16k disks, however mapped non-
645  * contiguously. The first 16 disks are for major0, the next
646  * ones with major1, ... Disk 256 is for major0 again, disk 272
647  * for major1, ...
648  * As we stay compatible with our numbering scheme, we can reuse
649  * the well-know SCSI majors 8, 65--71, 136--143.
650  */
651 static int sd_major(int major_idx)
652 {
653 	switch (major_idx) {
654 	case 0:
655 		return SCSI_DISK0_MAJOR;
656 	case 1 ... 7:
657 		return SCSI_DISK1_MAJOR + major_idx - 1;
658 	case 8 ... 15:
659 		return SCSI_DISK8_MAJOR + major_idx - 8;
660 	default:
661 		BUG();
662 		return 0;	/* shut up gcc */
663 	}
664 }
665 
666 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
667 {
668 	struct scsi_disk *sdkp = NULL;
669 
670 	mutex_lock(&sd_ref_mutex);
671 
672 	if (disk->private_data) {
673 		sdkp = scsi_disk(disk);
674 		if (scsi_device_get(sdkp->device) == 0)
675 			get_device(&sdkp->dev);
676 		else
677 			sdkp = NULL;
678 	}
679 	mutex_unlock(&sd_ref_mutex);
680 	return sdkp;
681 }
682 
683 static void scsi_disk_put(struct scsi_disk *sdkp)
684 {
685 	struct scsi_device *sdev = sdkp->device;
686 
687 	mutex_lock(&sd_ref_mutex);
688 	put_device(&sdkp->dev);
689 	scsi_device_put(sdev);
690 	mutex_unlock(&sd_ref_mutex);
691 }
692 
693 #ifdef CONFIG_BLK_SED_OPAL
694 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
695 		size_t len, bool send)
696 {
697 	struct scsi_disk *sdkp = data;
698 	struct scsi_device *sdev = sdkp->device;
699 	u8 cdb[12] = { 0, };
700 	int ret;
701 
702 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
703 	cdb[1] = secp;
704 	put_unaligned_be16(spsp, &cdb[2]);
705 	put_unaligned_be32(len, &cdb[6]);
706 
707 	ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
708 		buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0,
709 		RQF_PM, NULL);
710 	return ret <= 0 ? ret : -EIO;
711 }
712 #endif /* CONFIG_BLK_SED_OPAL */
713 
714 /*
715  * Look up the DIX operation based on whether the command is read or
716  * write and whether dix and dif are enabled.
717  */
718 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
719 {
720 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
721 	static const unsigned int ops[] = {	/* wrt dix dif */
722 		SCSI_PROT_NORMAL,		/*  0	0   0  */
723 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
724 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
725 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
726 		SCSI_PROT_NORMAL,		/*  1	0   0  */
727 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
728 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
729 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
730 	};
731 
732 	return ops[write << 2 | dix << 1 | dif];
733 }
734 
735 /*
736  * Returns a mask of the protection flags that are valid for a given DIX
737  * operation.
738  */
739 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
740 {
741 	static const unsigned int flag_mask[] = {
742 		[SCSI_PROT_NORMAL]		= 0,
743 
744 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
745 						  SCSI_PROT_GUARD_CHECK |
746 						  SCSI_PROT_REF_CHECK |
747 						  SCSI_PROT_REF_INCREMENT,
748 
749 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
750 						  SCSI_PROT_IP_CHECKSUM,
751 
752 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
753 						  SCSI_PROT_GUARD_CHECK |
754 						  SCSI_PROT_REF_CHECK |
755 						  SCSI_PROT_REF_INCREMENT |
756 						  SCSI_PROT_IP_CHECKSUM,
757 
758 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
759 						  SCSI_PROT_REF_INCREMENT,
760 
761 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
762 						  SCSI_PROT_REF_CHECK |
763 						  SCSI_PROT_REF_INCREMENT |
764 						  SCSI_PROT_IP_CHECKSUM,
765 
766 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
767 						  SCSI_PROT_GUARD_CHECK |
768 						  SCSI_PROT_REF_CHECK |
769 						  SCSI_PROT_REF_INCREMENT |
770 						  SCSI_PROT_IP_CHECKSUM,
771 	};
772 
773 	return flag_mask[prot_op];
774 }
775 
776 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
777 					   unsigned int dix, unsigned int dif)
778 {
779 	struct request *rq = scsi_cmd_to_rq(scmd);
780 	struct bio *bio = rq->bio;
781 	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
782 	unsigned int protect = 0;
783 
784 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
785 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
786 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
787 
788 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
789 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
790 	}
791 
792 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
793 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
794 
795 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
796 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
797 	}
798 
799 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
800 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
801 
802 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
803 			protect = 3 << 5;	/* Disable target PI checking */
804 		else
805 			protect = 1 << 5;	/* Enable target PI checking */
806 	}
807 
808 	scsi_set_prot_op(scmd, prot_op);
809 	scsi_set_prot_type(scmd, dif);
810 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
811 
812 	return protect;
813 }
814 
815 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
816 {
817 	struct request_queue *q = sdkp->disk->queue;
818 	unsigned int logical_block_size = sdkp->device->sector_size;
819 	unsigned int max_blocks = 0;
820 
821 	q->limits.discard_alignment =
822 		sdkp->unmap_alignment * logical_block_size;
823 	q->limits.discard_granularity =
824 		max(sdkp->physical_block_size,
825 		    sdkp->unmap_granularity * logical_block_size);
826 	sdkp->provisioning_mode = mode;
827 
828 	switch (mode) {
829 
830 	case SD_LBP_FULL:
831 	case SD_LBP_DISABLE:
832 		blk_queue_max_discard_sectors(q, 0);
833 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
834 		return;
835 
836 	case SD_LBP_UNMAP:
837 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
838 					  (u32)SD_MAX_WS16_BLOCKS);
839 		break;
840 
841 	case SD_LBP_WS16:
842 		if (sdkp->device->unmap_limit_for_ws)
843 			max_blocks = sdkp->max_unmap_blocks;
844 		else
845 			max_blocks = sdkp->max_ws_blocks;
846 
847 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
848 		break;
849 
850 	case SD_LBP_WS10:
851 		if (sdkp->device->unmap_limit_for_ws)
852 			max_blocks = sdkp->max_unmap_blocks;
853 		else
854 			max_blocks = sdkp->max_ws_blocks;
855 
856 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
857 		break;
858 
859 	case SD_LBP_ZERO:
860 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
861 					  (u32)SD_MAX_WS10_BLOCKS);
862 		break;
863 	}
864 
865 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
866 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
867 }
868 
869 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
870 {
871 	struct scsi_device *sdp = cmd->device;
872 	struct request *rq = scsi_cmd_to_rq(cmd);
873 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
874 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
875 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
876 	unsigned int data_len = 24;
877 	char *buf;
878 
879 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
880 	if (!rq->special_vec.bv_page)
881 		return BLK_STS_RESOURCE;
882 	clear_highpage(rq->special_vec.bv_page);
883 	rq->special_vec.bv_offset = 0;
884 	rq->special_vec.bv_len = data_len;
885 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
886 
887 	cmd->cmd_len = 10;
888 	cmd->cmnd[0] = UNMAP;
889 	cmd->cmnd[8] = 24;
890 
891 	buf = page_address(rq->special_vec.bv_page);
892 	put_unaligned_be16(6 + 16, &buf[0]);
893 	put_unaligned_be16(16, &buf[2]);
894 	put_unaligned_be64(lba, &buf[8]);
895 	put_unaligned_be32(nr_blocks, &buf[16]);
896 
897 	cmd->allowed = sdkp->max_retries;
898 	cmd->transfersize = data_len;
899 	rq->timeout = SD_TIMEOUT;
900 
901 	return scsi_alloc_sgtables(cmd);
902 }
903 
904 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
905 		bool unmap)
906 {
907 	struct scsi_device *sdp = cmd->device;
908 	struct request *rq = scsi_cmd_to_rq(cmd);
909 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
910 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
911 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
912 	u32 data_len = sdp->sector_size;
913 
914 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
915 	if (!rq->special_vec.bv_page)
916 		return BLK_STS_RESOURCE;
917 	clear_highpage(rq->special_vec.bv_page);
918 	rq->special_vec.bv_offset = 0;
919 	rq->special_vec.bv_len = data_len;
920 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
921 
922 	cmd->cmd_len = 16;
923 	cmd->cmnd[0] = WRITE_SAME_16;
924 	if (unmap)
925 		cmd->cmnd[1] = 0x8; /* UNMAP */
926 	put_unaligned_be64(lba, &cmd->cmnd[2]);
927 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
928 
929 	cmd->allowed = sdkp->max_retries;
930 	cmd->transfersize = data_len;
931 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
932 
933 	return scsi_alloc_sgtables(cmd);
934 }
935 
936 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
937 		bool unmap)
938 {
939 	struct scsi_device *sdp = cmd->device;
940 	struct request *rq = scsi_cmd_to_rq(cmd);
941 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
942 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
943 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
944 	u32 data_len = sdp->sector_size;
945 
946 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
947 	if (!rq->special_vec.bv_page)
948 		return BLK_STS_RESOURCE;
949 	clear_highpage(rq->special_vec.bv_page);
950 	rq->special_vec.bv_offset = 0;
951 	rq->special_vec.bv_len = data_len;
952 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
953 
954 	cmd->cmd_len = 10;
955 	cmd->cmnd[0] = WRITE_SAME;
956 	if (unmap)
957 		cmd->cmnd[1] = 0x8; /* UNMAP */
958 	put_unaligned_be32(lba, &cmd->cmnd[2]);
959 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
960 
961 	cmd->allowed = sdkp->max_retries;
962 	cmd->transfersize = data_len;
963 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
964 
965 	return scsi_alloc_sgtables(cmd);
966 }
967 
968 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
969 {
970 	struct request *rq = scsi_cmd_to_rq(cmd);
971 	struct scsi_device *sdp = cmd->device;
972 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
973 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
974 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
975 
976 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
977 		switch (sdkp->zeroing_mode) {
978 		case SD_ZERO_WS16_UNMAP:
979 			return sd_setup_write_same16_cmnd(cmd, true);
980 		case SD_ZERO_WS10_UNMAP:
981 			return sd_setup_write_same10_cmnd(cmd, true);
982 		}
983 	}
984 
985 	if (sdp->no_write_same) {
986 		rq->rq_flags |= RQF_QUIET;
987 		return BLK_STS_TARGET;
988 	}
989 
990 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
991 		return sd_setup_write_same16_cmnd(cmd, false);
992 
993 	return sd_setup_write_same10_cmnd(cmd, false);
994 }
995 
996 static void sd_config_write_same(struct scsi_disk *sdkp)
997 {
998 	struct request_queue *q = sdkp->disk->queue;
999 	unsigned int logical_block_size = sdkp->device->sector_size;
1000 
1001 	if (sdkp->device->no_write_same) {
1002 		sdkp->max_ws_blocks = 0;
1003 		goto out;
1004 	}
1005 
1006 	/* Some devices can not handle block counts above 0xffff despite
1007 	 * supporting WRITE SAME(16). Consequently we default to 64k
1008 	 * blocks per I/O unless the device explicitly advertises a
1009 	 * bigger limit.
1010 	 */
1011 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1012 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1013 						   (u32)SD_MAX_WS16_BLOCKS);
1014 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1015 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1016 						   (u32)SD_MAX_WS10_BLOCKS);
1017 	else {
1018 		sdkp->device->no_write_same = 1;
1019 		sdkp->max_ws_blocks = 0;
1020 	}
1021 
1022 	if (sdkp->lbprz && sdkp->lbpws)
1023 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1024 	else if (sdkp->lbprz && sdkp->lbpws10)
1025 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1026 	else if (sdkp->max_ws_blocks)
1027 		sdkp->zeroing_mode = SD_ZERO_WS;
1028 	else
1029 		sdkp->zeroing_mode = SD_ZERO_WRITE;
1030 
1031 	if (sdkp->max_ws_blocks &&
1032 	    sdkp->physical_block_size > logical_block_size) {
1033 		/*
1034 		 * Reporting a maximum number of blocks that is not aligned
1035 		 * on the device physical size would cause a large write same
1036 		 * request to be split into physically unaligned chunks by
1037 		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
1038 		 * even if the caller of these functions took care to align the
1039 		 * large request. So make sure the maximum reported is aligned
1040 		 * to the device physical block size. This is only an optional
1041 		 * optimization for regular disks, but this is mandatory to
1042 		 * avoid failure of large write same requests directed at
1043 		 * sequential write required zones of host-managed ZBC disks.
1044 		 */
1045 		sdkp->max_ws_blocks =
1046 			round_down(sdkp->max_ws_blocks,
1047 				   bytes_to_logical(sdkp->device,
1048 						    sdkp->physical_block_size));
1049 	}
1050 
1051 out:
1052 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1053 					 (logical_block_size >> 9));
1054 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1055 					 (logical_block_size >> 9));
1056 }
1057 
1058 /**
1059  * sd_setup_write_same_cmnd - write the same data to multiple blocks
1060  * @cmd: command to prepare
1061  *
1062  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1063  * the preference indicated by the target device.
1064  **/
1065 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1066 {
1067 	struct request *rq = scsi_cmd_to_rq(cmd);
1068 	struct scsi_device *sdp = cmd->device;
1069 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1070 	struct bio *bio = rq->bio;
1071 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1072 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1073 	blk_status_t ret;
1074 
1075 	if (sdkp->device->no_write_same)
1076 		return BLK_STS_TARGET;
1077 
1078 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1079 
1080 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
1081 
1082 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1083 		cmd->cmd_len = 16;
1084 		cmd->cmnd[0] = WRITE_SAME_16;
1085 		put_unaligned_be64(lba, &cmd->cmnd[2]);
1086 		put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1087 	} else {
1088 		cmd->cmd_len = 10;
1089 		cmd->cmnd[0] = WRITE_SAME;
1090 		put_unaligned_be32(lba, &cmd->cmnd[2]);
1091 		put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1092 	}
1093 
1094 	cmd->transfersize = sdp->sector_size;
1095 	cmd->allowed = sdkp->max_retries;
1096 
1097 	/*
1098 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
1099 	 * different from the amount of data actually written to the target.
1100 	 *
1101 	 * We set up __data_len to the amount of data transferred via the
1102 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1103 	 * to transfer a single sector of data first, but then reset it to
1104 	 * the amount of data to be written right after so that the I/O path
1105 	 * knows how much to actually write.
1106 	 */
1107 	rq->__data_len = sdp->sector_size;
1108 	ret = scsi_alloc_sgtables(cmd);
1109 	rq->__data_len = blk_rq_bytes(rq);
1110 
1111 	return ret;
1112 }
1113 
1114 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1115 {
1116 	struct request *rq = scsi_cmd_to_rq(cmd);
1117 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1118 
1119 	/* flush requests don't perform I/O, zero the S/G table */
1120 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1121 
1122 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1123 	cmd->cmd_len = 10;
1124 	cmd->transfersize = 0;
1125 	cmd->allowed = sdkp->max_retries;
1126 
1127 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1128 	return BLK_STS_OK;
1129 }
1130 
1131 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1132 				       sector_t lba, unsigned int nr_blocks,
1133 				       unsigned char flags)
1134 {
1135 	cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1136 	if (unlikely(cmd->cmnd == NULL))
1137 		return BLK_STS_RESOURCE;
1138 
1139 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1140 	memset(cmd->cmnd, 0, cmd->cmd_len);
1141 
1142 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1143 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1144 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1145 	cmd->cmnd[10] = flags;
1146 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1147 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1148 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1149 
1150 	return BLK_STS_OK;
1151 }
1152 
1153 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1154 				       sector_t lba, unsigned int nr_blocks,
1155 				       unsigned char flags)
1156 {
1157 	cmd->cmd_len  = 16;
1158 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1159 	cmd->cmnd[1]  = flags;
1160 	cmd->cmnd[14] = 0;
1161 	cmd->cmnd[15] = 0;
1162 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1163 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1164 
1165 	return BLK_STS_OK;
1166 }
1167 
1168 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1169 				       sector_t lba, unsigned int nr_blocks,
1170 				       unsigned char flags)
1171 {
1172 	cmd->cmd_len = 10;
1173 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1174 	cmd->cmnd[1] = flags;
1175 	cmd->cmnd[6] = 0;
1176 	cmd->cmnd[9] = 0;
1177 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1178 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1179 
1180 	return BLK_STS_OK;
1181 }
1182 
1183 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1184 				      sector_t lba, unsigned int nr_blocks,
1185 				      unsigned char flags)
1186 {
1187 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1188 	if (WARN_ON_ONCE(nr_blocks == 0))
1189 		return BLK_STS_IOERR;
1190 
1191 	if (unlikely(flags & 0x8)) {
1192 		/*
1193 		 * This happens only if this drive failed 10byte rw
1194 		 * command with ILLEGAL_REQUEST during operation and
1195 		 * thus turned off use_10_for_rw.
1196 		 */
1197 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1198 		return BLK_STS_IOERR;
1199 	}
1200 
1201 	cmd->cmd_len = 6;
1202 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1203 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1204 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1205 	cmd->cmnd[3] = lba & 0xff;
1206 	cmd->cmnd[4] = nr_blocks;
1207 	cmd->cmnd[5] = 0;
1208 
1209 	return BLK_STS_OK;
1210 }
1211 
1212 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1213 {
1214 	struct request *rq = scsi_cmd_to_rq(cmd);
1215 	struct scsi_device *sdp = cmd->device;
1216 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1217 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1218 	sector_t threshold;
1219 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1220 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1221 	bool write = rq_data_dir(rq) == WRITE;
1222 	unsigned char protect, fua;
1223 	blk_status_t ret;
1224 	unsigned int dif;
1225 	bool dix;
1226 
1227 	ret = scsi_alloc_sgtables(cmd);
1228 	if (ret != BLK_STS_OK)
1229 		return ret;
1230 
1231 	ret = BLK_STS_IOERR;
1232 	if (!scsi_device_online(sdp) || sdp->changed) {
1233 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1234 		goto fail;
1235 	}
1236 
1237 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1238 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1239 		goto fail;
1240 	}
1241 
1242 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1243 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1244 		goto fail;
1245 	}
1246 
1247 	/*
1248 	 * Some SD card readers can't handle accesses which touch the
1249 	 * last one or two logical blocks. Split accesses as needed.
1250 	 */
1251 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1252 
1253 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1254 		if (lba < threshold) {
1255 			/* Access up to the threshold but not beyond */
1256 			nr_blocks = threshold - lba;
1257 		} else {
1258 			/* Access only a single logical block */
1259 			nr_blocks = 1;
1260 		}
1261 	}
1262 
1263 	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1264 		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1265 		if (ret)
1266 			goto fail;
1267 	}
1268 
1269 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1270 	dix = scsi_prot_sg_count(cmd);
1271 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1272 
1273 	if (dif || dix)
1274 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1275 	else
1276 		protect = 0;
1277 
1278 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1279 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1280 					 protect | fua);
1281 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1282 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1283 					 protect | fua);
1284 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1285 		   sdp->use_10_for_rw || protect) {
1286 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1287 					 protect | fua);
1288 	} else {
1289 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1290 					protect | fua);
1291 	}
1292 
1293 	if (unlikely(ret != BLK_STS_OK))
1294 		goto fail;
1295 
1296 	/*
1297 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1298 	 * host adapter, it's safe to assume that we can at least transfer
1299 	 * this many bytes between each connect / disconnect.
1300 	 */
1301 	cmd->transfersize = sdp->sector_size;
1302 	cmd->underflow = nr_blocks << 9;
1303 	cmd->allowed = sdkp->max_retries;
1304 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1305 
1306 	SCSI_LOG_HLQUEUE(1,
1307 			 scmd_printk(KERN_INFO, cmd,
1308 				     "%s: block=%llu, count=%d\n", __func__,
1309 				     (unsigned long long)blk_rq_pos(rq),
1310 				     blk_rq_sectors(rq)));
1311 	SCSI_LOG_HLQUEUE(2,
1312 			 scmd_printk(KERN_INFO, cmd,
1313 				     "%s %d/%u 512 byte blocks.\n",
1314 				     write ? "writing" : "reading", nr_blocks,
1315 				     blk_rq_sectors(rq)));
1316 
1317 	/*
1318 	 * This indicates that the command is ready from our end to be queued.
1319 	 */
1320 	return BLK_STS_OK;
1321 fail:
1322 	scsi_free_sgtables(cmd);
1323 	return ret;
1324 }
1325 
1326 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1327 {
1328 	struct request *rq = scsi_cmd_to_rq(cmd);
1329 
1330 	switch (req_op(rq)) {
1331 	case REQ_OP_DISCARD:
1332 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1333 		case SD_LBP_UNMAP:
1334 			return sd_setup_unmap_cmnd(cmd);
1335 		case SD_LBP_WS16:
1336 			return sd_setup_write_same16_cmnd(cmd, true);
1337 		case SD_LBP_WS10:
1338 			return sd_setup_write_same10_cmnd(cmd, true);
1339 		case SD_LBP_ZERO:
1340 			return sd_setup_write_same10_cmnd(cmd, false);
1341 		default:
1342 			return BLK_STS_TARGET;
1343 		}
1344 	case REQ_OP_WRITE_ZEROES:
1345 		return sd_setup_write_zeroes_cmnd(cmd);
1346 	case REQ_OP_WRITE_SAME:
1347 		return sd_setup_write_same_cmnd(cmd);
1348 	case REQ_OP_FLUSH:
1349 		return sd_setup_flush_cmnd(cmd);
1350 	case REQ_OP_READ:
1351 	case REQ_OP_WRITE:
1352 	case REQ_OP_ZONE_APPEND:
1353 		return sd_setup_read_write_cmnd(cmd);
1354 	case REQ_OP_ZONE_RESET:
1355 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1356 						   false);
1357 	case REQ_OP_ZONE_RESET_ALL:
1358 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1359 						   true);
1360 	case REQ_OP_ZONE_OPEN:
1361 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1362 	case REQ_OP_ZONE_CLOSE:
1363 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1364 	case REQ_OP_ZONE_FINISH:
1365 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1366 	default:
1367 		WARN_ON_ONCE(1);
1368 		return BLK_STS_NOTSUPP;
1369 	}
1370 }
1371 
1372 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1373 {
1374 	struct request *rq = scsi_cmd_to_rq(SCpnt);
1375 	u8 *cmnd;
1376 
1377 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1378 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1379 
1380 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1381 		cmnd = SCpnt->cmnd;
1382 		SCpnt->cmnd = NULL;
1383 		SCpnt->cmd_len = 0;
1384 		mempool_free(cmnd, sd_cdb_pool);
1385 	}
1386 }
1387 
1388 static bool sd_need_revalidate(struct block_device *bdev,
1389 		struct scsi_disk *sdkp)
1390 {
1391 	if (sdkp->device->removable || sdkp->write_prot) {
1392 		if (bdev_check_media_change(bdev))
1393 			return true;
1394 	}
1395 
1396 	/*
1397 	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1398 	 * nothing to do with partitions, BLKRRPART is used to force a full
1399 	 * revalidate after things like a format for historical reasons.
1400 	 */
1401 	return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1402 }
1403 
1404 /**
1405  *	sd_open - open a scsi disk device
1406  *	@bdev: Block device of the scsi disk to open
1407  *	@mode: FMODE_* mask
1408  *
1409  *	Returns 0 if successful. Returns a negated errno value in case
1410  *	of error.
1411  *
1412  *	Note: This can be called from a user context (e.g. fsck(1) )
1413  *	or from within the kernel (e.g. as a result of a mount(1) ).
1414  *	In the latter case @inode and @filp carry an abridged amount
1415  *	of information as noted above.
1416  *
1417  *	Locking: called with bdev->bd_disk->open_mutex held.
1418  **/
1419 static int sd_open(struct block_device *bdev, fmode_t mode)
1420 {
1421 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1422 	struct scsi_device *sdev;
1423 	int retval;
1424 
1425 	if (!sdkp)
1426 		return -ENXIO;
1427 
1428 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1429 
1430 	sdev = sdkp->device;
1431 
1432 	/*
1433 	 * If the device is in error recovery, wait until it is done.
1434 	 * If the device is offline, then disallow any access to it.
1435 	 */
1436 	retval = -ENXIO;
1437 	if (!scsi_block_when_processing_errors(sdev))
1438 		goto error_out;
1439 
1440 	if (sd_need_revalidate(bdev, sdkp))
1441 		sd_revalidate_disk(bdev->bd_disk);
1442 
1443 	/*
1444 	 * If the drive is empty, just let the open fail.
1445 	 */
1446 	retval = -ENOMEDIUM;
1447 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1448 		goto error_out;
1449 
1450 	/*
1451 	 * If the device has the write protect tab set, have the open fail
1452 	 * if the user expects to be able to write to the thing.
1453 	 */
1454 	retval = -EROFS;
1455 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1456 		goto error_out;
1457 
1458 	/*
1459 	 * It is possible that the disk changing stuff resulted in
1460 	 * the device being taken offline.  If this is the case,
1461 	 * report this to the user, and don't pretend that the
1462 	 * open actually succeeded.
1463 	 */
1464 	retval = -ENXIO;
1465 	if (!scsi_device_online(sdev))
1466 		goto error_out;
1467 
1468 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1469 		if (scsi_block_when_processing_errors(sdev))
1470 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1471 	}
1472 
1473 	return 0;
1474 
1475 error_out:
1476 	scsi_disk_put(sdkp);
1477 	return retval;
1478 }
1479 
1480 /**
1481  *	sd_release - invoked when the (last) close(2) is called on this
1482  *	scsi disk.
1483  *	@disk: disk to release
1484  *	@mode: FMODE_* mask
1485  *
1486  *	Returns 0.
1487  *
1488  *	Note: may block (uninterruptible) if error recovery is underway
1489  *	on this disk.
1490  *
1491  *	Locking: called with bdev->bd_disk->open_mutex held.
1492  **/
1493 static void sd_release(struct gendisk *disk, fmode_t mode)
1494 {
1495 	struct scsi_disk *sdkp = scsi_disk(disk);
1496 	struct scsi_device *sdev = sdkp->device;
1497 
1498 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1499 
1500 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1501 		if (scsi_block_when_processing_errors(sdev))
1502 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1503 	}
1504 
1505 	scsi_disk_put(sdkp);
1506 }
1507 
1508 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1509 {
1510 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1511 	struct scsi_device *sdp = sdkp->device;
1512 	struct Scsi_Host *host = sdp->host;
1513 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1514 	int diskinfo[4];
1515 
1516 	/* default to most commonly used values */
1517 	diskinfo[0] = 0x40;	/* 1 << 6 */
1518 	diskinfo[1] = 0x20;	/* 1 << 5 */
1519 	diskinfo[2] = capacity >> 11;
1520 
1521 	/* override with calculated, extended default, or driver values */
1522 	if (host->hostt->bios_param)
1523 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1524 	else
1525 		scsicam_bios_param(bdev, capacity, diskinfo);
1526 
1527 	geo->heads = diskinfo[0];
1528 	geo->sectors = diskinfo[1];
1529 	geo->cylinders = diskinfo[2];
1530 	return 0;
1531 }
1532 
1533 /**
1534  *	sd_ioctl - process an ioctl
1535  *	@bdev: target block device
1536  *	@mode: FMODE_* mask
1537  *	@cmd: ioctl command number
1538  *	@arg: this is third argument given to ioctl(2) system call.
1539  *	Often contains a pointer.
1540  *
1541  *	Returns 0 if successful (some ioctls return positive numbers on
1542  *	success as well). Returns a negated errno value in case of error.
1543  *
1544  *	Note: most ioctls are forward onto the block subsystem or further
1545  *	down in the scsi subsystem.
1546  **/
1547 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1548 		    unsigned int cmd, unsigned long arg)
1549 {
1550 	struct gendisk *disk = bdev->bd_disk;
1551 	struct scsi_disk *sdkp = scsi_disk(disk);
1552 	struct scsi_device *sdp = sdkp->device;
1553 	void __user *p = (void __user *)arg;
1554 	int error;
1555 
1556 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1557 				    "cmd=0x%x\n", disk->disk_name, cmd));
1558 
1559 	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1560 		return -ENOIOCTLCMD;
1561 
1562 	/*
1563 	 * If we are in the middle of error recovery, don't let anyone
1564 	 * else try and use this device.  Also, if error recovery fails, it
1565 	 * may try and take the device offline, in which case all further
1566 	 * access to the device is prohibited.
1567 	 */
1568 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1569 			(mode & FMODE_NDELAY) != 0);
1570 	if (error)
1571 		return error;
1572 
1573 	if (is_sed_ioctl(cmd))
1574 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1575 	return scsi_ioctl(sdp, disk, mode, cmd, p);
1576 }
1577 
1578 static void set_media_not_present(struct scsi_disk *sdkp)
1579 {
1580 	if (sdkp->media_present)
1581 		sdkp->device->changed = 1;
1582 
1583 	if (sdkp->device->removable) {
1584 		sdkp->media_present = 0;
1585 		sdkp->capacity = 0;
1586 	}
1587 }
1588 
1589 static int media_not_present(struct scsi_disk *sdkp,
1590 			     struct scsi_sense_hdr *sshdr)
1591 {
1592 	if (!scsi_sense_valid(sshdr))
1593 		return 0;
1594 
1595 	/* not invoked for commands that could return deferred errors */
1596 	switch (sshdr->sense_key) {
1597 	case UNIT_ATTENTION:
1598 	case NOT_READY:
1599 		/* medium not present */
1600 		if (sshdr->asc == 0x3A) {
1601 			set_media_not_present(sdkp);
1602 			return 1;
1603 		}
1604 	}
1605 	return 0;
1606 }
1607 
1608 /**
1609  *	sd_check_events - check media events
1610  *	@disk: kernel device descriptor
1611  *	@clearing: disk events currently being cleared
1612  *
1613  *	Returns mask of DISK_EVENT_*.
1614  *
1615  *	Note: this function is invoked from the block subsystem.
1616  **/
1617 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1618 {
1619 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1620 	struct scsi_device *sdp;
1621 	int retval;
1622 	bool disk_changed;
1623 
1624 	if (!sdkp)
1625 		return 0;
1626 
1627 	sdp = sdkp->device;
1628 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1629 
1630 	/*
1631 	 * If the device is offline, don't send any commands - just pretend as
1632 	 * if the command failed.  If the device ever comes back online, we
1633 	 * can deal with it then.  It is only because of unrecoverable errors
1634 	 * that we would ever take a device offline in the first place.
1635 	 */
1636 	if (!scsi_device_online(sdp)) {
1637 		set_media_not_present(sdkp);
1638 		goto out;
1639 	}
1640 
1641 	/*
1642 	 * Using TEST_UNIT_READY enables differentiation between drive with
1643 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1644 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1645 	 *
1646 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1647 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1648 	 * sd_revalidate() is called.
1649 	 */
1650 	if (scsi_block_when_processing_errors(sdp)) {
1651 		struct scsi_sense_hdr sshdr = { 0, };
1652 
1653 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1654 					      &sshdr);
1655 
1656 		/* failed to execute TUR, assume media not present */
1657 		if (retval < 0 || host_byte(retval)) {
1658 			set_media_not_present(sdkp);
1659 			goto out;
1660 		}
1661 
1662 		if (media_not_present(sdkp, &sshdr))
1663 			goto out;
1664 	}
1665 
1666 	/*
1667 	 * For removable scsi disk we have to recognise the presence
1668 	 * of a disk in the drive.
1669 	 */
1670 	if (!sdkp->media_present)
1671 		sdp->changed = 1;
1672 	sdkp->media_present = 1;
1673 out:
1674 	/*
1675 	 * sdp->changed is set under the following conditions:
1676 	 *
1677 	 *	Medium present state has changed in either direction.
1678 	 *	Device has indicated UNIT_ATTENTION.
1679 	 */
1680 	disk_changed = sdp->changed;
1681 	sdp->changed = 0;
1682 	scsi_disk_put(sdkp);
1683 	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1684 }
1685 
1686 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1687 {
1688 	int retries, res;
1689 	struct scsi_device *sdp = sdkp->device;
1690 	const int timeout = sdp->request_queue->rq_timeout
1691 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1692 	struct scsi_sense_hdr my_sshdr;
1693 
1694 	if (!scsi_device_online(sdp))
1695 		return -ENODEV;
1696 
1697 	/* caller might not be interested in sense, but we need it */
1698 	if (!sshdr)
1699 		sshdr = &my_sshdr;
1700 
1701 	for (retries = 3; retries > 0; --retries) {
1702 		unsigned char cmd[10] = { 0 };
1703 
1704 		cmd[0] = SYNCHRONIZE_CACHE;
1705 		/*
1706 		 * Leave the rest of the command zero to indicate
1707 		 * flush everything.
1708 		 */
1709 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1710 				timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1711 		if (res == 0)
1712 			break;
1713 	}
1714 
1715 	if (res) {
1716 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1717 
1718 		if (res < 0)
1719 			return res;
1720 
1721 		if (scsi_status_is_check_condition(res) &&
1722 		    scsi_sense_valid(sshdr)) {
1723 			sd_print_sense_hdr(sdkp, sshdr);
1724 
1725 			/* we need to evaluate the error return  */
1726 			if (sshdr->asc == 0x3a ||	/* medium not present */
1727 			    sshdr->asc == 0x20 ||	/* invalid command */
1728 			    (sshdr->asc == 0x74 && sshdr->ascq == 0x71))	/* drive is password locked */
1729 				/* this is no error here */
1730 				return 0;
1731 		}
1732 
1733 		switch (host_byte(res)) {
1734 		/* ignore errors due to racing a disconnection */
1735 		case DID_BAD_TARGET:
1736 		case DID_NO_CONNECT:
1737 			return 0;
1738 		/* signal the upper layer it might try again */
1739 		case DID_BUS_BUSY:
1740 		case DID_IMM_RETRY:
1741 		case DID_REQUEUE:
1742 		case DID_SOFT_ERROR:
1743 			return -EBUSY;
1744 		default:
1745 			return -EIO;
1746 		}
1747 	}
1748 	return 0;
1749 }
1750 
1751 static void sd_rescan(struct device *dev)
1752 {
1753 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1754 
1755 	sd_revalidate_disk(sdkp->disk);
1756 }
1757 
1758 static char sd_pr_type(enum pr_type type)
1759 {
1760 	switch (type) {
1761 	case PR_WRITE_EXCLUSIVE:
1762 		return 0x01;
1763 	case PR_EXCLUSIVE_ACCESS:
1764 		return 0x03;
1765 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1766 		return 0x05;
1767 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1768 		return 0x06;
1769 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1770 		return 0x07;
1771 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1772 		return 0x08;
1773 	default:
1774 		return 0;
1775 	}
1776 };
1777 
1778 static int sd_pr_command(struct block_device *bdev, u8 sa,
1779 		u64 key, u64 sa_key, u8 type, u8 flags)
1780 {
1781 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1782 	struct scsi_device *sdev = sdkp->device;
1783 	struct scsi_sense_hdr sshdr;
1784 	int result;
1785 	u8 cmd[16] = { 0, };
1786 	u8 data[24] = { 0, };
1787 
1788 	cmd[0] = PERSISTENT_RESERVE_OUT;
1789 	cmd[1] = sa;
1790 	cmd[2] = type;
1791 	put_unaligned_be32(sizeof(data), &cmd[5]);
1792 
1793 	put_unaligned_be64(key, &data[0]);
1794 	put_unaligned_be64(sa_key, &data[8]);
1795 	data[20] = flags;
1796 
1797 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1798 			&sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1799 
1800 	if (scsi_status_is_check_condition(result) &&
1801 	    scsi_sense_valid(&sshdr)) {
1802 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1803 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1804 	}
1805 
1806 	return result;
1807 }
1808 
1809 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1810 		u32 flags)
1811 {
1812 	if (flags & ~PR_FL_IGNORE_KEY)
1813 		return -EOPNOTSUPP;
1814 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1815 			old_key, new_key, 0,
1816 			(1 << 0) /* APTPL */);
1817 }
1818 
1819 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1820 		u32 flags)
1821 {
1822 	if (flags)
1823 		return -EOPNOTSUPP;
1824 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1825 }
1826 
1827 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1828 {
1829 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1830 }
1831 
1832 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1833 		enum pr_type type, bool abort)
1834 {
1835 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1836 			     sd_pr_type(type), 0);
1837 }
1838 
1839 static int sd_pr_clear(struct block_device *bdev, u64 key)
1840 {
1841 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1842 }
1843 
1844 static const struct pr_ops sd_pr_ops = {
1845 	.pr_register	= sd_pr_register,
1846 	.pr_reserve	= sd_pr_reserve,
1847 	.pr_release	= sd_pr_release,
1848 	.pr_preempt	= sd_pr_preempt,
1849 	.pr_clear	= sd_pr_clear,
1850 };
1851 
1852 static const struct block_device_operations sd_fops = {
1853 	.owner			= THIS_MODULE,
1854 	.open			= sd_open,
1855 	.release		= sd_release,
1856 	.ioctl			= sd_ioctl,
1857 	.getgeo			= sd_getgeo,
1858 	.compat_ioctl		= blkdev_compat_ptr_ioctl,
1859 	.check_events		= sd_check_events,
1860 	.unlock_native_capacity	= sd_unlock_native_capacity,
1861 	.report_zones		= sd_zbc_report_zones,
1862 	.pr_ops			= &sd_pr_ops,
1863 };
1864 
1865 /**
1866  *	sd_eh_reset - reset error handling callback
1867  *	@scmd:		sd-issued command that has failed
1868  *
1869  *	This function is called by the SCSI midlayer before starting
1870  *	SCSI EH. When counting medium access failures we have to be
1871  *	careful to register it only only once per device and SCSI EH run;
1872  *	there might be several timed out commands which will cause the
1873  *	'max_medium_access_timeouts' counter to trigger after the first
1874  *	SCSI EH run already and set the device to offline.
1875  *	So this function resets the internal counter before starting SCSI EH.
1876  **/
1877 static void sd_eh_reset(struct scsi_cmnd *scmd)
1878 {
1879 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->rq_disk);
1880 
1881 	/* New SCSI EH run, reset gate variable */
1882 	sdkp->ignore_medium_access_errors = false;
1883 }
1884 
1885 /**
1886  *	sd_eh_action - error handling callback
1887  *	@scmd:		sd-issued command that has failed
1888  *	@eh_disp:	The recovery disposition suggested by the midlayer
1889  *
1890  *	This function is called by the SCSI midlayer upon completion of an
1891  *	error test command (currently TEST UNIT READY). The result of sending
1892  *	the eh command is passed in eh_disp.  We're looking for devices that
1893  *	fail medium access commands but are OK with non access commands like
1894  *	test unit ready (so wrongly see the device as having a successful
1895  *	recovery)
1896  **/
1897 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1898 {
1899 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->rq_disk);
1900 	struct scsi_device *sdev = scmd->device;
1901 
1902 	if (!scsi_device_online(sdev) ||
1903 	    !scsi_medium_access_command(scmd) ||
1904 	    host_byte(scmd->result) != DID_TIME_OUT ||
1905 	    eh_disp != SUCCESS)
1906 		return eh_disp;
1907 
1908 	/*
1909 	 * The device has timed out executing a medium access command.
1910 	 * However, the TEST UNIT READY command sent during error
1911 	 * handling completed successfully. Either the device is in the
1912 	 * process of recovering or has it suffered an internal failure
1913 	 * that prevents access to the storage medium.
1914 	 */
1915 	if (!sdkp->ignore_medium_access_errors) {
1916 		sdkp->medium_access_timed_out++;
1917 		sdkp->ignore_medium_access_errors = true;
1918 	}
1919 
1920 	/*
1921 	 * If the device keeps failing read/write commands but TEST UNIT
1922 	 * READY always completes successfully we assume that medium
1923 	 * access is no longer possible and take the device offline.
1924 	 */
1925 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1926 		scmd_printk(KERN_ERR, scmd,
1927 			    "Medium access timeout failure. Offlining disk!\n");
1928 		mutex_lock(&sdev->state_mutex);
1929 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1930 		mutex_unlock(&sdev->state_mutex);
1931 
1932 		return SUCCESS;
1933 	}
1934 
1935 	return eh_disp;
1936 }
1937 
1938 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1939 {
1940 	struct request *req = scsi_cmd_to_rq(scmd);
1941 	struct scsi_device *sdev = scmd->device;
1942 	unsigned int transferred, good_bytes;
1943 	u64 start_lba, end_lba, bad_lba;
1944 
1945 	/*
1946 	 * Some commands have a payload smaller than the device logical
1947 	 * block size (e.g. INQUIRY on a 4K disk).
1948 	 */
1949 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1950 		return 0;
1951 
1952 	/* Check if we have a 'bad_lba' information */
1953 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1954 				     SCSI_SENSE_BUFFERSIZE,
1955 				     &bad_lba))
1956 		return 0;
1957 
1958 	/*
1959 	 * If the bad lba was reported incorrectly, we have no idea where
1960 	 * the error is.
1961 	 */
1962 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1963 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1964 	if (bad_lba < start_lba || bad_lba >= end_lba)
1965 		return 0;
1966 
1967 	/*
1968 	 * resid is optional but mostly filled in.  When it's unused,
1969 	 * its value is zero, so we assume the whole buffer transferred
1970 	 */
1971 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1972 
1973 	/* This computation should always be done in terms of the
1974 	 * resolution of the device's medium.
1975 	 */
1976 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1977 
1978 	return min(good_bytes, transferred);
1979 }
1980 
1981 /**
1982  *	sd_done - bottom half handler: called when the lower level
1983  *	driver has completed (successfully or otherwise) a scsi command.
1984  *	@SCpnt: mid-level's per command structure.
1985  *
1986  *	Note: potentially run from within an ISR. Must not block.
1987  **/
1988 static int sd_done(struct scsi_cmnd *SCpnt)
1989 {
1990 	int result = SCpnt->result;
1991 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1992 	unsigned int sector_size = SCpnt->device->sector_size;
1993 	unsigned int resid;
1994 	struct scsi_sense_hdr sshdr;
1995 	struct request *req = scsi_cmd_to_rq(SCpnt);
1996 	struct scsi_disk *sdkp = scsi_disk(req->rq_disk);
1997 	int sense_valid = 0;
1998 	int sense_deferred = 0;
1999 
2000 	switch (req_op(req)) {
2001 	case REQ_OP_DISCARD:
2002 	case REQ_OP_WRITE_ZEROES:
2003 	case REQ_OP_WRITE_SAME:
2004 	case REQ_OP_ZONE_RESET:
2005 	case REQ_OP_ZONE_RESET_ALL:
2006 	case REQ_OP_ZONE_OPEN:
2007 	case REQ_OP_ZONE_CLOSE:
2008 	case REQ_OP_ZONE_FINISH:
2009 		if (!result) {
2010 			good_bytes = blk_rq_bytes(req);
2011 			scsi_set_resid(SCpnt, 0);
2012 		} else {
2013 			good_bytes = 0;
2014 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2015 		}
2016 		break;
2017 	default:
2018 		/*
2019 		 * In case of bogus fw or device, we could end up having
2020 		 * an unaligned partial completion. Check this here and force
2021 		 * alignment.
2022 		 */
2023 		resid = scsi_get_resid(SCpnt);
2024 		if (resid & (sector_size - 1)) {
2025 			sd_printk(KERN_INFO, sdkp,
2026 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2027 				resid, sector_size);
2028 			scsi_print_command(SCpnt);
2029 			resid = min(scsi_bufflen(SCpnt),
2030 				    round_up(resid, sector_size));
2031 			scsi_set_resid(SCpnt, resid);
2032 		}
2033 	}
2034 
2035 	if (result) {
2036 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2037 		if (sense_valid)
2038 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2039 	}
2040 	sdkp->medium_access_timed_out = 0;
2041 
2042 	if (!scsi_status_is_check_condition(result) &&
2043 	    (!sense_valid || sense_deferred))
2044 		goto out;
2045 
2046 	switch (sshdr.sense_key) {
2047 	case HARDWARE_ERROR:
2048 	case MEDIUM_ERROR:
2049 		good_bytes = sd_completed_bytes(SCpnt);
2050 		break;
2051 	case RECOVERED_ERROR:
2052 		good_bytes = scsi_bufflen(SCpnt);
2053 		break;
2054 	case NO_SENSE:
2055 		/* This indicates a false check condition, so ignore it.  An
2056 		 * unknown amount of data was transferred so treat it as an
2057 		 * error.
2058 		 */
2059 		SCpnt->result = 0;
2060 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2061 		break;
2062 	case ABORTED_COMMAND:
2063 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2064 			good_bytes = sd_completed_bytes(SCpnt);
2065 		break;
2066 	case ILLEGAL_REQUEST:
2067 		switch (sshdr.asc) {
2068 		case 0x10:	/* DIX: Host detected corruption */
2069 			good_bytes = sd_completed_bytes(SCpnt);
2070 			break;
2071 		case 0x20:	/* INVALID COMMAND OPCODE */
2072 		case 0x24:	/* INVALID FIELD IN CDB */
2073 			switch (SCpnt->cmnd[0]) {
2074 			case UNMAP:
2075 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2076 				break;
2077 			case WRITE_SAME_16:
2078 			case WRITE_SAME:
2079 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2080 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2081 				} else {
2082 					sdkp->device->no_write_same = 1;
2083 					sd_config_write_same(sdkp);
2084 					req->rq_flags |= RQF_QUIET;
2085 				}
2086 				break;
2087 			}
2088 		}
2089 		break;
2090 	default:
2091 		break;
2092 	}
2093 
2094  out:
2095 	if (sd_is_zoned(sdkp))
2096 		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2097 
2098 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2099 					   "sd_done: completed %d of %d bytes\n",
2100 					   good_bytes, scsi_bufflen(SCpnt)));
2101 
2102 	return good_bytes;
2103 }
2104 
2105 /*
2106  * spinup disk - called only in sd_revalidate_disk()
2107  */
2108 static void
2109 sd_spinup_disk(struct scsi_disk *sdkp)
2110 {
2111 	unsigned char cmd[10];
2112 	unsigned long spintime_expire = 0;
2113 	int retries, spintime;
2114 	unsigned int the_result;
2115 	struct scsi_sense_hdr sshdr;
2116 	int sense_valid = 0;
2117 
2118 	spintime = 0;
2119 
2120 	/* Spin up drives, as required.  Only do this at boot time */
2121 	/* Spinup needs to be done for module loads too. */
2122 	do {
2123 		retries = 0;
2124 
2125 		do {
2126 			cmd[0] = TEST_UNIT_READY;
2127 			memset((void *) &cmd[1], 0, 9);
2128 
2129 			the_result = scsi_execute_req(sdkp->device, cmd,
2130 						      DMA_NONE, NULL, 0,
2131 						      &sshdr, SD_TIMEOUT,
2132 						      sdkp->max_retries, NULL);
2133 
2134 			/*
2135 			 * If the drive has indicated to us that it
2136 			 * doesn't have any media in it, don't bother
2137 			 * with any more polling.
2138 			 */
2139 			if (media_not_present(sdkp, &sshdr))
2140 				return;
2141 
2142 			if (the_result)
2143 				sense_valid = scsi_sense_valid(&sshdr);
2144 			retries++;
2145 		} while (retries < 3 &&
2146 			 (!scsi_status_is_good(the_result) ||
2147 			  (scsi_status_is_check_condition(the_result) &&
2148 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2149 
2150 		if (!scsi_status_is_check_condition(the_result)) {
2151 			/* no sense, TUR either succeeded or failed
2152 			 * with a status error */
2153 			if(!spintime && !scsi_status_is_good(the_result)) {
2154 				sd_print_result(sdkp, "Test Unit Ready failed",
2155 						the_result);
2156 			}
2157 			break;
2158 		}
2159 
2160 		/*
2161 		 * The device does not want the automatic start to be issued.
2162 		 */
2163 		if (sdkp->device->no_start_on_add)
2164 			break;
2165 
2166 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2167 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2168 				break;	/* manual intervention required */
2169 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2170 				break;	/* standby */
2171 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2172 				break;	/* unavailable */
2173 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2174 				break;	/* sanitize in progress */
2175 			/*
2176 			 * Issue command to spin up drive when not ready
2177 			 */
2178 			if (!spintime) {
2179 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2180 				cmd[0] = START_STOP;
2181 				cmd[1] = 1;	/* Return immediately */
2182 				memset((void *) &cmd[2], 0, 8);
2183 				cmd[4] = 1;	/* Start spin cycle */
2184 				if (sdkp->device->start_stop_pwr_cond)
2185 					cmd[4] |= 1 << 4;
2186 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2187 						 NULL, 0, &sshdr,
2188 						 SD_TIMEOUT, sdkp->max_retries,
2189 						 NULL);
2190 				spintime_expire = jiffies + 100 * HZ;
2191 				spintime = 1;
2192 			}
2193 			/* Wait 1 second for next try */
2194 			msleep(1000);
2195 			printk(KERN_CONT ".");
2196 
2197 		/*
2198 		 * Wait for USB flash devices with slow firmware.
2199 		 * Yes, this sense key/ASC combination shouldn't
2200 		 * occur here.  It's characteristic of these devices.
2201 		 */
2202 		} else if (sense_valid &&
2203 				sshdr.sense_key == UNIT_ATTENTION &&
2204 				sshdr.asc == 0x28) {
2205 			if (!spintime) {
2206 				spintime_expire = jiffies + 5 * HZ;
2207 				spintime = 1;
2208 			}
2209 			/* Wait 1 second for next try */
2210 			msleep(1000);
2211 		} else {
2212 			/* we don't understand the sense code, so it's
2213 			 * probably pointless to loop */
2214 			if(!spintime) {
2215 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2216 				sd_print_sense_hdr(sdkp, &sshdr);
2217 			}
2218 			break;
2219 		}
2220 
2221 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2222 
2223 	if (spintime) {
2224 		if (scsi_status_is_good(the_result))
2225 			printk(KERN_CONT "ready\n");
2226 		else
2227 			printk(KERN_CONT "not responding...\n");
2228 	}
2229 }
2230 
2231 /*
2232  * Determine whether disk supports Data Integrity Field.
2233  */
2234 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2235 {
2236 	struct scsi_device *sdp = sdkp->device;
2237 	u8 type;
2238 	int ret = 0;
2239 
2240 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2241 		sdkp->protection_type = 0;
2242 		return ret;
2243 	}
2244 
2245 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2246 
2247 	if (type > T10_PI_TYPE3_PROTECTION)
2248 		ret = -ENODEV;
2249 	else if (scsi_host_dif_capable(sdp->host, type))
2250 		ret = 1;
2251 
2252 	if (sdkp->first_scan || type != sdkp->protection_type)
2253 		switch (ret) {
2254 		case -ENODEV:
2255 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2256 				  " protection type %u. Disabling disk!\n",
2257 				  type);
2258 			break;
2259 		case 1:
2260 			sd_printk(KERN_NOTICE, sdkp,
2261 				  "Enabling DIF Type %u protection\n", type);
2262 			break;
2263 		case 0:
2264 			sd_printk(KERN_NOTICE, sdkp,
2265 				  "Disabling DIF Type %u protection\n", type);
2266 			break;
2267 		}
2268 
2269 	sdkp->protection_type = type;
2270 
2271 	return ret;
2272 }
2273 
2274 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2275 			struct scsi_sense_hdr *sshdr, int sense_valid,
2276 			int the_result)
2277 {
2278 	if (sense_valid)
2279 		sd_print_sense_hdr(sdkp, sshdr);
2280 	else
2281 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2282 
2283 	/*
2284 	 * Set dirty bit for removable devices if not ready -
2285 	 * sometimes drives will not report this properly.
2286 	 */
2287 	if (sdp->removable &&
2288 	    sense_valid && sshdr->sense_key == NOT_READY)
2289 		set_media_not_present(sdkp);
2290 
2291 	/*
2292 	 * We used to set media_present to 0 here to indicate no media
2293 	 * in the drive, but some drives fail read capacity even with
2294 	 * media present, so we can't do that.
2295 	 */
2296 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2297 }
2298 
2299 #define RC16_LEN 32
2300 #if RC16_LEN > SD_BUF_SIZE
2301 #error RC16_LEN must not be more than SD_BUF_SIZE
2302 #endif
2303 
2304 #define READ_CAPACITY_RETRIES_ON_RESET	10
2305 
2306 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2307 						unsigned char *buffer)
2308 {
2309 	unsigned char cmd[16];
2310 	struct scsi_sense_hdr sshdr;
2311 	int sense_valid = 0;
2312 	int the_result;
2313 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2314 	unsigned int alignment;
2315 	unsigned long long lba;
2316 	unsigned sector_size;
2317 
2318 	if (sdp->no_read_capacity_16)
2319 		return -EINVAL;
2320 
2321 	do {
2322 		memset(cmd, 0, 16);
2323 		cmd[0] = SERVICE_ACTION_IN_16;
2324 		cmd[1] = SAI_READ_CAPACITY_16;
2325 		cmd[13] = RC16_LEN;
2326 		memset(buffer, 0, RC16_LEN);
2327 
2328 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2329 					buffer, RC16_LEN, &sshdr,
2330 					SD_TIMEOUT, sdkp->max_retries, NULL);
2331 
2332 		if (media_not_present(sdkp, &sshdr))
2333 			return -ENODEV;
2334 
2335 		if (the_result > 0) {
2336 			sense_valid = scsi_sense_valid(&sshdr);
2337 			if (sense_valid &&
2338 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2339 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2340 			    sshdr.ascq == 0x00)
2341 				/* Invalid Command Operation Code or
2342 				 * Invalid Field in CDB, just retry
2343 				 * silently with RC10 */
2344 				return -EINVAL;
2345 			if (sense_valid &&
2346 			    sshdr.sense_key == UNIT_ATTENTION &&
2347 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2348 				/* Device reset might occur several times,
2349 				 * give it one more chance */
2350 				if (--reset_retries > 0)
2351 					continue;
2352 		}
2353 		retries--;
2354 
2355 	} while (the_result && retries);
2356 
2357 	if (the_result) {
2358 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2359 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2360 		return -EINVAL;
2361 	}
2362 
2363 	sector_size = get_unaligned_be32(&buffer[8]);
2364 	lba = get_unaligned_be64(&buffer[0]);
2365 
2366 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2367 		sdkp->capacity = 0;
2368 		return -ENODEV;
2369 	}
2370 
2371 	/* Logical blocks per physical block exponent */
2372 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2373 
2374 	/* RC basis */
2375 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2376 
2377 	/* Lowest aligned logical block */
2378 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2379 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2380 	if (alignment && sdkp->first_scan)
2381 		sd_printk(KERN_NOTICE, sdkp,
2382 			  "physical block alignment offset: %u\n", alignment);
2383 
2384 	if (buffer[14] & 0x80) { /* LBPME */
2385 		sdkp->lbpme = 1;
2386 
2387 		if (buffer[14] & 0x40) /* LBPRZ */
2388 			sdkp->lbprz = 1;
2389 
2390 		sd_config_discard(sdkp, SD_LBP_WS16);
2391 	}
2392 
2393 	sdkp->capacity = lba + 1;
2394 	return sector_size;
2395 }
2396 
2397 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2398 						unsigned char *buffer)
2399 {
2400 	unsigned char cmd[16];
2401 	struct scsi_sense_hdr sshdr;
2402 	int sense_valid = 0;
2403 	int the_result;
2404 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2405 	sector_t lba;
2406 	unsigned sector_size;
2407 
2408 	do {
2409 		cmd[0] = READ_CAPACITY;
2410 		memset(&cmd[1], 0, 9);
2411 		memset(buffer, 0, 8);
2412 
2413 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2414 					buffer, 8, &sshdr,
2415 					SD_TIMEOUT, sdkp->max_retries, NULL);
2416 
2417 		if (media_not_present(sdkp, &sshdr))
2418 			return -ENODEV;
2419 
2420 		if (the_result > 0) {
2421 			sense_valid = scsi_sense_valid(&sshdr);
2422 			if (sense_valid &&
2423 			    sshdr.sense_key == UNIT_ATTENTION &&
2424 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2425 				/* Device reset might occur several times,
2426 				 * give it one more chance */
2427 				if (--reset_retries > 0)
2428 					continue;
2429 		}
2430 		retries--;
2431 
2432 	} while (the_result && retries);
2433 
2434 	if (the_result) {
2435 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2436 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2437 		return -EINVAL;
2438 	}
2439 
2440 	sector_size = get_unaligned_be32(&buffer[4]);
2441 	lba = get_unaligned_be32(&buffer[0]);
2442 
2443 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2444 		/* Some buggy (usb cardreader) devices return an lba of
2445 		   0xffffffff when the want to report a size of 0 (with
2446 		   which they really mean no media is present) */
2447 		sdkp->capacity = 0;
2448 		sdkp->physical_block_size = sector_size;
2449 		return sector_size;
2450 	}
2451 
2452 	sdkp->capacity = lba + 1;
2453 	sdkp->physical_block_size = sector_size;
2454 	return sector_size;
2455 }
2456 
2457 static int sd_try_rc16_first(struct scsi_device *sdp)
2458 {
2459 	if (sdp->host->max_cmd_len < 16)
2460 		return 0;
2461 	if (sdp->try_rc_10_first)
2462 		return 0;
2463 	if (sdp->scsi_level > SCSI_SPC_2)
2464 		return 1;
2465 	if (scsi_device_protection(sdp))
2466 		return 1;
2467 	return 0;
2468 }
2469 
2470 /*
2471  * read disk capacity
2472  */
2473 static void
2474 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2475 {
2476 	int sector_size;
2477 	struct scsi_device *sdp = sdkp->device;
2478 
2479 	if (sd_try_rc16_first(sdp)) {
2480 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2481 		if (sector_size == -EOVERFLOW)
2482 			goto got_data;
2483 		if (sector_size == -ENODEV)
2484 			return;
2485 		if (sector_size < 0)
2486 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2487 		if (sector_size < 0)
2488 			return;
2489 	} else {
2490 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2491 		if (sector_size == -EOVERFLOW)
2492 			goto got_data;
2493 		if (sector_size < 0)
2494 			return;
2495 		if ((sizeof(sdkp->capacity) > 4) &&
2496 		    (sdkp->capacity > 0xffffffffULL)) {
2497 			int old_sector_size = sector_size;
2498 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2499 					"Trying to use READ CAPACITY(16).\n");
2500 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2501 			if (sector_size < 0) {
2502 				sd_printk(KERN_NOTICE, sdkp,
2503 					"Using 0xffffffff as device size\n");
2504 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2505 				sector_size = old_sector_size;
2506 				goto got_data;
2507 			}
2508 			/* Remember that READ CAPACITY(16) succeeded */
2509 			sdp->try_rc_10_first = 0;
2510 		}
2511 	}
2512 
2513 	/* Some devices are known to return the total number of blocks,
2514 	 * not the highest block number.  Some devices have versions
2515 	 * which do this and others which do not.  Some devices we might
2516 	 * suspect of doing this but we don't know for certain.
2517 	 *
2518 	 * If we know the reported capacity is wrong, decrement it.  If
2519 	 * we can only guess, then assume the number of blocks is even
2520 	 * (usually true but not always) and err on the side of lowering
2521 	 * the capacity.
2522 	 */
2523 	if (sdp->fix_capacity ||
2524 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2525 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2526 				"from its reported value: %llu\n",
2527 				(unsigned long long) sdkp->capacity);
2528 		--sdkp->capacity;
2529 	}
2530 
2531 got_data:
2532 	if (sector_size == 0) {
2533 		sector_size = 512;
2534 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2535 			  "assuming 512.\n");
2536 	}
2537 
2538 	if (sector_size != 512 &&
2539 	    sector_size != 1024 &&
2540 	    sector_size != 2048 &&
2541 	    sector_size != 4096) {
2542 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2543 			  sector_size);
2544 		/*
2545 		 * The user might want to re-format the drive with
2546 		 * a supported sectorsize.  Once this happens, it
2547 		 * would be relatively trivial to set the thing up.
2548 		 * For this reason, we leave the thing in the table.
2549 		 */
2550 		sdkp->capacity = 0;
2551 		/*
2552 		 * set a bogus sector size so the normal read/write
2553 		 * logic in the block layer will eventually refuse any
2554 		 * request on this device without tripping over power
2555 		 * of two sector size assumptions
2556 		 */
2557 		sector_size = 512;
2558 	}
2559 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2560 	blk_queue_physical_block_size(sdp->request_queue,
2561 				      sdkp->physical_block_size);
2562 	sdkp->device->sector_size = sector_size;
2563 
2564 	if (sdkp->capacity > 0xffffffff)
2565 		sdp->use_16_for_rw = 1;
2566 
2567 }
2568 
2569 /*
2570  * Print disk capacity
2571  */
2572 static void
2573 sd_print_capacity(struct scsi_disk *sdkp,
2574 		  sector_t old_capacity)
2575 {
2576 	int sector_size = sdkp->device->sector_size;
2577 	char cap_str_2[10], cap_str_10[10];
2578 
2579 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2580 		return;
2581 
2582 	string_get_size(sdkp->capacity, sector_size,
2583 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2584 	string_get_size(sdkp->capacity, sector_size,
2585 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2586 
2587 	sd_printk(KERN_NOTICE, sdkp,
2588 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2589 		  (unsigned long long)sdkp->capacity,
2590 		  sector_size, cap_str_10, cap_str_2);
2591 
2592 	if (sdkp->physical_block_size != sector_size)
2593 		sd_printk(KERN_NOTICE, sdkp,
2594 			  "%u-byte physical blocks\n",
2595 			  sdkp->physical_block_size);
2596 }
2597 
2598 /* called with buffer of length 512 */
2599 static inline int
2600 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2601 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2602 		 struct scsi_sense_hdr *sshdr)
2603 {
2604 	return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2605 			       SD_TIMEOUT, sdkp->max_retries, data,
2606 			       sshdr);
2607 }
2608 
2609 /*
2610  * read write protect setting, if possible - called only in sd_revalidate_disk()
2611  * called with buffer of length SD_BUF_SIZE
2612  */
2613 static void
2614 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2615 {
2616 	int res;
2617 	struct scsi_device *sdp = sdkp->device;
2618 	struct scsi_mode_data data;
2619 	int old_wp = sdkp->write_prot;
2620 
2621 	set_disk_ro(sdkp->disk, 0);
2622 	if (sdp->skip_ms_page_3f) {
2623 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2624 		return;
2625 	}
2626 
2627 	if (sdp->use_192_bytes_for_3f) {
2628 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2629 	} else {
2630 		/*
2631 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2632 		 * We have to start carefully: some devices hang if we ask
2633 		 * for more than is available.
2634 		 */
2635 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2636 
2637 		/*
2638 		 * Second attempt: ask for page 0 When only page 0 is
2639 		 * implemented, a request for page 3F may return Sense Key
2640 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2641 		 * CDB.
2642 		 */
2643 		if (res < 0)
2644 			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2645 
2646 		/*
2647 		 * Third attempt: ask 255 bytes, as we did earlier.
2648 		 */
2649 		if (res < 0)
2650 			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2651 					       &data, NULL);
2652 	}
2653 
2654 	if (res < 0) {
2655 		sd_first_printk(KERN_WARNING, sdkp,
2656 			  "Test WP failed, assume Write Enabled\n");
2657 	} else {
2658 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2659 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2660 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2661 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2662 				  sdkp->write_prot ? "on" : "off");
2663 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2664 		}
2665 	}
2666 }
2667 
2668 /*
2669  * sd_read_cache_type - called only from sd_revalidate_disk()
2670  * called with buffer of length SD_BUF_SIZE
2671  */
2672 static void
2673 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2674 {
2675 	int len = 0, res;
2676 	struct scsi_device *sdp = sdkp->device;
2677 
2678 	int dbd;
2679 	int modepage;
2680 	int first_len;
2681 	struct scsi_mode_data data;
2682 	struct scsi_sense_hdr sshdr;
2683 	int old_wce = sdkp->WCE;
2684 	int old_rcd = sdkp->RCD;
2685 	int old_dpofua = sdkp->DPOFUA;
2686 
2687 
2688 	if (sdkp->cache_override)
2689 		return;
2690 
2691 	first_len = 4;
2692 	if (sdp->skip_ms_page_8) {
2693 		if (sdp->type == TYPE_RBC)
2694 			goto defaults;
2695 		else {
2696 			if (sdp->skip_ms_page_3f)
2697 				goto defaults;
2698 			modepage = 0x3F;
2699 			if (sdp->use_192_bytes_for_3f)
2700 				first_len = 192;
2701 			dbd = 0;
2702 		}
2703 	} else if (sdp->type == TYPE_RBC) {
2704 		modepage = 6;
2705 		dbd = 8;
2706 	} else {
2707 		modepage = 8;
2708 		dbd = 0;
2709 	}
2710 
2711 	/* cautiously ask */
2712 	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2713 			&data, &sshdr);
2714 
2715 	if (res < 0)
2716 		goto bad_sense;
2717 
2718 	if (!data.header_length) {
2719 		modepage = 6;
2720 		first_len = 0;
2721 		sd_first_printk(KERN_ERR, sdkp,
2722 				"Missing header in MODE_SENSE response\n");
2723 	}
2724 
2725 	/* that went OK, now ask for the proper length */
2726 	len = data.length;
2727 
2728 	/*
2729 	 * We're only interested in the first three bytes, actually.
2730 	 * But the data cache page is defined for the first 20.
2731 	 */
2732 	if (len < 3)
2733 		goto bad_sense;
2734 	else if (len > SD_BUF_SIZE) {
2735 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2736 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2737 		len = SD_BUF_SIZE;
2738 	}
2739 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2740 		len = 192;
2741 
2742 	/* Get the data */
2743 	if (len > first_len)
2744 		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2745 				&data, &sshdr);
2746 
2747 	if (!res) {
2748 		int offset = data.header_length + data.block_descriptor_length;
2749 
2750 		while (offset < len) {
2751 			u8 page_code = buffer[offset] & 0x3F;
2752 			u8 spf       = buffer[offset] & 0x40;
2753 
2754 			if (page_code == 8 || page_code == 6) {
2755 				/* We're interested only in the first 3 bytes.
2756 				 */
2757 				if (len - offset <= 2) {
2758 					sd_first_printk(KERN_ERR, sdkp,
2759 						"Incomplete mode parameter "
2760 							"data\n");
2761 					goto defaults;
2762 				} else {
2763 					modepage = page_code;
2764 					goto Page_found;
2765 				}
2766 			} else {
2767 				/* Go to the next page */
2768 				if (spf && len - offset > 3)
2769 					offset += 4 + (buffer[offset+2] << 8) +
2770 						buffer[offset+3];
2771 				else if (!spf && len - offset > 1)
2772 					offset += 2 + buffer[offset+1];
2773 				else {
2774 					sd_first_printk(KERN_ERR, sdkp,
2775 							"Incomplete mode "
2776 							"parameter data\n");
2777 					goto defaults;
2778 				}
2779 			}
2780 		}
2781 
2782 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2783 		goto defaults;
2784 
2785 	Page_found:
2786 		if (modepage == 8) {
2787 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2788 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2789 		} else {
2790 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2791 			sdkp->RCD = 0;
2792 		}
2793 
2794 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2795 		if (sdp->broken_fua) {
2796 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2797 			sdkp->DPOFUA = 0;
2798 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2799 			   !sdkp->device->use_16_for_rw) {
2800 			sd_first_printk(KERN_NOTICE, sdkp,
2801 				  "Uses READ/WRITE(6), disabling FUA\n");
2802 			sdkp->DPOFUA = 0;
2803 		}
2804 
2805 		/* No cache flush allowed for write protected devices */
2806 		if (sdkp->WCE && sdkp->write_prot)
2807 			sdkp->WCE = 0;
2808 
2809 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2810 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2811 			sd_printk(KERN_NOTICE, sdkp,
2812 				  "Write cache: %s, read cache: %s, %s\n",
2813 				  sdkp->WCE ? "enabled" : "disabled",
2814 				  sdkp->RCD ? "disabled" : "enabled",
2815 				  sdkp->DPOFUA ? "supports DPO and FUA"
2816 				  : "doesn't support DPO or FUA");
2817 
2818 		return;
2819 	}
2820 
2821 bad_sense:
2822 	if (scsi_sense_valid(&sshdr) &&
2823 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2824 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2825 		/* Invalid field in CDB */
2826 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2827 	else
2828 		sd_first_printk(KERN_ERR, sdkp,
2829 				"Asking for cache data failed\n");
2830 
2831 defaults:
2832 	if (sdp->wce_default_on) {
2833 		sd_first_printk(KERN_NOTICE, sdkp,
2834 				"Assuming drive cache: write back\n");
2835 		sdkp->WCE = 1;
2836 	} else {
2837 		sd_first_printk(KERN_ERR, sdkp,
2838 				"Assuming drive cache: write through\n");
2839 		sdkp->WCE = 0;
2840 	}
2841 	sdkp->RCD = 0;
2842 	sdkp->DPOFUA = 0;
2843 }
2844 
2845 /*
2846  * The ATO bit indicates whether the DIF application tag is available
2847  * for use by the operating system.
2848  */
2849 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2850 {
2851 	int res, offset;
2852 	struct scsi_device *sdp = sdkp->device;
2853 	struct scsi_mode_data data;
2854 	struct scsi_sense_hdr sshdr;
2855 
2856 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2857 		return;
2858 
2859 	if (sdkp->protection_type == 0)
2860 		return;
2861 
2862 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2863 			      sdkp->max_retries, &data, &sshdr);
2864 
2865 	if (res < 0 || !data.header_length ||
2866 	    data.length < 6) {
2867 		sd_first_printk(KERN_WARNING, sdkp,
2868 			  "getting Control mode page failed, assume no ATO\n");
2869 
2870 		if (scsi_sense_valid(&sshdr))
2871 			sd_print_sense_hdr(sdkp, &sshdr);
2872 
2873 		return;
2874 	}
2875 
2876 	offset = data.header_length + data.block_descriptor_length;
2877 
2878 	if ((buffer[offset] & 0x3f) != 0x0a) {
2879 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2880 		return;
2881 	}
2882 
2883 	if ((buffer[offset + 5] & 0x80) == 0)
2884 		return;
2885 
2886 	sdkp->ATO = 1;
2887 
2888 	return;
2889 }
2890 
2891 /**
2892  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2893  * @sdkp: disk to query
2894  */
2895 static void sd_read_block_limits(struct scsi_disk *sdkp)
2896 {
2897 	unsigned int sector_sz = sdkp->device->sector_size;
2898 	const int vpd_len = 64;
2899 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2900 
2901 	if (!buffer ||
2902 	    /* Block Limits VPD */
2903 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2904 		goto out;
2905 
2906 	blk_queue_io_min(sdkp->disk->queue,
2907 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2908 
2909 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2910 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2911 
2912 	if (buffer[3] == 0x3c) {
2913 		unsigned int lba_count, desc_count;
2914 
2915 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2916 
2917 		if (!sdkp->lbpme)
2918 			goto out;
2919 
2920 		lba_count = get_unaligned_be32(&buffer[20]);
2921 		desc_count = get_unaligned_be32(&buffer[24]);
2922 
2923 		if (lba_count && desc_count)
2924 			sdkp->max_unmap_blocks = lba_count;
2925 
2926 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2927 
2928 		if (buffer[32] & 0x80)
2929 			sdkp->unmap_alignment =
2930 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2931 
2932 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2933 
2934 			if (sdkp->max_unmap_blocks)
2935 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2936 			else
2937 				sd_config_discard(sdkp, SD_LBP_WS16);
2938 
2939 		} else {	/* LBP VPD page tells us what to use */
2940 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2941 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2942 			else if (sdkp->lbpws)
2943 				sd_config_discard(sdkp, SD_LBP_WS16);
2944 			else if (sdkp->lbpws10)
2945 				sd_config_discard(sdkp, SD_LBP_WS10);
2946 			else
2947 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2948 		}
2949 	}
2950 
2951  out:
2952 	kfree(buffer);
2953 }
2954 
2955 /**
2956  * sd_read_block_characteristics - Query block dev. characteristics
2957  * @sdkp: disk to query
2958  */
2959 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2960 {
2961 	struct request_queue *q = sdkp->disk->queue;
2962 	unsigned char *buffer;
2963 	u16 rot;
2964 	const int vpd_len = 64;
2965 
2966 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2967 
2968 	if (!buffer ||
2969 	    /* Block Device Characteristics VPD */
2970 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2971 		goto out;
2972 
2973 	rot = get_unaligned_be16(&buffer[4]);
2974 
2975 	if (rot == 1) {
2976 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2977 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2978 	}
2979 
2980 	if (sdkp->device->type == TYPE_ZBC) {
2981 		/* Host-managed */
2982 		blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM);
2983 	} else {
2984 		sdkp->zoned = (buffer[8] >> 4) & 3;
2985 		if (sdkp->zoned == 1) {
2986 			/* Host-aware */
2987 			blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA);
2988 		} else {
2989 			/* Regular disk or drive managed disk */
2990 			blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE);
2991 		}
2992 	}
2993 
2994 	if (!sdkp->first_scan)
2995 		goto out;
2996 
2997 	if (blk_queue_is_zoned(q)) {
2998 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2999 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3000 	} else {
3001 		if (sdkp->zoned == 1)
3002 			sd_printk(KERN_NOTICE, sdkp,
3003 				  "Host-aware SMR disk used as regular disk\n");
3004 		else if (sdkp->zoned == 2)
3005 			sd_printk(KERN_NOTICE, sdkp,
3006 				  "Drive-managed SMR disk\n");
3007 	}
3008 
3009  out:
3010 	kfree(buffer);
3011 }
3012 
3013 /**
3014  * sd_read_block_provisioning - Query provisioning VPD page
3015  * @sdkp: disk to query
3016  */
3017 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3018 {
3019 	unsigned char *buffer;
3020 	const int vpd_len = 8;
3021 
3022 	if (sdkp->lbpme == 0)
3023 		return;
3024 
3025 	buffer = kmalloc(vpd_len, GFP_KERNEL);
3026 
3027 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3028 		goto out;
3029 
3030 	sdkp->lbpvpd	= 1;
3031 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
3032 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
3033 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
3034 
3035  out:
3036 	kfree(buffer);
3037 }
3038 
3039 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3040 {
3041 	struct scsi_device *sdev = sdkp->device;
3042 
3043 	if (sdev->host->no_write_same) {
3044 		sdev->no_write_same = 1;
3045 
3046 		return;
3047 	}
3048 
3049 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3050 		/* too large values might cause issues with arcmsr */
3051 		int vpd_buf_len = 64;
3052 
3053 		sdev->no_report_opcodes = 1;
3054 
3055 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3056 		 * CODES is unsupported and the device has an ATA
3057 		 * Information VPD page (SAT).
3058 		 */
3059 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3060 			sdev->no_write_same = 1;
3061 	}
3062 
3063 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3064 		sdkp->ws16 = 1;
3065 
3066 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3067 		sdkp->ws10 = 1;
3068 }
3069 
3070 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3071 {
3072 	struct scsi_device *sdev = sdkp->device;
3073 
3074 	if (!sdev->security_supported)
3075 		return;
3076 
3077 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3078 			SECURITY_PROTOCOL_IN) == 1 &&
3079 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3080 			SECURITY_PROTOCOL_OUT) == 1)
3081 		sdkp->security = 1;
3082 }
3083 
3084 /*
3085  * Determine the device's preferred I/O size for reads and writes
3086  * unless the reported value is unreasonably small, large, not a
3087  * multiple of the physical block size, or simply garbage.
3088  */
3089 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3090 				      unsigned int dev_max)
3091 {
3092 	struct scsi_device *sdp = sdkp->device;
3093 	unsigned int opt_xfer_bytes =
3094 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3095 
3096 	if (sdkp->opt_xfer_blocks == 0)
3097 		return false;
3098 
3099 	if (sdkp->opt_xfer_blocks > dev_max) {
3100 		sd_first_printk(KERN_WARNING, sdkp,
3101 				"Optimal transfer size %u logical blocks " \
3102 				"> dev_max (%u logical blocks)\n",
3103 				sdkp->opt_xfer_blocks, dev_max);
3104 		return false;
3105 	}
3106 
3107 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3108 		sd_first_printk(KERN_WARNING, sdkp,
3109 				"Optimal transfer size %u logical blocks " \
3110 				"> sd driver limit (%u logical blocks)\n",
3111 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3112 		return false;
3113 	}
3114 
3115 	if (opt_xfer_bytes < PAGE_SIZE) {
3116 		sd_first_printk(KERN_WARNING, sdkp,
3117 				"Optimal transfer size %u bytes < " \
3118 				"PAGE_SIZE (%u bytes)\n",
3119 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3120 		return false;
3121 	}
3122 
3123 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3124 		sd_first_printk(KERN_WARNING, sdkp,
3125 				"Optimal transfer size %u bytes not a " \
3126 				"multiple of physical block size (%u bytes)\n",
3127 				opt_xfer_bytes, sdkp->physical_block_size);
3128 		return false;
3129 	}
3130 
3131 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3132 			opt_xfer_bytes);
3133 	return true;
3134 }
3135 
3136 /**
3137  *	sd_revalidate_disk - called the first time a new disk is seen,
3138  *	performs disk spin up, read_capacity, etc.
3139  *	@disk: struct gendisk we care about
3140  **/
3141 static int sd_revalidate_disk(struct gendisk *disk)
3142 {
3143 	struct scsi_disk *sdkp = scsi_disk(disk);
3144 	struct scsi_device *sdp = sdkp->device;
3145 	struct request_queue *q = sdkp->disk->queue;
3146 	sector_t old_capacity = sdkp->capacity;
3147 	unsigned char *buffer;
3148 	unsigned int dev_max, rw_max;
3149 
3150 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3151 				      "sd_revalidate_disk\n"));
3152 
3153 	/*
3154 	 * If the device is offline, don't try and read capacity or any
3155 	 * of the other niceties.
3156 	 */
3157 	if (!scsi_device_online(sdp))
3158 		goto out;
3159 
3160 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3161 	if (!buffer) {
3162 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3163 			  "allocation failure.\n");
3164 		goto out;
3165 	}
3166 
3167 	sd_spinup_disk(sdkp);
3168 
3169 	/*
3170 	 * Without media there is no reason to ask; moreover, some devices
3171 	 * react badly if we do.
3172 	 */
3173 	if (sdkp->media_present) {
3174 		sd_read_capacity(sdkp, buffer);
3175 
3176 		/*
3177 		 * set the default to rotational.  All non-rotational devices
3178 		 * support the block characteristics VPD page, which will
3179 		 * cause this to be updated correctly and any device which
3180 		 * doesn't support it should be treated as rotational.
3181 		 */
3182 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3183 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3184 
3185 		if (scsi_device_supports_vpd(sdp)) {
3186 			sd_read_block_provisioning(sdkp);
3187 			sd_read_block_limits(sdkp);
3188 			sd_read_block_characteristics(sdkp);
3189 			sd_zbc_read_zones(sdkp, buffer);
3190 		}
3191 
3192 		sd_print_capacity(sdkp, old_capacity);
3193 
3194 		sd_read_write_protect_flag(sdkp, buffer);
3195 		sd_read_cache_type(sdkp, buffer);
3196 		sd_read_app_tag_own(sdkp, buffer);
3197 		sd_read_write_same(sdkp, buffer);
3198 		sd_read_security(sdkp, buffer);
3199 	}
3200 
3201 	/*
3202 	 * We now have all cache related info, determine how we deal
3203 	 * with flush requests.
3204 	 */
3205 	sd_set_flush_flag(sdkp);
3206 
3207 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3208 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3209 
3210 	/* Some devices report a maximum block count for READ/WRITE requests. */
3211 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3212 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3213 
3214 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3215 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3216 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3217 	} else {
3218 		q->limits.io_opt = 0;
3219 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3220 				      (sector_t)BLK_DEF_MAX_SECTORS);
3221 	}
3222 
3223 	/* Do not exceed controller limit */
3224 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3225 
3226 	/*
3227 	 * Only update max_sectors if previously unset or if the current value
3228 	 * exceeds the capabilities of the hardware.
3229 	 */
3230 	if (sdkp->first_scan ||
3231 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3232 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3233 		q->limits.max_sectors = rw_max;
3234 
3235 	sdkp->first_scan = 0;
3236 
3237 	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3238 	sd_config_write_same(sdkp);
3239 	kfree(buffer);
3240 
3241 	/*
3242 	 * For a zoned drive, revalidating the zones can be done only once
3243 	 * the gendisk capacity is set. So if this fails, set back the gendisk
3244 	 * capacity to 0.
3245 	 */
3246 	if (sd_zbc_revalidate_zones(sdkp))
3247 		set_capacity_and_notify(disk, 0);
3248 
3249  out:
3250 	return 0;
3251 }
3252 
3253 /**
3254  *	sd_unlock_native_capacity - unlock native capacity
3255  *	@disk: struct gendisk to set capacity for
3256  *
3257  *	Block layer calls this function if it detects that partitions
3258  *	on @disk reach beyond the end of the device.  If the SCSI host
3259  *	implements ->unlock_native_capacity() method, it's invoked to
3260  *	give it a chance to adjust the device capacity.
3261  *
3262  *	CONTEXT:
3263  *	Defined by block layer.  Might sleep.
3264  */
3265 static void sd_unlock_native_capacity(struct gendisk *disk)
3266 {
3267 	struct scsi_device *sdev = scsi_disk(disk)->device;
3268 
3269 	if (sdev->host->hostt->unlock_native_capacity)
3270 		sdev->host->hostt->unlock_native_capacity(sdev);
3271 }
3272 
3273 /**
3274  *	sd_format_disk_name - format disk name
3275  *	@prefix: name prefix - ie. "sd" for SCSI disks
3276  *	@index: index of the disk to format name for
3277  *	@buf: output buffer
3278  *	@buflen: length of the output buffer
3279  *
3280  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3281  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3282  *	which is followed by sdaaa.
3283  *
3284  *	This is basically 26 base counting with one extra 'nil' entry
3285  *	at the beginning from the second digit on and can be
3286  *	determined using similar method as 26 base conversion with the
3287  *	index shifted -1 after each digit is computed.
3288  *
3289  *	CONTEXT:
3290  *	Don't care.
3291  *
3292  *	RETURNS:
3293  *	0 on success, -errno on failure.
3294  */
3295 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3296 {
3297 	const int base = 'z' - 'a' + 1;
3298 	char *begin = buf + strlen(prefix);
3299 	char *end = buf + buflen;
3300 	char *p;
3301 	int unit;
3302 
3303 	p = end - 1;
3304 	*p = '\0';
3305 	unit = base;
3306 	do {
3307 		if (p == begin)
3308 			return -EINVAL;
3309 		*--p = 'a' + (index % unit);
3310 		index = (index / unit) - 1;
3311 	} while (index >= 0);
3312 
3313 	memmove(begin, p, end - p);
3314 	memcpy(buf, prefix, strlen(prefix));
3315 
3316 	return 0;
3317 }
3318 
3319 /**
3320  *	sd_probe - called during driver initialization and whenever a
3321  *	new scsi device is attached to the system. It is called once
3322  *	for each scsi device (not just disks) present.
3323  *	@dev: pointer to device object
3324  *
3325  *	Returns 0 if successful (or not interested in this scsi device
3326  *	(e.g. scanner)); 1 when there is an error.
3327  *
3328  *	Note: this function is invoked from the scsi mid-level.
3329  *	This function sets up the mapping between a given
3330  *	<host,channel,id,lun> (found in sdp) and new device name
3331  *	(e.g. /dev/sda). More precisely it is the block device major
3332  *	and minor number that is chosen here.
3333  *
3334  *	Assume sd_probe is not re-entrant (for time being)
3335  *	Also think about sd_probe() and sd_remove() running coincidentally.
3336  **/
3337 static int sd_probe(struct device *dev)
3338 {
3339 	struct scsi_device *sdp = to_scsi_device(dev);
3340 	struct scsi_disk *sdkp;
3341 	struct gendisk *gd;
3342 	int index;
3343 	int error;
3344 
3345 	scsi_autopm_get_device(sdp);
3346 	error = -ENODEV;
3347 	if (sdp->type != TYPE_DISK &&
3348 	    sdp->type != TYPE_ZBC &&
3349 	    sdp->type != TYPE_MOD &&
3350 	    sdp->type != TYPE_RBC)
3351 		goto out;
3352 
3353 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3354 		sdev_printk(KERN_WARNING, sdp,
3355 			    "Unsupported ZBC host-managed device.\n");
3356 		goto out;
3357 	}
3358 
3359 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3360 					"sd_probe\n"));
3361 
3362 	error = -ENOMEM;
3363 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3364 	if (!sdkp)
3365 		goto out;
3366 
3367 	gd = alloc_disk(SD_MINORS);
3368 	if (!gd)
3369 		goto out_free;
3370 
3371 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3372 	if (index < 0) {
3373 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3374 		goto out_put;
3375 	}
3376 
3377 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3378 	if (error) {
3379 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3380 		goto out_free_index;
3381 	}
3382 
3383 	sdkp->device = sdp;
3384 	sdkp->driver = &sd_template;
3385 	sdkp->disk = gd;
3386 	sdkp->index = index;
3387 	sdkp->max_retries = SD_MAX_RETRIES;
3388 	atomic_set(&sdkp->openers, 0);
3389 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3390 
3391 	if (!sdp->request_queue->rq_timeout) {
3392 		if (sdp->type != TYPE_MOD)
3393 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3394 		else
3395 			blk_queue_rq_timeout(sdp->request_queue,
3396 					     SD_MOD_TIMEOUT);
3397 	}
3398 
3399 	device_initialize(&sdkp->dev);
3400 	sdkp->dev.parent = dev;
3401 	sdkp->dev.class = &sd_disk_class;
3402 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3403 
3404 	error = device_add(&sdkp->dev);
3405 	if (error)
3406 		goto out_free_index;
3407 
3408 	get_device(dev);
3409 	dev_set_drvdata(dev, sdkp);
3410 
3411 	gd->major = sd_major((index & 0xf0) >> 4);
3412 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3413 
3414 	gd->fops = &sd_fops;
3415 	gd->private_data = &sdkp->driver;
3416 	gd->queue = sdkp->device->request_queue;
3417 
3418 	/* defaults, until the device tells us otherwise */
3419 	sdp->sector_size = 512;
3420 	sdkp->capacity = 0;
3421 	sdkp->media_present = 1;
3422 	sdkp->write_prot = 0;
3423 	sdkp->cache_override = 0;
3424 	sdkp->WCE = 0;
3425 	sdkp->RCD = 0;
3426 	sdkp->ATO = 0;
3427 	sdkp->first_scan = 1;
3428 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3429 
3430 	sd_revalidate_disk(gd);
3431 
3432 	gd->flags = GENHD_FL_EXT_DEVT;
3433 	if (sdp->removable) {
3434 		gd->flags |= GENHD_FL_REMOVABLE;
3435 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3436 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3437 	}
3438 
3439 	blk_pm_runtime_init(sdp->request_queue, dev);
3440 	if (sdp->rpm_autosuspend) {
3441 		pm_runtime_set_autosuspend_delay(dev,
3442 			sdp->host->hostt->rpm_autosuspend_delay);
3443 	}
3444 	device_add_disk(dev, gd, NULL);
3445 	if (sdkp->capacity)
3446 		sd_dif_config_host(sdkp);
3447 
3448 	sd_revalidate_disk(gd);
3449 
3450 	if (sdkp->security) {
3451 		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3452 		if (sdkp->opal_dev)
3453 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3454 	}
3455 
3456 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3457 		  sdp->removable ? "removable " : "");
3458 	scsi_autopm_put_device(sdp);
3459 
3460 	return 0;
3461 
3462  out_free_index:
3463 	ida_free(&sd_index_ida, index);
3464  out_put:
3465 	put_disk(gd);
3466  out_free:
3467 	sd_zbc_release_disk(sdkp);
3468 	kfree(sdkp);
3469  out:
3470 	scsi_autopm_put_device(sdp);
3471 	return error;
3472 }
3473 
3474 /**
3475  *	sd_remove - called whenever a scsi disk (previously recognized by
3476  *	sd_probe) is detached from the system. It is called (potentially
3477  *	multiple times) during sd module unload.
3478  *	@dev: pointer to device object
3479  *
3480  *	Note: this function is invoked from the scsi mid-level.
3481  *	This function potentially frees up a device name (e.g. /dev/sdc)
3482  *	that could be re-used by a subsequent sd_probe().
3483  *	This function is not called when the built-in sd driver is "exit-ed".
3484  **/
3485 static int sd_remove(struct device *dev)
3486 {
3487 	struct scsi_disk *sdkp;
3488 
3489 	sdkp = dev_get_drvdata(dev);
3490 	scsi_autopm_get_device(sdkp->device);
3491 
3492 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3493 	device_del(&sdkp->dev);
3494 	del_gendisk(sdkp->disk);
3495 	sd_shutdown(dev);
3496 
3497 	free_opal_dev(sdkp->opal_dev);
3498 
3499 	mutex_lock(&sd_ref_mutex);
3500 	dev_set_drvdata(dev, NULL);
3501 	put_device(&sdkp->dev);
3502 	mutex_unlock(&sd_ref_mutex);
3503 
3504 	return 0;
3505 }
3506 
3507 /**
3508  *	scsi_disk_release - Called to free the scsi_disk structure
3509  *	@dev: pointer to embedded class device
3510  *
3511  *	sd_ref_mutex must be held entering this routine.  Because it is
3512  *	called on last put, you should always use the scsi_disk_get()
3513  *	scsi_disk_put() helpers which manipulate the semaphore directly
3514  *	and never do a direct put_device.
3515  **/
3516 static void scsi_disk_release(struct device *dev)
3517 {
3518 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3519 	struct gendisk *disk = sdkp->disk;
3520 	struct request_queue *q = disk->queue;
3521 
3522 	ida_free(&sd_index_ida, sdkp->index);
3523 
3524 	/*
3525 	 * Wait until all requests that are in progress have completed.
3526 	 * This is necessary to avoid that e.g. scsi_end_request() crashes
3527 	 * due to clearing the disk->private_data pointer. Wait from inside
3528 	 * scsi_disk_release() instead of from sd_release() to avoid that
3529 	 * freezing and unfreezing the request queue affects user space I/O
3530 	 * in case multiple processes open a /dev/sd... node concurrently.
3531 	 */
3532 	blk_mq_freeze_queue(q);
3533 	blk_mq_unfreeze_queue(q);
3534 
3535 	disk->private_data = NULL;
3536 	put_disk(disk);
3537 	put_device(&sdkp->device->sdev_gendev);
3538 
3539 	sd_zbc_release_disk(sdkp);
3540 
3541 	kfree(sdkp);
3542 }
3543 
3544 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3545 {
3546 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3547 	struct scsi_sense_hdr sshdr;
3548 	struct scsi_device *sdp = sdkp->device;
3549 	int res;
3550 
3551 	if (start)
3552 		cmd[4] |= 1;	/* START */
3553 
3554 	if (sdp->start_stop_pwr_cond)
3555 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3556 
3557 	if (!scsi_device_online(sdp))
3558 		return -ENODEV;
3559 
3560 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3561 			SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3562 	if (res) {
3563 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3564 		if (res > 0 && scsi_sense_valid(&sshdr)) {
3565 			sd_print_sense_hdr(sdkp, &sshdr);
3566 			/* 0x3a is medium not present */
3567 			if (sshdr.asc == 0x3a)
3568 				res = 0;
3569 		}
3570 	}
3571 
3572 	/* SCSI error codes must not go to the generic layer */
3573 	if (res)
3574 		return -EIO;
3575 
3576 	return 0;
3577 }
3578 
3579 /*
3580  * Send a SYNCHRONIZE CACHE instruction down to the device through
3581  * the normal SCSI command structure.  Wait for the command to
3582  * complete.
3583  */
3584 static void sd_shutdown(struct device *dev)
3585 {
3586 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3587 
3588 	if (!sdkp)
3589 		return;         /* this can happen */
3590 
3591 	if (pm_runtime_suspended(dev))
3592 		return;
3593 
3594 	if (sdkp->WCE && sdkp->media_present) {
3595 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3596 		sd_sync_cache(sdkp, NULL);
3597 	}
3598 
3599 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3600 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3601 		sd_start_stop_device(sdkp, 0);
3602 	}
3603 }
3604 
3605 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3606 {
3607 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3608 	struct scsi_sense_hdr sshdr;
3609 	int ret = 0;
3610 
3611 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3612 		return 0;
3613 
3614 	if (sdkp->WCE && sdkp->media_present) {
3615 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3616 		ret = sd_sync_cache(sdkp, &sshdr);
3617 
3618 		if (ret) {
3619 			/* ignore OFFLINE device */
3620 			if (ret == -ENODEV)
3621 				return 0;
3622 
3623 			if (!scsi_sense_valid(&sshdr) ||
3624 			    sshdr.sense_key != ILLEGAL_REQUEST)
3625 				return ret;
3626 
3627 			/*
3628 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3629 			 * doesn't support sync. There's not much to do and
3630 			 * suspend shouldn't fail.
3631 			 */
3632 			ret = 0;
3633 		}
3634 	}
3635 
3636 	if (sdkp->device->manage_start_stop) {
3637 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3638 		/* an error is not worth aborting a system sleep */
3639 		ret = sd_start_stop_device(sdkp, 0);
3640 		if (ignore_stop_errors)
3641 			ret = 0;
3642 	}
3643 
3644 	return ret;
3645 }
3646 
3647 static int sd_suspend_system(struct device *dev)
3648 {
3649 	return sd_suspend_common(dev, true);
3650 }
3651 
3652 static int sd_suspend_runtime(struct device *dev)
3653 {
3654 	return sd_suspend_common(dev, false);
3655 }
3656 
3657 static int sd_resume(struct device *dev)
3658 {
3659 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3660 	int ret;
3661 
3662 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3663 		return 0;
3664 
3665 	if (!sdkp->device->manage_start_stop)
3666 		return 0;
3667 
3668 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3669 	ret = sd_start_stop_device(sdkp, 1);
3670 	if (!ret)
3671 		opal_unlock_from_suspend(sdkp->opal_dev);
3672 	return ret;
3673 }
3674 
3675 static int sd_resume_runtime(struct device *dev)
3676 {
3677 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3678 	struct scsi_device *sdp = sdkp->device;
3679 
3680 	if (sdp->ignore_media_change) {
3681 		/* clear the device's sense data */
3682 		static const u8 cmd[10] = { REQUEST_SENSE };
3683 
3684 		if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL,
3685 				 NULL, sdp->request_queue->rq_timeout, 1, 0,
3686 				 RQF_PM, NULL))
3687 			sd_printk(KERN_NOTICE, sdkp,
3688 				  "Failed to clear sense data\n");
3689 	}
3690 
3691 	return sd_resume(dev);
3692 }
3693 
3694 /**
3695  *	init_sd - entry point for this driver (both when built in or when
3696  *	a module).
3697  *
3698  *	Note: this function registers this driver with the scsi mid-level.
3699  **/
3700 static int __init init_sd(void)
3701 {
3702 	int majors = 0, i, err;
3703 
3704 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3705 
3706 	for (i = 0; i < SD_MAJORS; i++) {
3707 		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3708 			continue;
3709 		majors++;
3710 	}
3711 
3712 	if (!majors)
3713 		return -ENODEV;
3714 
3715 	err = class_register(&sd_disk_class);
3716 	if (err)
3717 		goto err_out;
3718 
3719 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3720 					 0, 0, NULL);
3721 	if (!sd_cdb_cache) {
3722 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3723 		err = -ENOMEM;
3724 		goto err_out_class;
3725 	}
3726 
3727 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3728 	if (!sd_cdb_pool) {
3729 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3730 		err = -ENOMEM;
3731 		goto err_out_cache;
3732 	}
3733 
3734 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3735 	if (!sd_page_pool) {
3736 		printk(KERN_ERR "sd: can't init discard page pool\n");
3737 		err = -ENOMEM;
3738 		goto err_out_ppool;
3739 	}
3740 
3741 	err = scsi_register_driver(&sd_template.gendrv);
3742 	if (err)
3743 		goto err_out_driver;
3744 
3745 	return 0;
3746 
3747 err_out_driver:
3748 	mempool_destroy(sd_page_pool);
3749 
3750 err_out_ppool:
3751 	mempool_destroy(sd_cdb_pool);
3752 
3753 err_out_cache:
3754 	kmem_cache_destroy(sd_cdb_cache);
3755 
3756 err_out_class:
3757 	class_unregister(&sd_disk_class);
3758 err_out:
3759 	for (i = 0; i < SD_MAJORS; i++)
3760 		unregister_blkdev(sd_major(i), "sd");
3761 	return err;
3762 }
3763 
3764 /**
3765  *	exit_sd - exit point for this driver (when it is a module).
3766  *
3767  *	Note: this function unregisters this driver from the scsi mid-level.
3768  **/
3769 static void __exit exit_sd(void)
3770 {
3771 	int i;
3772 
3773 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3774 
3775 	scsi_unregister_driver(&sd_template.gendrv);
3776 	mempool_destroy(sd_cdb_pool);
3777 	mempool_destroy(sd_page_pool);
3778 	kmem_cache_destroy(sd_cdb_cache);
3779 
3780 	class_unregister(&sd_disk_class);
3781 
3782 	for (i = 0; i < SD_MAJORS; i++)
3783 		unregister_blkdev(sd_major(i), "sd");
3784 }
3785 
3786 module_init(init_sd);
3787 module_exit(exit_sd);
3788 
3789 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3790 {
3791 	scsi_print_sense_hdr(sdkp->device,
3792 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3793 }
3794 
3795 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3796 {
3797 	const char *hb_string = scsi_hostbyte_string(result);
3798 
3799 	if (hb_string)
3800 		sd_printk(KERN_INFO, sdkp,
3801 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3802 			  hb_string ? hb_string : "invalid",
3803 			  "DRIVER_OK");
3804 	else
3805 		sd_printk(KERN_INFO, sdkp,
3806 			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3807 			  msg, host_byte(result), "DRIVER_OK");
3808 }
3809