xref: /openbmc/linux/drivers/scsi/sd.c (revision 5b628549)
1 /*
2  *      sd.c Copyright (C) 1992 Drew Eckhardt
3  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4  *
5  *      Linux scsi disk driver
6  *              Initial versions: Drew Eckhardt
7  *              Subsequent revisions: Eric Youngdale
8  *	Modification history:
9  *       - Drew Eckhardt <drew@colorado.edu> original
10  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11  *         outstanding request, and other enhancements.
12  *         Support loadable low-level scsi drivers.
13  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14  *         eight major numbers.
15  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17  *	   sd_init and cleanups.
18  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
19  *	   not being read in sd_open. Fix problem where removable media
20  *	   could be ejected after sd_open.
21  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24  *	   Support 32k/1M disks.
25  *
26  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
27  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
31  *	Note: when the logging level is set by the user, it must be greater
32  *	than the level indicated above to trigger output.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/mutex.h>
51 #include <linux/string_helpers.h>
52 #include <linux/async.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60 
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70 
71 #include "sd.h"
72 #include "scsi_priv.h"
73 #include "scsi_logging.h"
74 
75 MODULE_AUTHOR("Eric Youngdale");
76 MODULE_DESCRIPTION("SCSI disk (sd) driver");
77 MODULE_LICENSE("GPL");
78 
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
99 
100 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
101 #define SD_MINORS	16
102 #else
103 #define SD_MINORS	0
104 #endif
105 
106 static void sd_config_discard(struct scsi_disk *, unsigned int);
107 static void sd_config_write_same(struct scsi_disk *);
108 static int  sd_revalidate_disk(struct gendisk *);
109 static void sd_unlock_native_capacity(struct gendisk *disk);
110 static int  sd_probe(struct device *);
111 static int  sd_remove(struct device *);
112 static void sd_shutdown(struct device *);
113 static int sd_suspend_system(struct device *);
114 static int sd_suspend_runtime(struct device *);
115 static int sd_resume(struct device *);
116 static void sd_rescan(struct device *);
117 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
118 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
119 static int sd_done(struct scsi_cmnd *);
120 static void sd_eh_reset(struct scsi_cmnd *);
121 static int sd_eh_action(struct scsi_cmnd *, int);
122 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
123 static void scsi_disk_release(struct device *cdev);
124 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
125 static void sd_print_result(const struct scsi_disk *, const char *, int);
126 
127 static DEFINE_IDA(sd_index_ida);
128 
129 /* This semaphore is used to mediate the 0->1 reference get in the
130  * face of object destruction (i.e. we can't allow a get on an
131  * object after last put) */
132 static DEFINE_MUTEX(sd_ref_mutex);
133 
134 static struct kmem_cache *sd_cdb_cache;
135 static mempool_t *sd_cdb_pool;
136 static mempool_t *sd_page_pool;
137 
138 static const char *sd_cache_types[] = {
139 	"write through", "none", "write back",
140 	"write back, no read (daft)"
141 };
142 
143 static void sd_set_flush_flag(struct scsi_disk *sdkp)
144 {
145 	bool wc = false, fua = false;
146 
147 	if (sdkp->WCE) {
148 		wc = true;
149 		if (sdkp->DPOFUA)
150 			fua = true;
151 	}
152 
153 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
154 }
155 
156 static ssize_t
157 cache_type_store(struct device *dev, struct device_attribute *attr,
158 		 const char *buf, size_t count)
159 {
160 	int ct, rcd, wce, sp;
161 	struct scsi_disk *sdkp = to_scsi_disk(dev);
162 	struct scsi_device *sdp = sdkp->device;
163 	char buffer[64];
164 	char *buffer_data;
165 	struct scsi_mode_data data;
166 	struct scsi_sense_hdr sshdr;
167 	static const char temp[] = "temporary ";
168 	int len;
169 
170 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
171 		/* no cache control on RBC devices; theoretically they
172 		 * can do it, but there's probably so many exceptions
173 		 * it's not worth the risk */
174 		return -EINVAL;
175 
176 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
177 		buf += sizeof(temp) - 1;
178 		sdkp->cache_override = 1;
179 	} else {
180 		sdkp->cache_override = 0;
181 	}
182 
183 	ct = sysfs_match_string(sd_cache_types, buf);
184 	if (ct < 0)
185 		return -EINVAL;
186 
187 	rcd = ct & 0x01 ? 1 : 0;
188 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
189 
190 	if (sdkp->cache_override) {
191 		sdkp->WCE = wce;
192 		sdkp->RCD = rcd;
193 		sd_set_flush_flag(sdkp);
194 		return count;
195 	}
196 
197 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
198 			    SD_MAX_RETRIES, &data, NULL))
199 		return -EINVAL;
200 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
201 		  data.block_descriptor_length);
202 	buffer_data = buffer + data.header_length +
203 		data.block_descriptor_length;
204 	buffer_data[2] &= ~0x05;
205 	buffer_data[2] |= wce << 2 | rcd;
206 	sp = buffer_data[0] & 0x80 ? 1 : 0;
207 	buffer_data[0] &= ~0x80;
208 
209 	/*
210 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
211 	 * received mode parameter buffer before doing MODE SELECT.
212 	 */
213 	data.device_specific = 0;
214 
215 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
216 			     SD_MAX_RETRIES, &data, &sshdr)) {
217 		if (scsi_sense_valid(&sshdr))
218 			sd_print_sense_hdr(sdkp, &sshdr);
219 		return -EINVAL;
220 	}
221 	revalidate_disk(sdkp->disk);
222 	return count;
223 }
224 
225 static ssize_t
226 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
227 		       char *buf)
228 {
229 	struct scsi_disk *sdkp = to_scsi_disk(dev);
230 	struct scsi_device *sdp = sdkp->device;
231 
232 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
233 }
234 
235 static ssize_t
236 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
237 			const char *buf, size_t count)
238 {
239 	struct scsi_disk *sdkp = to_scsi_disk(dev);
240 	struct scsi_device *sdp = sdkp->device;
241 	bool v;
242 
243 	if (!capable(CAP_SYS_ADMIN))
244 		return -EACCES;
245 
246 	if (kstrtobool(buf, &v))
247 		return -EINVAL;
248 
249 	sdp->manage_start_stop = v;
250 
251 	return count;
252 }
253 static DEVICE_ATTR_RW(manage_start_stop);
254 
255 static ssize_t
256 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
257 {
258 	struct scsi_disk *sdkp = to_scsi_disk(dev);
259 
260 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
261 }
262 
263 static ssize_t
264 allow_restart_store(struct device *dev, struct device_attribute *attr,
265 		    const char *buf, size_t count)
266 {
267 	bool v;
268 	struct scsi_disk *sdkp = to_scsi_disk(dev);
269 	struct scsi_device *sdp = sdkp->device;
270 
271 	if (!capable(CAP_SYS_ADMIN))
272 		return -EACCES;
273 
274 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
275 		return -EINVAL;
276 
277 	if (kstrtobool(buf, &v))
278 		return -EINVAL;
279 
280 	sdp->allow_restart = v;
281 
282 	return count;
283 }
284 static DEVICE_ATTR_RW(allow_restart);
285 
286 static ssize_t
287 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
288 {
289 	struct scsi_disk *sdkp = to_scsi_disk(dev);
290 	int ct = sdkp->RCD + 2*sdkp->WCE;
291 
292 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
293 }
294 static DEVICE_ATTR_RW(cache_type);
295 
296 static ssize_t
297 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
298 {
299 	struct scsi_disk *sdkp = to_scsi_disk(dev);
300 
301 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
302 }
303 static DEVICE_ATTR_RO(FUA);
304 
305 static ssize_t
306 protection_type_show(struct device *dev, struct device_attribute *attr,
307 		     char *buf)
308 {
309 	struct scsi_disk *sdkp = to_scsi_disk(dev);
310 
311 	return sprintf(buf, "%u\n", sdkp->protection_type);
312 }
313 
314 static ssize_t
315 protection_type_store(struct device *dev, struct device_attribute *attr,
316 		      const char *buf, size_t count)
317 {
318 	struct scsi_disk *sdkp = to_scsi_disk(dev);
319 	unsigned int val;
320 	int err;
321 
322 	if (!capable(CAP_SYS_ADMIN))
323 		return -EACCES;
324 
325 	err = kstrtouint(buf, 10, &val);
326 
327 	if (err)
328 		return err;
329 
330 	if (val <= T10_PI_TYPE3_PROTECTION)
331 		sdkp->protection_type = val;
332 
333 	return count;
334 }
335 static DEVICE_ATTR_RW(protection_type);
336 
337 static ssize_t
338 protection_mode_show(struct device *dev, struct device_attribute *attr,
339 		     char *buf)
340 {
341 	struct scsi_disk *sdkp = to_scsi_disk(dev);
342 	struct scsi_device *sdp = sdkp->device;
343 	unsigned int dif, dix;
344 
345 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
346 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
347 
348 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
349 		dif = 0;
350 		dix = 1;
351 	}
352 
353 	if (!dif && !dix)
354 		return sprintf(buf, "none\n");
355 
356 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
357 }
358 static DEVICE_ATTR_RO(protection_mode);
359 
360 static ssize_t
361 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
362 {
363 	struct scsi_disk *sdkp = to_scsi_disk(dev);
364 
365 	return sprintf(buf, "%u\n", sdkp->ATO);
366 }
367 static DEVICE_ATTR_RO(app_tag_own);
368 
369 static ssize_t
370 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
371 		       char *buf)
372 {
373 	struct scsi_disk *sdkp = to_scsi_disk(dev);
374 
375 	return sprintf(buf, "%u\n", sdkp->lbpme);
376 }
377 static DEVICE_ATTR_RO(thin_provisioning);
378 
379 /* sysfs_match_string() requires dense arrays */
380 static const char *lbp_mode[] = {
381 	[SD_LBP_FULL]		= "full",
382 	[SD_LBP_UNMAP]		= "unmap",
383 	[SD_LBP_WS16]		= "writesame_16",
384 	[SD_LBP_WS10]		= "writesame_10",
385 	[SD_LBP_ZERO]		= "writesame_zero",
386 	[SD_LBP_DISABLE]	= "disabled",
387 };
388 
389 static ssize_t
390 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
391 		       char *buf)
392 {
393 	struct scsi_disk *sdkp = to_scsi_disk(dev);
394 
395 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
396 }
397 
398 static ssize_t
399 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
400 			const char *buf, size_t count)
401 {
402 	struct scsi_disk *sdkp = to_scsi_disk(dev);
403 	struct scsi_device *sdp = sdkp->device;
404 	int mode;
405 
406 	if (!capable(CAP_SYS_ADMIN))
407 		return -EACCES;
408 
409 	if (sd_is_zoned(sdkp)) {
410 		sd_config_discard(sdkp, SD_LBP_DISABLE);
411 		return count;
412 	}
413 
414 	if (sdp->type != TYPE_DISK)
415 		return -EINVAL;
416 
417 	mode = sysfs_match_string(lbp_mode, buf);
418 	if (mode < 0)
419 		return -EINVAL;
420 
421 	sd_config_discard(sdkp, mode);
422 
423 	return count;
424 }
425 static DEVICE_ATTR_RW(provisioning_mode);
426 
427 /* sysfs_match_string() requires dense arrays */
428 static const char *zeroing_mode[] = {
429 	[SD_ZERO_WRITE]		= "write",
430 	[SD_ZERO_WS]		= "writesame",
431 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
432 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
433 };
434 
435 static ssize_t
436 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
437 		  char *buf)
438 {
439 	struct scsi_disk *sdkp = to_scsi_disk(dev);
440 
441 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
442 }
443 
444 static ssize_t
445 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
446 		   const char *buf, size_t count)
447 {
448 	struct scsi_disk *sdkp = to_scsi_disk(dev);
449 	int mode;
450 
451 	if (!capable(CAP_SYS_ADMIN))
452 		return -EACCES;
453 
454 	mode = sysfs_match_string(zeroing_mode, buf);
455 	if (mode < 0)
456 		return -EINVAL;
457 
458 	sdkp->zeroing_mode = mode;
459 
460 	return count;
461 }
462 static DEVICE_ATTR_RW(zeroing_mode);
463 
464 static ssize_t
465 max_medium_access_timeouts_show(struct device *dev,
466 				struct device_attribute *attr, char *buf)
467 {
468 	struct scsi_disk *sdkp = to_scsi_disk(dev);
469 
470 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
471 }
472 
473 static ssize_t
474 max_medium_access_timeouts_store(struct device *dev,
475 				 struct device_attribute *attr, const char *buf,
476 				 size_t count)
477 {
478 	struct scsi_disk *sdkp = to_scsi_disk(dev);
479 	int err;
480 
481 	if (!capable(CAP_SYS_ADMIN))
482 		return -EACCES;
483 
484 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
485 
486 	return err ? err : count;
487 }
488 static DEVICE_ATTR_RW(max_medium_access_timeouts);
489 
490 static ssize_t
491 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
492 			   char *buf)
493 {
494 	struct scsi_disk *sdkp = to_scsi_disk(dev);
495 
496 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
497 }
498 
499 static ssize_t
500 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
501 			    const char *buf, size_t count)
502 {
503 	struct scsi_disk *sdkp = to_scsi_disk(dev);
504 	struct scsi_device *sdp = sdkp->device;
505 	unsigned long max;
506 	int err;
507 
508 	if (!capable(CAP_SYS_ADMIN))
509 		return -EACCES;
510 
511 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
512 		return -EINVAL;
513 
514 	err = kstrtoul(buf, 10, &max);
515 
516 	if (err)
517 		return err;
518 
519 	if (max == 0)
520 		sdp->no_write_same = 1;
521 	else if (max <= SD_MAX_WS16_BLOCKS) {
522 		sdp->no_write_same = 0;
523 		sdkp->max_ws_blocks = max;
524 	}
525 
526 	sd_config_write_same(sdkp);
527 
528 	return count;
529 }
530 static DEVICE_ATTR_RW(max_write_same_blocks);
531 
532 static struct attribute *sd_disk_attrs[] = {
533 	&dev_attr_cache_type.attr,
534 	&dev_attr_FUA.attr,
535 	&dev_attr_allow_restart.attr,
536 	&dev_attr_manage_start_stop.attr,
537 	&dev_attr_protection_type.attr,
538 	&dev_attr_protection_mode.attr,
539 	&dev_attr_app_tag_own.attr,
540 	&dev_attr_thin_provisioning.attr,
541 	&dev_attr_provisioning_mode.attr,
542 	&dev_attr_zeroing_mode.attr,
543 	&dev_attr_max_write_same_blocks.attr,
544 	&dev_attr_max_medium_access_timeouts.attr,
545 	NULL,
546 };
547 ATTRIBUTE_GROUPS(sd_disk);
548 
549 static struct class sd_disk_class = {
550 	.name		= "scsi_disk",
551 	.owner		= THIS_MODULE,
552 	.dev_release	= scsi_disk_release,
553 	.dev_groups	= sd_disk_groups,
554 };
555 
556 static const struct dev_pm_ops sd_pm_ops = {
557 	.suspend		= sd_suspend_system,
558 	.resume			= sd_resume,
559 	.poweroff		= sd_suspend_system,
560 	.restore		= sd_resume,
561 	.runtime_suspend	= sd_suspend_runtime,
562 	.runtime_resume		= sd_resume,
563 };
564 
565 static struct scsi_driver sd_template = {
566 	.gendrv = {
567 		.name		= "sd",
568 		.owner		= THIS_MODULE,
569 		.probe		= sd_probe,
570 		.remove		= sd_remove,
571 		.shutdown	= sd_shutdown,
572 		.pm		= &sd_pm_ops,
573 	},
574 	.rescan			= sd_rescan,
575 	.init_command		= sd_init_command,
576 	.uninit_command		= sd_uninit_command,
577 	.done			= sd_done,
578 	.eh_action		= sd_eh_action,
579 	.eh_reset		= sd_eh_reset,
580 };
581 
582 /*
583  * Dummy kobj_map->probe function.
584  * The default ->probe function will call modprobe, which is
585  * pointless as this module is already loaded.
586  */
587 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
588 {
589 	return NULL;
590 }
591 
592 /*
593  * Device no to disk mapping:
594  *
595  *       major         disc2     disc  p1
596  *   |............|.............|....|....| <- dev_t
597  *    31        20 19          8 7  4 3  0
598  *
599  * Inside a major, we have 16k disks, however mapped non-
600  * contiguously. The first 16 disks are for major0, the next
601  * ones with major1, ... Disk 256 is for major0 again, disk 272
602  * for major1, ...
603  * As we stay compatible with our numbering scheme, we can reuse
604  * the well-know SCSI majors 8, 65--71, 136--143.
605  */
606 static int sd_major(int major_idx)
607 {
608 	switch (major_idx) {
609 	case 0:
610 		return SCSI_DISK0_MAJOR;
611 	case 1 ... 7:
612 		return SCSI_DISK1_MAJOR + major_idx - 1;
613 	case 8 ... 15:
614 		return SCSI_DISK8_MAJOR + major_idx - 8;
615 	default:
616 		BUG();
617 		return 0;	/* shut up gcc */
618 	}
619 }
620 
621 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
622 {
623 	struct scsi_disk *sdkp = NULL;
624 
625 	mutex_lock(&sd_ref_mutex);
626 
627 	if (disk->private_data) {
628 		sdkp = scsi_disk(disk);
629 		if (scsi_device_get(sdkp->device) == 0)
630 			get_device(&sdkp->dev);
631 		else
632 			sdkp = NULL;
633 	}
634 	mutex_unlock(&sd_ref_mutex);
635 	return sdkp;
636 }
637 
638 static void scsi_disk_put(struct scsi_disk *sdkp)
639 {
640 	struct scsi_device *sdev = sdkp->device;
641 
642 	mutex_lock(&sd_ref_mutex);
643 	put_device(&sdkp->dev);
644 	scsi_device_put(sdev);
645 	mutex_unlock(&sd_ref_mutex);
646 }
647 
648 #ifdef CONFIG_BLK_SED_OPAL
649 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
650 		size_t len, bool send)
651 {
652 	struct scsi_device *sdev = data;
653 	u8 cdb[12] = { 0, };
654 	int ret;
655 
656 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
657 	cdb[1] = secp;
658 	put_unaligned_be16(spsp, &cdb[2]);
659 	put_unaligned_be32(len, &cdb[6]);
660 
661 	ret = scsi_execute_req(sdev, cdb,
662 			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
663 			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
664 	return ret <= 0 ? ret : -EIO;
665 }
666 #endif /* CONFIG_BLK_SED_OPAL */
667 
668 /*
669  * Look up the DIX operation based on whether the command is read or
670  * write and whether dix and dif are enabled.
671  */
672 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
673 {
674 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
675 	static const unsigned int ops[] = {	/* wrt dix dif */
676 		SCSI_PROT_NORMAL,		/*  0	0   0  */
677 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
678 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
679 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
680 		SCSI_PROT_NORMAL,		/*  1	0   0  */
681 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
682 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
683 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
684 	};
685 
686 	return ops[write << 2 | dix << 1 | dif];
687 }
688 
689 /*
690  * Returns a mask of the protection flags that are valid for a given DIX
691  * operation.
692  */
693 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
694 {
695 	static const unsigned int flag_mask[] = {
696 		[SCSI_PROT_NORMAL]		= 0,
697 
698 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
699 						  SCSI_PROT_GUARD_CHECK |
700 						  SCSI_PROT_REF_CHECK |
701 						  SCSI_PROT_REF_INCREMENT,
702 
703 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
704 						  SCSI_PROT_IP_CHECKSUM,
705 
706 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
707 						  SCSI_PROT_GUARD_CHECK |
708 						  SCSI_PROT_REF_CHECK |
709 						  SCSI_PROT_REF_INCREMENT |
710 						  SCSI_PROT_IP_CHECKSUM,
711 
712 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
713 						  SCSI_PROT_REF_INCREMENT,
714 
715 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
716 						  SCSI_PROT_REF_CHECK |
717 						  SCSI_PROT_REF_INCREMENT |
718 						  SCSI_PROT_IP_CHECKSUM,
719 
720 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
721 						  SCSI_PROT_GUARD_CHECK |
722 						  SCSI_PROT_REF_CHECK |
723 						  SCSI_PROT_REF_INCREMENT |
724 						  SCSI_PROT_IP_CHECKSUM,
725 	};
726 
727 	return flag_mask[prot_op];
728 }
729 
730 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
731 					   unsigned int dix, unsigned int dif)
732 {
733 	struct bio *bio = scmd->request->bio;
734 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
735 	unsigned int protect = 0;
736 
737 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
738 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
739 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
740 
741 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
742 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
743 	}
744 
745 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
746 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
747 
748 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
749 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
750 	}
751 
752 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
753 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
754 
755 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
756 			protect = 3 << 5;	/* Disable target PI checking */
757 		else
758 			protect = 1 << 5;	/* Enable target PI checking */
759 	}
760 
761 	scsi_set_prot_op(scmd, prot_op);
762 	scsi_set_prot_type(scmd, dif);
763 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
764 
765 	return protect;
766 }
767 
768 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
769 {
770 	struct request_queue *q = sdkp->disk->queue;
771 	unsigned int logical_block_size = sdkp->device->sector_size;
772 	unsigned int max_blocks = 0;
773 
774 	q->limits.discard_alignment =
775 		sdkp->unmap_alignment * logical_block_size;
776 	q->limits.discard_granularity =
777 		max(sdkp->physical_block_size,
778 		    sdkp->unmap_granularity * logical_block_size);
779 	sdkp->provisioning_mode = mode;
780 
781 	switch (mode) {
782 
783 	case SD_LBP_FULL:
784 	case SD_LBP_DISABLE:
785 		blk_queue_max_discard_sectors(q, 0);
786 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
787 		return;
788 
789 	case SD_LBP_UNMAP:
790 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
791 					  (u32)SD_MAX_WS16_BLOCKS);
792 		break;
793 
794 	case SD_LBP_WS16:
795 		if (sdkp->device->unmap_limit_for_ws)
796 			max_blocks = sdkp->max_unmap_blocks;
797 		else
798 			max_blocks = sdkp->max_ws_blocks;
799 
800 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
801 		break;
802 
803 	case SD_LBP_WS10:
804 		if (sdkp->device->unmap_limit_for_ws)
805 			max_blocks = sdkp->max_unmap_blocks;
806 		else
807 			max_blocks = sdkp->max_ws_blocks;
808 
809 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
810 		break;
811 
812 	case SD_LBP_ZERO:
813 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
814 					  (u32)SD_MAX_WS10_BLOCKS);
815 		break;
816 	}
817 
818 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
819 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
820 }
821 
822 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
823 {
824 	struct scsi_device *sdp = cmd->device;
825 	struct request *rq = cmd->request;
826 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
827 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
828 	unsigned int data_len = 24;
829 	char *buf;
830 
831 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
832 	if (!rq->special_vec.bv_page)
833 		return BLK_STS_RESOURCE;
834 	clear_highpage(rq->special_vec.bv_page);
835 	rq->special_vec.bv_offset = 0;
836 	rq->special_vec.bv_len = data_len;
837 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
838 
839 	cmd->cmd_len = 10;
840 	cmd->cmnd[0] = UNMAP;
841 	cmd->cmnd[8] = 24;
842 
843 	buf = page_address(rq->special_vec.bv_page);
844 	put_unaligned_be16(6 + 16, &buf[0]);
845 	put_unaligned_be16(16, &buf[2]);
846 	put_unaligned_be64(lba, &buf[8]);
847 	put_unaligned_be32(nr_blocks, &buf[16]);
848 
849 	cmd->allowed = SD_MAX_RETRIES;
850 	cmd->transfersize = data_len;
851 	rq->timeout = SD_TIMEOUT;
852 
853 	return scsi_init_io(cmd);
854 }
855 
856 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
857 		bool unmap)
858 {
859 	struct scsi_device *sdp = cmd->device;
860 	struct request *rq = cmd->request;
861 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
862 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
863 	u32 data_len = sdp->sector_size;
864 
865 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
866 	if (!rq->special_vec.bv_page)
867 		return BLK_STS_RESOURCE;
868 	clear_highpage(rq->special_vec.bv_page);
869 	rq->special_vec.bv_offset = 0;
870 	rq->special_vec.bv_len = data_len;
871 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
872 
873 	cmd->cmd_len = 16;
874 	cmd->cmnd[0] = WRITE_SAME_16;
875 	if (unmap)
876 		cmd->cmnd[1] = 0x8; /* UNMAP */
877 	put_unaligned_be64(lba, &cmd->cmnd[2]);
878 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
879 
880 	cmd->allowed = SD_MAX_RETRIES;
881 	cmd->transfersize = data_len;
882 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
883 
884 	return scsi_init_io(cmd);
885 }
886 
887 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
888 		bool unmap)
889 {
890 	struct scsi_device *sdp = cmd->device;
891 	struct request *rq = cmd->request;
892 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
893 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
894 	u32 data_len = sdp->sector_size;
895 
896 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
897 	if (!rq->special_vec.bv_page)
898 		return BLK_STS_RESOURCE;
899 	clear_highpage(rq->special_vec.bv_page);
900 	rq->special_vec.bv_offset = 0;
901 	rq->special_vec.bv_len = data_len;
902 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
903 
904 	cmd->cmd_len = 10;
905 	cmd->cmnd[0] = WRITE_SAME;
906 	if (unmap)
907 		cmd->cmnd[1] = 0x8; /* UNMAP */
908 	put_unaligned_be32(lba, &cmd->cmnd[2]);
909 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
910 
911 	cmd->allowed = SD_MAX_RETRIES;
912 	cmd->transfersize = data_len;
913 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
914 
915 	return scsi_init_io(cmd);
916 }
917 
918 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
919 {
920 	struct request *rq = cmd->request;
921 	struct scsi_device *sdp = cmd->device;
922 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
923 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
924 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
925 
926 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
927 		switch (sdkp->zeroing_mode) {
928 		case SD_ZERO_WS16_UNMAP:
929 			return sd_setup_write_same16_cmnd(cmd, true);
930 		case SD_ZERO_WS10_UNMAP:
931 			return sd_setup_write_same10_cmnd(cmd, true);
932 		}
933 	}
934 
935 	if (sdp->no_write_same)
936 		return BLK_STS_TARGET;
937 
938 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
939 		return sd_setup_write_same16_cmnd(cmd, false);
940 
941 	return sd_setup_write_same10_cmnd(cmd, false);
942 }
943 
944 static void sd_config_write_same(struct scsi_disk *sdkp)
945 {
946 	struct request_queue *q = sdkp->disk->queue;
947 	unsigned int logical_block_size = sdkp->device->sector_size;
948 
949 	if (sdkp->device->no_write_same) {
950 		sdkp->max_ws_blocks = 0;
951 		goto out;
952 	}
953 
954 	/* Some devices can not handle block counts above 0xffff despite
955 	 * supporting WRITE SAME(16). Consequently we default to 64k
956 	 * blocks per I/O unless the device explicitly advertises a
957 	 * bigger limit.
958 	 */
959 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
960 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
961 						   (u32)SD_MAX_WS16_BLOCKS);
962 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
963 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
964 						   (u32)SD_MAX_WS10_BLOCKS);
965 	else {
966 		sdkp->device->no_write_same = 1;
967 		sdkp->max_ws_blocks = 0;
968 	}
969 
970 	if (sdkp->lbprz && sdkp->lbpws)
971 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
972 	else if (sdkp->lbprz && sdkp->lbpws10)
973 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
974 	else if (sdkp->max_ws_blocks)
975 		sdkp->zeroing_mode = SD_ZERO_WS;
976 	else
977 		sdkp->zeroing_mode = SD_ZERO_WRITE;
978 
979 	if (sdkp->max_ws_blocks &&
980 	    sdkp->physical_block_size > logical_block_size) {
981 		/*
982 		 * Reporting a maximum number of blocks that is not aligned
983 		 * on the device physical size would cause a large write same
984 		 * request to be split into physically unaligned chunks by
985 		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
986 		 * even if the caller of these functions took care to align the
987 		 * large request. So make sure the maximum reported is aligned
988 		 * to the device physical block size. This is only an optional
989 		 * optimization for regular disks, but this is mandatory to
990 		 * avoid failure of large write same requests directed at
991 		 * sequential write required zones of host-managed ZBC disks.
992 		 */
993 		sdkp->max_ws_blocks =
994 			round_down(sdkp->max_ws_blocks,
995 				   bytes_to_logical(sdkp->device,
996 						    sdkp->physical_block_size));
997 	}
998 
999 out:
1000 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1001 					 (logical_block_size >> 9));
1002 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1003 					 (logical_block_size >> 9));
1004 }
1005 
1006 /**
1007  * sd_setup_write_same_cmnd - write the same data to multiple blocks
1008  * @cmd: command to prepare
1009  *
1010  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1011  * the preference indicated by the target device.
1012  **/
1013 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1014 {
1015 	struct request *rq = cmd->request;
1016 	struct scsi_device *sdp = cmd->device;
1017 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1018 	struct bio *bio = rq->bio;
1019 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1020 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1021 	blk_status_t ret;
1022 
1023 	if (sdkp->device->no_write_same)
1024 		return BLK_STS_TARGET;
1025 
1026 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1027 
1028 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
1029 
1030 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1031 		cmd->cmd_len = 16;
1032 		cmd->cmnd[0] = WRITE_SAME_16;
1033 		put_unaligned_be64(lba, &cmd->cmnd[2]);
1034 		put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1035 	} else {
1036 		cmd->cmd_len = 10;
1037 		cmd->cmnd[0] = WRITE_SAME;
1038 		put_unaligned_be32(lba, &cmd->cmnd[2]);
1039 		put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1040 	}
1041 
1042 	cmd->transfersize = sdp->sector_size;
1043 	cmd->allowed = SD_MAX_RETRIES;
1044 
1045 	/*
1046 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
1047 	 * different from the amount of data actually written to the target.
1048 	 *
1049 	 * We set up __data_len to the amount of data transferred via the
1050 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1051 	 * to transfer a single sector of data first, but then reset it to
1052 	 * the amount of data to be written right after so that the I/O path
1053 	 * knows how much to actually write.
1054 	 */
1055 	rq->__data_len = sdp->sector_size;
1056 	ret = scsi_init_io(cmd);
1057 	rq->__data_len = blk_rq_bytes(rq);
1058 
1059 	return ret;
1060 }
1061 
1062 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1063 {
1064 	struct request *rq = cmd->request;
1065 
1066 	/* flush requests don't perform I/O, zero the S/G table */
1067 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1068 
1069 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1070 	cmd->cmd_len = 10;
1071 	cmd->transfersize = 0;
1072 	cmd->allowed = SD_MAX_RETRIES;
1073 
1074 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1075 	return BLK_STS_OK;
1076 }
1077 
1078 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1079 				       sector_t lba, unsigned int nr_blocks,
1080 				       unsigned char flags)
1081 {
1082 	cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1083 	if (unlikely(cmd->cmnd == NULL))
1084 		return BLK_STS_RESOURCE;
1085 
1086 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1087 	memset(cmd->cmnd, 0, cmd->cmd_len);
1088 
1089 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1090 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1091 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1092 	cmd->cmnd[10] = flags;
1093 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1094 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1095 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1096 
1097 	return BLK_STS_OK;
1098 }
1099 
1100 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1101 				       sector_t lba, unsigned int nr_blocks,
1102 				       unsigned char flags)
1103 {
1104 	cmd->cmd_len  = 16;
1105 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1106 	cmd->cmnd[1]  = flags;
1107 	cmd->cmnd[14] = 0;
1108 	cmd->cmnd[15] = 0;
1109 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1110 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1111 
1112 	return BLK_STS_OK;
1113 }
1114 
1115 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1116 				       sector_t lba, unsigned int nr_blocks,
1117 				       unsigned char flags)
1118 {
1119 	cmd->cmd_len = 10;
1120 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1121 	cmd->cmnd[1] = flags;
1122 	cmd->cmnd[6] = 0;
1123 	cmd->cmnd[9] = 0;
1124 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1125 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1126 
1127 	return BLK_STS_OK;
1128 }
1129 
1130 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1131 				      sector_t lba, unsigned int nr_blocks,
1132 				      unsigned char flags)
1133 {
1134 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1135 	if (WARN_ON_ONCE(nr_blocks == 0))
1136 		return BLK_STS_IOERR;
1137 
1138 	if (unlikely(flags & 0x8)) {
1139 		/*
1140 		 * This happens only if this drive failed 10byte rw
1141 		 * command with ILLEGAL_REQUEST during operation and
1142 		 * thus turned off use_10_for_rw.
1143 		 */
1144 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1145 		return BLK_STS_IOERR;
1146 	}
1147 
1148 	cmd->cmd_len = 6;
1149 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1150 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1151 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1152 	cmd->cmnd[3] = lba & 0xff;
1153 	cmd->cmnd[4] = nr_blocks;
1154 	cmd->cmnd[5] = 0;
1155 
1156 	return BLK_STS_OK;
1157 }
1158 
1159 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1160 {
1161 	struct request *rq = cmd->request;
1162 	struct scsi_device *sdp = cmd->device;
1163 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1164 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1165 	sector_t threshold;
1166 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1167 	bool dif, dix;
1168 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1169 	bool write = rq_data_dir(rq) == WRITE;
1170 	unsigned char protect, fua;
1171 	blk_status_t ret;
1172 
1173 	ret = scsi_init_io(cmd);
1174 	if (ret != BLK_STS_OK)
1175 		return ret;
1176 
1177 	if (!scsi_device_online(sdp) || sdp->changed) {
1178 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1179 		return BLK_STS_IOERR;
1180 	}
1181 
1182 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1183 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1184 		return BLK_STS_IOERR;
1185 	}
1186 
1187 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1188 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1189 		return BLK_STS_IOERR;
1190 	}
1191 
1192 	/*
1193 	 * Some SD card readers can't handle accesses which touch the
1194 	 * last one or two logical blocks. Split accesses as needed.
1195 	 */
1196 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1197 
1198 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1199 		if (lba < threshold) {
1200 			/* Access up to the threshold but not beyond */
1201 			nr_blocks = threshold - lba;
1202 		} else {
1203 			/* Access only a single logical block */
1204 			nr_blocks = 1;
1205 		}
1206 	}
1207 
1208 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1209 	dix = scsi_prot_sg_count(cmd);
1210 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1211 
1212 	if (write && dix)
1213 		t10_pi_prepare(cmd->request, sdkp->protection_type);
1214 
1215 	if (dif || dix)
1216 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1217 	else
1218 		protect = 0;
1219 
1220 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1221 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1222 					 protect | fua);
1223 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1224 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1225 					 protect | fua);
1226 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1227 		   sdp->use_10_for_rw || protect) {
1228 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1229 					 protect | fua);
1230 	} else {
1231 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1232 					protect | fua);
1233 	}
1234 
1235 	if (unlikely(ret != BLK_STS_OK))
1236 		return ret;
1237 
1238 	/*
1239 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1240 	 * host adapter, it's safe to assume that we can at least transfer
1241 	 * this many bytes between each connect / disconnect.
1242 	 */
1243 	cmd->transfersize = sdp->sector_size;
1244 	cmd->underflow = nr_blocks << 9;
1245 	cmd->allowed = SD_MAX_RETRIES;
1246 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1247 
1248 	SCSI_LOG_HLQUEUE(1,
1249 			 scmd_printk(KERN_INFO, cmd,
1250 				     "%s: block=%llu, count=%d\n", __func__,
1251 				     (unsigned long long)blk_rq_pos(rq),
1252 				     blk_rq_sectors(rq)));
1253 	SCSI_LOG_HLQUEUE(2,
1254 			 scmd_printk(KERN_INFO, cmd,
1255 				     "%s %d/%u 512 byte blocks.\n",
1256 				     write ? "writing" : "reading", nr_blocks,
1257 				     blk_rq_sectors(rq)));
1258 
1259 	/*
1260 	 * This indicates that the command is ready from our end to be
1261 	 * queued.
1262 	 */
1263 	return BLK_STS_OK;
1264 }
1265 
1266 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1267 {
1268 	struct request *rq = cmd->request;
1269 
1270 	switch (req_op(rq)) {
1271 	case REQ_OP_DISCARD:
1272 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1273 		case SD_LBP_UNMAP:
1274 			return sd_setup_unmap_cmnd(cmd);
1275 		case SD_LBP_WS16:
1276 			return sd_setup_write_same16_cmnd(cmd, true);
1277 		case SD_LBP_WS10:
1278 			return sd_setup_write_same10_cmnd(cmd, true);
1279 		case SD_LBP_ZERO:
1280 			return sd_setup_write_same10_cmnd(cmd, false);
1281 		default:
1282 			return BLK_STS_TARGET;
1283 		}
1284 	case REQ_OP_WRITE_ZEROES:
1285 		return sd_setup_write_zeroes_cmnd(cmd);
1286 	case REQ_OP_WRITE_SAME:
1287 		return sd_setup_write_same_cmnd(cmd);
1288 	case REQ_OP_FLUSH:
1289 		return sd_setup_flush_cmnd(cmd);
1290 	case REQ_OP_READ:
1291 	case REQ_OP_WRITE:
1292 		return sd_setup_read_write_cmnd(cmd);
1293 	case REQ_OP_ZONE_RESET:
1294 		return sd_zbc_setup_reset_cmnd(cmd);
1295 	default:
1296 		WARN_ON_ONCE(1);
1297 		return BLK_STS_NOTSUPP;
1298 	}
1299 }
1300 
1301 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1302 {
1303 	struct request *rq = SCpnt->request;
1304 	u8 *cmnd;
1305 
1306 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1307 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1308 
1309 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1310 		cmnd = SCpnt->cmnd;
1311 		SCpnt->cmnd = NULL;
1312 		SCpnt->cmd_len = 0;
1313 		mempool_free(cmnd, sd_cdb_pool);
1314 	}
1315 }
1316 
1317 /**
1318  *	sd_open - open a scsi disk device
1319  *	@bdev: Block device of the scsi disk to open
1320  *	@mode: FMODE_* mask
1321  *
1322  *	Returns 0 if successful. Returns a negated errno value in case
1323  *	of error.
1324  *
1325  *	Note: This can be called from a user context (e.g. fsck(1) )
1326  *	or from within the kernel (e.g. as a result of a mount(1) ).
1327  *	In the latter case @inode and @filp carry an abridged amount
1328  *	of information as noted above.
1329  *
1330  *	Locking: called with bdev->bd_mutex held.
1331  **/
1332 static int sd_open(struct block_device *bdev, fmode_t mode)
1333 {
1334 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1335 	struct scsi_device *sdev;
1336 	int retval;
1337 
1338 	if (!sdkp)
1339 		return -ENXIO;
1340 
1341 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1342 
1343 	sdev = sdkp->device;
1344 
1345 	/*
1346 	 * If the device is in error recovery, wait until it is done.
1347 	 * If the device is offline, then disallow any access to it.
1348 	 */
1349 	retval = -ENXIO;
1350 	if (!scsi_block_when_processing_errors(sdev))
1351 		goto error_out;
1352 
1353 	if (sdev->removable || sdkp->write_prot)
1354 		check_disk_change(bdev);
1355 
1356 	/*
1357 	 * If the drive is empty, just let the open fail.
1358 	 */
1359 	retval = -ENOMEDIUM;
1360 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1361 		goto error_out;
1362 
1363 	/*
1364 	 * If the device has the write protect tab set, have the open fail
1365 	 * if the user expects to be able to write to the thing.
1366 	 */
1367 	retval = -EROFS;
1368 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1369 		goto error_out;
1370 
1371 	/*
1372 	 * It is possible that the disk changing stuff resulted in
1373 	 * the device being taken offline.  If this is the case,
1374 	 * report this to the user, and don't pretend that the
1375 	 * open actually succeeded.
1376 	 */
1377 	retval = -ENXIO;
1378 	if (!scsi_device_online(sdev))
1379 		goto error_out;
1380 
1381 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1382 		if (scsi_block_when_processing_errors(sdev))
1383 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1384 	}
1385 
1386 	return 0;
1387 
1388 error_out:
1389 	scsi_disk_put(sdkp);
1390 	return retval;
1391 }
1392 
1393 /**
1394  *	sd_release - invoked when the (last) close(2) is called on this
1395  *	scsi disk.
1396  *	@disk: disk to release
1397  *	@mode: FMODE_* mask
1398  *
1399  *	Returns 0.
1400  *
1401  *	Note: may block (uninterruptible) if error recovery is underway
1402  *	on this disk.
1403  *
1404  *	Locking: called with bdev->bd_mutex held.
1405  **/
1406 static void sd_release(struct gendisk *disk, fmode_t mode)
1407 {
1408 	struct scsi_disk *sdkp = scsi_disk(disk);
1409 	struct scsi_device *sdev = sdkp->device;
1410 
1411 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1412 
1413 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1414 		if (scsi_block_when_processing_errors(sdev))
1415 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1416 	}
1417 
1418 	/*
1419 	 * XXX and what if there are packets in flight and this close()
1420 	 * XXX is followed by a "rmmod sd_mod"?
1421 	 */
1422 
1423 	scsi_disk_put(sdkp);
1424 }
1425 
1426 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1427 {
1428 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1429 	struct scsi_device *sdp = sdkp->device;
1430 	struct Scsi_Host *host = sdp->host;
1431 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1432 	int diskinfo[4];
1433 
1434 	/* default to most commonly used values */
1435 	diskinfo[0] = 0x40;	/* 1 << 6 */
1436 	diskinfo[1] = 0x20;	/* 1 << 5 */
1437 	diskinfo[2] = capacity >> 11;
1438 
1439 	/* override with calculated, extended default, or driver values */
1440 	if (host->hostt->bios_param)
1441 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1442 	else
1443 		scsicam_bios_param(bdev, capacity, diskinfo);
1444 
1445 	geo->heads = diskinfo[0];
1446 	geo->sectors = diskinfo[1];
1447 	geo->cylinders = diskinfo[2];
1448 	return 0;
1449 }
1450 
1451 /**
1452  *	sd_ioctl - process an ioctl
1453  *	@bdev: target block device
1454  *	@mode: FMODE_* mask
1455  *	@cmd: ioctl command number
1456  *	@arg: this is third argument given to ioctl(2) system call.
1457  *	Often contains a pointer.
1458  *
1459  *	Returns 0 if successful (some ioctls return positive numbers on
1460  *	success as well). Returns a negated errno value in case of error.
1461  *
1462  *	Note: most ioctls are forward onto the block subsystem or further
1463  *	down in the scsi subsystem.
1464  **/
1465 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1466 		    unsigned int cmd, unsigned long arg)
1467 {
1468 	struct gendisk *disk = bdev->bd_disk;
1469 	struct scsi_disk *sdkp = scsi_disk(disk);
1470 	struct scsi_device *sdp = sdkp->device;
1471 	void __user *p = (void __user *)arg;
1472 	int error;
1473 
1474 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1475 				    "cmd=0x%x\n", disk->disk_name, cmd));
1476 
1477 	error = scsi_verify_blk_ioctl(bdev, cmd);
1478 	if (error < 0)
1479 		return error;
1480 
1481 	/*
1482 	 * If we are in the middle of error recovery, don't let anyone
1483 	 * else try and use this device.  Also, if error recovery fails, it
1484 	 * may try and take the device offline, in which case all further
1485 	 * access to the device is prohibited.
1486 	 */
1487 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1488 			(mode & FMODE_NDELAY) != 0);
1489 	if (error)
1490 		goto out;
1491 
1492 	if (is_sed_ioctl(cmd))
1493 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1494 
1495 	/*
1496 	 * Send SCSI addressing ioctls directly to mid level, send other
1497 	 * ioctls to block level and then onto mid level if they can't be
1498 	 * resolved.
1499 	 */
1500 	switch (cmd) {
1501 		case SCSI_IOCTL_GET_IDLUN:
1502 		case SCSI_IOCTL_GET_BUS_NUMBER:
1503 			error = scsi_ioctl(sdp, cmd, p);
1504 			break;
1505 		default:
1506 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1507 			if (error != -ENOTTY)
1508 				break;
1509 			error = scsi_ioctl(sdp, cmd, p);
1510 			break;
1511 	}
1512 out:
1513 	return error;
1514 }
1515 
1516 static void set_media_not_present(struct scsi_disk *sdkp)
1517 {
1518 	if (sdkp->media_present)
1519 		sdkp->device->changed = 1;
1520 
1521 	if (sdkp->device->removable) {
1522 		sdkp->media_present = 0;
1523 		sdkp->capacity = 0;
1524 	}
1525 }
1526 
1527 static int media_not_present(struct scsi_disk *sdkp,
1528 			     struct scsi_sense_hdr *sshdr)
1529 {
1530 	if (!scsi_sense_valid(sshdr))
1531 		return 0;
1532 
1533 	/* not invoked for commands that could return deferred errors */
1534 	switch (sshdr->sense_key) {
1535 	case UNIT_ATTENTION:
1536 	case NOT_READY:
1537 		/* medium not present */
1538 		if (sshdr->asc == 0x3A) {
1539 			set_media_not_present(sdkp);
1540 			return 1;
1541 		}
1542 	}
1543 	return 0;
1544 }
1545 
1546 /**
1547  *	sd_check_events - check media events
1548  *	@disk: kernel device descriptor
1549  *	@clearing: disk events currently being cleared
1550  *
1551  *	Returns mask of DISK_EVENT_*.
1552  *
1553  *	Note: this function is invoked from the block subsystem.
1554  **/
1555 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1556 {
1557 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1558 	struct scsi_device *sdp;
1559 	int retval;
1560 
1561 	if (!sdkp)
1562 		return 0;
1563 
1564 	sdp = sdkp->device;
1565 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1566 
1567 	/*
1568 	 * If the device is offline, don't send any commands - just pretend as
1569 	 * if the command failed.  If the device ever comes back online, we
1570 	 * can deal with it then.  It is only because of unrecoverable errors
1571 	 * that we would ever take a device offline in the first place.
1572 	 */
1573 	if (!scsi_device_online(sdp)) {
1574 		set_media_not_present(sdkp);
1575 		goto out;
1576 	}
1577 
1578 	/*
1579 	 * Using TEST_UNIT_READY enables differentiation between drive with
1580 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1581 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1582 	 *
1583 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1584 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1585 	 * sd_revalidate() is called.
1586 	 */
1587 	if (scsi_block_when_processing_errors(sdp)) {
1588 		struct scsi_sense_hdr sshdr = { 0, };
1589 
1590 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1591 					      &sshdr);
1592 
1593 		/* failed to execute TUR, assume media not present */
1594 		if (host_byte(retval)) {
1595 			set_media_not_present(sdkp);
1596 			goto out;
1597 		}
1598 
1599 		if (media_not_present(sdkp, &sshdr))
1600 			goto out;
1601 	}
1602 
1603 	/*
1604 	 * For removable scsi disk we have to recognise the presence
1605 	 * of a disk in the drive.
1606 	 */
1607 	if (!sdkp->media_present)
1608 		sdp->changed = 1;
1609 	sdkp->media_present = 1;
1610 out:
1611 	/*
1612 	 * sdp->changed is set under the following conditions:
1613 	 *
1614 	 *	Medium present state has changed in either direction.
1615 	 *	Device has indicated UNIT_ATTENTION.
1616 	 */
1617 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1618 	sdp->changed = 0;
1619 	scsi_disk_put(sdkp);
1620 	return retval;
1621 }
1622 
1623 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1624 {
1625 	int retries, res;
1626 	struct scsi_device *sdp = sdkp->device;
1627 	const int timeout = sdp->request_queue->rq_timeout
1628 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1629 	struct scsi_sense_hdr my_sshdr;
1630 
1631 	if (!scsi_device_online(sdp))
1632 		return -ENODEV;
1633 
1634 	/* caller might not be interested in sense, but we need it */
1635 	if (!sshdr)
1636 		sshdr = &my_sshdr;
1637 
1638 	for (retries = 3; retries > 0; --retries) {
1639 		unsigned char cmd[10] = { 0 };
1640 
1641 		cmd[0] = SYNCHRONIZE_CACHE;
1642 		/*
1643 		 * Leave the rest of the command zero to indicate
1644 		 * flush everything.
1645 		 */
1646 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1647 				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1648 		if (res == 0)
1649 			break;
1650 	}
1651 
1652 	if (res) {
1653 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1654 
1655 		if (driver_byte(res) == DRIVER_SENSE)
1656 			sd_print_sense_hdr(sdkp, sshdr);
1657 
1658 		/* we need to evaluate the error return  */
1659 		if (scsi_sense_valid(sshdr) &&
1660 			(sshdr->asc == 0x3a ||	/* medium not present */
1661 			 sshdr->asc == 0x20))	/* invalid command */
1662 				/* this is no error here */
1663 				return 0;
1664 
1665 		switch (host_byte(res)) {
1666 		/* ignore errors due to racing a disconnection */
1667 		case DID_BAD_TARGET:
1668 		case DID_NO_CONNECT:
1669 			return 0;
1670 		/* signal the upper layer it might try again */
1671 		case DID_BUS_BUSY:
1672 		case DID_IMM_RETRY:
1673 		case DID_REQUEUE:
1674 		case DID_SOFT_ERROR:
1675 			return -EBUSY;
1676 		default:
1677 			return -EIO;
1678 		}
1679 	}
1680 	return 0;
1681 }
1682 
1683 static void sd_rescan(struct device *dev)
1684 {
1685 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1686 
1687 	revalidate_disk(sdkp->disk);
1688 }
1689 
1690 
1691 #ifdef CONFIG_COMPAT
1692 /*
1693  * This gets directly called from VFS. When the ioctl
1694  * is not recognized we go back to the other translation paths.
1695  */
1696 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1697 			   unsigned int cmd, unsigned long arg)
1698 {
1699 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1700 	int error;
1701 
1702 	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1703 			(mode & FMODE_NDELAY) != 0);
1704 	if (error)
1705 		return error;
1706 
1707 	/*
1708 	 * Let the static ioctl translation table take care of it.
1709 	 */
1710 	if (!sdev->host->hostt->compat_ioctl)
1711 		return -ENOIOCTLCMD;
1712 	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1713 }
1714 #endif
1715 
1716 static char sd_pr_type(enum pr_type type)
1717 {
1718 	switch (type) {
1719 	case PR_WRITE_EXCLUSIVE:
1720 		return 0x01;
1721 	case PR_EXCLUSIVE_ACCESS:
1722 		return 0x03;
1723 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1724 		return 0x05;
1725 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1726 		return 0x06;
1727 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1728 		return 0x07;
1729 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1730 		return 0x08;
1731 	default:
1732 		return 0;
1733 	}
1734 };
1735 
1736 static int sd_pr_command(struct block_device *bdev, u8 sa,
1737 		u64 key, u64 sa_key, u8 type, u8 flags)
1738 {
1739 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1740 	struct scsi_sense_hdr sshdr;
1741 	int result;
1742 	u8 cmd[16] = { 0, };
1743 	u8 data[24] = { 0, };
1744 
1745 	cmd[0] = PERSISTENT_RESERVE_OUT;
1746 	cmd[1] = sa;
1747 	cmd[2] = type;
1748 	put_unaligned_be32(sizeof(data), &cmd[5]);
1749 
1750 	put_unaligned_be64(key, &data[0]);
1751 	put_unaligned_be64(sa_key, &data[8]);
1752 	data[20] = flags;
1753 
1754 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1755 			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1756 
1757 	if (driver_byte(result) == DRIVER_SENSE &&
1758 	    scsi_sense_valid(&sshdr)) {
1759 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1760 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1761 	}
1762 
1763 	return result;
1764 }
1765 
1766 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1767 		u32 flags)
1768 {
1769 	if (flags & ~PR_FL_IGNORE_KEY)
1770 		return -EOPNOTSUPP;
1771 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1772 			old_key, new_key, 0,
1773 			(1 << 0) /* APTPL */);
1774 }
1775 
1776 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1777 		u32 flags)
1778 {
1779 	if (flags)
1780 		return -EOPNOTSUPP;
1781 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1782 }
1783 
1784 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1785 {
1786 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1787 }
1788 
1789 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1790 		enum pr_type type, bool abort)
1791 {
1792 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1793 			     sd_pr_type(type), 0);
1794 }
1795 
1796 static int sd_pr_clear(struct block_device *bdev, u64 key)
1797 {
1798 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1799 }
1800 
1801 static const struct pr_ops sd_pr_ops = {
1802 	.pr_register	= sd_pr_register,
1803 	.pr_reserve	= sd_pr_reserve,
1804 	.pr_release	= sd_pr_release,
1805 	.pr_preempt	= sd_pr_preempt,
1806 	.pr_clear	= sd_pr_clear,
1807 };
1808 
1809 static const struct block_device_operations sd_fops = {
1810 	.owner			= THIS_MODULE,
1811 	.open			= sd_open,
1812 	.release		= sd_release,
1813 	.ioctl			= sd_ioctl,
1814 	.getgeo			= sd_getgeo,
1815 #ifdef CONFIG_COMPAT
1816 	.compat_ioctl		= sd_compat_ioctl,
1817 #endif
1818 	.check_events		= sd_check_events,
1819 	.revalidate_disk	= sd_revalidate_disk,
1820 	.unlock_native_capacity	= sd_unlock_native_capacity,
1821 	.report_zones		= sd_zbc_report_zones,
1822 	.pr_ops			= &sd_pr_ops,
1823 };
1824 
1825 /**
1826  *	sd_eh_reset - reset error handling callback
1827  *	@scmd:		sd-issued command that has failed
1828  *
1829  *	This function is called by the SCSI midlayer before starting
1830  *	SCSI EH. When counting medium access failures we have to be
1831  *	careful to register it only only once per device and SCSI EH run;
1832  *	there might be several timed out commands which will cause the
1833  *	'max_medium_access_timeouts' counter to trigger after the first
1834  *	SCSI EH run already and set the device to offline.
1835  *	So this function resets the internal counter before starting SCSI EH.
1836  **/
1837 static void sd_eh_reset(struct scsi_cmnd *scmd)
1838 {
1839 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1840 
1841 	/* New SCSI EH run, reset gate variable */
1842 	sdkp->ignore_medium_access_errors = false;
1843 }
1844 
1845 /**
1846  *	sd_eh_action - error handling callback
1847  *	@scmd:		sd-issued command that has failed
1848  *	@eh_disp:	The recovery disposition suggested by the midlayer
1849  *
1850  *	This function is called by the SCSI midlayer upon completion of an
1851  *	error test command (currently TEST UNIT READY). The result of sending
1852  *	the eh command is passed in eh_disp.  We're looking for devices that
1853  *	fail medium access commands but are OK with non access commands like
1854  *	test unit ready (so wrongly see the device as having a successful
1855  *	recovery)
1856  **/
1857 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1858 {
1859 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1860 	struct scsi_device *sdev = scmd->device;
1861 
1862 	if (!scsi_device_online(sdev) ||
1863 	    !scsi_medium_access_command(scmd) ||
1864 	    host_byte(scmd->result) != DID_TIME_OUT ||
1865 	    eh_disp != SUCCESS)
1866 		return eh_disp;
1867 
1868 	/*
1869 	 * The device has timed out executing a medium access command.
1870 	 * However, the TEST UNIT READY command sent during error
1871 	 * handling completed successfully. Either the device is in the
1872 	 * process of recovering or has it suffered an internal failure
1873 	 * that prevents access to the storage medium.
1874 	 */
1875 	if (!sdkp->ignore_medium_access_errors) {
1876 		sdkp->medium_access_timed_out++;
1877 		sdkp->ignore_medium_access_errors = true;
1878 	}
1879 
1880 	/*
1881 	 * If the device keeps failing read/write commands but TEST UNIT
1882 	 * READY always completes successfully we assume that medium
1883 	 * access is no longer possible and take the device offline.
1884 	 */
1885 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1886 		scmd_printk(KERN_ERR, scmd,
1887 			    "Medium access timeout failure. Offlining disk!\n");
1888 		mutex_lock(&sdev->state_mutex);
1889 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1890 		mutex_unlock(&sdev->state_mutex);
1891 
1892 		return SUCCESS;
1893 	}
1894 
1895 	return eh_disp;
1896 }
1897 
1898 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1899 {
1900 	struct request *req = scmd->request;
1901 	struct scsi_device *sdev = scmd->device;
1902 	unsigned int transferred, good_bytes;
1903 	u64 start_lba, end_lba, bad_lba;
1904 
1905 	/*
1906 	 * Some commands have a payload smaller than the device logical
1907 	 * block size (e.g. INQUIRY on a 4K disk).
1908 	 */
1909 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1910 		return 0;
1911 
1912 	/* Check if we have a 'bad_lba' information */
1913 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1914 				     SCSI_SENSE_BUFFERSIZE,
1915 				     &bad_lba))
1916 		return 0;
1917 
1918 	/*
1919 	 * If the bad lba was reported incorrectly, we have no idea where
1920 	 * the error is.
1921 	 */
1922 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1923 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1924 	if (bad_lba < start_lba || bad_lba >= end_lba)
1925 		return 0;
1926 
1927 	/*
1928 	 * resid is optional but mostly filled in.  When it's unused,
1929 	 * its value is zero, so we assume the whole buffer transferred
1930 	 */
1931 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1932 
1933 	/* This computation should always be done in terms of the
1934 	 * resolution of the device's medium.
1935 	 */
1936 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1937 
1938 	return min(good_bytes, transferred);
1939 }
1940 
1941 /**
1942  *	sd_done - bottom half handler: called when the lower level
1943  *	driver has completed (successfully or otherwise) a scsi command.
1944  *	@SCpnt: mid-level's per command structure.
1945  *
1946  *	Note: potentially run from within an ISR. Must not block.
1947  **/
1948 static int sd_done(struct scsi_cmnd *SCpnt)
1949 {
1950 	int result = SCpnt->result;
1951 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1952 	unsigned int sector_size = SCpnt->device->sector_size;
1953 	unsigned int resid;
1954 	struct scsi_sense_hdr sshdr;
1955 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1956 	struct request *req = SCpnt->request;
1957 	int sense_valid = 0;
1958 	int sense_deferred = 0;
1959 
1960 	switch (req_op(req)) {
1961 	case REQ_OP_DISCARD:
1962 	case REQ_OP_WRITE_ZEROES:
1963 	case REQ_OP_WRITE_SAME:
1964 	case REQ_OP_ZONE_RESET:
1965 		if (!result) {
1966 			good_bytes = blk_rq_bytes(req);
1967 			scsi_set_resid(SCpnt, 0);
1968 		} else {
1969 			good_bytes = 0;
1970 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1971 		}
1972 		break;
1973 	default:
1974 		/*
1975 		 * In case of bogus fw or device, we could end up having
1976 		 * an unaligned partial completion. Check this here and force
1977 		 * alignment.
1978 		 */
1979 		resid = scsi_get_resid(SCpnt);
1980 		if (resid & (sector_size - 1)) {
1981 			sd_printk(KERN_INFO, sdkp,
1982 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1983 				resid, sector_size);
1984 			resid = min(scsi_bufflen(SCpnt),
1985 				    round_up(resid, sector_size));
1986 			scsi_set_resid(SCpnt, resid);
1987 		}
1988 	}
1989 
1990 	if (result) {
1991 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1992 		if (sense_valid)
1993 			sense_deferred = scsi_sense_is_deferred(&sshdr);
1994 	}
1995 	sdkp->medium_access_timed_out = 0;
1996 
1997 	if (driver_byte(result) != DRIVER_SENSE &&
1998 	    (!sense_valid || sense_deferred))
1999 		goto out;
2000 
2001 	switch (sshdr.sense_key) {
2002 	case HARDWARE_ERROR:
2003 	case MEDIUM_ERROR:
2004 		good_bytes = sd_completed_bytes(SCpnt);
2005 		break;
2006 	case RECOVERED_ERROR:
2007 		good_bytes = scsi_bufflen(SCpnt);
2008 		break;
2009 	case NO_SENSE:
2010 		/* This indicates a false check condition, so ignore it.  An
2011 		 * unknown amount of data was transferred so treat it as an
2012 		 * error.
2013 		 */
2014 		SCpnt->result = 0;
2015 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2016 		break;
2017 	case ABORTED_COMMAND:
2018 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2019 			good_bytes = sd_completed_bytes(SCpnt);
2020 		break;
2021 	case ILLEGAL_REQUEST:
2022 		switch (sshdr.asc) {
2023 		case 0x10:	/* DIX: Host detected corruption */
2024 			good_bytes = sd_completed_bytes(SCpnt);
2025 			break;
2026 		case 0x20:	/* INVALID COMMAND OPCODE */
2027 		case 0x24:	/* INVALID FIELD IN CDB */
2028 			switch (SCpnt->cmnd[0]) {
2029 			case UNMAP:
2030 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2031 				break;
2032 			case WRITE_SAME_16:
2033 			case WRITE_SAME:
2034 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2035 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2036 				} else {
2037 					sdkp->device->no_write_same = 1;
2038 					sd_config_write_same(sdkp);
2039 					req->rq_flags |= RQF_QUIET;
2040 				}
2041 				break;
2042 			}
2043 		}
2044 		break;
2045 	default:
2046 		break;
2047 	}
2048 
2049  out:
2050 	if (sd_is_zoned(sdkp))
2051 		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2052 
2053 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2054 					   "sd_done: completed %d of %d bytes\n",
2055 					   good_bytes, scsi_bufflen(SCpnt)));
2056 
2057 	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt) &&
2058 	    good_bytes)
2059 		t10_pi_complete(SCpnt->request, sdkp->protection_type,
2060 				good_bytes / scsi_prot_interval(SCpnt));
2061 
2062 	return good_bytes;
2063 }
2064 
2065 /*
2066  * spinup disk - called only in sd_revalidate_disk()
2067  */
2068 static void
2069 sd_spinup_disk(struct scsi_disk *sdkp)
2070 {
2071 	unsigned char cmd[10];
2072 	unsigned long spintime_expire = 0;
2073 	int retries, spintime;
2074 	unsigned int the_result;
2075 	struct scsi_sense_hdr sshdr;
2076 	int sense_valid = 0;
2077 
2078 	spintime = 0;
2079 
2080 	/* Spin up drives, as required.  Only do this at boot time */
2081 	/* Spinup needs to be done for module loads too. */
2082 	do {
2083 		retries = 0;
2084 
2085 		do {
2086 			cmd[0] = TEST_UNIT_READY;
2087 			memset((void *) &cmd[1], 0, 9);
2088 
2089 			the_result = scsi_execute_req(sdkp->device, cmd,
2090 						      DMA_NONE, NULL, 0,
2091 						      &sshdr, SD_TIMEOUT,
2092 						      SD_MAX_RETRIES, NULL);
2093 
2094 			/*
2095 			 * If the drive has indicated to us that it
2096 			 * doesn't have any media in it, don't bother
2097 			 * with any more polling.
2098 			 */
2099 			if (media_not_present(sdkp, &sshdr))
2100 				return;
2101 
2102 			if (the_result)
2103 				sense_valid = scsi_sense_valid(&sshdr);
2104 			retries++;
2105 		} while (retries < 3 &&
2106 			 (!scsi_status_is_good(the_result) ||
2107 			  ((driver_byte(the_result) == DRIVER_SENSE) &&
2108 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2109 
2110 		if (driver_byte(the_result) != DRIVER_SENSE) {
2111 			/* no sense, TUR either succeeded or failed
2112 			 * with a status error */
2113 			if(!spintime && !scsi_status_is_good(the_result)) {
2114 				sd_print_result(sdkp, "Test Unit Ready failed",
2115 						the_result);
2116 			}
2117 			break;
2118 		}
2119 
2120 		/*
2121 		 * The device does not want the automatic start to be issued.
2122 		 */
2123 		if (sdkp->device->no_start_on_add)
2124 			break;
2125 
2126 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2127 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2128 				break;	/* manual intervention required */
2129 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2130 				break;	/* standby */
2131 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2132 				break;	/* unavailable */
2133 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2134 				break;	/* sanitize in progress */
2135 			/*
2136 			 * Issue command to spin up drive when not ready
2137 			 */
2138 			if (!spintime) {
2139 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2140 				cmd[0] = START_STOP;
2141 				cmd[1] = 1;	/* Return immediately */
2142 				memset((void *) &cmd[2], 0, 8);
2143 				cmd[4] = 1;	/* Start spin cycle */
2144 				if (sdkp->device->start_stop_pwr_cond)
2145 					cmd[4] |= 1 << 4;
2146 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2147 						 NULL, 0, &sshdr,
2148 						 SD_TIMEOUT, SD_MAX_RETRIES,
2149 						 NULL);
2150 				spintime_expire = jiffies + 100 * HZ;
2151 				spintime = 1;
2152 			}
2153 			/* Wait 1 second for next try */
2154 			msleep(1000);
2155 			printk(KERN_CONT ".");
2156 
2157 		/*
2158 		 * Wait for USB flash devices with slow firmware.
2159 		 * Yes, this sense key/ASC combination shouldn't
2160 		 * occur here.  It's characteristic of these devices.
2161 		 */
2162 		} else if (sense_valid &&
2163 				sshdr.sense_key == UNIT_ATTENTION &&
2164 				sshdr.asc == 0x28) {
2165 			if (!spintime) {
2166 				spintime_expire = jiffies + 5 * HZ;
2167 				spintime = 1;
2168 			}
2169 			/* Wait 1 second for next try */
2170 			msleep(1000);
2171 		} else {
2172 			/* we don't understand the sense code, so it's
2173 			 * probably pointless to loop */
2174 			if(!spintime) {
2175 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2176 				sd_print_sense_hdr(sdkp, &sshdr);
2177 			}
2178 			break;
2179 		}
2180 
2181 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2182 
2183 	if (spintime) {
2184 		if (scsi_status_is_good(the_result))
2185 			printk(KERN_CONT "ready\n");
2186 		else
2187 			printk(KERN_CONT "not responding...\n");
2188 	}
2189 }
2190 
2191 /*
2192  * Determine whether disk supports Data Integrity Field.
2193  */
2194 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2195 {
2196 	struct scsi_device *sdp = sdkp->device;
2197 	u8 type;
2198 	int ret = 0;
2199 
2200 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2201 		return ret;
2202 
2203 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2204 
2205 	if (type > T10_PI_TYPE3_PROTECTION)
2206 		ret = -ENODEV;
2207 	else if (scsi_host_dif_capable(sdp->host, type))
2208 		ret = 1;
2209 
2210 	if (sdkp->first_scan || type != sdkp->protection_type)
2211 		switch (ret) {
2212 		case -ENODEV:
2213 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2214 				  " protection type %u. Disabling disk!\n",
2215 				  type);
2216 			break;
2217 		case 1:
2218 			sd_printk(KERN_NOTICE, sdkp,
2219 				  "Enabling DIF Type %u protection\n", type);
2220 			break;
2221 		case 0:
2222 			sd_printk(KERN_NOTICE, sdkp,
2223 				  "Disabling DIF Type %u protection\n", type);
2224 			break;
2225 		}
2226 
2227 	sdkp->protection_type = type;
2228 
2229 	return ret;
2230 }
2231 
2232 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2233 			struct scsi_sense_hdr *sshdr, int sense_valid,
2234 			int the_result)
2235 {
2236 	if (driver_byte(the_result) == DRIVER_SENSE)
2237 		sd_print_sense_hdr(sdkp, sshdr);
2238 	else
2239 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2240 
2241 	/*
2242 	 * Set dirty bit for removable devices if not ready -
2243 	 * sometimes drives will not report this properly.
2244 	 */
2245 	if (sdp->removable &&
2246 	    sense_valid && sshdr->sense_key == NOT_READY)
2247 		set_media_not_present(sdkp);
2248 
2249 	/*
2250 	 * We used to set media_present to 0 here to indicate no media
2251 	 * in the drive, but some drives fail read capacity even with
2252 	 * media present, so we can't do that.
2253 	 */
2254 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2255 }
2256 
2257 #define RC16_LEN 32
2258 #if RC16_LEN > SD_BUF_SIZE
2259 #error RC16_LEN must not be more than SD_BUF_SIZE
2260 #endif
2261 
2262 #define READ_CAPACITY_RETRIES_ON_RESET	10
2263 
2264 /*
2265  * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2266  * and the reported logical block size is bigger than 512 bytes. Note
2267  * that last_sector is a u64 and therefore logical_to_sectors() is not
2268  * applicable.
2269  */
2270 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2271 {
2272 	u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2273 
2274 	if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2275 		return false;
2276 
2277 	return true;
2278 }
2279 
2280 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2281 						unsigned char *buffer)
2282 {
2283 	unsigned char cmd[16];
2284 	struct scsi_sense_hdr sshdr;
2285 	int sense_valid = 0;
2286 	int the_result;
2287 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2288 	unsigned int alignment;
2289 	unsigned long long lba;
2290 	unsigned sector_size;
2291 
2292 	if (sdp->no_read_capacity_16)
2293 		return -EINVAL;
2294 
2295 	do {
2296 		memset(cmd, 0, 16);
2297 		cmd[0] = SERVICE_ACTION_IN_16;
2298 		cmd[1] = SAI_READ_CAPACITY_16;
2299 		cmd[13] = RC16_LEN;
2300 		memset(buffer, 0, RC16_LEN);
2301 
2302 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2303 					buffer, RC16_LEN, &sshdr,
2304 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2305 
2306 		if (media_not_present(sdkp, &sshdr))
2307 			return -ENODEV;
2308 
2309 		if (the_result) {
2310 			sense_valid = scsi_sense_valid(&sshdr);
2311 			if (sense_valid &&
2312 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2313 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2314 			    sshdr.ascq == 0x00)
2315 				/* Invalid Command Operation Code or
2316 				 * Invalid Field in CDB, just retry
2317 				 * silently with RC10 */
2318 				return -EINVAL;
2319 			if (sense_valid &&
2320 			    sshdr.sense_key == UNIT_ATTENTION &&
2321 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2322 				/* Device reset might occur several times,
2323 				 * give it one more chance */
2324 				if (--reset_retries > 0)
2325 					continue;
2326 		}
2327 		retries--;
2328 
2329 	} while (the_result && retries);
2330 
2331 	if (the_result) {
2332 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2333 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2334 		return -EINVAL;
2335 	}
2336 
2337 	sector_size = get_unaligned_be32(&buffer[8]);
2338 	lba = get_unaligned_be64(&buffer[0]);
2339 
2340 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2341 		sdkp->capacity = 0;
2342 		return -ENODEV;
2343 	}
2344 
2345 	if (!sd_addressable_capacity(lba, sector_size)) {
2346 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2347 			"kernel compiled with support for large block "
2348 			"devices.\n");
2349 		sdkp->capacity = 0;
2350 		return -EOVERFLOW;
2351 	}
2352 
2353 	/* Logical blocks per physical block exponent */
2354 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2355 
2356 	/* RC basis */
2357 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2358 
2359 	/* Lowest aligned logical block */
2360 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2361 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2362 	if (alignment && sdkp->first_scan)
2363 		sd_printk(KERN_NOTICE, sdkp,
2364 			  "physical block alignment offset: %u\n", alignment);
2365 
2366 	if (buffer[14] & 0x80) { /* LBPME */
2367 		sdkp->lbpme = 1;
2368 
2369 		if (buffer[14] & 0x40) /* LBPRZ */
2370 			sdkp->lbprz = 1;
2371 
2372 		sd_config_discard(sdkp, SD_LBP_WS16);
2373 	}
2374 
2375 	sdkp->capacity = lba + 1;
2376 	return sector_size;
2377 }
2378 
2379 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2380 						unsigned char *buffer)
2381 {
2382 	unsigned char cmd[16];
2383 	struct scsi_sense_hdr sshdr;
2384 	int sense_valid = 0;
2385 	int the_result;
2386 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2387 	sector_t lba;
2388 	unsigned sector_size;
2389 
2390 	do {
2391 		cmd[0] = READ_CAPACITY;
2392 		memset(&cmd[1], 0, 9);
2393 		memset(buffer, 0, 8);
2394 
2395 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2396 					buffer, 8, &sshdr,
2397 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2398 
2399 		if (media_not_present(sdkp, &sshdr))
2400 			return -ENODEV;
2401 
2402 		if (the_result) {
2403 			sense_valid = scsi_sense_valid(&sshdr);
2404 			if (sense_valid &&
2405 			    sshdr.sense_key == UNIT_ATTENTION &&
2406 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2407 				/* Device reset might occur several times,
2408 				 * give it one more chance */
2409 				if (--reset_retries > 0)
2410 					continue;
2411 		}
2412 		retries--;
2413 
2414 	} while (the_result && retries);
2415 
2416 	if (the_result) {
2417 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2418 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2419 		return -EINVAL;
2420 	}
2421 
2422 	sector_size = get_unaligned_be32(&buffer[4]);
2423 	lba = get_unaligned_be32(&buffer[0]);
2424 
2425 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2426 		/* Some buggy (usb cardreader) devices return an lba of
2427 		   0xffffffff when the want to report a size of 0 (with
2428 		   which they really mean no media is present) */
2429 		sdkp->capacity = 0;
2430 		sdkp->physical_block_size = sector_size;
2431 		return sector_size;
2432 	}
2433 
2434 	if (!sd_addressable_capacity(lba, sector_size)) {
2435 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2436 			"kernel compiled with support for large block "
2437 			"devices.\n");
2438 		sdkp->capacity = 0;
2439 		return -EOVERFLOW;
2440 	}
2441 
2442 	sdkp->capacity = lba + 1;
2443 	sdkp->physical_block_size = sector_size;
2444 	return sector_size;
2445 }
2446 
2447 static int sd_try_rc16_first(struct scsi_device *sdp)
2448 {
2449 	if (sdp->host->max_cmd_len < 16)
2450 		return 0;
2451 	if (sdp->try_rc_10_first)
2452 		return 0;
2453 	if (sdp->scsi_level > SCSI_SPC_2)
2454 		return 1;
2455 	if (scsi_device_protection(sdp))
2456 		return 1;
2457 	return 0;
2458 }
2459 
2460 /*
2461  * read disk capacity
2462  */
2463 static void
2464 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2465 {
2466 	int sector_size;
2467 	struct scsi_device *sdp = sdkp->device;
2468 
2469 	if (sd_try_rc16_first(sdp)) {
2470 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2471 		if (sector_size == -EOVERFLOW)
2472 			goto got_data;
2473 		if (sector_size == -ENODEV)
2474 			return;
2475 		if (sector_size < 0)
2476 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2477 		if (sector_size < 0)
2478 			return;
2479 	} else {
2480 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2481 		if (sector_size == -EOVERFLOW)
2482 			goto got_data;
2483 		if (sector_size < 0)
2484 			return;
2485 		if ((sizeof(sdkp->capacity) > 4) &&
2486 		    (sdkp->capacity > 0xffffffffULL)) {
2487 			int old_sector_size = sector_size;
2488 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2489 					"Trying to use READ CAPACITY(16).\n");
2490 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2491 			if (sector_size < 0) {
2492 				sd_printk(KERN_NOTICE, sdkp,
2493 					"Using 0xffffffff as device size\n");
2494 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2495 				sector_size = old_sector_size;
2496 				goto got_data;
2497 			}
2498 			/* Remember that READ CAPACITY(16) succeeded */
2499 			sdp->try_rc_10_first = 0;
2500 		}
2501 	}
2502 
2503 	/* Some devices are known to return the total number of blocks,
2504 	 * not the highest block number.  Some devices have versions
2505 	 * which do this and others which do not.  Some devices we might
2506 	 * suspect of doing this but we don't know for certain.
2507 	 *
2508 	 * If we know the reported capacity is wrong, decrement it.  If
2509 	 * we can only guess, then assume the number of blocks is even
2510 	 * (usually true but not always) and err on the side of lowering
2511 	 * the capacity.
2512 	 */
2513 	if (sdp->fix_capacity ||
2514 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2515 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2516 				"from its reported value: %llu\n",
2517 				(unsigned long long) sdkp->capacity);
2518 		--sdkp->capacity;
2519 	}
2520 
2521 got_data:
2522 	if (sector_size == 0) {
2523 		sector_size = 512;
2524 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2525 			  "assuming 512.\n");
2526 	}
2527 
2528 	if (sector_size != 512 &&
2529 	    sector_size != 1024 &&
2530 	    sector_size != 2048 &&
2531 	    sector_size != 4096) {
2532 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2533 			  sector_size);
2534 		/*
2535 		 * The user might want to re-format the drive with
2536 		 * a supported sectorsize.  Once this happens, it
2537 		 * would be relatively trivial to set the thing up.
2538 		 * For this reason, we leave the thing in the table.
2539 		 */
2540 		sdkp->capacity = 0;
2541 		/*
2542 		 * set a bogus sector size so the normal read/write
2543 		 * logic in the block layer will eventually refuse any
2544 		 * request on this device without tripping over power
2545 		 * of two sector size assumptions
2546 		 */
2547 		sector_size = 512;
2548 	}
2549 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2550 	blk_queue_physical_block_size(sdp->request_queue,
2551 				      sdkp->physical_block_size);
2552 	sdkp->device->sector_size = sector_size;
2553 
2554 	if (sdkp->capacity > 0xffffffff)
2555 		sdp->use_16_for_rw = 1;
2556 
2557 }
2558 
2559 /*
2560  * Print disk capacity
2561  */
2562 static void
2563 sd_print_capacity(struct scsi_disk *sdkp,
2564 		  sector_t old_capacity)
2565 {
2566 	int sector_size = sdkp->device->sector_size;
2567 	char cap_str_2[10], cap_str_10[10];
2568 
2569 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2570 		return;
2571 
2572 	string_get_size(sdkp->capacity, sector_size,
2573 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2574 	string_get_size(sdkp->capacity, sector_size,
2575 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2576 
2577 	sd_printk(KERN_NOTICE, sdkp,
2578 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2579 		  (unsigned long long)sdkp->capacity,
2580 		  sector_size, cap_str_10, cap_str_2);
2581 
2582 	if (sdkp->physical_block_size != sector_size)
2583 		sd_printk(KERN_NOTICE, sdkp,
2584 			  "%u-byte physical blocks\n",
2585 			  sdkp->physical_block_size);
2586 
2587 	sd_zbc_print_zones(sdkp);
2588 }
2589 
2590 /* called with buffer of length 512 */
2591 static inline int
2592 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2593 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2594 		 struct scsi_sense_hdr *sshdr)
2595 {
2596 	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2597 			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2598 			       sshdr);
2599 }
2600 
2601 /*
2602  * read write protect setting, if possible - called only in sd_revalidate_disk()
2603  * called with buffer of length SD_BUF_SIZE
2604  */
2605 static void
2606 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2607 {
2608 	int res;
2609 	struct scsi_device *sdp = sdkp->device;
2610 	struct scsi_mode_data data;
2611 	int disk_ro = get_disk_ro(sdkp->disk);
2612 	int old_wp = sdkp->write_prot;
2613 
2614 	set_disk_ro(sdkp->disk, 0);
2615 	if (sdp->skip_ms_page_3f) {
2616 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2617 		return;
2618 	}
2619 
2620 	if (sdp->use_192_bytes_for_3f) {
2621 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2622 	} else {
2623 		/*
2624 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2625 		 * We have to start carefully: some devices hang if we ask
2626 		 * for more than is available.
2627 		 */
2628 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2629 
2630 		/*
2631 		 * Second attempt: ask for page 0 When only page 0 is
2632 		 * implemented, a request for page 3F may return Sense Key
2633 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2634 		 * CDB.
2635 		 */
2636 		if (!scsi_status_is_good(res))
2637 			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2638 
2639 		/*
2640 		 * Third attempt: ask 255 bytes, as we did earlier.
2641 		 */
2642 		if (!scsi_status_is_good(res))
2643 			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2644 					       &data, NULL);
2645 	}
2646 
2647 	if (!scsi_status_is_good(res)) {
2648 		sd_first_printk(KERN_WARNING, sdkp,
2649 			  "Test WP failed, assume Write Enabled\n");
2650 	} else {
2651 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2652 		set_disk_ro(sdkp->disk, sdkp->write_prot || disk_ro);
2653 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2654 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2655 				  sdkp->write_prot ? "on" : "off");
2656 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2657 		}
2658 	}
2659 }
2660 
2661 /*
2662  * sd_read_cache_type - called only from sd_revalidate_disk()
2663  * called with buffer of length SD_BUF_SIZE
2664  */
2665 static void
2666 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2667 {
2668 	int len = 0, res;
2669 	struct scsi_device *sdp = sdkp->device;
2670 
2671 	int dbd;
2672 	int modepage;
2673 	int first_len;
2674 	struct scsi_mode_data data;
2675 	struct scsi_sense_hdr sshdr;
2676 	int old_wce = sdkp->WCE;
2677 	int old_rcd = sdkp->RCD;
2678 	int old_dpofua = sdkp->DPOFUA;
2679 
2680 
2681 	if (sdkp->cache_override)
2682 		return;
2683 
2684 	first_len = 4;
2685 	if (sdp->skip_ms_page_8) {
2686 		if (sdp->type == TYPE_RBC)
2687 			goto defaults;
2688 		else {
2689 			if (sdp->skip_ms_page_3f)
2690 				goto defaults;
2691 			modepage = 0x3F;
2692 			if (sdp->use_192_bytes_for_3f)
2693 				first_len = 192;
2694 			dbd = 0;
2695 		}
2696 	} else if (sdp->type == TYPE_RBC) {
2697 		modepage = 6;
2698 		dbd = 8;
2699 	} else {
2700 		modepage = 8;
2701 		dbd = 0;
2702 	}
2703 
2704 	/* cautiously ask */
2705 	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2706 			&data, &sshdr);
2707 
2708 	if (!scsi_status_is_good(res))
2709 		goto bad_sense;
2710 
2711 	if (!data.header_length) {
2712 		modepage = 6;
2713 		first_len = 0;
2714 		sd_first_printk(KERN_ERR, sdkp,
2715 				"Missing header in MODE_SENSE response\n");
2716 	}
2717 
2718 	/* that went OK, now ask for the proper length */
2719 	len = data.length;
2720 
2721 	/*
2722 	 * We're only interested in the first three bytes, actually.
2723 	 * But the data cache page is defined for the first 20.
2724 	 */
2725 	if (len < 3)
2726 		goto bad_sense;
2727 	else if (len > SD_BUF_SIZE) {
2728 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2729 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2730 		len = SD_BUF_SIZE;
2731 	}
2732 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2733 		len = 192;
2734 
2735 	/* Get the data */
2736 	if (len > first_len)
2737 		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2738 				&data, &sshdr);
2739 
2740 	if (scsi_status_is_good(res)) {
2741 		int offset = data.header_length + data.block_descriptor_length;
2742 
2743 		while (offset < len) {
2744 			u8 page_code = buffer[offset] & 0x3F;
2745 			u8 spf       = buffer[offset] & 0x40;
2746 
2747 			if (page_code == 8 || page_code == 6) {
2748 				/* We're interested only in the first 3 bytes.
2749 				 */
2750 				if (len - offset <= 2) {
2751 					sd_first_printk(KERN_ERR, sdkp,
2752 						"Incomplete mode parameter "
2753 							"data\n");
2754 					goto defaults;
2755 				} else {
2756 					modepage = page_code;
2757 					goto Page_found;
2758 				}
2759 			} else {
2760 				/* Go to the next page */
2761 				if (spf && len - offset > 3)
2762 					offset += 4 + (buffer[offset+2] << 8) +
2763 						buffer[offset+3];
2764 				else if (!spf && len - offset > 1)
2765 					offset += 2 + buffer[offset+1];
2766 				else {
2767 					sd_first_printk(KERN_ERR, sdkp,
2768 							"Incomplete mode "
2769 							"parameter data\n");
2770 					goto defaults;
2771 				}
2772 			}
2773 		}
2774 
2775 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2776 		goto defaults;
2777 
2778 	Page_found:
2779 		if (modepage == 8) {
2780 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2781 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2782 		} else {
2783 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2784 			sdkp->RCD = 0;
2785 		}
2786 
2787 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2788 		if (sdp->broken_fua) {
2789 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2790 			sdkp->DPOFUA = 0;
2791 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2792 			   !sdkp->device->use_16_for_rw) {
2793 			sd_first_printk(KERN_NOTICE, sdkp,
2794 				  "Uses READ/WRITE(6), disabling FUA\n");
2795 			sdkp->DPOFUA = 0;
2796 		}
2797 
2798 		/* No cache flush allowed for write protected devices */
2799 		if (sdkp->WCE && sdkp->write_prot)
2800 			sdkp->WCE = 0;
2801 
2802 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2803 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2804 			sd_printk(KERN_NOTICE, sdkp,
2805 				  "Write cache: %s, read cache: %s, %s\n",
2806 				  sdkp->WCE ? "enabled" : "disabled",
2807 				  sdkp->RCD ? "disabled" : "enabled",
2808 				  sdkp->DPOFUA ? "supports DPO and FUA"
2809 				  : "doesn't support DPO or FUA");
2810 
2811 		return;
2812 	}
2813 
2814 bad_sense:
2815 	if (scsi_sense_valid(&sshdr) &&
2816 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2817 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2818 		/* Invalid field in CDB */
2819 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2820 	else
2821 		sd_first_printk(KERN_ERR, sdkp,
2822 				"Asking for cache data failed\n");
2823 
2824 defaults:
2825 	if (sdp->wce_default_on) {
2826 		sd_first_printk(KERN_NOTICE, sdkp,
2827 				"Assuming drive cache: write back\n");
2828 		sdkp->WCE = 1;
2829 	} else {
2830 		sd_first_printk(KERN_ERR, sdkp,
2831 				"Assuming drive cache: write through\n");
2832 		sdkp->WCE = 0;
2833 	}
2834 	sdkp->RCD = 0;
2835 	sdkp->DPOFUA = 0;
2836 }
2837 
2838 /*
2839  * The ATO bit indicates whether the DIF application tag is available
2840  * for use by the operating system.
2841  */
2842 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2843 {
2844 	int res, offset;
2845 	struct scsi_device *sdp = sdkp->device;
2846 	struct scsi_mode_data data;
2847 	struct scsi_sense_hdr sshdr;
2848 
2849 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2850 		return;
2851 
2852 	if (sdkp->protection_type == 0)
2853 		return;
2854 
2855 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2856 			      SD_MAX_RETRIES, &data, &sshdr);
2857 
2858 	if (!scsi_status_is_good(res) || !data.header_length ||
2859 	    data.length < 6) {
2860 		sd_first_printk(KERN_WARNING, sdkp,
2861 			  "getting Control mode page failed, assume no ATO\n");
2862 
2863 		if (scsi_sense_valid(&sshdr))
2864 			sd_print_sense_hdr(sdkp, &sshdr);
2865 
2866 		return;
2867 	}
2868 
2869 	offset = data.header_length + data.block_descriptor_length;
2870 
2871 	if ((buffer[offset] & 0x3f) != 0x0a) {
2872 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2873 		return;
2874 	}
2875 
2876 	if ((buffer[offset + 5] & 0x80) == 0)
2877 		return;
2878 
2879 	sdkp->ATO = 1;
2880 
2881 	return;
2882 }
2883 
2884 /**
2885  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2886  * @sdkp: disk to query
2887  */
2888 static void sd_read_block_limits(struct scsi_disk *sdkp)
2889 {
2890 	unsigned int sector_sz = sdkp->device->sector_size;
2891 	const int vpd_len = 64;
2892 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2893 
2894 	if (!buffer ||
2895 	    /* Block Limits VPD */
2896 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2897 		goto out;
2898 
2899 	blk_queue_io_min(sdkp->disk->queue,
2900 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2901 
2902 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2903 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2904 
2905 	if (buffer[3] == 0x3c) {
2906 		unsigned int lba_count, desc_count;
2907 
2908 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2909 
2910 		if (!sdkp->lbpme)
2911 			goto out;
2912 
2913 		lba_count = get_unaligned_be32(&buffer[20]);
2914 		desc_count = get_unaligned_be32(&buffer[24]);
2915 
2916 		if (lba_count && desc_count)
2917 			sdkp->max_unmap_blocks = lba_count;
2918 
2919 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2920 
2921 		if (buffer[32] & 0x80)
2922 			sdkp->unmap_alignment =
2923 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2924 
2925 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2926 
2927 			if (sdkp->max_unmap_blocks)
2928 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2929 			else
2930 				sd_config_discard(sdkp, SD_LBP_WS16);
2931 
2932 		} else {	/* LBP VPD page tells us what to use */
2933 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2934 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2935 			else if (sdkp->lbpws)
2936 				sd_config_discard(sdkp, SD_LBP_WS16);
2937 			else if (sdkp->lbpws10)
2938 				sd_config_discard(sdkp, SD_LBP_WS10);
2939 			else
2940 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2941 		}
2942 	}
2943 
2944  out:
2945 	kfree(buffer);
2946 }
2947 
2948 /**
2949  * sd_read_block_characteristics - Query block dev. characteristics
2950  * @sdkp: disk to query
2951  */
2952 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2953 {
2954 	struct request_queue *q = sdkp->disk->queue;
2955 	unsigned char *buffer;
2956 	u16 rot;
2957 	const int vpd_len = 64;
2958 
2959 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2960 
2961 	if (!buffer ||
2962 	    /* Block Device Characteristics VPD */
2963 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2964 		goto out;
2965 
2966 	rot = get_unaligned_be16(&buffer[4]);
2967 
2968 	if (rot == 1) {
2969 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2970 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2971 	}
2972 
2973 	if (sdkp->device->type == TYPE_ZBC) {
2974 		/* Host-managed */
2975 		q->limits.zoned = BLK_ZONED_HM;
2976 	} else {
2977 		sdkp->zoned = (buffer[8] >> 4) & 3;
2978 		if (sdkp->zoned == 1)
2979 			/* Host-aware */
2980 			q->limits.zoned = BLK_ZONED_HA;
2981 		else
2982 			/*
2983 			 * Treat drive-managed devices as
2984 			 * regular block devices.
2985 			 */
2986 			q->limits.zoned = BLK_ZONED_NONE;
2987 	}
2988 	if (blk_queue_is_zoned(q) && sdkp->first_scan)
2989 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2990 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2991 
2992  out:
2993 	kfree(buffer);
2994 }
2995 
2996 /**
2997  * sd_read_block_provisioning - Query provisioning VPD page
2998  * @sdkp: disk to query
2999  */
3000 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3001 {
3002 	unsigned char *buffer;
3003 	const int vpd_len = 8;
3004 
3005 	if (sdkp->lbpme == 0)
3006 		return;
3007 
3008 	buffer = kmalloc(vpd_len, GFP_KERNEL);
3009 
3010 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3011 		goto out;
3012 
3013 	sdkp->lbpvpd	= 1;
3014 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
3015 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
3016 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
3017 
3018  out:
3019 	kfree(buffer);
3020 }
3021 
3022 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3023 {
3024 	struct scsi_device *sdev = sdkp->device;
3025 
3026 	if (sdev->host->no_write_same) {
3027 		sdev->no_write_same = 1;
3028 
3029 		return;
3030 	}
3031 
3032 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3033 		/* too large values might cause issues with arcmsr */
3034 		int vpd_buf_len = 64;
3035 
3036 		sdev->no_report_opcodes = 1;
3037 
3038 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3039 		 * CODES is unsupported and the device has an ATA
3040 		 * Information VPD page (SAT).
3041 		 */
3042 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3043 			sdev->no_write_same = 1;
3044 	}
3045 
3046 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3047 		sdkp->ws16 = 1;
3048 
3049 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3050 		sdkp->ws10 = 1;
3051 }
3052 
3053 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3054 {
3055 	struct scsi_device *sdev = sdkp->device;
3056 
3057 	if (!sdev->security_supported)
3058 		return;
3059 
3060 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3061 			SECURITY_PROTOCOL_IN) == 1 &&
3062 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3063 			SECURITY_PROTOCOL_OUT) == 1)
3064 		sdkp->security = 1;
3065 }
3066 
3067 /*
3068  * Determine the device's preferred I/O size for reads and writes
3069  * unless the reported value is unreasonably small, large, not a
3070  * multiple of the physical block size, or simply garbage.
3071  */
3072 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3073 				      unsigned int dev_max)
3074 {
3075 	struct scsi_device *sdp = sdkp->device;
3076 	unsigned int opt_xfer_bytes =
3077 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3078 
3079 	if (sdkp->opt_xfer_blocks > dev_max) {
3080 		sd_first_printk(KERN_WARNING, sdkp,
3081 				"Optimal transfer size %u logical blocks " \
3082 				"> dev_max (%u logical blocks)\n",
3083 				sdkp->opt_xfer_blocks, dev_max);
3084 		return false;
3085 	}
3086 
3087 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3088 		sd_first_printk(KERN_WARNING, sdkp,
3089 				"Optimal transfer size %u logical blocks " \
3090 				"> sd driver limit (%u logical blocks)\n",
3091 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3092 		return false;
3093 	}
3094 
3095 	if (opt_xfer_bytes < PAGE_SIZE) {
3096 		sd_first_printk(KERN_WARNING, sdkp,
3097 				"Optimal transfer size %u bytes < " \
3098 				"PAGE_SIZE (%u bytes)\n",
3099 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3100 		return false;
3101 	}
3102 
3103 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3104 		sd_first_printk(KERN_WARNING, sdkp,
3105 				"Optimal transfer size %u bytes not a " \
3106 				"multiple of physical block size (%u bytes)\n",
3107 				opt_xfer_bytes, sdkp->physical_block_size);
3108 		return false;
3109 	}
3110 
3111 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3112 			opt_xfer_bytes);
3113 	return true;
3114 }
3115 
3116 /**
3117  *	sd_revalidate_disk - called the first time a new disk is seen,
3118  *	performs disk spin up, read_capacity, etc.
3119  *	@disk: struct gendisk we care about
3120  **/
3121 static int sd_revalidate_disk(struct gendisk *disk)
3122 {
3123 	struct scsi_disk *sdkp = scsi_disk(disk);
3124 	struct scsi_device *sdp = sdkp->device;
3125 	struct request_queue *q = sdkp->disk->queue;
3126 	sector_t old_capacity = sdkp->capacity;
3127 	unsigned char *buffer;
3128 	unsigned int dev_max, rw_max;
3129 
3130 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3131 				      "sd_revalidate_disk\n"));
3132 
3133 	/*
3134 	 * If the device is offline, don't try and read capacity or any
3135 	 * of the other niceties.
3136 	 */
3137 	if (!scsi_device_online(sdp))
3138 		goto out;
3139 
3140 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3141 	if (!buffer) {
3142 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3143 			  "allocation failure.\n");
3144 		goto out;
3145 	}
3146 
3147 	sd_spinup_disk(sdkp);
3148 
3149 	/*
3150 	 * Without media there is no reason to ask; moreover, some devices
3151 	 * react badly if we do.
3152 	 */
3153 	if (sdkp->media_present) {
3154 		sd_read_capacity(sdkp, buffer);
3155 
3156 		/*
3157 		 * set the default to rotational.  All non-rotational devices
3158 		 * support the block characteristics VPD page, which will
3159 		 * cause this to be updated correctly and any device which
3160 		 * doesn't support it should be treated as rotational.
3161 		 */
3162 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3163 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3164 
3165 		if (scsi_device_supports_vpd(sdp)) {
3166 			sd_read_block_provisioning(sdkp);
3167 			sd_read_block_limits(sdkp);
3168 			sd_read_block_characteristics(sdkp);
3169 			sd_zbc_read_zones(sdkp, buffer);
3170 		}
3171 
3172 		sd_print_capacity(sdkp, old_capacity);
3173 
3174 		sd_read_write_protect_flag(sdkp, buffer);
3175 		sd_read_cache_type(sdkp, buffer);
3176 		sd_read_app_tag_own(sdkp, buffer);
3177 		sd_read_write_same(sdkp, buffer);
3178 		sd_read_security(sdkp, buffer);
3179 	}
3180 
3181 	/*
3182 	 * We now have all cache related info, determine how we deal
3183 	 * with flush requests.
3184 	 */
3185 	sd_set_flush_flag(sdkp);
3186 
3187 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3188 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3189 
3190 	/* Some devices report a maximum block count for READ/WRITE requests. */
3191 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3192 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3193 
3194 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3195 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3196 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3197 	} else
3198 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3199 				      (sector_t)BLK_DEF_MAX_SECTORS);
3200 
3201 	/* Do not exceed controller limit */
3202 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3203 
3204 	/*
3205 	 * Only update max_sectors if previously unset or if the current value
3206 	 * exceeds the capabilities of the hardware.
3207 	 */
3208 	if (sdkp->first_scan ||
3209 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3210 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3211 		q->limits.max_sectors = rw_max;
3212 
3213 	sdkp->first_scan = 0;
3214 
3215 	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3216 	sd_config_write_same(sdkp);
3217 	kfree(buffer);
3218 
3219  out:
3220 	return 0;
3221 }
3222 
3223 /**
3224  *	sd_unlock_native_capacity - unlock native capacity
3225  *	@disk: struct gendisk to set capacity for
3226  *
3227  *	Block layer calls this function if it detects that partitions
3228  *	on @disk reach beyond the end of the device.  If the SCSI host
3229  *	implements ->unlock_native_capacity() method, it's invoked to
3230  *	give it a chance to adjust the device capacity.
3231  *
3232  *	CONTEXT:
3233  *	Defined by block layer.  Might sleep.
3234  */
3235 static void sd_unlock_native_capacity(struct gendisk *disk)
3236 {
3237 	struct scsi_device *sdev = scsi_disk(disk)->device;
3238 
3239 	if (sdev->host->hostt->unlock_native_capacity)
3240 		sdev->host->hostt->unlock_native_capacity(sdev);
3241 }
3242 
3243 /**
3244  *	sd_format_disk_name - format disk name
3245  *	@prefix: name prefix - ie. "sd" for SCSI disks
3246  *	@index: index of the disk to format name for
3247  *	@buf: output buffer
3248  *	@buflen: length of the output buffer
3249  *
3250  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3251  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3252  *	which is followed by sdaaa.
3253  *
3254  *	This is basically 26 base counting with one extra 'nil' entry
3255  *	at the beginning from the second digit on and can be
3256  *	determined using similar method as 26 base conversion with the
3257  *	index shifted -1 after each digit is computed.
3258  *
3259  *	CONTEXT:
3260  *	Don't care.
3261  *
3262  *	RETURNS:
3263  *	0 on success, -errno on failure.
3264  */
3265 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3266 {
3267 	const int base = 'z' - 'a' + 1;
3268 	char *begin = buf + strlen(prefix);
3269 	char *end = buf + buflen;
3270 	char *p;
3271 	int unit;
3272 
3273 	p = end - 1;
3274 	*p = '\0';
3275 	unit = base;
3276 	do {
3277 		if (p == begin)
3278 			return -EINVAL;
3279 		*--p = 'a' + (index % unit);
3280 		index = (index / unit) - 1;
3281 	} while (index >= 0);
3282 
3283 	memmove(begin, p, end - p);
3284 	memcpy(buf, prefix, strlen(prefix));
3285 
3286 	return 0;
3287 }
3288 
3289 /*
3290  * The asynchronous part of sd_probe
3291  */
3292 static void sd_probe_async(void *data, async_cookie_t cookie)
3293 {
3294 	struct scsi_disk *sdkp = data;
3295 	struct scsi_device *sdp;
3296 	struct gendisk *gd;
3297 	u32 index;
3298 	struct device *dev;
3299 
3300 	sdp = sdkp->device;
3301 	gd = sdkp->disk;
3302 	index = sdkp->index;
3303 	dev = &sdp->sdev_gendev;
3304 
3305 	gd->major = sd_major((index & 0xf0) >> 4);
3306 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3307 
3308 	gd->fops = &sd_fops;
3309 	gd->private_data = &sdkp->driver;
3310 	gd->queue = sdkp->device->request_queue;
3311 
3312 	/* defaults, until the device tells us otherwise */
3313 	sdp->sector_size = 512;
3314 	sdkp->capacity = 0;
3315 	sdkp->media_present = 1;
3316 	sdkp->write_prot = 0;
3317 	sdkp->cache_override = 0;
3318 	sdkp->WCE = 0;
3319 	sdkp->RCD = 0;
3320 	sdkp->ATO = 0;
3321 	sdkp->first_scan = 1;
3322 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3323 
3324 	sd_revalidate_disk(gd);
3325 
3326 	gd->flags = GENHD_FL_EXT_DEVT;
3327 	if (sdp->removable) {
3328 		gd->flags |= GENHD_FL_REMOVABLE;
3329 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3330 	}
3331 
3332 	blk_pm_runtime_init(sdp->request_queue, dev);
3333 	device_add_disk(dev, gd, NULL);
3334 	if (sdkp->capacity)
3335 		sd_dif_config_host(sdkp);
3336 
3337 	sd_revalidate_disk(gd);
3338 
3339 	if (sdkp->security) {
3340 		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3341 		if (sdkp->opal_dev)
3342 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3343 	}
3344 
3345 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3346 		  sdp->removable ? "removable " : "");
3347 	scsi_autopm_put_device(sdp);
3348 	put_device(&sdkp->dev);
3349 }
3350 
3351 /**
3352  *	sd_probe - called during driver initialization and whenever a
3353  *	new scsi device is attached to the system. It is called once
3354  *	for each scsi device (not just disks) present.
3355  *	@dev: pointer to device object
3356  *
3357  *	Returns 0 if successful (or not interested in this scsi device
3358  *	(e.g. scanner)); 1 when there is an error.
3359  *
3360  *	Note: this function is invoked from the scsi mid-level.
3361  *	This function sets up the mapping between a given
3362  *	<host,channel,id,lun> (found in sdp) and new device name
3363  *	(e.g. /dev/sda). More precisely it is the block device major
3364  *	and minor number that is chosen here.
3365  *
3366  *	Assume sd_probe is not re-entrant (for time being)
3367  *	Also think about sd_probe() and sd_remove() running coincidentally.
3368  **/
3369 static int sd_probe(struct device *dev)
3370 {
3371 	struct scsi_device *sdp = to_scsi_device(dev);
3372 	struct scsi_disk *sdkp;
3373 	struct gendisk *gd;
3374 	int index;
3375 	int error;
3376 
3377 	scsi_autopm_get_device(sdp);
3378 	error = -ENODEV;
3379 	if (sdp->type != TYPE_DISK &&
3380 	    sdp->type != TYPE_ZBC &&
3381 	    sdp->type != TYPE_MOD &&
3382 	    sdp->type != TYPE_RBC)
3383 		goto out;
3384 
3385 #ifndef CONFIG_BLK_DEV_ZONED
3386 	if (sdp->type == TYPE_ZBC)
3387 		goto out;
3388 #endif
3389 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3390 					"sd_probe\n"));
3391 
3392 	error = -ENOMEM;
3393 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3394 	if (!sdkp)
3395 		goto out;
3396 
3397 	gd = alloc_disk(SD_MINORS);
3398 	if (!gd)
3399 		goto out_free;
3400 
3401 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3402 	if (index < 0) {
3403 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3404 		goto out_put;
3405 	}
3406 
3407 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3408 	if (error) {
3409 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3410 		goto out_free_index;
3411 	}
3412 
3413 	sdkp->device = sdp;
3414 	sdkp->driver = &sd_template;
3415 	sdkp->disk = gd;
3416 	sdkp->index = index;
3417 	atomic_set(&sdkp->openers, 0);
3418 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3419 
3420 	if (!sdp->request_queue->rq_timeout) {
3421 		if (sdp->type != TYPE_MOD)
3422 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3423 		else
3424 			blk_queue_rq_timeout(sdp->request_queue,
3425 					     SD_MOD_TIMEOUT);
3426 	}
3427 
3428 	device_initialize(&sdkp->dev);
3429 	sdkp->dev.parent = dev;
3430 	sdkp->dev.class = &sd_disk_class;
3431 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3432 
3433 	error = device_add(&sdkp->dev);
3434 	if (error)
3435 		goto out_free_index;
3436 
3437 	get_device(dev);
3438 	dev_set_drvdata(dev, sdkp);
3439 
3440 	get_device(&sdkp->dev);	/* prevent release before async_schedule */
3441 	async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3442 
3443 	return 0;
3444 
3445  out_free_index:
3446 	ida_free(&sd_index_ida, index);
3447  out_put:
3448 	put_disk(gd);
3449  out_free:
3450 	kfree(sdkp);
3451  out:
3452 	scsi_autopm_put_device(sdp);
3453 	return error;
3454 }
3455 
3456 /**
3457  *	sd_remove - called whenever a scsi disk (previously recognized by
3458  *	sd_probe) is detached from the system. It is called (potentially
3459  *	multiple times) during sd module unload.
3460  *	@dev: pointer to device object
3461  *
3462  *	Note: this function is invoked from the scsi mid-level.
3463  *	This function potentially frees up a device name (e.g. /dev/sdc)
3464  *	that could be re-used by a subsequent sd_probe().
3465  *	This function is not called when the built-in sd driver is "exit-ed".
3466  **/
3467 static int sd_remove(struct device *dev)
3468 {
3469 	struct scsi_disk *sdkp;
3470 	dev_t devt;
3471 
3472 	sdkp = dev_get_drvdata(dev);
3473 	devt = disk_devt(sdkp->disk);
3474 	scsi_autopm_get_device(sdkp->device);
3475 
3476 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3477 	async_synchronize_full_domain(&scsi_sd_probe_domain);
3478 	device_del(&sdkp->dev);
3479 	del_gendisk(sdkp->disk);
3480 	sd_shutdown(dev);
3481 
3482 	free_opal_dev(sdkp->opal_dev);
3483 
3484 	blk_register_region(devt, SD_MINORS, NULL,
3485 			    sd_default_probe, NULL, NULL);
3486 
3487 	mutex_lock(&sd_ref_mutex);
3488 	dev_set_drvdata(dev, NULL);
3489 	put_device(&sdkp->dev);
3490 	mutex_unlock(&sd_ref_mutex);
3491 
3492 	return 0;
3493 }
3494 
3495 /**
3496  *	scsi_disk_release - Called to free the scsi_disk structure
3497  *	@dev: pointer to embedded class device
3498  *
3499  *	sd_ref_mutex must be held entering this routine.  Because it is
3500  *	called on last put, you should always use the scsi_disk_get()
3501  *	scsi_disk_put() helpers which manipulate the semaphore directly
3502  *	and never do a direct put_device.
3503  **/
3504 static void scsi_disk_release(struct device *dev)
3505 {
3506 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3507 	struct gendisk *disk = sdkp->disk;
3508 
3509 	ida_free(&sd_index_ida, sdkp->index);
3510 
3511 	disk->private_data = NULL;
3512 	put_disk(disk);
3513 	put_device(&sdkp->device->sdev_gendev);
3514 
3515 	kfree(sdkp);
3516 }
3517 
3518 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3519 {
3520 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3521 	struct scsi_sense_hdr sshdr;
3522 	struct scsi_device *sdp = sdkp->device;
3523 	int res;
3524 
3525 	if (start)
3526 		cmd[4] |= 1;	/* START */
3527 
3528 	if (sdp->start_stop_pwr_cond)
3529 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3530 
3531 	if (!scsi_device_online(sdp))
3532 		return -ENODEV;
3533 
3534 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3535 			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3536 	if (res) {
3537 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3538 		if (driver_byte(res) == DRIVER_SENSE)
3539 			sd_print_sense_hdr(sdkp, &sshdr);
3540 		if (scsi_sense_valid(&sshdr) &&
3541 			/* 0x3a is medium not present */
3542 			sshdr.asc == 0x3a)
3543 			res = 0;
3544 	}
3545 
3546 	/* SCSI error codes must not go to the generic layer */
3547 	if (res)
3548 		return -EIO;
3549 
3550 	return 0;
3551 }
3552 
3553 /*
3554  * Send a SYNCHRONIZE CACHE instruction down to the device through
3555  * the normal SCSI command structure.  Wait for the command to
3556  * complete.
3557  */
3558 static void sd_shutdown(struct device *dev)
3559 {
3560 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3561 
3562 	if (!sdkp)
3563 		return;         /* this can happen */
3564 
3565 	if (pm_runtime_suspended(dev))
3566 		return;
3567 
3568 	if (sdkp->WCE && sdkp->media_present) {
3569 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3570 		sd_sync_cache(sdkp, NULL);
3571 	}
3572 
3573 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3574 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3575 		sd_start_stop_device(sdkp, 0);
3576 	}
3577 }
3578 
3579 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3580 {
3581 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3582 	struct scsi_sense_hdr sshdr;
3583 	int ret = 0;
3584 
3585 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3586 		return 0;
3587 
3588 	if (sdkp->WCE && sdkp->media_present) {
3589 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3590 		ret = sd_sync_cache(sdkp, &sshdr);
3591 
3592 		if (ret) {
3593 			/* ignore OFFLINE device */
3594 			if (ret == -ENODEV)
3595 				return 0;
3596 
3597 			if (!scsi_sense_valid(&sshdr) ||
3598 			    sshdr.sense_key != ILLEGAL_REQUEST)
3599 				return ret;
3600 
3601 			/*
3602 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3603 			 * doesn't support sync. There's not much to do and
3604 			 * suspend shouldn't fail.
3605 			 */
3606 			ret = 0;
3607 		}
3608 	}
3609 
3610 	if (sdkp->device->manage_start_stop) {
3611 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3612 		/* an error is not worth aborting a system sleep */
3613 		ret = sd_start_stop_device(sdkp, 0);
3614 		if (ignore_stop_errors)
3615 			ret = 0;
3616 	}
3617 
3618 	return ret;
3619 }
3620 
3621 static int sd_suspend_system(struct device *dev)
3622 {
3623 	return sd_suspend_common(dev, true);
3624 }
3625 
3626 static int sd_suspend_runtime(struct device *dev)
3627 {
3628 	return sd_suspend_common(dev, false);
3629 }
3630 
3631 static int sd_resume(struct device *dev)
3632 {
3633 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3634 	int ret;
3635 
3636 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3637 		return 0;
3638 
3639 	if (!sdkp->device->manage_start_stop)
3640 		return 0;
3641 
3642 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3643 	ret = sd_start_stop_device(sdkp, 1);
3644 	if (!ret)
3645 		opal_unlock_from_suspend(sdkp->opal_dev);
3646 	return ret;
3647 }
3648 
3649 /**
3650  *	init_sd - entry point for this driver (both when built in or when
3651  *	a module).
3652  *
3653  *	Note: this function registers this driver with the scsi mid-level.
3654  **/
3655 static int __init init_sd(void)
3656 {
3657 	int majors = 0, i, err;
3658 
3659 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3660 
3661 	for (i = 0; i < SD_MAJORS; i++) {
3662 		if (register_blkdev(sd_major(i), "sd") != 0)
3663 			continue;
3664 		majors++;
3665 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3666 				    sd_default_probe, NULL, NULL);
3667 	}
3668 
3669 	if (!majors)
3670 		return -ENODEV;
3671 
3672 	err = class_register(&sd_disk_class);
3673 	if (err)
3674 		goto err_out;
3675 
3676 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3677 					 0, 0, NULL);
3678 	if (!sd_cdb_cache) {
3679 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3680 		err = -ENOMEM;
3681 		goto err_out_class;
3682 	}
3683 
3684 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3685 	if (!sd_cdb_pool) {
3686 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3687 		err = -ENOMEM;
3688 		goto err_out_cache;
3689 	}
3690 
3691 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3692 	if (!sd_page_pool) {
3693 		printk(KERN_ERR "sd: can't init discard page pool\n");
3694 		err = -ENOMEM;
3695 		goto err_out_ppool;
3696 	}
3697 
3698 	err = scsi_register_driver(&sd_template.gendrv);
3699 	if (err)
3700 		goto err_out_driver;
3701 
3702 	return 0;
3703 
3704 err_out_driver:
3705 	mempool_destroy(sd_page_pool);
3706 
3707 err_out_ppool:
3708 	mempool_destroy(sd_cdb_pool);
3709 
3710 err_out_cache:
3711 	kmem_cache_destroy(sd_cdb_cache);
3712 
3713 err_out_class:
3714 	class_unregister(&sd_disk_class);
3715 err_out:
3716 	for (i = 0; i < SD_MAJORS; i++)
3717 		unregister_blkdev(sd_major(i), "sd");
3718 	return err;
3719 }
3720 
3721 /**
3722  *	exit_sd - exit point for this driver (when it is a module).
3723  *
3724  *	Note: this function unregisters this driver from the scsi mid-level.
3725  **/
3726 static void __exit exit_sd(void)
3727 {
3728 	int i;
3729 
3730 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3731 
3732 	scsi_unregister_driver(&sd_template.gendrv);
3733 	mempool_destroy(sd_cdb_pool);
3734 	mempool_destroy(sd_page_pool);
3735 	kmem_cache_destroy(sd_cdb_cache);
3736 
3737 	class_unregister(&sd_disk_class);
3738 
3739 	for (i = 0; i < SD_MAJORS; i++) {
3740 		blk_unregister_region(sd_major(i), SD_MINORS);
3741 		unregister_blkdev(sd_major(i), "sd");
3742 	}
3743 }
3744 
3745 module_init(init_sd);
3746 module_exit(exit_sd);
3747 
3748 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3749 			       struct scsi_sense_hdr *sshdr)
3750 {
3751 	scsi_print_sense_hdr(sdkp->device,
3752 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3753 }
3754 
3755 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3756 			    int result)
3757 {
3758 	const char *hb_string = scsi_hostbyte_string(result);
3759 	const char *db_string = scsi_driverbyte_string(result);
3760 
3761 	if (hb_string || db_string)
3762 		sd_printk(KERN_INFO, sdkp,
3763 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3764 			  hb_string ? hb_string : "invalid",
3765 			  db_string ? db_string : "invalid");
3766 	else
3767 		sd_printk(KERN_INFO, sdkp,
3768 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3769 			  msg, host_byte(result), driver_byte(result));
3770 }
3771 
3772