1 /* 2 * sd.c Copyright (C) 1992 Drew Eckhardt 3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 4 * 5 * Linux scsi disk driver 6 * Initial versions: Drew Eckhardt 7 * Subsequent revisions: Eric Youngdale 8 * Modification history: 9 * - Drew Eckhardt <drew@colorado.edu> original 10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 11 * outstanding request, and other enhancements. 12 * Support loadable low-level scsi drivers. 13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 14 * eight major numbers. 15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 17 * sd_init and cleanups. 18 * - Alex Davis <letmein@erols.com> Fix problem where partition info 19 * not being read in sd_open. Fix problem where removable media 20 * could be ejected after sd_open. 21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 24 * Support 32k/1M disks. 25 * 26 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 30 * - entering other commands: SCSI_LOG_HLQUEUE level 3 31 * Note: when the logging level is set by the user, it must be greater 32 * than the level indicated above to trigger output. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/fs.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/bio.h> 40 #include <linux/genhd.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/delay.h> 49 #include <linux/mutex.h> 50 #include <linux/string_helpers.h> 51 #include <linux/async.h> 52 #include <linux/slab.h> 53 #include <linux/pm_runtime.h> 54 #include <linux/pr.h> 55 #include <asm/uaccess.h> 56 #include <asm/unaligned.h> 57 58 #include <scsi/scsi.h> 59 #include <scsi/scsi_cmnd.h> 60 #include <scsi/scsi_dbg.h> 61 #include <scsi/scsi_device.h> 62 #include <scsi/scsi_driver.h> 63 #include <scsi/scsi_eh.h> 64 #include <scsi/scsi_host.h> 65 #include <scsi/scsi_ioctl.h> 66 #include <scsi/scsicam.h> 67 68 #include "sd.h" 69 #include "scsi_priv.h" 70 #include "scsi_logging.h" 71 72 MODULE_AUTHOR("Eric Youngdale"); 73 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 74 MODULE_LICENSE("GPL"); 75 76 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 92 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 93 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 94 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 95 96 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 97 #define SD_MINORS 16 98 #else 99 #define SD_MINORS 0 100 #endif 101 102 static void sd_config_discard(struct scsi_disk *, unsigned int); 103 static void sd_config_write_same(struct scsi_disk *); 104 static int sd_revalidate_disk(struct gendisk *); 105 static void sd_unlock_native_capacity(struct gendisk *disk); 106 static int sd_probe(struct device *); 107 static int sd_remove(struct device *); 108 static void sd_shutdown(struct device *); 109 static int sd_suspend_system(struct device *); 110 static int sd_suspend_runtime(struct device *); 111 static int sd_resume(struct device *); 112 static void sd_rescan(struct device *); 113 static int sd_init_command(struct scsi_cmnd *SCpnt); 114 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 115 static int sd_done(struct scsi_cmnd *); 116 static int sd_eh_action(struct scsi_cmnd *, int); 117 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 118 static void scsi_disk_release(struct device *cdev); 119 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 120 static void sd_print_result(const struct scsi_disk *, const char *, int); 121 122 static DEFINE_SPINLOCK(sd_index_lock); 123 static DEFINE_IDA(sd_index_ida); 124 125 /* This semaphore is used to mediate the 0->1 reference get in the 126 * face of object destruction (i.e. we can't allow a get on an 127 * object after last put) */ 128 static DEFINE_MUTEX(sd_ref_mutex); 129 130 static struct kmem_cache *sd_cdb_cache; 131 static mempool_t *sd_cdb_pool; 132 133 static const char *sd_cache_types[] = { 134 "write through", "none", "write back", 135 "write back, no read (daft)" 136 }; 137 138 static void sd_set_flush_flag(struct scsi_disk *sdkp) 139 { 140 bool wc = false, fua = false; 141 142 if (sdkp->WCE) { 143 wc = true; 144 if (sdkp->DPOFUA) 145 fua = true; 146 } 147 148 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 149 } 150 151 static ssize_t 152 cache_type_store(struct device *dev, struct device_attribute *attr, 153 const char *buf, size_t count) 154 { 155 int i, ct = -1, rcd, wce, sp; 156 struct scsi_disk *sdkp = to_scsi_disk(dev); 157 struct scsi_device *sdp = sdkp->device; 158 char buffer[64]; 159 char *buffer_data; 160 struct scsi_mode_data data; 161 struct scsi_sense_hdr sshdr; 162 static const char temp[] = "temporary "; 163 int len; 164 165 if (sdp->type != TYPE_DISK) 166 /* no cache control on RBC devices; theoretically they 167 * can do it, but there's probably so many exceptions 168 * it's not worth the risk */ 169 return -EINVAL; 170 171 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 172 buf += sizeof(temp) - 1; 173 sdkp->cache_override = 1; 174 } else { 175 sdkp->cache_override = 0; 176 } 177 178 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) { 179 len = strlen(sd_cache_types[i]); 180 if (strncmp(sd_cache_types[i], buf, len) == 0 && 181 buf[len] == '\n') { 182 ct = i; 183 break; 184 } 185 } 186 if (ct < 0) 187 return -EINVAL; 188 rcd = ct & 0x01 ? 1 : 0; 189 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 190 191 if (sdkp->cache_override) { 192 sdkp->WCE = wce; 193 sdkp->RCD = rcd; 194 sd_set_flush_flag(sdkp); 195 return count; 196 } 197 198 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 199 SD_MAX_RETRIES, &data, NULL)) 200 return -EINVAL; 201 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 202 data.block_descriptor_length); 203 buffer_data = buffer + data.header_length + 204 data.block_descriptor_length; 205 buffer_data[2] &= ~0x05; 206 buffer_data[2] |= wce << 2 | rcd; 207 sp = buffer_data[0] & 0x80 ? 1 : 0; 208 buffer_data[0] &= ~0x80; 209 210 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 211 SD_MAX_RETRIES, &data, &sshdr)) { 212 if (scsi_sense_valid(&sshdr)) 213 sd_print_sense_hdr(sdkp, &sshdr); 214 return -EINVAL; 215 } 216 revalidate_disk(sdkp->disk); 217 return count; 218 } 219 220 static ssize_t 221 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 222 char *buf) 223 { 224 struct scsi_disk *sdkp = to_scsi_disk(dev); 225 struct scsi_device *sdp = sdkp->device; 226 227 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop); 228 } 229 230 static ssize_t 231 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 232 const char *buf, size_t count) 233 { 234 struct scsi_disk *sdkp = to_scsi_disk(dev); 235 struct scsi_device *sdp = sdkp->device; 236 237 if (!capable(CAP_SYS_ADMIN)) 238 return -EACCES; 239 240 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10); 241 242 return count; 243 } 244 static DEVICE_ATTR_RW(manage_start_stop); 245 246 static ssize_t 247 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 248 { 249 struct scsi_disk *sdkp = to_scsi_disk(dev); 250 251 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart); 252 } 253 254 static ssize_t 255 allow_restart_store(struct device *dev, struct device_attribute *attr, 256 const char *buf, size_t count) 257 { 258 struct scsi_disk *sdkp = to_scsi_disk(dev); 259 struct scsi_device *sdp = sdkp->device; 260 261 if (!capable(CAP_SYS_ADMIN)) 262 return -EACCES; 263 264 if (sdp->type != TYPE_DISK) 265 return -EINVAL; 266 267 sdp->allow_restart = simple_strtoul(buf, NULL, 10); 268 269 return count; 270 } 271 static DEVICE_ATTR_RW(allow_restart); 272 273 static ssize_t 274 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 275 { 276 struct scsi_disk *sdkp = to_scsi_disk(dev); 277 int ct = sdkp->RCD + 2*sdkp->WCE; 278 279 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]); 280 } 281 static DEVICE_ATTR_RW(cache_type); 282 283 static ssize_t 284 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 285 { 286 struct scsi_disk *sdkp = to_scsi_disk(dev); 287 288 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA); 289 } 290 static DEVICE_ATTR_RO(FUA); 291 292 static ssize_t 293 protection_type_show(struct device *dev, struct device_attribute *attr, 294 char *buf) 295 { 296 struct scsi_disk *sdkp = to_scsi_disk(dev); 297 298 return snprintf(buf, 20, "%u\n", sdkp->protection_type); 299 } 300 301 static ssize_t 302 protection_type_store(struct device *dev, struct device_attribute *attr, 303 const char *buf, size_t count) 304 { 305 struct scsi_disk *sdkp = to_scsi_disk(dev); 306 unsigned int val; 307 int err; 308 309 if (!capable(CAP_SYS_ADMIN)) 310 return -EACCES; 311 312 err = kstrtouint(buf, 10, &val); 313 314 if (err) 315 return err; 316 317 if (val >= 0 && val <= SD_DIF_TYPE3_PROTECTION) 318 sdkp->protection_type = val; 319 320 return count; 321 } 322 static DEVICE_ATTR_RW(protection_type); 323 324 static ssize_t 325 protection_mode_show(struct device *dev, struct device_attribute *attr, 326 char *buf) 327 { 328 struct scsi_disk *sdkp = to_scsi_disk(dev); 329 struct scsi_device *sdp = sdkp->device; 330 unsigned int dif, dix; 331 332 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 333 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 334 335 if (!dix && scsi_host_dix_capable(sdp->host, SD_DIF_TYPE0_PROTECTION)) { 336 dif = 0; 337 dix = 1; 338 } 339 340 if (!dif && !dix) 341 return snprintf(buf, 20, "none\n"); 342 343 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif); 344 } 345 static DEVICE_ATTR_RO(protection_mode); 346 347 static ssize_t 348 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 349 { 350 struct scsi_disk *sdkp = to_scsi_disk(dev); 351 352 return snprintf(buf, 20, "%u\n", sdkp->ATO); 353 } 354 static DEVICE_ATTR_RO(app_tag_own); 355 356 static ssize_t 357 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 358 char *buf) 359 { 360 struct scsi_disk *sdkp = to_scsi_disk(dev); 361 362 return snprintf(buf, 20, "%u\n", sdkp->lbpme); 363 } 364 static DEVICE_ATTR_RO(thin_provisioning); 365 366 static const char *lbp_mode[] = { 367 [SD_LBP_FULL] = "full", 368 [SD_LBP_UNMAP] = "unmap", 369 [SD_LBP_WS16] = "writesame_16", 370 [SD_LBP_WS10] = "writesame_10", 371 [SD_LBP_ZERO] = "writesame_zero", 372 [SD_LBP_DISABLE] = "disabled", 373 }; 374 375 static ssize_t 376 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 377 char *buf) 378 { 379 struct scsi_disk *sdkp = to_scsi_disk(dev); 380 381 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]); 382 } 383 384 static ssize_t 385 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 386 const char *buf, size_t count) 387 { 388 struct scsi_disk *sdkp = to_scsi_disk(dev); 389 struct scsi_device *sdp = sdkp->device; 390 391 if (!capable(CAP_SYS_ADMIN)) 392 return -EACCES; 393 394 if (sdp->type != TYPE_DISK) 395 return -EINVAL; 396 397 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20)) 398 sd_config_discard(sdkp, SD_LBP_UNMAP); 399 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20)) 400 sd_config_discard(sdkp, SD_LBP_WS16); 401 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20)) 402 sd_config_discard(sdkp, SD_LBP_WS10); 403 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20)) 404 sd_config_discard(sdkp, SD_LBP_ZERO); 405 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20)) 406 sd_config_discard(sdkp, SD_LBP_DISABLE); 407 else 408 return -EINVAL; 409 410 return count; 411 } 412 static DEVICE_ATTR_RW(provisioning_mode); 413 414 static ssize_t 415 max_medium_access_timeouts_show(struct device *dev, 416 struct device_attribute *attr, char *buf) 417 { 418 struct scsi_disk *sdkp = to_scsi_disk(dev); 419 420 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts); 421 } 422 423 static ssize_t 424 max_medium_access_timeouts_store(struct device *dev, 425 struct device_attribute *attr, const char *buf, 426 size_t count) 427 { 428 struct scsi_disk *sdkp = to_scsi_disk(dev); 429 int err; 430 431 if (!capable(CAP_SYS_ADMIN)) 432 return -EACCES; 433 434 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 435 436 return err ? err : count; 437 } 438 static DEVICE_ATTR_RW(max_medium_access_timeouts); 439 440 static ssize_t 441 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 442 char *buf) 443 { 444 struct scsi_disk *sdkp = to_scsi_disk(dev); 445 446 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks); 447 } 448 449 static ssize_t 450 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 451 const char *buf, size_t count) 452 { 453 struct scsi_disk *sdkp = to_scsi_disk(dev); 454 struct scsi_device *sdp = sdkp->device; 455 unsigned long max; 456 int err; 457 458 if (!capable(CAP_SYS_ADMIN)) 459 return -EACCES; 460 461 if (sdp->type != TYPE_DISK) 462 return -EINVAL; 463 464 err = kstrtoul(buf, 10, &max); 465 466 if (err) 467 return err; 468 469 if (max == 0) 470 sdp->no_write_same = 1; 471 else if (max <= SD_MAX_WS16_BLOCKS) { 472 sdp->no_write_same = 0; 473 sdkp->max_ws_blocks = max; 474 } 475 476 sd_config_write_same(sdkp); 477 478 return count; 479 } 480 static DEVICE_ATTR_RW(max_write_same_blocks); 481 482 static struct attribute *sd_disk_attrs[] = { 483 &dev_attr_cache_type.attr, 484 &dev_attr_FUA.attr, 485 &dev_attr_allow_restart.attr, 486 &dev_attr_manage_start_stop.attr, 487 &dev_attr_protection_type.attr, 488 &dev_attr_protection_mode.attr, 489 &dev_attr_app_tag_own.attr, 490 &dev_attr_thin_provisioning.attr, 491 &dev_attr_provisioning_mode.attr, 492 &dev_attr_max_write_same_blocks.attr, 493 &dev_attr_max_medium_access_timeouts.attr, 494 NULL, 495 }; 496 ATTRIBUTE_GROUPS(sd_disk); 497 498 static struct class sd_disk_class = { 499 .name = "scsi_disk", 500 .owner = THIS_MODULE, 501 .dev_release = scsi_disk_release, 502 .dev_groups = sd_disk_groups, 503 }; 504 505 static const struct dev_pm_ops sd_pm_ops = { 506 .suspend = sd_suspend_system, 507 .resume = sd_resume, 508 .poweroff = sd_suspend_system, 509 .restore = sd_resume, 510 .runtime_suspend = sd_suspend_runtime, 511 .runtime_resume = sd_resume, 512 }; 513 514 static struct scsi_driver sd_template = { 515 .gendrv = { 516 .name = "sd", 517 .owner = THIS_MODULE, 518 .probe = sd_probe, 519 .remove = sd_remove, 520 .shutdown = sd_shutdown, 521 .pm = &sd_pm_ops, 522 }, 523 .rescan = sd_rescan, 524 .init_command = sd_init_command, 525 .uninit_command = sd_uninit_command, 526 .done = sd_done, 527 .eh_action = sd_eh_action, 528 }; 529 530 /* 531 * Dummy kobj_map->probe function. 532 * The default ->probe function will call modprobe, which is 533 * pointless as this module is already loaded. 534 */ 535 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 536 { 537 return NULL; 538 } 539 540 /* 541 * Device no to disk mapping: 542 * 543 * major disc2 disc p1 544 * |............|.............|....|....| <- dev_t 545 * 31 20 19 8 7 4 3 0 546 * 547 * Inside a major, we have 16k disks, however mapped non- 548 * contiguously. The first 16 disks are for major0, the next 549 * ones with major1, ... Disk 256 is for major0 again, disk 272 550 * for major1, ... 551 * As we stay compatible with our numbering scheme, we can reuse 552 * the well-know SCSI majors 8, 65--71, 136--143. 553 */ 554 static int sd_major(int major_idx) 555 { 556 switch (major_idx) { 557 case 0: 558 return SCSI_DISK0_MAJOR; 559 case 1 ... 7: 560 return SCSI_DISK1_MAJOR + major_idx - 1; 561 case 8 ... 15: 562 return SCSI_DISK8_MAJOR + major_idx - 8; 563 default: 564 BUG(); 565 return 0; /* shut up gcc */ 566 } 567 } 568 569 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 570 { 571 struct scsi_disk *sdkp = NULL; 572 573 mutex_lock(&sd_ref_mutex); 574 575 if (disk->private_data) { 576 sdkp = scsi_disk(disk); 577 if (scsi_device_get(sdkp->device) == 0) 578 get_device(&sdkp->dev); 579 else 580 sdkp = NULL; 581 } 582 mutex_unlock(&sd_ref_mutex); 583 return sdkp; 584 } 585 586 static void scsi_disk_put(struct scsi_disk *sdkp) 587 { 588 struct scsi_device *sdev = sdkp->device; 589 590 mutex_lock(&sd_ref_mutex); 591 put_device(&sdkp->dev); 592 scsi_device_put(sdev); 593 mutex_unlock(&sd_ref_mutex); 594 } 595 596 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 597 unsigned int dix, unsigned int dif) 598 { 599 struct bio *bio = scmd->request->bio; 600 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 601 unsigned int protect = 0; 602 603 if (dix) { /* DIX Type 0, 1, 2, 3 */ 604 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 605 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 606 607 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 608 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 609 } 610 611 if (dif != SD_DIF_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 612 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 613 614 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 615 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 616 } 617 618 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 619 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 620 621 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 622 protect = 3 << 5; /* Disable target PI checking */ 623 else 624 protect = 1 << 5; /* Enable target PI checking */ 625 } 626 627 scsi_set_prot_op(scmd, prot_op); 628 scsi_set_prot_type(scmd, dif); 629 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 630 631 return protect; 632 } 633 634 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 635 { 636 struct request_queue *q = sdkp->disk->queue; 637 unsigned int logical_block_size = sdkp->device->sector_size; 638 unsigned int max_blocks = 0; 639 640 q->limits.discard_zeroes_data = 0; 641 642 /* 643 * When LBPRZ is reported, discard alignment and granularity 644 * must be fixed to the logical block size. Otherwise the block 645 * layer will drop misaligned portions of the request which can 646 * lead to data corruption. If LBPRZ is not set, we honor the 647 * device preference. 648 */ 649 if (sdkp->lbprz) { 650 q->limits.discard_alignment = 0; 651 q->limits.discard_granularity = logical_block_size; 652 } else { 653 q->limits.discard_alignment = sdkp->unmap_alignment * 654 logical_block_size; 655 q->limits.discard_granularity = 656 max(sdkp->physical_block_size, 657 sdkp->unmap_granularity * logical_block_size); 658 } 659 660 sdkp->provisioning_mode = mode; 661 662 switch (mode) { 663 664 case SD_LBP_DISABLE: 665 blk_queue_max_discard_sectors(q, 0); 666 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 667 return; 668 669 case SD_LBP_UNMAP: 670 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 671 (u32)SD_MAX_WS16_BLOCKS); 672 break; 673 674 case SD_LBP_WS16: 675 max_blocks = min_not_zero(sdkp->max_ws_blocks, 676 (u32)SD_MAX_WS16_BLOCKS); 677 q->limits.discard_zeroes_data = sdkp->lbprz; 678 break; 679 680 case SD_LBP_WS10: 681 max_blocks = min_not_zero(sdkp->max_ws_blocks, 682 (u32)SD_MAX_WS10_BLOCKS); 683 q->limits.discard_zeroes_data = sdkp->lbprz; 684 break; 685 686 case SD_LBP_ZERO: 687 max_blocks = min_not_zero(sdkp->max_ws_blocks, 688 (u32)SD_MAX_WS10_BLOCKS); 689 q->limits.discard_zeroes_data = 1; 690 break; 691 } 692 693 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 694 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 695 } 696 697 /** 698 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device 699 * @sdp: scsi device to operate one 700 * @rq: Request to prepare 701 * 702 * Will issue either UNMAP or WRITE SAME(16) depending on preference 703 * indicated by target device. 704 **/ 705 static int sd_setup_discard_cmnd(struct scsi_cmnd *cmd) 706 { 707 struct request *rq = cmd->request; 708 struct scsi_device *sdp = cmd->device; 709 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 710 sector_t sector = blk_rq_pos(rq); 711 unsigned int nr_sectors = blk_rq_sectors(rq); 712 unsigned int nr_bytes = blk_rq_bytes(rq); 713 unsigned int len; 714 int ret; 715 char *buf; 716 struct page *page; 717 718 sector >>= ilog2(sdp->sector_size) - 9; 719 nr_sectors >>= ilog2(sdp->sector_size) - 9; 720 721 page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 722 if (!page) 723 return BLKPREP_DEFER; 724 725 switch (sdkp->provisioning_mode) { 726 case SD_LBP_UNMAP: 727 buf = page_address(page); 728 729 cmd->cmd_len = 10; 730 cmd->cmnd[0] = UNMAP; 731 cmd->cmnd[8] = 24; 732 733 put_unaligned_be16(6 + 16, &buf[0]); 734 put_unaligned_be16(16, &buf[2]); 735 put_unaligned_be64(sector, &buf[8]); 736 put_unaligned_be32(nr_sectors, &buf[16]); 737 738 len = 24; 739 break; 740 741 case SD_LBP_WS16: 742 cmd->cmd_len = 16; 743 cmd->cmnd[0] = WRITE_SAME_16; 744 cmd->cmnd[1] = 0x8; /* UNMAP */ 745 put_unaligned_be64(sector, &cmd->cmnd[2]); 746 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 747 748 len = sdkp->device->sector_size; 749 break; 750 751 case SD_LBP_WS10: 752 case SD_LBP_ZERO: 753 cmd->cmd_len = 10; 754 cmd->cmnd[0] = WRITE_SAME; 755 if (sdkp->provisioning_mode == SD_LBP_WS10) 756 cmd->cmnd[1] = 0x8; /* UNMAP */ 757 put_unaligned_be32(sector, &cmd->cmnd[2]); 758 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 759 760 len = sdkp->device->sector_size; 761 break; 762 763 default: 764 ret = BLKPREP_INVALID; 765 goto out; 766 } 767 768 rq->completion_data = page; 769 rq->timeout = SD_TIMEOUT; 770 771 cmd->transfersize = len; 772 cmd->allowed = SD_MAX_RETRIES; 773 774 /* 775 * Initially __data_len is set to the amount of data that needs to be 776 * transferred to the target. This amount depends on whether WRITE SAME 777 * or UNMAP is being used. After the scatterlist has been mapped by 778 * scsi_init_io() we set __data_len to the size of the area to be 779 * discarded on disk. This allows us to report completion on the full 780 * amount of blocks described by the request. 781 */ 782 blk_add_request_payload(rq, page, 0, len); 783 ret = scsi_init_io(cmd); 784 rq->__data_len = nr_bytes; 785 786 out: 787 if (ret != BLKPREP_OK) 788 __free_page(page); 789 return ret; 790 } 791 792 static void sd_config_write_same(struct scsi_disk *sdkp) 793 { 794 struct request_queue *q = sdkp->disk->queue; 795 unsigned int logical_block_size = sdkp->device->sector_size; 796 797 if (sdkp->device->no_write_same) { 798 sdkp->max_ws_blocks = 0; 799 goto out; 800 } 801 802 /* Some devices can not handle block counts above 0xffff despite 803 * supporting WRITE SAME(16). Consequently we default to 64k 804 * blocks per I/O unless the device explicitly advertises a 805 * bigger limit. 806 */ 807 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 808 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 809 (u32)SD_MAX_WS16_BLOCKS); 810 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 811 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 812 (u32)SD_MAX_WS10_BLOCKS); 813 else { 814 sdkp->device->no_write_same = 1; 815 sdkp->max_ws_blocks = 0; 816 } 817 818 out: 819 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 820 (logical_block_size >> 9)); 821 } 822 823 /** 824 * sd_setup_write_same_cmnd - write the same data to multiple blocks 825 * @cmd: command to prepare 826 * 827 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on 828 * preference indicated by target device. 829 **/ 830 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 831 { 832 struct request *rq = cmd->request; 833 struct scsi_device *sdp = cmd->device; 834 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 835 struct bio *bio = rq->bio; 836 sector_t sector = blk_rq_pos(rq); 837 unsigned int nr_sectors = blk_rq_sectors(rq); 838 unsigned int nr_bytes = blk_rq_bytes(rq); 839 int ret; 840 841 if (sdkp->device->no_write_same) 842 return BLKPREP_INVALID; 843 844 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 845 846 sector >>= ilog2(sdp->sector_size) - 9; 847 nr_sectors >>= ilog2(sdp->sector_size) - 9; 848 849 rq->timeout = SD_WRITE_SAME_TIMEOUT; 850 851 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) { 852 cmd->cmd_len = 16; 853 cmd->cmnd[0] = WRITE_SAME_16; 854 put_unaligned_be64(sector, &cmd->cmnd[2]); 855 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 856 } else { 857 cmd->cmd_len = 10; 858 cmd->cmnd[0] = WRITE_SAME; 859 put_unaligned_be32(sector, &cmd->cmnd[2]); 860 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 861 } 862 863 cmd->transfersize = sdp->sector_size; 864 cmd->allowed = SD_MAX_RETRIES; 865 866 /* 867 * For WRITE_SAME the data transferred in the DATA IN buffer is 868 * different from the amount of data actually written to the target. 869 * 870 * We set up __data_len to the amount of data transferred from the 871 * DATA IN buffer so that blk_rq_map_sg set up the proper S/G list 872 * to transfer a single sector of data first, but then reset it to 873 * the amount of data to be written right after so that the I/O path 874 * knows how much to actually write. 875 */ 876 rq->__data_len = sdp->sector_size; 877 ret = scsi_init_io(cmd); 878 rq->__data_len = nr_bytes; 879 return ret; 880 } 881 882 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 883 { 884 struct request *rq = cmd->request; 885 886 /* flush requests don't perform I/O, zero the S/G table */ 887 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 888 889 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 890 cmd->cmd_len = 10; 891 cmd->transfersize = 0; 892 cmd->allowed = SD_MAX_RETRIES; 893 894 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 895 return BLKPREP_OK; 896 } 897 898 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt) 899 { 900 struct request *rq = SCpnt->request; 901 struct scsi_device *sdp = SCpnt->device; 902 struct gendisk *disk = rq->rq_disk; 903 struct scsi_disk *sdkp; 904 sector_t block = blk_rq_pos(rq); 905 sector_t threshold; 906 unsigned int this_count = blk_rq_sectors(rq); 907 unsigned int dif, dix; 908 int ret; 909 unsigned char protect; 910 911 ret = scsi_init_io(SCpnt); 912 if (ret != BLKPREP_OK) 913 goto out; 914 SCpnt = rq->special; 915 sdkp = scsi_disk(disk); 916 917 /* from here on until we're complete, any goto out 918 * is used for a killable error condition */ 919 ret = BLKPREP_KILL; 920 921 SCSI_LOG_HLQUEUE(1, 922 scmd_printk(KERN_INFO, SCpnt, 923 "%s: block=%llu, count=%d\n", 924 __func__, (unsigned long long)block, this_count)); 925 926 if (!sdp || !scsi_device_online(sdp) || 927 block + blk_rq_sectors(rq) > get_capacity(disk)) { 928 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 929 "Finishing %u sectors\n", 930 blk_rq_sectors(rq))); 931 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 932 "Retry with 0x%p\n", SCpnt)); 933 goto out; 934 } 935 936 if (sdp->changed) { 937 /* 938 * quietly refuse to do anything to a changed disc until 939 * the changed bit has been reset 940 */ 941 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */ 942 goto out; 943 } 944 945 /* 946 * Some SD card readers can't handle multi-sector accesses which touch 947 * the last one or two hardware sectors. Split accesses as needed. 948 */ 949 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS * 950 (sdp->sector_size / 512); 951 952 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) { 953 if (block < threshold) { 954 /* Access up to the threshold but not beyond */ 955 this_count = threshold - block; 956 } else { 957 /* Access only a single hardware sector */ 958 this_count = sdp->sector_size / 512; 959 } 960 } 961 962 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", 963 (unsigned long long)block)); 964 965 /* 966 * If we have a 1K hardware sectorsize, prevent access to single 967 * 512 byte sectors. In theory we could handle this - in fact 968 * the scsi cdrom driver must be able to handle this because 969 * we typically use 1K blocksizes, and cdroms typically have 970 * 2K hardware sectorsizes. Of course, things are simpler 971 * with the cdrom, since it is read-only. For performance 972 * reasons, the filesystems should be able to handle this 973 * and not force the scsi disk driver to use bounce buffers 974 * for this. 975 */ 976 if (sdp->sector_size == 1024) { 977 if ((block & 1) || (blk_rq_sectors(rq) & 1)) { 978 scmd_printk(KERN_ERR, SCpnt, 979 "Bad block number requested\n"); 980 goto out; 981 } else { 982 block = block >> 1; 983 this_count = this_count >> 1; 984 } 985 } 986 if (sdp->sector_size == 2048) { 987 if ((block & 3) || (blk_rq_sectors(rq) & 3)) { 988 scmd_printk(KERN_ERR, SCpnt, 989 "Bad block number requested\n"); 990 goto out; 991 } else { 992 block = block >> 2; 993 this_count = this_count >> 2; 994 } 995 } 996 if (sdp->sector_size == 4096) { 997 if ((block & 7) || (blk_rq_sectors(rq) & 7)) { 998 scmd_printk(KERN_ERR, SCpnt, 999 "Bad block number requested\n"); 1000 goto out; 1001 } else { 1002 block = block >> 3; 1003 this_count = this_count >> 3; 1004 } 1005 } 1006 if (rq_data_dir(rq) == WRITE) { 1007 SCpnt->cmnd[0] = WRITE_6; 1008 1009 if (blk_integrity_rq(rq)) 1010 sd_dif_prepare(SCpnt); 1011 1012 } else if (rq_data_dir(rq) == READ) { 1013 SCpnt->cmnd[0] = READ_6; 1014 } else { 1015 scmd_printk(KERN_ERR, SCpnt, "Unknown command %llx\n", (unsigned long long) rq->cmd_flags); 1016 goto out; 1017 } 1018 1019 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1020 "%s %d/%u 512 byte blocks.\n", 1021 (rq_data_dir(rq) == WRITE) ? 1022 "writing" : "reading", this_count, 1023 blk_rq_sectors(rq))); 1024 1025 dix = scsi_prot_sg_count(SCpnt); 1026 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type); 1027 1028 if (dif || dix) 1029 protect = sd_setup_protect_cmnd(SCpnt, dix, dif); 1030 else 1031 protect = 0; 1032 1033 if (protect && sdkp->protection_type == SD_DIF_TYPE2_PROTECTION) { 1034 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1035 1036 if (unlikely(SCpnt->cmnd == NULL)) { 1037 ret = BLKPREP_DEFER; 1038 goto out; 1039 } 1040 1041 SCpnt->cmd_len = SD_EXT_CDB_SIZE; 1042 memset(SCpnt->cmnd, 0, SCpnt->cmd_len); 1043 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD; 1044 SCpnt->cmnd[7] = 0x18; 1045 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32; 1046 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1047 1048 /* LBA */ 1049 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1050 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1051 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1052 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1053 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff; 1054 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff; 1055 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff; 1056 SCpnt->cmnd[19] = (unsigned char) block & 0xff; 1057 1058 /* Expected Indirect LBA */ 1059 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff; 1060 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff; 1061 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff; 1062 SCpnt->cmnd[23] = (unsigned char) block & 0xff; 1063 1064 /* Transfer length */ 1065 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff; 1066 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff; 1067 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff; 1068 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff; 1069 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) { 1070 SCpnt->cmnd[0] += READ_16 - READ_6; 1071 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1072 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1073 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1074 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1075 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1076 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; 1077 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; 1078 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; 1079 SCpnt->cmnd[9] = (unsigned char) block & 0xff; 1080 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; 1081 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; 1082 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; 1083 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; 1084 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; 1085 } else if ((this_count > 0xff) || (block > 0x1fffff) || 1086 scsi_device_protection(SCpnt->device) || 1087 SCpnt->device->use_10_for_rw) { 1088 SCpnt->cmnd[0] += READ_10 - READ_6; 1089 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1090 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; 1091 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; 1092 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; 1093 SCpnt->cmnd[5] = (unsigned char) block & 0xff; 1094 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; 1095 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; 1096 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; 1097 } else { 1098 if (unlikely(rq->cmd_flags & REQ_FUA)) { 1099 /* 1100 * This happens only if this drive failed 1101 * 10byte rw command with ILLEGAL_REQUEST 1102 * during operation and thus turned off 1103 * use_10_for_rw. 1104 */ 1105 scmd_printk(KERN_ERR, SCpnt, 1106 "FUA write on READ/WRITE(6) drive\n"); 1107 goto out; 1108 } 1109 1110 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); 1111 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); 1112 SCpnt->cmnd[3] = (unsigned char) block & 0xff; 1113 SCpnt->cmnd[4] = (unsigned char) this_count; 1114 SCpnt->cmnd[5] = 0; 1115 } 1116 SCpnt->sdb.length = this_count * sdp->sector_size; 1117 1118 /* 1119 * We shouldn't disconnect in the middle of a sector, so with a dumb 1120 * host adapter, it's safe to assume that we can at least transfer 1121 * this many bytes between each connect / disconnect. 1122 */ 1123 SCpnt->transfersize = sdp->sector_size; 1124 SCpnt->underflow = this_count << 9; 1125 SCpnt->allowed = SD_MAX_RETRIES; 1126 1127 /* 1128 * This indicates that the command is ready from our end to be 1129 * queued. 1130 */ 1131 ret = BLKPREP_OK; 1132 out: 1133 return ret; 1134 } 1135 1136 static int sd_init_command(struct scsi_cmnd *cmd) 1137 { 1138 struct request *rq = cmd->request; 1139 1140 if (rq->cmd_flags & REQ_DISCARD) 1141 return sd_setup_discard_cmnd(cmd); 1142 else if (rq->cmd_flags & REQ_WRITE_SAME) 1143 return sd_setup_write_same_cmnd(cmd); 1144 else if (rq->cmd_flags & REQ_FLUSH) 1145 return sd_setup_flush_cmnd(cmd); 1146 else 1147 return sd_setup_read_write_cmnd(cmd); 1148 } 1149 1150 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1151 { 1152 struct request *rq = SCpnt->request; 1153 1154 if (rq->cmd_flags & REQ_DISCARD) 1155 __free_page(rq->completion_data); 1156 1157 if (SCpnt->cmnd != rq->cmd) { 1158 mempool_free(SCpnt->cmnd, sd_cdb_pool); 1159 SCpnt->cmnd = NULL; 1160 SCpnt->cmd_len = 0; 1161 } 1162 } 1163 1164 /** 1165 * sd_open - open a scsi disk device 1166 * @inode: only i_rdev member may be used 1167 * @filp: only f_mode and f_flags may be used 1168 * 1169 * Returns 0 if successful. Returns a negated errno value in case 1170 * of error. 1171 * 1172 * Note: This can be called from a user context (e.g. fsck(1) ) 1173 * or from within the kernel (e.g. as a result of a mount(1) ). 1174 * In the latter case @inode and @filp carry an abridged amount 1175 * of information as noted above. 1176 * 1177 * Locking: called with bdev->bd_mutex held. 1178 **/ 1179 static int sd_open(struct block_device *bdev, fmode_t mode) 1180 { 1181 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1182 struct scsi_device *sdev; 1183 int retval; 1184 1185 if (!sdkp) 1186 return -ENXIO; 1187 1188 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1189 1190 sdev = sdkp->device; 1191 1192 /* 1193 * If the device is in error recovery, wait until it is done. 1194 * If the device is offline, then disallow any access to it. 1195 */ 1196 retval = -ENXIO; 1197 if (!scsi_block_when_processing_errors(sdev)) 1198 goto error_out; 1199 1200 if (sdev->removable || sdkp->write_prot) 1201 check_disk_change(bdev); 1202 1203 /* 1204 * If the drive is empty, just let the open fail. 1205 */ 1206 retval = -ENOMEDIUM; 1207 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1208 goto error_out; 1209 1210 /* 1211 * If the device has the write protect tab set, have the open fail 1212 * if the user expects to be able to write to the thing. 1213 */ 1214 retval = -EROFS; 1215 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1216 goto error_out; 1217 1218 /* 1219 * It is possible that the disk changing stuff resulted in 1220 * the device being taken offline. If this is the case, 1221 * report this to the user, and don't pretend that the 1222 * open actually succeeded. 1223 */ 1224 retval = -ENXIO; 1225 if (!scsi_device_online(sdev)) 1226 goto error_out; 1227 1228 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1229 if (scsi_block_when_processing_errors(sdev)) 1230 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1231 } 1232 1233 return 0; 1234 1235 error_out: 1236 scsi_disk_put(sdkp); 1237 return retval; 1238 } 1239 1240 /** 1241 * sd_release - invoked when the (last) close(2) is called on this 1242 * scsi disk. 1243 * @inode: only i_rdev member may be used 1244 * @filp: only f_mode and f_flags may be used 1245 * 1246 * Returns 0. 1247 * 1248 * Note: may block (uninterruptible) if error recovery is underway 1249 * on this disk. 1250 * 1251 * Locking: called with bdev->bd_mutex held. 1252 **/ 1253 static void sd_release(struct gendisk *disk, fmode_t mode) 1254 { 1255 struct scsi_disk *sdkp = scsi_disk(disk); 1256 struct scsi_device *sdev = sdkp->device; 1257 1258 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1259 1260 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1261 if (scsi_block_when_processing_errors(sdev)) 1262 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1263 } 1264 1265 /* 1266 * XXX and what if there are packets in flight and this close() 1267 * XXX is followed by a "rmmod sd_mod"? 1268 */ 1269 1270 scsi_disk_put(sdkp); 1271 } 1272 1273 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1274 { 1275 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1276 struct scsi_device *sdp = sdkp->device; 1277 struct Scsi_Host *host = sdp->host; 1278 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1279 int diskinfo[4]; 1280 1281 /* default to most commonly used values */ 1282 diskinfo[0] = 0x40; /* 1 << 6 */ 1283 diskinfo[1] = 0x20; /* 1 << 5 */ 1284 diskinfo[2] = capacity >> 11; 1285 1286 /* override with calculated, extended default, or driver values */ 1287 if (host->hostt->bios_param) 1288 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1289 else 1290 scsicam_bios_param(bdev, capacity, diskinfo); 1291 1292 geo->heads = diskinfo[0]; 1293 geo->sectors = diskinfo[1]; 1294 geo->cylinders = diskinfo[2]; 1295 return 0; 1296 } 1297 1298 /** 1299 * sd_ioctl - process an ioctl 1300 * @inode: only i_rdev/i_bdev members may be used 1301 * @filp: only f_mode and f_flags may be used 1302 * @cmd: ioctl command number 1303 * @arg: this is third argument given to ioctl(2) system call. 1304 * Often contains a pointer. 1305 * 1306 * Returns 0 if successful (some ioctls return positive numbers on 1307 * success as well). Returns a negated errno value in case of error. 1308 * 1309 * Note: most ioctls are forward onto the block subsystem or further 1310 * down in the scsi subsystem. 1311 **/ 1312 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1313 unsigned int cmd, unsigned long arg) 1314 { 1315 struct gendisk *disk = bdev->bd_disk; 1316 struct scsi_disk *sdkp = scsi_disk(disk); 1317 struct scsi_device *sdp = sdkp->device; 1318 void __user *p = (void __user *)arg; 1319 int error; 1320 1321 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1322 "cmd=0x%x\n", disk->disk_name, cmd)); 1323 1324 error = scsi_verify_blk_ioctl(bdev, cmd); 1325 if (error < 0) 1326 return error; 1327 1328 /* 1329 * If we are in the middle of error recovery, don't let anyone 1330 * else try and use this device. Also, if error recovery fails, it 1331 * may try and take the device offline, in which case all further 1332 * access to the device is prohibited. 1333 */ 1334 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1335 (mode & FMODE_NDELAY) != 0); 1336 if (error) 1337 goto out; 1338 1339 /* 1340 * Send SCSI addressing ioctls directly to mid level, send other 1341 * ioctls to block level and then onto mid level if they can't be 1342 * resolved. 1343 */ 1344 switch (cmd) { 1345 case SCSI_IOCTL_GET_IDLUN: 1346 case SCSI_IOCTL_GET_BUS_NUMBER: 1347 error = scsi_ioctl(sdp, cmd, p); 1348 break; 1349 default: 1350 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1351 if (error != -ENOTTY) 1352 break; 1353 error = scsi_ioctl(sdp, cmd, p); 1354 break; 1355 } 1356 out: 1357 return error; 1358 } 1359 1360 static void set_media_not_present(struct scsi_disk *sdkp) 1361 { 1362 if (sdkp->media_present) 1363 sdkp->device->changed = 1; 1364 1365 if (sdkp->device->removable) { 1366 sdkp->media_present = 0; 1367 sdkp->capacity = 0; 1368 } 1369 } 1370 1371 static int media_not_present(struct scsi_disk *sdkp, 1372 struct scsi_sense_hdr *sshdr) 1373 { 1374 if (!scsi_sense_valid(sshdr)) 1375 return 0; 1376 1377 /* not invoked for commands that could return deferred errors */ 1378 switch (sshdr->sense_key) { 1379 case UNIT_ATTENTION: 1380 case NOT_READY: 1381 /* medium not present */ 1382 if (sshdr->asc == 0x3A) { 1383 set_media_not_present(sdkp); 1384 return 1; 1385 } 1386 } 1387 return 0; 1388 } 1389 1390 /** 1391 * sd_check_events - check media events 1392 * @disk: kernel device descriptor 1393 * @clearing: disk events currently being cleared 1394 * 1395 * Returns mask of DISK_EVENT_*. 1396 * 1397 * Note: this function is invoked from the block subsystem. 1398 **/ 1399 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1400 { 1401 struct scsi_disk *sdkp = scsi_disk_get(disk); 1402 struct scsi_device *sdp; 1403 struct scsi_sense_hdr *sshdr = NULL; 1404 int retval; 1405 1406 if (!sdkp) 1407 return 0; 1408 1409 sdp = sdkp->device; 1410 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1411 1412 /* 1413 * If the device is offline, don't send any commands - just pretend as 1414 * if the command failed. If the device ever comes back online, we 1415 * can deal with it then. It is only because of unrecoverable errors 1416 * that we would ever take a device offline in the first place. 1417 */ 1418 if (!scsi_device_online(sdp)) { 1419 set_media_not_present(sdkp); 1420 goto out; 1421 } 1422 1423 /* 1424 * Using TEST_UNIT_READY enables differentiation between drive with 1425 * no cartridge loaded - NOT READY, drive with changed cartridge - 1426 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1427 * 1428 * Drives that auto spin down. eg iomega jaz 1G, will be started 1429 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1430 * sd_revalidate() is called. 1431 */ 1432 retval = -ENODEV; 1433 1434 if (scsi_block_when_processing_errors(sdp)) { 1435 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 1436 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1437 sshdr); 1438 } 1439 1440 /* failed to execute TUR, assume media not present */ 1441 if (host_byte(retval)) { 1442 set_media_not_present(sdkp); 1443 goto out; 1444 } 1445 1446 if (media_not_present(sdkp, sshdr)) 1447 goto out; 1448 1449 /* 1450 * For removable scsi disk we have to recognise the presence 1451 * of a disk in the drive. 1452 */ 1453 if (!sdkp->media_present) 1454 sdp->changed = 1; 1455 sdkp->media_present = 1; 1456 out: 1457 /* 1458 * sdp->changed is set under the following conditions: 1459 * 1460 * Medium present state has changed in either direction. 1461 * Device has indicated UNIT_ATTENTION. 1462 */ 1463 kfree(sshdr); 1464 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1465 sdp->changed = 0; 1466 scsi_disk_put(sdkp); 1467 return retval; 1468 } 1469 1470 static int sd_sync_cache(struct scsi_disk *sdkp) 1471 { 1472 int retries, res; 1473 struct scsi_device *sdp = sdkp->device; 1474 const int timeout = sdp->request_queue->rq_timeout 1475 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1476 struct scsi_sense_hdr sshdr; 1477 1478 if (!scsi_device_online(sdp)) 1479 return -ENODEV; 1480 1481 for (retries = 3; retries > 0; --retries) { 1482 unsigned char cmd[10] = { 0 }; 1483 1484 cmd[0] = SYNCHRONIZE_CACHE; 1485 /* 1486 * Leave the rest of the command zero to indicate 1487 * flush everything. 1488 */ 1489 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, 1490 &sshdr, timeout, SD_MAX_RETRIES, 1491 NULL, REQ_PM); 1492 if (res == 0) 1493 break; 1494 } 1495 1496 if (res) { 1497 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1498 1499 if (driver_byte(res) & DRIVER_SENSE) 1500 sd_print_sense_hdr(sdkp, &sshdr); 1501 /* we need to evaluate the error return */ 1502 if (scsi_sense_valid(&sshdr) && 1503 (sshdr.asc == 0x3a || /* medium not present */ 1504 sshdr.asc == 0x20)) /* invalid command */ 1505 /* this is no error here */ 1506 return 0; 1507 1508 switch (host_byte(res)) { 1509 /* ignore errors due to racing a disconnection */ 1510 case DID_BAD_TARGET: 1511 case DID_NO_CONNECT: 1512 return 0; 1513 /* signal the upper layer it might try again */ 1514 case DID_BUS_BUSY: 1515 case DID_IMM_RETRY: 1516 case DID_REQUEUE: 1517 case DID_SOFT_ERROR: 1518 return -EBUSY; 1519 default: 1520 return -EIO; 1521 } 1522 } 1523 return 0; 1524 } 1525 1526 static void sd_rescan(struct device *dev) 1527 { 1528 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1529 1530 revalidate_disk(sdkp->disk); 1531 } 1532 1533 1534 #ifdef CONFIG_COMPAT 1535 /* 1536 * This gets directly called from VFS. When the ioctl 1537 * is not recognized we go back to the other translation paths. 1538 */ 1539 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1540 unsigned int cmd, unsigned long arg) 1541 { 1542 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1543 int error; 1544 1545 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1546 (mode & FMODE_NDELAY) != 0); 1547 if (error) 1548 return error; 1549 1550 /* 1551 * Let the static ioctl translation table take care of it. 1552 */ 1553 if (!sdev->host->hostt->compat_ioctl) 1554 return -ENOIOCTLCMD; 1555 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1556 } 1557 #endif 1558 1559 static char sd_pr_type(enum pr_type type) 1560 { 1561 switch (type) { 1562 case PR_WRITE_EXCLUSIVE: 1563 return 0x01; 1564 case PR_EXCLUSIVE_ACCESS: 1565 return 0x03; 1566 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1567 return 0x05; 1568 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1569 return 0x06; 1570 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1571 return 0x07; 1572 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1573 return 0x08; 1574 default: 1575 return 0; 1576 } 1577 }; 1578 1579 static int sd_pr_command(struct block_device *bdev, u8 sa, 1580 u64 key, u64 sa_key, u8 type, u8 flags) 1581 { 1582 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1583 struct scsi_sense_hdr sshdr; 1584 int result; 1585 u8 cmd[16] = { 0, }; 1586 u8 data[24] = { 0, }; 1587 1588 cmd[0] = PERSISTENT_RESERVE_OUT; 1589 cmd[1] = sa; 1590 cmd[2] = type; 1591 put_unaligned_be32(sizeof(data), &cmd[5]); 1592 1593 put_unaligned_be64(key, &data[0]); 1594 put_unaligned_be64(sa_key, &data[8]); 1595 data[20] = flags; 1596 1597 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1598 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1599 1600 if ((driver_byte(result) & DRIVER_SENSE) && 1601 (scsi_sense_valid(&sshdr))) { 1602 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1603 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1604 } 1605 1606 return result; 1607 } 1608 1609 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1610 u32 flags) 1611 { 1612 if (flags & ~PR_FL_IGNORE_KEY) 1613 return -EOPNOTSUPP; 1614 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1615 old_key, new_key, 0, 1616 (1 << 0) /* APTPL */ | 1617 (1 << 2) /* ALL_TG_PT */); 1618 } 1619 1620 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1621 u32 flags) 1622 { 1623 if (flags) 1624 return -EOPNOTSUPP; 1625 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1626 } 1627 1628 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1629 { 1630 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1631 } 1632 1633 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1634 enum pr_type type, bool abort) 1635 { 1636 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1637 sd_pr_type(type), 0); 1638 } 1639 1640 static int sd_pr_clear(struct block_device *bdev, u64 key) 1641 { 1642 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1643 } 1644 1645 static const struct pr_ops sd_pr_ops = { 1646 .pr_register = sd_pr_register, 1647 .pr_reserve = sd_pr_reserve, 1648 .pr_release = sd_pr_release, 1649 .pr_preempt = sd_pr_preempt, 1650 .pr_clear = sd_pr_clear, 1651 }; 1652 1653 static const struct block_device_operations sd_fops = { 1654 .owner = THIS_MODULE, 1655 .open = sd_open, 1656 .release = sd_release, 1657 .ioctl = sd_ioctl, 1658 .getgeo = sd_getgeo, 1659 #ifdef CONFIG_COMPAT 1660 .compat_ioctl = sd_compat_ioctl, 1661 #endif 1662 .check_events = sd_check_events, 1663 .revalidate_disk = sd_revalidate_disk, 1664 .unlock_native_capacity = sd_unlock_native_capacity, 1665 .pr_ops = &sd_pr_ops, 1666 }; 1667 1668 /** 1669 * sd_eh_action - error handling callback 1670 * @scmd: sd-issued command that has failed 1671 * @eh_disp: The recovery disposition suggested by the midlayer 1672 * 1673 * This function is called by the SCSI midlayer upon completion of an 1674 * error test command (currently TEST UNIT READY). The result of sending 1675 * the eh command is passed in eh_disp. We're looking for devices that 1676 * fail medium access commands but are OK with non access commands like 1677 * test unit ready (so wrongly see the device as having a successful 1678 * recovery) 1679 **/ 1680 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1681 { 1682 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1683 1684 if (!scsi_device_online(scmd->device) || 1685 !scsi_medium_access_command(scmd) || 1686 host_byte(scmd->result) != DID_TIME_OUT || 1687 eh_disp != SUCCESS) 1688 return eh_disp; 1689 1690 /* 1691 * The device has timed out executing a medium access command. 1692 * However, the TEST UNIT READY command sent during error 1693 * handling completed successfully. Either the device is in the 1694 * process of recovering or has it suffered an internal failure 1695 * that prevents access to the storage medium. 1696 */ 1697 sdkp->medium_access_timed_out++; 1698 1699 /* 1700 * If the device keeps failing read/write commands but TEST UNIT 1701 * READY always completes successfully we assume that medium 1702 * access is no longer possible and take the device offline. 1703 */ 1704 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1705 scmd_printk(KERN_ERR, scmd, 1706 "Medium access timeout failure. Offlining disk!\n"); 1707 scsi_device_set_state(scmd->device, SDEV_OFFLINE); 1708 1709 return FAILED; 1710 } 1711 1712 return eh_disp; 1713 } 1714 1715 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1716 { 1717 u64 start_lba = blk_rq_pos(scmd->request); 1718 u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512); 1719 u64 factor = scmd->device->sector_size / 512; 1720 u64 bad_lba; 1721 int info_valid; 1722 /* 1723 * resid is optional but mostly filled in. When it's unused, 1724 * its value is zero, so we assume the whole buffer transferred 1725 */ 1726 unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1727 unsigned int good_bytes; 1728 1729 if (scmd->request->cmd_type != REQ_TYPE_FS) 1730 return 0; 1731 1732 info_valid = scsi_get_sense_info_fld(scmd->sense_buffer, 1733 SCSI_SENSE_BUFFERSIZE, 1734 &bad_lba); 1735 if (!info_valid) 1736 return 0; 1737 1738 if (scsi_bufflen(scmd) <= scmd->device->sector_size) 1739 return 0; 1740 1741 /* be careful ... don't want any overflows */ 1742 do_div(start_lba, factor); 1743 do_div(end_lba, factor); 1744 1745 /* The bad lba was reported incorrectly, we have no idea where 1746 * the error is. 1747 */ 1748 if (bad_lba < start_lba || bad_lba >= end_lba) 1749 return 0; 1750 1751 /* This computation should always be done in terms of 1752 * the resolution of the device's medium. 1753 */ 1754 good_bytes = (bad_lba - start_lba) * scmd->device->sector_size; 1755 return min(good_bytes, transferred); 1756 } 1757 1758 /** 1759 * sd_done - bottom half handler: called when the lower level 1760 * driver has completed (successfully or otherwise) a scsi command. 1761 * @SCpnt: mid-level's per command structure. 1762 * 1763 * Note: potentially run from within an ISR. Must not block. 1764 **/ 1765 static int sd_done(struct scsi_cmnd *SCpnt) 1766 { 1767 int result = SCpnt->result; 1768 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1769 struct scsi_sense_hdr sshdr; 1770 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1771 struct request *req = SCpnt->request; 1772 int sense_valid = 0; 1773 int sense_deferred = 0; 1774 unsigned char op = SCpnt->cmnd[0]; 1775 unsigned char unmap = SCpnt->cmnd[1] & 8; 1776 1777 if (req->cmd_flags & REQ_DISCARD || req->cmd_flags & REQ_WRITE_SAME) { 1778 if (!result) { 1779 good_bytes = blk_rq_bytes(req); 1780 scsi_set_resid(SCpnt, 0); 1781 } else { 1782 good_bytes = 0; 1783 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1784 } 1785 } 1786 1787 if (result) { 1788 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1789 if (sense_valid) 1790 sense_deferred = scsi_sense_is_deferred(&sshdr); 1791 } 1792 sdkp->medium_access_timed_out = 0; 1793 1794 if (driver_byte(result) != DRIVER_SENSE && 1795 (!sense_valid || sense_deferred)) 1796 goto out; 1797 1798 switch (sshdr.sense_key) { 1799 case HARDWARE_ERROR: 1800 case MEDIUM_ERROR: 1801 good_bytes = sd_completed_bytes(SCpnt); 1802 break; 1803 case RECOVERED_ERROR: 1804 good_bytes = scsi_bufflen(SCpnt); 1805 break; 1806 case NO_SENSE: 1807 /* This indicates a false check condition, so ignore it. An 1808 * unknown amount of data was transferred so treat it as an 1809 * error. 1810 */ 1811 SCpnt->result = 0; 1812 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1813 break; 1814 case ABORTED_COMMAND: 1815 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 1816 good_bytes = sd_completed_bytes(SCpnt); 1817 break; 1818 case ILLEGAL_REQUEST: 1819 if (sshdr.asc == 0x10) /* DIX: Host detected corruption */ 1820 good_bytes = sd_completed_bytes(SCpnt); 1821 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 1822 if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 1823 switch (op) { 1824 case UNMAP: 1825 sd_config_discard(sdkp, SD_LBP_DISABLE); 1826 break; 1827 case WRITE_SAME_16: 1828 case WRITE_SAME: 1829 if (unmap) 1830 sd_config_discard(sdkp, SD_LBP_DISABLE); 1831 else { 1832 sdkp->device->no_write_same = 1; 1833 sd_config_write_same(sdkp); 1834 1835 good_bytes = 0; 1836 req->__data_len = blk_rq_bytes(req); 1837 req->cmd_flags |= REQ_QUIET; 1838 } 1839 } 1840 } 1841 break; 1842 default: 1843 break; 1844 } 1845 out: 1846 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 1847 "sd_done: completed %d of %d bytes\n", 1848 good_bytes, scsi_bufflen(SCpnt))); 1849 1850 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt)) 1851 sd_dif_complete(SCpnt, good_bytes); 1852 1853 return good_bytes; 1854 } 1855 1856 /* 1857 * spinup disk - called only in sd_revalidate_disk() 1858 */ 1859 static void 1860 sd_spinup_disk(struct scsi_disk *sdkp) 1861 { 1862 unsigned char cmd[10]; 1863 unsigned long spintime_expire = 0; 1864 int retries, spintime; 1865 unsigned int the_result; 1866 struct scsi_sense_hdr sshdr; 1867 int sense_valid = 0; 1868 1869 spintime = 0; 1870 1871 /* Spin up drives, as required. Only do this at boot time */ 1872 /* Spinup needs to be done for module loads too. */ 1873 do { 1874 retries = 0; 1875 1876 do { 1877 cmd[0] = TEST_UNIT_READY; 1878 memset((void *) &cmd[1], 0, 9); 1879 1880 the_result = scsi_execute_req(sdkp->device, cmd, 1881 DMA_NONE, NULL, 0, 1882 &sshdr, SD_TIMEOUT, 1883 SD_MAX_RETRIES, NULL); 1884 1885 /* 1886 * If the drive has indicated to us that it 1887 * doesn't have any media in it, don't bother 1888 * with any more polling. 1889 */ 1890 if (media_not_present(sdkp, &sshdr)) 1891 return; 1892 1893 if (the_result) 1894 sense_valid = scsi_sense_valid(&sshdr); 1895 retries++; 1896 } while (retries < 3 && 1897 (!scsi_status_is_good(the_result) || 1898 ((driver_byte(the_result) & DRIVER_SENSE) && 1899 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 1900 1901 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) { 1902 /* no sense, TUR either succeeded or failed 1903 * with a status error */ 1904 if(!spintime && !scsi_status_is_good(the_result)) { 1905 sd_print_result(sdkp, "Test Unit Ready failed", 1906 the_result); 1907 } 1908 break; 1909 } 1910 1911 /* 1912 * The device does not want the automatic start to be issued. 1913 */ 1914 if (sdkp->device->no_start_on_add) 1915 break; 1916 1917 if (sense_valid && sshdr.sense_key == NOT_READY) { 1918 if (sshdr.asc == 4 && sshdr.ascq == 3) 1919 break; /* manual intervention required */ 1920 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 1921 break; /* standby */ 1922 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 1923 break; /* unavailable */ 1924 /* 1925 * Issue command to spin up drive when not ready 1926 */ 1927 if (!spintime) { 1928 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 1929 cmd[0] = START_STOP; 1930 cmd[1] = 1; /* Return immediately */ 1931 memset((void *) &cmd[2], 0, 8); 1932 cmd[4] = 1; /* Start spin cycle */ 1933 if (sdkp->device->start_stop_pwr_cond) 1934 cmd[4] |= 1 << 4; 1935 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 1936 NULL, 0, &sshdr, 1937 SD_TIMEOUT, SD_MAX_RETRIES, 1938 NULL); 1939 spintime_expire = jiffies + 100 * HZ; 1940 spintime = 1; 1941 } 1942 /* Wait 1 second for next try */ 1943 msleep(1000); 1944 printk("."); 1945 1946 /* 1947 * Wait for USB flash devices with slow firmware. 1948 * Yes, this sense key/ASC combination shouldn't 1949 * occur here. It's characteristic of these devices. 1950 */ 1951 } else if (sense_valid && 1952 sshdr.sense_key == UNIT_ATTENTION && 1953 sshdr.asc == 0x28) { 1954 if (!spintime) { 1955 spintime_expire = jiffies + 5 * HZ; 1956 spintime = 1; 1957 } 1958 /* Wait 1 second for next try */ 1959 msleep(1000); 1960 } else { 1961 /* we don't understand the sense code, so it's 1962 * probably pointless to loop */ 1963 if(!spintime) { 1964 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 1965 sd_print_sense_hdr(sdkp, &sshdr); 1966 } 1967 break; 1968 } 1969 1970 } while (spintime && time_before_eq(jiffies, spintime_expire)); 1971 1972 if (spintime) { 1973 if (scsi_status_is_good(the_result)) 1974 printk("ready\n"); 1975 else 1976 printk("not responding...\n"); 1977 } 1978 } 1979 1980 1981 /* 1982 * Determine whether disk supports Data Integrity Field. 1983 */ 1984 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 1985 { 1986 struct scsi_device *sdp = sdkp->device; 1987 u8 type; 1988 int ret = 0; 1989 1990 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 1991 return ret; 1992 1993 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 1994 1995 if (type > SD_DIF_TYPE3_PROTECTION) 1996 ret = -ENODEV; 1997 else if (scsi_host_dif_capable(sdp->host, type)) 1998 ret = 1; 1999 2000 if (sdkp->first_scan || type != sdkp->protection_type) 2001 switch (ret) { 2002 case -ENODEV: 2003 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2004 " protection type %u. Disabling disk!\n", 2005 type); 2006 break; 2007 case 1: 2008 sd_printk(KERN_NOTICE, sdkp, 2009 "Enabling DIF Type %u protection\n", type); 2010 break; 2011 case 0: 2012 sd_printk(KERN_NOTICE, sdkp, 2013 "Disabling DIF Type %u protection\n", type); 2014 break; 2015 } 2016 2017 sdkp->protection_type = type; 2018 2019 return ret; 2020 } 2021 2022 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2023 struct scsi_sense_hdr *sshdr, int sense_valid, 2024 int the_result) 2025 { 2026 if (driver_byte(the_result) & DRIVER_SENSE) 2027 sd_print_sense_hdr(sdkp, sshdr); 2028 else 2029 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2030 2031 /* 2032 * Set dirty bit for removable devices if not ready - 2033 * sometimes drives will not report this properly. 2034 */ 2035 if (sdp->removable && 2036 sense_valid && sshdr->sense_key == NOT_READY) 2037 set_media_not_present(sdkp); 2038 2039 /* 2040 * We used to set media_present to 0 here to indicate no media 2041 * in the drive, but some drives fail read capacity even with 2042 * media present, so we can't do that. 2043 */ 2044 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2045 } 2046 2047 #define RC16_LEN 32 2048 #if RC16_LEN > SD_BUF_SIZE 2049 #error RC16_LEN must not be more than SD_BUF_SIZE 2050 #endif 2051 2052 #define READ_CAPACITY_RETRIES_ON_RESET 10 2053 2054 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2055 unsigned char *buffer) 2056 { 2057 unsigned char cmd[16]; 2058 struct scsi_sense_hdr sshdr; 2059 int sense_valid = 0; 2060 int the_result; 2061 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2062 unsigned int alignment; 2063 unsigned long long lba; 2064 unsigned sector_size; 2065 2066 if (sdp->no_read_capacity_16) 2067 return -EINVAL; 2068 2069 do { 2070 memset(cmd, 0, 16); 2071 cmd[0] = SERVICE_ACTION_IN_16; 2072 cmd[1] = SAI_READ_CAPACITY_16; 2073 cmd[13] = RC16_LEN; 2074 memset(buffer, 0, RC16_LEN); 2075 2076 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2077 buffer, RC16_LEN, &sshdr, 2078 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2079 2080 if (media_not_present(sdkp, &sshdr)) 2081 return -ENODEV; 2082 2083 if (the_result) { 2084 sense_valid = scsi_sense_valid(&sshdr); 2085 if (sense_valid && 2086 sshdr.sense_key == ILLEGAL_REQUEST && 2087 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2088 sshdr.ascq == 0x00) 2089 /* Invalid Command Operation Code or 2090 * Invalid Field in CDB, just retry 2091 * silently with RC10 */ 2092 return -EINVAL; 2093 if (sense_valid && 2094 sshdr.sense_key == UNIT_ATTENTION && 2095 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2096 /* Device reset might occur several times, 2097 * give it one more chance */ 2098 if (--reset_retries > 0) 2099 continue; 2100 } 2101 retries--; 2102 2103 } while (the_result && retries); 2104 2105 if (the_result) { 2106 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2107 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2108 return -EINVAL; 2109 } 2110 2111 sector_size = get_unaligned_be32(&buffer[8]); 2112 lba = get_unaligned_be64(&buffer[0]); 2113 2114 if (sd_read_protection_type(sdkp, buffer) < 0) { 2115 sdkp->capacity = 0; 2116 return -ENODEV; 2117 } 2118 2119 if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) { 2120 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2121 "kernel compiled with support for large block " 2122 "devices.\n"); 2123 sdkp->capacity = 0; 2124 return -EOVERFLOW; 2125 } 2126 2127 /* Logical blocks per physical block exponent */ 2128 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2129 2130 /* Lowest aligned logical block */ 2131 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2132 blk_queue_alignment_offset(sdp->request_queue, alignment); 2133 if (alignment && sdkp->first_scan) 2134 sd_printk(KERN_NOTICE, sdkp, 2135 "physical block alignment offset: %u\n", alignment); 2136 2137 if (buffer[14] & 0x80) { /* LBPME */ 2138 sdkp->lbpme = 1; 2139 2140 if (buffer[14] & 0x40) /* LBPRZ */ 2141 sdkp->lbprz = 1; 2142 2143 sd_config_discard(sdkp, SD_LBP_WS16); 2144 } 2145 2146 sdkp->capacity = lba + 1; 2147 return sector_size; 2148 } 2149 2150 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2151 unsigned char *buffer) 2152 { 2153 unsigned char cmd[16]; 2154 struct scsi_sense_hdr sshdr; 2155 int sense_valid = 0; 2156 int the_result; 2157 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2158 sector_t lba; 2159 unsigned sector_size; 2160 2161 do { 2162 cmd[0] = READ_CAPACITY; 2163 memset(&cmd[1], 0, 9); 2164 memset(buffer, 0, 8); 2165 2166 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2167 buffer, 8, &sshdr, 2168 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2169 2170 if (media_not_present(sdkp, &sshdr)) 2171 return -ENODEV; 2172 2173 if (the_result) { 2174 sense_valid = scsi_sense_valid(&sshdr); 2175 if (sense_valid && 2176 sshdr.sense_key == UNIT_ATTENTION && 2177 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2178 /* Device reset might occur several times, 2179 * give it one more chance */ 2180 if (--reset_retries > 0) 2181 continue; 2182 } 2183 retries--; 2184 2185 } while (the_result && retries); 2186 2187 if (the_result) { 2188 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2189 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2190 return -EINVAL; 2191 } 2192 2193 sector_size = get_unaligned_be32(&buffer[4]); 2194 lba = get_unaligned_be32(&buffer[0]); 2195 2196 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2197 /* Some buggy (usb cardreader) devices return an lba of 2198 0xffffffff when the want to report a size of 0 (with 2199 which they really mean no media is present) */ 2200 sdkp->capacity = 0; 2201 sdkp->physical_block_size = sector_size; 2202 return sector_size; 2203 } 2204 2205 if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) { 2206 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2207 "kernel compiled with support for large block " 2208 "devices.\n"); 2209 sdkp->capacity = 0; 2210 return -EOVERFLOW; 2211 } 2212 2213 sdkp->capacity = lba + 1; 2214 sdkp->physical_block_size = sector_size; 2215 return sector_size; 2216 } 2217 2218 static int sd_try_rc16_first(struct scsi_device *sdp) 2219 { 2220 if (sdp->host->max_cmd_len < 16) 2221 return 0; 2222 if (sdp->try_rc_10_first) 2223 return 0; 2224 if (sdp->scsi_level > SCSI_SPC_2) 2225 return 1; 2226 if (scsi_device_protection(sdp)) 2227 return 1; 2228 return 0; 2229 } 2230 2231 /* 2232 * read disk capacity 2233 */ 2234 static void 2235 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2236 { 2237 int sector_size; 2238 struct scsi_device *sdp = sdkp->device; 2239 sector_t old_capacity = sdkp->capacity; 2240 2241 if (sd_try_rc16_first(sdp)) { 2242 sector_size = read_capacity_16(sdkp, sdp, buffer); 2243 if (sector_size == -EOVERFLOW) 2244 goto got_data; 2245 if (sector_size == -ENODEV) 2246 return; 2247 if (sector_size < 0) 2248 sector_size = read_capacity_10(sdkp, sdp, buffer); 2249 if (sector_size < 0) 2250 return; 2251 } else { 2252 sector_size = read_capacity_10(sdkp, sdp, buffer); 2253 if (sector_size == -EOVERFLOW) 2254 goto got_data; 2255 if (sector_size < 0) 2256 return; 2257 if ((sizeof(sdkp->capacity) > 4) && 2258 (sdkp->capacity > 0xffffffffULL)) { 2259 int old_sector_size = sector_size; 2260 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2261 "Trying to use READ CAPACITY(16).\n"); 2262 sector_size = read_capacity_16(sdkp, sdp, buffer); 2263 if (sector_size < 0) { 2264 sd_printk(KERN_NOTICE, sdkp, 2265 "Using 0xffffffff as device size\n"); 2266 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2267 sector_size = old_sector_size; 2268 goto got_data; 2269 } 2270 } 2271 } 2272 2273 /* Some devices are known to return the total number of blocks, 2274 * not the highest block number. Some devices have versions 2275 * which do this and others which do not. Some devices we might 2276 * suspect of doing this but we don't know for certain. 2277 * 2278 * If we know the reported capacity is wrong, decrement it. If 2279 * we can only guess, then assume the number of blocks is even 2280 * (usually true but not always) and err on the side of lowering 2281 * the capacity. 2282 */ 2283 if (sdp->fix_capacity || 2284 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2285 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2286 "from its reported value: %llu\n", 2287 (unsigned long long) sdkp->capacity); 2288 --sdkp->capacity; 2289 } 2290 2291 got_data: 2292 if (sector_size == 0) { 2293 sector_size = 512; 2294 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2295 "assuming 512.\n"); 2296 } 2297 2298 if (sector_size != 512 && 2299 sector_size != 1024 && 2300 sector_size != 2048 && 2301 sector_size != 4096) { 2302 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2303 sector_size); 2304 /* 2305 * The user might want to re-format the drive with 2306 * a supported sectorsize. Once this happens, it 2307 * would be relatively trivial to set the thing up. 2308 * For this reason, we leave the thing in the table. 2309 */ 2310 sdkp->capacity = 0; 2311 /* 2312 * set a bogus sector size so the normal read/write 2313 * logic in the block layer will eventually refuse any 2314 * request on this device without tripping over power 2315 * of two sector size assumptions 2316 */ 2317 sector_size = 512; 2318 } 2319 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2320 2321 { 2322 char cap_str_2[10], cap_str_10[10]; 2323 2324 string_get_size(sdkp->capacity, sector_size, 2325 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2326 string_get_size(sdkp->capacity, sector_size, 2327 STRING_UNITS_10, cap_str_10, 2328 sizeof(cap_str_10)); 2329 2330 if (sdkp->first_scan || old_capacity != sdkp->capacity) { 2331 sd_printk(KERN_NOTICE, sdkp, 2332 "%llu %d-byte logical blocks: (%s/%s)\n", 2333 (unsigned long long)sdkp->capacity, 2334 sector_size, cap_str_10, cap_str_2); 2335 2336 if (sdkp->physical_block_size != sector_size) 2337 sd_printk(KERN_NOTICE, sdkp, 2338 "%u-byte physical blocks\n", 2339 sdkp->physical_block_size); 2340 } 2341 } 2342 2343 if (sdkp->capacity > 0xffffffff) 2344 sdp->use_16_for_rw = 1; 2345 2346 blk_queue_physical_block_size(sdp->request_queue, 2347 sdkp->physical_block_size); 2348 sdkp->device->sector_size = sector_size; 2349 } 2350 2351 /* called with buffer of length 512 */ 2352 static inline int 2353 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2354 unsigned char *buffer, int len, struct scsi_mode_data *data, 2355 struct scsi_sense_hdr *sshdr) 2356 { 2357 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2358 SD_TIMEOUT, SD_MAX_RETRIES, data, 2359 sshdr); 2360 } 2361 2362 /* 2363 * read write protect setting, if possible - called only in sd_revalidate_disk() 2364 * called with buffer of length SD_BUF_SIZE 2365 */ 2366 static void 2367 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2368 { 2369 int res; 2370 struct scsi_device *sdp = sdkp->device; 2371 struct scsi_mode_data data; 2372 int old_wp = sdkp->write_prot; 2373 2374 set_disk_ro(sdkp->disk, 0); 2375 if (sdp->skip_ms_page_3f) { 2376 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2377 return; 2378 } 2379 2380 if (sdp->use_192_bytes_for_3f) { 2381 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2382 } else { 2383 /* 2384 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2385 * We have to start carefully: some devices hang if we ask 2386 * for more than is available. 2387 */ 2388 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2389 2390 /* 2391 * Second attempt: ask for page 0 When only page 0 is 2392 * implemented, a request for page 3F may return Sense Key 2393 * 5: Illegal Request, Sense Code 24: Invalid field in 2394 * CDB. 2395 */ 2396 if (!scsi_status_is_good(res)) 2397 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2398 2399 /* 2400 * Third attempt: ask 255 bytes, as we did earlier. 2401 */ 2402 if (!scsi_status_is_good(res)) 2403 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2404 &data, NULL); 2405 } 2406 2407 if (!scsi_status_is_good(res)) { 2408 sd_first_printk(KERN_WARNING, sdkp, 2409 "Test WP failed, assume Write Enabled\n"); 2410 } else { 2411 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2412 set_disk_ro(sdkp->disk, sdkp->write_prot); 2413 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2414 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2415 sdkp->write_prot ? "on" : "off"); 2416 sd_printk(KERN_DEBUG, sdkp, 2417 "Mode Sense: %02x %02x %02x %02x\n", 2418 buffer[0], buffer[1], buffer[2], buffer[3]); 2419 } 2420 } 2421 } 2422 2423 /* 2424 * sd_read_cache_type - called only from sd_revalidate_disk() 2425 * called with buffer of length SD_BUF_SIZE 2426 */ 2427 static void 2428 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2429 { 2430 int len = 0, res; 2431 struct scsi_device *sdp = sdkp->device; 2432 2433 int dbd; 2434 int modepage; 2435 int first_len; 2436 struct scsi_mode_data data; 2437 struct scsi_sense_hdr sshdr; 2438 int old_wce = sdkp->WCE; 2439 int old_rcd = sdkp->RCD; 2440 int old_dpofua = sdkp->DPOFUA; 2441 2442 2443 if (sdkp->cache_override) 2444 return; 2445 2446 first_len = 4; 2447 if (sdp->skip_ms_page_8) { 2448 if (sdp->type == TYPE_RBC) 2449 goto defaults; 2450 else { 2451 if (sdp->skip_ms_page_3f) 2452 goto defaults; 2453 modepage = 0x3F; 2454 if (sdp->use_192_bytes_for_3f) 2455 first_len = 192; 2456 dbd = 0; 2457 } 2458 } else if (sdp->type == TYPE_RBC) { 2459 modepage = 6; 2460 dbd = 8; 2461 } else { 2462 modepage = 8; 2463 dbd = 0; 2464 } 2465 2466 /* cautiously ask */ 2467 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2468 &data, &sshdr); 2469 2470 if (!scsi_status_is_good(res)) 2471 goto bad_sense; 2472 2473 if (!data.header_length) { 2474 modepage = 6; 2475 first_len = 0; 2476 sd_first_printk(KERN_ERR, sdkp, 2477 "Missing header in MODE_SENSE response\n"); 2478 } 2479 2480 /* that went OK, now ask for the proper length */ 2481 len = data.length; 2482 2483 /* 2484 * We're only interested in the first three bytes, actually. 2485 * But the data cache page is defined for the first 20. 2486 */ 2487 if (len < 3) 2488 goto bad_sense; 2489 else if (len > SD_BUF_SIZE) { 2490 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2491 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2492 len = SD_BUF_SIZE; 2493 } 2494 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2495 len = 192; 2496 2497 /* Get the data */ 2498 if (len > first_len) 2499 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2500 &data, &sshdr); 2501 2502 if (scsi_status_is_good(res)) { 2503 int offset = data.header_length + data.block_descriptor_length; 2504 2505 while (offset < len) { 2506 u8 page_code = buffer[offset] & 0x3F; 2507 u8 spf = buffer[offset] & 0x40; 2508 2509 if (page_code == 8 || page_code == 6) { 2510 /* We're interested only in the first 3 bytes. 2511 */ 2512 if (len - offset <= 2) { 2513 sd_first_printk(KERN_ERR, sdkp, 2514 "Incomplete mode parameter " 2515 "data\n"); 2516 goto defaults; 2517 } else { 2518 modepage = page_code; 2519 goto Page_found; 2520 } 2521 } else { 2522 /* Go to the next page */ 2523 if (spf && len - offset > 3) 2524 offset += 4 + (buffer[offset+2] << 8) + 2525 buffer[offset+3]; 2526 else if (!spf && len - offset > 1) 2527 offset += 2 + buffer[offset+1]; 2528 else { 2529 sd_first_printk(KERN_ERR, sdkp, 2530 "Incomplete mode " 2531 "parameter data\n"); 2532 goto defaults; 2533 } 2534 } 2535 } 2536 2537 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2538 goto defaults; 2539 2540 Page_found: 2541 if (modepage == 8) { 2542 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2543 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2544 } else { 2545 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2546 sdkp->RCD = 0; 2547 } 2548 2549 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2550 if (sdp->broken_fua) { 2551 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2552 sdkp->DPOFUA = 0; 2553 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) { 2554 sd_first_printk(KERN_NOTICE, sdkp, 2555 "Uses READ/WRITE(6), disabling FUA\n"); 2556 sdkp->DPOFUA = 0; 2557 } 2558 2559 /* No cache flush allowed for write protected devices */ 2560 if (sdkp->WCE && sdkp->write_prot) 2561 sdkp->WCE = 0; 2562 2563 if (sdkp->first_scan || old_wce != sdkp->WCE || 2564 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2565 sd_printk(KERN_NOTICE, sdkp, 2566 "Write cache: %s, read cache: %s, %s\n", 2567 sdkp->WCE ? "enabled" : "disabled", 2568 sdkp->RCD ? "disabled" : "enabled", 2569 sdkp->DPOFUA ? "supports DPO and FUA" 2570 : "doesn't support DPO or FUA"); 2571 2572 return; 2573 } 2574 2575 bad_sense: 2576 if (scsi_sense_valid(&sshdr) && 2577 sshdr.sense_key == ILLEGAL_REQUEST && 2578 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2579 /* Invalid field in CDB */ 2580 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2581 else 2582 sd_first_printk(KERN_ERR, sdkp, 2583 "Asking for cache data failed\n"); 2584 2585 defaults: 2586 if (sdp->wce_default_on) { 2587 sd_first_printk(KERN_NOTICE, sdkp, 2588 "Assuming drive cache: write back\n"); 2589 sdkp->WCE = 1; 2590 } else { 2591 sd_first_printk(KERN_ERR, sdkp, 2592 "Assuming drive cache: write through\n"); 2593 sdkp->WCE = 0; 2594 } 2595 sdkp->RCD = 0; 2596 sdkp->DPOFUA = 0; 2597 } 2598 2599 /* 2600 * The ATO bit indicates whether the DIF application tag is available 2601 * for use by the operating system. 2602 */ 2603 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2604 { 2605 int res, offset; 2606 struct scsi_device *sdp = sdkp->device; 2607 struct scsi_mode_data data; 2608 struct scsi_sense_hdr sshdr; 2609 2610 if (sdp->type != TYPE_DISK) 2611 return; 2612 2613 if (sdkp->protection_type == 0) 2614 return; 2615 2616 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2617 SD_MAX_RETRIES, &data, &sshdr); 2618 2619 if (!scsi_status_is_good(res) || !data.header_length || 2620 data.length < 6) { 2621 sd_first_printk(KERN_WARNING, sdkp, 2622 "getting Control mode page failed, assume no ATO\n"); 2623 2624 if (scsi_sense_valid(&sshdr)) 2625 sd_print_sense_hdr(sdkp, &sshdr); 2626 2627 return; 2628 } 2629 2630 offset = data.header_length + data.block_descriptor_length; 2631 2632 if ((buffer[offset] & 0x3f) != 0x0a) { 2633 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2634 return; 2635 } 2636 2637 if ((buffer[offset + 5] & 0x80) == 0) 2638 return; 2639 2640 sdkp->ATO = 1; 2641 2642 return; 2643 } 2644 2645 /** 2646 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2647 * @disk: disk to query 2648 */ 2649 static void sd_read_block_limits(struct scsi_disk *sdkp) 2650 { 2651 unsigned int sector_sz = sdkp->device->sector_size; 2652 const int vpd_len = 64; 2653 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2654 2655 if (!buffer || 2656 /* Block Limits VPD */ 2657 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2658 goto out; 2659 2660 blk_queue_io_min(sdkp->disk->queue, 2661 get_unaligned_be16(&buffer[6]) * sector_sz); 2662 2663 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2664 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2665 2666 if (buffer[3] == 0x3c) { 2667 unsigned int lba_count, desc_count; 2668 2669 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2670 2671 if (!sdkp->lbpme) 2672 goto out; 2673 2674 lba_count = get_unaligned_be32(&buffer[20]); 2675 desc_count = get_unaligned_be32(&buffer[24]); 2676 2677 if (lba_count && desc_count) 2678 sdkp->max_unmap_blocks = lba_count; 2679 2680 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2681 2682 if (buffer[32] & 0x80) 2683 sdkp->unmap_alignment = 2684 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2685 2686 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2687 2688 if (sdkp->max_unmap_blocks) 2689 sd_config_discard(sdkp, SD_LBP_UNMAP); 2690 else 2691 sd_config_discard(sdkp, SD_LBP_WS16); 2692 2693 } else { /* LBP VPD page tells us what to use */ 2694 if (sdkp->lbpu && sdkp->max_unmap_blocks && !sdkp->lbprz) 2695 sd_config_discard(sdkp, SD_LBP_UNMAP); 2696 else if (sdkp->lbpws) 2697 sd_config_discard(sdkp, SD_LBP_WS16); 2698 else if (sdkp->lbpws10) 2699 sd_config_discard(sdkp, SD_LBP_WS10); 2700 else if (sdkp->lbpu && sdkp->max_unmap_blocks) 2701 sd_config_discard(sdkp, SD_LBP_UNMAP); 2702 else 2703 sd_config_discard(sdkp, SD_LBP_DISABLE); 2704 } 2705 } 2706 2707 out: 2708 kfree(buffer); 2709 } 2710 2711 /** 2712 * sd_read_block_characteristics - Query block dev. characteristics 2713 * @disk: disk to query 2714 */ 2715 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2716 { 2717 unsigned char *buffer; 2718 u16 rot; 2719 const int vpd_len = 64; 2720 2721 buffer = kmalloc(vpd_len, GFP_KERNEL); 2722 2723 if (!buffer || 2724 /* Block Device Characteristics VPD */ 2725 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2726 goto out; 2727 2728 rot = get_unaligned_be16(&buffer[4]); 2729 2730 if (rot == 1) { 2731 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, sdkp->disk->queue); 2732 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, sdkp->disk->queue); 2733 } 2734 2735 out: 2736 kfree(buffer); 2737 } 2738 2739 /** 2740 * sd_read_block_provisioning - Query provisioning VPD page 2741 * @disk: disk to query 2742 */ 2743 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2744 { 2745 unsigned char *buffer; 2746 const int vpd_len = 8; 2747 2748 if (sdkp->lbpme == 0) 2749 return; 2750 2751 buffer = kmalloc(vpd_len, GFP_KERNEL); 2752 2753 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2754 goto out; 2755 2756 sdkp->lbpvpd = 1; 2757 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 2758 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 2759 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 2760 2761 out: 2762 kfree(buffer); 2763 } 2764 2765 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 2766 { 2767 struct scsi_device *sdev = sdkp->device; 2768 2769 if (sdev->host->no_write_same) { 2770 sdev->no_write_same = 1; 2771 2772 return; 2773 } 2774 2775 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 2776 /* too large values might cause issues with arcmsr */ 2777 int vpd_buf_len = 64; 2778 2779 sdev->no_report_opcodes = 1; 2780 2781 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 2782 * CODES is unsupported and the device has an ATA 2783 * Information VPD page (SAT). 2784 */ 2785 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 2786 sdev->no_write_same = 1; 2787 } 2788 2789 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 2790 sdkp->ws16 = 1; 2791 2792 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 2793 sdkp->ws10 = 1; 2794 } 2795 2796 /** 2797 * sd_revalidate_disk - called the first time a new disk is seen, 2798 * performs disk spin up, read_capacity, etc. 2799 * @disk: struct gendisk we care about 2800 **/ 2801 static int sd_revalidate_disk(struct gendisk *disk) 2802 { 2803 struct scsi_disk *sdkp = scsi_disk(disk); 2804 struct scsi_device *sdp = sdkp->device; 2805 struct request_queue *q = sdkp->disk->queue; 2806 unsigned char *buffer; 2807 unsigned int dev_max, rw_max; 2808 2809 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 2810 "sd_revalidate_disk\n")); 2811 2812 /* 2813 * If the device is offline, don't try and read capacity or any 2814 * of the other niceties. 2815 */ 2816 if (!scsi_device_online(sdp)) 2817 goto out; 2818 2819 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 2820 if (!buffer) { 2821 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 2822 "allocation failure.\n"); 2823 goto out; 2824 } 2825 2826 sd_spinup_disk(sdkp); 2827 2828 /* 2829 * Without media there is no reason to ask; moreover, some devices 2830 * react badly if we do. 2831 */ 2832 if (sdkp->media_present) { 2833 sd_read_capacity(sdkp, buffer); 2834 2835 if (scsi_device_supports_vpd(sdp)) { 2836 sd_read_block_provisioning(sdkp); 2837 sd_read_block_limits(sdkp); 2838 sd_read_block_characteristics(sdkp); 2839 } 2840 2841 sd_read_write_protect_flag(sdkp, buffer); 2842 sd_read_cache_type(sdkp, buffer); 2843 sd_read_app_tag_own(sdkp, buffer); 2844 sd_read_write_same(sdkp, buffer); 2845 } 2846 2847 sdkp->first_scan = 0; 2848 2849 /* 2850 * We now have all cache related info, determine how we deal 2851 * with flush requests. 2852 */ 2853 sd_set_flush_flag(sdkp); 2854 2855 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 2856 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 2857 2858 /* Some devices report a maximum block count for READ/WRITE requests. */ 2859 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 2860 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 2861 2862 /* 2863 * Use the device's preferred I/O size for reads and writes 2864 * unless the reported value is unreasonably small, large, or 2865 * garbage. 2866 */ 2867 if (sdkp->opt_xfer_blocks && 2868 sdkp->opt_xfer_blocks <= dev_max && 2869 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS && 2870 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) { 2871 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 2872 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 2873 } else 2874 rw_max = BLK_DEF_MAX_SECTORS; 2875 2876 /* Combine with controller limits */ 2877 q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q)); 2878 2879 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); 2880 sd_config_write_same(sdkp); 2881 kfree(buffer); 2882 2883 out: 2884 return 0; 2885 } 2886 2887 /** 2888 * sd_unlock_native_capacity - unlock native capacity 2889 * @disk: struct gendisk to set capacity for 2890 * 2891 * Block layer calls this function if it detects that partitions 2892 * on @disk reach beyond the end of the device. If the SCSI host 2893 * implements ->unlock_native_capacity() method, it's invoked to 2894 * give it a chance to adjust the device capacity. 2895 * 2896 * CONTEXT: 2897 * Defined by block layer. Might sleep. 2898 */ 2899 static void sd_unlock_native_capacity(struct gendisk *disk) 2900 { 2901 struct scsi_device *sdev = scsi_disk(disk)->device; 2902 2903 if (sdev->host->hostt->unlock_native_capacity) 2904 sdev->host->hostt->unlock_native_capacity(sdev); 2905 } 2906 2907 /** 2908 * sd_format_disk_name - format disk name 2909 * @prefix: name prefix - ie. "sd" for SCSI disks 2910 * @index: index of the disk to format name for 2911 * @buf: output buffer 2912 * @buflen: length of the output buffer 2913 * 2914 * SCSI disk names starts at sda. The 26th device is sdz and the 2915 * 27th is sdaa. The last one for two lettered suffix is sdzz 2916 * which is followed by sdaaa. 2917 * 2918 * This is basically 26 base counting with one extra 'nil' entry 2919 * at the beginning from the second digit on and can be 2920 * determined using similar method as 26 base conversion with the 2921 * index shifted -1 after each digit is computed. 2922 * 2923 * CONTEXT: 2924 * Don't care. 2925 * 2926 * RETURNS: 2927 * 0 on success, -errno on failure. 2928 */ 2929 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 2930 { 2931 const int base = 'z' - 'a' + 1; 2932 char *begin = buf + strlen(prefix); 2933 char *end = buf + buflen; 2934 char *p; 2935 int unit; 2936 2937 p = end - 1; 2938 *p = '\0'; 2939 unit = base; 2940 do { 2941 if (p == begin) 2942 return -EINVAL; 2943 *--p = 'a' + (index % unit); 2944 index = (index / unit) - 1; 2945 } while (index >= 0); 2946 2947 memmove(begin, p, end - p); 2948 memcpy(buf, prefix, strlen(prefix)); 2949 2950 return 0; 2951 } 2952 2953 /* 2954 * The asynchronous part of sd_probe 2955 */ 2956 static void sd_probe_async(void *data, async_cookie_t cookie) 2957 { 2958 struct scsi_disk *sdkp = data; 2959 struct scsi_device *sdp; 2960 struct gendisk *gd; 2961 u32 index; 2962 struct device *dev; 2963 2964 sdp = sdkp->device; 2965 gd = sdkp->disk; 2966 index = sdkp->index; 2967 dev = &sdp->sdev_gendev; 2968 2969 gd->major = sd_major((index & 0xf0) >> 4); 2970 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 2971 gd->minors = SD_MINORS; 2972 2973 gd->fops = &sd_fops; 2974 gd->private_data = &sdkp->driver; 2975 gd->queue = sdkp->device->request_queue; 2976 2977 /* defaults, until the device tells us otherwise */ 2978 sdp->sector_size = 512; 2979 sdkp->capacity = 0; 2980 sdkp->media_present = 1; 2981 sdkp->write_prot = 0; 2982 sdkp->cache_override = 0; 2983 sdkp->WCE = 0; 2984 sdkp->RCD = 0; 2985 sdkp->ATO = 0; 2986 sdkp->first_scan = 1; 2987 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 2988 2989 sd_revalidate_disk(gd); 2990 2991 gd->driverfs_dev = &sdp->sdev_gendev; 2992 gd->flags = GENHD_FL_EXT_DEVT; 2993 if (sdp->removable) { 2994 gd->flags |= GENHD_FL_REMOVABLE; 2995 gd->events |= DISK_EVENT_MEDIA_CHANGE; 2996 } 2997 2998 blk_pm_runtime_init(sdp->request_queue, dev); 2999 add_disk(gd); 3000 if (sdkp->capacity) 3001 sd_dif_config_host(sdkp); 3002 3003 sd_revalidate_disk(gd); 3004 3005 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3006 sdp->removable ? "removable " : ""); 3007 scsi_autopm_put_device(sdp); 3008 put_device(&sdkp->dev); 3009 } 3010 3011 /** 3012 * sd_probe - called during driver initialization and whenever a 3013 * new scsi device is attached to the system. It is called once 3014 * for each scsi device (not just disks) present. 3015 * @dev: pointer to device object 3016 * 3017 * Returns 0 if successful (or not interested in this scsi device 3018 * (e.g. scanner)); 1 when there is an error. 3019 * 3020 * Note: this function is invoked from the scsi mid-level. 3021 * This function sets up the mapping between a given 3022 * <host,channel,id,lun> (found in sdp) and new device name 3023 * (e.g. /dev/sda). More precisely it is the block device major 3024 * and minor number that is chosen here. 3025 * 3026 * Assume sd_probe is not re-entrant (for time being) 3027 * Also think about sd_probe() and sd_remove() running coincidentally. 3028 **/ 3029 static int sd_probe(struct device *dev) 3030 { 3031 struct scsi_device *sdp = to_scsi_device(dev); 3032 struct scsi_disk *sdkp; 3033 struct gendisk *gd; 3034 int index; 3035 int error; 3036 3037 scsi_autopm_get_device(sdp); 3038 error = -ENODEV; 3039 if (sdp->type != TYPE_DISK && sdp->type != TYPE_MOD && sdp->type != TYPE_RBC) 3040 goto out; 3041 3042 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3043 "sd_probe\n")); 3044 3045 error = -ENOMEM; 3046 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3047 if (!sdkp) 3048 goto out; 3049 3050 gd = alloc_disk(SD_MINORS); 3051 if (!gd) 3052 goto out_free; 3053 3054 do { 3055 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL)) 3056 goto out_put; 3057 3058 spin_lock(&sd_index_lock); 3059 error = ida_get_new(&sd_index_ida, &index); 3060 spin_unlock(&sd_index_lock); 3061 } while (error == -EAGAIN); 3062 3063 if (error) { 3064 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3065 goto out_put; 3066 } 3067 3068 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3069 if (error) { 3070 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3071 goto out_free_index; 3072 } 3073 3074 sdkp->device = sdp; 3075 sdkp->driver = &sd_template; 3076 sdkp->disk = gd; 3077 sdkp->index = index; 3078 atomic_set(&sdkp->openers, 0); 3079 atomic_set(&sdkp->device->ioerr_cnt, 0); 3080 3081 if (!sdp->request_queue->rq_timeout) { 3082 if (sdp->type != TYPE_MOD) 3083 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3084 else 3085 blk_queue_rq_timeout(sdp->request_queue, 3086 SD_MOD_TIMEOUT); 3087 } 3088 3089 device_initialize(&sdkp->dev); 3090 sdkp->dev.parent = dev; 3091 sdkp->dev.class = &sd_disk_class; 3092 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3093 3094 error = device_add(&sdkp->dev); 3095 if (error) 3096 goto out_free_index; 3097 3098 get_device(dev); 3099 dev_set_drvdata(dev, sdkp); 3100 3101 get_device(&sdkp->dev); /* prevent release before async_schedule */ 3102 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); 3103 3104 return 0; 3105 3106 out_free_index: 3107 spin_lock(&sd_index_lock); 3108 ida_remove(&sd_index_ida, index); 3109 spin_unlock(&sd_index_lock); 3110 out_put: 3111 put_disk(gd); 3112 out_free: 3113 kfree(sdkp); 3114 out: 3115 scsi_autopm_put_device(sdp); 3116 return error; 3117 } 3118 3119 /** 3120 * sd_remove - called whenever a scsi disk (previously recognized by 3121 * sd_probe) is detached from the system. It is called (potentially 3122 * multiple times) during sd module unload. 3123 * @sdp: pointer to mid level scsi device object 3124 * 3125 * Note: this function is invoked from the scsi mid-level. 3126 * This function potentially frees up a device name (e.g. /dev/sdc) 3127 * that could be re-used by a subsequent sd_probe(). 3128 * This function is not called when the built-in sd driver is "exit-ed". 3129 **/ 3130 static int sd_remove(struct device *dev) 3131 { 3132 struct scsi_disk *sdkp; 3133 dev_t devt; 3134 3135 sdkp = dev_get_drvdata(dev); 3136 devt = disk_devt(sdkp->disk); 3137 scsi_autopm_get_device(sdkp->device); 3138 3139 async_synchronize_full_domain(&scsi_sd_pm_domain); 3140 async_synchronize_full_domain(&scsi_sd_probe_domain); 3141 device_del(&sdkp->dev); 3142 del_gendisk(sdkp->disk); 3143 sd_shutdown(dev); 3144 3145 blk_register_region(devt, SD_MINORS, NULL, 3146 sd_default_probe, NULL, NULL); 3147 3148 mutex_lock(&sd_ref_mutex); 3149 dev_set_drvdata(dev, NULL); 3150 put_device(&sdkp->dev); 3151 mutex_unlock(&sd_ref_mutex); 3152 3153 return 0; 3154 } 3155 3156 /** 3157 * scsi_disk_release - Called to free the scsi_disk structure 3158 * @dev: pointer to embedded class device 3159 * 3160 * sd_ref_mutex must be held entering this routine. Because it is 3161 * called on last put, you should always use the scsi_disk_get() 3162 * scsi_disk_put() helpers which manipulate the semaphore directly 3163 * and never do a direct put_device. 3164 **/ 3165 static void scsi_disk_release(struct device *dev) 3166 { 3167 struct scsi_disk *sdkp = to_scsi_disk(dev); 3168 struct gendisk *disk = sdkp->disk; 3169 3170 spin_lock(&sd_index_lock); 3171 ida_remove(&sd_index_ida, sdkp->index); 3172 spin_unlock(&sd_index_lock); 3173 3174 disk->private_data = NULL; 3175 put_disk(disk); 3176 put_device(&sdkp->device->sdev_gendev); 3177 3178 kfree(sdkp); 3179 } 3180 3181 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3182 { 3183 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3184 struct scsi_sense_hdr sshdr; 3185 struct scsi_device *sdp = sdkp->device; 3186 int res; 3187 3188 if (start) 3189 cmd[4] |= 1; /* START */ 3190 3191 if (sdp->start_stop_pwr_cond) 3192 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3193 3194 if (!scsi_device_online(sdp)) 3195 return -ENODEV; 3196 3197 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr, 3198 SD_TIMEOUT, SD_MAX_RETRIES, NULL, REQ_PM); 3199 if (res) { 3200 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3201 if (driver_byte(res) & DRIVER_SENSE) 3202 sd_print_sense_hdr(sdkp, &sshdr); 3203 if (scsi_sense_valid(&sshdr) && 3204 /* 0x3a is medium not present */ 3205 sshdr.asc == 0x3a) 3206 res = 0; 3207 } 3208 3209 /* SCSI error codes must not go to the generic layer */ 3210 if (res) 3211 return -EIO; 3212 3213 return 0; 3214 } 3215 3216 /* 3217 * Send a SYNCHRONIZE CACHE instruction down to the device through 3218 * the normal SCSI command structure. Wait for the command to 3219 * complete. 3220 */ 3221 static void sd_shutdown(struct device *dev) 3222 { 3223 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3224 3225 if (!sdkp) 3226 return; /* this can happen */ 3227 3228 if (pm_runtime_suspended(dev)) 3229 return; 3230 3231 if (sdkp->WCE && sdkp->media_present) { 3232 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3233 sd_sync_cache(sdkp); 3234 } 3235 3236 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3237 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3238 sd_start_stop_device(sdkp, 0); 3239 } 3240 } 3241 3242 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3243 { 3244 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3245 int ret = 0; 3246 3247 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3248 return 0; 3249 3250 if (sdkp->WCE && sdkp->media_present) { 3251 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3252 ret = sd_sync_cache(sdkp); 3253 if (ret) { 3254 /* ignore OFFLINE device */ 3255 if (ret == -ENODEV) 3256 ret = 0; 3257 goto done; 3258 } 3259 } 3260 3261 if (sdkp->device->manage_start_stop) { 3262 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3263 /* an error is not worth aborting a system sleep */ 3264 ret = sd_start_stop_device(sdkp, 0); 3265 if (ignore_stop_errors) 3266 ret = 0; 3267 } 3268 3269 done: 3270 return ret; 3271 } 3272 3273 static int sd_suspend_system(struct device *dev) 3274 { 3275 return sd_suspend_common(dev, true); 3276 } 3277 3278 static int sd_suspend_runtime(struct device *dev) 3279 { 3280 return sd_suspend_common(dev, false); 3281 } 3282 3283 static int sd_resume(struct device *dev) 3284 { 3285 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3286 3287 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3288 return 0; 3289 3290 if (!sdkp->device->manage_start_stop) 3291 return 0; 3292 3293 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3294 return sd_start_stop_device(sdkp, 1); 3295 } 3296 3297 /** 3298 * init_sd - entry point for this driver (both when built in or when 3299 * a module). 3300 * 3301 * Note: this function registers this driver with the scsi mid-level. 3302 **/ 3303 static int __init init_sd(void) 3304 { 3305 int majors = 0, i, err; 3306 3307 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3308 3309 for (i = 0; i < SD_MAJORS; i++) { 3310 if (register_blkdev(sd_major(i), "sd") != 0) 3311 continue; 3312 majors++; 3313 blk_register_region(sd_major(i), SD_MINORS, NULL, 3314 sd_default_probe, NULL, NULL); 3315 } 3316 3317 if (!majors) 3318 return -ENODEV; 3319 3320 err = class_register(&sd_disk_class); 3321 if (err) 3322 goto err_out; 3323 3324 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3325 0, 0, NULL); 3326 if (!sd_cdb_cache) { 3327 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3328 err = -ENOMEM; 3329 goto err_out_class; 3330 } 3331 3332 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3333 if (!sd_cdb_pool) { 3334 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3335 err = -ENOMEM; 3336 goto err_out_cache; 3337 } 3338 3339 err = scsi_register_driver(&sd_template.gendrv); 3340 if (err) 3341 goto err_out_driver; 3342 3343 return 0; 3344 3345 err_out_driver: 3346 mempool_destroy(sd_cdb_pool); 3347 3348 err_out_cache: 3349 kmem_cache_destroy(sd_cdb_cache); 3350 3351 err_out_class: 3352 class_unregister(&sd_disk_class); 3353 err_out: 3354 for (i = 0; i < SD_MAJORS; i++) 3355 unregister_blkdev(sd_major(i), "sd"); 3356 return err; 3357 } 3358 3359 /** 3360 * exit_sd - exit point for this driver (when it is a module). 3361 * 3362 * Note: this function unregisters this driver from the scsi mid-level. 3363 **/ 3364 static void __exit exit_sd(void) 3365 { 3366 int i; 3367 3368 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3369 3370 scsi_unregister_driver(&sd_template.gendrv); 3371 mempool_destroy(sd_cdb_pool); 3372 kmem_cache_destroy(sd_cdb_cache); 3373 3374 class_unregister(&sd_disk_class); 3375 3376 for (i = 0; i < SD_MAJORS; i++) { 3377 blk_unregister_region(sd_major(i), SD_MINORS); 3378 unregister_blkdev(sd_major(i), "sd"); 3379 } 3380 } 3381 3382 module_init(init_sd); 3383 module_exit(exit_sd); 3384 3385 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3386 struct scsi_sense_hdr *sshdr) 3387 { 3388 scsi_print_sense_hdr(sdkp->device, 3389 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3390 } 3391 3392 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3393 int result) 3394 { 3395 const char *hb_string = scsi_hostbyte_string(result); 3396 const char *db_string = scsi_driverbyte_string(result); 3397 3398 if (hb_string || db_string) 3399 sd_printk(KERN_INFO, sdkp, 3400 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3401 hb_string ? hb_string : "invalid", 3402 db_string ? db_string : "invalid"); 3403 else 3404 sd_printk(KERN_INFO, sdkp, 3405 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3406 msg, host_byte(result), driver_byte(result)); 3407 } 3408 3409