1 /* 2 * sd.c Copyright (C) 1992 Drew Eckhardt 3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 4 * 5 * Linux scsi disk driver 6 * Initial versions: Drew Eckhardt 7 * Subsequent revisions: Eric Youngdale 8 * Modification history: 9 * - Drew Eckhardt <drew@colorado.edu> original 10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 11 * outstanding request, and other enhancements. 12 * Support loadable low-level scsi drivers. 13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 14 * eight major numbers. 15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 17 * sd_init and cleanups. 18 * - Alex Davis <letmein@erols.com> Fix problem where partition info 19 * not being read in sd_open. Fix problem where removable media 20 * could be ejected after sd_open. 21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 24 * Support 32k/1M disks. 25 * 26 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 30 * - entering other commands: SCSI_LOG_HLQUEUE level 3 31 * Note: when the logging level is set by the user, it must be greater 32 * than the level indicated above to trigger output. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/fs.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/bio.h> 40 #include <linux/genhd.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/delay.h> 49 #include <linux/mutex.h> 50 #include <linux/string_helpers.h> 51 #include <linux/async.h> 52 #include <linux/slab.h> 53 #include <linux/sed-opal.h> 54 #include <linux/pm_runtime.h> 55 #include <linux/pr.h> 56 #include <linux/t10-pi.h> 57 #include <linux/uaccess.h> 58 #include <asm/unaligned.h> 59 60 #include <scsi/scsi.h> 61 #include <scsi/scsi_cmnd.h> 62 #include <scsi/scsi_dbg.h> 63 #include <scsi/scsi_device.h> 64 #include <scsi/scsi_driver.h> 65 #include <scsi/scsi_eh.h> 66 #include <scsi/scsi_host.h> 67 #include <scsi/scsi_ioctl.h> 68 #include <scsi/scsicam.h> 69 70 #include "sd.h" 71 #include "scsi_priv.h" 72 #include "scsi_logging.h" 73 74 MODULE_AUTHOR("Eric Youngdale"); 75 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 76 MODULE_LICENSE("GPL"); 77 78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 94 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 98 99 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 100 #define SD_MINORS 16 101 #else 102 #define SD_MINORS 0 103 #endif 104 105 static void sd_config_discard(struct scsi_disk *, unsigned int); 106 static void sd_config_write_same(struct scsi_disk *); 107 static int sd_revalidate_disk(struct gendisk *); 108 static void sd_unlock_native_capacity(struct gendisk *disk); 109 static int sd_probe(struct device *); 110 static int sd_remove(struct device *); 111 static void sd_shutdown(struct device *); 112 static int sd_suspend_system(struct device *); 113 static int sd_suspend_runtime(struct device *); 114 static int sd_resume(struct device *); 115 static void sd_rescan(struct device *); 116 static int sd_init_command(struct scsi_cmnd *SCpnt); 117 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 118 static int sd_done(struct scsi_cmnd *); 119 static void sd_eh_reset(struct scsi_cmnd *); 120 static int sd_eh_action(struct scsi_cmnd *, int); 121 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 122 static void scsi_disk_release(struct device *cdev); 123 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 124 static void sd_print_result(const struct scsi_disk *, const char *, int); 125 126 static DEFINE_SPINLOCK(sd_index_lock); 127 static DEFINE_IDA(sd_index_ida); 128 129 /* This semaphore is used to mediate the 0->1 reference get in the 130 * face of object destruction (i.e. we can't allow a get on an 131 * object after last put) */ 132 static DEFINE_MUTEX(sd_ref_mutex); 133 134 static struct kmem_cache *sd_cdb_cache; 135 static mempool_t *sd_cdb_pool; 136 137 static const char *sd_cache_types[] = { 138 "write through", "none", "write back", 139 "write back, no read (daft)" 140 }; 141 142 static void sd_set_flush_flag(struct scsi_disk *sdkp) 143 { 144 bool wc = false, fua = false; 145 146 if (sdkp->WCE) { 147 wc = true; 148 if (sdkp->DPOFUA) 149 fua = true; 150 } 151 152 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 153 } 154 155 static ssize_t 156 cache_type_store(struct device *dev, struct device_attribute *attr, 157 const char *buf, size_t count) 158 { 159 int ct, rcd, wce, sp; 160 struct scsi_disk *sdkp = to_scsi_disk(dev); 161 struct scsi_device *sdp = sdkp->device; 162 char buffer[64]; 163 char *buffer_data; 164 struct scsi_mode_data data; 165 struct scsi_sense_hdr sshdr; 166 static const char temp[] = "temporary "; 167 int len; 168 169 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 170 /* no cache control on RBC devices; theoretically they 171 * can do it, but there's probably so many exceptions 172 * it's not worth the risk */ 173 return -EINVAL; 174 175 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 176 buf += sizeof(temp) - 1; 177 sdkp->cache_override = 1; 178 } else { 179 sdkp->cache_override = 0; 180 } 181 182 ct = sysfs_match_string(sd_cache_types, buf); 183 if (ct < 0) 184 return -EINVAL; 185 186 rcd = ct & 0x01 ? 1 : 0; 187 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 188 189 if (sdkp->cache_override) { 190 sdkp->WCE = wce; 191 sdkp->RCD = rcd; 192 sd_set_flush_flag(sdkp); 193 return count; 194 } 195 196 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 197 SD_MAX_RETRIES, &data, NULL)) 198 return -EINVAL; 199 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 200 data.block_descriptor_length); 201 buffer_data = buffer + data.header_length + 202 data.block_descriptor_length; 203 buffer_data[2] &= ~0x05; 204 buffer_data[2] |= wce << 2 | rcd; 205 sp = buffer_data[0] & 0x80 ? 1 : 0; 206 buffer_data[0] &= ~0x80; 207 208 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 209 SD_MAX_RETRIES, &data, &sshdr)) { 210 if (scsi_sense_valid(&sshdr)) 211 sd_print_sense_hdr(sdkp, &sshdr); 212 return -EINVAL; 213 } 214 revalidate_disk(sdkp->disk); 215 return count; 216 } 217 218 static ssize_t 219 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 220 char *buf) 221 { 222 struct scsi_disk *sdkp = to_scsi_disk(dev); 223 struct scsi_device *sdp = sdkp->device; 224 225 return sprintf(buf, "%u\n", sdp->manage_start_stop); 226 } 227 228 static ssize_t 229 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 230 const char *buf, size_t count) 231 { 232 struct scsi_disk *sdkp = to_scsi_disk(dev); 233 struct scsi_device *sdp = sdkp->device; 234 235 if (!capable(CAP_SYS_ADMIN)) 236 return -EACCES; 237 238 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10); 239 240 return count; 241 } 242 static DEVICE_ATTR_RW(manage_start_stop); 243 244 static ssize_t 245 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 246 { 247 struct scsi_disk *sdkp = to_scsi_disk(dev); 248 249 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 250 } 251 252 static ssize_t 253 allow_restart_store(struct device *dev, struct device_attribute *attr, 254 const char *buf, size_t count) 255 { 256 struct scsi_disk *sdkp = to_scsi_disk(dev); 257 struct scsi_device *sdp = sdkp->device; 258 259 if (!capable(CAP_SYS_ADMIN)) 260 return -EACCES; 261 262 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 263 return -EINVAL; 264 265 sdp->allow_restart = simple_strtoul(buf, NULL, 10); 266 267 return count; 268 } 269 static DEVICE_ATTR_RW(allow_restart); 270 271 static ssize_t 272 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 273 { 274 struct scsi_disk *sdkp = to_scsi_disk(dev); 275 int ct = sdkp->RCD + 2*sdkp->WCE; 276 277 return sprintf(buf, "%s\n", sd_cache_types[ct]); 278 } 279 static DEVICE_ATTR_RW(cache_type); 280 281 static ssize_t 282 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 283 { 284 struct scsi_disk *sdkp = to_scsi_disk(dev); 285 286 return sprintf(buf, "%u\n", sdkp->DPOFUA); 287 } 288 static DEVICE_ATTR_RO(FUA); 289 290 static ssize_t 291 protection_type_show(struct device *dev, struct device_attribute *attr, 292 char *buf) 293 { 294 struct scsi_disk *sdkp = to_scsi_disk(dev); 295 296 return sprintf(buf, "%u\n", sdkp->protection_type); 297 } 298 299 static ssize_t 300 protection_type_store(struct device *dev, struct device_attribute *attr, 301 const char *buf, size_t count) 302 { 303 struct scsi_disk *sdkp = to_scsi_disk(dev); 304 unsigned int val; 305 int err; 306 307 if (!capable(CAP_SYS_ADMIN)) 308 return -EACCES; 309 310 err = kstrtouint(buf, 10, &val); 311 312 if (err) 313 return err; 314 315 if (val >= 0 && val <= T10_PI_TYPE3_PROTECTION) 316 sdkp->protection_type = val; 317 318 return count; 319 } 320 static DEVICE_ATTR_RW(protection_type); 321 322 static ssize_t 323 protection_mode_show(struct device *dev, struct device_attribute *attr, 324 char *buf) 325 { 326 struct scsi_disk *sdkp = to_scsi_disk(dev); 327 struct scsi_device *sdp = sdkp->device; 328 unsigned int dif, dix; 329 330 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 331 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 332 333 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 334 dif = 0; 335 dix = 1; 336 } 337 338 if (!dif && !dix) 339 return sprintf(buf, "none\n"); 340 341 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 342 } 343 static DEVICE_ATTR_RO(protection_mode); 344 345 static ssize_t 346 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 347 { 348 struct scsi_disk *sdkp = to_scsi_disk(dev); 349 350 return sprintf(buf, "%u\n", sdkp->ATO); 351 } 352 static DEVICE_ATTR_RO(app_tag_own); 353 354 static ssize_t 355 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 356 char *buf) 357 { 358 struct scsi_disk *sdkp = to_scsi_disk(dev); 359 360 return sprintf(buf, "%u\n", sdkp->lbpme); 361 } 362 static DEVICE_ATTR_RO(thin_provisioning); 363 364 /* sysfs_match_string() requires dense arrays */ 365 static const char *lbp_mode[] = { 366 [SD_LBP_FULL] = "full", 367 [SD_LBP_UNMAP] = "unmap", 368 [SD_LBP_WS16] = "writesame_16", 369 [SD_LBP_WS10] = "writesame_10", 370 [SD_LBP_ZERO] = "writesame_zero", 371 [SD_LBP_DISABLE] = "disabled", 372 }; 373 374 static ssize_t 375 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 376 char *buf) 377 { 378 struct scsi_disk *sdkp = to_scsi_disk(dev); 379 380 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 381 } 382 383 static ssize_t 384 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 385 const char *buf, size_t count) 386 { 387 struct scsi_disk *sdkp = to_scsi_disk(dev); 388 struct scsi_device *sdp = sdkp->device; 389 int mode; 390 391 if (!capable(CAP_SYS_ADMIN)) 392 return -EACCES; 393 394 if (sd_is_zoned(sdkp)) { 395 sd_config_discard(sdkp, SD_LBP_DISABLE); 396 return count; 397 } 398 399 if (sdp->type != TYPE_DISK) 400 return -EINVAL; 401 402 mode = sysfs_match_string(lbp_mode, buf); 403 if (mode < 0) 404 return -EINVAL; 405 406 sd_config_discard(sdkp, mode); 407 408 return count; 409 } 410 static DEVICE_ATTR_RW(provisioning_mode); 411 412 /* sysfs_match_string() requires dense arrays */ 413 static const char *zeroing_mode[] = { 414 [SD_ZERO_WRITE] = "write", 415 [SD_ZERO_WS] = "writesame", 416 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 417 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 418 }; 419 420 static ssize_t 421 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 422 char *buf) 423 { 424 struct scsi_disk *sdkp = to_scsi_disk(dev); 425 426 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 427 } 428 429 static ssize_t 430 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 431 const char *buf, size_t count) 432 { 433 struct scsi_disk *sdkp = to_scsi_disk(dev); 434 int mode; 435 436 if (!capable(CAP_SYS_ADMIN)) 437 return -EACCES; 438 439 mode = sysfs_match_string(zeroing_mode, buf); 440 if (mode < 0) 441 return -EINVAL; 442 443 sdkp->zeroing_mode = mode; 444 445 return count; 446 } 447 static DEVICE_ATTR_RW(zeroing_mode); 448 449 static ssize_t 450 max_medium_access_timeouts_show(struct device *dev, 451 struct device_attribute *attr, char *buf) 452 { 453 struct scsi_disk *sdkp = to_scsi_disk(dev); 454 455 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 456 } 457 458 static ssize_t 459 max_medium_access_timeouts_store(struct device *dev, 460 struct device_attribute *attr, const char *buf, 461 size_t count) 462 { 463 struct scsi_disk *sdkp = to_scsi_disk(dev); 464 int err; 465 466 if (!capable(CAP_SYS_ADMIN)) 467 return -EACCES; 468 469 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 470 471 return err ? err : count; 472 } 473 static DEVICE_ATTR_RW(max_medium_access_timeouts); 474 475 static ssize_t 476 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 477 char *buf) 478 { 479 struct scsi_disk *sdkp = to_scsi_disk(dev); 480 481 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 482 } 483 484 static ssize_t 485 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 486 const char *buf, size_t count) 487 { 488 struct scsi_disk *sdkp = to_scsi_disk(dev); 489 struct scsi_device *sdp = sdkp->device; 490 unsigned long max; 491 int err; 492 493 if (!capable(CAP_SYS_ADMIN)) 494 return -EACCES; 495 496 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 497 return -EINVAL; 498 499 err = kstrtoul(buf, 10, &max); 500 501 if (err) 502 return err; 503 504 if (max == 0) 505 sdp->no_write_same = 1; 506 else if (max <= SD_MAX_WS16_BLOCKS) { 507 sdp->no_write_same = 0; 508 sdkp->max_ws_blocks = max; 509 } 510 511 sd_config_write_same(sdkp); 512 513 return count; 514 } 515 static DEVICE_ATTR_RW(max_write_same_blocks); 516 517 static struct attribute *sd_disk_attrs[] = { 518 &dev_attr_cache_type.attr, 519 &dev_attr_FUA.attr, 520 &dev_attr_allow_restart.attr, 521 &dev_attr_manage_start_stop.attr, 522 &dev_attr_protection_type.attr, 523 &dev_attr_protection_mode.attr, 524 &dev_attr_app_tag_own.attr, 525 &dev_attr_thin_provisioning.attr, 526 &dev_attr_provisioning_mode.attr, 527 &dev_attr_zeroing_mode.attr, 528 &dev_attr_max_write_same_blocks.attr, 529 &dev_attr_max_medium_access_timeouts.attr, 530 NULL, 531 }; 532 ATTRIBUTE_GROUPS(sd_disk); 533 534 static struct class sd_disk_class = { 535 .name = "scsi_disk", 536 .owner = THIS_MODULE, 537 .dev_release = scsi_disk_release, 538 .dev_groups = sd_disk_groups, 539 }; 540 541 static const struct dev_pm_ops sd_pm_ops = { 542 .suspend = sd_suspend_system, 543 .resume = sd_resume, 544 .poweroff = sd_suspend_system, 545 .restore = sd_resume, 546 .runtime_suspend = sd_suspend_runtime, 547 .runtime_resume = sd_resume, 548 }; 549 550 static struct scsi_driver sd_template = { 551 .gendrv = { 552 .name = "sd", 553 .owner = THIS_MODULE, 554 .probe = sd_probe, 555 .remove = sd_remove, 556 .shutdown = sd_shutdown, 557 .pm = &sd_pm_ops, 558 }, 559 .rescan = sd_rescan, 560 .init_command = sd_init_command, 561 .uninit_command = sd_uninit_command, 562 .done = sd_done, 563 .eh_action = sd_eh_action, 564 .eh_reset = sd_eh_reset, 565 }; 566 567 /* 568 * Dummy kobj_map->probe function. 569 * The default ->probe function will call modprobe, which is 570 * pointless as this module is already loaded. 571 */ 572 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 573 { 574 return NULL; 575 } 576 577 /* 578 * Device no to disk mapping: 579 * 580 * major disc2 disc p1 581 * |............|.............|....|....| <- dev_t 582 * 31 20 19 8 7 4 3 0 583 * 584 * Inside a major, we have 16k disks, however mapped non- 585 * contiguously. The first 16 disks are for major0, the next 586 * ones with major1, ... Disk 256 is for major0 again, disk 272 587 * for major1, ... 588 * As we stay compatible with our numbering scheme, we can reuse 589 * the well-know SCSI majors 8, 65--71, 136--143. 590 */ 591 static int sd_major(int major_idx) 592 { 593 switch (major_idx) { 594 case 0: 595 return SCSI_DISK0_MAJOR; 596 case 1 ... 7: 597 return SCSI_DISK1_MAJOR + major_idx - 1; 598 case 8 ... 15: 599 return SCSI_DISK8_MAJOR + major_idx - 8; 600 default: 601 BUG(); 602 return 0; /* shut up gcc */ 603 } 604 } 605 606 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 607 { 608 struct scsi_disk *sdkp = NULL; 609 610 mutex_lock(&sd_ref_mutex); 611 612 if (disk->private_data) { 613 sdkp = scsi_disk(disk); 614 if (scsi_device_get(sdkp->device) == 0) 615 get_device(&sdkp->dev); 616 else 617 sdkp = NULL; 618 } 619 mutex_unlock(&sd_ref_mutex); 620 return sdkp; 621 } 622 623 static void scsi_disk_put(struct scsi_disk *sdkp) 624 { 625 struct scsi_device *sdev = sdkp->device; 626 627 mutex_lock(&sd_ref_mutex); 628 put_device(&sdkp->dev); 629 scsi_device_put(sdev); 630 mutex_unlock(&sd_ref_mutex); 631 } 632 633 #ifdef CONFIG_BLK_SED_OPAL 634 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 635 size_t len, bool send) 636 { 637 struct scsi_device *sdev = data; 638 u8 cdb[12] = { 0, }; 639 int ret; 640 641 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 642 cdb[1] = secp; 643 put_unaligned_be16(spsp, &cdb[2]); 644 put_unaligned_be32(len, &cdb[6]); 645 646 ret = scsi_execute_req(sdev, cdb, 647 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 648 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 649 return ret <= 0 ? ret : -EIO; 650 } 651 #endif /* CONFIG_BLK_SED_OPAL */ 652 653 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 654 unsigned int dix, unsigned int dif) 655 { 656 struct bio *bio = scmd->request->bio; 657 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 658 unsigned int protect = 0; 659 660 if (dix) { /* DIX Type 0, 1, 2, 3 */ 661 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 662 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 663 664 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 665 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 666 } 667 668 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 669 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 670 671 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 672 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 673 } 674 675 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 676 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 677 678 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 679 protect = 3 << 5; /* Disable target PI checking */ 680 else 681 protect = 1 << 5; /* Enable target PI checking */ 682 } 683 684 scsi_set_prot_op(scmd, prot_op); 685 scsi_set_prot_type(scmd, dif); 686 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 687 688 return protect; 689 } 690 691 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 692 { 693 struct request_queue *q = sdkp->disk->queue; 694 unsigned int logical_block_size = sdkp->device->sector_size; 695 unsigned int max_blocks = 0; 696 697 q->limits.discard_alignment = 698 sdkp->unmap_alignment * logical_block_size; 699 q->limits.discard_granularity = 700 max(sdkp->physical_block_size, 701 sdkp->unmap_granularity * logical_block_size); 702 sdkp->provisioning_mode = mode; 703 704 switch (mode) { 705 706 case SD_LBP_FULL: 707 case SD_LBP_DISABLE: 708 blk_queue_max_discard_sectors(q, 0); 709 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 710 return; 711 712 case SD_LBP_UNMAP: 713 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 714 (u32)SD_MAX_WS16_BLOCKS); 715 break; 716 717 case SD_LBP_WS16: 718 max_blocks = min_not_zero(sdkp->max_ws_blocks, 719 (u32)SD_MAX_WS16_BLOCKS); 720 break; 721 722 case SD_LBP_WS10: 723 max_blocks = min_not_zero(sdkp->max_ws_blocks, 724 (u32)SD_MAX_WS10_BLOCKS); 725 break; 726 727 case SD_LBP_ZERO: 728 max_blocks = min_not_zero(sdkp->max_ws_blocks, 729 (u32)SD_MAX_WS10_BLOCKS); 730 break; 731 } 732 733 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 734 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 735 } 736 737 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 738 { 739 struct scsi_device *sdp = cmd->device; 740 struct request *rq = cmd->request; 741 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 742 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 743 unsigned int data_len = 24; 744 char *buf; 745 746 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 747 if (!rq->special_vec.bv_page) 748 return BLKPREP_DEFER; 749 rq->special_vec.bv_offset = 0; 750 rq->special_vec.bv_len = data_len; 751 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 752 753 cmd->cmd_len = 10; 754 cmd->cmnd[0] = UNMAP; 755 cmd->cmnd[8] = 24; 756 757 buf = page_address(rq->special_vec.bv_page); 758 put_unaligned_be16(6 + 16, &buf[0]); 759 put_unaligned_be16(16, &buf[2]); 760 put_unaligned_be64(sector, &buf[8]); 761 put_unaligned_be32(nr_sectors, &buf[16]); 762 763 cmd->allowed = SD_MAX_RETRIES; 764 cmd->transfersize = data_len; 765 rq->timeout = SD_TIMEOUT; 766 scsi_req(rq)->resid_len = data_len; 767 768 return scsi_init_io(cmd); 769 } 770 771 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap) 772 { 773 struct scsi_device *sdp = cmd->device; 774 struct request *rq = cmd->request; 775 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 776 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 777 u32 data_len = sdp->sector_size; 778 779 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 780 if (!rq->special_vec.bv_page) 781 return BLKPREP_DEFER; 782 rq->special_vec.bv_offset = 0; 783 rq->special_vec.bv_len = data_len; 784 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 785 786 cmd->cmd_len = 16; 787 cmd->cmnd[0] = WRITE_SAME_16; 788 if (unmap) 789 cmd->cmnd[1] = 0x8; /* UNMAP */ 790 put_unaligned_be64(sector, &cmd->cmnd[2]); 791 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 792 793 cmd->allowed = SD_MAX_RETRIES; 794 cmd->transfersize = data_len; 795 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 796 scsi_req(rq)->resid_len = data_len; 797 798 return scsi_init_io(cmd); 799 } 800 801 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap) 802 { 803 struct scsi_device *sdp = cmd->device; 804 struct request *rq = cmd->request; 805 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 806 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 807 u32 data_len = sdp->sector_size; 808 809 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 810 if (!rq->special_vec.bv_page) 811 return BLKPREP_DEFER; 812 rq->special_vec.bv_offset = 0; 813 rq->special_vec.bv_len = data_len; 814 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 815 816 cmd->cmd_len = 10; 817 cmd->cmnd[0] = WRITE_SAME; 818 if (unmap) 819 cmd->cmnd[1] = 0x8; /* UNMAP */ 820 put_unaligned_be32(sector, &cmd->cmnd[2]); 821 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 822 823 cmd->allowed = SD_MAX_RETRIES; 824 cmd->transfersize = data_len; 825 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 826 scsi_req(rq)->resid_len = data_len; 827 828 return scsi_init_io(cmd); 829 } 830 831 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 832 { 833 struct request *rq = cmd->request; 834 struct scsi_device *sdp = cmd->device; 835 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 836 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 837 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 838 int ret; 839 840 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 841 switch (sdkp->zeroing_mode) { 842 case SD_ZERO_WS16_UNMAP: 843 ret = sd_setup_write_same16_cmnd(cmd, true); 844 goto out; 845 case SD_ZERO_WS10_UNMAP: 846 ret = sd_setup_write_same10_cmnd(cmd, true); 847 goto out; 848 } 849 } 850 851 if (sdp->no_write_same) 852 return BLKPREP_INVALID; 853 854 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) 855 ret = sd_setup_write_same16_cmnd(cmd, false); 856 else 857 ret = sd_setup_write_same10_cmnd(cmd, false); 858 859 out: 860 if (sd_is_zoned(sdkp) && ret == BLKPREP_OK) 861 return sd_zbc_write_lock_zone(cmd); 862 863 return ret; 864 } 865 866 static void sd_config_write_same(struct scsi_disk *sdkp) 867 { 868 struct request_queue *q = sdkp->disk->queue; 869 unsigned int logical_block_size = sdkp->device->sector_size; 870 871 if (sdkp->device->no_write_same) { 872 sdkp->max_ws_blocks = 0; 873 goto out; 874 } 875 876 /* Some devices can not handle block counts above 0xffff despite 877 * supporting WRITE SAME(16). Consequently we default to 64k 878 * blocks per I/O unless the device explicitly advertises a 879 * bigger limit. 880 */ 881 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 882 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 883 (u32)SD_MAX_WS16_BLOCKS); 884 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 885 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 886 (u32)SD_MAX_WS10_BLOCKS); 887 else { 888 sdkp->device->no_write_same = 1; 889 sdkp->max_ws_blocks = 0; 890 } 891 892 if (sdkp->lbprz && sdkp->lbpws) 893 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 894 else if (sdkp->lbprz && sdkp->lbpws10) 895 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 896 else if (sdkp->max_ws_blocks) 897 sdkp->zeroing_mode = SD_ZERO_WS; 898 else 899 sdkp->zeroing_mode = SD_ZERO_WRITE; 900 901 out: 902 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 903 (logical_block_size >> 9)); 904 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 905 (logical_block_size >> 9)); 906 } 907 908 /** 909 * sd_setup_write_same_cmnd - write the same data to multiple blocks 910 * @cmd: command to prepare 911 * 912 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 913 * the preference indicated by the target device. 914 **/ 915 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 916 { 917 struct request *rq = cmd->request; 918 struct scsi_device *sdp = cmd->device; 919 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 920 struct bio *bio = rq->bio; 921 sector_t sector = blk_rq_pos(rq); 922 unsigned int nr_sectors = blk_rq_sectors(rq); 923 unsigned int nr_bytes = blk_rq_bytes(rq); 924 int ret; 925 926 if (sdkp->device->no_write_same) 927 return BLKPREP_INVALID; 928 929 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 930 931 if (sd_is_zoned(sdkp)) { 932 ret = sd_zbc_write_lock_zone(cmd); 933 if (ret != BLKPREP_OK) 934 return ret; 935 } 936 937 sector >>= ilog2(sdp->sector_size) - 9; 938 nr_sectors >>= ilog2(sdp->sector_size) - 9; 939 940 rq->timeout = SD_WRITE_SAME_TIMEOUT; 941 942 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) { 943 cmd->cmd_len = 16; 944 cmd->cmnd[0] = WRITE_SAME_16; 945 put_unaligned_be64(sector, &cmd->cmnd[2]); 946 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 947 } else { 948 cmd->cmd_len = 10; 949 cmd->cmnd[0] = WRITE_SAME; 950 put_unaligned_be32(sector, &cmd->cmnd[2]); 951 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 952 } 953 954 cmd->transfersize = sdp->sector_size; 955 cmd->allowed = SD_MAX_RETRIES; 956 957 /* 958 * For WRITE SAME the data transferred via the DATA OUT buffer is 959 * different from the amount of data actually written to the target. 960 * 961 * We set up __data_len to the amount of data transferred via the 962 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 963 * to transfer a single sector of data first, but then reset it to 964 * the amount of data to be written right after so that the I/O path 965 * knows how much to actually write. 966 */ 967 rq->__data_len = sdp->sector_size; 968 ret = scsi_init_io(cmd); 969 rq->__data_len = nr_bytes; 970 971 if (sd_is_zoned(sdkp) && ret != BLKPREP_OK) 972 sd_zbc_write_unlock_zone(cmd); 973 974 return ret; 975 } 976 977 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 978 { 979 struct request *rq = cmd->request; 980 981 /* flush requests don't perform I/O, zero the S/G table */ 982 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 983 984 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 985 cmd->cmd_len = 10; 986 cmd->transfersize = 0; 987 cmd->allowed = SD_MAX_RETRIES; 988 989 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 990 return BLKPREP_OK; 991 } 992 993 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt) 994 { 995 struct request *rq = SCpnt->request; 996 struct scsi_device *sdp = SCpnt->device; 997 struct gendisk *disk = rq->rq_disk; 998 struct scsi_disk *sdkp = scsi_disk(disk); 999 sector_t block = blk_rq_pos(rq); 1000 sector_t threshold; 1001 unsigned int this_count = blk_rq_sectors(rq); 1002 unsigned int dif, dix; 1003 bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE; 1004 int ret; 1005 unsigned char protect; 1006 1007 if (zoned_write) { 1008 ret = sd_zbc_write_lock_zone(SCpnt); 1009 if (ret != BLKPREP_OK) 1010 return ret; 1011 } 1012 1013 ret = scsi_init_io(SCpnt); 1014 if (ret != BLKPREP_OK) 1015 goto out; 1016 SCpnt = rq->special; 1017 1018 /* from here on until we're complete, any goto out 1019 * is used for a killable error condition */ 1020 ret = BLKPREP_KILL; 1021 1022 SCSI_LOG_HLQUEUE(1, 1023 scmd_printk(KERN_INFO, SCpnt, 1024 "%s: block=%llu, count=%d\n", 1025 __func__, (unsigned long long)block, this_count)); 1026 1027 if (!sdp || !scsi_device_online(sdp) || 1028 block + blk_rq_sectors(rq) > get_capacity(disk)) { 1029 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1030 "Finishing %u sectors\n", 1031 blk_rq_sectors(rq))); 1032 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1033 "Retry with 0x%p\n", SCpnt)); 1034 goto out; 1035 } 1036 1037 if (sdp->changed) { 1038 /* 1039 * quietly refuse to do anything to a changed disc until 1040 * the changed bit has been reset 1041 */ 1042 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */ 1043 goto out; 1044 } 1045 1046 /* 1047 * Some SD card readers can't handle multi-sector accesses which touch 1048 * the last one or two hardware sectors. Split accesses as needed. 1049 */ 1050 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS * 1051 (sdp->sector_size / 512); 1052 1053 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) { 1054 if (block < threshold) { 1055 /* Access up to the threshold but not beyond */ 1056 this_count = threshold - block; 1057 } else { 1058 /* Access only a single hardware sector */ 1059 this_count = sdp->sector_size / 512; 1060 } 1061 } 1062 1063 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", 1064 (unsigned long long)block)); 1065 1066 /* 1067 * If we have a 1K hardware sectorsize, prevent access to single 1068 * 512 byte sectors. In theory we could handle this - in fact 1069 * the scsi cdrom driver must be able to handle this because 1070 * we typically use 1K blocksizes, and cdroms typically have 1071 * 2K hardware sectorsizes. Of course, things are simpler 1072 * with the cdrom, since it is read-only. For performance 1073 * reasons, the filesystems should be able to handle this 1074 * and not force the scsi disk driver to use bounce buffers 1075 * for this. 1076 */ 1077 if (sdp->sector_size == 1024) { 1078 if ((block & 1) || (blk_rq_sectors(rq) & 1)) { 1079 scmd_printk(KERN_ERR, SCpnt, 1080 "Bad block number requested\n"); 1081 goto out; 1082 } else { 1083 block = block >> 1; 1084 this_count = this_count >> 1; 1085 } 1086 } 1087 if (sdp->sector_size == 2048) { 1088 if ((block & 3) || (blk_rq_sectors(rq) & 3)) { 1089 scmd_printk(KERN_ERR, SCpnt, 1090 "Bad block number requested\n"); 1091 goto out; 1092 } else { 1093 block = block >> 2; 1094 this_count = this_count >> 2; 1095 } 1096 } 1097 if (sdp->sector_size == 4096) { 1098 if ((block & 7) || (blk_rq_sectors(rq) & 7)) { 1099 scmd_printk(KERN_ERR, SCpnt, 1100 "Bad block number requested\n"); 1101 goto out; 1102 } else { 1103 block = block >> 3; 1104 this_count = this_count >> 3; 1105 } 1106 } 1107 if (rq_data_dir(rq) == WRITE) { 1108 SCpnt->cmnd[0] = WRITE_6; 1109 1110 if (blk_integrity_rq(rq)) 1111 sd_dif_prepare(SCpnt); 1112 1113 } else if (rq_data_dir(rq) == READ) { 1114 SCpnt->cmnd[0] = READ_6; 1115 } else { 1116 scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq)); 1117 goto out; 1118 } 1119 1120 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1121 "%s %d/%u 512 byte blocks.\n", 1122 (rq_data_dir(rq) == WRITE) ? 1123 "writing" : "reading", this_count, 1124 blk_rq_sectors(rq))); 1125 1126 dix = scsi_prot_sg_count(SCpnt); 1127 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type); 1128 1129 if (dif || dix) 1130 protect = sd_setup_protect_cmnd(SCpnt, dix, dif); 1131 else 1132 protect = 0; 1133 1134 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1135 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1136 1137 if (unlikely(SCpnt->cmnd == NULL)) { 1138 ret = BLKPREP_DEFER; 1139 goto out; 1140 } 1141 1142 SCpnt->cmd_len = SD_EXT_CDB_SIZE; 1143 memset(SCpnt->cmnd, 0, SCpnt->cmd_len); 1144 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD; 1145 SCpnt->cmnd[7] = 0x18; 1146 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32; 1147 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1148 1149 /* LBA */ 1150 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1151 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1152 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1153 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1154 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff; 1155 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff; 1156 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff; 1157 SCpnt->cmnd[19] = (unsigned char) block & 0xff; 1158 1159 /* Expected Indirect LBA */ 1160 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff; 1161 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff; 1162 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff; 1163 SCpnt->cmnd[23] = (unsigned char) block & 0xff; 1164 1165 /* Transfer length */ 1166 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff; 1167 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff; 1168 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff; 1169 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff; 1170 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) { 1171 SCpnt->cmnd[0] += READ_16 - READ_6; 1172 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1173 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1174 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1175 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1176 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1177 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; 1178 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; 1179 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; 1180 SCpnt->cmnd[9] = (unsigned char) block & 0xff; 1181 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; 1182 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; 1183 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; 1184 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; 1185 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; 1186 } else if ((this_count > 0xff) || (block > 0x1fffff) || 1187 scsi_device_protection(SCpnt->device) || 1188 SCpnt->device->use_10_for_rw) { 1189 SCpnt->cmnd[0] += READ_10 - READ_6; 1190 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1191 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; 1192 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; 1193 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; 1194 SCpnt->cmnd[5] = (unsigned char) block & 0xff; 1195 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; 1196 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; 1197 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; 1198 } else { 1199 if (unlikely(rq->cmd_flags & REQ_FUA)) { 1200 /* 1201 * This happens only if this drive failed 1202 * 10byte rw command with ILLEGAL_REQUEST 1203 * during operation and thus turned off 1204 * use_10_for_rw. 1205 */ 1206 scmd_printk(KERN_ERR, SCpnt, 1207 "FUA write on READ/WRITE(6) drive\n"); 1208 goto out; 1209 } 1210 1211 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); 1212 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); 1213 SCpnt->cmnd[3] = (unsigned char) block & 0xff; 1214 SCpnt->cmnd[4] = (unsigned char) this_count; 1215 SCpnt->cmnd[5] = 0; 1216 } 1217 SCpnt->sdb.length = this_count * sdp->sector_size; 1218 1219 /* 1220 * We shouldn't disconnect in the middle of a sector, so with a dumb 1221 * host adapter, it's safe to assume that we can at least transfer 1222 * this many bytes between each connect / disconnect. 1223 */ 1224 SCpnt->transfersize = sdp->sector_size; 1225 SCpnt->underflow = this_count << 9; 1226 SCpnt->allowed = SD_MAX_RETRIES; 1227 1228 /* 1229 * This indicates that the command is ready from our end to be 1230 * queued. 1231 */ 1232 ret = BLKPREP_OK; 1233 out: 1234 if (zoned_write && ret != BLKPREP_OK) 1235 sd_zbc_write_unlock_zone(SCpnt); 1236 1237 return ret; 1238 } 1239 1240 static int sd_init_command(struct scsi_cmnd *cmd) 1241 { 1242 struct request *rq = cmd->request; 1243 1244 switch (req_op(rq)) { 1245 case REQ_OP_DISCARD: 1246 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1247 case SD_LBP_UNMAP: 1248 return sd_setup_unmap_cmnd(cmd); 1249 case SD_LBP_WS16: 1250 return sd_setup_write_same16_cmnd(cmd, true); 1251 case SD_LBP_WS10: 1252 return sd_setup_write_same10_cmnd(cmd, true); 1253 case SD_LBP_ZERO: 1254 return sd_setup_write_same10_cmnd(cmd, false); 1255 default: 1256 return BLKPREP_INVALID; 1257 } 1258 case REQ_OP_WRITE_ZEROES: 1259 return sd_setup_write_zeroes_cmnd(cmd); 1260 case REQ_OP_WRITE_SAME: 1261 return sd_setup_write_same_cmnd(cmd); 1262 case REQ_OP_FLUSH: 1263 return sd_setup_flush_cmnd(cmd); 1264 case REQ_OP_READ: 1265 case REQ_OP_WRITE: 1266 return sd_setup_read_write_cmnd(cmd); 1267 case REQ_OP_ZONE_REPORT: 1268 return sd_zbc_setup_report_cmnd(cmd); 1269 case REQ_OP_ZONE_RESET: 1270 return sd_zbc_setup_reset_cmnd(cmd); 1271 default: 1272 BUG(); 1273 } 1274 } 1275 1276 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1277 { 1278 struct request *rq = SCpnt->request; 1279 1280 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1281 __free_page(rq->special_vec.bv_page); 1282 1283 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1284 mempool_free(SCpnt->cmnd, sd_cdb_pool); 1285 SCpnt->cmnd = NULL; 1286 SCpnt->cmd_len = 0; 1287 } 1288 } 1289 1290 /** 1291 * sd_open - open a scsi disk device 1292 * @bdev: Block device of the scsi disk to open 1293 * @mode: FMODE_* mask 1294 * 1295 * Returns 0 if successful. Returns a negated errno value in case 1296 * of error. 1297 * 1298 * Note: This can be called from a user context (e.g. fsck(1) ) 1299 * or from within the kernel (e.g. as a result of a mount(1) ). 1300 * In the latter case @inode and @filp carry an abridged amount 1301 * of information as noted above. 1302 * 1303 * Locking: called with bdev->bd_mutex held. 1304 **/ 1305 static int sd_open(struct block_device *bdev, fmode_t mode) 1306 { 1307 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1308 struct scsi_device *sdev; 1309 int retval; 1310 1311 if (!sdkp) 1312 return -ENXIO; 1313 1314 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1315 1316 sdev = sdkp->device; 1317 1318 /* 1319 * If the device is in error recovery, wait until it is done. 1320 * If the device is offline, then disallow any access to it. 1321 */ 1322 retval = -ENXIO; 1323 if (!scsi_block_when_processing_errors(sdev)) 1324 goto error_out; 1325 1326 if (sdev->removable || sdkp->write_prot) 1327 check_disk_change(bdev); 1328 1329 /* 1330 * If the drive is empty, just let the open fail. 1331 */ 1332 retval = -ENOMEDIUM; 1333 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1334 goto error_out; 1335 1336 /* 1337 * If the device has the write protect tab set, have the open fail 1338 * if the user expects to be able to write to the thing. 1339 */ 1340 retval = -EROFS; 1341 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1342 goto error_out; 1343 1344 /* 1345 * It is possible that the disk changing stuff resulted in 1346 * the device being taken offline. If this is the case, 1347 * report this to the user, and don't pretend that the 1348 * open actually succeeded. 1349 */ 1350 retval = -ENXIO; 1351 if (!scsi_device_online(sdev)) 1352 goto error_out; 1353 1354 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1355 if (scsi_block_when_processing_errors(sdev)) 1356 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1357 } 1358 1359 return 0; 1360 1361 error_out: 1362 scsi_disk_put(sdkp); 1363 return retval; 1364 } 1365 1366 /** 1367 * sd_release - invoked when the (last) close(2) is called on this 1368 * scsi disk. 1369 * @disk: disk to release 1370 * @mode: FMODE_* mask 1371 * 1372 * Returns 0. 1373 * 1374 * Note: may block (uninterruptible) if error recovery is underway 1375 * on this disk. 1376 * 1377 * Locking: called with bdev->bd_mutex held. 1378 **/ 1379 static void sd_release(struct gendisk *disk, fmode_t mode) 1380 { 1381 struct scsi_disk *sdkp = scsi_disk(disk); 1382 struct scsi_device *sdev = sdkp->device; 1383 1384 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1385 1386 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1387 if (scsi_block_when_processing_errors(sdev)) 1388 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1389 } 1390 1391 /* 1392 * XXX and what if there are packets in flight and this close() 1393 * XXX is followed by a "rmmod sd_mod"? 1394 */ 1395 1396 scsi_disk_put(sdkp); 1397 } 1398 1399 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1400 { 1401 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1402 struct scsi_device *sdp = sdkp->device; 1403 struct Scsi_Host *host = sdp->host; 1404 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1405 int diskinfo[4]; 1406 1407 /* default to most commonly used values */ 1408 diskinfo[0] = 0x40; /* 1 << 6 */ 1409 diskinfo[1] = 0x20; /* 1 << 5 */ 1410 diskinfo[2] = capacity >> 11; 1411 1412 /* override with calculated, extended default, or driver values */ 1413 if (host->hostt->bios_param) 1414 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1415 else 1416 scsicam_bios_param(bdev, capacity, diskinfo); 1417 1418 geo->heads = diskinfo[0]; 1419 geo->sectors = diskinfo[1]; 1420 geo->cylinders = diskinfo[2]; 1421 return 0; 1422 } 1423 1424 /** 1425 * sd_ioctl - process an ioctl 1426 * @bdev: target block device 1427 * @mode: FMODE_* mask 1428 * @cmd: ioctl command number 1429 * @arg: this is third argument given to ioctl(2) system call. 1430 * Often contains a pointer. 1431 * 1432 * Returns 0 if successful (some ioctls return positive numbers on 1433 * success as well). Returns a negated errno value in case of error. 1434 * 1435 * Note: most ioctls are forward onto the block subsystem or further 1436 * down in the scsi subsystem. 1437 **/ 1438 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1439 unsigned int cmd, unsigned long arg) 1440 { 1441 struct gendisk *disk = bdev->bd_disk; 1442 struct scsi_disk *sdkp = scsi_disk(disk); 1443 struct scsi_device *sdp = sdkp->device; 1444 void __user *p = (void __user *)arg; 1445 int error; 1446 1447 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1448 "cmd=0x%x\n", disk->disk_name, cmd)); 1449 1450 error = scsi_verify_blk_ioctl(bdev, cmd); 1451 if (error < 0) 1452 return error; 1453 1454 /* 1455 * If we are in the middle of error recovery, don't let anyone 1456 * else try and use this device. Also, if error recovery fails, it 1457 * may try and take the device offline, in which case all further 1458 * access to the device is prohibited. 1459 */ 1460 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1461 (mode & FMODE_NDELAY) != 0); 1462 if (error) 1463 goto out; 1464 1465 if (is_sed_ioctl(cmd)) 1466 return sed_ioctl(sdkp->opal_dev, cmd, p); 1467 1468 /* 1469 * Send SCSI addressing ioctls directly to mid level, send other 1470 * ioctls to block level and then onto mid level if they can't be 1471 * resolved. 1472 */ 1473 switch (cmd) { 1474 case SCSI_IOCTL_GET_IDLUN: 1475 case SCSI_IOCTL_GET_BUS_NUMBER: 1476 error = scsi_ioctl(sdp, cmd, p); 1477 break; 1478 default: 1479 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1480 if (error != -ENOTTY) 1481 break; 1482 error = scsi_ioctl(sdp, cmd, p); 1483 break; 1484 } 1485 out: 1486 return error; 1487 } 1488 1489 static void set_media_not_present(struct scsi_disk *sdkp) 1490 { 1491 if (sdkp->media_present) 1492 sdkp->device->changed = 1; 1493 1494 if (sdkp->device->removable) { 1495 sdkp->media_present = 0; 1496 sdkp->capacity = 0; 1497 } 1498 } 1499 1500 static int media_not_present(struct scsi_disk *sdkp, 1501 struct scsi_sense_hdr *sshdr) 1502 { 1503 if (!scsi_sense_valid(sshdr)) 1504 return 0; 1505 1506 /* not invoked for commands that could return deferred errors */ 1507 switch (sshdr->sense_key) { 1508 case UNIT_ATTENTION: 1509 case NOT_READY: 1510 /* medium not present */ 1511 if (sshdr->asc == 0x3A) { 1512 set_media_not_present(sdkp); 1513 return 1; 1514 } 1515 } 1516 return 0; 1517 } 1518 1519 /** 1520 * sd_check_events - check media events 1521 * @disk: kernel device descriptor 1522 * @clearing: disk events currently being cleared 1523 * 1524 * Returns mask of DISK_EVENT_*. 1525 * 1526 * Note: this function is invoked from the block subsystem. 1527 **/ 1528 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1529 { 1530 struct scsi_disk *sdkp = scsi_disk_get(disk); 1531 struct scsi_device *sdp; 1532 int retval; 1533 1534 if (!sdkp) 1535 return 0; 1536 1537 sdp = sdkp->device; 1538 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1539 1540 /* 1541 * If the device is offline, don't send any commands - just pretend as 1542 * if the command failed. If the device ever comes back online, we 1543 * can deal with it then. It is only because of unrecoverable errors 1544 * that we would ever take a device offline in the first place. 1545 */ 1546 if (!scsi_device_online(sdp)) { 1547 set_media_not_present(sdkp); 1548 goto out; 1549 } 1550 1551 /* 1552 * Using TEST_UNIT_READY enables differentiation between drive with 1553 * no cartridge loaded - NOT READY, drive with changed cartridge - 1554 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1555 * 1556 * Drives that auto spin down. eg iomega jaz 1G, will be started 1557 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1558 * sd_revalidate() is called. 1559 */ 1560 if (scsi_block_when_processing_errors(sdp)) { 1561 struct scsi_sense_hdr sshdr = { 0, }; 1562 1563 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1564 &sshdr); 1565 1566 /* failed to execute TUR, assume media not present */ 1567 if (host_byte(retval)) { 1568 set_media_not_present(sdkp); 1569 goto out; 1570 } 1571 1572 if (media_not_present(sdkp, &sshdr)) 1573 goto out; 1574 } 1575 1576 /* 1577 * For removable scsi disk we have to recognise the presence 1578 * of a disk in the drive. 1579 */ 1580 if (!sdkp->media_present) 1581 sdp->changed = 1; 1582 sdkp->media_present = 1; 1583 out: 1584 /* 1585 * sdp->changed is set under the following conditions: 1586 * 1587 * Medium present state has changed in either direction. 1588 * Device has indicated UNIT_ATTENTION. 1589 */ 1590 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1591 sdp->changed = 0; 1592 scsi_disk_put(sdkp); 1593 return retval; 1594 } 1595 1596 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1597 { 1598 int retries, res; 1599 struct scsi_device *sdp = sdkp->device; 1600 const int timeout = sdp->request_queue->rq_timeout 1601 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1602 struct scsi_sense_hdr my_sshdr; 1603 1604 if (!scsi_device_online(sdp)) 1605 return -ENODEV; 1606 1607 /* caller might not be interested in sense, but we need it */ 1608 if (!sshdr) 1609 sshdr = &my_sshdr; 1610 1611 for (retries = 3; retries > 0; --retries) { 1612 unsigned char cmd[10] = { 0 }; 1613 1614 cmd[0] = SYNCHRONIZE_CACHE; 1615 /* 1616 * Leave the rest of the command zero to indicate 1617 * flush everything. 1618 */ 1619 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1620 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL); 1621 if (res == 0) 1622 break; 1623 } 1624 1625 if (res) { 1626 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1627 1628 if (driver_byte(res) & DRIVER_SENSE) 1629 sd_print_sense_hdr(sdkp, sshdr); 1630 1631 /* we need to evaluate the error return */ 1632 if (scsi_sense_valid(sshdr) && 1633 (sshdr->asc == 0x3a || /* medium not present */ 1634 sshdr->asc == 0x20)) /* invalid command */ 1635 /* this is no error here */ 1636 return 0; 1637 1638 switch (host_byte(res)) { 1639 /* ignore errors due to racing a disconnection */ 1640 case DID_BAD_TARGET: 1641 case DID_NO_CONNECT: 1642 return 0; 1643 /* signal the upper layer it might try again */ 1644 case DID_BUS_BUSY: 1645 case DID_IMM_RETRY: 1646 case DID_REQUEUE: 1647 case DID_SOFT_ERROR: 1648 return -EBUSY; 1649 default: 1650 return -EIO; 1651 } 1652 } 1653 return 0; 1654 } 1655 1656 static void sd_rescan(struct device *dev) 1657 { 1658 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1659 1660 revalidate_disk(sdkp->disk); 1661 } 1662 1663 1664 #ifdef CONFIG_COMPAT 1665 /* 1666 * This gets directly called from VFS. When the ioctl 1667 * is not recognized we go back to the other translation paths. 1668 */ 1669 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1670 unsigned int cmd, unsigned long arg) 1671 { 1672 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1673 int error; 1674 1675 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1676 (mode & FMODE_NDELAY) != 0); 1677 if (error) 1678 return error; 1679 1680 /* 1681 * Let the static ioctl translation table take care of it. 1682 */ 1683 if (!sdev->host->hostt->compat_ioctl) 1684 return -ENOIOCTLCMD; 1685 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1686 } 1687 #endif 1688 1689 static char sd_pr_type(enum pr_type type) 1690 { 1691 switch (type) { 1692 case PR_WRITE_EXCLUSIVE: 1693 return 0x01; 1694 case PR_EXCLUSIVE_ACCESS: 1695 return 0x03; 1696 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1697 return 0x05; 1698 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1699 return 0x06; 1700 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1701 return 0x07; 1702 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1703 return 0x08; 1704 default: 1705 return 0; 1706 } 1707 }; 1708 1709 static int sd_pr_command(struct block_device *bdev, u8 sa, 1710 u64 key, u64 sa_key, u8 type, u8 flags) 1711 { 1712 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1713 struct scsi_sense_hdr sshdr; 1714 int result; 1715 u8 cmd[16] = { 0, }; 1716 u8 data[24] = { 0, }; 1717 1718 cmd[0] = PERSISTENT_RESERVE_OUT; 1719 cmd[1] = sa; 1720 cmd[2] = type; 1721 put_unaligned_be32(sizeof(data), &cmd[5]); 1722 1723 put_unaligned_be64(key, &data[0]); 1724 put_unaligned_be64(sa_key, &data[8]); 1725 data[20] = flags; 1726 1727 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1728 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1729 1730 if ((driver_byte(result) & DRIVER_SENSE) && 1731 (scsi_sense_valid(&sshdr))) { 1732 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1733 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1734 } 1735 1736 return result; 1737 } 1738 1739 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1740 u32 flags) 1741 { 1742 if (flags & ~PR_FL_IGNORE_KEY) 1743 return -EOPNOTSUPP; 1744 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1745 old_key, new_key, 0, 1746 (1 << 0) /* APTPL */); 1747 } 1748 1749 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1750 u32 flags) 1751 { 1752 if (flags) 1753 return -EOPNOTSUPP; 1754 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1755 } 1756 1757 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1758 { 1759 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1760 } 1761 1762 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1763 enum pr_type type, bool abort) 1764 { 1765 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1766 sd_pr_type(type), 0); 1767 } 1768 1769 static int sd_pr_clear(struct block_device *bdev, u64 key) 1770 { 1771 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1772 } 1773 1774 static const struct pr_ops sd_pr_ops = { 1775 .pr_register = sd_pr_register, 1776 .pr_reserve = sd_pr_reserve, 1777 .pr_release = sd_pr_release, 1778 .pr_preempt = sd_pr_preempt, 1779 .pr_clear = sd_pr_clear, 1780 }; 1781 1782 static const struct block_device_operations sd_fops = { 1783 .owner = THIS_MODULE, 1784 .open = sd_open, 1785 .release = sd_release, 1786 .ioctl = sd_ioctl, 1787 .getgeo = sd_getgeo, 1788 #ifdef CONFIG_COMPAT 1789 .compat_ioctl = sd_compat_ioctl, 1790 #endif 1791 .check_events = sd_check_events, 1792 .revalidate_disk = sd_revalidate_disk, 1793 .unlock_native_capacity = sd_unlock_native_capacity, 1794 .pr_ops = &sd_pr_ops, 1795 }; 1796 1797 /** 1798 * sd_eh_reset - reset error handling callback 1799 * @scmd: sd-issued command that has failed 1800 * 1801 * This function is called by the SCSI midlayer before starting 1802 * SCSI EH. When counting medium access failures we have to be 1803 * careful to register it only only once per device and SCSI EH run; 1804 * there might be several timed out commands which will cause the 1805 * 'max_medium_access_timeouts' counter to trigger after the first 1806 * SCSI EH run already and set the device to offline. 1807 * So this function resets the internal counter before starting SCSI EH. 1808 **/ 1809 static void sd_eh_reset(struct scsi_cmnd *scmd) 1810 { 1811 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1812 1813 /* New SCSI EH run, reset gate variable */ 1814 sdkp->ignore_medium_access_errors = false; 1815 } 1816 1817 /** 1818 * sd_eh_action - error handling callback 1819 * @scmd: sd-issued command that has failed 1820 * @eh_disp: The recovery disposition suggested by the midlayer 1821 * 1822 * This function is called by the SCSI midlayer upon completion of an 1823 * error test command (currently TEST UNIT READY). The result of sending 1824 * the eh command is passed in eh_disp. We're looking for devices that 1825 * fail medium access commands but are OK with non access commands like 1826 * test unit ready (so wrongly see the device as having a successful 1827 * recovery) 1828 **/ 1829 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1830 { 1831 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1832 struct scsi_device *sdev = scmd->device; 1833 1834 if (!scsi_device_online(sdev) || 1835 !scsi_medium_access_command(scmd) || 1836 host_byte(scmd->result) != DID_TIME_OUT || 1837 eh_disp != SUCCESS) 1838 return eh_disp; 1839 1840 /* 1841 * The device has timed out executing a medium access command. 1842 * However, the TEST UNIT READY command sent during error 1843 * handling completed successfully. Either the device is in the 1844 * process of recovering or has it suffered an internal failure 1845 * that prevents access to the storage medium. 1846 */ 1847 if (!sdkp->ignore_medium_access_errors) { 1848 sdkp->medium_access_timed_out++; 1849 sdkp->ignore_medium_access_errors = true; 1850 } 1851 1852 /* 1853 * If the device keeps failing read/write commands but TEST UNIT 1854 * READY always completes successfully we assume that medium 1855 * access is no longer possible and take the device offline. 1856 */ 1857 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1858 scmd_printk(KERN_ERR, scmd, 1859 "Medium access timeout failure. Offlining disk!\n"); 1860 mutex_lock(&sdev->state_mutex); 1861 scsi_device_set_state(sdev, SDEV_OFFLINE); 1862 mutex_unlock(&sdev->state_mutex); 1863 1864 return SUCCESS; 1865 } 1866 1867 return eh_disp; 1868 } 1869 1870 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1871 { 1872 struct request *req = scmd->request; 1873 struct scsi_device *sdev = scmd->device; 1874 unsigned int transferred, good_bytes; 1875 u64 start_lba, end_lba, bad_lba; 1876 1877 /* 1878 * Some commands have a payload smaller than the device logical 1879 * block size (e.g. INQUIRY on a 4K disk). 1880 */ 1881 if (scsi_bufflen(scmd) <= sdev->sector_size) 1882 return 0; 1883 1884 /* Check if we have a 'bad_lba' information */ 1885 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1886 SCSI_SENSE_BUFFERSIZE, 1887 &bad_lba)) 1888 return 0; 1889 1890 /* 1891 * If the bad lba was reported incorrectly, we have no idea where 1892 * the error is. 1893 */ 1894 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1895 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1896 if (bad_lba < start_lba || bad_lba >= end_lba) 1897 return 0; 1898 1899 /* 1900 * resid is optional but mostly filled in. When it's unused, 1901 * its value is zero, so we assume the whole buffer transferred 1902 */ 1903 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1904 1905 /* This computation should always be done in terms of the 1906 * resolution of the device's medium. 1907 */ 1908 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1909 1910 return min(good_bytes, transferred); 1911 } 1912 1913 /** 1914 * sd_done - bottom half handler: called when the lower level 1915 * driver has completed (successfully or otherwise) a scsi command. 1916 * @SCpnt: mid-level's per command structure. 1917 * 1918 * Note: potentially run from within an ISR. Must not block. 1919 **/ 1920 static int sd_done(struct scsi_cmnd *SCpnt) 1921 { 1922 int result = SCpnt->result; 1923 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1924 unsigned int sector_size = SCpnt->device->sector_size; 1925 unsigned int resid; 1926 struct scsi_sense_hdr sshdr; 1927 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1928 struct request *req = SCpnt->request; 1929 int sense_valid = 0; 1930 int sense_deferred = 0; 1931 1932 switch (req_op(req)) { 1933 case REQ_OP_DISCARD: 1934 case REQ_OP_WRITE_ZEROES: 1935 case REQ_OP_WRITE_SAME: 1936 case REQ_OP_ZONE_RESET: 1937 if (!result) { 1938 good_bytes = blk_rq_bytes(req); 1939 scsi_set_resid(SCpnt, 0); 1940 } else { 1941 good_bytes = 0; 1942 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1943 } 1944 break; 1945 case REQ_OP_ZONE_REPORT: 1946 if (!result) { 1947 good_bytes = scsi_bufflen(SCpnt) 1948 - scsi_get_resid(SCpnt); 1949 scsi_set_resid(SCpnt, 0); 1950 } else { 1951 good_bytes = 0; 1952 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1953 } 1954 break; 1955 default: 1956 /* 1957 * In case of bogus fw or device, we could end up having 1958 * an unaligned partial completion. Check this here and force 1959 * alignment. 1960 */ 1961 resid = scsi_get_resid(SCpnt); 1962 if (resid & (sector_size - 1)) { 1963 sd_printk(KERN_INFO, sdkp, 1964 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 1965 resid, sector_size); 1966 resid = min(scsi_bufflen(SCpnt), 1967 round_up(resid, sector_size)); 1968 scsi_set_resid(SCpnt, resid); 1969 } 1970 } 1971 1972 if (result) { 1973 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1974 if (sense_valid) 1975 sense_deferred = scsi_sense_is_deferred(&sshdr); 1976 } 1977 sdkp->medium_access_timed_out = 0; 1978 1979 if (driver_byte(result) != DRIVER_SENSE && 1980 (!sense_valid || sense_deferred)) 1981 goto out; 1982 1983 switch (sshdr.sense_key) { 1984 case HARDWARE_ERROR: 1985 case MEDIUM_ERROR: 1986 good_bytes = sd_completed_bytes(SCpnt); 1987 break; 1988 case RECOVERED_ERROR: 1989 good_bytes = scsi_bufflen(SCpnt); 1990 break; 1991 case NO_SENSE: 1992 /* This indicates a false check condition, so ignore it. An 1993 * unknown amount of data was transferred so treat it as an 1994 * error. 1995 */ 1996 SCpnt->result = 0; 1997 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1998 break; 1999 case ABORTED_COMMAND: 2000 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2001 good_bytes = sd_completed_bytes(SCpnt); 2002 break; 2003 case ILLEGAL_REQUEST: 2004 switch (sshdr.asc) { 2005 case 0x10: /* DIX: Host detected corruption */ 2006 good_bytes = sd_completed_bytes(SCpnt); 2007 break; 2008 case 0x20: /* INVALID COMMAND OPCODE */ 2009 case 0x24: /* INVALID FIELD IN CDB */ 2010 switch (SCpnt->cmnd[0]) { 2011 case UNMAP: 2012 sd_config_discard(sdkp, SD_LBP_DISABLE); 2013 break; 2014 case WRITE_SAME_16: 2015 case WRITE_SAME: 2016 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2017 sd_config_discard(sdkp, SD_LBP_DISABLE); 2018 } else { 2019 sdkp->device->no_write_same = 1; 2020 sd_config_write_same(sdkp); 2021 req->__data_len = blk_rq_bytes(req); 2022 req->rq_flags |= RQF_QUIET; 2023 } 2024 break; 2025 } 2026 } 2027 break; 2028 default: 2029 break; 2030 } 2031 2032 out: 2033 if (sd_is_zoned(sdkp)) 2034 sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2035 2036 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2037 "sd_done: completed %d of %d bytes\n", 2038 good_bytes, scsi_bufflen(SCpnt))); 2039 2040 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt)) 2041 sd_dif_complete(SCpnt, good_bytes); 2042 2043 return good_bytes; 2044 } 2045 2046 /* 2047 * spinup disk - called only in sd_revalidate_disk() 2048 */ 2049 static void 2050 sd_spinup_disk(struct scsi_disk *sdkp) 2051 { 2052 unsigned char cmd[10]; 2053 unsigned long spintime_expire = 0; 2054 int retries, spintime; 2055 unsigned int the_result; 2056 struct scsi_sense_hdr sshdr; 2057 int sense_valid = 0; 2058 2059 spintime = 0; 2060 2061 /* Spin up drives, as required. Only do this at boot time */ 2062 /* Spinup needs to be done for module loads too. */ 2063 do { 2064 retries = 0; 2065 2066 do { 2067 cmd[0] = TEST_UNIT_READY; 2068 memset((void *) &cmd[1], 0, 9); 2069 2070 the_result = scsi_execute_req(sdkp->device, cmd, 2071 DMA_NONE, NULL, 0, 2072 &sshdr, SD_TIMEOUT, 2073 SD_MAX_RETRIES, NULL); 2074 2075 /* 2076 * If the drive has indicated to us that it 2077 * doesn't have any media in it, don't bother 2078 * with any more polling. 2079 */ 2080 if (media_not_present(sdkp, &sshdr)) 2081 return; 2082 2083 if (the_result) 2084 sense_valid = scsi_sense_valid(&sshdr); 2085 retries++; 2086 } while (retries < 3 && 2087 (!scsi_status_is_good(the_result) || 2088 ((driver_byte(the_result) & DRIVER_SENSE) && 2089 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2090 2091 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) { 2092 /* no sense, TUR either succeeded or failed 2093 * with a status error */ 2094 if(!spintime && !scsi_status_is_good(the_result)) { 2095 sd_print_result(sdkp, "Test Unit Ready failed", 2096 the_result); 2097 } 2098 break; 2099 } 2100 2101 /* 2102 * The device does not want the automatic start to be issued. 2103 */ 2104 if (sdkp->device->no_start_on_add) 2105 break; 2106 2107 if (sense_valid && sshdr.sense_key == NOT_READY) { 2108 if (sshdr.asc == 4 && sshdr.ascq == 3) 2109 break; /* manual intervention required */ 2110 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2111 break; /* standby */ 2112 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2113 break; /* unavailable */ 2114 /* 2115 * Issue command to spin up drive when not ready 2116 */ 2117 if (!spintime) { 2118 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2119 cmd[0] = START_STOP; 2120 cmd[1] = 1; /* Return immediately */ 2121 memset((void *) &cmd[2], 0, 8); 2122 cmd[4] = 1; /* Start spin cycle */ 2123 if (sdkp->device->start_stop_pwr_cond) 2124 cmd[4] |= 1 << 4; 2125 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2126 NULL, 0, &sshdr, 2127 SD_TIMEOUT, SD_MAX_RETRIES, 2128 NULL); 2129 spintime_expire = jiffies + 100 * HZ; 2130 spintime = 1; 2131 } 2132 /* Wait 1 second for next try */ 2133 msleep(1000); 2134 printk("."); 2135 2136 /* 2137 * Wait for USB flash devices with slow firmware. 2138 * Yes, this sense key/ASC combination shouldn't 2139 * occur here. It's characteristic of these devices. 2140 */ 2141 } else if (sense_valid && 2142 sshdr.sense_key == UNIT_ATTENTION && 2143 sshdr.asc == 0x28) { 2144 if (!spintime) { 2145 spintime_expire = jiffies + 5 * HZ; 2146 spintime = 1; 2147 } 2148 /* Wait 1 second for next try */ 2149 msleep(1000); 2150 } else { 2151 /* we don't understand the sense code, so it's 2152 * probably pointless to loop */ 2153 if(!spintime) { 2154 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2155 sd_print_sense_hdr(sdkp, &sshdr); 2156 } 2157 break; 2158 } 2159 2160 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2161 2162 if (spintime) { 2163 if (scsi_status_is_good(the_result)) 2164 printk("ready\n"); 2165 else 2166 printk("not responding...\n"); 2167 } 2168 } 2169 2170 /* 2171 * Determine whether disk supports Data Integrity Field. 2172 */ 2173 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2174 { 2175 struct scsi_device *sdp = sdkp->device; 2176 u8 type; 2177 int ret = 0; 2178 2179 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 2180 return ret; 2181 2182 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2183 2184 if (type > T10_PI_TYPE3_PROTECTION) 2185 ret = -ENODEV; 2186 else if (scsi_host_dif_capable(sdp->host, type)) 2187 ret = 1; 2188 2189 if (sdkp->first_scan || type != sdkp->protection_type) 2190 switch (ret) { 2191 case -ENODEV: 2192 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2193 " protection type %u. Disabling disk!\n", 2194 type); 2195 break; 2196 case 1: 2197 sd_printk(KERN_NOTICE, sdkp, 2198 "Enabling DIF Type %u protection\n", type); 2199 break; 2200 case 0: 2201 sd_printk(KERN_NOTICE, sdkp, 2202 "Disabling DIF Type %u protection\n", type); 2203 break; 2204 } 2205 2206 sdkp->protection_type = type; 2207 2208 return ret; 2209 } 2210 2211 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2212 struct scsi_sense_hdr *sshdr, int sense_valid, 2213 int the_result) 2214 { 2215 if (driver_byte(the_result) & DRIVER_SENSE) 2216 sd_print_sense_hdr(sdkp, sshdr); 2217 else 2218 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2219 2220 /* 2221 * Set dirty bit for removable devices if not ready - 2222 * sometimes drives will not report this properly. 2223 */ 2224 if (sdp->removable && 2225 sense_valid && sshdr->sense_key == NOT_READY) 2226 set_media_not_present(sdkp); 2227 2228 /* 2229 * We used to set media_present to 0 here to indicate no media 2230 * in the drive, but some drives fail read capacity even with 2231 * media present, so we can't do that. 2232 */ 2233 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2234 } 2235 2236 #define RC16_LEN 32 2237 #if RC16_LEN > SD_BUF_SIZE 2238 #error RC16_LEN must not be more than SD_BUF_SIZE 2239 #endif 2240 2241 #define READ_CAPACITY_RETRIES_ON_RESET 10 2242 2243 /* 2244 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set 2245 * and the reported logical block size is bigger than 512 bytes. Note 2246 * that last_sector is a u64 and therefore logical_to_sectors() is not 2247 * applicable. 2248 */ 2249 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size) 2250 { 2251 u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9); 2252 2253 if (sizeof(sector_t) == 4 && last_sector > U32_MAX) 2254 return false; 2255 2256 return true; 2257 } 2258 2259 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2260 unsigned char *buffer) 2261 { 2262 unsigned char cmd[16]; 2263 struct scsi_sense_hdr sshdr; 2264 int sense_valid = 0; 2265 int the_result; 2266 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2267 unsigned int alignment; 2268 unsigned long long lba; 2269 unsigned sector_size; 2270 2271 if (sdp->no_read_capacity_16) 2272 return -EINVAL; 2273 2274 do { 2275 memset(cmd, 0, 16); 2276 cmd[0] = SERVICE_ACTION_IN_16; 2277 cmd[1] = SAI_READ_CAPACITY_16; 2278 cmd[13] = RC16_LEN; 2279 memset(buffer, 0, RC16_LEN); 2280 2281 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2282 buffer, RC16_LEN, &sshdr, 2283 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2284 2285 if (media_not_present(sdkp, &sshdr)) 2286 return -ENODEV; 2287 2288 if (the_result) { 2289 sense_valid = scsi_sense_valid(&sshdr); 2290 if (sense_valid && 2291 sshdr.sense_key == ILLEGAL_REQUEST && 2292 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2293 sshdr.ascq == 0x00) 2294 /* Invalid Command Operation Code or 2295 * Invalid Field in CDB, just retry 2296 * silently with RC10 */ 2297 return -EINVAL; 2298 if (sense_valid && 2299 sshdr.sense_key == UNIT_ATTENTION && 2300 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2301 /* Device reset might occur several times, 2302 * give it one more chance */ 2303 if (--reset_retries > 0) 2304 continue; 2305 } 2306 retries--; 2307 2308 } while (the_result && retries); 2309 2310 if (the_result) { 2311 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2312 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2313 return -EINVAL; 2314 } 2315 2316 sector_size = get_unaligned_be32(&buffer[8]); 2317 lba = get_unaligned_be64(&buffer[0]); 2318 2319 if (sd_read_protection_type(sdkp, buffer) < 0) { 2320 sdkp->capacity = 0; 2321 return -ENODEV; 2322 } 2323 2324 if (!sd_addressable_capacity(lba, sector_size)) { 2325 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2326 "kernel compiled with support for large block " 2327 "devices.\n"); 2328 sdkp->capacity = 0; 2329 return -EOVERFLOW; 2330 } 2331 2332 /* Logical blocks per physical block exponent */ 2333 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2334 2335 /* RC basis */ 2336 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2337 2338 /* Lowest aligned logical block */ 2339 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2340 blk_queue_alignment_offset(sdp->request_queue, alignment); 2341 if (alignment && sdkp->first_scan) 2342 sd_printk(KERN_NOTICE, sdkp, 2343 "physical block alignment offset: %u\n", alignment); 2344 2345 if (buffer[14] & 0x80) { /* LBPME */ 2346 sdkp->lbpme = 1; 2347 2348 if (buffer[14] & 0x40) /* LBPRZ */ 2349 sdkp->lbprz = 1; 2350 2351 sd_config_discard(sdkp, SD_LBP_WS16); 2352 } 2353 2354 sdkp->capacity = lba + 1; 2355 return sector_size; 2356 } 2357 2358 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2359 unsigned char *buffer) 2360 { 2361 unsigned char cmd[16]; 2362 struct scsi_sense_hdr sshdr; 2363 int sense_valid = 0; 2364 int the_result; 2365 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2366 sector_t lba; 2367 unsigned sector_size; 2368 2369 do { 2370 cmd[0] = READ_CAPACITY; 2371 memset(&cmd[1], 0, 9); 2372 memset(buffer, 0, 8); 2373 2374 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2375 buffer, 8, &sshdr, 2376 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2377 2378 if (media_not_present(sdkp, &sshdr)) 2379 return -ENODEV; 2380 2381 if (the_result) { 2382 sense_valid = scsi_sense_valid(&sshdr); 2383 if (sense_valid && 2384 sshdr.sense_key == UNIT_ATTENTION && 2385 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2386 /* Device reset might occur several times, 2387 * give it one more chance */ 2388 if (--reset_retries > 0) 2389 continue; 2390 } 2391 retries--; 2392 2393 } while (the_result && retries); 2394 2395 if (the_result) { 2396 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2397 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2398 return -EINVAL; 2399 } 2400 2401 sector_size = get_unaligned_be32(&buffer[4]); 2402 lba = get_unaligned_be32(&buffer[0]); 2403 2404 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2405 /* Some buggy (usb cardreader) devices return an lba of 2406 0xffffffff when the want to report a size of 0 (with 2407 which they really mean no media is present) */ 2408 sdkp->capacity = 0; 2409 sdkp->physical_block_size = sector_size; 2410 return sector_size; 2411 } 2412 2413 if (!sd_addressable_capacity(lba, sector_size)) { 2414 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2415 "kernel compiled with support for large block " 2416 "devices.\n"); 2417 sdkp->capacity = 0; 2418 return -EOVERFLOW; 2419 } 2420 2421 sdkp->capacity = lba + 1; 2422 sdkp->physical_block_size = sector_size; 2423 return sector_size; 2424 } 2425 2426 static int sd_try_rc16_first(struct scsi_device *sdp) 2427 { 2428 if (sdp->host->max_cmd_len < 16) 2429 return 0; 2430 if (sdp->try_rc_10_first) 2431 return 0; 2432 if (sdp->scsi_level > SCSI_SPC_2) 2433 return 1; 2434 if (scsi_device_protection(sdp)) 2435 return 1; 2436 return 0; 2437 } 2438 2439 /* 2440 * read disk capacity 2441 */ 2442 static void 2443 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2444 { 2445 int sector_size; 2446 struct scsi_device *sdp = sdkp->device; 2447 2448 if (sd_try_rc16_first(sdp)) { 2449 sector_size = read_capacity_16(sdkp, sdp, buffer); 2450 if (sector_size == -EOVERFLOW) 2451 goto got_data; 2452 if (sector_size == -ENODEV) 2453 return; 2454 if (sector_size < 0) 2455 sector_size = read_capacity_10(sdkp, sdp, buffer); 2456 if (sector_size < 0) 2457 return; 2458 } else { 2459 sector_size = read_capacity_10(sdkp, sdp, buffer); 2460 if (sector_size == -EOVERFLOW) 2461 goto got_data; 2462 if (sector_size < 0) 2463 return; 2464 if ((sizeof(sdkp->capacity) > 4) && 2465 (sdkp->capacity > 0xffffffffULL)) { 2466 int old_sector_size = sector_size; 2467 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2468 "Trying to use READ CAPACITY(16).\n"); 2469 sector_size = read_capacity_16(sdkp, sdp, buffer); 2470 if (sector_size < 0) { 2471 sd_printk(KERN_NOTICE, sdkp, 2472 "Using 0xffffffff as device size\n"); 2473 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2474 sector_size = old_sector_size; 2475 goto got_data; 2476 } 2477 } 2478 } 2479 2480 /* Some devices are known to return the total number of blocks, 2481 * not the highest block number. Some devices have versions 2482 * which do this and others which do not. Some devices we might 2483 * suspect of doing this but we don't know for certain. 2484 * 2485 * If we know the reported capacity is wrong, decrement it. If 2486 * we can only guess, then assume the number of blocks is even 2487 * (usually true but not always) and err on the side of lowering 2488 * the capacity. 2489 */ 2490 if (sdp->fix_capacity || 2491 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2492 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2493 "from its reported value: %llu\n", 2494 (unsigned long long) sdkp->capacity); 2495 --sdkp->capacity; 2496 } 2497 2498 got_data: 2499 if (sector_size == 0) { 2500 sector_size = 512; 2501 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2502 "assuming 512.\n"); 2503 } 2504 2505 if (sector_size != 512 && 2506 sector_size != 1024 && 2507 sector_size != 2048 && 2508 sector_size != 4096) { 2509 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2510 sector_size); 2511 /* 2512 * The user might want to re-format the drive with 2513 * a supported sectorsize. Once this happens, it 2514 * would be relatively trivial to set the thing up. 2515 * For this reason, we leave the thing in the table. 2516 */ 2517 sdkp->capacity = 0; 2518 /* 2519 * set a bogus sector size so the normal read/write 2520 * logic in the block layer will eventually refuse any 2521 * request on this device without tripping over power 2522 * of two sector size assumptions 2523 */ 2524 sector_size = 512; 2525 } 2526 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2527 blk_queue_physical_block_size(sdp->request_queue, 2528 sdkp->physical_block_size); 2529 sdkp->device->sector_size = sector_size; 2530 2531 if (sdkp->capacity > 0xffffffff) 2532 sdp->use_16_for_rw = 1; 2533 2534 } 2535 2536 /* 2537 * Print disk capacity 2538 */ 2539 static void 2540 sd_print_capacity(struct scsi_disk *sdkp, 2541 sector_t old_capacity) 2542 { 2543 int sector_size = sdkp->device->sector_size; 2544 char cap_str_2[10], cap_str_10[10]; 2545 2546 string_get_size(sdkp->capacity, sector_size, 2547 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2548 string_get_size(sdkp->capacity, sector_size, 2549 STRING_UNITS_10, cap_str_10, 2550 sizeof(cap_str_10)); 2551 2552 if (sdkp->first_scan || old_capacity != sdkp->capacity) { 2553 sd_printk(KERN_NOTICE, sdkp, 2554 "%llu %d-byte logical blocks: (%s/%s)\n", 2555 (unsigned long long)sdkp->capacity, 2556 sector_size, cap_str_10, cap_str_2); 2557 2558 if (sdkp->physical_block_size != sector_size) 2559 sd_printk(KERN_NOTICE, sdkp, 2560 "%u-byte physical blocks\n", 2561 sdkp->physical_block_size); 2562 2563 sd_zbc_print_zones(sdkp); 2564 } 2565 } 2566 2567 /* called with buffer of length 512 */ 2568 static inline int 2569 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2570 unsigned char *buffer, int len, struct scsi_mode_data *data, 2571 struct scsi_sense_hdr *sshdr) 2572 { 2573 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2574 SD_TIMEOUT, SD_MAX_RETRIES, data, 2575 sshdr); 2576 } 2577 2578 /* 2579 * read write protect setting, if possible - called only in sd_revalidate_disk() 2580 * called with buffer of length SD_BUF_SIZE 2581 */ 2582 static void 2583 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2584 { 2585 int res; 2586 struct scsi_device *sdp = sdkp->device; 2587 struct scsi_mode_data data; 2588 int old_wp = sdkp->write_prot; 2589 2590 set_disk_ro(sdkp->disk, 0); 2591 if (sdp->skip_ms_page_3f) { 2592 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2593 return; 2594 } 2595 2596 if (sdp->use_192_bytes_for_3f) { 2597 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2598 } else { 2599 /* 2600 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2601 * We have to start carefully: some devices hang if we ask 2602 * for more than is available. 2603 */ 2604 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2605 2606 /* 2607 * Second attempt: ask for page 0 When only page 0 is 2608 * implemented, a request for page 3F may return Sense Key 2609 * 5: Illegal Request, Sense Code 24: Invalid field in 2610 * CDB. 2611 */ 2612 if (!scsi_status_is_good(res)) 2613 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2614 2615 /* 2616 * Third attempt: ask 255 bytes, as we did earlier. 2617 */ 2618 if (!scsi_status_is_good(res)) 2619 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2620 &data, NULL); 2621 } 2622 2623 if (!scsi_status_is_good(res)) { 2624 sd_first_printk(KERN_WARNING, sdkp, 2625 "Test WP failed, assume Write Enabled\n"); 2626 } else { 2627 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2628 set_disk_ro(sdkp->disk, sdkp->write_prot); 2629 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2630 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2631 sdkp->write_prot ? "on" : "off"); 2632 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2633 } 2634 } 2635 } 2636 2637 /* 2638 * sd_read_cache_type - called only from sd_revalidate_disk() 2639 * called with buffer of length SD_BUF_SIZE 2640 */ 2641 static void 2642 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2643 { 2644 int len = 0, res; 2645 struct scsi_device *sdp = sdkp->device; 2646 2647 int dbd; 2648 int modepage; 2649 int first_len; 2650 struct scsi_mode_data data; 2651 struct scsi_sense_hdr sshdr; 2652 int old_wce = sdkp->WCE; 2653 int old_rcd = sdkp->RCD; 2654 int old_dpofua = sdkp->DPOFUA; 2655 2656 2657 if (sdkp->cache_override) 2658 return; 2659 2660 first_len = 4; 2661 if (sdp->skip_ms_page_8) { 2662 if (sdp->type == TYPE_RBC) 2663 goto defaults; 2664 else { 2665 if (sdp->skip_ms_page_3f) 2666 goto defaults; 2667 modepage = 0x3F; 2668 if (sdp->use_192_bytes_for_3f) 2669 first_len = 192; 2670 dbd = 0; 2671 } 2672 } else if (sdp->type == TYPE_RBC) { 2673 modepage = 6; 2674 dbd = 8; 2675 } else { 2676 modepage = 8; 2677 dbd = 0; 2678 } 2679 2680 /* cautiously ask */ 2681 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2682 &data, &sshdr); 2683 2684 if (!scsi_status_is_good(res)) 2685 goto bad_sense; 2686 2687 if (!data.header_length) { 2688 modepage = 6; 2689 first_len = 0; 2690 sd_first_printk(KERN_ERR, sdkp, 2691 "Missing header in MODE_SENSE response\n"); 2692 } 2693 2694 /* that went OK, now ask for the proper length */ 2695 len = data.length; 2696 2697 /* 2698 * We're only interested in the first three bytes, actually. 2699 * But the data cache page is defined for the first 20. 2700 */ 2701 if (len < 3) 2702 goto bad_sense; 2703 else if (len > SD_BUF_SIZE) { 2704 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2705 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2706 len = SD_BUF_SIZE; 2707 } 2708 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2709 len = 192; 2710 2711 /* Get the data */ 2712 if (len > first_len) 2713 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2714 &data, &sshdr); 2715 2716 if (scsi_status_is_good(res)) { 2717 int offset = data.header_length + data.block_descriptor_length; 2718 2719 while (offset < len) { 2720 u8 page_code = buffer[offset] & 0x3F; 2721 u8 spf = buffer[offset] & 0x40; 2722 2723 if (page_code == 8 || page_code == 6) { 2724 /* We're interested only in the first 3 bytes. 2725 */ 2726 if (len - offset <= 2) { 2727 sd_first_printk(KERN_ERR, sdkp, 2728 "Incomplete mode parameter " 2729 "data\n"); 2730 goto defaults; 2731 } else { 2732 modepage = page_code; 2733 goto Page_found; 2734 } 2735 } else { 2736 /* Go to the next page */ 2737 if (spf && len - offset > 3) 2738 offset += 4 + (buffer[offset+2] << 8) + 2739 buffer[offset+3]; 2740 else if (!spf && len - offset > 1) 2741 offset += 2 + buffer[offset+1]; 2742 else { 2743 sd_first_printk(KERN_ERR, sdkp, 2744 "Incomplete mode " 2745 "parameter data\n"); 2746 goto defaults; 2747 } 2748 } 2749 } 2750 2751 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2752 goto defaults; 2753 2754 Page_found: 2755 if (modepage == 8) { 2756 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2757 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2758 } else { 2759 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2760 sdkp->RCD = 0; 2761 } 2762 2763 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2764 if (sdp->broken_fua) { 2765 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2766 sdkp->DPOFUA = 0; 2767 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2768 !sdkp->device->use_16_for_rw) { 2769 sd_first_printk(KERN_NOTICE, sdkp, 2770 "Uses READ/WRITE(6), disabling FUA\n"); 2771 sdkp->DPOFUA = 0; 2772 } 2773 2774 /* No cache flush allowed for write protected devices */ 2775 if (sdkp->WCE && sdkp->write_prot) 2776 sdkp->WCE = 0; 2777 2778 if (sdkp->first_scan || old_wce != sdkp->WCE || 2779 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2780 sd_printk(KERN_NOTICE, sdkp, 2781 "Write cache: %s, read cache: %s, %s\n", 2782 sdkp->WCE ? "enabled" : "disabled", 2783 sdkp->RCD ? "disabled" : "enabled", 2784 sdkp->DPOFUA ? "supports DPO and FUA" 2785 : "doesn't support DPO or FUA"); 2786 2787 return; 2788 } 2789 2790 bad_sense: 2791 if (scsi_sense_valid(&sshdr) && 2792 sshdr.sense_key == ILLEGAL_REQUEST && 2793 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2794 /* Invalid field in CDB */ 2795 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2796 else 2797 sd_first_printk(KERN_ERR, sdkp, 2798 "Asking for cache data failed\n"); 2799 2800 defaults: 2801 if (sdp->wce_default_on) { 2802 sd_first_printk(KERN_NOTICE, sdkp, 2803 "Assuming drive cache: write back\n"); 2804 sdkp->WCE = 1; 2805 } else { 2806 sd_first_printk(KERN_ERR, sdkp, 2807 "Assuming drive cache: write through\n"); 2808 sdkp->WCE = 0; 2809 } 2810 sdkp->RCD = 0; 2811 sdkp->DPOFUA = 0; 2812 } 2813 2814 /* 2815 * The ATO bit indicates whether the DIF application tag is available 2816 * for use by the operating system. 2817 */ 2818 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2819 { 2820 int res, offset; 2821 struct scsi_device *sdp = sdkp->device; 2822 struct scsi_mode_data data; 2823 struct scsi_sense_hdr sshdr; 2824 2825 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2826 return; 2827 2828 if (sdkp->protection_type == 0) 2829 return; 2830 2831 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2832 SD_MAX_RETRIES, &data, &sshdr); 2833 2834 if (!scsi_status_is_good(res) || !data.header_length || 2835 data.length < 6) { 2836 sd_first_printk(KERN_WARNING, sdkp, 2837 "getting Control mode page failed, assume no ATO\n"); 2838 2839 if (scsi_sense_valid(&sshdr)) 2840 sd_print_sense_hdr(sdkp, &sshdr); 2841 2842 return; 2843 } 2844 2845 offset = data.header_length + data.block_descriptor_length; 2846 2847 if ((buffer[offset] & 0x3f) != 0x0a) { 2848 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2849 return; 2850 } 2851 2852 if ((buffer[offset + 5] & 0x80) == 0) 2853 return; 2854 2855 sdkp->ATO = 1; 2856 2857 return; 2858 } 2859 2860 /** 2861 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2862 * @sdkp: disk to query 2863 */ 2864 static void sd_read_block_limits(struct scsi_disk *sdkp) 2865 { 2866 unsigned int sector_sz = sdkp->device->sector_size; 2867 const int vpd_len = 64; 2868 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2869 2870 if (!buffer || 2871 /* Block Limits VPD */ 2872 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2873 goto out; 2874 2875 blk_queue_io_min(sdkp->disk->queue, 2876 get_unaligned_be16(&buffer[6]) * sector_sz); 2877 2878 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2879 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2880 2881 if (buffer[3] == 0x3c) { 2882 unsigned int lba_count, desc_count; 2883 2884 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2885 2886 if (!sdkp->lbpme) 2887 goto out; 2888 2889 lba_count = get_unaligned_be32(&buffer[20]); 2890 desc_count = get_unaligned_be32(&buffer[24]); 2891 2892 if (lba_count && desc_count) 2893 sdkp->max_unmap_blocks = lba_count; 2894 2895 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2896 2897 if (buffer[32] & 0x80) 2898 sdkp->unmap_alignment = 2899 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2900 2901 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2902 2903 if (sdkp->max_unmap_blocks) 2904 sd_config_discard(sdkp, SD_LBP_UNMAP); 2905 else 2906 sd_config_discard(sdkp, SD_LBP_WS16); 2907 2908 } else { /* LBP VPD page tells us what to use */ 2909 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2910 sd_config_discard(sdkp, SD_LBP_UNMAP); 2911 else if (sdkp->lbpws) 2912 sd_config_discard(sdkp, SD_LBP_WS16); 2913 else if (sdkp->lbpws10) 2914 sd_config_discard(sdkp, SD_LBP_WS10); 2915 else if (sdkp->lbpu && sdkp->max_unmap_blocks) 2916 sd_config_discard(sdkp, SD_LBP_UNMAP); 2917 else 2918 sd_config_discard(sdkp, SD_LBP_DISABLE); 2919 } 2920 } 2921 2922 out: 2923 kfree(buffer); 2924 } 2925 2926 /** 2927 * sd_read_block_characteristics - Query block dev. characteristics 2928 * @sdkp: disk to query 2929 */ 2930 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2931 { 2932 struct request_queue *q = sdkp->disk->queue; 2933 unsigned char *buffer; 2934 u16 rot; 2935 const int vpd_len = 64; 2936 2937 buffer = kmalloc(vpd_len, GFP_KERNEL); 2938 2939 if (!buffer || 2940 /* Block Device Characteristics VPD */ 2941 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2942 goto out; 2943 2944 rot = get_unaligned_be16(&buffer[4]); 2945 2946 if (rot == 1) { 2947 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 2948 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); 2949 } 2950 2951 if (sdkp->device->type == TYPE_ZBC) { 2952 /* Host-managed */ 2953 q->limits.zoned = BLK_ZONED_HM; 2954 } else { 2955 sdkp->zoned = (buffer[8] >> 4) & 3; 2956 if (sdkp->zoned == 1) 2957 /* Host-aware */ 2958 q->limits.zoned = BLK_ZONED_HA; 2959 else 2960 /* 2961 * Treat drive-managed devices as 2962 * regular block devices. 2963 */ 2964 q->limits.zoned = BLK_ZONED_NONE; 2965 } 2966 if (blk_queue_is_zoned(q) && sdkp->first_scan) 2967 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2968 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2969 2970 out: 2971 kfree(buffer); 2972 } 2973 2974 /** 2975 * sd_read_block_provisioning - Query provisioning VPD page 2976 * @sdkp: disk to query 2977 */ 2978 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2979 { 2980 unsigned char *buffer; 2981 const int vpd_len = 8; 2982 2983 if (sdkp->lbpme == 0) 2984 return; 2985 2986 buffer = kmalloc(vpd_len, GFP_KERNEL); 2987 2988 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2989 goto out; 2990 2991 sdkp->lbpvpd = 1; 2992 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 2993 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 2994 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 2995 2996 out: 2997 kfree(buffer); 2998 } 2999 3000 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3001 { 3002 struct scsi_device *sdev = sdkp->device; 3003 3004 if (sdev->host->no_write_same) { 3005 sdev->no_write_same = 1; 3006 3007 return; 3008 } 3009 3010 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3011 /* too large values might cause issues with arcmsr */ 3012 int vpd_buf_len = 64; 3013 3014 sdev->no_report_opcodes = 1; 3015 3016 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3017 * CODES is unsupported and the device has an ATA 3018 * Information VPD page (SAT). 3019 */ 3020 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3021 sdev->no_write_same = 1; 3022 } 3023 3024 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3025 sdkp->ws16 = 1; 3026 3027 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3028 sdkp->ws10 = 1; 3029 } 3030 3031 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3032 { 3033 struct scsi_device *sdev = sdkp->device; 3034 3035 if (!sdev->security_supported) 3036 return; 3037 3038 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3039 SECURITY_PROTOCOL_IN) == 1 && 3040 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3041 SECURITY_PROTOCOL_OUT) == 1) 3042 sdkp->security = 1; 3043 } 3044 3045 /** 3046 * sd_revalidate_disk - called the first time a new disk is seen, 3047 * performs disk spin up, read_capacity, etc. 3048 * @disk: struct gendisk we care about 3049 **/ 3050 static int sd_revalidate_disk(struct gendisk *disk) 3051 { 3052 struct scsi_disk *sdkp = scsi_disk(disk); 3053 struct scsi_device *sdp = sdkp->device; 3054 struct request_queue *q = sdkp->disk->queue; 3055 sector_t old_capacity = sdkp->capacity; 3056 unsigned char *buffer; 3057 unsigned int dev_max, rw_max; 3058 3059 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3060 "sd_revalidate_disk\n")); 3061 3062 /* 3063 * If the device is offline, don't try and read capacity or any 3064 * of the other niceties. 3065 */ 3066 if (!scsi_device_online(sdp)) 3067 goto out; 3068 3069 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3070 if (!buffer) { 3071 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3072 "allocation failure.\n"); 3073 goto out; 3074 } 3075 3076 sd_spinup_disk(sdkp); 3077 3078 /* 3079 * Without media there is no reason to ask; moreover, some devices 3080 * react badly if we do. 3081 */ 3082 if (sdkp->media_present) { 3083 sd_read_capacity(sdkp, buffer); 3084 3085 if (scsi_device_supports_vpd(sdp)) { 3086 sd_read_block_provisioning(sdkp); 3087 sd_read_block_limits(sdkp); 3088 sd_read_block_characteristics(sdkp); 3089 sd_zbc_read_zones(sdkp, buffer); 3090 } 3091 3092 sd_print_capacity(sdkp, old_capacity); 3093 3094 sd_read_write_protect_flag(sdkp, buffer); 3095 sd_read_cache_type(sdkp, buffer); 3096 sd_read_app_tag_own(sdkp, buffer); 3097 sd_read_write_same(sdkp, buffer); 3098 sd_read_security(sdkp, buffer); 3099 } 3100 3101 sdkp->first_scan = 0; 3102 3103 /* 3104 * We now have all cache related info, determine how we deal 3105 * with flush requests. 3106 */ 3107 sd_set_flush_flag(sdkp); 3108 3109 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3110 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3111 3112 /* Some devices report a maximum block count for READ/WRITE requests. */ 3113 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3114 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3115 3116 /* 3117 * Use the device's preferred I/O size for reads and writes 3118 * unless the reported value is unreasonably small, large, or 3119 * garbage. 3120 */ 3121 if (sdkp->opt_xfer_blocks && 3122 sdkp->opt_xfer_blocks <= dev_max && 3123 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS && 3124 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) { 3125 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3126 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3127 } else 3128 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3129 (sector_t)BLK_DEF_MAX_SECTORS); 3130 3131 /* Combine with controller limits */ 3132 q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q)); 3133 3134 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); 3135 sd_config_write_same(sdkp); 3136 kfree(buffer); 3137 3138 out: 3139 return 0; 3140 } 3141 3142 /** 3143 * sd_unlock_native_capacity - unlock native capacity 3144 * @disk: struct gendisk to set capacity for 3145 * 3146 * Block layer calls this function if it detects that partitions 3147 * on @disk reach beyond the end of the device. If the SCSI host 3148 * implements ->unlock_native_capacity() method, it's invoked to 3149 * give it a chance to adjust the device capacity. 3150 * 3151 * CONTEXT: 3152 * Defined by block layer. Might sleep. 3153 */ 3154 static void sd_unlock_native_capacity(struct gendisk *disk) 3155 { 3156 struct scsi_device *sdev = scsi_disk(disk)->device; 3157 3158 if (sdev->host->hostt->unlock_native_capacity) 3159 sdev->host->hostt->unlock_native_capacity(sdev); 3160 } 3161 3162 /** 3163 * sd_format_disk_name - format disk name 3164 * @prefix: name prefix - ie. "sd" for SCSI disks 3165 * @index: index of the disk to format name for 3166 * @buf: output buffer 3167 * @buflen: length of the output buffer 3168 * 3169 * SCSI disk names starts at sda. The 26th device is sdz and the 3170 * 27th is sdaa. The last one for two lettered suffix is sdzz 3171 * which is followed by sdaaa. 3172 * 3173 * This is basically 26 base counting with one extra 'nil' entry 3174 * at the beginning from the second digit on and can be 3175 * determined using similar method as 26 base conversion with the 3176 * index shifted -1 after each digit is computed. 3177 * 3178 * CONTEXT: 3179 * Don't care. 3180 * 3181 * RETURNS: 3182 * 0 on success, -errno on failure. 3183 */ 3184 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3185 { 3186 const int base = 'z' - 'a' + 1; 3187 char *begin = buf + strlen(prefix); 3188 char *end = buf + buflen; 3189 char *p; 3190 int unit; 3191 3192 p = end - 1; 3193 *p = '\0'; 3194 unit = base; 3195 do { 3196 if (p == begin) 3197 return -EINVAL; 3198 *--p = 'a' + (index % unit); 3199 index = (index / unit) - 1; 3200 } while (index >= 0); 3201 3202 memmove(begin, p, end - p); 3203 memcpy(buf, prefix, strlen(prefix)); 3204 3205 return 0; 3206 } 3207 3208 /* 3209 * The asynchronous part of sd_probe 3210 */ 3211 static void sd_probe_async(void *data, async_cookie_t cookie) 3212 { 3213 struct scsi_disk *sdkp = data; 3214 struct scsi_device *sdp; 3215 struct gendisk *gd; 3216 u32 index; 3217 struct device *dev; 3218 3219 sdp = sdkp->device; 3220 gd = sdkp->disk; 3221 index = sdkp->index; 3222 dev = &sdp->sdev_gendev; 3223 3224 gd->major = sd_major((index & 0xf0) >> 4); 3225 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3226 gd->minors = SD_MINORS; 3227 3228 gd->fops = &sd_fops; 3229 gd->private_data = &sdkp->driver; 3230 gd->queue = sdkp->device->request_queue; 3231 3232 /* defaults, until the device tells us otherwise */ 3233 sdp->sector_size = 512; 3234 sdkp->capacity = 0; 3235 sdkp->media_present = 1; 3236 sdkp->write_prot = 0; 3237 sdkp->cache_override = 0; 3238 sdkp->WCE = 0; 3239 sdkp->RCD = 0; 3240 sdkp->ATO = 0; 3241 sdkp->first_scan = 1; 3242 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3243 3244 sd_revalidate_disk(gd); 3245 3246 gd->flags = GENHD_FL_EXT_DEVT; 3247 if (sdp->removable) { 3248 gd->flags |= GENHD_FL_REMOVABLE; 3249 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3250 } 3251 3252 blk_pm_runtime_init(sdp->request_queue, dev); 3253 device_add_disk(dev, gd); 3254 if (sdkp->capacity) 3255 sd_dif_config_host(sdkp); 3256 3257 sd_revalidate_disk(gd); 3258 3259 if (sdkp->security) { 3260 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit); 3261 if (sdkp->opal_dev) 3262 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3263 } 3264 3265 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3266 sdp->removable ? "removable " : ""); 3267 scsi_autopm_put_device(sdp); 3268 put_device(&sdkp->dev); 3269 } 3270 3271 /** 3272 * sd_probe - called during driver initialization and whenever a 3273 * new scsi device is attached to the system. It is called once 3274 * for each scsi device (not just disks) present. 3275 * @dev: pointer to device object 3276 * 3277 * Returns 0 if successful (or not interested in this scsi device 3278 * (e.g. scanner)); 1 when there is an error. 3279 * 3280 * Note: this function is invoked from the scsi mid-level. 3281 * This function sets up the mapping between a given 3282 * <host,channel,id,lun> (found in sdp) and new device name 3283 * (e.g. /dev/sda). More precisely it is the block device major 3284 * and minor number that is chosen here. 3285 * 3286 * Assume sd_probe is not re-entrant (for time being) 3287 * Also think about sd_probe() and sd_remove() running coincidentally. 3288 **/ 3289 static int sd_probe(struct device *dev) 3290 { 3291 struct scsi_device *sdp = to_scsi_device(dev); 3292 struct scsi_disk *sdkp; 3293 struct gendisk *gd; 3294 int index; 3295 int error; 3296 3297 scsi_autopm_get_device(sdp); 3298 error = -ENODEV; 3299 if (sdp->type != TYPE_DISK && 3300 sdp->type != TYPE_ZBC && 3301 sdp->type != TYPE_MOD && 3302 sdp->type != TYPE_RBC) 3303 goto out; 3304 3305 #ifndef CONFIG_BLK_DEV_ZONED 3306 if (sdp->type == TYPE_ZBC) 3307 goto out; 3308 #endif 3309 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3310 "sd_probe\n")); 3311 3312 error = -ENOMEM; 3313 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3314 if (!sdkp) 3315 goto out; 3316 3317 gd = alloc_disk(SD_MINORS); 3318 if (!gd) 3319 goto out_free; 3320 3321 do { 3322 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL)) 3323 goto out_put; 3324 3325 spin_lock(&sd_index_lock); 3326 error = ida_get_new(&sd_index_ida, &index); 3327 spin_unlock(&sd_index_lock); 3328 } while (error == -EAGAIN); 3329 3330 if (error) { 3331 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3332 goto out_put; 3333 } 3334 3335 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3336 if (error) { 3337 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3338 goto out_free_index; 3339 } 3340 3341 sdkp->device = sdp; 3342 sdkp->driver = &sd_template; 3343 sdkp->disk = gd; 3344 sdkp->index = index; 3345 atomic_set(&sdkp->openers, 0); 3346 atomic_set(&sdkp->device->ioerr_cnt, 0); 3347 3348 if (!sdp->request_queue->rq_timeout) { 3349 if (sdp->type != TYPE_MOD) 3350 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3351 else 3352 blk_queue_rq_timeout(sdp->request_queue, 3353 SD_MOD_TIMEOUT); 3354 } 3355 3356 device_initialize(&sdkp->dev); 3357 sdkp->dev.parent = dev; 3358 sdkp->dev.class = &sd_disk_class; 3359 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3360 3361 error = device_add(&sdkp->dev); 3362 if (error) 3363 goto out_free_index; 3364 3365 get_device(dev); 3366 dev_set_drvdata(dev, sdkp); 3367 3368 get_device(&sdkp->dev); /* prevent release before async_schedule */ 3369 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); 3370 3371 return 0; 3372 3373 out_free_index: 3374 spin_lock(&sd_index_lock); 3375 ida_remove(&sd_index_ida, index); 3376 spin_unlock(&sd_index_lock); 3377 out_put: 3378 put_disk(gd); 3379 out_free: 3380 kfree(sdkp); 3381 out: 3382 scsi_autopm_put_device(sdp); 3383 return error; 3384 } 3385 3386 /** 3387 * sd_remove - called whenever a scsi disk (previously recognized by 3388 * sd_probe) is detached from the system. It is called (potentially 3389 * multiple times) during sd module unload. 3390 * @dev: pointer to device object 3391 * 3392 * Note: this function is invoked from the scsi mid-level. 3393 * This function potentially frees up a device name (e.g. /dev/sdc) 3394 * that could be re-used by a subsequent sd_probe(). 3395 * This function is not called when the built-in sd driver is "exit-ed". 3396 **/ 3397 static int sd_remove(struct device *dev) 3398 { 3399 struct scsi_disk *sdkp; 3400 dev_t devt; 3401 3402 sdkp = dev_get_drvdata(dev); 3403 devt = disk_devt(sdkp->disk); 3404 scsi_autopm_get_device(sdkp->device); 3405 3406 async_synchronize_full_domain(&scsi_sd_pm_domain); 3407 async_synchronize_full_domain(&scsi_sd_probe_domain); 3408 device_del(&sdkp->dev); 3409 del_gendisk(sdkp->disk); 3410 sd_shutdown(dev); 3411 3412 sd_zbc_remove(sdkp); 3413 3414 free_opal_dev(sdkp->opal_dev); 3415 3416 blk_register_region(devt, SD_MINORS, NULL, 3417 sd_default_probe, NULL, NULL); 3418 3419 mutex_lock(&sd_ref_mutex); 3420 dev_set_drvdata(dev, NULL); 3421 put_device(&sdkp->dev); 3422 mutex_unlock(&sd_ref_mutex); 3423 3424 return 0; 3425 } 3426 3427 /** 3428 * scsi_disk_release - Called to free the scsi_disk structure 3429 * @dev: pointer to embedded class device 3430 * 3431 * sd_ref_mutex must be held entering this routine. Because it is 3432 * called on last put, you should always use the scsi_disk_get() 3433 * scsi_disk_put() helpers which manipulate the semaphore directly 3434 * and never do a direct put_device. 3435 **/ 3436 static void scsi_disk_release(struct device *dev) 3437 { 3438 struct scsi_disk *sdkp = to_scsi_disk(dev); 3439 struct gendisk *disk = sdkp->disk; 3440 3441 spin_lock(&sd_index_lock); 3442 ida_remove(&sd_index_ida, sdkp->index); 3443 spin_unlock(&sd_index_lock); 3444 3445 disk->private_data = NULL; 3446 put_disk(disk); 3447 put_device(&sdkp->device->sdev_gendev); 3448 3449 kfree(sdkp); 3450 } 3451 3452 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3453 { 3454 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3455 struct scsi_sense_hdr sshdr; 3456 struct scsi_device *sdp = sdkp->device; 3457 int res; 3458 3459 if (start) 3460 cmd[4] |= 1; /* START */ 3461 3462 if (sdp->start_stop_pwr_cond) 3463 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3464 3465 if (!scsi_device_online(sdp)) 3466 return -ENODEV; 3467 3468 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3469 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL); 3470 if (res) { 3471 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3472 if (driver_byte(res) & DRIVER_SENSE) 3473 sd_print_sense_hdr(sdkp, &sshdr); 3474 if (scsi_sense_valid(&sshdr) && 3475 /* 0x3a is medium not present */ 3476 sshdr.asc == 0x3a) 3477 res = 0; 3478 } 3479 3480 /* SCSI error codes must not go to the generic layer */ 3481 if (res) 3482 return -EIO; 3483 3484 return 0; 3485 } 3486 3487 /* 3488 * Send a SYNCHRONIZE CACHE instruction down to the device through 3489 * the normal SCSI command structure. Wait for the command to 3490 * complete. 3491 */ 3492 static void sd_shutdown(struct device *dev) 3493 { 3494 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3495 3496 if (!sdkp) 3497 return; /* this can happen */ 3498 3499 if (pm_runtime_suspended(dev)) 3500 return; 3501 3502 if (sdkp->WCE && sdkp->media_present) { 3503 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3504 sd_sync_cache(sdkp, NULL); 3505 } 3506 3507 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3508 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3509 sd_start_stop_device(sdkp, 0); 3510 } 3511 } 3512 3513 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3514 { 3515 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3516 struct scsi_sense_hdr sshdr; 3517 int ret = 0; 3518 3519 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3520 return 0; 3521 3522 if (sdkp->WCE && sdkp->media_present) { 3523 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3524 ret = sd_sync_cache(sdkp, &sshdr); 3525 3526 if (ret) { 3527 /* ignore OFFLINE device */ 3528 if (ret == -ENODEV) 3529 return 0; 3530 3531 if (!scsi_sense_valid(&sshdr) || 3532 sshdr.sense_key != ILLEGAL_REQUEST) 3533 return ret; 3534 3535 /* 3536 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3537 * doesn't support sync. There's not much to do and 3538 * suspend shouldn't fail. 3539 */ 3540 ret = 0; 3541 } 3542 } 3543 3544 if (sdkp->device->manage_start_stop) { 3545 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3546 /* an error is not worth aborting a system sleep */ 3547 ret = sd_start_stop_device(sdkp, 0); 3548 if (ignore_stop_errors) 3549 ret = 0; 3550 } 3551 3552 return ret; 3553 } 3554 3555 static int sd_suspend_system(struct device *dev) 3556 { 3557 return sd_suspend_common(dev, true); 3558 } 3559 3560 static int sd_suspend_runtime(struct device *dev) 3561 { 3562 return sd_suspend_common(dev, false); 3563 } 3564 3565 static int sd_resume(struct device *dev) 3566 { 3567 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3568 int ret; 3569 3570 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3571 return 0; 3572 3573 if (!sdkp->device->manage_start_stop) 3574 return 0; 3575 3576 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3577 ret = sd_start_stop_device(sdkp, 1); 3578 if (!ret) 3579 opal_unlock_from_suspend(sdkp->opal_dev); 3580 return ret; 3581 } 3582 3583 /** 3584 * init_sd - entry point for this driver (both when built in or when 3585 * a module). 3586 * 3587 * Note: this function registers this driver with the scsi mid-level. 3588 **/ 3589 static int __init init_sd(void) 3590 { 3591 int majors = 0, i, err; 3592 3593 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3594 3595 for (i = 0; i < SD_MAJORS; i++) { 3596 if (register_blkdev(sd_major(i), "sd") != 0) 3597 continue; 3598 majors++; 3599 blk_register_region(sd_major(i), SD_MINORS, NULL, 3600 sd_default_probe, NULL, NULL); 3601 } 3602 3603 if (!majors) 3604 return -ENODEV; 3605 3606 err = class_register(&sd_disk_class); 3607 if (err) 3608 goto err_out; 3609 3610 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3611 0, 0, NULL); 3612 if (!sd_cdb_cache) { 3613 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3614 err = -ENOMEM; 3615 goto err_out_class; 3616 } 3617 3618 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3619 if (!sd_cdb_pool) { 3620 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3621 err = -ENOMEM; 3622 goto err_out_cache; 3623 } 3624 3625 err = scsi_register_driver(&sd_template.gendrv); 3626 if (err) 3627 goto err_out_driver; 3628 3629 return 0; 3630 3631 err_out_driver: 3632 mempool_destroy(sd_cdb_pool); 3633 3634 err_out_cache: 3635 kmem_cache_destroy(sd_cdb_cache); 3636 3637 err_out_class: 3638 class_unregister(&sd_disk_class); 3639 err_out: 3640 for (i = 0; i < SD_MAJORS; i++) 3641 unregister_blkdev(sd_major(i), "sd"); 3642 return err; 3643 } 3644 3645 /** 3646 * exit_sd - exit point for this driver (when it is a module). 3647 * 3648 * Note: this function unregisters this driver from the scsi mid-level. 3649 **/ 3650 static void __exit exit_sd(void) 3651 { 3652 int i; 3653 3654 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3655 3656 scsi_unregister_driver(&sd_template.gendrv); 3657 mempool_destroy(sd_cdb_pool); 3658 kmem_cache_destroy(sd_cdb_cache); 3659 3660 class_unregister(&sd_disk_class); 3661 3662 for (i = 0; i < SD_MAJORS; i++) { 3663 blk_unregister_region(sd_major(i), SD_MINORS); 3664 unregister_blkdev(sd_major(i), "sd"); 3665 } 3666 } 3667 3668 module_init(init_sd); 3669 module_exit(exit_sd); 3670 3671 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3672 struct scsi_sense_hdr *sshdr) 3673 { 3674 scsi_print_sense_hdr(sdkp->device, 3675 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3676 } 3677 3678 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3679 int result) 3680 { 3681 const char *hb_string = scsi_hostbyte_string(result); 3682 const char *db_string = scsi_driverbyte_string(result); 3683 3684 if (hb_string || db_string) 3685 sd_printk(KERN_INFO, sdkp, 3686 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3687 hb_string ? hb_string : "invalid", 3688 db_string ? db_string : "invalid"); 3689 else 3690 sd_printk(KERN_INFO, sdkp, 3691 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3692 msg, host_byte(result), driver_byte(result)); 3693 } 3694 3695