xref: /openbmc/linux/drivers/scsi/sd.c (revision 4da722ca)
1 /*
2  *      sd.c Copyright (C) 1992 Drew Eckhardt
3  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4  *
5  *      Linux scsi disk driver
6  *              Initial versions: Drew Eckhardt
7  *              Subsequent revisions: Eric Youngdale
8  *	Modification history:
9  *       - Drew Eckhardt <drew@colorado.edu> original
10  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11  *         outstanding request, and other enhancements.
12  *         Support loadable low-level scsi drivers.
13  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14  *         eight major numbers.
15  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17  *	   sd_init and cleanups.
18  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
19  *	   not being read in sd_open. Fix problem where removable media
20  *	   could be ejected after sd_open.
21  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24  *	   Support 32k/1M disks.
25  *
26  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
27  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
31  *	Note: when the logging level is set by the user, it must be greater
32  *	than the level indicated above to trigger output.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/sed-opal.h>
54 #include <linux/pm_runtime.h>
55 #include <linux/pr.h>
56 #include <linux/t10-pi.h>
57 #include <linux/uaccess.h>
58 #include <asm/unaligned.h>
59 
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_dbg.h>
63 #include <scsi/scsi_device.h>
64 #include <scsi/scsi_driver.h>
65 #include <scsi/scsi_eh.h>
66 #include <scsi/scsi_host.h>
67 #include <scsi/scsi_ioctl.h>
68 #include <scsi/scsicam.h>
69 
70 #include "sd.h"
71 #include "scsi_priv.h"
72 #include "scsi_logging.h"
73 
74 MODULE_AUTHOR("Eric Youngdale");
75 MODULE_DESCRIPTION("SCSI disk (sd) driver");
76 MODULE_LICENSE("GPL");
77 
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
98 
99 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
100 #define SD_MINORS	16
101 #else
102 #define SD_MINORS	0
103 #endif
104 
105 static void sd_config_discard(struct scsi_disk *, unsigned int);
106 static void sd_config_write_same(struct scsi_disk *);
107 static int  sd_revalidate_disk(struct gendisk *);
108 static void sd_unlock_native_capacity(struct gendisk *disk);
109 static int  sd_probe(struct device *);
110 static int  sd_remove(struct device *);
111 static void sd_shutdown(struct device *);
112 static int sd_suspend_system(struct device *);
113 static int sd_suspend_runtime(struct device *);
114 static int sd_resume(struct device *);
115 static void sd_rescan(struct device *);
116 static int sd_init_command(struct scsi_cmnd *SCpnt);
117 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
118 static int sd_done(struct scsi_cmnd *);
119 static void sd_eh_reset(struct scsi_cmnd *);
120 static int sd_eh_action(struct scsi_cmnd *, int);
121 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
122 static void scsi_disk_release(struct device *cdev);
123 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
124 static void sd_print_result(const struct scsi_disk *, const char *, int);
125 
126 static DEFINE_SPINLOCK(sd_index_lock);
127 static DEFINE_IDA(sd_index_ida);
128 
129 /* This semaphore is used to mediate the 0->1 reference get in the
130  * face of object destruction (i.e. we can't allow a get on an
131  * object after last put) */
132 static DEFINE_MUTEX(sd_ref_mutex);
133 
134 static struct kmem_cache *sd_cdb_cache;
135 static mempool_t *sd_cdb_pool;
136 
137 static const char *sd_cache_types[] = {
138 	"write through", "none", "write back",
139 	"write back, no read (daft)"
140 };
141 
142 static void sd_set_flush_flag(struct scsi_disk *sdkp)
143 {
144 	bool wc = false, fua = false;
145 
146 	if (sdkp->WCE) {
147 		wc = true;
148 		if (sdkp->DPOFUA)
149 			fua = true;
150 	}
151 
152 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
153 }
154 
155 static ssize_t
156 cache_type_store(struct device *dev, struct device_attribute *attr,
157 		 const char *buf, size_t count)
158 {
159 	int ct, rcd, wce, sp;
160 	struct scsi_disk *sdkp = to_scsi_disk(dev);
161 	struct scsi_device *sdp = sdkp->device;
162 	char buffer[64];
163 	char *buffer_data;
164 	struct scsi_mode_data data;
165 	struct scsi_sense_hdr sshdr;
166 	static const char temp[] = "temporary ";
167 	int len;
168 
169 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
170 		/* no cache control on RBC devices; theoretically they
171 		 * can do it, but there's probably so many exceptions
172 		 * it's not worth the risk */
173 		return -EINVAL;
174 
175 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
176 		buf += sizeof(temp) - 1;
177 		sdkp->cache_override = 1;
178 	} else {
179 		sdkp->cache_override = 0;
180 	}
181 
182 	ct = sysfs_match_string(sd_cache_types, buf);
183 	if (ct < 0)
184 		return -EINVAL;
185 
186 	rcd = ct & 0x01 ? 1 : 0;
187 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
188 
189 	if (sdkp->cache_override) {
190 		sdkp->WCE = wce;
191 		sdkp->RCD = rcd;
192 		sd_set_flush_flag(sdkp);
193 		return count;
194 	}
195 
196 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
197 			    SD_MAX_RETRIES, &data, NULL))
198 		return -EINVAL;
199 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
200 		  data.block_descriptor_length);
201 	buffer_data = buffer + data.header_length +
202 		data.block_descriptor_length;
203 	buffer_data[2] &= ~0x05;
204 	buffer_data[2] |= wce << 2 | rcd;
205 	sp = buffer_data[0] & 0x80 ? 1 : 0;
206 	buffer_data[0] &= ~0x80;
207 
208 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
209 			     SD_MAX_RETRIES, &data, &sshdr)) {
210 		if (scsi_sense_valid(&sshdr))
211 			sd_print_sense_hdr(sdkp, &sshdr);
212 		return -EINVAL;
213 	}
214 	revalidate_disk(sdkp->disk);
215 	return count;
216 }
217 
218 static ssize_t
219 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
220 		       char *buf)
221 {
222 	struct scsi_disk *sdkp = to_scsi_disk(dev);
223 	struct scsi_device *sdp = sdkp->device;
224 
225 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
226 }
227 
228 static ssize_t
229 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
230 			const char *buf, size_t count)
231 {
232 	struct scsi_disk *sdkp = to_scsi_disk(dev);
233 	struct scsi_device *sdp = sdkp->device;
234 
235 	if (!capable(CAP_SYS_ADMIN))
236 		return -EACCES;
237 
238 	sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
239 
240 	return count;
241 }
242 static DEVICE_ATTR_RW(manage_start_stop);
243 
244 static ssize_t
245 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
246 {
247 	struct scsi_disk *sdkp = to_scsi_disk(dev);
248 
249 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
250 }
251 
252 static ssize_t
253 allow_restart_store(struct device *dev, struct device_attribute *attr,
254 		    const char *buf, size_t count)
255 {
256 	struct scsi_disk *sdkp = to_scsi_disk(dev);
257 	struct scsi_device *sdp = sdkp->device;
258 
259 	if (!capable(CAP_SYS_ADMIN))
260 		return -EACCES;
261 
262 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
263 		return -EINVAL;
264 
265 	sdp->allow_restart = simple_strtoul(buf, NULL, 10);
266 
267 	return count;
268 }
269 static DEVICE_ATTR_RW(allow_restart);
270 
271 static ssize_t
272 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
273 {
274 	struct scsi_disk *sdkp = to_scsi_disk(dev);
275 	int ct = sdkp->RCD + 2*sdkp->WCE;
276 
277 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
278 }
279 static DEVICE_ATTR_RW(cache_type);
280 
281 static ssize_t
282 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
283 {
284 	struct scsi_disk *sdkp = to_scsi_disk(dev);
285 
286 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
287 }
288 static DEVICE_ATTR_RO(FUA);
289 
290 static ssize_t
291 protection_type_show(struct device *dev, struct device_attribute *attr,
292 		     char *buf)
293 {
294 	struct scsi_disk *sdkp = to_scsi_disk(dev);
295 
296 	return sprintf(buf, "%u\n", sdkp->protection_type);
297 }
298 
299 static ssize_t
300 protection_type_store(struct device *dev, struct device_attribute *attr,
301 		      const char *buf, size_t count)
302 {
303 	struct scsi_disk *sdkp = to_scsi_disk(dev);
304 	unsigned int val;
305 	int err;
306 
307 	if (!capable(CAP_SYS_ADMIN))
308 		return -EACCES;
309 
310 	err = kstrtouint(buf, 10, &val);
311 
312 	if (err)
313 		return err;
314 
315 	if (val >= 0 && val <= T10_PI_TYPE3_PROTECTION)
316 		sdkp->protection_type = val;
317 
318 	return count;
319 }
320 static DEVICE_ATTR_RW(protection_type);
321 
322 static ssize_t
323 protection_mode_show(struct device *dev, struct device_attribute *attr,
324 		     char *buf)
325 {
326 	struct scsi_disk *sdkp = to_scsi_disk(dev);
327 	struct scsi_device *sdp = sdkp->device;
328 	unsigned int dif, dix;
329 
330 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
331 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
332 
333 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
334 		dif = 0;
335 		dix = 1;
336 	}
337 
338 	if (!dif && !dix)
339 		return sprintf(buf, "none\n");
340 
341 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
342 }
343 static DEVICE_ATTR_RO(protection_mode);
344 
345 static ssize_t
346 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
347 {
348 	struct scsi_disk *sdkp = to_scsi_disk(dev);
349 
350 	return sprintf(buf, "%u\n", sdkp->ATO);
351 }
352 static DEVICE_ATTR_RO(app_tag_own);
353 
354 static ssize_t
355 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
356 		       char *buf)
357 {
358 	struct scsi_disk *sdkp = to_scsi_disk(dev);
359 
360 	return sprintf(buf, "%u\n", sdkp->lbpme);
361 }
362 static DEVICE_ATTR_RO(thin_provisioning);
363 
364 /* sysfs_match_string() requires dense arrays */
365 static const char *lbp_mode[] = {
366 	[SD_LBP_FULL]		= "full",
367 	[SD_LBP_UNMAP]		= "unmap",
368 	[SD_LBP_WS16]		= "writesame_16",
369 	[SD_LBP_WS10]		= "writesame_10",
370 	[SD_LBP_ZERO]		= "writesame_zero",
371 	[SD_LBP_DISABLE]	= "disabled",
372 };
373 
374 static ssize_t
375 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
376 		       char *buf)
377 {
378 	struct scsi_disk *sdkp = to_scsi_disk(dev);
379 
380 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
381 }
382 
383 static ssize_t
384 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
385 			const char *buf, size_t count)
386 {
387 	struct scsi_disk *sdkp = to_scsi_disk(dev);
388 	struct scsi_device *sdp = sdkp->device;
389 	int mode;
390 
391 	if (!capable(CAP_SYS_ADMIN))
392 		return -EACCES;
393 
394 	if (sd_is_zoned(sdkp)) {
395 		sd_config_discard(sdkp, SD_LBP_DISABLE);
396 		return count;
397 	}
398 
399 	if (sdp->type != TYPE_DISK)
400 		return -EINVAL;
401 
402 	mode = sysfs_match_string(lbp_mode, buf);
403 	if (mode < 0)
404 		return -EINVAL;
405 
406 	sd_config_discard(sdkp, mode);
407 
408 	return count;
409 }
410 static DEVICE_ATTR_RW(provisioning_mode);
411 
412 /* sysfs_match_string() requires dense arrays */
413 static const char *zeroing_mode[] = {
414 	[SD_ZERO_WRITE]		= "write",
415 	[SD_ZERO_WS]		= "writesame",
416 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
417 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
418 };
419 
420 static ssize_t
421 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
422 		  char *buf)
423 {
424 	struct scsi_disk *sdkp = to_scsi_disk(dev);
425 
426 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
427 }
428 
429 static ssize_t
430 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
431 		   const char *buf, size_t count)
432 {
433 	struct scsi_disk *sdkp = to_scsi_disk(dev);
434 	int mode;
435 
436 	if (!capable(CAP_SYS_ADMIN))
437 		return -EACCES;
438 
439 	mode = sysfs_match_string(zeroing_mode, buf);
440 	if (mode < 0)
441 		return -EINVAL;
442 
443 	sdkp->zeroing_mode = mode;
444 
445 	return count;
446 }
447 static DEVICE_ATTR_RW(zeroing_mode);
448 
449 static ssize_t
450 max_medium_access_timeouts_show(struct device *dev,
451 				struct device_attribute *attr, char *buf)
452 {
453 	struct scsi_disk *sdkp = to_scsi_disk(dev);
454 
455 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
456 }
457 
458 static ssize_t
459 max_medium_access_timeouts_store(struct device *dev,
460 				 struct device_attribute *attr, const char *buf,
461 				 size_t count)
462 {
463 	struct scsi_disk *sdkp = to_scsi_disk(dev);
464 	int err;
465 
466 	if (!capable(CAP_SYS_ADMIN))
467 		return -EACCES;
468 
469 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
470 
471 	return err ? err : count;
472 }
473 static DEVICE_ATTR_RW(max_medium_access_timeouts);
474 
475 static ssize_t
476 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
477 			   char *buf)
478 {
479 	struct scsi_disk *sdkp = to_scsi_disk(dev);
480 
481 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
482 }
483 
484 static ssize_t
485 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
486 			    const char *buf, size_t count)
487 {
488 	struct scsi_disk *sdkp = to_scsi_disk(dev);
489 	struct scsi_device *sdp = sdkp->device;
490 	unsigned long max;
491 	int err;
492 
493 	if (!capable(CAP_SYS_ADMIN))
494 		return -EACCES;
495 
496 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
497 		return -EINVAL;
498 
499 	err = kstrtoul(buf, 10, &max);
500 
501 	if (err)
502 		return err;
503 
504 	if (max == 0)
505 		sdp->no_write_same = 1;
506 	else if (max <= SD_MAX_WS16_BLOCKS) {
507 		sdp->no_write_same = 0;
508 		sdkp->max_ws_blocks = max;
509 	}
510 
511 	sd_config_write_same(sdkp);
512 
513 	return count;
514 }
515 static DEVICE_ATTR_RW(max_write_same_blocks);
516 
517 static struct attribute *sd_disk_attrs[] = {
518 	&dev_attr_cache_type.attr,
519 	&dev_attr_FUA.attr,
520 	&dev_attr_allow_restart.attr,
521 	&dev_attr_manage_start_stop.attr,
522 	&dev_attr_protection_type.attr,
523 	&dev_attr_protection_mode.attr,
524 	&dev_attr_app_tag_own.attr,
525 	&dev_attr_thin_provisioning.attr,
526 	&dev_attr_provisioning_mode.attr,
527 	&dev_attr_zeroing_mode.attr,
528 	&dev_attr_max_write_same_blocks.attr,
529 	&dev_attr_max_medium_access_timeouts.attr,
530 	NULL,
531 };
532 ATTRIBUTE_GROUPS(sd_disk);
533 
534 static struct class sd_disk_class = {
535 	.name		= "scsi_disk",
536 	.owner		= THIS_MODULE,
537 	.dev_release	= scsi_disk_release,
538 	.dev_groups	= sd_disk_groups,
539 };
540 
541 static const struct dev_pm_ops sd_pm_ops = {
542 	.suspend		= sd_suspend_system,
543 	.resume			= sd_resume,
544 	.poweroff		= sd_suspend_system,
545 	.restore		= sd_resume,
546 	.runtime_suspend	= sd_suspend_runtime,
547 	.runtime_resume		= sd_resume,
548 };
549 
550 static struct scsi_driver sd_template = {
551 	.gendrv = {
552 		.name		= "sd",
553 		.owner		= THIS_MODULE,
554 		.probe		= sd_probe,
555 		.remove		= sd_remove,
556 		.shutdown	= sd_shutdown,
557 		.pm		= &sd_pm_ops,
558 	},
559 	.rescan			= sd_rescan,
560 	.init_command		= sd_init_command,
561 	.uninit_command		= sd_uninit_command,
562 	.done			= sd_done,
563 	.eh_action		= sd_eh_action,
564 	.eh_reset		= sd_eh_reset,
565 };
566 
567 /*
568  * Dummy kobj_map->probe function.
569  * The default ->probe function will call modprobe, which is
570  * pointless as this module is already loaded.
571  */
572 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
573 {
574 	return NULL;
575 }
576 
577 /*
578  * Device no to disk mapping:
579  *
580  *       major         disc2     disc  p1
581  *   |............|.............|....|....| <- dev_t
582  *    31        20 19          8 7  4 3  0
583  *
584  * Inside a major, we have 16k disks, however mapped non-
585  * contiguously. The first 16 disks are for major0, the next
586  * ones with major1, ... Disk 256 is for major0 again, disk 272
587  * for major1, ...
588  * As we stay compatible with our numbering scheme, we can reuse
589  * the well-know SCSI majors 8, 65--71, 136--143.
590  */
591 static int sd_major(int major_idx)
592 {
593 	switch (major_idx) {
594 	case 0:
595 		return SCSI_DISK0_MAJOR;
596 	case 1 ... 7:
597 		return SCSI_DISK1_MAJOR + major_idx - 1;
598 	case 8 ... 15:
599 		return SCSI_DISK8_MAJOR + major_idx - 8;
600 	default:
601 		BUG();
602 		return 0;	/* shut up gcc */
603 	}
604 }
605 
606 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
607 {
608 	struct scsi_disk *sdkp = NULL;
609 
610 	mutex_lock(&sd_ref_mutex);
611 
612 	if (disk->private_data) {
613 		sdkp = scsi_disk(disk);
614 		if (scsi_device_get(sdkp->device) == 0)
615 			get_device(&sdkp->dev);
616 		else
617 			sdkp = NULL;
618 	}
619 	mutex_unlock(&sd_ref_mutex);
620 	return sdkp;
621 }
622 
623 static void scsi_disk_put(struct scsi_disk *sdkp)
624 {
625 	struct scsi_device *sdev = sdkp->device;
626 
627 	mutex_lock(&sd_ref_mutex);
628 	put_device(&sdkp->dev);
629 	scsi_device_put(sdev);
630 	mutex_unlock(&sd_ref_mutex);
631 }
632 
633 #ifdef CONFIG_BLK_SED_OPAL
634 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
635 		size_t len, bool send)
636 {
637 	struct scsi_device *sdev = data;
638 	u8 cdb[12] = { 0, };
639 	int ret;
640 
641 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
642 	cdb[1] = secp;
643 	put_unaligned_be16(spsp, &cdb[2]);
644 	put_unaligned_be32(len, &cdb[6]);
645 
646 	ret = scsi_execute_req(sdev, cdb,
647 			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
648 			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
649 	return ret <= 0 ? ret : -EIO;
650 }
651 #endif /* CONFIG_BLK_SED_OPAL */
652 
653 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
654 					   unsigned int dix, unsigned int dif)
655 {
656 	struct bio *bio = scmd->request->bio;
657 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
658 	unsigned int protect = 0;
659 
660 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
661 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
662 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
663 
664 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
665 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
666 	}
667 
668 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
669 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
670 
671 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
672 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
673 	}
674 
675 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
676 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
677 
678 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
679 			protect = 3 << 5;	/* Disable target PI checking */
680 		else
681 			protect = 1 << 5;	/* Enable target PI checking */
682 	}
683 
684 	scsi_set_prot_op(scmd, prot_op);
685 	scsi_set_prot_type(scmd, dif);
686 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
687 
688 	return protect;
689 }
690 
691 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
692 {
693 	struct request_queue *q = sdkp->disk->queue;
694 	unsigned int logical_block_size = sdkp->device->sector_size;
695 	unsigned int max_blocks = 0;
696 
697 	q->limits.discard_alignment =
698 		sdkp->unmap_alignment * logical_block_size;
699 	q->limits.discard_granularity =
700 		max(sdkp->physical_block_size,
701 		    sdkp->unmap_granularity * logical_block_size);
702 	sdkp->provisioning_mode = mode;
703 
704 	switch (mode) {
705 
706 	case SD_LBP_FULL:
707 	case SD_LBP_DISABLE:
708 		blk_queue_max_discard_sectors(q, 0);
709 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
710 		return;
711 
712 	case SD_LBP_UNMAP:
713 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
714 					  (u32)SD_MAX_WS16_BLOCKS);
715 		break;
716 
717 	case SD_LBP_WS16:
718 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
719 					  (u32)SD_MAX_WS16_BLOCKS);
720 		break;
721 
722 	case SD_LBP_WS10:
723 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
724 					  (u32)SD_MAX_WS10_BLOCKS);
725 		break;
726 
727 	case SD_LBP_ZERO:
728 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
729 					  (u32)SD_MAX_WS10_BLOCKS);
730 		break;
731 	}
732 
733 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
734 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
735 }
736 
737 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
738 {
739 	struct scsi_device *sdp = cmd->device;
740 	struct request *rq = cmd->request;
741 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
742 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
743 	unsigned int data_len = 24;
744 	char *buf;
745 
746 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
747 	if (!rq->special_vec.bv_page)
748 		return BLKPREP_DEFER;
749 	rq->special_vec.bv_offset = 0;
750 	rq->special_vec.bv_len = data_len;
751 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
752 
753 	cmd->cmd_len = 10;
754 	cmd->cmnd[0] = UNMAP;
755 	cmd->cmnd[8] = 24;
756 
757 	buf = page_address(rq->special_vec.bv_page);
758 	put_unaligned_be16(6 + 16, &buf[0]);
759 	put_unaligned_be16(16, &buf[2]);
760 	put_unaligned_be64(sector, &buf[8]);
761 	put_unaligned_be32(nr_sectors, &buf[16]);
762 
763 	cmd->allowed = SD_MAX_RETRIES;
764 	cmd->transfersize = data_len;
765 	rq->timeout = SD_TIMEOUT;
766 	scsi_req(rq)->resid_len = data_len;
767 
768 	return scsi_init_io(cmd);
769 }
770 
771 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap)
772 {
773 	struct scsi_device *sdp = cmd->device;
774 	struct request *rq = cmd->request;
775 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
776 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
777 	u32 data_len = sdp->sector_size;
778 
779 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
780 	if (!rq->special_vec.bv_page)
781 		return BLKPREP_DEFER;
782 	rq->special_vec.bv_offset = 0;
783 	rq->special_vec.bv_len = data_len;
784 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
785 
786 	cmd->cmd_len = 16;
787 	cmd->cmnd[0] = WRITE_SAME_16;
788 	if (unmap)
789 		cmd->cmnd[1] = 0x8; /* UNMAP */
790 	put_unaligned_be64(sector, &cmd->cmnd[2]);
791 	put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
792 
793 	cmd->allowed = SD_MAX_RETRIES;
794 	cmd->transfersize = data_len;
795 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
796 	scsi_req(rq)->resid_len = data_len;
797 
798 	return scsi_init_io(cmd);
799 }
800 
801 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap)
802 {
803 	struct scsi_device *sdp = cmd->device;
804 	struct request *rq = cmd->request;
805 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
806 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
807 	u32 data_len = sdp->sector_size;
808 
809 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
810 	if (!rq->special_vec.bv_page)
811 		return BLKPREP_DEFER;
812 	rq->special_vec.bv_offset = 0;
813 	rq->special_vec.bv_len = data_len;
814 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
815 
816 	cmd->cmd_len = 10;
817 	cmd->cmnd[0] = WRITE_SAME;
818 	if (unmap)
819 		cmd->cmnd[1] = 0x8; /* UNMAP */
820 	put_unaligned_be32(sector, &cmd->cmnd[2]);
821 	put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
822 
823 	cmd->allowed = SD_MAX_RETRIES;
824 	cmd->transfersize = data_len;
825 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
826 	scsi_req(rq)->resid_len = data_len;
827 
828 	return scsi_init_io(cmd);
829 }
830 
831 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
832 {
833 	struct request *rq = cmd->request;
834 	struct scsi_device *sdp = cmd->device;
835 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
836 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
837 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
838 	int ret;
839 
840 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
841 		switch (sdkp->zeroing_mode) {
842 		case SD_ZERO_WS16_UNMAP:
843 			ret = sd_setup_write_same16_cmnd(cmd, true);
844 			goto out;
845 		case SD_ZERO_WS10_UNMAP:
846 			ret = sd_setup_write_same10_cmnd(cmd, true);
847 			goto out;
848 		}
849 	}
850 
851 	if (sdp->no_write_same)
852 		return BLKPREP_INVALID;
853 
854 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
855 		ret = sd_setup_write_same16_cmnd(cmd, false);
856 	else
857 		ret = sd_setup_write_same10_cmnd(cmd, false);
858 
859 out:
860 	if (sd_is_zoned(sdkp) && ret == BLKPREP_OK)
861 		return sd_zbc_write_lock_zone(cmd);
862 
863 	return ret;
864 }
865 
866 static void sd_config_write_same(struct scsi_disk *sdkp)
867 {
868 	struct request_queue *q = sdkp->disk->queue;
869 	unsigned int logical_block_size = sdkp->device->sector_size;
870 
871 	if (sdkp->device->no_write_same) {
872 		sdkp->max_ws_blocks = 0;
873 		goto out;
874 	}
875 
876 	/* Some devices can not handle block counts above 0xffff despite
877 	 * supporting WRITE SAME(16). Consequently we default to 64k
878 	 * blocks per I/O unless the device explicitly advertises a
879 	 * bigger limit.
880 	 */
881 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
882 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
883 						   (u32)SD_MAX_WS16_BLOCKS);
884 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
885 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
886 						   (u32)SD_MAX_WS10_BLOCKS);
887 	else {
888 		sdkp->device->no_write_same = 1;
889 		sdkp->max_ws_blocks = 0;
890 	}
891 
892 	if (sdkp->lbprz && sdkp->lbpws)
893 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
894 	else if (sdkp->lbprz && sdkp->lbpws10)
895 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
896 	else if (sdkp->max_ws_blocks)
897 		sdkp->zeroing_mode = SD_ZERO_WS;
898 	else
899 		sdkp->zeroing_mode = SD_ZERO_WRITE;
900 
901 out:
902 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
903 					 (logical_block_size >> 9));
904 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
905 					 (logical_block_size >> 9));
906 }
907 
908 /**
909  * sd_setup_write_same_cmnd - write the same data to multiple blocks
910  * @cmd: command to prepare
911  *
912  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
913  * the preference indicated by the target device.
914  **/
915 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
916 {
917 	struct request *rq = cmd->request;
918 	struct scsi_device *sdp = cmd->device;
919 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
920 	struct bio *bio = rq->bio;
921 	sector_t sector = blk_rq_pos(rq);
922 	unsigned int nr_sectors = blk_rq_sectors(rq);
923 	unsigned int nr_bytes = blk_rq_bytes(rq);
924 	int ret;
925 
926 	if (sdkp->device->no_write_same)
927 		return BLKPREP_INVALID;
928 
929 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
930 
931 	if (sd_is_zoned(sdkp)) {
932 		ret = sd_zbc_write_lock_zone(cmd);
933 		if (ret != BLKPREP_OK)
934 			return ret;
935 	}
936 
937 	sector >>= ilog2(sdp->sector_size) - 9;
938 	nr_sectors >>= ilog2(sdp->sector_size) - 9;
939 
940 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
941 
942 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
943 		cmd->cmd_len = 16;
944 		cmd->cmnd[0] = WRITE_SAME_16;
945 		put_unaligned_be64(sector, &cmd->cmnd[2]);
946 		put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
947 	} else {
948 		cmd->cmd_len = 10;
949 		cmd->cmnd[0] = WRITE_SAME;
950 		put_unaligned_be32(sector, &cmd->cmnd[2]);
951 		put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
952 	}
953 
954 	cmd->transfersize = sdp->sector_size;
955 	cmd->allowed = SD_MAX_RETRIES;
956 
957 	/*
958 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
959 	 * different from the amount of data actually written to the target.
960 	 *
961 	 * We set up __data_len to the amount of data transferred via the
962 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
963 	 * to transfer a single sector of data first, but then reset it to
964 	 * the amount of data to be written right after so that the I/O path
965 	 * knows how much to actually write.
966 	 */
967 	rq->__data_len = sdp->sector_size;
968 	ret = scsi_init_io(cmd);
969 	rq->__data_len = nr_bytes;
970 
971 	if (sd_is_zoned(sdkp) && ret != BLKPREP_OK)
972 		sd_zbc_write_unlock_zone(cmd);
973 
974 	return ret;
975 }
976 
977 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
978 {
979 	struct request *rq = cmd->request;
980 
981 	/* flush requests don't perform I/O, zero the S/G table */
982 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
983 
984 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
985 	cmd->cmd_len = 10;
986 	cmd->transfersize = 0;
987 	cmd->allowed = SD_MAX_RETRIES;
988 
989 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
990 	return BLKPREP_OK;
991 }
992 
993 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
994 {
995 	struct request *rq = SCpnt->request;
996 	struct scsi_device *sdp = SCpnt->device;
997 	struct gendisk *disk = rq->rq_disk;
998 	struct scsi_disk *sdkp = scsi_disk(disk);
999 	sector_t block = blk_rq_pos(rq);
1000 	sector_t threshold;
1001 	unsigned int this_count = blk_rq_sectors(rq);
1002 	unsigned int dif, dix;
1003 	bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE;
1004 	int ret;
1005 	unsigned char protect;
1006 
1007 	if (zoned_write) {
1008 		ret = sd_zbc_write_lock_zone(SCpnt);
1009 		if (ret != BLKPREP_OK)
1010 			return ret;
1011 	}
1012 
1013 	ret = scsi_init_io(SCpnt);
1014 	if (ret != BLKPREP_OK)
1015 		goto out;
1016 	SCpnt = rq->special;
1017 
1018 	/* from here on until we're complete, any goto out
1019 	 * is used for a killable error condition */
1020 	ret = BLKPREP_KILL;
1021 
1022 	SCSI_LOG_HLQUEUE(1,
1023 		scmd_printk(KERN_INFO, SCpnt,
1024 			"%s: block=%llu, count=%d\n",
1025 			__func__, (unsigned long long)block, this_count));
1026 
1027 	if (!sdp || !scsi_device_online(sdp) ||
1028 	    block + blk_rq_sectors(rq) > get_capacity(disk)) {
1029 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1030 						"Finishing %u sectors\n",
1031 						blk_rq_sectors(rq)));
1032 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1033 						"Retry with 0x%p\n", SCpnt));
1034 		goto out;
1035 	}
1036 
1037 	if (sdp->changed) {
1038 		/*
1039 		 * quietly refuse to do anything to a changed disc until
1040 		 * the changed bit has been reset
1041 		 */
1042 		/* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1043 		goto out;
1044 	}
1045 
1046 	/*
1047 	 * Some SD card readers can't handle multi-sector accesses which touch
1048 	 * the last one or two hardware sectors.  Split accesses as needed.
1049 	 */
1050 	threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1051 		(sdp->sector_size / 512);
1052 
1053 	if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1054 		if (block < threshold) {
1055 			/* Access up to the threshold but not beyond */
1056 			this_count = threshold - block;
1057 		} else {
1058 			/* Access only a single hardware sector */
1059 			this_count = sdp->sector_size / 512;
1060 		}
1061 	}
1062 
1063 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1064 					(unsigned long long)block));
1065 
1066 	/*
1067 	 * If we have a 1K hardware sectorsize, prevent access to single
1068 	 * 512 byte sectors.  In theory we could handle this - in fact
1069 	 * the scsi cdrom driver must be able to handle this because
1070 	 * we typically use 1K blocksizes, and cdroms typically have
1071 	 * 2K hardware sectorsizes.  Of course, things are simpler
1072 	 * with the cdrom, since it is read-only.  For performance
1073 	 * reasons, the filesystems should be able to handle this
1074 	 * and not force the scsi disk driver to use bounce buffers
1075 	 * for this.
1076 	 */
1077 	if (sdp->sector_size == 1024) {
1078 		if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1079 			scmd_printk(KERN_ERR, SCpnt,
1080 				    "Bad block number requested\n");
1081 			goto out;
1082 		} else {
1083 			block = block >> 1;
1084 			this_count = this_count >> 1;
1085 		}
1086 	}
1087 	if (sdp->sector_size == 2048) {
1088 		if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1089 			scmd_printk(KERN_ERR, SCpnt,
1090 				    "Bad block number requested\n");
1091 			goto out;
1092 		} else {
1093 			block = block >> 2;
1094 			this_count = this_count >> 2;
1095 		}
1096 	}
1097 	if (sdp->sector_size == 4096) {
1098 		if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1099 			scmd_printk(KERN_ERR, SCpnt,
1100 				    "Bad block number requested\n");
1101 			goto out;
1102 		} else {
1103 			block = block >> 3;
1104 			this_count = this_count >> 3;
1105 		}
1106 	}
1107 	if (rq_data_dir(rq) == WRITE) {
1108 		SCpnt->cmnd[0] = WRITE_6;
1109 
1110 		if (blk_integrity_rq(rq))
1111 			sd_dif_prepare(SCpnt);
1112 
1113 	} else if (rq_data_dir(rq) == READ) {
1114 		SCpnt->cmnd[0] = READ_6;
1115 	} else {
1116 		scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1117 		goto out;
1118 	}
1119 
1120 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1121 					"%s %d/%u 512 byte blocks.\n",
1122 					(rq_data_dir(rq) == WRITE) ?
1123 					"writing" : "reading", this_count,
1124 					blk_rq_sectors(rq)));
1125 
1126 	dix = scsi_prot_sg_count(SCpnt);
1127 	dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1128 
1129 	if (dif || dix)
1130 		protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1131 	else
1132 		protect = 0;
1133 
1134 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1135 		SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1136 
1137 		if (unlikely(SCpnt->cmnd == NULL)) {
1138 			ret = BLKPREP_DEFER;
1139 			goto out;
1140 		}
1141 
1142 		SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1143 		memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1144 		SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1145 		SCpnt->cmnd[7] = 0x18;
1146 		SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1147 		SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1148 
1149 		/* LBA */
1150 		SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1151 		SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1152 		SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1153 		SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1154 		SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1155 		SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1156 		SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1157 		SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1158 
1159 		/* Expected Indirect LBA */
1160 		SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1161 		SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1162 		SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1163 		SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1164 
1165 		/* Transfer length */
1166 		SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1167 		SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1168 		SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1169 		SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1170 	} else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1171 		SCpnt->cmnd[0] += READ_16 - READ_6;
1172 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1173 		SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1174 		SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1175 		SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1176 		SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1177 		SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1178 		SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1179 		SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1180 		SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1181 		SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1182 		SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1183 		SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1184 		SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1185 		SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1186 	} else if ((this_count > 0xff) || (block > 0x1fffff) ||
1187 		   scsi_device_protection(SCpnt->device) ||
1188 		   SCpnt->device->use_10_for_rw) {
1189 		SCpnt->cmnd[0] += READ_10 - READ_6;
1190 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1191 		SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1192 		SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1193 		SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1194 		SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1195 		SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1196 		SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1197 		SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1198 	} else {
1199 		if (unlikely(rq->cmd_flags & REQ_FUA)) {
1200 			/*
1201 			 * This happens only if this drive failed
1202 			 * 10byte rw command with ILLEGAL_REQUEST
1203 			 * during operation and thus turned off
1204 			 * use_10_for_rw.
1205 			 */
1206 			scmd_printk(KERN_ERR, SCpnt,
1207 				    "FUA write on READ/WRITE(6) drive\n");
1208 			goto out;
1209 		}
1210 
1211 		SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1212 		SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1213 		SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1214 		SCpnt->cmnd[4] = (unsigned char) this_count;
1215 		SCpnt->cmnd[5] = 0;
1216 	}
1217 	SCpnt->sdb.length = this_count * sdp->sector_size;
1218 
1219 	/*
1220 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1221 	 * host adapter, it's safe to assume that we can at least transfer
1222 	 * this many bytes between each connect / disconnect.
1223 	 */
1224 	SCpnt->transfersize = sdp->sector_size;
1225 	SCpnt->underflow = this_count << 9;
1226 	SCpnt->allowed = SD_MAX_RETRIES;
1227 
1228 	/*
1229 	 * This indicates that the command is ready from our end to be
1230 	 * queued.
1231 	 */
1232 	ret = BLKPREP_OK;
1233  out:
1234 	if (zoned_write && ret != BLKPREP_OK)
1235 		sd_zbc_write_unlock_zone(SCpnt);
1236 
1237 	return ret;
1238 }
1239 
1240 static int sd_init_command(struct scsi_cmnd *cmd)
1241 {
1242 	struct request *rq = cmd->request;
1243 
1244 	switch (req_op(rq)) {
1245 	case REQ_OP_DISCARD:
1246 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1247 		case SD_LBP_UNMAP:
1248 			return sd_setup_unmap_cmnd(cmd);
1249 		case SD_LBP_WS16:
1250 			return sd_setup_write_same16_cmnd(cmd, true);
1251 		case SD_LBP_WS10:
1252 			return sd_setup_write_same10_cmnd(cmd, true);
1253 		case SD_LBP_ZERO:
1254 			return sd_setup_write_same10_cmnd(cmd, false);
1255 		default:
1256 			return BLKPREP_INVALID;
1257 		}
1258 	case REQ_OP_WRITE_ZEROES:
1259 		return sd_setup_write_zeroes_cmnd(cmd);
1260 	case REQ_OP_WRITE_SAME:
1261 		return sd_setup_write_same_cmnd(cmd);
1262 	case REQ_OP_FLUSH:
1263 		return sd_setup_flush_cmnd(cmd);
1264 	case REQ_OP_READ:
1265 	case REQ_OP_WRITE:
1266 		return sd_setup_read_write_cmnd(cmd);
1267 	case REQ_OP_ZONE_REPORT:
1268 		return sd_zbc_setup_report_cmnd(cmd);
1269 	case REQ_OP_ZONE_RESET:
1270 		return sd_zbc_setup_reset_cmnd(cmd);
1271 	default:
1272 		BUG();
1273 	}
1274 }
1275 
1276 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1277 {
1278 	struct request *rq = SCpnt->request;
1279 
1280 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1281 		__free_page(rq->special_vec.bv_page);
1282 
1283 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1284 		mempool_free(SCpnt->cmnd, sd_cdb_pool);
1285 		SCpnt->cmnd = NULL;
1286 		SCpnt->cmd_len = 0;
1287 	}
1288 }
1289 
1290 /**
1291  *	sd_open - open a scsi disk device
1292  *	@bdev: Block device of the scsi disk to open
1293  *	@mode: FMODE_* mask
1294  *
1295  *	Returns 0 if successful. Returns a negated errno value in case
1296  *	of error.
1297  *
1298  *	Note: This can be called from a user context (e.g. fsck(1) )
1299  *	or from within the kernel (e.g. as a result of a mount(1) ).
1300  *	In the latter case @inode and @filp carry an abridged amount
1301  *	of information as noted above.
1302  *
1303  *	Locking: called with bdev->bd_mutex held.
1304  **/
1305 static int sd_open(struct block_device *bdev, fmode_t mode)
1306 {
1307 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1308 	struct scsi_device *sdev;
1309 	int retval;
1310 
1311 	if (!sdkp)
1312 		return -ENXIO;
1313 
1314 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1315 
1316 	sdev = sdkp->device;
1317 
1318 	/*
1319 	 * If the device is in error recovery, wait until it is done.
1320 	 * If the device is offline, then disallow any access to it.
1321 	 */
1322 	retval = -ENXIO;
1323 	if (!scsi_block_when_processing_errors(sdev))
1324 		goto error_out;
1325 
1326 	if (sdev->removable || sdkp->write_prot)
1327 		check_disk_change(bdev);
1328 
1329 	/*
1330 	 * If the drive is empty, just let the open fail.
1331 	 */
1332 	retval = -ENOMEDIUM;
1333 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1334 		goto error_out;
1335 
1336 	/*
1337 	 * If the device has the write protect tab set, have the open fail
1338 	 * if the user expects to be able to write to the thing.
1339 	 */
1340 	retval = -EROFS;
1341 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1342 		goto error_out;
1343 
1344 	/*
1345 	 * It is possible that the disk changing stuff resulted in
1346 	 * the device being taken offline.  If this is the case,
1347 	 * report this to the user, and don't pretend that the
1348 	 * open actually succeeded.
1349 	 */
1350 	retval = -ENXIO;
1351 	if (!scsi_device_online(sdev))
1352 		goto error_out;
1353 
1354 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1355 		if (scsi_block_when_processing_errors(sdev))
1356 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1357 	}
1358 
1359 	return 0;
1360 
1361 error_out:
1362 	scsi_disk_put(sdkp);
1363 	return retval;
1364 }
1365 
1366 /**
1367  *	sd_release - invoked when the (last) close(2) is called on this
1368  *	scsi disk.
1369  *	@disk: disk to release
1370  *	@mode: FMODE_* mask
1371  *
1372  *	Returns 0.
1373  *
1374  *	Note: may block (uninterruptible) if error recovery is underway
1375  *	on this disk.
1376  *
1377  *	Locking: called with bdev->bd_mutex held.
1378  **/
1379 static void sd_release(struct gendisk *disk, fmode_t mode)
1380 {
1381 	struct scsi_disk *sdkp = scsi_disk(disk);
1382 	struct scsi_device *sdev = sdkp->device;
1383 
1384 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1385 
1386 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1387 		if (scsi_block_when_processing_errors(sdev))
1388 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1389 	}
1390 
1391 	/*
1392 	 * XXX and what if there are packets in flight and this close()
1393 	 * XXX is followed by a "rmmod sd_mod"?
1394 	 */
1395 
1396 	scsi_disk_put(sdkp);
1397 }
1398 
1399 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1400 {
1401 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1402 	struct scsi_device *sdp = sdkp->device;
1403 	struct Scsi_Host *host = sdp->host;
1404 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1405 	int diskinfo[4];
1406 
1407 	/* default to most commonly used values */
1408 	diskinfo[0] = 0x40;	/* 1 << 6 */
1409 	diskinfo[1] = 0x20;	/* 1 << 5 */
1410 	diskinfo[2] = capacity >> 11;
1411 
1412 	/* override with calculated, extended default, or driver values */
1413 	if (host->hostt->bios_param)
1414 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1415 	else
1416 		scsicam_bios_param(bdev, capacity, diskinfo);
1417 
1418 	geo->heads = diskinfo[0];
1419 	geo->sectors = diskinfo[1];
1420 	geo->cylinders = diskinfo[2];
1421 	return 0;
1422 }
1423 
1424 /**
1425  *	sd_ioctl - process an ioctl
1426  *	@bdev: target block device
1427  *	@mode: FMODE_* mask
1428  *	@cmd: ioctl command number
1429  *	@arg: this is third argument given to ioctl(2) system call.
1430  *	Often contains a pointer.
1431  *
1432  *	Returns 0 if successful (some ioctls return positive numbers on
1433  *	success as well). Returns a negated errno value in case of error.
1434  *
1435  *	Note: most ioctls are forward onto the block subsystem or further
1436  *	down in the scsi subsystem.
1437  **/
1438 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1439 		    unsigned int cmd, unsigned long arg)
1440 {
1441 	struct gendisk *disk = bdev->bd_disk;
1442 	struct scsi_disk *sdkp = scsi_disk(disk);
1443 	struct scsi_device *sdp = sdkp->device;
1444 	void __user *p = (void __user *)arg;
1445 	int error;
1446 
1447 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1448 				    "cmd=0x%x\n", disk->disk_name, cmd));
1449 
1450 	error = scsi_verify_blk_ioctl(bdev, cmd);
1451 	if (error < 0)
1452 		return error;
1453 
1454 	/*
1455 	 * If we are in the middle of error recovery, don't let anyone
1456 	 * else try and use this device.  Also, if error recovery fails, it
1457 	 * may try and take the device offline, in which case all further
1458 	 * access to the device is prohibited.
1459 	 */
1460 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1461 			(mode & FMODE_NDELAY) != 0);
1462 	if (error)
1463 		goto out;
1464 
1465 	if (is_sed_ioctl(cmd))
1466 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1467 
1468 	/*
1469 	 * Send SCSI addressing ioctls directly to mid level, send other
1470 	 * ioctls to block level and then onto mid level if they can't be
1471 	 * resolved.
1472 	 */
1473 	switch (cmd) {
1474 		case SCSI_IOCTL_GET_IDLUN:
1475 		case SCSI_IOCTL_GET_BUS_NUMBER:
1476 			error = scsi_ioctl(sdp, cmd, p);
1477 			break;
1478 		default:
1479 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1480 			if (error != -ENOTTY)
1481 				break;
1482 			error = scsi_ioctl(sdp, cmd, p);
1483 			break;
1484 	}
1485 out:
1486 	return error;
1487 }
1488 
1489 static void set_media_not_present(struct scsi_disk *sdkp)
1490 {
1491 	if (sdkp->media_present)
1492 		sdkp->device->changed = 1;
1493 
1494 	if (sdkp->device->removable) {
1495 		sdkp->media_present = 0;
1496 		sdkp->capacity = 0;
1497 	}
1498 }
1499 
1500 static int media_not_present(struct scsi_disk *sdkp,
1501 			     struct scsi_sense_hdr *sshdr)
1502 {
1503 	if (!scsi_sense_valid(sshdr))
1504 		return 0;
1505 
1506 	/* not invoked for commands that could return deferred errors */
1507 	switch (sshdr->sense_key) {
1508 	case UNIT_ATTENTION:
1509 	case NOT_READY:
1510 		/* medium not present */
1511 		if (sshdr->asc == 0x3A) {
1512 			set_media_not_present(sdkp);
1513 			return 1;
1514 		}
1515 	}
1516 	return 0;
1517 }
1518 
1519 /**
1520  *	sd_check_events - check media events
1521  *	@disk: kernel device descriptor
1522  *	@clearing: disk events currently being cleared
1523  *
1524  *	Returns mask of DISK_EVENT_*.
1525  *
1526  *	Note: this function is invoked from the block subsystem.
1527  **/
1528 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1529 {
1530 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1531 	struct scsi_device *sdp;
1532 	int retval;
1533 
1534 	if (!sdkp)
1535 		return 0;
1536 
1537 	sdp = sdkp->device;
1538 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1539 
1540 	/*
1541 	 * If the device is offline, don't send any commands - just pretend as
1542 	 * if the command failed.  If the device ever comes back online, we
1543 	 * can deal with it then.  It is only because of unrecoverable errors
1544 	 * that we would ever take a device offline in the first place.
1545 	 */
1546 	if (!scsi_device_online(sdp)) {
1547 		set_media_not_present(sdkp);
1548 		goto out;
1549 	}
1550 
1551 	/*
1552 	 * Using TEST_UNIT_READY enables differentiation between drive with
1553 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1554 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1555 	 *
1556 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1557 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1558 	 * sd_revalidate() is called.
1559 	 */
1560 	if (scsi_block_when_processing_errors(sdp)) {
1561 		struct scsi_sense_hdr sshdr = { 0, };
1562 
1563 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1564 					      &sshdr);
1565 
1566 		/* failed to execute TUR, assume media not present */
1567 		if (host_byte(retval)) {
1568 			set_media_not_present(sdkp);
1569 			goto out;
1570 		}
1571 
1572 		if (media_not_present(sdkp, &sshdr))
1573 			goto out;
1574 	}
1575 
1576 	/*
1577 	 * For removable scsi disk we have to recognise the presence
1578 	 * of a disk in the drive.
1579 	 */
1580 	if (!sdkp->media_present)
1581 		sdp->changed = 1;
1582 	sdkp->media_present = 1;
1583 out:
1584 	/*
1585 	 * sdp->changed is set under the following conditions:
1586 	 *
1587 	 *	Medium present state has changed in either direction.
1588 	 *	Device has indicated UNIT_ATTENTION.
1589 	 */
1590 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1591 	sdp->changed = 0;
1592 	scsi_disk_put(sdkp);
1593 	return retval;
1594 }
1595 
1596 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1597 {
1598 	int retries, res;
1599 	struct scsi_device *sdp = sdkp->device;
1600 	const int timeout = sdp->request_queue->rq_timeout
1601 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1602 	struct scsi_sense_hdr my_sshdr;
1603 
1604 	if (!scsi_device_online(sdp))
1605 		return -ENODEV;
1606 
1607 	/* caller might not be interested in sense, but we need it */
1608 	if (!sshdr)
1609 		sshdr = &my_sshdr;
1610 
1611 	for (retries = 3; retries > 0; --retries) {
1612 		unsigned char cmd[10] = { 0 };
1613 
1614 		cmd[0] = SYNCHRONIZE_CACHE;
1615 		/*
1616 		 * Leave the rest of the command zero to indicate
1617 		 * flush everything.
1618 		 */
1619 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1620 				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1621 		if (res == 0)
1622 			break;
1623 	}
1624 
1625 	if (res) {
1626 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1627 
1628 		if (driver_byte(res) & DRIVER_SENSE)
1629 			sd_print_sense_hdr(sdkp, sshdr);
1630 
1631 		/* we need to evaluate the error return  */
1632 		if (scsi_sense_valid(sshdr) &&
1633 			(sshdr->asc == 0x3a ||	/* medium not present */
1634 			 sshdr->asc == 0x20))	/* invalid command */
1635 				/* this is no error here */
1636 				return 0;
1637 
1638 		switch (host_byte(res)) {
1639 		/* ignore errors due to racing a disconnection */
1640 		case DID_BAD_TARGET:
1641 		case DID_NO_CONNECT:
1642 			return 0;
1643 		/* signal the upper layer it might try again */
1644 		case DID_BUS_BUSY:
1645 		case DID_IMM_RETRY:
1646 		case DID_REQUEUE:
1647 		case DID_SOFT_ERROR:
1648 			return -EBUSY;
1649 		default:
1650 			return -EIO;
1651 		}
1652 	}
1653 	return 0;
1654 }
1655 
1656 static void sd_rescan(struct device *dev)
1657 {
1658 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1659 
1660 	revalidate_disk(sdkp->disk);
1661 }
1662 
1663 
1664 #ifdef CONFIG_COMPAT
1665 /*
1666  * This gets directly called from VFS. When the ioctl
1667  * is not recognized we go back to the other translation paths.
1668  */
1669 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1670 			   unsigned int cmd, unsigned long arg)
1671 {
1672 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1673 	int error;
1674 
1675 	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1676 			(mode & FMODE_NDELAY) != 0);
1677 	if (error)
1678 		return error;
1679 
1680 	/*
1681 	 * Let the static ioctl translation table take care of it.
1682 	 */
1683 	if (!sdev->host->hostt->compat_ioctl)
1684 		return -ENOIOCTLCMD;
1685 	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1686 }
1687 #endif
1688 
1689 static char sd_pr_type(enum pr_type type)
1690 {
1691 	switch (type) {
1692 	case PR_WRITE_EXCLUSIVE:
1693 		return 0x01;
1694 	case PR_EXCLUSIVE_ACCESS:
1695 		return 0x03;
1696 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1697 		return 0x05;
1698 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1699 		return 0x06;
1700 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1701 		return 0x07;
1702 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1703 		return 0x08;
1704 	default:
1705 		return 0;
1706 	}
1707 };
1708 
1709 static int sd_pr_command(struct block_device *bdev, u8 sa,
1710 		u64 key, u64 sa_key, u8 type, u8 flags)
1711 {
1712 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1713 	struct scsi_sense_hdr sshdr;
1714 	int result;
1715 	u8 cmd[16] = { 0, };
1716 	u8 data[24] = { 0, };
1717 
1718 	cmd[0] = PERSISTENT_RESERVE_OUT;
1719 	cmd[1] = sa;
1720 	cmd[2] = type;
1721 	put_unaligned_be32(sizeof(data), &cmd[5]);
1722 
1723 	put_unaligned_be64(key, &data[0]);
1724 	put_unaligned_be64(sa_key, &data[8]);
1725 	data[20] = flags;
1726 
1727 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1728 			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1729 
1730 	if ((driver_byte(result) & DRIVER_SENSE) &&
1731 	    (scsi_sense_valid(&sshdr))) {
1732 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1733 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1734 	}
1735 
1736 	return result;
1737 }
1738 
1739 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1740 		u32 flags)
1741 {
1742 	if (flags & ~PR_FL_IGNORE_KEY)
1743 		return -EOPNOTSUPP;
1744 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1745 			old_key, new_key, 0,
1746 			(1 << 0) /* APTPL */);
1747 }
1748 
1749 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1750 		u32 flags)
1751 {
1752 	if (flags)
1753 		return -EOPNOTSUPP;
1754 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1755 }
1756 
1757 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1758 {
1759 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1760 }
1761 
1762 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1763 		enum pr_type type, bool abort)
1764 {
1765 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1766 			     sd_pr_type(type), 0);
1767 }
1768 
1769 static int sd_pr_clear(struct block_device *bdev, u64 key)
1770 {
1771 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1772 }
1773 
1774 static const struct pr_ops sd_pr_ops = {
1775 	.pr_register	= sd_pr_register,
1776 	.pr_reserve	= sd_pr_reserve,
1777 	.pr_release	= sd_pr_release,
1778 	.pr_preempt	= sd_pr_preempt,
1779 	.pr_clear	= sd_pr_clear,
1780 };
1781 
1782 static const struct block_device_operations sd_fops = {
1783 	.owner			= THIS_MODULE,
1784 	.open			= sd_open,
1785 	.release		= sd_release,
1786 	.ioctl			= sd_ioctl,
1787 	.getgeo			= sd_getgeo,
1788 #ifdef CONFIG_COMPAT
1789 	.compat_ioctl		= sd_compat_ioctl,
1790 #endif
1791 	.check_events		= sd_check_events,
1792 	.revalidate_disk	= sd_revalidate_disk,
1793 	.unlock_native_capacity	= sd_unlock_native_capacity,
1794 	.pr_ops			= &sd_pr_ops,
1795 };
1796 
1797 /**
1798  *	sd_eh_reset - reset error handling callback
1799  *	@scmd:		sd-issued command that has failed
1800  *
1801  *	This function is called by the SCSI midlayer before starting
1802  *	SCSI EH. When counting medium access failures we have to be
1803  *	careful to register it only only once per device and SCSI EH run;
1804  *	there might be several timed out commands which will cause the
1805  *	'max_medium_access_timeouts' counter to trigger after the first
1806  *	SCSI EH run already and set the device to offline.
1807  *	So this function resets the internal counter before starting SCSI EH.
1808  **/
1809 static void sd_eh_reset(struct scsi_cmnd *scmd)
1810 {
1811 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1812 
1813 	/* New SCSI EH run, reset gate variable */
1814 	sdkp->ignore_medium_access_errors = false;
1815 }
1816 
1817 /**
1818  *	sd_eh_action - error handling callback
1819  *	@scmd:		sd-issued command that has failed
1820  *	@eh_disp:	The recovery disposition suggested by the midlayer
1821  *
1822  *	This function is called by the SCSI midlayer upon completion of an
1823  *	error test command (currently TEST UNIT READY). The result of sending
1824  *	the eh command is passed in eh_disp.  We're looking for devices that
1825  *	fail medium access commands but are OK with non access commands like
1826  *	test unit ready (so wrongly see the device as having a successful
1827  *	recovery)
1828  **/
1829 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1830 {
1831 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1832 	struct scsi_device *sdev = scmd->device;
1833 
1834 	if (!scsi_device_online(sdev) ||
1835 	    !scsi_medium_access_command(scmd) ||
1836 	    host_byte(scmd->result) != DID_TIME_OUT ||
1837 	    eh_disp != SUCCESS)
1838 		return eh_disp;
1839 
1840 	/*
1841 	 * The device has timed out executing a medium access command.
1842 	 * However, the TEST UNIT READY command sent during error
1843 	 * handling completed successfully. Either the device is in the
1844 	 * process of recovering or has it suffered an internal failure
1845 	 * that prevents access to the storage medium.
1846 	 */
1847 	if (!sdkp->ignore_medium_access_errors) {
1848 		sdkp->medium_access_timed_out++;
1849 		sdkp->ignore_medium_access_errors = true;
1850 	}
1851 
1852 	/*
1853 	 * If the device keeps failing read/write commands but TEST UNIT
1854 	 * READY always completes successfully we assume that medium
1855 	 * access is no longer possible and take the device offline.
1856 	 */
1857 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1858 		scmd_printk(KERN_ERR, scmd,
1859 			    "Medium access timeout failure. Offlining disk!\n");
1860 		mutex_lock(&sdev->state_mutex);
1861 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1862 		mutex_unlock(&sdev->state_mutex);
1863 
1864 		return SUCCESS;
1865 	}
1866 
1867 	return eh_disp;
1868 }
1869 
1870 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1871 {
1872 	struct request *req = scmd->request;
1873 	struct scsi_device *sdev = scmd->device;
1874 	unsigned int transferred, good_bytes;
1875 	u64 start_lba, end_lba, bad_lba;
1876 
1877 	/*
1878 	 * Some commands have a payload smaller than the device logical
1879 	 * block size (e.g. INQUIRY on a 4K disk).
1880 	 */
1881 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1882 		return 0;
1883 
1884 	/* Check if we have a 'bad_lba' information */
1885 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1886 				     SCSI_SENSE_BUFFERSIZE,
1887 				     &bad_lba))
1888 		return 0;
1889 
1890 	/*
1891 	 * If the bad lba was reported incorrectly, we have no idea where
1892 	 * the error is.
1893 	 */
1894 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1895 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1896 	if (bad_lba < start_lba || bad_lba >= end_lba)
1897 		return 0;
1898 
1899 	/*
1900 	 * resid is optional but mostly filled in.  When it's unused,
1901 	 * its value is zero, so we assume the whole buffer transferred
1902 	 */
1903 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1904 
1905 	/* This computation should always be done in terms of the
1906 	 * resolution of the device's medium.
1907 	 */
1908 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1909 
1910 	return min(good_bytes, transferred);
1911 }
1912 
1913 /**
1914  *	sd_done - bottom half handler: called when the lower level
1915  *	driver has completed (successfully or otherwise) a scsi command.
1916  *	@SCpnt: mid-level's per command structure.
1917  *
1918  *	Note: potentially run from within an ISR. Must not block.
1919  **/
1920 static int sd_done(struct scsi_cmnd *SCpnt)
1921 {
1922 	int result = SCpnt->result;
1923 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1924 	unsigned int sector_size = SCpnt->device->sector_size;
1925 	unsigned int resid;
1926 	struct scsi_sense_hdr sshdr;
1927 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1928 	struct request *req = SCpnt->request;
1929 	int sense_valid = 0;
1930 	int sense_deferred = 0;
1931 
1932 	switch (req_op(req)) {
1933 	case REQ_OP_DISCARD:
1934 	case REQ_OP_WRITE_ZEROES:
1935 	case REQ_OP_WRITE_SAME:
1936 	case REQ_OP_ZONE_RESET:
1937 		if (!result) {
1938 			good_bytes = blk_rq_bytes(req);
1939 			scsi_set_resid(SCpnt, 0);
1940 		} else {
1941 			good_bytes = 0;
1942 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1943 		}
1944 		break;
1945 	case REQ_OP_ZONE_REPORT:
1946 		if (!result) {
1947 			good_bytes = scsi_bufflen(SCpnt)
1948 				- scsi_get_resid(SCpnt);
1949 			scsi_set_resid(SCpnt, 0);
1950 		} else {
1951 			good_bytes = 0;
1952 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1953 		}
1954 		break;
1955 	default:
1956 		/*
1957 		 * In case of bogus fw or device, we could end up having
1958 		 * an unaligned partial completion. Check this here and force
1959 		 * alignment.
1960 		 */
1961 		resid = scsi_get_resid(SCpnt);
1962 		if (resid & (sector_size - 1)) {
1963 			sd_printk(KERN_INFO, sdkp,
1964 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1965 				resid, sector_size);
1966 			resid = min(scsi_bufflen(SCpnt),
1967 				    round_up(resid, sector_size));
1968 			scsi_set_resid(SCpnt, resid);
1969 		}
1970 	}
1971 
1972 	if (result) {
1973 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1974 		if (sense_valid)
1975 			sense_deferred = scsi_sense_is_deferred(&sshdr);
1976 	}
1977 	sdkp->medium_access_timed_out = 0;
1978 
1979 	if (driver_byte(result) != DRIVER_SENSE &&
1980 	    (!sense_valid || sense_deferred))
1981 		goto out;
1982 
1983 	switch (sshdr.sense_key) {
1984 	case HARDWARE_ERROR:
1985 	case MEDIUM_ERROR:
1986 		good_bytes = sd_completed_bytes(SCpnt);
1987 		break;
1988 	case RECOVERED_ERROR:
1989 		good_bytes = scsi_bufflen(SCpnt);
1990 		break;
1991 	case NO_SENSE:
1992 		/* This indicates a false check condition, so ignore it.  An
1993 		 * unknown amount of data was transferred so treat it as an
1994 		 * error.
1995 		 */
1996 		SCpnt->result = 0;
1997 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1998 		break;
1999 	case ABORTED_COMMAND:
2000 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2001 			good_bytes = sd_completed_bytes(SCpnt);
2002 		break;
2003 	case ILLEGAL_REQUEST:
2004 		switch (sshdr.asc) {
2005 		case 0x10:	/* DIX: Host detected corruption */
2006 			good_bytes = sd_completed_bytes(SCpnt);
2007 			break;
2008 		case 0x20:	/* INVALID COMMAND OPCODE */
2009 		case 0x24:	/* INVALID FIELD IN CDB */
2010 			switch (SCpnt->cmnd[0]) {
2011 			case UNMAP:
2012 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2013 				break;
2014 			case WRITE_SAME_16:
2015 			case WRITE_SAME:
2016 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2017 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2018 				} else {
2019 					sdkp->device->no_write_same = 1;
2020 					sd_config_write_same(sdkp);
2021 					req->__data_len = blk_rq_bytes(req);
2022 					req->rq_flags |= RQF_QUIET;
2023 				}
2024 				break;
2025 			}
2026 		}
2027 		break;
2028 	default:
2029 		break;
2030 	}
2031 
2032  out:
2033 	if (sd_is_zoned(sdkp))
2034 		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2035 
2036 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2037 					   "sd_done: completed %d of %d bytes\n",
2038 					   good_bytes, scsi_bufflen(SCpnt)));
2039 
2040 	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
2041 		sd_dif_complete(SCpnt, good_bytes);
2042 
2043 	return good_bytes;
2044 }
2045 
2046 /*
2047  * spinup disk - called only in sd_revalidate_disk()
2048  */
2049 static void
2050 sd_spinup_disk(struct scsi_disk *sdkp)
2051 {
2052 	unsigned char cmd[10];
2053 	unsigned long spintime_expire = 0;
2054 	int retries, spintime;
2055 	unsigned int the_result;
2056 	struct scsi_sense_hdr sshdr;
2057 	int sense_valid = 0;
2058 
2059 	spintime = 0;
2060 
2061 	/* Spin up drives, as required.  Only do this at boot time */
2062 	/* Spinup needs to be done for module loads too. */
2063 	do {
2064 		retries = 0;
2065 
2066 		do {
2067 			cmd[0] = TEST_UNIT_READY;
2068 			memset((void *) &cmd[1], 0, 9);
2069 
2070 			the_result = scsi_execute_req(sdkp->device, cmd,
2071 						      DMA_NONE, NULL, 0,
2072 						      &sshdr, SD_TIMEOUT,
2073 						      SD_MAX_RETRIES, NULL);
2074 
2075 			/*
2076 			 * If the drive has indicated to us that it
2077 			 * doesn't have any media in it, don't bother
2078 			 * with any more polling.
2079 			 */
2080 			if (media_not_present(sdkp, &sshdr))
2081 				return;
2082 
2083 			if (the_result)
2084 				sense_valid = scsi_sense_valid(&sshdr);
2085 			retries++;
2086 		} while (retries < 3 &&
2087 			 (!scsi_status_is_good(the_result) ||
2088 			  ((driver_byte(the_result) & DRIVER_SENSE) &&
2089 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2090 
2091 		if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
2092 			/* no sense, TUR either succeeded or failed
2093 			 * with a status error */
2094 			if(!spintime && !scsi_status_is_good(the_result)) {
2095 				sd_print_result(sdkp, "Test Unit Ready failed",
2096 						the_result);
2097 			}
2098 			break;
2099 		}
2100 
2101 		/*
2102 		 * The device does not want the automatic start to be issued.
2103 		 */
2104 		if (sdkp->device->no_start_on_add)
2105 			break;
2106 
2107 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2108 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2109 				break;	/* manual intervention required */
2110 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2111 				break;	/* standby */
2112 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2113 				break;	/* unavailable */
2114 			/*
2115 			 * Issue command to spin up drive when not ready
2116 			 */
2117 			if (!spintime) {
2118 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2119 				cmd[0] = START_STOP;
2120 				cmd[1] = 1;	/* Return immediately */
2121 				memset((void *) &cmd[2], 0, 8);
2122 				cmd[4] = 1;	/* Start spin cycle */
2123 				if (sdkp->device->start_stop_pwr_cond)
2124 					cmd[4] |= 1 << 4;
2125 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2126 						 NULL, 0, &sshdr,
2127 						 SD_TIMEOUT, SD_MAX_RETRIES,
2128 						 NULL);
2129 				spintime_expire = jiffies + 100 * HZ;
2130 				spintime = 1;
2131 			}
2132 			/* Wait 1 second for next try */
2133 			msleep(1000);
2134 			printk(".");
2135 
2136 		/*
2137 		 * Wait for USB flash devices with slow firmware.
2138 		 * Yes, this sense key/ASC combination shouldn't
2139 		 * occur here.  It's characteristic of these devices.
2140 		 */
2141 		} else if (sense_valid &&
2142 				sshdr.sense_key == UNIT_ATTENTION &&
2143 				sshdr.asc == 0x28) {
2144 			if (!spintime) {
2145 				spintime_expire = jiffies + 5 * HZ;
2146 				spintime = 1;
2147 			}
2148 			/* Wait 1 second for next try */
2149 			msleep(1000);
2150 		} else {
2151 			/* we don't understand the sense code, so it's
2152 			 * probably pointless to loop */
2153 			if(!spintime) {
2154 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2155 				sd_print_sense_hdr(sdkp, &sshdr);
2156 			}
2157 			break;
2158 		}
2159 
2160 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2161 
2162 	if (spintime) {
2163 		if (scsi_status_is_good(the_result))
2164 			printk("ready\n");
2165 		else
2166 			printk("not responding...\n");
2167 	}
2168 }
2169 
2170 /*
2171  * Determine whether disk supports Data Integrity Field.
2172  */
2173 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2174 {
2175 	struct scsi_device *sdp = sdkp->device;
2176 	u8 type;
2177 	int ret = 0;
2178 
2179 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2180 		return ret;
2181 
2182 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2183 
2184 	if (type > T10_PI_TYPE3_PROTECTION)
2185 		ret = -ENODEV;
2186 	else if (scsi_host_dif_capable(sdp->host, type))
2187 		ret = 1;
2188 
2189 	if (sdkp->first_scan || type != sdkp->protection_type)
2190 		switch (ret) {
2191 		case -ENODEV:
2192 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2193 				  " protection type %u. Disabling disk!\n",
2194 				  type);
2195 			break;
2196 		case 1:
2197 			sd_printk(KERN_NOTICE, sdkp,
2198 				  "Enabling DIF Type %u protection\n", type);
2199 			break;
2200 		case 0:
2201 			sd_printk(KERN_NOTICE, sdkp,
2202 				  "Disabling DIF Type %u protection\n", type);
2203 			break;
2204 		}
2205 
2206 	sdkp->protection_type = type;
2207 
2208 	return ret;
2209 }
2210 
2211 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2212 			struct scsi_sense_hdr *sshdr, int sense_valid,
2213 			int the_result)
2214 {
2215 	if (driver_byte(the_result) & DRIVER_SENSE)
2216 		sd_print_sense_hdr(sdkp, sshdr);
2217 	else
2218 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2219 
2220 	/*
2221 	 * Set dirty bit for removable devices if not ready -
2222 	 * sometimes drives will not report this properly.
2223 	 */
2224 	if (sdp->removable &&
2225 	    sense_valid && sshdr->sense_key == NOT_READY)
2226 		set_media_not_present(sdkp);
2227 
2228 	/*
2229 	 * We used to set media_present to 0 here to indicate no media
2230 	 * in the drive, but some drives fail read capacity even with
2231 	 * media present, so we can't do that.
2232 	 */
2233 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2234 }
2235 
2236 #define RC16_LEN 32
2237 #if RC16_LEN > SD_BUF_SIZE
2238 #error RC16_LEN must not be more than SD_BUF_SIZE
2239 #endif
2240 
2241 #define READ_CAPACITY_RETRIES_ON_RESET	10
2242 
2243 /*
2244  * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2245  * and the reported logical block size is bigger than 512 bytes. Note
2246  * that last_sector is a u64 and therefore logical_to_sectors() is not
2247  * applicable.
2248  */
2249 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2250 {
2251 	u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2252 
2253 	if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2254 		return false;
2255 
2256 	return true;
2257 }
2258 
2259 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2260 						unsigned char *buffer)
2261 {
2262 	unsigned char cmd[16];
2263 	struct scsi_sense_hdr sshdr;
2264 	int sense_valid = 0;
2265 	int the_result;
2266 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2267 	unsigned int alignment;
2268 	unsigned long long lba;
2269 	unsigned sector_size;
2270 
2271 	if (sdp->no_read_capacity_16)
2272 		return -EINVAL;
2273 
2274 	do {
2275 		memset(cmd, 0, 16);
2276 		cmd[0] = SERVICE_ACTION_IN_16;
2277 		cmd[1] = SAI_READ_CAPACITY_16;
2278 		cmd[13] = RC16_LEN;
2279 		memset(buffer, 0, RC16_LEN);
2280 
2281 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2282 					buffer, RC16_LEN, &sshdr,
2283 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2284 
2285 		if (media_not_present(sdkp, &sshdr))
2286 			return -ENODEV;
2287 
2288 		if (the_result) {
2289 			sense_valid = scsi_sense_valid(&sshdr);
2290 			if (sense_valid &&
2291 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2292 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2293 			    sshdr.ascq == 0x00)
2294 				/* Invalid Command Operation Code or
2295 				 * Invalid Field in CDB, just retry
2296 				 * silently with RC10 */
2297 				return -EINVAL;
2298 			if (sense_valid &&
2299 			    sshdr.sense_key == UNIT_ATTENTION &&
2300 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2301 				/* Device reset might occur several times,
2302 				 * give it one more chance */
2303 				if (--reset_retries > 0)
2304 					continue;
2305 		}
2306 		retries--;
2307 
2308 	} while (the_result && retries);
2309 
2310 	if (the_result) {
2311 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2312 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2313 		return -EINVAL;
2314 	}
2315 
2316 	sector_size = get_unaligned_be32(&buffer[8]);
2317 	lba = get_unaligned_be64(&buffer[0]);
2318 
2319 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2320 		sdkp->capacity = 0;
2321 		return -ENODEV;
2322 	}
2323 
2324 	if (!sd_addressable_capacity(lba, sector_size)) {
2325 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2326 			"kernel compiled with support for large block "
2327 			"devices.\n");
2328 		sdkp->capacity = 0;
2329 		return -EOVERFLOW;
2330 	}
2331 
2332 	/* Logical blocks per physical block exponent */
2333 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2334 
2335 	/* RC basis */
2336 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2337 
2338 	/* Lowest aligned logical block */
2339 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2340 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2341 	if (alignment && sdkp->first_scan)
2342 		sd_printk(KERN_NOTICE, sdkp,
2343 			  "physical block alignment offset: %u\n", alignment);
2344 
2345 	if (buffer[14] & 0x80) { /* LBPME */
2346 		sdkp->lbpme = 1;
2347 
2348 		if (buffer[14] & 0x40) /* LBPRZ */
2349 			sdkp->lbprz = 1;
2350 
2351 		sd_config_discard(sdkp, SD_LBP_WS16);
2352 	}
2353 
2354 	sdkp->capacity = lba + 1;
2355 	return sector_size;
2356 }
2357 
2358 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2359 						unsigned char *buffer)
2360 {
2361 	unsigned char cmd[16];
2362 	struct scsi_sense_hdr sshdr;
2363 	int sense_valid = 0;
2364 	int the_result;
2365 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2366 	sector_t lba;
2367 	unsigned sector_size;
2368 
2369 	do {
2370 		cmd[0] = READ_CAPACITY;
2371 		memset(&cmd[1], 0, 9);
2372 		memset(buffer, 0, 8);
2373 
2374 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2375 					buffer, 8, &sshdr,
2376 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2377 
2378 		if (media_not_present(sdkp, &sshdr))
2379 			return -ENODEV;
2380 
2381 		if (the_result) {
2382 			sense_valid = scsi_sense_valid(&sshdr);
2383 			if (sense_valid &&
2384 			    sshdr.sense_key == UNIT_ATTENTION &&
2385 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2386 				/* Device reset might occur several times,
2387 				 * give it one more chance */
2388 				if (--reset_retries > 0)
2389 					continue;
2390 		}
2391 		retries--;
2392 
2393 	} while (the_result && retries);
2394 
2395 	if (the_result) {
2396 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2397 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2398 		return -EINVAL;
2399 	}
2400 
2401 	sector_size = get_unaligned_be32(&buffer[4]);
2402 	lba = get_unaligned_be32(&buffer[0]);
2403 
2404 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2405 		/* Some buggy (usb cardreader) devices return an lba of
2406 		   0xffffffff when the want to report a size of 0 (with
2407 		   which they really mean no media is present) */
2408 		sdkp->capacity = 0;
2409 		sdkp->physical_block_size = sector_size;
2410 		return sector_size;
2411 	}
2412 
2413 	if (!sd_addressable_capacity(lba, sector_size)) {
2414 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2415 			"kernel compiled with support for large block "
2416 			"devices.\n");
2417 		sdkp->capacity = 0;
2418 		return -EOVERFLOW;
2419 	}
2420 
2421 	sdkp->capacity = lba + 1;
2422 	sdkp->physical_block_size = sector_size;
2423 	return sector_size;
2424 }
2425 
2426 static int sd_try_rc16_first(struct scsi_device *sdp)
2427 {
2428 	if (sdp->host->max_cmd_len < 16)
2429 		return 0;
2430 	if (sdp->try_rc_10_first)
2431 		return 0;
2432 	if (sdp->scsi_level > SCSI_SPC_2)
2433 		return 1;
2434 	if (scsi_device_protection(sdp))
2435 		return 1;
2436 	return 0;
2437 }
2438 
2439 /*
2440  * read disk capacity
2441  */
2442 static void
2443 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2444 {
2445 	int sector_size;
2446 	struct scsi_device *sdp = sdkp->device;
2447 
2448 	if (sd_try_rc16_first(sdp)) {
2449 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2450 		if (sector_size == -EOVERFLOW)
2451 			goto got_data;
2452 		if (sector_size == -ENODEV)
2453 			return;
2454 		if (sector_size < 0)
2455 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2456 		if (sector_size < 0)
2457 			return;
2458 	} else {
2459 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2460 		if (sector_size == -EOVERFLOW)
2461 			goto got_data;
2462 		if (sector_size < 0)
2463 			return;
2464 		if ((sizeof(sdkp->capacity) > 4) &&
2465 		    (sdkp->capacity > 0xffffffffULL)) {
2466 			int old_sector_size = sector_size;
2467 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2468 					"Trying to use READ CAPACITY(16).\n");
2469 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2470 			if (sector_size < 0) {
2471 				sd_printk(KERN_NOTICE, sdkp,
2472 					"Using 0xffffffff as device size\n");
2473 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2474 				sector_size = old_sector_size;
2475 				goto got_data;
2476 			}
2477 		}
2478 	}
2479 
2480 	/* Some devices are known to return the total number of blocks,
2481 	 * not the highest block number.  Some devices have versions
2482 	 * which do this and others which do not.  Some devices we might
2483 	 * suspect of doing this but we don't know for certain.
2484 	 *
2485 	 * If we know the reported capacity is wrong, decrement it.  If
2486 	 * we can only guess, then assume the number of blocks is even
2487 	 * (usually true but not always) and err on the side of lowering
2488 	 * the capacity.
2489 	 */
2490 	if (sdp->fix_capacity ||
2491 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2492 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2493 				"from its reported value: %llu\n",
2494 				(unsigned long long) sdkp->capacity);
2495 		--sdkp->capacity;
2496 	}
2497 
2498 got_data:
2499 	if (sector_size == 0) {
2500 		sector_size = 512;
2501 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2502 			  "assuming 512.\n");
2503 	}
2504 
2505 	if (sector_size != 512 &&
2506 	    sector_size != 1024 &&
2507 	    sector_size != 2048 &&
2508 	    sector_size != 4096) {
2509 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2510 			  sector_size);
2511 		/*
2512 		 * The user might want to re-format the drive with
2513 		 * a supported sectorsize.  Once this happens, it
2514 		 * would be relatively trivial to set the thing up.
2515 		 * For this reason, we leave the thing in the table.
2516 		 */
2517 		sdkp->capacity = 0;
2518 		/*
2519 		 * set a bogus sector size so the normal read/write
2520 		 * logic in the block layer will eventually refuse any
2521 		 * request on this device without tripping over power
2522 		 * of two sector size assumptions
2523 		 */
2524 		sector_size = 512;
2525 	}
2526 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2527 	blk_queue_physical_block_size(sdp->request_queue,
2528 				      sdkp->physical_block_size);
2529 	sdkp->device->sector_size = sector_size;
2530 
2531 	if (sdkp->capacity > 0xffffffff)
2532 		sdp->use_16_for_rw = 1;
2533 
2534 }
2535 
2536 /*
2537  * Print disk capacity
2538  */
2539 static void
2540 sd_print_capacity(struct scsi_disk *sdkp,
2541 		  sector_t old_capacity)
2542 {
2543 	int sector_size = sdkp->device->sector_size;
2544 	char cap_str_2[10], cap_str_10[10];
2545 
2546 	string_get_size(sdkp->capacity, sector_size,
2547 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2548 	string_get_size(sdkp->capacity, sector_size,
2549 			STRING_UNITS_10, cap_str_10,
2550 			sizeof(cap_str_10));
2551 
2552 	if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2553 		sd_printk(KERN_NOTICE, sdkp,
2554 			  "%llu %d-byte logical blocks: (%s/%s)\n",
2555 			  (unsigned long long)sdkp->capacity,
2556 			  sector_size, cap_str_10, cap_str_2);
2557 
2558 		if (sdkp->physical_block_size != sector_size)
2559 			sd_printk(KERN_NOTICE, sdkp,
2560 				  "%u-byte physical blocks\n",
2561 				  sdkp->physical_block_size);
2562 
2563 		sd_zbc_print_zones(sdkp);
2564 	}
2565 }
2566 
2567 /* called with buffer of length 512 */
2568 static inline int
2569 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2570 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2571 		 struct scsi_sense_hdr *sshdr)
2572 {
2573 	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2574 			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2575 			       sshdr);
2576 }
2577 
2578 /*
2579  * read write protect setting, if possible - called only in sd_revalidate_disk()
2580  * called with buffer of length SD_BUF_SIZE
2581  */
2582 static void
2583 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2584 {
2585 	int res;
2586 	struct scsi_device *sdp = sdkp->device;
2587 	struct scsi_mode_data data;
2588 	int old_wp = sdkp->write_prot;
2589 
2590 	set_disk_ro(sdkp->disk, 0);
2591 	if (sdp->skip_ms_page_3f) {
2592 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2593 		return;
2594 	}
2595 
2596 	if (sdp->use_192_bytes_for_3f) {
2597 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2598 	} else {
2599 		/*
2600 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2601 		 * We have to start carefully: some devices hang if we ask
2602 		 * for more than is available.
2603 		 */
2604 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2605 
2606 		/*
2607 		 * Second attempt: ask for page 0 When only page 0 is
2608 		 * implemented, a request for page 3F may return Sense Key
2609 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2610 		 * CDB.
2611 		 */
2612 		if (!scsi_status_is_good(res))
2613 			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2614 
2615 		/*
2616 		 * Third attempt: ask 255 bytes, as we did earlier.
2617 		 */
2618 		if (!scsi_status_is_good(res))
2619 			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2620 					       &data, NULL);
2621 	}
2622 
2623 	if (!scsi_status_is_good(res)) {
2624 		sd_first_printk(KERN_WARNING, sdkp,
2625 			  "Test WP failed, assume Write Enabled\n");
2626 	} else {
2627 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2628 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2629 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2630 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2631 				  sdkp->write_prot ? "on" : "off");
2632 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2633 		}
2634 	}
2635 }
2636 
2637 /*
2638  * sd_read_cache_type - called only from sd_revalidate_disk()
2639  * called with buffer of length SD_BUF_SIZE
2640  */
2641 static void
2642 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2643 {
2644 	int len = 0, res;
2645 	struct scsi_device *sdp = sdkp->device;
2646 
2647 	int dbd;
2648 	int modepage;
2649 	int first_len;
2650 	struct scsi_mode_data data;
2651 	struct scsi_sense_hdr sshdr;
2652 	int old_wce = sdkp->WCE;
2653 	int old_rcd = sdkp->RCD;
2654 	int old_dpofua = sdkp->DPOFUA;
2655 
2656 
2657 	if (sdkp->cache_override)
2658 		return;
2659 
2660 	first_len = 4;
2661 	if (sdp->skip_ms_page_8) {
2662 		if (sdp->type == TYPE_RBC)
2663 			goto defaults;
2664 		else {
2665 			if (sdp->skip_ms_page_3f)
2666 				goto defaults;
2667 			modepage = 0x3F;
2668 			if (sdp->use_192_bytes_for_3f)
2669 				first_len = 192;
2670 			dbd = 0;
2671 		}
2672 	} else if (sdp->type == TYPE_RBC) {
2673 		modepage = 6;
2674 		dbd = 8;
2675 	} else {
2676 		modepage = 8;
2677 		dbd = 0;
2678 	}
2679 
2680 	/* cautiously ask */
2681 	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2682 			&data, &sshdr);
2683 
2684 	if (!scsi_status_is_good(res))
2685 		goto bad_sense;
2686 
2687 	if (!data.header_length) {
2688 		modepage = 6;
2689 		first_len = 0;
2690 		sd_first_printk(KERN_ERR, sdkp,
2691 				"Missing header in MODE_SENSE response\n");
2692 	}
2693 
2694 	/* that went OK, now ask for the proper length */
2695 	len = data.length;
2696 
2697 	/*
2698 	 * We're only interested in the first three bytes, actually.
2699 	 * But the data cache page is defined for the first 20.
2700 	 */
2701 	if (len < 3)
2702 		goto bad_sense;
2703 	else if (len > SD_BUF_SIZE) {
2704 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2705 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2706 		len = SD_BUF_SIZE;
2707 	}
2708 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2709 		len = 192;
2710 
2711 	/* Get the data */
2712 	if (len > first_len)
2713 		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2714 				&data, &sshdr);
2715 
2716 	if (scsi_status_is_good(res)) {
2717 		int offset = data.header_length + data.block_descriptor_length;
2718 
2719 		while (offset < len) {
2720 			u8 page_code = buffer[offset] & 0x3F;
2721 			u8 spf       = buffer[offset] & 0x40;
2722 
2723 			if (page_code == 8 || page_code == 6) {
2724 				/* We're interested only in the first 3 bytes.
2725 				 */
2726 				if (len - offset <= 2) {
2727 					sd_first_printk(KERN_ERR, sdkp,
2728 						"Incomplete mode parameter "
2729 							"data\n");
2730 					goto defaults;
2731 				} else {
2732 					modepage = page_code;
2733 					goto Page_found;
2734 				}
2735 			} else {
2736 				/* Go to the next page */
2737 				if (spf && len - offset > 3)
2738 					offset += 4 + (buffer[offset+2] << 8) +
2739 						buffer[offset+3];
2740 				else if (!spf && len - offset > 1)
2741 					offset += 2 + buffer[offset+1];
2742 				else {
2743 					sd_first_printk(KERN_ERR, sdkp,
2744 							"Incomplete mode "
2745 							"parameter data\n");
2746 					goto defaults;
2747 				}
2748 			}
2749 		}
2750 
2751 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2752 		goto defaults;
2753 
2754 	Page_found:
2755 		if (modepage == 8) {
2756 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2757 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2758 		} else {
2759 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2760 			sdkp->RCD = 0;
2761 		}
2762 
2763 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2764 		if (sdp->broken_fua) {
2765 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2766 			sdkp->DPOFUA = 0;
2767 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2768 			   !sdkp->device->use_16_for_rw) {
2769 			sd_first_printk(KERN_NOTICE, sdkp,
2770 				  "Uses READ/WRITE(6), disabling FUA\n");
2771 			sdkp->DPOFUA = 0;
2772 		}
2773 
2774 		/* No cache flush allowed for write protected devices */
2775 		if (sdkp->WCE && sdkp->write_prot)
2776 			sdkp->WCE = 0;
2777 
2778 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2779 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2780 			sd_printk(KERN_NOTICE, sdkp,
2781 				  "Write cache: %s, read cache: %s, %s\n",
2782 				  sdkp->WCE ? "enabled" : "disabled",
2783 				  sdkp->RCD ? "disabled" : "enabled",
2784 				  sdkp->DPOFUA ? "supports DPO and FUA"
2785 				  : "doesn't support DPO or FUA");
2786 
2787 		return;
2788 	}
2789 
2790 bad_sense:
2791 	if (scsi_sense_valid(&sshdr) &&
2792 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2793 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2794 		/* Invalid field in CDB */
2795 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2796 	else
2797 		sd_first_printk(KERN_ERR, sdkp,
2798 				"Asking for cache data failed\n");
2799 
2800 defaults:
2801 	if (sdp->wce_default_on) {
2802 		sd_first_printk(KERN_NOTICE, sdkp,
2803 				"Assuming drive cache: write back\n");
2804 		sdkp->WCE = 1;
2805 	} else {
2806 		sd_first_printk(KERN_ERR, sdkp,
2807 				"Assuming drive cache: write through\n");
2808 		sdkp->WCE = 0;
2809 	}
2810 	sdkp->RCD = 0;
2811 	sdkp->DPOFUA = 0;
2812 }
2813 
2814 /*
2815  * The ATO bit indicates whether the DIF application tag is available
2816  * for use by the operating system.
2817  */
2818 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2819 {
2820 	int res, offset;
2821 	struct scsi_device *sdp = sdkp->device;
2822 	struct scsi_mode_data data;
2823 	struct scsi_sense_hdr sshdr;
2824 
2825 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2826 		return;
2827 
2828 	if (sdkp->protection_type == 0)
2829 		return;
2830 
2831 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2832 			      SD_MAX_RETRIES, &data, &sshdr);
2833 
2834 	if (!scsi_status_is_good(res) || !data.header_length ||
2835 	    data.length < 6) {
2836 		sd_first_printk(KERN_WARNING, sdkp,
2837 			  "getting Control mode page failed, assume no ATO\n");
2838 
2839 		if (scsi_sense_valid(&sshdr))
2840 			sd_print_sense_hdr(sdkp, &sshdr);
2841 
2842 		return;
2843 	}
2844 
2845 	offset = data.header_length + data.block_descriptor_length;
2846 
2847 	if ((buffer[offset] & 0x3f) != 0x0a) {
2848 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2849 		return;
2850 	}
2851 
2852 	if ((buffer[offset + 5] & 0x80) == 0)
2853 		return;
2854 
2855 	sdkp->ATO = 1;
2856 
2857 	return;
2858 }
2859 
2860 /**
2861  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2862  * @sdkp: disk to query
2863  */
2864 static void sd_read_block_limits(struct scsi_disk *sdkp)
2865 {
2866 	unsigned int sector_sz = sdkp->device->sector_size;
2867 	const int vpd_len = 64;
2868 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2869 
2870 	if (!buffer ||
2871 	    /* Block Limits VPD */
2872 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2873 		goto out;
2874 
2875 	blk_queue_io_min(sdkp->disk->queue,
2876 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2877 
2878 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2879 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2880 
2881 	if (buffer[3] == 0x3c) {
2882 		unsigned int lba_count, desc_count;
2883 
2884 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2885 
2886 		if (!sdkp->lbpme)
2887 			goto out;
2888 
2889 		lba_count = get_unaligned_be32(&buffer[20]);
2890 		desc_count = get_unaligned_be32(&buffer[24]);
2891 
2892 		if (lba_count && desc_count)
2893 			sdkp->max_unmap_blocks = lba_count;
2894 
2895 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2896 
2897 		if (buffer[32] & 0x80)
2898 			sdkp->unmap_alignment =
2899 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2900 
2901 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2902 
2903 			if (sdkp->max_unmap_blocks)
2904 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2905 			else
2906 				sd_config_discard(sdkp, SD_LBP_WS16);
2907 
2908 		} else {	/* LBP VPD page tells us what to use */
2909 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2910 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2911 			else if (sdkp->lbpws)
2912 				sd_config_discard(sdkp, SD_LBP_WS16);
2913 			else if (sdkp->lbpws10)
2914 				sd_config_discard(sdkp, SD_LBP_WS10);
2915 			else if (sdkp->lbpu && sdkp->max_unmap_blocks)
2916 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2917 			else
2918 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2919 		}
2920 	}
2921 
2922  out:
2923 	kfree(buffer);
2924 }
2925 
2926 /**
2927  * sd_read_block_characteristics - Query block dev. characteristics
2928  * @sdkp: disk to query
2929  */
2930 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2931 {
2932 	struct request_queue *q = sdkp->disk->queue;
2933 	unsigned char *buffer;
2934 	u16 rot;
2935 	const int vpd_len = 64;
2936 
2937 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2938 
2939 	if (!buffer ||
2940 	    /* Block Device Characteristics VPD */
2941 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2942 		goto out;
2943 
2944 	rot = get_unaligned_be16(&buffer[4]);
2945 
2946 	if (rot == 1) {
2947 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2948 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2949 	}
2950 
2951 	if (sdkp->device->type == TYPE_ZBC) {
2952 		/* Host-managed */
2953 		q->limits.zoned = BLK_ZONED_HM;
2954 	} else {
2955 		sdkp->zoned = (buffer[8] >> 4) & 3;
2956 		if (sdkp->zoned == 1)
2957 			/* Host-aware */
2958 			q->limits.zoned = BLK_ZONED_HA;
2959 		else
2960 			/*
2961 			 * Treat drive-managed devices as
2962 			 * regular block devices.
2963 			 */
2964 			q->limits.zoned = BLK_ZONED_NONE;
2965 	}
2966 	if (blk_queue_is_zoned(q) && sdkp->first_scan)
2967 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2968 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2969 
2970  out:
2971 	kfree(buffer);
2972 }
2973 
2974 /**
2975  * sd_read_block_provisioning - Query provisioning VPD page
2976  * @sdkp: disk to query
2977  */
2978 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2979 {
2980 	unsigned char *buffer;
2981 	const int vpd_len = 8;
2982 
2983 	if (sdkp->lbpme == 0)
2984 		return;
2985 
2986 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2987 
2988 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2989 		goto out;
2990 
2991 	sdkp->lbpvpd	= 1;
2992 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
2993 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
2994 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
2995 
2996  out:
2997 	kfree(buffer);
2998 }
2999 
3000 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3001 {
3002 	struct scsi_device *sdev = sdkp->device;
3003 
3004 	if (sdev->host->no_write_same) {
3005 		sdev->no_write_same = 1;
3006 
3007 		return;
3008 	}
3009 
3010 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3011 		/* too large values might cause issues with arcmsr */
3012 		int vpd_buf_len = 64;
3013 
3014 		sdev->no_report_opcodes = 1;
3015 
3016 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3017 		 * CODES is unsupported and the device has an ATA
3018 		 * Information VPD page (SAT).
3019 		 */
3020 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3021 			sdev->no_write_same = 1;
3022 	}
3023 
3024 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3025 		sdkp->ws16 = 1;
3026 
3027 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3028 		sdkp->ws10 = 1;
3029 }
3030 
3031 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3032 {
3033 	struct scsi_device *sdev = sdkp->device;
3034 
3035 	if (!sdev->security_supported)
3036 		return;
3037 
3038 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3039 			SECURITY_PROTOCOL_IN) == 1 &&
3040 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3041 			SECURITY_PROTOCOL_OUT) == 1)
3042 		sdkp->security = 1;
3043 }
3044 
3045 /**
3046  *	sd_revalidate_disk - called the first time a new disk is seen,
3047  *	performs disk spin up, read_capacity, etc.
3048  *	@disk: struct gendisk we care about
3049  **/
3050 static int sd_revalidate_disk(struct gendisk *disk)
3051 {
3052 	struct scsi_disk *sdkp = scsi_disk(disk);
3053 	struct scsi_device *sdp = sdkp->device;
3054 	struct request_queue *q = sdkp->disk->queue;
3055 	sector_t old_capacity = sdkp->capacity;
3056 	unsigned char *buffer;
3057 	unsigned int dev_max, rw_max;
3058 
3059 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3060 				      "sd_revalidate_disk\n"));
3061 
3062 	/*
3063 	 * If the device is offline, don't try and read capacity or any
3064 	 * of the other niceties.
3065 	 */
3066 	if (!scsi_device_online(sdp))
3067 		goto out;
3068 
3069 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3070 	if (!buffer) {
3071 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3072 			  "allocation failure.\n");
3073 		goto out;
3074 	}
3075 
3076 	sd_spinup_disk(sdkp);
3077 
3078 	/*
3079 	 * Without media there is no reason to ask; moreover, some devices
3080 	 * react badly if we do.
3081 	 */
3082 	if (sdkp->media_present) {
3083 		sd_read_capacity(sdkp, buffer);
3084 
3085 		if (scsi_device_supports_vpd(sdp)) {
3086 			sd_read_block_provisioning(sdkp);
3087 			sd_read_block_limits(sdkp);
3088 			sd_read_block_characteristics(sdkp);
3089 			sd_zbc_read_zones(sdkp, buffer);
3090 		}
3091 
3092 		sd_print_capacity(sdkp, old_capacity);
3093 
3094 		sd_read_write_protect_flag(sdkp, buffer);
3095 		sd_read_cache_type(sdkp, buffer);
3096 		sd_read_app_tag_own(sdkp, buffer);
3097 		sd_read_write_same(sdkp, buffer);
3098 		sd_read_security(sdkp, buffer);
3099 	}
3100 
3101 	sdkp->first_scan = 0;
3102 
3103 	/*
3104 	 * We now have all cache related info, determine how we deal
3105 	 * with flush requests.
3106 	 */
3107 	sd_set_flush_flag(sdkp);
3108 
3109 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3110 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3111 
3112 	/* Some devices report a maximum block count for READ/WRITE requests. */
3113 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3114 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3115 
3116 	/*
3117 	 * Use the device's preferred I/O size for reads and writes
3118 	 * unless the reported value is unreasonably small, large, or
3119 	 * garbage.
3120 	 */
3121 	if (sdkp->opt_xfer_blocks &&
3122 	    sdkp->opt_xfer_blocks <= dev_max &&
3123 	    sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3124 	    logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3125 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3126 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3127 	} else
3128 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3129 				      (sector_t)BLK_DEF_MAX_SECTORS);
3130 
3131 	/* Combine with controller limits */
3132 	q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q));
3133 
3134 	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3135 	sd_config_write_same(sdkp);
3136 	kfree(buffer);
3137 
3138  out:
3139 	return 0;
3140 }
3141 
3142 /**
3143  *	sd_unlock_native_capacity - unlock native capacity
3144  *	@disk: struct gendisk to set capacity for
3145  *
3146  *	Block layer calls this function if it detects that partitions
3147  *	on @disk reach beyond the end of the device.  If the SCSI host
3148  *	implements ->unlock_native_capacity() method, it's invoked to
3149  *	give it a chance to adjust the device capacity.
3150  *
3151  *	CONTEXT:
3152  *	Defined by block layer.  Might sleep.
3153  */
3154 static void sd_unlock_native_capacity(struct gendisk *disk)
3155 {
3156 	struct scsi_device *sdev = scsi_disk(disk)->device;
3157 
3158 	if (sdev->host->hostt->unlock_native_capacity)
3159 		sdev->host->hostt->unlock_native_capacity(sdev);
3160 }
3161 
3162 /**
3163  *	sd_format_disk_name - format disk name
3164  *	@prefix: name prefix - ie. "sd" for SCSI disks
3165  *	@index: index of the disk to format name for
3166  *	@buf: output buffer
3167  *	@buflen: length of the output buffer
3168  *
3169  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3170  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3171  *	which is followed by sdaaa.
3172  *
3173  *	This is basically 26 base counting with one extra 'nil' entry
3174  *	at the beginning from the second digit on and can be
3175  *	determined using similar method as 26 base conversion with the
3176  *	index shifted -1 after each digit is computed.
3177  *
3178  *	CONTEXT:
3179  *	Don't care.
3180  *
3181  *	RETURNS:
3182  *	0 on success, -errno on failure.
3183  */
3184 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3185 {
3186 	const int base = 'z' - 'a' + 1;
3187 	char *begin = buf + strlen(prefix);
3188 	char *end = buf + buflen;
3189 	char *p;
3190 	int unit;
3191 
3192 	p = end - 1;
3193 	*p = '\0';
3194 	unit = base;
3195 	do {
3196 		if (p == begin)
3197 			return -EINVAL;
3198 		*--p = 'a' + (index % unit);
3199 		index = (index / unit) - 1;
3200 	} while (index >= 0);
3201 
3202 	memmove(begin, p, end - p);
3203 	memcpy(buf, prefix, strlen(prefix));
3204 
3205 	return 0;
3206 }
3207 
3208 /*
3209  * The asynchronous part of sd_probe
3210  */
3211 static void sd_probe_async(void *data, async_cookie_t cookie)
3212 {
3213 	struct scsi_disk *sdkp = data;
3214 	struct scsi_device *sdp;
3215 	struct gendisk *gd;
3216 	u32 index;
3217 	struct device *dev;
3218 
3219 	sdp = sdkp->device;
3220 	gd = sdkp->disk;
3221 	index = sdkp->index;
3222 	dev = &sdp->sdev_gendev;
3223 
3224 	gd->major = sd_major((index & 0xf0) >> 4);
3225 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3226 	gd->minors = SD_MINORS;
3227 
3228 	gd->fops = &sd_fops;
3229 	gd->private_data = &sdkp->driver;
3230 	gd->queue = sdkp->device->request_queue;
3231 
3232 	/* defaults, until the device tells us otherwise */
3233 	sdp->sector_size = 512;
3234 	sdkp->capacity = 0;
3235 	sdkp->media_present = 1;
3236 	sdkp->write_prot = 0;
3237 	sdkp->cache_override = 0;
3238 	sdkp->WCE = 0;
3239 	sdkp->RCD = 0;
3240 	sdkp->ATO = 0;
3241 	sdkp->first_scan = 1;
3242 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3243 
3244 	sd_revalidate_disk(gd);
3245 
3246 	gd->flags = GENHD_FL_EXT_DEVT;
3247 	if (sdp->removable) {
3248 		gd->flags |= GENHD_FL_REMOVABLE;
3249 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3250 	}
3251 
3252 	blk_pm_runtime_init(sdp->request_queue, dev);
3253 	device_add_disk(dev, gd);
3254 	if (sdkp->capacity)
3255 		sd_dif_config_host(sdkp);
3256 
3257 	sd_revalidate_disk(gd);
3258 
3259 	if (sdkp->security) {
3260 		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3261 		if (sdkp->opal_dev)
3262 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3263 	}
3264 
3265 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3266 		  sdp->removable ? "removable " : "");
3267 	scsi_autopm_put_device(sdp);
3268 	put_device(&sdkp->dev);
3269 }
3270 
3271 /**
3272  *	sd_probe - called during driver initialization and whenever a
3273  *	new scsi device is attached to the system. It is called once
3274  *	for each scsi device (not just disks) present.
3275  *	@dev: pointer to device object
3276  *
3277  *	Returns 0 if successful (or not interested in this scsi device
3278  *	(e.g. scanner)); 1 when there is an error.
3279  *
3280  *	Note: this function is invoked from the scsi mid-level.
3281  *	This function sets up the mapping between a given
3282  *	<host,channel,id,lun> (found in sdp) and new device name
3283  *	(e.g. /dev/sda). More precisely it is the block device major
3284  *	and minor number that is chosen here.
3285  *
3286  *	Assume sd_probe is not re-entrant (for time being)
3287  *	Also think about sd_probe() and sd_remove() running coincidentally.
3288  **/
3289 static int sd_probe(struct device *dev)
3290 {
3291 	struct scsi_device *sdp = to_scsi_device(dev);
3292 	struct scsi_disk *sdkp;
3293 	struct gendisk *gd;
3294 	int index;
3295 	int error;
3296 
3297 	scsi_autopm_get_device(sdp);
3298 	error = -ENODEV;
3299 	if (sdp->type != TYPE_DISK &&
3300 	    sdp->type != TYPE_ZBC &&
3301 	    sdp->type != TYPE_MOD &&
3302 	    sdp->type != TYPE_RBC)
3303 		goto out;
3304 
3305 #ifndef CONFIG_BLK_DEV_ZONED
3306 	if (sdp->type == TYPE_ZBC)
3307 		goto out;
3308 #endif
3309 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3310 					"sd_probe\n"));
3311 
3312 	error = -ENOMEM;
3313 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3314 	if (!sdkp)
3315 		goto out;
3316 
3317 	gd = alloc_disk(SD_MINORS);
3318 	if (!gd)
3319 		goto out_free;
3320 
3321 	do {
3322 		if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3323 			goto out_put;
3324 
3325 		spin_lock(&sd_index_lock);
3326 		error = ida_get_new(&sd_index_ida, &index);
3327 		spin_unlock(&sd_index_lock);
3328 	} while (error == -EAGAIN);
3329 
3330 	if (error) {
3331 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3332 		goto out_put;
3333 	}
3334 
3335 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3336 	if (error) {
3337 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3338 		goto out_free_index;
3339 	}
3340 
3341 	sdkp->device = sdp;
3342 	sdkp->driver = &sd_template;
3343 	sdkp->disk = gd;
3344 	sdkp->index = index;
3345 	atomic_set(&sdkp->openers, 0);
3346 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3347 
3348 	if (!sdp->request_queue->rq_timeout) {
3349 		if (sdp->type != TYPE_MOD)
3350 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3351 		else
3352 			blk_queue_rq_timeout(sdp->request_queue,
3353 					     SD_MOD_TIMEOUT);
3354 	}
3355 
3356 	device_initialize(&sdkp->dev);
3357 	sdkp->dev.parent = dev;
3358 	sdkp->dev.class = &sd_disk_class;
3359 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3360 
3361 	error = device_add(&sdkp->dev);
3362 	if (error)
3363 		goto out_free_index;
3364 
3365 	get_device(dev);
3366 	dev_set_drvdata(dev, sdkp);
3367 
3368 	get_device(&sdkp->dev);	/* prevent release before async_schedule */
3369 	async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3370 
3371 	return 0;
3372 
3373  out_free_index:
3374 	spin_lock(&sd_index_lock);
3375 	ida_remove(&sd_index_ida, index);
3376 	spin_unlock(&sd_index_lock);
3377  out_put:
3378 	put_disk(gd);
3379  out_free:
3380 	kfree(sdkp);
3381  out:
3382 	scsi_autopm_put_device(sdp);
3383 	return error;
3384 }
3385 
3386 /**
3387  *	sd_remove - called whenever a scsi disk (previously recognized by
3388  *	sd_probe) is detached from the system. It is called (potentially
3389  *	multiple times) during sd module unload.
3390  *	@dev: pointer to device object
3391  *
3392  *	Note: this function is invoked from the scsi mid-level.
3393  *	This function potentially frees up a device name (e.g. /dev/sdc)
3394  *	that could be re-used by a subsequent sd_probe().
3395  *	This function is not called when the built-in sd driver is "exit-ed".
3396  **/
3397 static int sd_remove(struct device *dev)
3398 {
3399 	struct scsi_disk *sdkp;
3400 	dev_t devt;
3401 
3402 	sdkp = dev_get_drvdata(dev);
3403 	devt = disk_devt(sdkp->disk);
3404 	scsi_autopm_get_device(sdkp->device);
3405 
3406 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3407 	async_synchronize_full_domain(&scsi_sd_probe_domain);
3408 	device_del(&sdkp->dev);
3409 	del_gendisk(sdkp->disk);
3410 	sd_shutdown(dev);
3411 
3412 	sd_zbc_remove(sdkp);
3413 
3414 	free_opal_dev(sdkp->opal_dev);
3415 
3416 	blk_register_region(devt, SD_MINORS, NULL,
3417 			    sd_default_probe, NULL, NULL);
3418 
3419 	mutex_lock(&sd_ref_mutex);
3420 	dev_set_drvdata(dev, NULL);
3421 	put_device(&sdkp->dev);
3422 	mutex_unlock(&sd_ref_mutex);
3423 
3424 	return 0;
3425 }
3426 
3427 /**
3428  *	scsi_disk_release - Called to free the scsi_disk structure
3429  *	@dev: pointer to embedded class device
3430  *
3431  *	sd_ref_mutex must be held entering this routine.  Because it is
3432  *	called on last put, you should always use the scsi_disk_get()
3433  *	scsi_disk_put() helpers which manipulate the semaphore directly
3434  *	and never do a direct put_device.
3435  **/
3436 static void scsi_disk_release(struct device *dev)
3437 {
3438 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3439 	struct gendisk *disk = sdkp->disk;
3440 
3441 	spin_lock(&sd_index_lock);
3442 	ida_remove(&sd_index_ida, sdkp->index);
3443 	spin_unlock(&sd_index_lock);
3444 
3445 	disk->private_data = NULL;
3446 	put_disk(disk);
3447 	put_device(&sdkp->device->sdev_gendev);
3448 
3449 	kfree(sdkp);
3450 }
3451 
3452 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3453 {
3454 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3455 	struct scsi_sense_hdr sshdr;
3456 	struct scsi_device *sdp = sdkp->device;
3457 	int res;
3458 
3459 	if (start)
3460 		cmd[4] |= 1;	/* START */
3461 
3462 	if (sdp->start_stop_pwr_cond)
3463 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3464 
3465 	if (!scsi_device_online(sdp))
3466 		return -ENODEV;
3467 
3468 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3469 			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3470 	if (res) {
3471 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3472 		if (driver_byte(res) & DRIVER_SENSE)
3473 			sd_print_sense_hdr(sdkp, &sshdr);
3474 		if (scsi_sense_valid(&sshdr) &&
3475 			/* 0x3a is medium not present */
3476 			sshdr.asc == 0x3a)
3477 			res = 0;
3478 	}
3479 
3480 	/* SCSI error codes must not go to the generic layer */
3481 	if (res)
3482 		return -EIO;
3483 
3484 	return 0;
3485 }
3486 
3487 /*
3488  * Send a SYNCHRONIZE CACHE instruction down to the device through
3489  * the normal SCSI command structure.  Wait for the command to
3490  * complete.
3491  */
3492 static void sd_shutdown(struct device *dev)
3493 {
3494 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3495 
3496 	if (!sdkp)
3497 		return;         /* this can happen */
3498 
3499 	if (pm_runtime_suspended(dev))
3500 		return;
3501 
3502 	if (sdkp->WCE && sdkp->media_present) {
3503 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3504 		sd_sync_cache(sdkp, NULL);
3505 	}
3506 
3507 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3508 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3509 		sd_start_stop_device(sdkp, 0);
3510 	}
3511 }
3512 
3513 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3514 {
3515 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3516 	struct scsi_sense_hdr sshdr;
3517 	int ret = 0;
3518 
3519 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3520 		return 0;
3521 
3522 	if (sdkp->WCE && sdkp->media_present) {
3523 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3524 		ret = sd_sync_cache(sdkp, &sshdr);
3525 
3526 		if (ret) {
3527 			/* ignore OFFLINE device */
3528 			if (ret == -ENODEV)
3529 				return 0;
3530 
3531 			if (!scsi_sense_valid(&sshdr) ||
3532 			    sshdr.sense_key != ILLEGAL_REQUEST)
3533 				return ret;
3534 
3535 			/*
3536 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3537 			 * doesn't support sync. There's not much to do and
3538 			 * suspend shouldn't fail.
3539 			 */
3540 			 ret = 0;
3541 		}
3542 	}
3543 
3544 	if (sdkp->device->manage_start_stop) {
3545 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3546 		/* an error is not worth aborting a system sleep */
3547 		ret = sd_start_stop_device(sdkp, 0);
3548 		if (ignore_stop_errors)
3549 			ret = 0;
3550 	}
3551 
3552 	return ret;
3553 }
3554 
3555 static int sd_suspend_system(struct device *dev)
3556 {
3557 	return sd_suspend_common(dev, true);
3558 }
3559 
3560 static int sd_suspend_runtime(struct device *dev)
3561 {
3562 	return sd_suspend_common(dev, false);
3563 }
3564 
3565 static int sd_resume(struct device *dev)
3566 {
3567 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3568 	int ret;
3569 
3570 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3571 		return 0;
3572 
3573 	if (!sdkp->device->manage_start_stop)
3574 		return 0;
3575 
3576 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3577 	ret = sd_start_stop_device(sdkp, 1);
3578 	if (!ret)
3579 		opal_unlock_from_suspend(sdkp->opal_dev);
3580 	return ret;
3581 }
3582 
3583 /**
3584  *	init_sd - entry point for this driver (both when built in or when
3585  *	a module).
3586  *
3587  *	Note: this function registers this driver with the scsi mid-level.
3588  **/
3589 static int __init init_sd(void)
3590 {
3591 	int majors = 0, i, err;
3592 
3593 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3594 
3595 	for (i = 0; i < SD_MAJORS; i++) {
3596 		if (register_blkdev(sd_major(i), "sd") != 0)
3597 			continue;
3598 		majors++;
3599 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3600 				    sd_default_probe, NULL, NULL);
3601 	}
3602 
3603 	if (!majors)
3604 		return -ENODEV;
3605 
3606 	err = class_register(&sd_disk_class);
3607 	if (err)
3608 		goto err_out;
3609 
3610 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3611 					 0, 0, NULL);
3612 	if (!sd_cdb_cache) {
3613 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3614 		err = -ENOMEM;
3615 		goto err_out_class;
3616 	}
3617 
3618 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3619 	if (!sd_cdb_pool) {
3620 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3621 		err = -ENOMEM;
3622 		goto err_out_cache;
3623 	}
3624 
3625 	err = scsi_register_driver(&sd_template.gendrv);
3626 	if (err)
3627 		goto err_out_driver;
3628 
3629 	return 0;
3630 
3631 err_out_driver:
3632 	mempool_destroy(sd_cdb_pool);
3633 
3634 err_out_cache:
3635 	kmem_cache_destroy(sd_cdb_cache);
3636 
3637 err_out_class:
3638 	class_unregister(&sd_disk_class);
3639 err_out:
3640 	for (i = 0; i < SD_MAJORS; i++)
3641 		unregister_blkdev(sd_major(i), "sd");
3642 	return err;
3643 }
3644 
3645 /**
3646  *	exit_sd - exit point for this driver (when it is a module).
3647  *
3648  *	Note: this function unregisters this driver from the scsi mid-level.
3649  **/
3650 static void __exit exit_sd(void)
3651 {
3652 	int i;
3653 
3654 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3655 
3656 	scsi_unregister_driver(&sd_template.gendrv);
3657 	mempool_destroy(sd_cdb_pool);
3658 	kmem_cache_destroy(sd_cdb_cache);
3659 
3660 	class_unregister(&sd_disk_class);
3661 
3662 	for (i = 0; i < SD_MAJORS; i++) {
3663 		blk_unregister_region(sd_major(i), SD_MINORS);
3664 		unregister_blkdev(sd_major(i), "sd");
3665 	}
3666 }
3667 
3668 module_init(init_sd);
3669 module_exit(exit_sd);
3670 
3671 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3672 			       struct scsi_sense_hdr *sshdr)
3673 {
3674 	scsi_print_sense_hdr(sdkp->device,
3675 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3676 }
3677 
3678 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3679 			    int result)
3680 {
3681 	const char *hb_string = scsi_hostbyte_string(result);
3682 	const char *db_string = scsi_driverbyte_string(result);
3683 
3684 	if (hb_string || db_string)
3685 		sd_printk(KERN_INFO, sdkp,
3686 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3687 			  hb_string ? hb_string : "invalid",
3688 			  db_string ? db_string : "invalid");
3689 	else
3690 		sd_printk(KERN_INFO, sdkp,
3691 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3692 			  msg, host_byte(result), driver_byte(result));
3693 }
3694 
3695