1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/major.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 71 #include "sd.h" 72 #include "scsi_priv.h" 73 #include "scsi_logging.h" 74 75 MODULE_AUTHOR("Eric Youngdale"); 76 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 77 MODULE_LICENSE("GPL"); 78 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 99 100 #define SD_MINORS 16 101 102 static void sd_config_discard(struct scsi_disk *, unsigned int); 103 static void sd_config_write_same(struct scsi_disk *); 104 static int sd_revalidate_disk(struct gendisk *); 105 static void sd_unlock_native_capacity(struct gendisk *disk); 106 static int sd_probe(struct device *); 107 static int sd_remove(struct device *); 108 static void sd_shutdown(struct device *); 109 static int sd_suspend_system(struct device *); 110 static int sd_suspend_runtime(struct device *); 111 static int sd_resume_system(struct device *); 112 static int sd_resume_runtime(struct device *); 113 static void sd_rescan(struct device *); 114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 115 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 116 static int sd_done(struct scsi_cmnd *); 117 static void sd_eh_reset(struct scsi_cmnd *); 118 static int sd_eh_action(struct scsi_cmnd *, int); 119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 120 static void scsi_disk_release(struct device *cdev); 121 122 static DEFINE_IDA(sd_index_ida); 123 124 static struct kmem_cache *sd_cdb_cache; 125 static mempool_t *sd_page_pool; 126 static struct lock_class_key sd_bio_compl_lkclass; 127 128 static const char *sd_cache_types[] = { 129 "write through", "none", "write back", 130 "write back, no read (daft)" 131 }; 132 133 static void sd_set_flush_flag(struct scsi_disk *sdkp) 134 { 135 bool wc = false, fua = false; 136 137 if (sdkp->WCE) { 138 wc = true; 139 if (sdkp->DPOFUA) 140 fua = true; 141 } 142 143 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 144 } 145 146 static ssize_t 147 cache_type_store(struct device *dev, struct device_attribute *attr, 148 const char *buf, size_t count) 149 { 150 int ct, rcd, wce, sp; 151 struct scsi_disk *sdkp = to_scsi_disk(dev); 152 struct scsi_device *sdp = sdkp->device; 153 char buffer[64]; 154 char *buffer_data; 155 struct scsi_mode_data data; 156 struct scsi_sense_hdr sshdr; 157 static const char temp[] = "temporary "; 158 int len; 159 160 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 161 /* no cache control on RBC devices; theoretically they 162 * can do it, but there's probably so many exceptions 163 * it's not worth the risk */ 164 return -EINVAL; 165 166 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 167 buf += sizeof(temp) - 1; 168 sdkp->cache_override = 1; 169 } else { 170 sdkp->cache_override = 0; 171 } 172 173 ct = sysfs_match_string(sd_cache_types, buf); 174 if (ct < 0) 175 return -EINVAL; 176 177 rcd = ct & 0x01 ? 1 : 0; 178 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 179 180 if (sdkp->cache_override) { 181 sdkp->WCE = wce; 182 sdkp->RCD = rcd; 183 sd_set_flush_flag(sdkp); 184 return count; 185 } 186 187 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 188 sdkp->max_retries, &data, NULL)) 189 return -EINVAL; 190 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 191 data.block_descriptor_length); 192 buffer_data = buffer + data.header_length + 193 data.block_descriptor_length; 194 buffer_data[2] &= ~0x05; 195 buffer_data[2] |= wce << 2 | rcd; 196 sp = buffer_data[0] & 0x80 ? 1 : 0; 197 buffer_data[0] &= ~0x80; 198 199 /* 200 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 201 * received mode parameter buffer before doing MODE SELECT. 202 */ 203 data.device_specific = 0; 204 205 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 206 sdkp->max_retries, &data, &sshdr)) { 207 if (scsi_sense_valid(&sshdr)) 208 sd_print_sense_hdr(sdkp, &sshdr); 209 return -EINVAL; 210 } 211 sd_revalidate_disk(sdkp->disk); 212 return count; 213 } 214 215 static ssize_t 216 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 217 char *buf) 218 { 219 struct scsi_disk *sdkp = to_scsi_disk(dev); 220 struct scsi_device *sdp = sdkp->device; 221 222 return sprintf(buf, "%u\n", sdp->manage_start_stop); 223 } 224 225 static ssize_t 226 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 227 const char *buf, size_t count) 228 { 229 struct scsi_disk *sdkp = to_scsi_disk(dev); 230 struct scsi_device *sdp = sdkp->device; 231 bool v; 232 233 if (!capable(CAP_SYS_ADMIN)) 234 return -EACCES; 235 236 if (kstrtobool(buf, &v)) 237 return -EINVAL; 238 239 sdp->manage_start_stop = v; 240 241 return count; 242 } 243 static DEVICE_ATTR_RW(manage_start_stop); 244 245 static ssize_t 246 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 247 { 248 struct scsi_disk *sdkp = to_scsi_disk(dev); 249 250 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 251 } 252 253 static ssize_t 254 allow_restart_store(struct device *dev, struct device_attribute *attr, 255 const char *buf, size_t count) 256 { 257 bool v; 258 struct scsi_disk *sdkp = to_scsi_disk(dev); 259 struct scsi_device *sdp = sdkp->device; 260 261 if (!capable(CAP_SYS_ADMIN)) 262 return -EACCES; 263 264 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 265 return -EINVAL; 266 267 if (kstrtobool(buf, &v)) 268 return -EINVAL; 269 270 sdp->allow_restart = v; 271 272 return count; 273 } 274 static DEVICE_ATTR_RW(allow_restart); 275 276 static ssize_t 277 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 278 { 279 struct scsi_disk *sdkp = to_scsi_disk(dev); 280 int ct = sdkp->RCD + 2*sdkp->WCE; 281 282 return sprintf(buf, "%s\n", sd_cache_types[ct]); 283 } 284 static DEVICE_ATTR_RW(cache_type); 285 286 static ssize_t 287 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 288 { 289 struct scsi_disk *sdkp = to_scsi_disk(dev); 290 291 return sprintf(buf, "%u\n", sdkp->DPOFUA); 292 } 293 static DEVICE_ATTR_RO(FUA); 294 295 static ssize_t 296 protection_type_show(struct device *dev, struct device_attribute *attr, 297 char *buf) 298 { 299 struct scsi_disk *sdkp = to_scsi_disk(dev); 300 301 return sprintf(buf, "%u\n", sdkp->protection_type); 302 } 303 304 static ssize_t 305 protection_type_store(struct device *dev, struct device_attribute *attr, 306 const char *buf, size_t count) 307 { 308 struct scsi_disk *sdkp = to_scsi_disk(dev); 309 unsigned int val; 310 int err; 311 312 if (!capable(CAP_SYS_ADMIN)) 313 return -EACCES; 314 315 err = kstrtouint(buf, 10, &val); 316 317 if (err) 318 return err; 319 320 if (val <= T10_PI_TYPE3_PROTECTION) 321 sdkp->protection_type = val; 322 323 return count; 324 } 325 static DEVICE_ATTR_RW(protection_type); 326 327 static ssize_t 328 protection_mode_show(struct device *dev, struct device_attribute *attr, 329 char *buf) 330 { 331 struct scsi_disk *sdkp = to_scsi_disk(dev); 332 struct scsi_device *sdp = sdkp->device; 333 unsigned int dif, dix; 334 335 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 336 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 337 338 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 339 dif = 0; 340 dix = 1; 341 } 342 343 if (!dif && !dix) 344 return sprintf(buf, "none\n"); 345 346 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 347 } 348 static DEVICE_ATTR_RO(protection_mode); 349 350 static ssize_t 351 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 352 { 353 struct scsi_disk *sdkp = to_scsi_disk(dev); 354 355 return sprintf(buf, "%u\n", sdkp->ATO); 356 } 357 static DEVICE_ATTR_RO(app_tag_own); 358 359 static ssize_t 360 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 361 char *buf) 362 { 363 struct scsi_disk *sdkp = to_scsi_disk(dev); 364 365 return sprintf(buf, "%u\n", sdkp->lbpme); 366 } 367 static DEVICE_ATTR_RO(thin_provisioning); 368 369 /* sysfs_match_string() requires dense arrays */ 370 static const char *lbp_mode[] = { 371 [SD_LBP_FULL] = "full", 372 [SD_LBP_UNMAP] = "unmap", 373 [SD_LBP_WS16] = "writesame_16", 374 [SD_LBP_WS10] = "writesame_10", 375 [SD_LBP_ZERO] = "writesame_zero", 376 [SD_LBP_DISABLE] = "disabled", 377 }; 378 379 static ssize_t 380 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 381 char *buf) 382 { 383 struct scsi_disk *sdkp = to_scsi_disk(dev); 384 385 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 386 } 387 388 static ssize_t 389 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 390 const char *buf, size_t count) 391 { 392 struct scsi_disk *sdkp = to_scsi_disk(dev); 393 struct scsi_device *sdp = sdkp->device; 394 int mode; 395 396 if (!capable(CAP_SYS_ADMIN)) 397 return -EACCES; 398 399 if (sd_is_zoned(sdkp)) { 400 sd_config_discard(sdkp, SD_LBP_DISABLE); 401 return count; 402 } 403 404 if (sdp->type != TYPE_DISK) 405 return -EINVAL; 406 407 mode = sysfs_match_string(lbp_mode, buf); 408 if (mode < 0) 409 return -EINVAL; 410 411 sd_config_discard(sdkp, mode); 412 413 return count; 414 } 415 static DEVICE_ATTR_RW(provisioning_mode); 416 417 /* sysfs_match_string() requires dense arrays */ 418 static const char *zeroing_mode[] = { 419 [SD_ZERO_WRITE] = "write", 420 [SD_ZERO_WS] = "writesame", 421 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 422 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 423 }; 424 425 static ssize_t 426 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 427 char *buf) 428 { 429 struct scsi_disk *sdkp = to_scsi_disk(dev); 430 431 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 432 } 433 434 static ssize_t 435 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 436 const char *buf, size_t count) 437 { 438 struct scsi_disk *sdkp = to_scsi_disk(dev); 439 int mode; 440 441 if (!capable(CAP_SYS_ADMIN)) 442 return -EACCES; 443 444 mode = sysfs_match_string(zeroing_mode, buf); 445 if (mode < 0) 446 return -EINVAL; 447 448 sdkp->zeroing_mode = mode; 449 450 return count; 451 } 452 static DEVICE_ATTR_RW(zeroing_mode); 453 454 static ssize_t 455 max_medium_access_timeouts_show(struct device *dev, 456 struct device_attribute *attr, char *buf) 457 { 458 struct scsi_disk *sdkp = to_scsi_disk(dev); 459 460 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 461 } 462 463 static ssize_t 464 max_medium_access_timeouts_store(struct device *dev, 465 struct device_attribute *attr, const char *buf, 466 size_t count) 467 { 468 struct scsi_disk *sdkp = to_scsi_disk(dev); 469 int err; 470 471 if (!capable(CAP_SYS_ADMIN)) 472 return -EACCES; 473 474 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 475 476 return err ? err : count; 477 } 478 static DEVICE_ATTR_RW(max_medium_access_timeouts); 479 480 static ssize_t 481 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 482 char *buf) 483 { 484 struct scsi_disk *sdkp = to_scsi_disk(dev); 485 486 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 487 } 488 489 static ssize_t 490 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 491 const char *buf, size_t count) 492 { 493 struct scsi_disk *sdkp = to_scsi_disk(dev); 494 struct scsi_device *sdp = sdkp->device; 495 unsigned long max; 496 int err; 497 498 if (!capable(CAP_SYS_ADMIN)) 499 return -EACCES; 500 501 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 502 return -EINVAL; 503 504 err = kstrtoul(buf, 10, &max); 505 506 if (err) 507 return err; 508 509 if (max == 0) 510 sdp->no_write_same = 1; 511 else if (max <= SD_MAX_WS16_BLOCKS) { 512 sdp->no_write_same = 0; 513 sdkp->max_ws_blocks = max; 514 } 515 516 sd_config_write_same(sdkp); 517 518 return count; 519 } 520 static DEVICE_ATTR_RW(max_write_same_blocks); 521 522 static ssize_t 523 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 524 { 525 struct scsi_disk *sdkp = to_scsi_disk(dev); 526 527 if (sdkp->device->type == TYPE_ZBC) 528 return sprintf(buf, "host-managed\n"); 529 if (sdkp->zoned == 1) 530 return sprintf(buf, "host-aware\n"); 531 if (sdkp->zoned == 2) 532 return sprintf(buf, "drive-managed\n"); 533 return sprintf(buf, "none\n"); 534 } 535 static DEVICE_ATTR_RO(zoned_cap); 536 537 static ssize_t 538 max_retries_store(struct device *dev, struct device_attribute *attr, 539 const char *buf, size_t count) 540 { 541 struct scsi_disk *sdkp = to_scsi_disk(dev); 542 struct scsi_device *sdev = sdkp->device; 543 int retries, err; 544 545 err = kstrtoint(buf, 10, &retries); 546 if (err) 547 return err; 548 549 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 550 sdkp->max_retries = retries; 551 return count; 552 } 553 554 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 555 SD_MAX_RETRIES); 556 return -EINVAL; 557 } 558 559 static ssize_t 560 max_retries_show(struct device *dev, struct device_attribute *attr, 561 char *buf) 562 { 563 struct scsi_disk *sdkp = to_scsi_disk(dev); 564 565 return sprintf(buf, "%d\n", sdkp->max_retries); 566 } 567 568 static DEVICE_ATTR_RW(max_retries); 569 570 static struct attribute *sd_disk_attrs[] = { 571 &dev_attr_cache_type.attr, 572 &dev_attr_FUA.attr, 573 &dev_attr_allow_restart.attr, 574 &dev_attr_manage_start_stop.attr, 575 &dev_attr_protection_type.attr, 576 &dev_attr_protection_mode.attr, 577 &dev_attr_app_tag_own.attr, 578 &dev_attr_thin_provisioning.attr, 579 &dev_attr_provisioning_mode.attr, 580 &dev_attr_zeroing_mode.attr, 581 &dev_attr_max_write_same_blocks.attr, 582 &dev_attr_max_medium_access_timeouts.attr, 583 &dev_attr_zoned_cap.attr, 584 &dev_attr_max_retries.attr, 585 NULL, 586 }; 587 ATTRIBUTE_GROUPS(sd_disk); 588 589 static struct class sd_disk_class = { 590 .name = "scsi_disk", 591 .owner = THIS_MODULE, 592 .dev_release = scsi_disk_release, 593 .dev_groups = sd_disk_groups, 594 }; 595 596 static const struct dev_pm_ops sd_pm_ops = { 597 .suspend = sd_suspend_system, 598 .resume = sd_resume_system, 599 .poweroff = sd_suspend_system, 600 .restore = sd_resume_system, 601 .runtime_suspend = sd_suspend_runtime, 602 .runtime_resume = sd_resume_runtime, 603 }; 604 605 static struct scsi_driver sd_template = { 606 .gendrv = { 607 .name = "sd", 608 .owner = THIS_MODULE, 609 .probe = sd_probe, 610 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 611 .remove = sd_remove, 612 .shutdown = sd_shutdown, 613 .pm = &sd_pm_ops, 614 }, 615 .rescan = sd_rescan, 616 .init_command = sd_init_command, 617 .uninit_command = sd_uninit_command, 618 .done = sd_done, 619 .eh_action = sd_eh_action, 620 .eh_reset = sd_eh_reset, 621 }; 622 623 /* 624 * Don't request a new module, as that could deadlock in multipath 625 * environment. 626 */ 627 static void sd_default_probe(dev_t devt) 628 { 629 } 630 631 /* 632 * Device no to disk mapping: 633 * 634 * major disc2 disc p1 635 * |............|.............|....|....| <- dev_t 636 * 31 20 19 8 7 4 3 0 637 * 638 * Inside a major, we have 16k disks, however mapped non- 639 * contiguously. The first 16 disks are for major0, the next 640 * ones with major1, ... Disk 256 is for major0 again, disk 272 641 * for major1, ... 642 * As we stay compatible with our numbering scheme, we can reuse 643 * the well-know SCSI majors 8, 65--71, 136--143. 644 */ 645 static int sd_major(int major_idx) 646 { 647 switch (major_idx) { 648 case 0: 649 return SCSI_DISK0_MAJOR; 650 case 1 ... 7: 651 return SCSI_DISK1_MAJOR + major_idx - 1; 652 case 8 ... 15: 653 return SCSI_DISK8_MAJOR + major_idx - 8; 654 default: 655 BUG(); 656 return 0; /* shut up gcc */ 657 } 658 } 659 660 #ifdef CONFIG_BLK_SED_OPAL 661 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 662 size_t len, bool send) 663 { 664 struct scsi_disk *sdkp = data; 665 struct scsi_device *sdev = sdkp->device; 666 u8 cdb[12] = { 0, }; 667 int ret; 668 669 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 670 cdb[1] = secp; 671 put_unaligned_be16(spsp, &cdb[2]); 672 put_unaligned_be32(len, &cdb[6]); 673 674 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 675 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0, 676 RQF_PM, NULL); 677 return ret <= 0 ? ret : -EIO; 678 } 679 #endif /* CONFIG_BLK_SED_OPAL */ 680 681 /* 682 * Look up the DIX operation based on whether the command is read or 683 * write and whether dix and dif are enabled. 684 */ 685 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 686 { 687 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 688 static const unsigned int ops[] = { /* wrt dix dif */ 689 SCSI_PROT_NORMAL, /* 0 0 0 */ 690 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 691 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 692 SCSI_PROT_READ_PASS, /* 0 1 1 */ 693 SCSI_PROT_NORMAL, /* 1 0 0 */ 694 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 695 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 696 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 697 }; 698 699 return ops[write << 2 | dix << 1 | dif]; 700 } 701 702 /* 703 * Returns a mask of the protection flags that are valid for a given DIX 704 * operation. 705 */ 706 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 707 { 708 static const unsigned int flag_mask[] = { 709 [SCSI_PROT_NORMAL] = 0, 710 711 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 712 SCSI_PROT_GUARD_CHECK | 713 SCSI_PROT_REF_CHECK | 714 SCSI_PROT_REF_INCREMENT, 715 716 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 717 SCSI_PROT_IP_CHECKSUM, 718 719 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 720 SCSI_PROT_GUARD_CHECK | 721 SCSI_PROT_REF_CHECK | 722 SCSI_PROT_REF_INCREMENT | 723 SCSI_PROT_IP_CHECKSUM, 724 725 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 726 SCSI_PROT_REF_INCREMENT, 727 728 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 729 SCSI_PROT_REF_CHECK | 730 SCSI_PROT_REF_INCREMENT | 731 SCSI_PROT_IP_CHECKSUM, 732 733 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 734 SCSI_PROT_GUARD_CHECK | 735 SCSI_PROT_REF_CHECK | 736 SCSI_PROT_REF_INCREMENT | 737 SCSI_PROT_IP_CHECKSUM, 738 }; 739 740 return flag_mask[prot_op]; 741 } 742 743 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 744 unsigned int dix, unsigned int dif) 745 { 746 struct request *rq = scsi_cmd_to_rq(scmd); 747 struct bio *bio = rq->bio; 748 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 749 unsigned int protect = 0; 750 751 if (dix) { /* DIX Type 0, 1, 2, 3 */ 752 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 753 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 754 755 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 756 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 757 } 758 759 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 760 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 761 762 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 763 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 764 } 765 766 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 767 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 768 769 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 770 protect = 3 << 5; /* Disable target PI checking */ 771 else 772 protect = 1 << 5; /* Enable target PI checking */ 773 } 774 775 scsi_set_prot_op(scmd, prot_op); 776 scsi_set_prot_type(scmd, dif); 777 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 778 779 return protect; 780 } 781 782 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 783 { 784 struct request_queue *q = sdkp->disk->queue; 785 unsigned int logical_block_size = sdkp->device->sector_size; 786 unsigned int max_blocks = 0; 787 788 q->limits.discard_alignment = 789 sdkp->unmap_alignment * logical_block_size; 790 q->limits.discard_granularity = 791 max(sdkp->physical_block_size, 792 sdkp->unmap_granularity * logical_block_size); 793 sdkp->provisioning_mode = mode; 794 795 switch (mode) { 796 797 case SD_LBP_FULL: 798 case SD_LBP_DISABLE: 799 blk_queue_max_discard_sectors(q, 0); 800 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 801 return; 802 803 case SD_LBP_UNMAP: 804 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 805 (u32)SD_MAX_WS16_BLOCKS); 806 break; 807 808 case SD_LBP_WS16: 809 if (sdkp->device->unmap_limit_for_ws) 810 max_blocks = sdkp->max_unmap_blocks; 811 else 812 max_blocks = sdkp->max_ws_blocks; 813 814 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 815 break; 816 817 case SD_LBP_WS10: 818 if (sdkp->device->unmap_limit_for_ws) 819 max_blocks = sdkp->max_unmap_blocks; 820 else 821 max_blocks = sdkp->max_ws_blocks; 822 823 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 824 break; 825 826 case SD_LBP_ZERO: 827 max_blocks = min_not_zero(sdkp->max_ws_blocks, 828 (u32)SD_MAX_WS10_BLOCKS); 829 break; 830 } 831 832 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 833 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 834 } 835 836 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 837 { 838 struct scsi_device *sdp = cmd->device; 839 struct request *rq = scsi_cmd_to_rq(cmd); 840 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 841 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 842 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 843 unsigned int data_len = 24; 844 char *buf; 845 846 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 847 if (!rq->special_vec.bv_page) 848 return BLK_STS_RESOURCE; 849 clear_highpage(rq->special_vec.bv_page); 850 rq->special_vec.bv_offset = 0; 851 rq->special_vec.bv_len = data_len; 852 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 853 854 cmd->cmd_len = 10; 855 cmd->cmnd[0] = UNMAP; 856 cmd->cmnd[8] = 24; 857 858 buf = bvec_virt(&rq->special_vec); 859 put_unaligned_be16(6 + 16, &buf[0]); 860 put_unaligned_be16(16, &buf[2]); 861 put_unaligned_be64(lba, &buf[8]); 862 put_unaligned_be32(nr_blocks, &buf[16]); 863 864 cmd->allowed = sdkp->max_retries; 865 cmd->transfersize = data_len; 866 rq->timeout = SD_TIMEOUT; 867 868 return scsi_alloc_sgtables(cmd); 869 } 870 871 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 872 bool unmap) 873 { 874 struct scsi_device *sdp = cmd->device; 875 struct request *rq = scsi_cmd_to_rq(cmd); 876 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 877 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 878 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 879 u32 data_len = sdp->sector_size; 880 881 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 882 if (!rq->special_vec.bv_page) 883 return BLK_STS_RESOURCE; 884 clear_highpage(rq->special_vec.bv_page); 885 rq->special_vec.bv_offset = 0; 886 rq->special_vec.bv_len = data_len; 887 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 888 889 cmd->cmd_len = 16; 890 cmd->cmnd[0] = WRITE_SAME_16; 891 if (unmap) 892 cmd->cmnd[1] = 0x8; /* UNMAP */ 893 put_unaligned_be64(lba, &cmd->cmnd[2]); 894 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 895 896 cmd->allowed = sdkp->max_retries; 897 cmd->transfersize = data_len; 898 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 899 900 return scsi_alloc_sgtables(cmd); 901 } 902 903 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 904 bool unmap) 905 { 906 struct scsi_device *sdp = cmd->device; 907 struct request *rq = scsi_cmd_to_rq(cmd); 908 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 909 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 910 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 911 u32 data_len = sdp->sector_size; 912 913 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 914 if (!rq->special_vec.bv_page) 915 return BLK_STS_RESOURCE; 916 clear_highpage(rq->special_vec.bv_page); 917 rq->special_vec.bv_offset = 0; 918 rq->special_vec.bv_len = data_len; 919 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 920 921 cmd->cmd_len = 10; 922 cmd->cmnd[0] = WRITE_SAME; 923 if (unmap) 924 cmd->cmnd[1] = 0x8; /* UNMAP */ 925 put_unaligned_be32(lba, &cmd->cmnd[2]); 926 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 927 928 cmd->allowed = sdkp->max_retries; 929 cmd->transfersize = data_len; 930 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 931 932 return scsi_alloc_sgtables(cmd); 933 } 934 935 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 936 { 937 struct request *rq = scsi_cmd_to_rq(cmd); 938 struct scsi_device *sdp = cmd->device; 939 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 940 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 941 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 942 943 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 944 switch (sdkp->zeroing_mode) { 945 case SD_ZERO_WS16_UNMAP: 946 return sd_setup_write_same16_cmnd(cmd, true); 947 case SD_ZERO_WS10_UNMAP: 948 return sd_setup_write_same10_cmnd(cmd, true); 949 } 950 } 951 952 if (sdp->no_write_same) { 953 rq->rq_flags |= RQF_QUIET; 954 return BLK_STS_TARGET; 955 } 956 957 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 958 return sd_setup_write_same16_cmnd(cmd, false); 959 960 return sd_setup_write_same10_cmnd(cmd, false); 961 } 962 963 static void sd_config_write_same(struct scsi_disk *sdkp) 964 { 965 struct request_queue *q = sdkp->disk->queue; 966 unsigned int logical_block_size = sdkp->device->sector_size; 967 968 if (sdkp->device->no_write_same) { 969 sdkp->max_ws_blocks = 0; 970 goto out; 971 } 972 973 /* Some devices can not handle block counts above 0xffff despite 974 * supporting WRITE SAME(16). Consequently we default to 64k 975 * blocks per I/O unless the device explicitly advertises a 976 * bigger limit. 977 */ 978 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 979 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 980 (u32)SD_MAX_WS16_BLOCKS); 981 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 982 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 983 (u32)SD_MAX_WS10_BLOCKS); 984 else { 985 sdkp->device->no_write_same = 1; 986 sdkp->max_ws_blocks = 0; 987 } 988 989 if (sdkp->lbprz && sdkp->lbpws) 990 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 991 else if (sdkp->lbprz && sdkp->lbpws10) 992 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 993 else if (sdkp->max_ws_blocks) 994 sdkp->zeroing_mode = SD_ZERO_WS; 995 else 996 sdkp->zeroing_mode = SD_ZERO_WRITE; 997 998 if (sdkp->max_ws_blocks && 999 sdkp->physical_block_size > logical_block_size) { 1000 /* 1001 * Reporting a maximum number of blocks that is not aligned 1002 * on the device physical size would cause a large write same 1003 * request to be split into physically unaligned chunks by 1004 * __blkdev_issue_write_zeroes() even if the caller of this 1005 * functions took care to align the large request. So make sure 1006 * the maximum reported is aligned to the device physical block 1007 * size. This is only an optional optimization for regular 1008 * disks, but this is mandatory to avoid failure of large write 1009 * same requests directed at sequential write required zones of 1010 * host-managed ZBC disks. 1011 */ 1012 sdkp->max_ws_blocks = 1013 round_down(sdkp->max_ws_blocks, 1014 bytes_to_logical(sdkp->device, 1015 sdkp->physical_block_size)); 1016 } 1017 1018 out: 1019 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1020 (logical_block_size >> 9)); 1021 } 1022 1023 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1024 { 1025 struct request *rq = scsi_cmd_to_rq(cmd); 1026 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1027 1028 /* flush requests don't perform I/O, zero the S/G table */ 1029 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1030 1031 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1032 cmd->cmd_len = 10; 1033 cmd->transfersize = 0; 1034 cmd->allowed = sdkp->max_retries; 1035 1036 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1037 return BLK_STS_OK; 1038 } 1039 1040 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1041 sector_t lba, unsigned int nr_blocks, 1042 unsigned char flags) 1043 { 1044 cmd->cmd_len = SD_EXT_CDB_SIZE; 1045 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1046 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1047 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1048 cmd->cmnd[10] = flags; 1049 put_unaligned_be64(lba, &cmd->cmnd[12]); 1050 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1051 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1052 1053 return BLK_STS_OK; 1054 } 1055 1056 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1057 sector_t lba, unsigned int nr_blocks, 1058 unsigned char flags) 1059 { 1060 cmd->cmd_len = 16; 1061 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1062 cmd->cmnd[1] = flags; 1063 cmd->cmnd[14] = 0; 1064 cmd->cmnd[15] = 0; 1065 put_unaligned_be64(lba, &cmd->cmnd[2]); 1066 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1067 1068 return BLK_STS_OK; 1069 } 1070 1071 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1072 sector_t lba, unsigned int nr_blocks, 1073 unsigned char flags) 1074 { 1075 cmd->cmd_len = 10; 1076 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1077 cmd->cmnd[1] = flags; 1078 cmd->cmnd[6] = 0; 1079 cmd->cmnd[9] = 0; 1080 put_unaligned_be32(lba, &cmd->cmnd[2]); 1081 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1082 1083 return BLK_STS_OK; 1084 } 1085 1086 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1087 sector_t lba, unsigned int nr_blocks, 1088 unsigned char flags) 1089 { 1090 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1091 if (WARN_ON_ONCE(nr_blocks == 0)) 1092 return BLK_STS_IOERR; 1093 1094 if (unlikely(flags & 0x8)) { 1095 /* 1096 * This happens only if this drive failed 10byte rw 1097 * command with ILLEGAL_REQUEST during operation and 1098 * thus turned off use_10_for_rw. 1099 */ 1100 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1101 return BLK_STS_IOERR; 1102 } 1103 1104 cmd->cmd_len = 6; 1105 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1106 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1107 cmd->cmnd[2] = (lba >> 8) & 0xff; 1108 cmd->cmnd[3] = lba & 0xff; 1109 cmd->cmnd[4] = nr_blocks; 1110 cmd->cmnd[5] = 0; 1111 1112 return BLK_STS_OK; 1113 } 1114 1115 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1116 { 1117 struct request *rq = scsi_cmd_to_rq(cmd); 1118 struct scsi_device *sdp = cmd->device; 1119 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1120 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1121 sector_t threshold; 1122 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1123 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1124 bool write = rq_data_dir(rq) == WRITE; 1125 unsigned char protect, fua; 1126 blk_status_t ret; 1127 unsigned int dif; 1128 bool dix; 1129 1130 ret = scsi_alloc_sgtables(cmd); 1131 if (ret != BLK_STS_OK) 1132 return ret; 1133 1134 ret = BLK_STS_IOERR; 1135 if (!scsi_device_online(sdp) || sdp->changed) { 1136 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1137 goto fail; 1138 } 1139 1140 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1141 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1142 goto fail; 1143 } 1144 1145 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1146 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1147 goto fail; 1148 } 1149 1150 /* 1151 * Some SD card readers can't handle accesses which touch the 1152 * last one or two logical blocks. Split accesses as needed. 1153 */ 1154 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1155 1156 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1157 if (lba < threshold) { 1158 /* Access up to the threshold but not beyond */ 1159 nr_blocks = threshold - lba; 1160 } else { 1161 /* Access only a single logical block */ 1162 nr_blocks = 1; 1163 } 1164 } 1165 1166 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1167 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1168 if (ret) 1169 goto fail; 1170 } 1171 1172 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1173 dix = scsi_prot_sg_count(cmd); 1174 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1175 1176 if (dif || dix) 1177 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1178 else 1179 protect = 0; 1180 1181 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1182 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1183 protect | fua); 1184 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1185 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1186 protect | fua); 1187 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1188 sdp->use_10_for_rw || protect) { 1189 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1190 protect | fua); 1191 } else { 1192 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1193 protect | fua); 1194 } 1195 1196 if (unlikely(ret != BLK_STS_OK)) 1197 goto fail; 1198 1199 /* 1200 * We shouldn't disconnect in the middle of a sector, so with a dumb 1201 * host adapter, it's safe to assume that we can at least transfer 1202 * this many bytes between each connect / disconnect. 1203 */ 1204 cmd->transfersize = sdp->sector_size; 1205 cmd->underflow = nr_blocks << 9; 1206 cmd->allowed = sdkp->max_retries; 1207 cmd->sdb.length = nr_blocks * sdp->sector_size; 1208 1209 SCSI_LOG_HLQUEUE(1, 1210 scmd_printk(KERN_INFO, cmd, 1211 "%s: block=%llu, count=%d\n", __func__, 1212 (unsigned long long)blk_rq_pos(rq), 1213 blk_rq_sectors(rq))); 1214 SCSI_LOG_HLQUEUE(2, 1215 scmd_printk(KERN_INFO, cmd, 1216 "%s %d/%u 512 byte blocks.\n", 1217 write ? "writing" : "reading", nr_blocks, 1218 blk_rq_sectors(rq))); 1219 1220 /* 1221 * This indicates that the command is ready from our end to be queued. 1222 */ 1223 return BLK_STS_OK; 1224 fail: 1225 scsi_free_sgtables(cmd); 1226 return ret; 1227 } 1228 1229 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1230 { 1231 struct request *rq = scsi_cmd_to_rq(cmd); 1232 1233 switch (req_op(rq)) { 1234 case REQ_OP_DISCARD: 1235 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1236 case SD_LBP_UNMAP: 1237 return sd_setup_unmap_cmnd(cmd); 1238 case SD_LBP_WS16: 1239 return sd_setup_write_same16_cmnd(cmd, true); 1240 case SD_LBP_WS10: 1241 return sd_setup_write_same10_cmnd(cmd, true); 1242 case SD_LBP_ZERO: 1243 return sd_setup_write_same10_cmnd(cmd, false); 1244 default: 1245 return BLK_STS_TARGET; 1246 } 1247 case REQ_OP_WRITE_ZEROES: 1248 return sd_setup_write_zeroes_cmnd(cmd); 1249 case REQ_OP_FLUSH: 1250 return sd_setup_flush_cmnd(cmd); 1251 case REQ_OP_READ: 1252 case REQ_OP_WRITE: 1253 case REQ_OP_ZONE_APPEND: 1254 return sd_setup_read_write_cmnd(cmd); 1255 case REQ_OP_ZONE_RESET: 1256 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1257 false); 1258 case REQ_OP_ZONE_RESET_ALL: 1259 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1260 true); 1261 case REQ_OP_ZONE_OPEN: 1262 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1263 case REQ_OP_ZONE_CLOSE: 1264 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1265 case REQ_OP_ZONE_FINISH: 1266 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1267 default: 1268 WARN_ON_ONCE(1); 1269 return BLK_STS_NOTSUPP; 1270 } 1271 } 1272 1273 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1274 { 1275 struct request *rq = scsi_cmd_to_rq(SCpnt); 1276 1277 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1278 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1279 } 1280 1281 static bool sd_need_revalidate(struct block_device *bdev, 1282 struct scsi_disk *sdkp) 1283 { 1284 if (sdkp->device->removable || sdkp->write_prot) { 1285 if (bdev_check_media_change(bdev)) 1286 return true; 1287 } 1288 1289 /* 1290 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1291 * nothing to do with partitions, BLKRRPART is used to force a full 1292 * revalidate after things like a format for historical reasons. 1293 */ 1294 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 1295 } 1296 1297 /** 1298 * sd_open - open a scsi disk device 1299 * @bdev: Block device of the scsi disk to open 1300 * @mode: FMODE_* mask 1301 * 1302 * Returns 0 if successful. Returns a negated errno value in case 1303 * of error. 1304 * 1305 * Note: This can be called from a user context (e.g. fsck(1) ) 1306 * or from within the kernel (e.g. as a result of a mount(1) ). 1307 * In the latter case @inode and @filp carry an abridged amount 1308 * of information as noted above. 1309 * 1310 * Locking: called with bdev->bd_disk->open_mutex held. 1311 **/ 1312 static int sd_open(struct block_device *bdev, fmode_t mode) 1313 { 1314 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1315 struct scsi_device *sdev = sdkp->device; 1316 int retval; 1317 1318 if (scsi_device_get(sdev)) 1319 return -ENXIO; 1320 1321 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1322 1323 /* 1324 * If the device is in error recovery, wait until it is done. 1325 * If the device is offline, then disallow any access to it. 1326 */ 1327 retval = -ENXIO; 1328 if (!scsi_block_when_processing_errors(sdev)) 1329 goto error_out; 1330 1331 if (sd_need_revalidate(bdev, sdkp)) 1332 sd_revalidate_disk(bdev->bd_disk); 1333 1334 /* 1335 * If the drive is empty, just let the open fail. 1336 */ 1337 retval = -ENOMEDIUM; 1338 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1339 goto error_out; 1340 1341 /* 1342 * If the device has the write protect tab set, have the open fail 1343 * if the user expects to be able to write to the thing. 1344 */ 1345 retval = -EROFS; 1346 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1347 goto error_out; 1348 1349 /* 1350 * It is possible that the disk changing stuff resulted in 1351 * the device being taken offline. If this is the case, 1352 * report this to the user, and don't pretend that the 1353 * open actually succeeded. 1354 */ 1355 retval = -ENXIO; 1356 if (!scsi_device_online(sdev)) 1357 goto error_out; 1358 1359 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1360 if (scsi_block_when_processing_errors(sdev)) 1361 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1362 } 1363 1364 return 0; 1365 1366 error_out: 1367 scsi_device_put(sdev); 1368 return retval; 1369 } 1370 1371 /** 1372 * sd_release - invoked when the (last) close(2) is called on this 1373 * scsi disk. 1374 * @disk: disk to release 1375 * @mode: FMODE_* mask 1376 * 1377 * Returns 0. 1378 * 1379 * Note: may block (uninterruptible) if error recovery is underway 1380 * on this disk. 1381 * 1382 * Locking: called with bdev->bd_disk->open_mutex held. 1383 **/ 1384 static void sd_release(struct gendisk *disk, fmode_t mode) 1385 { 1386 struct scsi_disk *sdkp = scsi_disk(disk); 1387 struct scsi_device *sdev = sdkp->device; 1388 1389 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1390 1391 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1392 if (scsi_block_when_processing_errors(sdev)) 1393 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1394 } 1395 1396 scsi_device_put(sdev); 1397 } 1398 1399 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1400 { 1401 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1402 struct scsi_device *sdp = sdkp->device; 1403 struct Scsi_Host *host = sdp->host; 1404 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1405 int diskinfo[4]; 1406 1407 /* default to most commonly used values */ 1408 diskinfo[0] = 0x40; /* 1 << 6 */ 1409 diskinfo[1] = 0x20; /* 1 << 5 */ 1410 diskinfo[2] = capacity >> 11; 1411 1412 /* override with calculated, extended default, or driver values */ 1413 if (host->hostt->bios_param) 1414 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1415 else 1416 scsicam_bios_param(bdev, capacity, diskinfo); 1417 1418 geo->heads = diskinfo[0]; 1419 geo->sectors = diskinfo[1]; 1420 geo->cylinders = diskinfo[2]; 1421 return 0; 1422 } 1423 1424 /** 1425 * sd_ioctl - process an ioctl 1426 * @bdev: target block device 1427 * @mode: FMODE_* mask 1428 * @cmd: ioctl command number 1429 * @arg: this is third argument given to ioctl(2) system call. 1430 * Often contains a pointer. 1431 * 1432 * Returns 0 if successful (some ioctls return positive numbers on 1433 * success as well). Returns a negated errno value in case of error. 1434 * 1435 * Note: most ioctls are forward onto the block subsystem or further 1436 * down in the scsi subsystem. 1437 **/ 1438 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1439 unsigned int cmd, unsigned long arg) 1440 { 1441 struct gendisk *disk = bdev->bd_disk; 1442 struct scsi_disk *sdkp = scsi_disk(disk); 1443 struct scsi_device *sdp = sdkp->device; 1444 void __user *p = (void __user *)arg; 1445 int error; 1446 1447 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1448 "cmd=0x%x\n", disk->disk_name, cmd)); 1449 1450 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1451 return -ENOIOCTLCMD; 1452 1453 /* 1454 * If we are in the middle of error recovery, don't let anyone 1455 * else try and use this device. Also, if error recovery fails, it 1456 * may try and take the device offline, in which case all further 1457 * access to the device is prohibited. 1458 */ 1459 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1460 (mode & FMODE_NDELAY) != 0); 1461 if (error) 1462 return error; 1463 1464 if (is_sed_ioctl(cmd)) 1465 return sed_ioctl(sdkp->opal_dev, cmd, p); 1466 return scsi_ioctl(sdp, mode, cmd, p); 1467 } 1468 1469 static void set_media_not_present(struct scsi_disk *sdkp) 1470 { 1471 if (sdkp->media_present) 1472 sdkp->device->changed = 1; 1473 1474 if (sdkp->device->removable) { 1475 sdkp->media_present = 0; 1476 sdkp->capacity = 0; 1477 } 1478 } 1479 1480 static int media_not_present(struct scsi_disk *sdkp, 1481 struct scsi_sense_hdr *sshdr) 1482 { 1483 if (!scsi_sense_valid(sshdr)) 1484 return 0; 1485 1486 /* not invoked for commands that could return deferred errors */ 1487 switch (sshdr->sense_key) { 1488 case UNIT_ATTENTION: 1489 case NOT_READY: 1490 /* medium not present */ 1491 if (sshdr->asc == 0x3A) { 1492 set_media_not_present(sdkp); 1493 return 1; 1494 } 1495 } 1496 return 0; 1497 } 1498 1499 /** 1500 * sd_check_events - check media events 1501 * @disk: kernel device descriptor 1502 * @clearing: disk events currently being cleared 1503 * 1504 * Returns mask of DISK_EVENT_*. 1505 * 1506 * Note: this function is invoked from the block subsystem. 1507 **/ 1508 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1509 { 1510 struct scsi_disk *sdkp = disk->private_data; 1511 struct scsi_device *sdp; 1512 int retval; 1513 bool disk_changed; 1514 1515 if (!sdkp) 1516 return 0; 1517 1518 sdp = sdkp->device; 1519 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1520 1521 /* 1522 * If the device is offline, don't send any commands - just pretend as 1523 * if the command failed. If the device ever comes back online, we 1524 * can deal with it then. It is only because of unrecoverable errors 1525 * that we would ever take a device offline in the first place. 1526 */ 1527 if (!scsi_device_online(sdp)) { 1528 set_media_not_present(sdkp); 1529 goto out; 1530 } 1531 1532 /* 1533 * Using TEST_UNIT_READY enables differentiation between drive with 1534 * no cartridge loaded - NOT READY, drive with changed cartridge - 1535 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1536 * 1537 * Drives that auto spin down. eg iomega jaz 1G, will be started 1538 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1539 * sd_revalidate() is called. 1540 */ 1541 if (scsi_block_when_processing_errors(sdp)) { 1542 struct scsi_sense_hdr sshdr = { 0, }; 1543 1544 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1545 &sshdr); 1546 1547 /* failed to execute TUR, assume media not present */ 1548 if (retval < 0 || host_byte(retval)) { 1549 set_media_not_present(sdkp); 1550 goto out; 1551 } 1552 1553 if (media_not_present(sdkp, &sshdr)) 1554 goto out; 1555 } 1556 1557 /* 1558 * For removable scsi disk we have to recognise the presence 1559 * of a disk in the drive. 1560 */ 1561 if (!sdkp->media_present) 1562 sdp->changed = 1; 1563 sdkp->media_present = 1; 1564 out: 1565 /* 1566 * sdp->changed is set under the following conditions: 1567 * 1568 * Medium present state has changed in either direction. 1569 * Device has indicated UNIT_ATTENTION. 1570 */ 1571 disk_changed = sdp->changed; 1572 sdp->changed = 0; 1573 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1574 } 1575 1576 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1577 { 1578 int retries, res; 1579 struct scsi_device *sdp = sdkp->device; 1580 const int timeout = sdp->request_queue->rq_timeout 1581 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1582 struct scsi_sense_hdr my_sshdr; 1583 1584 if (!scsi_device_online(sdp)) 1585 return -ENODEV; 1586 1587 /* caller might not be interested in sense, but we need it */ 1588 if (!sshdr) 1589 sshdr = &my_sshdr; 1590 1591 for (retries = 3; retries > 0; --retries) { 1592 unsigned char cmd[10] = { 0 }; 1593 1594 cmd[0] = SYNCHRONIZE_CACHE; 1595 /* 1596 * Leave the rest of the command zero to indicate 1597 * flush everything. 1598 */ 1599 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1600 timeout, sdkp->max_retries, 0, RQF_PM, NULL); 1601 if (res == 0) 1602 break; 1603 } 1604 1605 if (res) { 1606 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1607 1608 if (res < 0) 1609 return res; 1610 1611 if (scsi_status_is_check_condition(res) && 1612 scsi_sense_valid(sshdr)) { 1613 sd_print_sense_hdr(sdkp, sshdr); 1614 1615 /* we need to evaluate the error return */ 1616 if (sshdr->asc == 0x3a || /* medium not present */ 1617 sshdr->asc == 0x20 || /* invalid command */ 1618 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1619 /* this is no error here */ 1620 return 0; 1621 } 1622 1623 switch (host_byte(res)) { 1624 /* ignore errors due to racing a disconnection */ 1625 case DID_BAD_TARGET: 1626 case DID_NO_CONNECT: 1627 return 0; 1628 /* signal the upper layer it might try again */ 1629 case DID_BUS_BUSY: 1630 case DID_IMM_RETRY: 1631 case DID_REQUEUE: 1632 case DID_SOFT_ERROR: 1633 return -EBUSY; 1634 default: 1635 return -EIO; 1636 } 1637 } 1638 return 0; 1639 } 1640 1641 static void sd_rescan(struct device *dev) 1642 { 1643 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1644 1645 sd_revalidate_disk(sdkp->disk); 1646 } 1647 1648 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1649 enum blk_unique_id type) 1650 { 1651 struct scsi_device *sdev = scsi_disk(disk)->device; 1652 const struct scsi_vpd *vpd; 1653 const unsigned char *d; 1654 int ret = -ENXIO, len; 1655 1656 rcu_read_lock(); 1657 vpd = rcu_dereference(sdev->vpd_pg83); 1658 if (!vpd) 1659 goto out_unlock; 1660 1661 ret = -EINVAL; 1662 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1663 /* we only care about designators with LU association */ 1664 if (((d[1] >> 4) & 0x3) != 0x00) 1665 continue; 1666 if ((d[1] & 0xf) != type) 1667 continue; 1668 1669 /* 1670 * Only exit early if a 16-byte descriptor was found. Otherwise 1671 * keep looking as one with more entropy might still show up. 1672 */ 1673 len = d[3]; 1674 if (len != 8 && len != 12 && len != 16) 1675 continue; 1676 ret = len; 1677 memcpy(id, d + 4, len); 1678 if (len == 16) 1679 break; 1680 } 1681 out_unlock: 1682 rcu_read_unlock(); 1683 return ret; 1684 } 1685 1686 static char sd_pr_type(enum pr_type type) 1687 { 1688 switch (type) { 1689 case PR_WRITE_EXCLUSIVE: 1690 return 0x01; 1691 case PR_EXCLUSIVE_ACCESS: 1692 return 0x03; 1693 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1694 return 0x05; 1695 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1696 return 0x06; 1697 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1698 return 0x07; 1699 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1700 return 0x08; 1701 default: 1702 return 0; 1703 } 1704 }; 1705 1706 static int sd_pr_command(struct block_device *bdev, u8 sa, 1707 u64 key, u64 sa_key, u8 type, u8 flags) 1708 { 1709 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1710 struct scsi_device *sdev = sdkp->device; 1711 struct scsi_sense_hdr sshdr; 1712 int result; 1713 u8 cmd[16] = { 0, }; 1714 u8 data[24] = { 0, }; 1715 1716 cmd[0] = PERSISTENT_RESERVE_OUT; 1717 cmd[1] = sa; 1718 cmd[2] = type; 1719 put_unaligned_be32(sizeof(data), &cmd[5]); 1720 1721 put_unaligned_be64(key, &data[0]); 1722 put_unaligned_be64(sa_key, &data[8]); 1723 data[20] = flags; 1724 1725 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1726 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL); 1727 1728 if (scsi_status_is_check_condition(result) && 1729 scsi_sense_valid(&sshdr)) { 1730 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1731 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1732 } 1733 1734 return result; 1735 } 1736 1737 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1738 u32 flags) 1739 { 1740 if (flags & ~PR_FL_IGNORE_KEY) 1741 return -EOPNOTSUPP; 1742 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1743 old_key, new_key, 0, 1744 (1 << 0) /* APTPL */); 1745 } 1746 1747 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1748 u32 flags) 1749 { 1750 if (flags) 1751 return -EOPNOTSUPP; 1752 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1753 } 1754 1755 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1756 { 1757 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1758 } 1759 1760 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1761 enum pr_type type, bool abort) 1762 { 1763 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1764 sd_pr_type(type), 0); 1765 } 1766 1767 static int sd_pr_clear(struct block_device *bdev, u64 key) 1768 { 1769 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1770 } 1771 1772 static const struct pr_ops sd_pr_ops = { 1773 .pr_register = sd_pr_register, 1774 .pr_reserve = sd_pr_reserve, 1775 .pr_release = sd_pr_release, 1776 .pr_preempt = sd_pr_preempt, 1777 .pr_clear = sd_pr_clear, 1778 }; 1779 1780 static void scsi_disk_free_disk(struct gendisk *disk) 1781 { 1782 struct scsi_disk *sdkp = scsi_disk(disk); 1783 1784 put_device(&sdkp->disk_dev); 1785 } 1786 1787 static const struct block_device_operations sd_fops = { 1788 .owner = THIS_MODULE, 1789 .open = sd_open, 1790 .release = sd_release, 1791 .ioctl = sd_ioctl, 1792 .getgeo = sd_getgeo, 1793 .compat_ioctl = blkdev_compat_ptr_ioctl, 1794 .check_events = sd_check_events, 1795 .unlock_native_capacity = sd_unlock_native_capacity, 1796 .report_zones = sd_zbc_report_zones, 1797 .get_unique_id = sd_get_unique_id, 1798 .free_disk = scsi_disk_free_disk, 1799 .pr_ops = &sd_pr_ops, 1800 }; 1801 1802 /** 1803 * sd_eh_reset - reset error handling callback 1804 * @scmd: sd-issued command that has failed 1805 * 1806 * This function is called by the SCSI midlayer before starting 1807 * SCSI EH. When counting medium access failures we have to be 1808 * careful to register it only only once per device and SCSI EH run; 1809 * there might be several timed out commands which will cause the 1810 * 'max_medium_access_timeouts' counter to trigger after the first 1811 * SCSI EH run already and set the device to offline. 1812 * So this function resets the internal counter before starting SCSI EH. 1813 **/ 1814 static void sd_eh_reset(struct scsi_cmnd *scmd) 1815 { 1816 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1817 1818 /* New SCSI EH run, reset gate variable */ 1819 sdkp->ignore_medium_access_errors = false; 1820 } 1821 1822 /** 1823 * sd_eh_action - error handling callback 1824 * @scmd: sd-issued command that has failed 1825 * @eh_disp: The recovery disposition suggested by the midlayer 1826 * 1827 * This function is called by the SCSI midlayer upon completion of an 1828 * error test command (currently TEST UNIT READY). The result of sending 1829 * the eh command is passed in eh_disp. We're looking for devices that 1830 * fail medium access commands but are OK with non access commands like 1831 * test unit ready (so wrongly see the device as having a successful 1832 * recovery) 1833 **/ 1834 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1835 { 1836 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1837 struct scsi_device *sdev = scmd->device; 1838 1839 if (!scsi_device_online(sdev) || 1840 !scsi_medium_access_command(scmd) || 1841 host_byte(scmd->result) != DID_TIME_OUT || 1842 eh_disp != SUCCESS) 1843 return eh_disp; 1844 1845 /* 1846 * The device has timed out executing a medium access command. 1847 * However, the TEST UNIT READY command sent during error 1848 * handling completed successfully. Either the device is in the 1849 * process of recovering or has it suffered an internal failure 1850 * that prevents access to the storage medium. 1851 */ 1852 if (!sdkp->ignore_medium_access_errors) { 1853 sdkp->medium_access_timed_out++; 1854 sdkp->ignore_medium_access_errors = true; 1855 } 1856 1857 /* 1858 * If the device keeps failing read/write commands but TEST UNIT 1859 * READY always completes successfully we assume that medium 1860 * access is no longer possible and take the device offline. 1861 */ 1862 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1863 scmd_printk(KERN_ERR, scmd, 1864 "Medium access timeout failure. Offlining disk!\n"); 1865 mutex_lock(&sdev->state_mutex); 1866 scsi_device_set_state(sdev, SDEV_OFFLINE); 1867 mutex_unlock(&sdev->state_mutex); 1868 1869 return SUCCESS; 1870 } 1871 1872 return eh_disp; 1873 } 1874 1875 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1876 { 1877 struct request *req = scsi_cmd_to_rq(scmd); 1878 struct scsi_device *sdev = scmd->device; 1879 unsigned int transferred, good_bytes; 1880 u64 start_lba, end_lba, bad_lba; 1881 1882 /* 1883 * Some commands have a payload smaller than the device logical 1884 * block size (e.g. INQUIRY on a 4K disk). 1885 */ 1886 if (scsi_bufflen(scmd) <= sdev->sector_size) 1887 return 0; 1888 1889 /* Check if we have a 'bad_lba' information */ 1890 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1891 SCSI_SENSE_BUFFERSIZE, 1892 &bad_lba)) 1893 return 0; 1894 1895 /* 1896 * If the bad lba was reported incorrectly, we have no idea where 1897 * the error is. 1898 */ 1899 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1900 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1901 if (bad_lba < start_lba || bad_lba >= end_lba) 1902 return 0; 1903 1904 /* 1905 * resid is optional but mostly filled in. When it's unused, 1906 * its value is zero, so we assume the whole buffer transferred 1907 */ 1908 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1909 1910 /* This computation should always be done in terms of the 1911 * resolution of the device's medium. 1912 */ 1913 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1914 1915 return min(good_bytes, transferred); 1916 } 1917 1918 /** 1919 * sd_done - bottom half handler: called when the lower level 1920 * driver has completed (successfully or otherwise) a scsi command. 1921 * @SCpnt: mid-level's per command structure. 1922 * 1923 * Note: potentially run from within an ISR. Must not block. 1924 **/ 1925 static int sd_done(struct scsi_cmnd *SCpnt) 1926 { 1927 int result = SCpnt->result; 1928 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1929 unsigned int sector_size = SCpnt->device->sector_size; 1930 unsigned int resid; 1931 struct scsi_sense_hdr sshdr; 1932 struct request *req = scsi_cmd_to_rq(SCpnt); 1933 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 1934 int sense_valid = 0; 1935 int sense_deferred = 0; 1936 1937 switch (req_op(req)) { 1938 case REQ_OP_DISCARD: 1939 case REQ_OP_WRITE_ZEROES: 1940 case REQ_OP_ZONE_RESET: 1941 case REQ_OP_ZONE_RESET_ALL: 1942 case REQ_OP_ZONE_OPEN: 1943 case REQ_OP_ZONE_CLOSE: 1944 case REQ_OP_ZONE_FINISH: 1945 if (!result) { 1946 good_bytes = blk_rq_bytes(req); 1947 scsi_set_resid(SCpnt, 0); 1948 } else { 1949 good_bytes = 0; 1950 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1951 } 1952 break; 1953 default: 1954 /* 1955 * In case of bogus fw or device, we could end up having 1956 * an unaligned partial completion. Check this here and force 1957 * alignment. 1958 */ 1959 resid = scsi_get_resid(SCpnt); 1960 if (resid & (sector_size - 1)) { 1961 sd_printk(KERN_INFO, sdkp, 1962 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 1963 resid, sector_size); 1964 scsi_print_command(SCpnt); 1965 resid = min(scsi_bufflen(SCpnt), 1966 round_up(resid, sector_size)); 1967 scsi_set_resid(SCpnt, resid); 1968 } 1969 } 1970 1971 if (result) { 1972 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1973 if (sense_valid) 1974 sense_deferred = scsi_sense_is_deferred(&sshdr); 1975 } 1976 sdkp->medium_access_timed_out = 0; 1977 1978 if (!scsi_status_is_check_condition(result) && 1979 (!sense_valid || sense_deferred)) 1980 goto out; 1981 1982 switch (sshdr.sense_key) { 1983 case HARDWARE_ERROR: 1984 case MEDIUM_ERROR: 1985 good_bytes = sd_completed_bytes(SCpnt); 1986 break; 1987 case RECOVERED_ERROR: 1988 good_bytes = scsi_bufflen(SCpnt); 1989 break; 1990 case NO_SENSE: 1991 /* This indicates a false check condition, so ignore it. An 1992 * unknown amount of data was transferred so treat it as an 1993 * error. 1994 */ 1995 SCpnt->result = 0; 1996 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1997 break; 1998 case ABORTED_COMMAND: 1999 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2000 good_bytes = sd_completed_bytes(SCpnt); 2001 break; 2002 case ILLEGAL_REQUEST: 2003 switch (sshdr.asc) { 2004 case 0x10: /* DIX: Host detected corruption */ 2005 good_bytes = sd_completed_bytes(SCpnt); 2006 break; 2007 case 0x20: /* INVALID COMMAND OPCODE */ 2008 case 0x24: /* INVALID FIELD IN CDB */ 2009 switch (SCpnt->cmnd[0]) { 2010 case UNMAP: 2011 sd_config_discard(sdkp, SD_LBP_DISABLE); 2012 break; 2013 case WRITE_SAME_16: 2014 case WRITE_SAME: 2015 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2016 sd_config_discard(sdkp, SD_LBP_DISABLE); 2017 } else { 2018 sdkp->device->no_write_same = 1; 2019 sd_config_write_same(sdkp); 2020 req->rq_flags |= RQF_QUIET; 2021 } 2022 break; 2023 } 2024 } 2025 break; 2026 default: 2027 break; 2028 } 2029 2030 out: 2031 if (sd_is_zoned(sdkp)) 2032 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2033 2034 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2035 "sd_done: completed %d of %d bytes\n", 2036 good_bytes, scsi_bufflen(SCpnt))); 2037 2038 return good_bytes; 2039 } 2040 2041 /* 2042 * spinup disk - called only in sd_revalidate_disk() 2043 */ 2044 static void 2045 sd_spinup_disk(struct scsi_disk *sdkp) 2046 { 2047 unsigned char cmd[10]; 2048 unsigned long spintime_expire = 0; 2049 int retries, spintime; 2050 unsigned int the_result; 2051 struct scsi_sense_hdr sshdr; 2052 int sense_valid = 0; 2053 2054 spintime = 0; 2055 2056 /* Spin up drives, as required. Only do this at boot time */ 2057 /* Spinup needs to be done for module loads too. */ 2058 do { 2059 retries = 0; 2060 2061 do { 2062 bool media_was_present = sdkp->media_present; 2063 2064 cmd[0] = TEST_UNIT_READY; 2065 memset((void *) &cmd[1], 0, 9); 2066 2067 the_result = scsi_execute_req(sdkp->device, cmd, 2068 DMA_NONE, NULL, 0, 2069 &sshdr, SD_TIMEOUT, 2070 sdkp->max_retries, NULL); 2071 2072 /* 2073 * If the drive has indicated to us that it 2074 * doesn't have any media in it, don't bother 2075 * with any more polling. 2076 */ 2077 if (media_not_present(sdkp, &sshdr)) { 2078 if (media_was_present) 2079 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); 2080 return; 2081 } 2082 2083 if (the_result) 2084 sense_valid = scsi_sense_valid(&sshdr); 2085 retries++; 2086 } while (retries < 3 && 2087 (!scsi_status_is_good(the_result) || 2088 (scsi_status_is_check_condition(the_result) && 2089 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2090 2091 if (!scsi_status_is_check_condition(the_result)) { 2092 /* no sense, TUR either succeeded or failed 2093 * with a status error */ 2094 if(!spintime && !scsi_status_is_good(the_result)) { 2095 sd_print_result(sdkp, "Test Unit Ready failed", 2096 the_result); 2097 } 2098 break; 2099 } 2100 2101 /* 2102 * The device does not want the automatic start to be issued. 2103 */ 2104 if (sdkp->device->no_start_on_add) 2105 break; 2106 2107 if (sense_valid && sshdr.sense_key == NOT_READY) { 2108 if (sshdr.asc == 4 && sshdr.ascq == 3) 2109 break; /* manual intervention required */ 2110 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2111 break; /* standby */ 2112 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2113 break; /* unavailable */ 2114 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2115 break; /* sanitize in progress */ 2116 /* 2117 * Issue command to spin up drive when not ready 2118 */ 2119 if (!spintime) { 2120 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2121 cmd[0] = START_STOP; 2122 cmd[1] = 1; /* Return immediately */ 2123 memset((void *) &cmd[2], 0, 8); 2124 cmd[4] = 1; /* Start spin cycle */ 2125 if (sdkp->device->start_stop_pwr_cond) 2126 cmd[4] |= 1 << 4; 2127 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2128 NULL, 0, &sshdr, 2129 SD_TIMEOUT, sdkp->max_retries, 2130 NULL); 2131 spintime_expire = jiffies + 100 * HZ; 2132 spintime = 1; 2133 } 2134 /* Wait 1 second for next try */ 2135 msleep(1000); 2136 printk(KERN_CONT "."); 2137 2138 /* 2139 * Wait for USB flash devices with slow firmware. 2140 * Yes, this sense key/ASC combination shouldn't 2141 * occur here. It's characteristic of these devices. 2142 */ 2143 } else if (sense_valid && 2144 sshdr.sense_key == UNIT_ATTENTION && 2145 sshdr.asc == 0x28) { 2146 if (!spintime) { 2147 spintime_expire = jiffies + 5 * HZ; 2148 spintime = 1; 2149 } 2150 /* Wait 1 second for next try */ 2151 msleep(1000); 2152 } else { 2153 /* we don't understand the sense code, so it's 2154 * probably pointless to loop */ 2155 if(!spintime) { 2156 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2157 sd_print_sense_hdr(sdkp, &sshdr); 2158 } 2159 break; 2160 } 2161 2162 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2163 2164 if (spintime) { 2165 if (scsi_status_is_good(the_result)) 2166 printk(KERN_CONT "ready\n"); 2167 else 2168 printk(KERN_CONT "not responding...\n"); 2169 } 2170 } 2171 2172 /* 2173 * Determine whether disk supports Data Integrity Field. 2174 */ 2175 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2176 { 2177 struct scsi_device *sdp = sdkp->device; 2178 u8 type; 2179 2180 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2181 sdkp->protection_type = 0; 2182 return 0; 2183 } 2184 2185 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2186 2187 if (type > T10_PI_TYPE3_PROTECTION) { 2188 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2189 " protection type %u. Disabling disk!\n", 2190 type); 2191 sdkp->protection_type = 0; 2192 return -ENODEV; 2193 } 2194 2195 sdkp->protection_type = type; 2196 2197 return 0; 2198 } 2199 2200 static void sd_config_protection(struct scsi_disk *sdkp) 2201 { 2202 struct scsi_device *sdp = sdkp->device; 2203 2204 if (!sdkp->first_scan) 2205 return; 2206 2207 sd_dif_config_host(sdkp); 2208 2209 if (!sdkp->protection_type) 2210 return; 2211 2212 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2213 sd_printk(KERN_NOTICE, sdkp, 2214 "Disabling DIF Type %u protection\n", 2215 sdkp->protection_type); 2216 sdkp->protection_type = 0; 2217 } 2218 2219 sd_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2220 sdkp->protection_type); 2221 } 2222 2223 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2224 struct scsi_sense_hdr *sshdr, int sense_valid, 2225 int the_result) 2226 { 2227 if (sense_valid) 2228 sd_print_sense_hdr(sdkp, sshdr); 2229 else 2230 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2231 2232 /* 2233 * Set dirty bit for removable devices if not ready - 2234 * sometimes drives will not report this properly. 2235 */ 2236 if (sdp->removable && 2237 sense_valid && sshdr->sense_key == NOT_READY) 2238 set_media_not_present(sdkp); 2239 2240 /* 2241 * We used to set media_present to 0 here to indicate no media 2242 * in the drive, but some drives fail read capacity even with 2243 * media present, so we can't do that. 2244 */ 2245 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2246 } 2247 2248 #define RC16_LEN 32 2249 #if RC16_LEN > SD_BUF_SIZE 2250 #error RC16_LEN must not be more than SD_BUF_SIZE 2251 #endif 2252 2253 #define READ_CAPACITY_RETRIES_ON_RESET 10 2254 2255 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2256 unsigned char *buffer) 2257 { 2258 unsigned char cmd[16]; 2259 struct scsi_sense_hdr sshdr; 2260 int sense_valid = 0; 2261 int the_result; 2262 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2263 unsigned int alignment; 2264 unsigned long long lba; 2265 unsigned sector_size; 2266 2267 if (sdp->no_read_capacity_16) 2268 return -EINVAL; 2269 2270 do { 2271 memset(cmd, 0, 16); 2272 cmd[0] = SERVICE_ACTION_IN_16; 2273 cmd[1] = SAI_READ_CAPACITY_16; 2274 cmd[13] = RC16_LEN; 2275 memset(buffer, 0, RC16_LEN); 2276 2277 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2278 buffer, RC16_LEN, &sshdr, 2279 SD_TIMEOUT, sdkp->max_retries, NULL); 2280 2281 if (media_not_present(sdkp, &sshdr)) 2282 return -ENODEV; 2283 2284 if (the_result > 0) { 2285 sense_valid = scsi_sense_valid(&sshdr); 2286 if (sense_valid && 2287 sshdr.sense_key == ILLEGAL_REQUEST && 2288 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2289 sshdr.ascq == 0x00) 2290 /* Invalid Command Operation Code or 2291 * Invalid Field in CDB, just retry 2292 * silently with RC10 */ 2293 return -EINVAL; 2294 if (sense_valid && 2295 sshdr.sense_key == UNIT_ATTENTION && 2296 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2297 /* Device reset might occur several times, 2298 * give it one more chance */ 2299 if (--reset_retries > 0) 2300 continue; 2301 } 2302 retries--; 2303 2304 } while (the_result && retries); 2305 2306 if (the_result) { 2307 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2308 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2309 return -EINVAL; 2310 } 2311 2312 sector_size = get_unaligned_be32(&buffer[8]); 2313 lba = get_unaligned_be64(&buffer[0]); 2314 2315 if (sd_read_protection_type(sdkp, buffer) < 0) { 2316 sdkp->capacity = 0; 2317 return -ENODEV; 2318 } 2319 2320 /* Logical blocks per physical block exponent */ 2321 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2322 2323 /* RC basis */ 2324 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2325 2326 /* Lowest aligned logical block */ 2327 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2328 blk_queue_alignment_offset(sdp->request_queue, alignment); 2329 if (alignment && sdkp->first_scan) 2330 sd_printk(KERN_NOTICE, sdkp, 2331 "physical block alignment offset: %u\n", alignment); 2332 2333 if (buffer[14] & 0x80) { /* LBPME */ 2334 sdkp->lbpme = 1; 2335 2336 if (buffer[14] & 0x40) /* LBPRZ */ 2337 sdkp->lbprz = 1; 2338 2339 sd_config_discard(sdkp, SD_LBP_WS16); 2340 } 2341 2342 sdkp->capacity = lba + 1; 2343 return sector_size; 2344 } 2345 2346 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2347 unsigned char *buffer) 2348 { 2349 unsigned char cmd[16]; 2350 struct scsi_sense_hdr sshdr; 2351 int sense_valid = 0; 2352 int the_result; 2353 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2354 sector_t lba; 2355 unsigned sector_size; 2356 2357 do { 2358 cmd[0] = READ_CAPACITY; 2359 memset(&cmd[1], 0, 9); 2360 memset(buffer, 0, 8); 2361 2362 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2363 buffer, 8, &sshdr, 2364 SD_TIMEOUT, sdkp->max_retries, NULL); 2365 2366 if (media_not_present(sdkp, &sshdr)) 2367 return -ENODEV; 2368 2369 if (the_result > 0) { 2370 sense_valid = scsi_sense_valid(&sshdr); 2371 if (sense_valid && 2372 sshdr.sense_key == UNIT_ATTENTION && 2373 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2374 /* Device reset might occur several times, 2375 * give it one more chance */ 2376 if (--reset_retries > 0) 2377 continue; 2378 } 2379 retries--; 2380 2381 } while (the_result && retries); 2382 2383 if (the_result) { 2384 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2385 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2386 return -EINVAL; 2387 } 2388 2389 sector_size = get_unaligned_be32(&buffer[4]); 2390 lba = get_unaligned_be32(&buffer[0]); 2391 2392 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2393 /* Some buggy (usb cardreader) devices return an lba of 2394 0xffffffff when the want to report a size of 0 (with 2395 which they really mean no media is present) */ 2396 sdkp->capacity = 0; 2397 sdkp->physical_block_size = sector_size; 2398 return sector_size; 2399 } 2400 2401 sdkp->capacity = lba + 1; 2402 sdkp->physical_block_size = sector_size; 2403 return sector_size; 2404 } 2405 2406 static int sd_try_rc16_first(struct scsi_device *sdp) 2407 { 2408 if (sdp->host->max_cmd_len < 16) 2409 return 0; 2410 if (sdp->try_rc_10_first) 2411 return 0; 2412 if (sdp->scsi_level > SCSI_SPC_2) 2413 return 1; 2414 if (scsi_device_protection(sdp)) 2415 return 1; 2416 return 0; 2417 } 2418 2419 /* 2420 * read disk capacity 2421 */ 2422 static void 2423 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2424 { 2425 int sector_size; 2426 struct scsi_device *sdp = sdkp->device; 2427 2428 if (sd_try_rc16_first(sdp)) { 2429 sector_size = read_capacity_16(sdkp, sdp, buffer); 2430 if (sector_size == -EOVERFLOW) 2431 goto got_data; 2432 if (sector_size == -ENODEV) 2433 return; 2434 if (sector_size < 0) 2435 sector_size = read_capacity_10(sdkp, sdp, buffer); 2436 if (sector_size < 0) 2437 return; 2438 } else { 2439 sector_size = read_capacity_10(sdkp, sdp, buffer); 2440 if (sector_size == -EOVERFLOW) 2441 goto got_data; 2442 if (sector_size < 0) 2443 return; 2444 if ((sizeof(sdkp->capacity) > 4) && 2445 (sdkp->capacity > 0xffffffffULL)) { 2446 int old_sector_size = sector_size; 2447 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2448 "Trying to use READ CAPACITY(16).\n"); 2449 sector_size = read_capacity_16(sdkp, sdp, buffer); 2450 if (sector_size < 0) { 2451 sd_printk(KERN_NOTICE, sdkp, 2452 "Using 0xffffffff as device size\n"); 2453 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2454 sector_size = old_sector_size; 2455 goto got_data; 2456 } 2457 /* Remember that READ CAPACITY(16) succeeded */ 2458 sdp->try_rc_10_first = 0; 2459 } 2460 } 2461 2462 /* Some devices are known to return the total number of blocks, 2463 * not the highest block number. Some devices have versions 2464 * which do this and others which do not. Some devices we might 2465 * suspect of doing this but we don't know for certain. 2466 * 2467 * If we know the reported capacity is wrong, decrement it. If 2468 * we can only guess, then assume the number of blocks is even 2469 * (usually true but not always) and err on the side of lowering 2470 * the capacity. 2471 */ 2472 if (sdp->fix_capacity || 2473 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2474 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2475 "from its reported value: %llu\n", 2476 (unsigned long long) sdkp->capacity); 2477 --sdkp->capacity; 2478 } 2479 2480 got_data: 2481 if (sector_size == 0) { 2482 sector_size = 512; 2483 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2484 "assuming 512.\n"); 2485 } 2486 2487 if (sector_size != 512 && 2488 sector_size != 1024 && 2489 sector_size != 2048 && 2490 sector_size != 4096) { 2491 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2492 sector_size); 2493 /* 2494 * The user might want to re-format the drive with 2495 * a supported sectorsize. Once this happens, it 2496 * would be relatively trivial to set the thing up. 2497 * For this reason, we leave the thing in the table. 2498 */ 2499 sdkp->capacity = 0; 2500 /* 2501 * set a bogus sector size so the normal read/write 2502 * logic in the block layer will eventually refuse any 2503 * request on this device without tripping over power 2504 * of two sector size assumptions 2505 */ 2506 sector_size = 512; 2507 } 2508 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2509 blk_queue_physical_block_size(sdp->request_queue, 2510 sdkp->physical_block_size); 2511 sdkp->device->sector_size = sector_size; 2512 2513 if (sdkp->capacity > 0xffffffff) 2514 sdp->use_16_for_rw = 1; 2515 2516 } 2517 2518 /* 2519 * Print disk capacity 2520 */ 2521 static void 2522 sd_print_capacity(struct scsi_disk *sdkp, 2523 sector_t old_capacity) 2524 { 2525 int sector_size = sdkp->device->sector_size; 2526 char cap_str_2[10], cap_str_10[10]; 2527 2528 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2529 return; 2530 2531 string_get_size(sdkp->capacity, sector_size, 2532 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2533 string_get_size(sdkp->capacity, sector_size, 2534 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2535 2536 sd_printk(KERN_NOTICE, sdkp, 2537 "%llu %d-byte logical blocks: (%s/%s)\n", 2538 (unsigned long long)sdkp->capacity, 2539 sector_size, cap_str_10, cap_str_2); 2540 2541 if (sdkp->physical_block_size != sector_size) 2542 sd_printk(KERN_NOTICE, sdkp, 2543 "%u-byte physical blocks\n", 2544 sdkp->physical_block_size); 2545 } 2546 2547 /* called with buffer of length 512 */ 2548 static inline int 2549 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2550 unsigned char *buffer, int len, struct scsi_mode_data *data, 2551 struct scsi_sense_hdr *sshdr) 2552 { 2553 /* 2554 * If we must use MODE SENSE(10), make sure that the buffer length 2555 * is at least 8 bytes so that the mode sense header fits. 2556 */ 2557 if (sdkp->device->use_10_for_ms && len < 8) 2558 len = 8; 2559 2560 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2561 SD_TIMEOUT, sdkp->max_retries, data, 2562 sshdr); 2563 } 2564 2565 /* 2566 * read write protect setting, if possible - called only in sd_revalidate_disk() 2567 * called with buffer of length SD_BUF_SIZE 2568 */ 2569 static void 2570 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2571 { 2572 int res; 2573 struct scsi_device *sdp = sdkp->device; 2574 struct scsi_mode_data data; 2575 int old_wp = sdkp->write_prot; 2576 2577 set_disk_ro(sdkp->disk, 0); 2578 if (sdp->skip_ms_page_3f) { 2579 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2580 return; 2581 } 2582 2583 if (sdp->use_192_bytes_for_3f) { 2584 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2585 } else { 2586 /* 2587 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2588 * We have to start carefully: some devices hang if we ask 2589 * for more than is available. 2590 */ 2591 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2592 2593 /* 2594 * Second attempt: ask for page 0 When only page 0 is 2595 * implemented, a request for page 3F may return Sense Key 2596 * 5: Illegal Request, Sense Code 24: Invalid field in 2597 * CDB. 2598 */ 2599 if (res < 0) 2600 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2601 2602 /* 2603 * Third attempt: ask 255 bytes, as we did earlier. 2604 */ 2605 if (res < 0) 2606 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2607 &data, NULL); 2608 } 2609 2610 if (res < 0) { 2611 sd_first_printk(KERN_WARNING, sdkp, 2612 "Test WP failed, assume Write Enabled\n"); 2613 } else { 2614 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2615 set_disk_ro(sdkp->disk, sdkp->write_prot); 2616 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2617 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2618 sdkp->write_prot ? "on" : "off"); 2619 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2620 } 2621 } 2622 } 2623 2624 /* 2625 * sd_read_cache_type - called only from sd_revalidate_disk() 2626 * called with buffer of length SD_BUF_SIZE 2627 */ 2628 static void 2629 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2630 { 2631 int len = 0, res; 2632 struct scsi_device *sdp = sdkp->device; 2633 2634 int dbd; 2635 int modepage; 2636 int first_len; 2637 struct scsi_mode_data data; 2638 struct scsi_sense_hdr sshdr; 2639 int old_wce = sdkp->WCE; 2640 int old_rcd = sdkp->RCD; 2641 int old_dpofua = sdkp->DPOFUA; 2642 2643 2644 if (sdkp->cache_override) 2645 return; 2646 2647 first_len = 4; 2648 if (sdp->skip_ms_page_8) { 2649 if (sdp->type == TYPE_RBC) 2650 goto defaults; 2651 else { 2652 if (sdp->skip_ms_page_3f) 2653 goto defaults; 2654 modepage = 0x3F; 2655 if (sdp->use_192_bytes_for_3f) 2656 first_len = 192; 2657 dbd = 0; 2658 } 2659 } else if (sdp->type == TYPE_RBC) { 2660 modepage = 6; 2661 dbd = 8; 2662 } else { 2663 modepage = 8; 2664 dbd = 0; 2665 } 2666 2667 /* cautiously ask */ 2668 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2669 &data, &sshdr); 2670 2671 if (res < 0) 2672 goto bad_sense; 2673 2674 if (!data.header_length) { 2675 modepage = 6; 2676 first_len = 0; 2677 sd_first_printk(KERN_ERR, sdkp, 2678 "Missing header in MODE_SENSE response\n"); 2679 } 2680 2681 /* that went OK, now ask for the proper length */ 2682 len = data.length; 2683 2684 /* 2685 * We're only interested in the first three bytes, actually. 2686 * But the data cache page is defined for the first 20. 2687 */ 2688 if (len < 3) 2689 goto bad_sense; 2690 else if (len > SD_BUF_SIZE) { 2691 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2692 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2693 len = SD_BUF_SIZE; 2694 } 2695 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2696 len = 192; 2697 2698 /* Get the data */ 2699 if (len > first_len) 2700 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2701 &data, &sshdr); 2702 2703 if (!res) { 2704 int offset = data.header_length + data.block_descriptor_length; 2705 2706 while (offset < len) { 2707 u8 page_code = buffer[offset] & 0x3F; 2708 u8 spf = buffer[offset] & 0x40; 2709 2710 if (page_code == 8 || page_code == 6) { 2711 /* We're interested only in the first 3 bytes. 2712 */ 2713 if (len - offset <= 2) { 2714 sd_first_printk(KERN_ERR, sdkp, 2715 "Incomplete mode parameter " 2716 "data\n"); 2717 goto defaults; 2718 } else { 2719 modepage = page_code; 2720 goto Page_found; 2721 } 2722 } else { 2723 /* Go to the next page */ 2724 if (spf && len - offset > 3) 2725 offset += 4 + (buffer[offset+2] << 8) + 2726 buffer[offset+3]; 2727 else if (!spf && len - offset > 1) 2728 offset += 2 + buffer[offset+1]; 2729 else { 2730 sd_first_printk(KERN_ERR, sdkp, 2731 "Incomplete mode " 2732 "parameter data\n"); 2733 goto defaults; 2734 } 2735 } 2736 } 2737 2738 sd_first_printk(KERN_WARNING, sdkp, 2739 "No Caching mode page found\n"); 2740 goto defaults; 2741 2742 Page_found: 2743 if (modepage == 8) { 2744 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2745 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2746 } else { 2747 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2748 sdkp->RCD = 0; 2749 } 2750 2751 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2752 if (sdp->broken_fua) { 2753 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2754 sdkp->DPOFUA = 0; 2755 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2756 !sdkp->device->use_16_for_rw) { 2757 sd_first_printk(KERN_NOTICE, sdkp, 2758 "Uses READ/WRITE(6), disabling FUA\n"); 2759 sdkp->DPOFUA = 0; 2760 } 2761 2762 /* No cache flush allowed for write protected devices */ 2763 if (sdkp->WCE && sdkp->write_prot) 2764 sdkp->WCE = 0; 2765 2766 if (sdkp->first_scan || old_wce != sdkp->WCE || 2767 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2768 sd_printk(KERN_NOTICE, sdkp, 2769 "Write cache: %s, read cache: %s, %s\n", 2770 sdkp->WCE ? "enabled" : "disabled", 2771 sdkp->RCD ? "disabled" : "enabled", 2772 sdkp->DPOFUA ? "supports DPO and FUA" 2773 : "doesn't support DPO or FUA"); 2774 2775 return; 2776 } 2777 2778 bad_sense: 2779 if (scsi_sense_valid(&sshdr) && 2780 sshdr.sense_key == ILLEGAL_REQUEST && 2781 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2782 /* Invalid field in CDB */ 2783 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2784 else 2785 sd_first_printk(KERN_ERR, sdkp, 2786 "Asking for cache data failed\n"); 2787 2788 defaults: 2789 if (sdp->wce_default_on) { 2790 sd_first_printk(KERN_NOTICE, sdkp, 2791 "Assuming drive cache: write back\n"); 2792 sdkp->WCE = 1; 2793 } else { 2794 sd_first_printk(KERN_WARNING, sdkp, 2795 "Assuming drive cache: write through\n"); 2796 sdkp->WCE = 0; 2797 } 2798 sdkp->RCD = 0; 2799 sdkp->DPOFUA = 0; 2800 } 2801 2802 /* 2803 * The ATO bit indicates whether the DIF application tag is available 2804 * for use by the operating system. 2805 */ 2806 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2807 { 2808 int res, offset; 2809 struct scsi_device *sdp = sdkp->device; 2810 struct scsi_mode_data data; 2811 struct scsi_sense_hdr sshdr; 2812 2813 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2814 return; 2815 2816 if (sdkp->protection_type == 0) 2817 return; 2818 2819 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2820 sdkp->max_retries, &data, &sshdr); 2821 2822 if (res < 0 || !data.header_length || 2823 data.length < 6) { 2824 sd_first_printk(KERN_WARNING, sdkp, 2825 "getting Control mode page failed, assume no ATO\n"); 2826 2827 if (scsi_sense_valid(&sshdr)) 2828 sd_print_sense_hdr(sdkp, &sshdr); 2829 2830 return; 2831 } 2832 2833 offset = data.header_length + data.block_descriptor_length; 2834 2835 if ((buffer[offset] & 0x3f) != 0x0a) { 2836 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2837 return; 2838 } 2839 2840 if ((buffer[offset + 5] & 0x80) == 0) 2841 return; 2842 2843 sdkp->ATO = 1; 2844 2845 return; 2846 } 2847 2848 /** 2849 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2850 * @sdkp: disk to query 2851 */ 2852 static void sd_read_block_limits(struct scsi_disk *sdkp) 2853 { 2854 struct scsi_vpd *vpd; 2855 2856 rcu_read_lock(); 2857 2858 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 2859 if (!vpd || vpd->len < 16) 2860 goto out; 2861 2862 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 2863 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 2864 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 2865 2866 if (vpd->len >= 64) { 2867 unsigned int lba_count, desc_count; 2868 2869 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 2870 2871 if (!sdkp->lbpme) 2872 goto out; 2873 2874 lba_count = get_unaligned_be32(&vpd->data[20]); 2875 desc_count = get_unaligned_be32(&vpd->data[24]); 2876 2877 if (lba_count && desc_count) 2878 sdkp->max_unmap_blocks = lba_count; 2879 2880 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 2881 2882 if (vpd->data[32] & 0x80) 2883 sdkp->unmap_alignment = 2884 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 2885 2886 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2887 2888 if (sdkp->max_unmap_blocks) 2889 sd_config_discard(sdkp, SD_LBP_UNMAP); 2890 else 2891 sd_config_discard(sdkp, SD_LBP_WS16); 2892 2893 } else { /* LBP VPD page tells us what to use */ 2894 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2895 sd_config_discard(sdkp, SD_LBP_UNMAP); 2896 else if (sdkp->lbpws) 2897 sd_config_discard(sdkp, SD_LBP_WS16); 2898 else if (sdkp->lbpws10) 2899 sd_config_discard(sdkp, SD_LBP_WS10); 2900 else 2901 sd_config_discard(sdkp, SD_LBP_DISABLE); 2902 } 2903 } 2904 2905 out: 2906 rcu_read_unlock(); 2907 } 2908 2909 /** 2910 * sd_read_block_characteristics - Query block dev. characteristics 2911 * @sdkp: disk to query 2912 */ 2913 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2914 { 2915 struct request_queue *q = sdkp->disk->queue; 2916 struct scsi_vpd *vpd; 2917 u16 rot; 2918 u8 zoned; 2919 2920 rcu_read_lock(); 2921 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 2922 2923 if (!vpd || vpd->len < 8) { 2924 rcu_read_unlock(); 2925 return; 2926 } 2927 2928 rot = get_unaligned_be16(&vpd->data[4]); 2929 zoned = (vpd->data[8] >> 4) & 3; 2930 rcu_read_unlock(); 2931 2932 if (rot == 1) { 2933 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2934 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2935 } 2936 2937 if (sdkp->device->type == TYPE_ZBC) { 2938 /* Host-managed */ 2939 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM); 2940 } else { 2941 sdkp->zoned = zoned; 2942 if (sdkp->zoned == 1) { 2943 /* Host-aware */ 2944 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA); 2945 } else { 2946 /* Regular disk or drive managed disk */ 2947 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE); 2948 } 2949 } 2950 2951 if (!sdkp->first_scan) 2952 return; 2953 2954 if (blk_queue_is_zoned(q)) { 2955 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2956 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2957 } else { 2958 if (sdkp->zoned == 1) 2959 sd_printk(KERN_NOTICE, sdkp, 2960 "Host-aware SMR disk used as regular disk\n"); 2961 else if (sdkp->zoned == 2) 2962 sd_printk(KERN_NOTICE, sdkp, 2963 "Drive-managed SMR disk\n"); 2964 } 2965 } 2966 2967 /** 2968 * sd_read_block_provisioning - Query provisioning VPD page 2969 * @sdkp: disk to query 2970 */ 2971 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2972 { 2973 struct scsi_vpd *vpd; 2974 2975 if (sdkp->lbpme == 0) 2976 return; 2977 2978 rcu_read_lock(); 2979 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 2980 2981 if (!vpd || vpd->len < 8) { 2982 rcu_read_unlock(); 2983 return; 2984 } 2985 2986 sdkp->lbpvpd = 1; 2987 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 2988 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 2989 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 2990 rcu_read_unlock(); 2991 } 2992 2993 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 2994 { 2995 struct scsi_device *sdev = sdkp->device; 2996 2997 if (sdev->host->no_write_same) { 2998 sdev->no_write_same = 1; 2999 3000 return; 3001 } 3002 3003 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3004 struct scsi_vpd *vpd; 3005 3006 sdev->no_report_opcodes = 1; 3007 3008 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3009 * CODES is unsupported and the device has an ATA 3010 * Information VPD page (SAT). 3011 */ 3012 rcu_read_lock(); 3013 vpd = rcu_dereference(sdev->vpd_pg89); 3014 if (vpd) 3015 sdev->no_write_same = 1; 3016 rcu_read_unlock(); 3017 } 3018 3019 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3020 sdkp->ws16 = 1; 3021 3022 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3023 sdkp->ws10 = 1; 3024 } 3025 3026 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3027 { 3028 struct scsi_device *sdev = sdkp->device; 3029 3030 if (!sdev->security_supported) 3031 return; 3032 3033 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3034 SECURITY_PROTOCOL_IN) == 1 && 3035 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3036 SECURITY_PROTOCOL_OUT) == 1) 3037 sdkp->security = 1; 3038 } 3039 3040 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3041 { 3042 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3043 } 3044 3045 /** 3046 * sd_read_cpr - Query concurrent positioning ranges 3047 * @sdkp: disk to query 3048 */ 3049 static void sd_read_cpr(struct scsi_disk *sdkp) 3050 { 3051 struct blk_independent_access_ranges *iars = NULL; 3052 unsigned char *buffer = NULL; 3053 unsigned int nr_cpr = 0; 3054 int i, vpd_len, buf_len = SD_BUF_SIZE; 3055 u8 *desc; 3056 3057 /* 3058 * We need to have the capacity set first for the block layer to be 3059 * able to check the ranges. 3060 */ 3061 if (sdkp->first_scan) 3062 return; 3063 3064 if (!sdkp->capacity) 3065 goto out; 3066 3067 /* 3068 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3069 * leading to a maximum page size of 64 + 256*32 bytes. 3070 */ 3071 buf_len = 64 + 256*32; 3072 buffer = kmalloc(buf_len, GFP_KERNEL); 3073 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3074 goto out; 3075 3076 /* We must have at least a 64B header and one 32B range descriptor */ 3077 vpd_len = get_unaligned_be16(&buffer[2]) + 3; 3078 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3079 sd_printk(KERN_ERR, sdkp, 3080 "Invalid Concurrent Positioning Ranges VPD page\n"); 3081 goto out; 3082 } 3083 3084 nr_cpr = (vpd_len - 64) / 32; 3085 if (nr_cpr == 1) { 3086 nr_cpr = 0; 3087 goto out; 3088 } 3089 3090 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3091 if (!iars) { 3092 nr_cpr = 0; 3093 goto out; 3094 } 3095 3096 desc = &buffer[64]; 3097 for (i = 0; i < nr_cpr; i++, desc += 32) { 3098 if (desc[0] != i) { 3099 sd_printk(KERN_ERR, sdkp, 3100 "Invalid Concurrent Positioning Range number\n"); 3101 nr_cpr = 0; 3102 break; 3103 } 3104 3105 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3106 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3107 } 3108 3109 out: 3110 disk_set_independent_access_ranges(sdkp->disk, iars); 3111 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3112 sd_printk(KERN_NOTICE, sdkp, 3113 "%u concurrent positioning ranges\n", nr_cpr); 3114 sdkp->nr_actuators = nr_cpr; 3115 } 3116 3117 kfree(buffer); 3118 } 3119 3120 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3121 { 3122 struct scsi_device *sdp = sdkp->device; 3123 unsigned int min_xfer_bytes = 3124 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3125 3126 if (sdkp->min_xfer_blocks == 0) 3127 return false; 3128 3129 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3130 sd_first_printk(KERN_WARNING, sdkp, 3131 "Preferred minimum I/O size %u bytes not a " \ 3132 "multiple of physical block size (%u bytes)\n", 3133 min_xfer_bytes, sdkp->physical_block_size); 3134 sdkp->min_xfer_blocks = 0; 3135 return false; 3136 } 3137 3138 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3139 min_xfer_bytes); 3140 return true; 3141 } 3142 3143 /* 3144 * Determine the device's preferred I/O size for reads and writes 3145 * unless the reported value is unreasonably small, large, not a 3146 * multiple of the physical block size, or simply garbage. 3147 */ 3148 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3149 unsigned int dev_max) 3150 { 3151 struct scsi_device *sdp = sdkp->device; 3152 unsigned int opt_xfer_bytes = 3153 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3154 unsigned int min_xfer_bytes = 3155 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3156 3157 if (sdkp->opt_xfer_blocks == 0) 3158 return false; 3159 3160 if (sdkp->opt_xfer_blocks > dev_max) { 3161 sd_first_printk(KERN_WARNING, sdkp, 3162 "Optimal transfer size %u logical blocks " \ 3163 "> dev_max (%u logical blocks)\n", 3164 sdkp->opt_xfer_blocks, dev_max); 3165 return false; 3166 } 3167 3168 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3169 sd_first_printk(KERN_WARNING, sdkp, 3170 "Optimal transfer size %u logical blocks " \ 3171 "> sd driver limit (%u logical blocks)\n", 3172 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3173 return false; 3174 } 3175 3176 if (opt_xfer_bytes < PAGE_SIZE) { 3177 sd_first_printk(KERN_WARNING, sdkp, 3178 "Optimal transfer size %u bytes < " \ 3179 "PAGE_SIZE (%u bytes)\n", 3180 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3181 return false; 3182 } 3183 3184 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3185 sd_first_printk(KERN_WARNING, sdkp, 3186 "Optimal transfer size %u bytes not a " \ 3187 "multiple of preferred minimum block " \ 3188 "size (%u bytes)\n", 3189 opt_xfer_bytes, min_xfer_bytes); 3190 return false; 3191 } 3192 3193 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3194 sd_first_printk(KERN_WARNING, sdkp, 3195 "Optimal transfer size %u bytes not a " \ 3196 "multiple of physical block size (%u bytes)\n", 3197 opt_xfer_bytes, sdkp->physical_block_size); 3198 return false; 3199 } 3200 3201 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3202 opt_xfer_bytes); 3203 return true; 3204 } 3205 3206 /** 3207 * sd_revalidate_disk - called the first time a new disk is seen, 3208 * performs disk spin up, read_capacity, etc. 3209 * @disk: struct gendisk we care about 3210 **/ 3211 static int sd_revalidate_disk(struct gendisk *disk) 3212 { 3213 struct scsi_disk *sdkp = scsi_disk(disk); 3214 struct scsi_device *sdp = sdkp->device; 3215 struct request_queue *q = sdkp->disk->queue; 3216 sector_t old_capacity = sdkp->capacity; 3217 unsigned char *buffer; 3218 unsigned int dev_max, rw_max; 3219 3220 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3221 "sd_revalidate_disk\n")); 3222 3223 /* 3224 * If the device is offline, don't try and read capacity or any 3225 * of the other niceties. 3226 */ 3227 if (!scsi_device_online(sdp)) 3228 goto out; 3229 3230 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3231 if (!buffer) { 3232 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3233 "allocation failure.\n"); 3234 goto out; 3235 } 3236 3237 sd_spinup_disk(sdkp); 3238 3239 /* 3240 * Without media there is no reason to ask; moreover, some devices 3241 * react badly if we do. 3242 */ 3243 if (sdkp->media_present) { 3244 sd_read_capacity(sdkp, buffer); 3245 3246 /* 3247 * set the default to rotational. All non-rotational devices 3248 * support the block characteristics VPD page, which will 3249 * cause this to be updated correctly and any device which 3250 * doesn't support it should be treated as rotational. 3251 */ 3252 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3253 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3254 3255 if (scsi_device_supports_vpd(sdp)) { 3256 sd_read_block_provisioning(sdkp); 3257 sd_read_block_limits(sdkp); 3258 sd_read_block_characteristics(sdkp); 3259 sd_zbc_read_zones(sdkp, buffer); 3260 sd_read_cpr(sdkp); 3261 } 3262 3263 sd_print_capacity(sdkp, old_capacity); 3264 3265 sd_read_write_protect_flag(sdkp, buffer); 3266 sd_read_cache_type(sdkp, buffer); 3267 sd_read_app_tag_own(sdkp, buffer); 3268 sd_read_write_same(sdkp, buffer); 3269 sd_read_security(sdkp, buffer); 3270 sd_config_protection(sdkp); 3271 } 3272 3273 /* 3274 * We now have all cache related info, determine how we deal 3275 * with flush requests. 3276 */ 3277 sd_set_flush_flag(sdkp); 3278 3279 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3280 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3281 3282 /* Some devices report a maximum block count for READ/WRITE requests. */ 3283 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3284 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3285 3286 if (sd_validate_min_xfer_size(sdkp)) 3287 blk_queue_io_min(sdkp->disk->queue, 3288 logical_to_bytes(sdp, sdkp->min_xfer_blocks)); 3289 else 3290 blk_queue_io_min(sdkp->disk->queue, 0); 3291 3292 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3293 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3294 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3295 } else { 3296 q->limits.io_opt = 0; 3297 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3298 (sector_t)BLK_DEF_MAX_SECTORS); 3299 } 3300 3301 /* Do not exceed controller limit */ 3302 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3303 3304 /* 3305 * Only update max_sectors if previously unset or if the current value 3306 * exceeds the capabilities of the hardware. 3307 */ 3308 if (sdkp->first_scan || 3309 q->limits.max_sectors > q->limits.max_dev_sectors || 3310 q->limits.max_sectors > q->limits.max_hw_sectors) 3311 q->limits.max_sectors = rw_max; 3312 3313 sdkp->first_scan = 0; 3314 3315 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3316 sd_config_write_same(sdkp); 3317 kfree(buffer); 3318 3319 /* 3320 * For a zoned drive, revalidating the zones can be done only once 3321 * the gendisk capacity is set. So if this fails, set back the gendisk 3322 * capacity to 0. 3323 */ 3324 if (sd_zbc_revalidate_zones(sdkp)) 3325 set_capacity_and_notify(disk, 0); 3326 3327 out: 3328 return 0; 3329 } 3330 3331 /** 3332 * sd_unlock_native_capacity - unlock native capacity 3333 * @disk: struct gendisk to set capacity for 3334 * 3335 * Block layer calls this function if it detects that partitions 3336 * on @disk reach beyond the end of the device. If the SCSI host 3337 * implements ->unlock_native_capacity() method, it's invoked to 3338 * give it a chance to adjust the device capacity. 3339 * 3340 * CONTEXT: 3341 * Defined by block layer. Might sleep. 3342 */ 3343 static void sd_unlock_native_capacity(struct gendisk *disk) 3344 { 3345 struct scsi_device *sdev = scsi_disk(disk)->device; 3346 3347 if (sdev->host->hostt->unlock_native_capacity) 3348 sdev->host->hostt->unlock_native_capacity(sdev); 3349 } 3350 3351 /** 3352 * sd_format_disk_name - format disk name 3353 * @prefix: name prefix - ie. "sd" for SCSI disks 3354 * @index: index of the disk to format name for 3355 * @buf: output buffer 3356 * @buflen: length of the output buffer 3357 * 3358 * SCSI disk names starts at sda. The 26th device is sdz and the 3359 * 27th is sdaa. The last one for two lettered suffix is sdzz 3360 * which is followed by sdaaa. 3361 * 3362 * This is basically 26 base counting with one extra 'nil' entry 3363 * at the beginning from the second digit on and can be 3364 * determined using similar method as 26 base conversion with the 3365 * index shifted -1 after each digit is computed. 3366 * 3367 * CONTEXT: 3368 * Don't care. 3369 * 3370 * RETURNS: 3371 * 0 on success, -errno on failure. 3372 */ 3373 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3374 { 3375 const int base = 'z' - 'a' + 1; 3376 char *begin = buf + strlen(prefix); 3377 char *end = buf + buflen; 3378 char *p; 3379 int unit; 3380 3381 p = end - 1; 3382 *p = '\0'; 3383 unit = base; 3384 do { 3385 if (p == begin) 3386 return -EINVAL; 3387 *--p = 'a' + (index % unit); 3388 index = (index / unit) - 1; 3389 } while (index >= 0); 3390 3391 memmove(begin, p, end - p); 3392 memcpy(buf, prefix, strlen(prefix)); 3393 3394 return 0; 3395 } 3396 3397 /** 3398 * sd_probe - called during driver initialization and whenever a 3399 * new scsi device is attached to the system. It is called once 3400 * for each scsi device (not just disks) present. 3401 * @dev: pointer to device object 3402 * 3403 * Returns 0 if successful (or not interested in this scsi device 3404 * (e.g. scanner)); 1 when there is an error. 3405 * 3406 * Note: this function is invoked from the scsi mid-level. 3407 * This function sets up the mapping between a given 3408 * <host,channel,id,lun> (found in sdp) and new device name 3409 * (e.g. /dev/sda). More precisely it is the block device major 3410 * and minor number that is chosen here. 3411 * 3412 * Assume sd_probe is not re-entrant (for time being) 3413 * Also think about sd_probe() and sd_remove() running coincidentally. 3414 **/ 3415 static int sd_probe(struct device *dev) 3416 { 3417 struct scsi_device *sdp = to_scsi_device(dev); 3418 struct scsi_disk *sdkp; 3419 struct gendisk *gd; 3420 int index; 3421 int error; 3422 3423 scsi_autopm_get_device(sdp); 3424 error = -ENODEV; 3425 if (sdp->type != TYPE_DISK && 3426 sdp->type != TYPE_ZBC && 3427 sdp->type != TYPE_MOD && 3428 sdp->type != TYPE_RBC) 3429 goto out; 3430 3431 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3432 sdev_printk(KERN_WARNING, sdp, 3433 "Unsupported ZBC host-managed device.\n"); 3434 goto out; 3435 } 3436 3437 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3438 "sd_probe\n")); 3439 3440 error = -ENOMEM; 3441 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3442 if (!sdkp) 3443 goto out; 3444 3445 gd = __alloc_disk_node(sdp->request_queue, NUMA_NO_NODE, 3446 &sd_bio_compl_lkclass); 3447 if (!gd) 3448 goto out_free; 3449 3450 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3451 if (index < 0) { 3452 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3453 goto out_put; 3454 } 3455 3456 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3457 if (error) { 3458 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3459 goto out_free_index; 3460 } 3461 3462 sdkp->device = sdp; 3463 sdkp->disk = gd; 3464 sdkp->index = index; 3465 sdkp->max_retries = SD_MAX_RETRIES; 3466 atomic_set(&sdkp->openers, 0); 3467 atomic_set(&sdkp->device->ioerr_cnt, 0); 3468 3469 if (!sdp->request_queue->rq_timeout) { 3470 if (sdp->type != TYPE_MOD) 3471 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3472 else 3473 blk_queue_rq_timeout(sdp->request_queue, 3474 SD_MOD_TIMEOUT); 3475 } 3476 3477 device_initialize(&sdkp->disk_dev); 3478 sdkp->disk_dev.parent = get_device(dev); 3479 sdkp->disk_dev.class = &sd_disk_class; 3480 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3481 3482 error = device_add(&sdkp->disk_dev); 3483 if (error) { 3484 put_device(&sdkp->disk_dev); 3485 goto out; 3486 } 3487 3488 dev_set_drvdata(dev, sdkp); 3489 3490 gd->major = sd_major((index & 0xf0) >> 4); 3491 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3492 gd->minors = SD_MINORS; 3493 3494 gd->fops = &sd_fops; 3495 gd->private_data = sdkp; 3496 3497 /* defaults, until the device tells us otherwise */ 3498 sdp->sector_size = 512; 3499 sdkp->capacity = 0; 3500 sdkp->media_present = 1; 3501 sdkp->write_prot = 0; 3502 sdkp->cache_override = 0; 3503 sdkp->WCE = 0; 3504 sdkp->RCD = 0; 3505 sdkp->ATO = 0; 3506 sdkp->first_scan = 1; 3507 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3508 3509 sd_revalidate_disk(gd); 3510 3511 if (sdp->removable) { 3512 gd->flags |= GENHD_FL_REMOVABLE; 3513 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3514 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3515 } 3516 3517 blk_pm_runtime_init(sdp->request_queue, dev); 3518 if (sdp->rpm_autosuspend) { 3519 pm_runtime_set_autosuspend_delay(dev, 3520 sdp->host->hostt->rpm_autosuspend_delay); 3521 } 3522 3523 error = device_add_disk(dev, gd, NULL); 3524 if (error) { 3525 put_device(&sdkp->disk_dev); 3526 put_disk(gd); 3527 goto out; 3528 } 3529 3530 if (sdkp->security) { 3531 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3532 if (sdkp->opal_dev) 3533 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3534 } 3535 3536 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3537 sdp->removable ? "removable " : ""); 3538 scsi_autopm_put_device(sdp); 3539 3540 return 0; 3541 3542 out_free_index: 3543 ida_free(&sd_index_ida, index); 3544 out_put: 3545 put_disk(gd); 3546 out_free: 3547 sd_zbc_release_disk(sdkp); 3548 kfree(sdkp); 3549 out: 3550 scsi_autopm_put_device(sdp); 3551 return error; 3552 } 3553 3554 /** 3555 * sd_remove - called whenever a scsi disk (previously recognized by 3556 * sd_probe) is detached from the system. It is called (potentially 3557 * multiple times) during sd module unload. 3558 * @dev: pointer to device object 3559 * 3560 * Note: this function is invoked from the scsi mid-level. 3561 * This function potentially frees up a device name (e.g. /dev/sdc) 3562 * that could be re-used by a subsequent sd_probe(). 3563 * This function is not called when the built-in sd driver is "exit-ed". 3564 **/ 3565 static int sd_remove(struct device *dev) 3566 { 3567 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3568 3569 scsi_autopm_get_device(sdkp->device); 3570 3571 device_del(&sdkp->disk_dev); 3572 del_gendisk(sdkp->disk); 3573 sd_shutdown(dev); 3574 3575 put_disk(sdkp->disk); 3576 return 0; 3577 } 3578 3579 static void scsi_disk_release(struct device *dev) 3580 { 3581 struct scsi_disk *sdkp = to_scsi_disk(dev); 3582 3583 ida_free(&sd_index_ida, sdkp->index); 3584 sd_zbc_release_disk(sdkp); 3585 put_device(&sdkp->device->sdev_gendev); 3586 free_opal_dev(sdkp->opal_dev); 3587 3588 kfree(sdkp); 3589 } 3590 3591 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3592 { 3593 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3594 struct scsi_sense_hdr sshdr; 3595 struct scsi_device *sdp = sdkp->device; 3596 int res; 3597 3598 if (start) 3599 cmd[4] |= 1; /* START */ 3600 3601 if (sdp->start_stop_pwr_cond) 3602 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3603 3604 if (!scsi_device_online(sdp)) 3605 return -ENODEV; 3606 3607 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3608 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL); 3609 if (res) { 3610 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3611 if (res > 0 && scsi_sense_valid(&sshdr)) { 3612 sd_print_sense_hdr(sdkp, &sshdr); 3613 /* 0x3a is medium not present */ 3614 if (sshdr.asc == 0x3a) 3615 res = 0; 3616 } 3617 } 3618 3619 /* SCSI error codes must not go to the generic layer */ 3620 if (res) 3621 return -EIO; 3622 3623 return 0; 3624 } 3625 3626 /* 3627 * Send a SYNCHRONIZE CACHE instruction down to the device through 3628 * the normal SCSI command structure. Wait for the command to 3629 * complete. 3630 */ 3631 static void sd_shutdown(struct device *dev) 3632 { 3633 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3634 3635 if (!sdkp) 3636 return; /* this can happen */ 3637 3638 if (pm_runtime_suspended(dev)) 3639 return; 3640 3641 if (sdkp->WCE && sdkp->media_present) { 3642 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3643 sd_sync_cache(sdkp, NULL); 3644 } 3645 3646 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3647 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3648 sd_start_stop_device(sdkp, 0); 3649 } 3650 } 3651 3652 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3653 { 3654 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3655 struct scsi_sense_hdr sshdr; 3656 int ret = 0; 3657 3658 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3659 return 0; 3660 3661 if (sdkp->WCE && sdkp->media_present) { 3662 if (!sdkp->device->silence_suspend) 3663 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3664 ret = sd_sync_cache(sdkp, &sshdr); 3665 3666 if (ret) { 3667 /* ignore OFFLINE device */ 3668 if (ret == -ENODEV) 3669 return 0; 3670 3671 if (!scsi_sense_valid(&sshdr) || 3672 sshdr.sense_key != ILLEGAL_REQUEST) 3673 return ret; 3674 3675 /* 3676 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3677 * doesn't support sync. There's not much to do and 3678 * suspend shouldn't fail. 3679 */ 3680 ret = 0; 3681 } 3682 } 3683 3684 if (sdkp->device->manage_start_stop) { 3685 if (!sdkp->device->silence_suspend) 3686 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3687 /* an error is not worth aborting a system sleep */ 3688 ret = sd_start_stop_device(sdkp, 0); 3689 if (ignore_stop_errors) 3690 ret = 0; 3691 } 3692 3693 return ret; 3694 } 3695 3696 static int sd_suspend_system(struct device *dev) 3697 { 3698 if (pm_runtime_suspended(dev)) 3699 return 0; 3700 3701 return sd_suspend_common(dev, true); 3702 } 3703 3704 static int sd_suspend_runtime(struct device *dev) 3705 { 3706 return sd_suspend_common(dev, false); 3707 } 3708 3709 static int sd_resume(struct device *dev) 3710 { 3711 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3712 int ret; 3713 3714 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3715 return 0; 3716 3717 if (!sdkp->device->manage_start_stop) 3718 return 0; 3719 3720 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3721 ret = sd_start_stop_device(sdkp, 1); 3722 if (!ret) 3723 opal_unlock_from_suspend(sdkp->opal_dev); 3724 return ret; 3725 } 3726 3727 static int sd_resume_system(struct device *dev) 3728 { 3729 if (pm_runtime_suspended(dev)) 3730 return 0; 3731 3732 return sd_resume(dev); 3733 } 3734 3735 static int sd_resume_runtime(struct device *dev) 3736 { 3737 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3738 struct scsi_device *sdp; 3739 3740 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3741 return 0; 3742 3743 sdp = sdkp->device; 3744 3745 if (sdp->ignore_media_change) { 3746 /* clear the device's sense data */ 3747 static const u8 cmd[10] = { REQUEST_SENSE }; 3748 3749 if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, 3750 NULL, sdp->request_queue->rq_timeout, 1, 0, 3751 RQF_PM, NULL)) 3752 sd_printk(KERN_NOTICE, sdkp, 3753 "Failed to clear sense data\n"); 3754 } 3755 3756 return sd_resume(dev); 3757 } 3758 3759 /** 3760 * init_sd - entry point for this driver (both when built in or when 3761 * a module). 3762 * 3763 * Note: this function registers this driver with the scsi mid-level. 3764 **/ 3765 static int __init init_sd(void) 3766 { 3767 int majors = 0, i, err; 3768 3769 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3770 3771 for (i = 0; i < SD_MAJORS; i++) { 3772 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3773 continue; 3774 majors++; 3775 } 3776 3777 if (!majors) 3778 return -ENODEV; 3779 3780 err = class_register(&sd_disk_class); 3781 if (err) 3782 goto err_out; 3783 3784 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3785 0, 0, NULL); 3786 if (!sd_cdb_cache) { 3787 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3788 err = -ENOMEM; 3789 goto err_out_class; 3790 } 3791 3792 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3793 if (!sd_page_pool) { 3794 printk(KERN_ERR "sd: can't init discard page pool\n"); 3795 err = -ENOMEM; 3796 goto err_out_cache; 3797 } 3798 3799 err = scsi_register_driver(&sd_template.gendrv); 3800 if (err) 3801 goto err_out_driver; 3802 3803 return 0; 3804 3805 err_out_driver: 3806 mempool_destroy(sd_page_pool); 3807 3808 err_out_cache: 3809 kmem_cache_destroy(sd_cdb_cache); 3810 3811 err_out_class: 3812 class_unregister(&sd_disk_class); 3813 err_out: 3814 for (i = 0; i < SD_MAJORS; i++) 3815 unregister_blkdev(sd_major(i), "sd"); 3816 return err; 3817 } 3818 3819 /** 3820 * exit_sd - exit point for this driver (when it is a module). 3821 * 3822 * Note: this function unregisters this driver from the scsi mid-level. 3823 **/ 3824 static void __exit exit_sd(void) 3825 { 3826 int i; 3827 3828 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3829 3830 scsi_unregister_driver(&sd_template.gendrv); 3831 mempool_destroy(sd_page_pool); 3832 kmem_cache_destroy(sd_cdb_cache); 3833 3834 class_unregister(&sd_disk_class); 3835 3836 for (i = 0; i < SD_MAJORS; i++) 3837 unregister_blkdev(sd_major(i), "sd"); 3838 } 3839 3840 module_init(init_sd); 3841 module_exit(exit_sd); 3842 3843 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3844 { 3845 scsi_print_sense_hdr(sdkp->device, 3846 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3847 } 3848 3849 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3850 { 3851 const char *hb_string = scsi_hostbyte_string(result); 3852 3853 if (hb_string) 3854 sd_printk(KERN_INFO, sdkp, 3855 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3856 hb_string ? hb_string : "invalid", 3857 "DRIVER_OK"); 3858 else 3859 sd_printk(KERN_INFO, sdkp, 3860 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 3861 msg, host_byte(result), "DRIVER_OK"); 3862 } 3863