xref: /openbmc/linux/drivers/scsi/sd.c (revision 3e09b155)
1 /*
2  *      sd.c Copyright (C) 1992 Drew Eckhardt
3  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4  *
5  *      Linux scsi disk driver
6  *              Initial versions: Drew Eckhardt
7  *              Subsequent revisions: Eric Youngdale
8  *	Modification history:
9  *       - Drew Eckhardt <drew@colorado.edu> original
10  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11  *         outstanding request, and other enhancements.
12  *         Support loadable low-level scsi drivers.
13  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14  *         eight major numbers.
15  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17  *	   sd_init and cleanups.
18  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
19  *	   not being read in sd_open. Fix problem where removable media
20  *	   could be ejected after sd_open.
21  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24  *	   Support 32k/1M disks.
25  *
26  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
27  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
31  *	Note: when the logging level is set by the user, it must be greater
32  *	than the level indicated above to trigger output.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/sed-opal.h>
54 #include <linux/pm_runtime.h>
55 #include <linux/pr.h>
56 #include <linux/t10-pi.h>
57 #include <linux/uaccess.h>
58 #include <asm/unaligned.h>
59 
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_dbg.h>
63 #include <scsi/scsi_device.h>
64 #include <scsi/scsi_driver.h>
65 #include <scsi/scsi_eh.h>
66 #include <scsi/scsi_host.h>
67 #include <scsi/scsi_ioctl.h>
68 #include <scsi/scsicam.h>
69 
70 #include "sd.h"
71 #include "scsi_priv.h"
72 #include "scsi_logging.h"
73 
74 MODULE_AUTHOR("Eric Youngdale");
75 MODULE_DESCRIPTION("SCSI disk (sd) driver");
76 MODULE_LICENSE("GPL");
77 
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
98 
99 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
100 #define SD_MINORS	16
101 #else
102 #define SD_MINORS	0
103 #endif
104 
105 static void sd_config_discard(struct scsi_disk *, unsigned int);
106 static void sd_config_write_same(struct scsi_disk *);
107 static int  sd_revalidate_disk(struct gendisk *);
108 static void sd_unlock_native_capacity(struct gendisk *disk);
109 static int  sd_probe(struct device *);
110 static int  sd_remove(struct device *);
111 static void sd_shutdown(struct device *);
112 static int sd_suspend_system(struct device *);
113 static int sd_suspend_runtime(struct device *);
114 static int sd_resume(struct device *);
115 static void sd_rescan(struct device *);
116 static int sd_init_command(struct scsi_cmnd *SCpnt);
117 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
118 static int sd_done(struct scsi_cmnd *);
119 static void sd_eh_reset(struct scsi_cmnd *);
120 static int sd_eh_action(struct scsi_cmnd *, int);
121 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
122 static void scsi_disk_release(struct device *cdev);
123 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
124 static void sd_print_result(const struct scsi_disk *, const char *, int);
125 
126 static DEFINE_SPINLOCK(sd_index_lock);
127 static DEFINE_IDA(sd_index_ida);
128 
129 /* This semaphore is used to mediate the 0->1 reference get in the
130  * face of object destruction (i.e. we can't allow a get on an
131  * object after last put) */
132 static DEFINE_MUTEX(sd_ref_mutex);
133 
134 static struct kmem_cache *sd_cdb_cache;
135 static mempool_t *sd_cdb_pool;
136 
137 static const char *sd_cache_types[] = {
138 	"write through", "none", "write back",
139 	"write back, no read (daft)"
140 };
141 
142 static void sd_set_flush_flag(struct scsi_disk *sdkp)
143 {
144 	bool wc = false, fua = false;
145 
146 	if (sdkp->WCE) {
147 		wc = true;
148 		if (sdkp->DPOFUA)
149 			fua = true;
150 	}
151 
152 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
153 }
154 
155 static ssize_t
156 cache_type_store(struct device *dev, struct device_attribute *attr,
157 		 const char *buf, size_t count)
158 {
159 	int ct, rcd, wce, sp;
160 	struct scsi_disk *sdkp = to_scsi_disk(dev);
161 	struct scsi_device *sdp = sdkp->device;
162 	char buffer[64];
163 	char *buffer_data;
164 	struct scsi_mode_data data;
165 	struct scsi_sense_hdr sshdr;
166 	static const char temp[] = "temporary ";
167 	int len;
168 
169 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
170 		/* no cache control on RBC devices; theoretically they
171 		 * can do it, but there's probably so many exceptions
172 		 * it's not worth the risk */
173 		return -EINVAL;
174 
175 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
176 		buf += sizeof(temp) - 1;
177 		sdkp->cache_override = 1;
178 	} else {
179 		sdkp->cache_override = 0;
180 	}
181 
182 	ct = sysfs_match_string(sd_cache_types, buf);
183 	if (ct < 0)
184 		return -EINVAL;
185 
186 	rcd = ct & 0x01 ? 1 : 0;
187 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
188 
189 	if (sdkp->cache_override) {
190 		sdkp->WCE = wce;
191 		sdkp->RCD = rcd;
192 		sd_set_flush_flag(sdkp);
193 		return count;
194 	}
195 
196 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
197 			    SD_MAX_RETRIES, &data, NULL))
198 		return -EINVAL;
199 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
200 		  data.block_descriptor_length);
201 	buffer_data = buffer + data.header_length +
202 		data.block_descriptor_length;
203 	buffer_data[2] &= ~0x05;
204 	buffer_data[2] |= wce << 2 | rcd;
205 	sp = buffer_data[0] & 0x80 ? 1 : 0;
206 	buffer_data[0] &= ~0x80;
207 
208 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
209 			     SD_MAX_RETRIES, &data, &sshdr)) {
210 		if (scsi_sense_valid(&sshdr))
211 			sd_print_sense_hdr(sdkp, &sshdr);
212 		return -EINVAL;
213 	}
214 	revalidate_disk(sdkp->disk);
215 	return count;
216 }
217 
218 static ssize_t
219 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
220 		       char *buf)
221 {
222 	struct scsi_disk *sdkp = to_scsi_disk(dev);
223 	struct scsi_device *sdp = sdkp->device;
224 
225 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
226 }
227 
228 static ssize_t
229 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
230 			const char *buf, size_t count)
231 {
232 	struct scsi_disk *sdkp = to_scsi_disk(dev);
233 	struct scsi_device *sdp = sdkp->device;
234 
235 	if (!capable(CAP_SYS_ADMIN))
236 		return -EACCES;
237 
238 	sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
239 
240 	return count;
241 }
242 static DEVICE_ATTR_RW(manage_start_stop);
243 
244 static ssize_t
245 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
246 {
247 	struct scsi_disk *sdkp = to_scsi_disk(dev);
248 
249 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
250 }
251 
252 static ssize_t
253 allow_restart_store(struct device *dev, struct device_attribute *attr,
254 		    const char *buf, size_t count)
255 {
256 	struct scsi_disk *sdkp = to_scsi_disk(dev);
257 	struct scsi_device *sdp = sdkp->device;
258 
259 	if (!capable(CAP_SYS_ADMIN))
260 		return -EACCES;
261 
262 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
263 		return -EINVAL;
264 
265 	sdp->allow_restart = simple_strtoul(buf, NULL, 10);
266 
267 	return count;
268 }
269 static DEVICE_ATTR_RW(allow_restart);
270 
271 static ssize_t
272 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
273 {
274 	struct scsi_disk *sdkp = to_scsi_disk(dev);
275 	int ct = sdkp->RCD + 2*sdkp->WCE;
276 
277 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
278 }
279 static DEVICE_ATTR_RW(cache_type);
280 
281 static ssize_t
282 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
283 {
284 	struct scsi_disk *sdkp = to_scsi_disk(dev);
285 
286 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
287 }
288 static DEVICE_ATTR_RO(FUA);
289 
290 static ssize_t
291 protection_type_show(struct device *dev, struct device_attribute *attr,
292 		     char *buf)
293 {
294 	struct scsi_disk *sdkp = to_scsi_disk(dev);
295 
296 	return sprintf(buf, "%u\n", sdkp->protection_type);
297 }
298 
299 static ssize_t
300 protection_type_store(struct device *dev, struct device_attribute *attr,
301 		      const char *buf, size_t count)
302 {
303 	struct scsi_disk *sdkp = to_scsi_disk(dev);
304 	unsigned int val;
305 	int err;
306 
307 	if (!capable(CAP_SYS_ADMIN))
308 		return -EACCES;
309 
310 	err = kstrtouint(buf, 10, &val);
311 
312 	if (err)
313 		return err;
314 
315 	if (val <= T10_PI_TYPE3_PROTECTION)
316 		sdkp->protection_type = val;
317 
318 	return count;
319 }
320 static DEVICE_ATTR_RW(protection_type);
321 
322 static ssize_t
323 protection_mode_show(struct device *dev, struct device_attribute *attr,
324 		     char *buf)
325 {
326 	struct scsi_disk *sdkp = to_scsi_disk(dev);
327 	struct scsi_device *sdp = sdkp->device;
328 	unsigned int dif, dix;
329 
330 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
331 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
332 
333 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
334 		dif = 0;
335 		dix = 1;
336 	}
337 
338 	if (!dif && !dix)
339 		return sprintf(buf, "none\n");
340 
341 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
342 }
343 static DEVICE_ATTR_RO(protection_mode);
344 
345 static ssize_t
346 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
347 {
348 	struct scsi_disk *sdkp = to_scsi_disk(dev);
349 
350 	return sprintf(buf, "%u\n", sdkp->ATO);
351 }
352 static DEVICE_ATTR_RO(app_tag_own);
353 
354 static ssize_t
355 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
356 		       char *buf)
357 {
358 	struct scsi_disk *sdkp = to_scsi_disk(dev);
359 
360 	return sprintf(buf, "%u\n", sdkp->lbpme);
361 }
362 static DEVICE_ATTR_RO(thin_provisioning);
363 
364 /* sysfs_match_string() requires dense arrays */
365 static const char *lbp_mode[] = {
366 	[SD_LBP_FULL]		= "full",
367 	[SD_LBP_UNMAP]		= "unmap",
368 	[SD_LBP_WS16]		= "writesame_16",
369 	[SD_LBP_WS10]		= "writesame_10",
370 	[SD_LBP_ZERO]		= "writesame_zero",
371 	[SD_LBP_DISABLE]	= "disabled",
372 };
373 
374 static ssize_t
375 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
376 		       char *buf)
377 {
378 	struct scsi_disk *sdkp = to_scsi_disk(dev);
379 
380 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
381 }
382 
383 static ssize_t
384 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
385 			const char *buf, size_t count)
386 {
387 	struct scsi_disk *sdkp = to_scsi_disk(dev);
388 	struct scsi_device *sdp = sdkp->device;
389 	int mode;
390 
391 	if (!capable(CAP_SYS_ADMIN))
392 		return -EACCES;
393 
394 	if (sd_is_zoned(sdkp)) {
395 		sd_config_discard(sdkp, SD_LBP_DISABLE);
396 		return count;
397 	}
398 
399 	if (sdp->type != TYPE_DISK)
400 		return -EINVAL;
401 
402 	mode = sysfs_match_string(lbp_mode, buf);
403 	if (mode < 0)
404 		return -EINVAL;
405 
406 	sd_config_discard(sdkp, mode);
407 
408 	return count;
409 }
410 static DEVICE_ATTR_RW(provisioning_mode);
411 
412 /* sysfs_match_string() requires dense arrays */
413 static const char *zeroing_mode[] = {
414 	[SD_ZERO_WRITE]		= "write",
415 	[SD_ZERO_WS]		= "writesame",
416 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
417 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
418 };
419 
420 static ssize_t
421 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
422 		  char *buf)
423 {
424 	struct scsi_disk *sdkp = to_scsi_disk(dev);
425 
426 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
427 }
428 
429 static ssize_t
430 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
431 		   const char *buf, size_t count)
432 {
433 	struct scsi_disk *sdkp = to_scsi_disk(dev);
434 	int mode;
435 
436 	if (!capable(CAP_SYS_ADMIN))
437 		return -EACCES;
438 
439 	mode = sysfs_match_string(zeroing_mode, buf);
440 	if (mode < 0)
441 		return -EINVAL;
442 
443 	sdkp->zeroing_mode = mode;
444 
445 	return count;
446 }
447 static DEVICE_ATTR_RW(zeroing_mode);
448 
449 static ssize_t
450 max_medium_access_timeouts_show(struct device *dev,
451 				struct device_attribute *attr, char *buf)
452 {
453 	struct scsi_disk *sdkp = to_scsi_disk(dev);
454 
455 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
456 }
457 
458 static ssize_t
459 max_medium_access_timeouts_store(struct device *dev,
460 				 struct device_attribute *attr, const char *buf,
461 				 size_t count)
462 {
463 	struct scsi_disk *sdkp = to_scsi_disk(dev);
464 	int err;
465 
466 	if (!capable(CAP_SYS_ADMIN))
467 		return -EACCES;
468 
469 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
470 
471 	return err ? err : count;
472 }
473 static DEVICE_ATTR_RW(max_medium_access_timeouts);
474 
475 static ssize_t
476 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
477 			   char *buf)
478 {
479 	struct scsi_disk *sdkp = to_scsi_disk(dev);
480 
481 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
482 }
483 
484 static ssize_t
485 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
486 			    const char *buf, size_t count)
487 {
488 	struct scsi_disk *sdkp = to_scsi_disk(dev);
489 	struct scsi_device *sdp = sdkp->device;
490 	unsigned long max;
491 	int err;
492 
493 	if (!capable(CAP_SYS_ADMIN))
494 		return -EACCES;
495 
496 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
497 		return -EINVAL;
498 
499 	err = kstrtoul(buf, 10, &max);
500 
501 	if (err)
502 		return err;
503 
504 	if (max == 0)
505 		sdp->no_write_same = 1;
506 	else if (max <= SD_MAX_WS16_BLOCKS) {
507 		sdp->no_write_same = 0;
508 		sdkp->max_ws_blocks = max;
509 	}
510 
511 	sd_config_write_same(sdkp);
512 
513 	return count;
514 }
515 static DEVICE_ATTR_RW(max_write_same_blocks);
516 
517 static struct attribute *sd_disk_attrs[] = {
518 	&dev_attr_cache_type.attr,
519 	&dev_attr_FUA.attr,
520 	&dev_attr_allow_restart.attr,
521 	&dev_attr_manage_start_stop.attr,
522 	&dev_attr_protection_type.attr,
523 	&dev_attr_protection_mode.attr,
524 	&dev_attr_app_tag_own.attr,
525 	&dev_attr_thin_provisioning.attr,
526 	&dev_attr_provisioning_mode.attr,
527 	&dev_attr_zeroing_mode.attr,
528 	&dev_attr_max_write_same_blocks.attr,
529 	&dev_attr_max_medium_access_timeouts.attr,
530 	NULL,
531 };
532 ATTRIBUTE_GROUPS(sd_disk);
533 
534 static struct class sd_disk_class = {
535 	.name		= "scsi_disk",
536 	.owner		= THIS_MODULE,
537 	.dev_release	= scsi_disk_release,
538 	.dev_groups	= sd_disk_groups,
539 };
540 
541 static const struct dev_pm_ops sd_pm_ops = {
542 	.suspend		= sd_suspend_system,
543 	.resume			= sd_resume,
544 	.poweroff		= sd_suspend_system,
545 	.restore		= sd_resume,
546 	.runtime_suspend	= sd_suspend_runtime,
547 	.runtime_resume		= sd_resume,
548 };
549 
550 static struct scsi_driver sd_template = {
551 	.gendrv = {
552 		.name		= "sd",
553 		.owner		= THIS_MODULE,
554 		.probe		= sd_probe,
555 		.remove		= sd_remove,
556 		.shutdown	= sd_shutdown,
557 		.pm		= &sd_pm_ops,
558 	},
559 	.rescan			= sd_rescan,
560 	.init_command		= sd_init_command,
561 	.uninit_command		= sd_uninit_command,
562 	.done			= sd_done,
563 	.eh_action		= sd_eh_action,
564 	.eh_reset		= sd_eh_reset,
565 };
566 
567 /*
568  * Dummy kobj_map->probe function.
569  * The default ->probe function will call modprobe, which is
570  * pointless as this module is already loaded.
571  */
572 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
573 {
574 	return NULL;
575 }
576 
577 /*
578  * Device no to disk mapping:
579  *
580  *       major         disc2     disc  p1
581  *   |............|.............|....|....| <- dev_t
582  *    31        20 19          8 7  4 3  0
583  *
584  * Inside a major, we have 16k disks, however mapped non-
585  * contiguously. The first 16 disks are for major0, the next
586  * ones with major1, ... Disk 256 is for major0 again, disk 272
587  * for major1, ...
588  * As we stay compatible with our numbering scheme, we can reuse
589  * the well-know SCSI majors 8, 65--71, 136--143.
590  */
591 static int sd_major(int major_idx)
592 {
593 	switch (major_idx) {
594 	case 0:
595 		return SCSI_DISK0_MAJOR;
596 	case 1 ... 7:
597 		return SCSI_DISK1_MAJOR + major_idx - 1;
598 	case 8 ... 15:
599 		return SCSI_DISK8_MAJOR + major_idx - 8;
600 	default:
601 		BUG();
602 		return 0;	/* shut up gcc */
603 	}
604 }
605 
606 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
607 {
608 	struct scsi_disk *sdkp = NULL;
609 
610 	mutex_lock(&sd_ref_mutex);
611 
612 	if (disk->private_data) {
613 		sdkp = scsi_disk(disk);
614 		if (scsi_device_get(sdkp->device) == 0)
615 			get_device(&sdkp->dev);
616 		else
617 			sdkp = NULL;
618 	}
619 	mutex_unlock(&sd_ref_mutex);
620 	return sdkp;
621 }
622 
623 static void scsi_disk_put(struct scsi_disk *sdkp)
624 {
625 	struct scsi_device *sdev = sdkp->device;
626 
627 	mutex_lock(&sd_ref_mutex);
628 	put_device(&sdkp->dev);
629 	scsi_device_put(sdev);
630 	mutex_unlock(&sd_ref_mutex);
631 }
632 
633 #ifdef CONFIG_BLK_SED_OPAL
634 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
635 		size_t len, bool send)
636 {
637 	struct scsi_device *sdev = data;
638 	u8 cdb[12] = { 0, };
639 	int ret;
640 
641 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
642 	cdb[1] = secp;
643 	put_unaligned_be16(spsp, &cdb[2]);
644 	put_unaligned_be32(len, &cdb[6]);
645 
646 	ret = scsi_execute_req(sdev, cdb,
647 			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
648 			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
649 	return ret <= 0 ? ret : -EIO;
650 }
651 #endif /* CONFIG_BLK_SED_OPAL */
652 
653 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
654 					   unsigned int dix, unsigned int dif)
655 {
656 	struct bio *bio = scmd->request->bio;
657 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
658 	unsigned int protect = 0;
659 
660 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
661 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
662 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
663 
664 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
665 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
666 	}
667 
668 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
669 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
670 
671 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
672 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
673 	}
674 
675 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
676 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
677 
678 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
679 			protect = 3 << 5;	/* Disable target PI checking */
680 		else
681 			protect = 1 << 5;	/* Enable target PI checking */
682 	}
683 
684 	scsi_set_prot_op(scmd, prot_op);
685 	scsi_set_prot_type(scmd, dif);
686 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
687 
688 	return protect;
689 }
690 
691 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
692 {
693 	struct request_queue *q = sdkp->disk->queue;
694 	unsigned int logical_block_size = sdkp->device->sector_size;
695 	unsigned int max_blocks = 0;
696 
697 	q->limits.discard_alignment =
698 		sdkp->unmap_alignment * logical_block_size;
699 	q->limits.discard_granularity =
700 		max(sdkp->physical_block_size,
701 		    sdkp->unmap_granularity * logical_block_size);
702 	sdkp->provisioning_mode = mode;
703 
704 	switch (mode) {
705 
706 	case SD_LBP_FULL:
707 	case SD_LBP_DISABLE:
708 		blk_queue_max_discard_sectors(q, 0);
709 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
710 		return;
711 
712 	case SD_LBP_UNMAP:
713 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
714 					  (u32)SD_MAX_WS16_BLOCKS);
715 		break;
716 
717 	case SD_LBP_WS16:
718 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
719 					  (u32)SD_MAX_WS16_BLOCKS);
720 		break;
721 
722 	case SD_LBP_WS10:
723 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
724 					  (u32)SD_MAX_WS10_BLOCKS);
725 		break;
726 
727 	case SD_LBP_ZERO:
728 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
729 					  (u32)SD_MAX_WS10_BLOCKS);
730 		break;
731 	}
732 
733 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
734 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
735 }
736 
737 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
738 {
739 	struct scsi_device *sdp = cmd->device;
740 	struct request *rq = cmd->request;
741 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
742 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
743 	unsigned int data_len = 24;
744 	char *buf;
745 
746 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
747 	if (!rq->special_vec.bv_page)
748 		return BLKPREP_DEFER;
749 	rq->special_vec.bv_offset = 0;
750 	rq->special_vec.bv_len = data_len;
751 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
752 
753 	cmd->cmd_len = 10;
754 	cmd->cmnd[0] = UNMAP;
755 	cmd->cmnd[8] = 24;
756 
757 	buf = page_address(rq->special_vec.bv_page);
758 	put_unaligned_be16(6 + 16, &buf[0]);
759 	put_unaligned_be16(16, &buf[2]);
760 	put_unaligned_be64(sector, &buf[8]);
761 	put_unaligned_be32(nr_sectors, &buf[16]);
762 
763 	cmd->allowed = SD_MAX_RETRIES;
764 	cmd->transfersize = data_len;
765 	rq->timeout = SD_TIMEOUT;
766 	scsi_req(rq)->resid_len = data_len;
767 
768 	return scsi_init_io(cmd);
769 }
770 
771 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap)
772 {
773 	struct scsi_device *sdp = cmd->device;
774 	struct request *rq = cmd->request;
775 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
776 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
777 	u32 data_len = sdp->sector_size;
778 
779 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
780 	if (!rq->special_vec.bv_page)
781 		return BLKPREP_DEFER;
782 	rq->special_vec.bv_offset = 0;
783 	rq->special_vec.bv_len = data_len;
784 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
785 
786 	cmd->cmd_len = 16;
787 	cmd->cmnd[0] = WRITE_SAME_16;
788 	if (unmap)
789 		cmd->cmnd[1] = 0x8; /* UNMAP */
790 	put_unaligned_be64(sector, &cmd->cmnd[2]);
791 	put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
792 
793 	cmd->allowed = SD_MAX_RETRIES;
794 	cmd->transfersize = data_len;
795 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
796 	scsi_req(rq)->resid_len = data_len;
797 
798 	return scsi_init_io(cmd);
799 }
800 
801 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap)
802 {
803 	struct scsi_device *sdp = cmd->device;
804 	struct request *rq = cmd->request;
805 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
806 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
807 	u32 data_len = sdp->sector_size;
808 
809 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
810 	if (!rq->special_vec.bv_page)
811 		return BLKPREP_DEFER;
812 	rq->special_vec.bv_offset = 0;
813 	rq->special_vec.bv_len = data_len;
814 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
815 
816 	cmd->cmd_len = 10;
817 	cmd->cmnd[0] = WRITE_SAME;
818 	if (unmap)
819 		cmd->cmnd[1] = 0x8; /* UNMAP */
820 	put_unaligned_be32(sector, &cmd->cmnd[2]);
821 	put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
822 
823 	cmd->allowed = SD_MAX_RETRIES;
824 	cmd->transfersize = data_len;
825 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
826 	scsi_req(rq)->resid_len = data_len;
827 
828 	return scsi_init_io(cmd);
829 }
830 
831 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
832 {
833 	struct request *rq = cmd->request;
834 	struct scsi_device *sdp = cmd->device;
835 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
836 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
837 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
838 	int ret;
839 
840 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
841 		switch (sdkp->zeroing_mode) {
842 		case SD_ZERO_WS16_UNMAP:
843 			ret = sd_setup_write_same16_cmnd(cmd, true);
844 			goto out;
845 		case SD_ZERO_WS10_UNMAP:
846 			ret = sd_setup_write_same10_cmnd(cmd, true);
847 			goto out;
848 		}
849 	}
850 
851 	if (sdp->no_write_same)
852 		return BLKPREP_INVALID;
853 
854 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
855 		ret = sd_setup_write_same16_cmnd(cmd, false);
856 	else
857 		ret = sd_setup_write_same10_cmnd(cmd, false);
858 
859 out:
860 	if (sd_is_zoned(sdkp) && ret == BLKPREP_OK)
861 		return sd_zbc_write_lock_zone(cmd);
862 
863 	return ret;
864 }
865 
866 static void sd_config_write_same(struct scsi_disk *sdkp)
867 {
868 	struct request_queue *q = sdkp->disk->queue;
869 	unsigned int logical_block_size = sdkp->device->sector_size;
870 
871 	if (sdkp->device->no_write_same) {
872 		sdkp->max_ws_blocks = 0;
873 		goto out;
874 	}
875 
876 	/* Some devices can not handle block counts above 0xffff despite
877 	 * supporting WRITE SAME(16). Consequently we default to 64k
878 	 * blocks per I/O unless the device explicitly advertises a
879 	 * bigger limit.
880 	 */
881 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
882 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
883 						   (u32)SD_MAX_WS16_BLOCKS);
884 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
885 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
886 						   (u32)SD_MAX_WS10_BLOCKS);
887 	else {
888 		sdkp->device->no_write_same = 1;
889 		sdkp->max_ws_blocks = 0;
890 	}
891 
892 	if (sdkp->lbprz && sdkp->lbpws)
893 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
894 	else if (sdkp->lbprz && sdkp->lbpws10)
895 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
896 	else if (sdkp->max_ws_blocks)
897 		sdkp->zeroing_mode = SD_ZERO_WS;
898 	else
899 		sdkp->zeroing_mode = SD_ZERO_WRITE;
900 
901 out:
902 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
903 					 (logical_block_size >> 9));
904 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
905 					 (logical_block_size >> 9));
906 }
907 
908 /**
909  * sd_setup_write_same_cmnd - write the same data to multiple blocks
910  * @cmd: command to prepare
911  *
912  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
913  * the preference indicated by the target device.
914  **/
915 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
916 {
917 	struct request *rq = cmd->request;
918 	struct scsi_device *sdp = cmd->device;
919 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
920 	struct bio *bio = rq->bio;
921 	sector_t sector = blk_rq_pos(rq);
922 	unsigned int nr_sectors = blk_rq_sectors(rq);
923 	unsigned int nr_bytes = blk_rq_bytes(rq);
924 	int ret;
925 
926 	if (sdkp->device->no_write_same)
927 		return BLKPREP_INVALID;
928 
929 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
930 
931 	if (sd_is_zoned(sdkp)) {
932 		ret = sd_zbc_write_lock_zone(cmd);
933 		if (ret != BLKPREP_OK)
934 			return ret;
935 	}
936 
937 	sector >>= ilog2(sdp->sector_size) - 9;
938 	nr_sectors >>= ilog2(sdp->sector_size) - 9;
939 
940 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
941 
942 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
943 		cmd->cmd_len = 16;
944 		cmd->cmnd[0] = WRITE_SAME_16;
945 		put_unaligned_be64(sector, &cmd->cmnd[2]);
946 		put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
947 	} else {
948 		cmd->cmd_len = 10;
949 		cmd->cmnd[0] = WRITE_SAME;
950 		put_unaligned_be32(sector, &cmd->cmnd[2]);
951 		put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
952 	}
953 
954 	cmd->transfersize = sdp->sector_size;
955 	cmd->allowed = SD_MAX_RETRIES;
956 
957 	/*
958 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
959 	 * different from the amount of data actually written to the target.
960 	 *
961 	 * We set up __data_len to the amount of data transferred via the
962 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
963 	 * to transfer a single sector of data first, but then reset it to
964 	 * the amount of data to be written right after so that the I/O path
965 	 * knows how much to actually write.
966 	 */
967 	rq->__data_len = sdp->sector_size;
968 	ret = scsi_init_io(cmd);
969 	rq->__data_len = nr_bytes;
970 
971 	if (sd_is_zoned(sdkp) && ret != BLKPREP_OK)
972 		sd_zbc_write_unlock_zone(cmd);
973 
974 	return ret;
975 }
976 
977 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
978 {
979 	struct request *rq = cmd->request;
980 
981 	/* flush requests don't perform I/O, zero the S/G table */
982 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
983 
984 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
985 	cmd->cmd_len = 10;
986 	cmd->transfersize = 0;
987 	cmd->allowed = SD_MAX_RETRIES;
988 
989 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
990 	return BLKPREP_OK;
991 }
992 
993 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
994 {
995 	struct request *rq = SCpnt->request;
996 	struct scsi_device *sdp = SCpnt->device;
997 	struct gendisk *disk = rq->rq_disk;
998 	struct scsi_disk *sdkp = scsi_disk(disk);
999 	sector_t block = blk_rq_pos(rq);
1000 	sector_t threshold;
1001 	unsigned int this_count = blk_rq_sectors(rq);
1002 	unsigned int dif, dix;
1003 	bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE;
1004 	int ret;
1005 	unsigned char protect;
1006 
1007 	if (zoned_write) {
1008 		ret = sd_zbc_write_lock_zone(SCpnt);
1009 		if (ret != BLKPREP_OK)
1010 			return ret;
1011 	}
1012 
1013 	ret = scsi_init_io(SCpnt);
1014 	if (ret != BLKPREP_OK)
1015 		goto out;
1016 	WARN_ON_ONCE(SCpnt != rq->special);
1017 
1018 	/* from here on until we're complete, any goto out
1019 	 * is used for a killable error condition */
1020 	ret = BLKPREP_KILL;
1021 
1022 	SCSI_LOG_HLQUEUE(1,
1023 		scmd_printk(KERN_INFO, SCpnt,
1024 			"%s: block=%llu, count=%d\n",
1025 			__func__, (unsigned long long)block, this_count));
1026 
1027 	if (!sdp || !scsi_device_online(sdp) ||
1028 	    block + blk_rq_sectors(rq) > get_capacity(disk)) {
1029 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1030 						"Finishing %u sectors\n",
1031 						blk_rq_sectors(rq)));
1032 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1033 						"Retry with 0x%p\n", SCpnt));
1034 		goto out;
1035 	}
1036 
1037 	if (sdp->changed) {
1038 		/*
1039 		 * quietly refuse to do anything to a changed disc until
1040 		 * the changed bit has been reset
1041 		 */
1042 		/* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1043 		goto out;
1044 	}
1045 
1046 	/*
1047 	 * Some SD card readers can't handle multi-sector accesses which touch
1048 	 * the last one or two hardware sectors.  Split accesses as needed.
1049 	 */
1050 	threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1051 		(sdp->sector_size / 512);
1052 
1053 	if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1054 		if (block < threshold) {
1055 			/* Access up to the threshold but not beyond */
1056 			this_count = threshold - block;
1057 		} else {
1058 			/* Access only a single hardware sector */
1059 			this_count = sdp->sector_size / 512;
1060 		}
1061 	}
1062 
1063 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1064 					(unsigned long long)block));
1065 
1066 	/*
1067 	 * If we have a 1K hardware sectorsize, prevent access to single
1068 	 * 512 byte sectors.  In theory we could handle this - in fact
1069 	 * the scsi cdrom driver must be able to handle this because
1070 	 * we typically use 1K blocksizes, and cdroms typically have
1071 	 * 2K hardware sectorsizes.  Of course, things are simpler
1072 	 * with the cdrom, since it is read-only.  For performance
1073 	 * reasons, the filesystems should be able to handle this
1074 	 * and not force the scsi disk driver to use bounce buffers
1075 	 * for this.
1076 	 */
1077 	if (sdp->sector_size == 1024) {
1078 		if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1079 			scmd_printk(KERN_ERR, SCpnt,
1080 				    "Bad block number requested\n");
1081 			goto out;
1082 		} else {
1083 			block = block >> 1;
1084 			this_count = this_count >> 1;
1085 		}
1086 	}
1087 	if (sdp->sector_size == 2048) {
1088 		if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1089 			scmd_printk(KERN_ERR, SCpnt,
1090 				    "Bad block number requested\n");
1091 			goto out;
1092 		} else {
1093 			block = block >> 2;
1094 			this_count = this_count >> 2;
1095 		}
1096 	}
1097 	if (sdp->sector_size == 4096) {
1098 		if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1099 			scmd_printk(KERN_ERR, SCpnt,
1100 				    "Bad block number requested\n");
1101 			goto out;
1102 		} else {
1103 			block = block >> 3;
1104 			this_count = this_count >> 3;
1105 		}
1106 	}
1107 	if (rq_data_dir(rq) == WRITE) {
1108 		SCpnt->cmnd[0] = WRITE_6;
1109 
1110 		if (blk_integrity_rq(rq))
1111 			sd_dif_prepare(SCpnt);
1112 
1113 	} else if (rq_data_dir(rq) == READ) {
1114 		SCpnt->cmnd[0] = READ_6;
1115 	} else {
1116 		scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1117 		goto out;
1118 	}
1119 
1120 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1121 					"%s %d/%u 512 byte blocks.\n",
1122 					(rq_data_dir(rq) == WRITE) ?
1123 					"writing" : "reading", this_count,
1124 					blk_rq_sectors(rq)));
1125 
1126 	dix = scsi_prot_sg_count(SCpnt);
1127 	dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1128 
1129 	if (dif || dix)
1130 		protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1131 	else
1132 		protect = 0;
1133 
1134 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1135 		SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1136 
1137 		if (unlikely(SCpnt->cmnd == NULL)) {
1138 			ret = BLKPREP_DEFER;
1139 			goto out;
1140 		}
1141 
1142 		SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1143 		memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1144 		SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1145 		SCpnt->cmnd[7] = 0x18;
1146 		SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1147 		SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1148 
1149 		/* LBA */
1150 		SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1151 		SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1152 		SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1153 		SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1154 		SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1155 		SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1156 		SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1157 		SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1158 
1159 		/* Expected Indirect LBA */
1160 		SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1161 		SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1162 		SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1163 		SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1164 
1165 		/* Transfer length */
1166 		SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1167 		SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1168 		SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1169 		SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1170 	} else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1171 		SCpnt->cmnd[0] += READ_16 - READ_6;
1172 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1173 		SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1174 		SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1175 		SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1176 		SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1177 		SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1178 		SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1179 		SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1180 		SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1181 		SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1182 		SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1183 		SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1184 		SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1185 		SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1186 	} else if ((this_count > 0xff) || (block > 0x1fffff) ||
1187 		   scsi_device_protection(SCpnt->device) ||
1188 		   SCpnt->device->use_10_for_rw) {
1189 		SCpnt->cmnd[0] += READ_10 - READ_6;
1190 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1191 		SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1192 		SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1193 		SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1194 		SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1195 		SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1196 		SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1197 		SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1198 	} else {
1199 		if (unlikely(rq->cmd_flags & REQ_FUA)) {
1200 			/*
1201 			 * This happens only if this drive failed
1202 			 * 10byte rw command with ILLEGAL_REQUEST
1203 			 * during operation and thus turned off
1204 			 * use_10_for_rw.
1205 			 */
1206 			scmd_printk(KERN_ERR, SCpnt,
1207 				    "FUA write on READ/WRITE(6) drive\n");
1208 			goto out;
1209 		}
1210 
1211 		SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1212 		SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1213 		SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1214 		SCpnt->cmnd[4] = (unsigned char) this_count;
1215 		SCpnt->cmnd[5] = 0;
1216 	}
1217 	SCpnt->sdb.length = this_count * sdp->sector_size;
1218 
1219 	/*
1220 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1221 	 * host adapter, it's safe to assume that we can at least transfer
1222 	 * this many bytes between each connect / disconnect.
1223 	 */
1224 	SCpnt->transfersize = sdp->sector_size;
1225 	SCpnt->underflow = this_count << 9;
1226 	SCpnt->allowed = SD_MAX_RETRIES;
1227 
1228 	/*
1229 	 * This indicates that the command is ready from our end to be
1230 	 * queued.
1231 	 */
1232 	ret = BLKPREP_OK;
1233  out:
1234 	if (zoned_write && ret != BLKPREP_OK)
1235 		sd_zbc_write_unlock_zone(SCpnt);
1236 
1237 	return ret;
1238 }
1239 
1240 static int sd_init_command(struct scsi_cmnd *cmd)
1241 {
1242 	struct request *rq = cmd->request;
1243 
1244 	switch (req_op(rq)) {
1245 	case REQ_OP_DISCARD:
1246 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1247 		case SD_LBP_UNMAP:
1248 			return sd_setup_unmap_cmnd(cmd);
1249 		case SD_LBP_WS16:
1250 			return sd_setup_write_same16_cmnd(cmd, true);
1251 		case SD_LBP_WS10:
1252 			return sd_setup_write_same10_cmnd(cmd, true);
1253 		case SD_LBP_ZERO:
1254 			return sd_setup_write_same10_cmnd(cmd, false);
1255 		default:
1256 			return BLKPREP_INVALID;
1257 		}
1258 	case REQ_OP_WRITE_ZEROES:
1259 		return sd_setup_write_zeroes_cmnd(cmd);
1260 	case REQ_OP_WRITE_SAME:
1261 		return sd_setup_write_same_cmnd(cmd);
1262 	case REQ_OP_FLUSH:
1263 		return sd_setup_flush_cmnd(cmd);
1264 	case REQ_OP_READ:
1265 	case REQ_OP_WRITE:
1266 		return sd_setup_read_write_cmnd(cmd);
1267 	case REQ_OP_ZONE_REPORT:
1268 		return sd_zbc_setup_report_cmnd(cmd);
1269 	case REQ_OP_ZONE_RESET:
1270 		return sd_zbc_setup_reset_cmnd(cmd);
1271 	default:
1272 		BUG();
1273 	}
1274 }
1275 
1276 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1277 {
1278 	struct request *rq = SCpnt->request;
1279 
1280 	if (SCpnt->flags & SCMD_ZONE_WRITE_LOCK)
1281 		sd_zbc_write_unlock_zone(SCpnt);
1282 
1283 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1284 		__free_page(rq->special_vec.bv_page);
1285 
1286 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1287 		mempool_free(SCpnt->cmnd, sd_cdb_pool);
1288 		SCpnt->cmnd = NULL;
1289 		SCpnt->cmd_len = 0;
1290 	}
1291 }
1292 
1293 /**
1294  *	sd_open - open a scsi disk device
1295  *	@bdev: Block device of the scsi disk to open
1296  *	@mode: FMODE_* mask
1297  *
1298  *	Returns 0 if successful. Returns a negated errno value in case
1299  *	of error.
1300  *
1301  *	Note: This can be called from a user context (e.g. fsck(1) )
1302  *	or from within the kernel (e.g. as a result of a mount(1) ).
1303  *	In the latter case @inode and @filp carry an abridged amount
1304  *	of information as noted above.
1305  *
1306  *	Locking: called with bdev->bd_mutex held.
1307  **/
1308 static int sd_open(struct block_device *bdev, fmode_t mode)
1309 {
1310 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1311 	struct scsi_device *sdev;
1312 	int retval;
1313 
1314 	if (!sdkp)
1315 		return -ENXIO;
1316 
1317 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1318 
1319 	sdev = sdkp->device;
1320 
1321 	/*
1322 	 * If the device is in error recovery, wait until it is done.
1323 	 * If the device is offline, then disallow any access to it.
1324 	 */
1325 	retval = -ENXIO;
1326 	if (!scsi_block_when_processing_errors(sdev))
1327 		goto error_out;
1328 
1329 	if (sdev->removable || sdkp->write_prot)
1330 		check_disk_change(bdev);
1331 
1332 	/*
1333 	 * If the drive is empty, just let the open fail.
1334 	 */
1335 	retval = -ENOMEDIUM;
1336 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1337 		goto error_out;
1338 
1339 	/*
1340 	 * If the device has the write protect tab set, have the open fail
1341 	 * if the user expects to be able to write to the thing.
1342 	 */
1343 	retval = -EROFS;
1344 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1345 		goto error_out;
1346 
1347 	/*
1348 	 * It is possible that the disk changing stuff resulted in
1349 	 * the device being taken offline.  If this is the case,
1350 	 * report this to the user, and don't pretend that the
1351 	 * open actually succeeded.
1352 	 */
1353 	retval = -ENXIO;
1354 	if (!scsi_device_online(sdev))
1355 		goto error_out;
1356 
1357 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1358 		if (scsi_block_when_processing_errors(sdev))
1359 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1360 	}
1361 
1362 	return 0;
1363 
1364 error_out:
1365 	scsi_disk_put(sdkp);
1366 	return retval;
1367 }
1368 
1369 /**
1370  *	sd_release - invoked when the (last) close(2) is called on this
1371  *	scsi disk.
1372  *	@disk: disk to release
1373  *	@mode: FMODE_* mask
1374  *
1375  *	Returns 0.
1376  *
1377  *	Note: may block (uninterruptible) if error recovery is underway
1378  *	on this disk.
1379  *
1380  *	Locking: called with bdev->bd_mutex held.
1381  **/
1382 static void sd_release(struct gendisk *disk, fmode_t mode)
1383 {
1384 	struct scsi_disk *sdkp = scsi_disk(disk);
1385 	struct scsi_device *sdev = sdkp->device;
1386 
1387 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1388 
1389 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1390 		if (scsi_block_when_processing_errors(sdev))
1391 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1392 	}
1393 
1394 	/*
1395 	 * XXX and what if there are packets in flight and this close()
1396 	 * XXX is followed by a "rmmod sd_mod"?
1397 	 */
1398 
1399 	scsi_disk_put(sdkp);
1400 }
1401 
1402 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1403 {
1404 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1405 	struct scsi_device *sdp = sdkp->device;
1406 	struct Scsi_Host *host = sdp->host;
1407 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1408 	int diskinfo[4];
1409 
1410 	/* default to most commonly used values */
1411 	diskinfo[0] = 0x40;	/* 1 << 6 */
1412 	diskinfo[1] = 0x20;	/* 1 << 5 */
1413 	diskinfo[2] = capacity >> 11;
1414 
1415 	/* override with calculated, extended default, or driver values */
1416 	if (host->hostt->bios_param)
1417 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1418 	else
1419 		scsicam_bios_param(bdev, capacity, diskinfo);
1420 
1421 	geo->heads = diskinfo[0];
1422 	geo->sectors = diskinfo[1];
1423 	geo->cylinders = diskinfo[2];
1424 	return 0;
1425 }
1426 
1427 /**
1428  *	sd_ioctl - process an ioctl
1429  *	@bdev: target block device
1430  *	@mode: FMODE_* mask
1431  *	@cmd: ioctl command number
1432  *	@arg: this is third argument given to ioctl(2) system call.
1433  *	Often contains a pointer.
1434  *
1435  *	Returns 0 if successful (some ioctls return positive numbers on
1436  *	success as well). Returns a negated errno value in case of error.
1437  *
1438  *	Note: most ioctls are forward onto the block subsystem or further
1439  *	down in the scsi subsystem.
1440  **/
1441 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1442 		    unsigned int cmd, unsigned long arg)
1443 {
1444 	struct gendisk *disk = bdev->bd_disk;
1445 	struct scsi_disk *sdkp = scsi_disk(disk);
1446 	struct scsi_device *sdp = sdkp->device;
1447 	void __user *p = (void __user *)arg;
1448 	int error;
1449 
1450 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1451 				    "cmd=0x%x\n", disk->disk_name, cmd));
1452 
1453 	error = scsi_verify_blk_ioctl(bdev, cmd);
1454 	if (error < 0)
1455 		return error;
1456 
1457 	/*
1458 	 * If we are in the middle of error recovery, don't let anyone
1459 	 * else try and use this device.  Also, if error recovery fails, it
1460 	 * may try and take the device offline, in which case all further
1461 	 * access to the device is prohibited.
1462 	 */
1463 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1464 			(mode & FMODE_NDELAY) != 0);
1465 	if (error)
1466 		goto out;
1467 
1468 	if (is_sed_ioctl(cmd))
1469 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1470 
1471 	/*
1472 	 * Send SCSI addressing ioctls directly to mid level, send other
1473 	 * ioctls to block level and then onto mid level if they can't be
1474 	 * resolved.
1475 	 */
1476 	switch (cmd) {
1477 		case SCSI_IOCTL_GET_IDLUN:
1478 		case SCSI_IOCTL_GET_BUS_NUMBER:
1479 			error = scsi_ioctl(sdp, cmd, p);
1480 			break;
1481 		default:
1482 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1483 			if (error != -ENOTTY)
1484 				break;
1485 			error = scsi_ioctl(sdp, cmd, p);
1486 			break;
1487 	}
1488 out:
1489 	return error;
1490 }
1491 
1492 static void set_media_not_present(struct scsi_disk *sdkp)
1493 {
1494 	if (sdkp->media_present)
1495 		sdkp->device->changed = 1;
1496 
1497 	if (sdkp->device->removable) {
1498 		sdkp->media_present = 0;
1499 		sdkp->capacity = 0;
1500 	}
1501 }
1502 
1503 static int media_not_present(struct scsi_disk *sdkp,
1504 			     struct scsi_sense_hdr *sshdr)
1505 {
1506 	if (!scsi_sense_valid(sshdr))
1507 		return 0;
1508 
1509 	/* not invoked for commands that could return deferred errors */
1510 	switch (sshdr->sense_key) {
1511 	case UNIT_ATTENTION:
1512 	case NOT_READY:
1513 		/* medium not present */
1514 		if (sshdr->asc == 0x3A) {
1515 			set_media_not_present(sdkp);
1516 			return 1;
1517 		}
1518 	}
1519 	return 0;
1520 }
1521 
1522 /**
1523  *	sd_check_events - check media events
1524  *	@disk: kernel device descriptor
1525  *	@clearing: disk events currently being cleared
1526  *
1527  *	Returns mask of DISK_EVENT_*.
1528  *
1529  *	Note: this function is invoked from the block subsystem.
1530  **/
1531 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1532 {
1533 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1534 	struct scsi_device *sdp;
1535 	int retval;
1536 
1537 	if (!sdkp)
1538 		return 0;
1539 
1540 	sdp = sdkp->device;
1541 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1542 
1543 	/*
1544 	 * If the device is offline, don't send any commands - just pretend as
1545 	 * if the command failed.  If the device ever comes back online, we
1546 	 * can deal with it then.  It is only because of unrecoverable errors
1547 	 * that we would ever take a device offline in the first place.
1548 	 */
1549 	if (!scsi_device_online(sdp)) {
1550 		set_media_not_present(sdkp);
1551 		goto out;
1552 	}
1553 
1554 	/*
1555 	 * Using TEST_UNIT_READY enables differentiation between drive with
1556 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1557 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1558 	 *
1559 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1560 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1561 	 * sd_revalidate() is called.
1562 	 */
1563 	if (scsi_block_when_processing_errors(sdp)) {
1564 		struct scsi_sense_hdr sshdr = { 0, };
1565 
1566 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1567 					      &sshdr);
1568 
1569 		/* failed to execute TUR, assume media not present */
1570 		if (host_byte(retval)) {
1571 			set_media_not_present(sdkp);
1572 			goto out;
1573 		}
1574 
1575 		if (media_not_present(sdkp, &sshdr))
1576 			goto out;
1577 	}
1578 
1579 	/*
1580 	 * For removable scsi disk we have to recognise the presence
1581 	 * of a disk in the drive.
1582 	 */
1583 	if (!sdkp->media_present)
1584 		sdp->changed = 1;
1585 	sdkp->media_present = 1;
1586 out:
1587 	/*
1588 	 * sdp->changed is set under the following conditions:
1589 	 *
1590 	 *	Medium present state has changed in either direction.
1591 	 *	Device has indicated UNIT_ATTENTION.
1592 	 */
1593 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1594 	sdp->changed = 0;
1595 	scsi_disk_put(sdkp);
1596 	return retval;
1597 }
1598 
1599 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1600 {
1601 	int retries, res;
1602 	struct scsi_device *sdp = sdkp->device;
1603 	const int timeout = sdp->request_queue->rq_timeout
1604 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1605 	struct scsi_sense_hdr my_sshdr;
1606 
1607 	if (!scsi_device_online(sdp))
1608 		return -ENODEV;
1609 
1610 	/* caller might not be interested in sense, but we need it */
1611 	if (!sshdr)
1612 		sshdr = &my_sshdr;
1613 
1614 	for (retries = 3; retries > 0; --retries) {
1615 		unsigned char cmd[10] = { 0 };
1616 
1617 		cmd[0] = SYNCHRONIZE_CACHE;
1618 		/*
1619 		 * Leave the rest of the command zero to indicate
1620 		 * flush everything.
1621 		 */
1622 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1623 				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1624 		if (res == 0)
1625 			break;
1626 	}
1627 
1628 	if (res) {
1629 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1630 
1631 		if (driver_byte(res) & DRIVER_SENSE)
1632 			sd_print_sense_hdr(sdkp, sshdr);
1633 
1634 		/* we need to evaluate the error return  */
1635 		if (scsi_sense_valid(sshdr) &&
1636 			(sshdr->asc == 0x3a ||	/* medium not present */
1637 			 sshdr->asc == 0x20))	/* invalid command */
1638 				/* this is no error here */
1639 				return 0;
1640 
1641 		switch (host_byte(res)) {
1642 		/* ignore errors due to racing a disconnection */
1643 		case DID_BAD_TARGET:
1644 		case DID_NO_CONNECT:
1645 			return 0;
1646 		/* signal the upper layer it might try again */
1647 		case DID_BUS_BUSY:
1648 		case DID_IMM_RETRY:
1649 		case DID_REQUEUE:
1650 		case DID_SOFT_ERROR:
1651 			return -EBUSY;
1652 		default:
1653 			return -EIO;
1654 		}
1655 	}
1656 	return 0;
1657 }
1658 
1659 static void sd_rescan(struct device *dev)
1660 {
1661 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1662 
1663 	revalidate_disk(sdkp->disk);
1664 }
1665 
1666 
1667 #ifdef CONFIG_COMPAT
1668 /*
1669  * This gets directly called from VFS. When the ioctl
1670  * is not recognized we go back to the other translation paths.
1671  */
1672 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1673 			   unsigned int cmd, unsigned long arg)
1674 {
1675 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1676 	int error;
1677 
1678 	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1679 			(mode & FMODE_NDELAY) != 0);
1680 	if (error)
1681 		return error;
1682 
1683 	/*
1684 	 * Let the static ioctl translation table take care of it.
1685 	 */
1686 	if (!sdev->host->hostt->compat_ioctl)
1687 		return -ENOIOCTLCMD;
1688 	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1689 }
1690 #endif
1691 
1692 static char sd_pr_type(enum pr_type type)
1693 {
1694 	switch (type) {
1695 	case PR_WRITE_EXCLUSIVE:
1696 		return 0x01;
1697 	case PR_EXCLUSIVE_ACCESS:
1698 		return 0x03;
1699 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1700 		return 0x05;
1701 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1702 		return 0x06;
1703 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1704 		return 0x07;
1705 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1706 		return 0x08;
1707 	default:
1708 		return 0;
1709 	}
1710 };
1711 
1712 static int sd_pr_command(struct block_device *bdev, u8 sa,
1713 		u64 key, u64 sa_key, u8 type, u8 flags)
1714 {
1715 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1716 	struct scsi_sense_hdr sshdr;
1717 	int result;
1718 	u8 cmd[16] = { 0, };
1719 	u8 data[24] = { 0, };
1720 
1721 	cmd[0] = PERSISTENT_RESERVE_OUT;
1722 	cmd[1] = sa;
1723 	cmd[2] = type;
1724 	put_unaligned_be32(sizeof(data), &cmd[5]);
1725 
1726 	put_unaligned_be64(key, &data[0]);
1727 	put_unaligned_be64(sa_key, &data[8]);
1728 	data[20] = flags;
1729 
1730 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1731 			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1732 
1733 	if ((driver_byte(result) & DRIVER_SENSE) &&
1734 	    (scsi_sense_valid(&sshdr))) {
1735 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1736 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1737 	}
1738 
1739 	return result;
1740 }
1741 
1742 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1743 		u32 flags)
1744 {
1745 	if (flags & ~PR_FL_IGNORE_KEY)
1746 		return -EOPNOTSUPP;
1747 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1748 			old_key, new_key, 0,
1749 			(1 << 0) /* APTPL */);
1750 }
1751 
1752 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1753 		u32 flags)
1754 {
1755 	if (flags)
1756 		return -EOPNOTSUPP;
1757 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1758 }
1759 
1760 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1761 {
1762 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1763 }
1764 
1765 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1766 		enum pr_type type, bool abort)
1767 {
1768 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1769 			     sd_pr_type(type), 0);
1770 }
1771 
1772 static int sd_pr_clear(struct block_device *bdev, u64 key)
1773 {
1774 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1775 }
1776 
1777 static const struct pr_ops sd_pr_ops = {
1778 	.pr_register	= sd_pr_register,
1779 	.pr_reserve	= sd_pr_reserve,
1780 	.pr_release	= sd_pr_release,
1781 	.pr_preempt	= sd_pr_preempt,
1782 	.pr_clear	= sd_pr_clear,
1783 };
1784 
1785 static const struct block_device_operations sd_fops = {
1786 	.owner			= THIS_MODULE,
1787 	.open			= sd_open,
1788 	.release		= sd_release,
1789 	.ioctl			= sd_ioctl,
1790 	.getgeo			= sd_getgeo,
1791 #ifdef CONFIG_COMPAT
1792 	.compat_ioctl		= sd_compat_ioctl,
1793 #endif
1794 	.check_events		= sd_check_events,
1795 	.revalidate_disk	= sd_revalidate_disk,
1796 	.unlock_native_capacity	= sd_unlock_native_capacity,
1797 	.pr_ops			= &sd_pr_ops,
1798 };
1799 
1800 /**
1801  *	sd_eh_reset - reset error handling callback
1802  *	@scmd:		sd-issued command that has failed
1803  *
1804  *	This function is called by the SCSI midlayer before starting
1805  *	SCSI EH. When counting medium access failures we have to be
1806  *	careful to register it only only once per device and SCSI EH run;
1807  *	there might be several timed out commands which will cause the
1808  *	'max_medium_access_timeouts' counter to trigger after the first
1809  *	SCSI EH run already and set the device to offline.
1810  *	So this function resets the internal counter before starting SCSI EH.
1811  **/
1812 static void sd_eh_reset(struct scsi_cmnd *scmd)
1813 {
1814 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1815 
1816 	/* New SCSI EH run, reset gate variable */
1817 	sdkp->ignore_medium_access_errors = false;
1818 }
1819 
1820 /**
1821  *	sd_eh_action - error handling callback
1822  *	@scmd:		sd-issued command that has failed
1823  *	@eh_disp:	The recovery disposition suggested by the midlayer
1824  *
1825  *	This function is called by the SCSI midlayer upon completion of an
1826  *	error test command (currently TEST UNIT READY). The result of sending
1827  *	the eh command is passed in eh_disp.  We're looking for devices that
1828  *	fail medium access commands but are OK with non access commands like
1829  *	test unit ready (so wrongly see the device as having a successful
1830  *	recovery)
1831  **/
1832 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1833 {
1834 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1835 	struct scsi_device *sdev = scmd->device;
1836 
1837 	if (!scsi_device_online(sdev) ||
1838 	    !scsi_medium_access_command(scmd) ||
1839 	    host_byte(scmd->result) != DID_TIME_OUT ||
1840 	    eh_disp != SUCCESS)
1841 		return eh_disp;
1842 
1843 	/*
1844 	 * The device has timed out executing a medium access command.
1845 	 * However, the TEST UNIT READY command sent during error
1846 	 * handling completed successfully. Either the device is in the
1847 	 * process of recovering or has it suffered an internal failure
1848 	 * that prevents access to the storage medium.
1849 	 */
1850 	if (!sdkp->ignore_medium_access_errors) {
1851 		sdkp->medium_access_timed_out++;
1852 		sdkp->ignore_medium_access_errors = true;
1853 	}
1854 
1855 	/*
1856 	 * If the device keeps failing read/write commands but TEST UNIT
1857 	 * READY always completes successfully we assume that medium
1858 	 * access is no longer possible and take the device offline.
1859 	 */
1860 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1861 		scmd_printk(KERN_ERR, scmd,
1862 			    "Medium access timeout failure. Offlining disk!\n");
1863 		mutex_lock(&sdev->state_mutex);
1864 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1865 		mutex_unlock(&sdev->state_mutex);
1866 
1867 		return SUCCESS;
1868 	}
1869 
1870 	return eh_disp;
1871 }
1872 
1873 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1874 {
1875 	struct request *req = scmd->request;
1876 	struct scsi_device *sdev = scmd->device;
1877 	unsigned int transferred, good_bytes;
1878 	u64 start_lba, end_lba, bad_lba;
1879 
1880 	/*
1881 	 * Some commands have a payload smaller than the device logical
1882 	 * block size (e.g. INQUIRY on a 4K disk).
1883 	 */
1884 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1885 		return 0;
1886 
1887 	/* Check if we have a 'bad_lba' information */
1888 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1889 				     SCSI_SENSE_BUFFERSIZE,
1890 				     &bad_lba))
1891 		return 0;
1892 
1893 	/*
1894 	 * If the bad lba was reported incorrectly, we have no idea where
1895 	 * the error is.
1896 	 */
1897 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1898 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1899 	if (bad_lba < start_lba || bad_lba >= end_lba)
1900 		return 0;
1901 
1902 	/*
1903 	 * resid is optional but mostly filled in.  When it's unused,
1904 	 * its value is zero, so we assume the whole buffer transferred
1905 	 */
1906 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1907 
1908 	/* This computation should always be done in terms of the
1909 	 * resolution of the device's medium.
1910 	 */
1911 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1912 
1913 	return min(good_bytes, transferred);
1914 }
1915 
1916 /**
1917  *	sd_done - bottom half handler: called when the lower level
1918  *	driver has completed (successfully or otherwise) a scsi command.
1919  *	@SCpnt: mid-level's per command structure.
1920  *
1921  *	Note: potentially run from within an ISR. Must not block.
1922  **/
1923 static int sd_done(struct scsi_cmnd *SCpnt)
1924 {
1925 	int result = SCpnt->result;
1926 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1927 	unsigned int sector_size = SCpnt->device->sector_size;
1928 	unsigned int resid;
1929 	struct scsi_sense_hdr sshdr;
1930 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1931 	struct request *req = SCpnt->request;
1932 	int sense_valid = 0;
1933 	int sense_deferred = 0;
1934 
1935 	switch (req_op(req)) {
1936 	case REQ_OP_DISCARD:
1937 	case REQ_OP_WRITE_ZEROES:
1938 	case REQ_OP_WRITE_SAME:
1939 	case REQ_OP_ZONE_RESET:
1940 		if (!result) {
1941 			good_bytes = blk_rq_bytes(req);
1942 			scsi_set_resid(SCpnt, 0);
1943 		} else {
1944 			good_bytes = 0;
1945 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1946 		}
1947 		break;
1948 	case REQ_OP_ZONE_REPORT:
1949 		if (!result) {
1950 			good_bytes = scsi_bufflen(SCpnt)
1951 				- scsi_get_resid(SCpnt);
1952 			scsi_set_resid(SCpnt, 0);
1953 		} else {
1954 			good_bytes = 0;
1955 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1956 		}
1957 		break;
1958 	default:
1959 		/*
1960 		 * In case of bogus fw or device, we could end up having
1961 		 * an unaligned partial completion. Check this here and force
1962 		 * alignment.
1963 		 */
1964 		resid = scsi_get_resid(SCpnt);
1965 		if (resid & (sector_size - 1)) {
1966 			sd_printk(KERN_INFO, sdkp,
1967 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1968 				resid, sector_size);
1969 			resid = min(scsi_bufflen(SCpnt),
1970 				    round_up(resid, sector_size));
1971 			scsi_set_resid(SCpnt, resid);
1972 		}
1973 	}
1974 
1975 	if (result) {
1976 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1977 		if (sense_valid)
1978 			sense_deferred = scsi_sense_is_deferred(&sshdr);
1979 	}
1980 	sdkp->medium_access_timed_out = 0;
1981 
1982 	if (driver_byte(result) != DRIVER_SENSE &&
1983 	    (!sense_valid || sense_deferred))
1984 		goto out;
1985 
1986 	switch (sshdr.sense_key) {
1987 	case HARDWARE_ERROR:
1988 	case MEDIUM_ERROR:
1989 		good_bytes = sd_completed_bytes(SCpnt);
1990 		break;
1991 	case RECOVERED_ERROR:
1992 		good_bytes = scsi_bufflen(SCpnt);
1993 		break;
1994 	case NO_SENSE:
1995 		/* This indicates a false check condition, so ignore it.  An
1996 		 * unknown amount of data was transferred so treat it as an
1997 		 * error.
1998 		 */
1999 		SCpnt->result = 0;
2000 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2001 		break;
2002 	case ABORTED_COMMAND:
2003 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2004 			good_bytes = sd_completed_bytes(SCpnt);
2005 		break;
2006 	case ILLEGAL_REQUEST:
2007 		switch (sshdr.asc) {
2008 		case 0x10:	/* DIX: Host detected corruption */
2009 			good_bytes = sd_completed_bytes(SCpnt);
2010 			break;
2011 		case 0x20:	/* INVALID COMMAND OPCODE */
2012 		case 0x24:	/* INVALID FIELD IN CDB */
2013 			switch (SCpnt->cmnd[0]) {
2014 			case UNMAP:
2015 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2016 				break;
2017 			case WRITE_SAME_16:
2018 			case WRITE_SAME:
2019 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2020 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2021 				} else {
2022 					sdkp->device->no_write_same = 1;
2023 					sd_config_write_same(sdkp);
2024 					req->__data_len = blk_rq_bytes(req);
2025 					req->rq_flags |= RQF_QUIET;
2026 				}
2027 				break;
2028 			}
2029 		}
2030 		break;
2031 	default:
2032 		break;
2033 	}
2034 
2035  out:
2036 	if (sd_is_zoned(sdkp))
2037 		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2038 
2039 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2040 					   "sd_done: completed %d of %d bytes\n",
2041 					   good_bytes, scsi_bufflen(SCpnt)));
2042 
2043 	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
2044 		sd_dif_complete(SCpnt, good_bytes);
2045 
2046 	return good_bytes;
2047 }
2048 
2049 /*
2050  * spinup disk - called only in sd_revalidate_disk()
2051  */
2052 static void
2053 sd_spinup_disk(struct scsi_disk *sdkp)
2054 {
2055 	unsigned char cmd[10];
2056 	unsigned long spintime_expire = 0;
2057 	int retries, spintime;
2058 	unsigned int the_result;
2059 	struct scsi_sense_hdr sshdr;
2060 	int sense_valid = 0;
2061 
2062 	spintime = 0;
2063 
2064 	/* Spin up drives, as required.  Only do this at boot time */
2065 	/* Spinup needs to be done for module loads too. */
2066 	do {
2067 		retries = 0;
2068 
2069 		do {
2070 			cmd[0] = TEST_UNIT_READY;
2071 			memset((void *) &cmd[1], 0, 9);
2072 
2073 			the_result = scsi_execute_req(sdkp->device, cmd,
2074 						      DMA_NONE, NULL, 0,
2075 						      &sshdr, SD_TIMEOUT,
2076 						      SD_MAX_RETRIES, NULL);
2077 
2078 			/*
2079 			 * If the drive has indicated to us that it
2080 			 * doesn't have any media in it, don't bother
2081 			 * with any more polling.
2082 			 */
2083 			if (media_not_present(sdkp, &sshdr))
2084 				return;
2085 
2086 			if (the_result)
2087 				sense_valid = scsi_sense_valid(&sshdr);
2088 			retries++;
2089 		} while (retries < 3 &&
2090 			 (!scsi_status_is_good(the_result) ||
2091 			  ((driver_byte(the_result) & DRIVER_SENSE) &&
2092 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2093 
2094 		if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
2095 			/* no sense, TUR either succeeded or failed
2096 			 * with a status error */
2097 			if(!spintime && !scsi_status_is_good(the_result)) {
2098 				sd_print_result(sdkp, "Test Unit Ready failed",
2099 						the_result);
2100 			}
2101 			break;
2102 		}
2103 
2104 		/*
2105 		 * The device does not want the automatic start to be issued.
2106 		 */
2107 		if (sdkp->device->no_start_on_add)
2108 			break;
2109 
2110 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2111 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2112 				break;	/* manual intervention required */
2113 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2114 				break;	/* standby */
2115 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2116 				break;	/* unavailable */
2117 			/*
2118 			 * Issue command to spin up drive when not ready
2119 			 */
2120 			if (!spintime) {
2121 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2122 				cmd[0] = START_STOP;
2123 				cmd[1] = 1;	/* Return immediately */
2124 				memset((void *) &cmd[2], 0, 8);
2125 				cmd[4] = 1;	/* Start spin cycle */
2126 				if (sdkp->device->start_stop_pwr_cond)
2127 					cmd[4] |= 1 << 4;
2128 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2129 						 NULL, 0, &sshdr,
2130 						 SD_TIMEOUT, SD_MAX_RETRIES,
2131 						 NULL);
2132 				spintime_expire = jiffies + 100 * HZ;
2133 				spintime = 1;
2134 			}
2135 			/* Wait 1 second for next try */
2136 			msleep(1000);
2137 			printk(".");
2138 
2139 		/*
2140 		 * Wait for USB flash devices with slow firmware.
2141 		 * Yes, this sense key/ASC combination shouldn't
2142 		 * occur here.  It's characteristic of these devices.
2143 		 */
2144 		} else if (sense_valid &&
2145 				sshdr.sense_key == UNIT_ATTENTION &&
2146 				sshdr.asc == 0x28) {
2147 			if (!spintime) {
2148 				spintime_expire = jiffies + 5 * HZ;
2149 				spintime = 1;
2150 			}
2151 			/* Wait 1 second for next try */
2152 			msleep(1000);
2153 		} else {
2154 			/* we don't understand the sense code, so it's
2155 			 * probably pointless to loop */
2156 			if(!spintime) {
2157 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2158 				sd_print_sense_hdr(sdkp, &sshdr);
2159 			}
2160 			break;
2161 		}
2162 
2163 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2164 
2165 	if (spintime) {
2166 		if (scsi_status_is_good(the_result))
2167 			printk("ready\n");
2168 		else
2169 			printk("not responding...\n");
2170 	}
2171 }
2172 
2173 /*
2174  * Determine whether disk supports Data Integrity Field.
2175  */
2176 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2177 {
2178 	struct scsi_device *sdp = sdkp->device;
2179 	u8 type;
2180 	int ret = 0;
2181 
2182 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2183 		return ret;
2184 
2185 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2186 
2187 	if (type > T10_PI_TYPE3_PROTECTION)
2188 		ret = -ENODEV;
2189 	else if (scsi_host_dif_capable(sdp->host, type))
2190 		ret = 1;
2191 
2192 	if (sdkp->first_scan || type != sdkp->protection_type)
2193 		switch (ret) {
2194 		case -ENODEV:
2195 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2196 				  " protection type %u. Disabling disk!\n",
2197 				  type);
2198 			break;
2199 		case 1:
2200 			sd_printk(KERN_NOTICE, sdkp,
2201 				  "Enabling DIF Type %u protection\n", type);
2202 			break;
2203 		case 0:
2204 			sd_printk(KERN_NOTICE, sdkp,
2205 				  "Disabling DIF Type %u protection\n", type);
2206 			break;
2207 		}
2208 
2209 	sdkp->protection_type = type;
2210 
2211 	return ret;
2212 }
2213 
2214 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2215 			struct scsi_sense_hdr *sshdr, int sense_valid,
2216 			int the_result)
2217 {
2218 	if (driver_byte(the_result) & DRIVER_SENSE)
2219 		sd_print_sense_hdr(sdkp, sshdr);
2220 	else
2221 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2222 
2223 	/*
2224 	 * Set dirty bit for removable devices if not ready -
2225 	 * sometimes drives will not report this properly.
2226 	 */
2227 	if (sdp->removable &&
2228 	    sense_valid && sshdr->sense_key == NOT_READY)
2229 		set_media_not_present(sdkp);
2230 
2231 	/*
2232 	 * We used to set media_present to 0 here to indicate no media
2233 	 * in the drive, but some drives fail read capacity even with
2234 	 * media present, so we can't do that.
2235 	 */
2236 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2237 }
2238 
2239 #define RC16_LEN 32
2240 #if RC16_LEN > SD_BUF_SIZE
2241 #error RC16_LEN must not be more than SD_BUF_SIZE
2242 #endif
2243 
2244 #define READ_CAPACITY_RETRIES_ON_RESET	10
2245 
2246 /*
2247  * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2248  * and the reported logical block size is bigger than 512 bytes. Note
2249  * that last_sector is a u64 and therefore logical_to_sectors() is not
2250  * applicable.
2251  */
2252 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2253 {
2254 	u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2255 
2256 	if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2257 		return false;
2258 
2259 	return true;
2260 }
2261 
2262 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2263 						unsigned char *buffer)
2264 {
2265 	unsigned char cmd[16];
2266 	struct scsi_sense_hdr sshdr;
2267 	int sense_valid = 0;
2268 	int the_result;
2269 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2270 	unsigned int alignment;
2271 	unsigned long long lba;
2272 	unsigned sector_size;
2273 
2274 	if (sdp->no_read_capacity_16)
2275 		return -EINVAL;
2276 
2277 	do {
2278 		memset(cmd, 0, 16);
2279 		cmd[0] = SERVICE_ACTION_IN_16;
2280 		cmd[1] = SAI_READ_CAPACITY_16;
2281 		cmd[13] = RC16_LEN;
2282 		memset(buffer, 0, RC16_LEN);
2283 
2284 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2285 					buffer, RC16_LEN, &sshdr,
2286 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2287 
2288 		if (media_not_present(sdkp, &sshdr))
2289 			return -ENODEV;
2290 
2291 		if (the_result) {
2292 			sense_valid = scsi_sense_valid(&sshdr);
2293 			if (sense_valid &&
2294 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2295 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2296 			    sshdr.ascq == 0x00)
2297 				/* Invalid Command Operation Code or
2298 				 * Invalid Field in CDB, just retry
2299 				 * silently with RC10 */
2300 				return -EINVAL;
2301 			if (sense_valid &&
2302 			    sshdr.sense_key == UNIT_ATTENTION &&
2303 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2304 				/* Device reset might occur several times,
2305 				 * give it one more chance */
2306 				if (--reset_retries > 0)
2307 					continue;
2308 		}
2309 		retries--;
2310 
2311 	} while (the_result && retries);
2312 
2313 	if (the_result) {
2314 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2315 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2316 		return -EINVAL;
2317 	}
2318 
2319 	sector_size = get_unaligned_be32(&buffer[8]);
2320 	lba = get_unaligned_be64(&buffer[0]);
2321 
2322 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2323 		sdkp->capacity = 0;
2324 		return -ENODEV;
2325 	}
2326 
2327 	if (!sd_addressable_capacity(lba, sector_size)) {
2328 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2329 			"kernel compiled with support for large block "
2330 			"devices.\n");
2331 		sdkp->capacity = 0;
2332 		return -EOVERFLOW;
2333 	}
2334 
2335 	/* Logical blocks per physical block exponent */
2336 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2337 
2338 	/* RC basis */
2339 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2340 
2341 	/* Lowest aligned logical block */
2342 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2343 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2344 	if (alignment && sdkp->first_scan)
2345 		sd_printk(KERN_NOTICE, sdkp,
2346 			  "physical block alignment offset: %u\n", alignment);
2347 
2348 	if (buffer[14] & 0x80) { /* LBPME */
2349 		sdkp->lbpme = 1;
2350 
2351 		if (buffer[14] & 0x40) /* LBPRZ */
2352 			sdkp->lbprz = 1;
2353 
2354 		sd_config_discard(sdkp, SD_LBP_WS16);
2355 	}
2356 
2357 	sdkp->capacity = lba + 1;
2358 	return sector_size;
2359 }
2360 
2361 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2362 						unsigned char *buffer)
2363 {
2364 	unsigned char cmd[16];
2365 	struct scsi_sense_hdr sshdr;
2366 	int sense_valid = 0;
2367 	int the_result;
2368 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2369 	sector_t lba;
2370 	unsigned sector_size;
2371 
2372 	do {
2373 		cmd[0] = READ_CAPACITY;
2374 		memset(&cmd[1], 0, 9);
2375 		memset(buffer, 0, 8);
2376 
2377 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2378 					buffer, 8, &sshdr,
2379 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2380 
2381 		if (media_not_present(sdkp, &sshdr))
2382 			return -ENODEV;
2383 
2384 		if (the_result) {
2385 			sense_valid = scsi_sense_valid(&sshdr);
2386 			if (sense_valid &&
2387 			    sshdr.sense_key == UNIT_ATTENTION &&
2388 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2389 				/* Device reset might occur several times,
2390 				 * give it one more chance */
2391 				if (--reset_retries > 0)
2392 					continue;
2393 		}
2394 		retries--;
2395 
2396 	} while (the_result && retries);
2397 
2398 	if (the_result) {
2399 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2400 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2401 		return -EINVAL;
2402 	}
2403 
2404 	sector_size = get_unaligned_be32(&buffer[4]);
2405 	lba = get_unaligned_be32(&buffer[0]);
2406 
2407 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2408 		/* Some buggy (usb cardreader) devices return an lba of
2409 		   0xffffffff when the want to report a size of 0 (with
2410 		   which they really mean no media is present) */
2411 		sdkp->capacity = 0;
2412 		sdkp->physical_block_size = sector_size;
2413 		return sector_size;
2414 	}
2415 
2416 	if (!sd_addressable_capacity(lba, sector_size)) {
2417 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2418 			"kernel compiled with support for large block "
2419 			"devices.\n");
2420 		sdkp->capacity = 0;
2421 		return -EOVERFLOW;
2422 	}
2423 
2424 	sdkp->capacity = lba + 1;
2425 	sdkp->physical_block_size = sector_size;
2426 	return sector_size;
2427 }
2428 
2429 static int sd_try_rc16_first(struct scsi_device *sdp)
2430 {
2431 	if (sdp->host->max_cmd_len < 16)
2432 		return 0;
2433 	if (sdp->try_rc_10_first)
2434 		return 0;
2435 	if (sdp->scsi_level > SCSI_SPC_2)
2436 		return 1;
2437 	if (scsi_device_protection(sdp))
2438 		return 1;
2439 	return 0;
2440 }
2441 
2442 /*
2443  * read disk capacity
2444  */
2445 static void
2446 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2447 {
2448 	int sector_size;
2449 	struct scsi_device *sdp = sdkp->device;
2450 
2451 	if (sd_try_rc16_first(sdp)) {
2452 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2453 		if (sector_size == -EOVERFLOW)
2454 			goto got_data;
2455 		if (sector_size == -ENODEV)
2456 			return;
2457 		if (sector_size < 0)
2458 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2459 		if (sector_size < 0)
2460 			return;
2461 	} else {
2462 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2463 		if (sector_size == -EOVERFLOW)
2464 			goto got_data;
2465 		if (sector_size < 0)
2466 			return;
2467 		if ((sizeof(sdkp->capacity) > 4) &&
2468 		    (sdkp->capacity > 0xffffffffULL)) {
2469 			int old_sector_size = sector_size;
2470 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2471 					"Trying to use READ CAPACITY(16).\n");
2472 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2473 			if (sector_size < 0) {
2474 				sd_printk(KERN_NOTICE, sdkp,
2475 					"Using 0xffffffff as device size\n");
2476 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2477 				sector_size = old_sector_size;
2478 				goto got_data;
2479 			}
2480 		}
2481 	}
2482 
2483 	/* Some devices are known to return the total number of blocks,
2484 	 * not the highest block number.  Some devices have versions
2485 	 * which do this and others which do not.  Some devices we might
2486 	 * suspect of doing this but we don't know for certain.
2487 	 *
2488 	 * If we know the reported capacity is wrong, decrement it.  If
2489 	 * we can only guess, then assume the number of blocks is even
2490 	 * (usually true but not always) and err on the side of lowering
2491 	 * the capacity.
2492 	 */
2493 	if (sdp->fix_capacity ||
2494 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2495 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2496 				"from its reported value: %llu\n",
2497 				(unsigned long long) sdkp->capacity);
2498 		--sdkp->capacity;
2499 	}
2500 
2501 got_data:
2502 	if (sector_size == 0) {
2503 		sector_size = 512;
2504 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2505 			  "assuming 512.\n");
2506 	}
2507 
2508 	if (sector_size != 512 &&
2509 	    sector_size != 1024 &&
2510 	    sector_size != 2048 &&
2511 	    sector_size != 4096) {
2512 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2513 			  sector_size);
2514 		/*
2515 		 * The user might want to re-format the drive with
2516 		 * a supported sectorsize.  Once this happens, it
2517 		 * would be relatively trivial to set the thing up.
2518 		 * For this reason, we leave the thing in the table.
2519 		 */
2520 		sdkp->capacity = 0;
2521 		/*
2522 		 * set a bogus sector size so the normal read/write
2523 		 * logic in the block layer will eventually refuse any
2524 		 * request on this device without tripping over power
2525 		 * of two sector size assumptions
2526 		 */
2527 		sector_size = 512;
2528 	}
2529 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2530 	blk_queue_physical_block_size(sdp->request_queue,
2531 				      sdkp->physical_block_size);
2532 	sdkp->device->sector_size = sector_size;
2533 
2534 	if (sdkp->capacity > 0xffffffff)
2535 		sdp->use_16_for_rw = 1;
2536 
2537 }
2538 
2539 /*
2540  * Print disk capacity
2541  */
2542 static void
2543 sd_print_capacity(struct scsi_disk *sdkp,
2544 		  sector_t old_capacity)
2545 {
2546 	int sector_size = sdkp->device->sector_size;
2547 	char cap_str_2[10], cap_str_10[10];
2548 
2549 	string_get_size(sdkp->capacity, sector_size,
2550 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2551 	string_get_size(sdkp->capacity, sector_size,
2552 			STRING_UNITS_10, cap_str_10,
2553 			sizeof(cap_str_10));
2554 
2555 	if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2556 		sd_printk(KERN_NOTICE, sdkp,
2557 			  "%llu %d-byte logical blocks: (%s/%s)\n",
2558 			  (unsigned long long)sdkp->capacity,
2559 			  sector_size, cap_str_10, cap_str_2);
2560 
2561 		if (sdkp->physical_block_size != sector_size)
2562 			sd_printk(KERN_NOTICE, sdkp,
2563 				  "%u-byte physical blocks\n",
2564 				  sdkp->physical_block_size);
2565 
2566 		sd_zbc_print_zones(sdkp);
2567 	}
2568 }
2569 
2570 /* called with buffer of length 512 */
2571 static inline int
2572 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2573 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2574 		 struct scsi_sense_hdr *sshdr)
2575 {
2576 	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2577 			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2578 			       sshdr);
2579 }
2580 
2581 /*
2582  * read write protect setting, if possible - called only in sd_revalidate_disk()
2583  * called with buffer of length SD_BUF_SIZE
2584  */
2585 static void
2586 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2587 {
2588 	int res;
2589 	struct scsi_device *sdp = sdkp->device;
2590 	struct scsi_mode_data data;
2591 	int old_wp = sdkp->write_prot;
2592 
2593 	set_disk_ro(sdkp->disk, 0);
2594 	if (sdp->skip_ms_page_3f) {
2595 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2596 		return;
2597 	}
2598 
2599 	if (sdp->use_192_bytes_for_3f) {
2600 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2601 	} else {
2602 		/*
2603 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2604 		 * We have to start carefully: some devices hang if we ask
2605 		 * for more than is available.
2606 		 */
2607 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2608 
2609 		/*
2610 		 * Second attempt: ask for page 0 When only page 0 is
2611 		 * implemented, a request for page 3F may return Sense Key
2612 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2613 		 * CDB.
2614 		 */
2615 		if (!scsi_status_is_good(res))
2616 			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2617 
2618 		/*
2619 		 * Third attempt: ask 255 bytes, as we did earlier.
2620 		 */
2621 		if (!scsi_status_is_good(res))
2622 			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2623 					       &data, NULL);
2624 	}
2625 
2626 	if (!scsi_status_is_good(res)) {
2627 		sd_first_printk(KERN_WARNING, sdkp,
2628 			  "Test WP failed, assume Write Enabled\n");
2629 	} else {
2630 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2631 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2632 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2633 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2634 				  sdkp->write_prot ? "on" : "off");
2635 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2636 		}
2637 	}
2638 }
2639 
2640 /*
2641  * sd_read_cache_type - called only from sd_revalidate_disk()
2642  * called with buffer of length SD_BUF_SIZE
2643  */
2644 static void
2645 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2646 {
2647 	int len = 0, res;
2648 	struct scsi_device *sdp = sdkp->device;
2649 
2650 	int dbd;
2651 	int modepage;
2652 	int first_len;
2653 	struct scsi_mode_data data;
2654 	struct scsi_sense_hdr sshdr;
2655 	int old_wce = sdkp->WCE;
2656 	int old_rcd = sdkp->RCD;
2657 	int old_dpofua = sdkp->DPOFUA;
2658 
2659 
2660 	if (sdkp->cache_override)
2661 		return;
2662 
2663 	first_len = 4;
2664 	if (sdp->skip_ms_page_8) {
2665 		if (sdp->type == TYPE_RBC)
2666 			goto defaults;
2667 		else {
2668 			if (sdp->skip_ms_page_3f)
2669 				goto defaults;
2670 			modepage = 0x3F;
2671 			if (sdp->use_192_bytes_for_3f)
2672 				first_len = 192;
2673 			dbd = 0;
2674 		}
2675 	} else if (sdp->type == TYPE_RBC) {
2676 		modepage = 6;
2677 		dbd = 8;
2678 	} else {
2679 		modepage = 8;
2680 		dbd = 0;
2681 	}
2682 
2683 	/* cautiously ask */
2684 	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2685 			&data, &sshdr);
2686 
2687 	if (!scsi_status_is_good(res))
2688 		goto bad_sense;
2689 
2690 	if (!data.header_length) {
2691 		modepage = 6;
2692 		first_len = 0;
2693 		sd_first_printk(KERN_ERR, sdkp,
2694 				"Missing header in MODE_SENSE response\n");
2695 	}
2696 
2697 	/* that went OK, now ask for the proper length */
2698 	len = data.length;
2699 
2700 	/*
2701 	 * We're only interested in the first three bytes, actually.
2702 	 * But the data cache page is defined for the first 20.
2703 	 */
2704 	if (len < 3)
2705 		goto bad_sense;
2706 	else if (len > SD_BUF_SIZE) {
2707 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2708 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2709 		len = SD_BUF_SIZE;
2710 	}
2711 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2712 		len = 192;
2713 
2714 	/* Get the data */
2715 	if (len > first_len)
2716 		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2717 				&data, &sshdr);
2718 
2719 	if (scsi_status_is_good(res)) {
2720 		int offset = data.header_length + data.block_descriptor_length;
2721 
2722 		while (offset < len) {
2723 			u8 page_code = buffer[offset] & 0x3F;
2724 			u8 spf       = buffer[offset] & 0x40;
2725 
2726 			if (page_code == 8 || page_code == 6) {
2727 				/* We're interested only in the first 3 bytes.
2728 				 */
2729 				if (len - offset <= 2) {
2730 					sd_first_printk(KERN_ERR, sdkp,
2731 						"Incomplete mode parameter "
2732 							"data\n");
2733 					goto defaults;
2734 				} else {
2735 					modepage = page_code;
2736 					goto Page_found;
2737 				}
2738 			} else {
2739 				/* Go to the next page */
2740 				if (spf && len - offset > 3)
2741 					offset += 4 + (buffer[offset+2] << 8) +
2742 						buffer[offset+3];
2743 				else if (!spf && len - offset > 1)
2744 					offset += 2 + buffer[offset+1];
2745 				else {
2746 					sd_first_printk(KERN_ERR, sdkp,
2747 							"Incomplete mode "
2748 							"parameter data\n");
2749 					goto defaults;
2750 				}
2751 			}
2752 		}
2753 
2754 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2755 		goto defaults;
2756 
2757 	Page_found:
2758 		if (modepage == 8) {
2759 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2760 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2761 		} else {
2762 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2763 			sdkp->RCD = 0;
2764 		}
2765 
2766 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2767 		if (sdp->broken_fua) {
2768 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2769 			sdkp->DPOFUA = 0;
2770 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2771 			   !sdkp->device->use_16_for_rw) {
2772 			sd_first_printk(KERN_NOTICE, sdkp,
2773 				  "Uses READ/WRITE(6), disabling FUA\n");
2774 			sdkp->DPOFUA = 0;
2775 		}
2776 
2777 		/* No cache flush allowed for write protected devices */
2778 		if (sdkp->WCE && sdkp->write_prot)
2779 			sdkp->WCE = 0;
2780 
2781 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2782 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2783 			sd_printk(KERN_NOTICE, sdkp,
2784 				  "Write cache: %s, read cache: %s, %s\n",
2785 				  sdkp->WCE ? "enabled" : "disabled",
2786 				  sdkp->RCD ? "disabled" : "enabled",
2787 				  sdkp->DPOFUA ? "supports DPO and FUA"
2788 				  : "doesn't support DPO or FUA");
2789 
2790 		return;
2791 	}
2792 
2793 bad_sense:
2794 	if (scsi_sense_valid(&sshdr) &&
2795 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2796 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2797 		/* Invalid field in CDB */
2798 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2799 	else
2800 		sd_first_printk(KERN_ERR, sdkp,
2801 				"Asking for cache data failed\n");
2802 
2803 defaults:
2804 	if (sdp->wce_default_on) {
2805 		sd_first_printk(KERN_NOTICE, sdkp,
2806 				"Assuming drive cache: write back\n");
2807 		sdkp->WCE = 1;
2808 	} else {
2809 		sd_first_printk(KERN_ERR, sdkp,
2810 				"Assuming drive cache: write through\n");
2811 		sdkp->WCE = 0;
2812 	}
2813 	sdkp->RCD = 0;
2814 	sdkp->DPOFUA = 0;
2815 }
2816 
2817 /*
2818  * The ATO bit indicates whether the DIF application tag is available
2819  * for use by the operating system.
2820  */
2821 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2822 {
2823 	int res, offset;
2824 	struct scsi_device *sdp = sdkp->device;
2825 	struct scsi_mode_data data;
2826 	struct scsi_sense_hdr sshdr;
2827 
2828 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2829 		return;
2830 
2831 	if (sdkp->protection_type == 0)
2832 		return;
2833 
2834 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2835 			      SD_MAX_RETRIES, &data, &sshdr);
2836 
2837 	if (!scsi_status_is_good(res) || !data.header_length ||
2838 	    data.length < 6) {
2839 		sd_first_printk(KERN_WARNING, sdkp,
2840 			  "getting Control mode page failed, assume no ATO\n");
2841 
2842 		if (scsi_sense_valid(&sshdr))
2843 			sd_print_sense_hdr(sdkp, &sshdr);
2844 
2845 		return;
2846 	}
2847 
2848 	offset = data.header_length + data.block_descriptor_length;
2849 
2850 	if ((buffer[offset] & 0x3f) != 0x0a) {
2851 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2852 		return;
2853 	}
2854 
2855 	if ((buffer[offset + 5] & 0x80) == 0)
2856 		return;
2857 
2858 	sdkp->ATO = 1;
2859 
2860 	return;
2861 }
2862 
2863 /**
2864  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2865  * @sdkp: disk to query
2866  */
2867 static void sd_read_block_limits(struct scsi_disk *sdkp)
2868 {
2869 	unsigned int sector_sz = sdkp->device->sector_size;
2870 	const int vpd_len = 64;
2871 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2872 
2873 	if (!buffer ||
2874 	    /* Block Limits VPD */
2875 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2876 		goto out;
2877 
2878 	blk_queue_io_min(sdkp->disk->queue,
2879 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2880 
2881 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2882 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2883 
2884 	if (buffer[3] == 0x3c) {
2885 		unsigned int lba_count, desc_count;
2886 
2887 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2888 
2889 		if (!sdkp->lbpme)
2890 			goto out;
2891 
2892 		lba_count = get_unaligned_be32(&buffer[20]);
2893 		desc_count = get_unaligned_be32(&buffer[24]);
2894 
2895 		if (lba_count && desc_count)
2896 			sdkp->max_unmap_blocks = lba_count;
2897 
2898 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2899 
2900 		if (buffer[32] & 0x80)
2901 			sdkp->unmap_alignment =
2902 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2903 
2904 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2905 
2906 			if (sdkp->max_unmap_blocks)
2907 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2908 			else
2909 				sd_config_discard(sdkp, SD_LBP_WS16);
2910 
2911 		} else {	/* LBP VPD page tells us what to use */
2912 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2913 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2914 			else if (sdkp->lbpws)
2915 				sd_config_discard(sdkp, SD_LBP_WS16);
2916 			else if (sdkp->lbpws10)
2917 				sd_config_discard(sdkp, SD_LBP_WS10);
2918 			else if (sdkp->lbpu && sdkp->max_unmap_blocks)
2919 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2920 			else
2921 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2922 		}
2923 	}
2924 
2925  out:
2926 	kfree(buffer);
2927 }
2928 
2929 /**
2930  * sd_read_block_characteristics - Query block dev. characteristics
2931  * @sdkp: disk to query
2932  */
2933 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2934 {
2935 	struct request_queue *q = sdkp->disk->queue;
2936 	unsigned char *buffer;
2937 	u16 rot;
2938 	const int vpd_len = 64;
2939 
2940 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2941 
2942 	if (!buffer ||
2943 	    /* Block Device Characteristics VPD */
2944 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2945 		goto out;
2946 
2947 	rot = get_unaligned_be16(&buffer[4]);
2948 
2949 	if (rot == 1) {
2950 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2951 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2952 	}
2953 
2954 	if (sdkp->device->type == TYPE_ZBC) {
2955 		/* Host-managed */
2956 		q->limits.zoned = BLK_ZONED_HM;
2957 	} else {
2958 		sdkp->zoned = (buffer[8] >> 4) & 3;
2959 		if (sdkp->zoned == 1)
2960 			/* Host-aware */
2961 			q->limits.zoned = BLK_ZONED_HA;
2962 		else
2963 			/*
2964 			 * Treat drive-managed devices as
2965 			 * regular block devices.
2966 			 */
2967 			q->limits.zoned = BLK_ZONED_NONE;
2968 	}
2969 	if (blk_queue_is_zoned(q) && sdkp->first_scan)
2970 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2971 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2972 
2973  out:
2974 	kfree(buffer);
2975 }
2976 
2977 /**
2978  * sd_read_block_provisioning - Query provisioning VPD page
2979  * @sdkp: disk to query
2980  */
2981 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2982 {
2983 	unsigned char *buffer;
2984 	const int vpd_len = 8;
2985 
2986 	if (sdkp->lbpme == 0)
2987 		return;
2988 
2989 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2990 
2991 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2992 		goto out;
2993 
2994 	sdkp->lbpvpd	= 1;
2995 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
2996 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
2997 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
2998 
2999  out:
3000 	kfree(buffer);
3001 }
3002 
3003 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3004 {
3005 	struct scsi_device *sdev = sdkp->device;
3006 
3007 	if (sdev->host->no_write_same) {
3008 		sdev->no_write_same = 1;
3009 
3010 		return;
3011 	}
3012 
3013 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3014 		/* too large values might cause issues with arcmsr */
3015 		int vpd_buf_len = 64;
3016 
3017 		sdev->no_report_opcodes = 1;
3018 
3019 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3020 		 * CODES is unsupported and the device has an ATA
3021 		 * Information VPD page (SAT).
3022 		 */
3023 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3024 			sdev->no_write_same = 1;
3025 	}
3026 
3027 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3028 		sdkp->ws16 = 1;
3029 
3030 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3031 		sdkp->ws10 = 1;
3032 }
3033 
3034 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3035 {
3036 	struct scsi_device *sdev = sdkp->device;
3037 
3038 	if (!sdev->security_supported)
3039 		return;
3040 
3041 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3042 			SECURITY_PROTOCOL_IN) == 1 &&
3043 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3044 			SECURITY_PROTOCOL_OUT) == 1)
3045 		sdkp->security = 1;
3046 }
3047 
3048 /**
3049  *	sd_revalidate_disk - called the first time a new disk is seen,
3050  *	performs disk spin up, read_capacity, etc.
3051  *	@disk: struct gendisk we care about
3052  **/
3053 static int sd_revalidate_disk(struct gendisk *disk)
3054 {
3055 	struct scsi_disk *sdkp = scsi_disk(disk);
3056 	struct scsi_device *sdp = sdkp->device;
3057 	struct request_queue *q = sdkp->disk->queue;
3058 	sector_t old_capacity = sdkp->capacity;
3059 	unsigned char *buffer;
3060 	unsigned int dev_max, rw_max;
3061 
3062 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3063 				      "sd_revalidate_disk\n"));
3064 
3065 	/*
3066 	 * If the device is offline, don't try and read capacity or any
3067 	 * of the other niceties.
3068 	 */
3069 	if (!scsi_device_online(sdp))
3070 		goto out;
3071 
3072 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3073 	if (!buffer) {
3074 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3075 			  "allocation failure.\n");
3076 		goto out;
3077 	}
3078 
3079 	sd_spinup_disk(sdkp);
3080 
3081 	/*
3082 	 * Without media there is no reason to ask; moreover, some devices
3083 	 * react badly if we do.
3084 	 */
3085 	if (sdkp->media_present) {
3086 		sd_read_capacity(sdkp, buffer);
3087 
3088 		if (scsi_device_supports_vpd(sdp)) {
3089 			sd_read_block_provisioning(sdkp);
3090 			sd_read_block_limits(sdkp);
3091 			sd_read_block_characteristics(sdkp);
3092 			sd_zbc_read_zones(sdkp, buffer);
3093 		}
3094 
3095 		sd_print_capacity(sdkp, old_capacity);
3096 
3097 		sd_read_write_protect_flag(sdkp, buffer);
3098 		sd_read_cache_type(sdkp, buffer);
3099 		sd_read_app_tag_own(sdkp, buffer);
3100 		sd_read_write_same(sdkp, buffer);
3101 		sd_read_security(sdkp, buffer);
3102 	}
3103 
3104 	sdkp->first_scan = 0;
3105 
3106 	/*
3107 	 * We now have all cache related info, determine how we deal
3108 	 * with flush requests.
3109 	 */
3110 	sd_set_flush_flag(sdkp);
3111 
3112 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3113 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3114 
3115 	/* Some devices report a maximum block count for READ/WRITE requests. */
3116 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3117 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3118 
3119 	/*
3120 	 * Use the device's preferred I/O size for reads and writes
3121 	 * unless the reported value is unreasonably small, large, or
3122 	 * garbage.
3123 	 */
3124 	if (sdkp->opt_xfer_blocks &&
3125 	    sdkp->opt_xfer_blocks <= dev_max &&
3126 	    sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3127 	    logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3128 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3129 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3130 	} else
3131 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3132 				      (sector_t)BLK_DEF_MAX_SECTORS);
3133 
3134 	/* Combine with controller limits */
3135 	q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q));
3136 
3137 	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3138 	sd_config_write_same(sdkp);
3139 	kfree(buffer);
3140 
3141  out:
3142 	return 0;
3143 }
3144 
3145 /**
3146  *	sd_unlock_native_capacity - unlock native capacity
3147  *	@disk: struct gendisk to set capacity for
3148  *
3149  *	Block layer calls this function if it detects that partitions
3150  *	on @disk reach beyond the end of the device.  If the SCSI host
3151  *	implements ->unlock_native_capacity() method, it's invoked to
3152  *	give it a chance to adjust the device capacity.
3153  *
3154  *	CONTEXT:
3155  *	Defined by block layer.  Might sleep.
3156  */
3157 static void sd_unlock_native_capacity(struct gendisk *disk)
3158 {
3159 	struct scsi_device *sdev = scsi_disk(disk)->device;
3160 
3161 	if (sdev->host->hostt->unlock_native_capacity)
3162 		sdev->host->hostt->unlock_native_capacity(sdev);
3163 }
3164 
3165 /**
3166  *	sd_format_disk_name - format disk name
3167  *	@prefix: name prefix - ie. "sd" for SCSI disks
3168  *	@index: index of the disk to format name for
3169  *	@buf: output buffer
3170  *	@buflen: length of the output buffer
3171  *
3172  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3173  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3174  *	which is followed by sdaaa.
3175  *
3176  *	This is basically 26 base counting with one extra 'nil' entry
3177  *	at the beginning from the second digit on and can be
3178  *	determined using similar method as 26 base conversion with the
3179  *	index shifted -1 after each digit is computed.
3180  *
3181  *	CONTEXT:
3182  *	Don't care.
3183  *
3184  *	RETURNS:
3185  *	0 on success, -errno on failure.
3186  */
3187 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3188 {
3189 	const int base = 'z' - 'a' + 1;
3190 	char *begin = buf + strlen(prefix);
3191 	char *end = buf + buflen;
3192 	char *p;
3193 	int unit;
3194 
3195 	p = end - 1;
3196 	*p = '\0';
3197 	unit = base;
3198 	do {
3199 		if (p == begin)
3200 			return -EINVAL;
3201 		*--p = 'a' + (index % unit);
3202 		index = (index / unit) - 1;
3203 	} while (index >= 0);
3204 
3205 	memmove(begin, p, end - p);
3206 	memcpy(buf, prefix, strlen(prefix));
3207 
3208 	return 0;
3209 }
3210 
3211 /*
3212  * The asynchronous part of sd_probe
3213  */
3214 static void sd_probe_async(void *data, async_cookie_t cookie)
3215 {
3216 	struct scsi_disk *sdkp = data;
3217 	struct scsi_device *sdp;
3218 	struct gendisk *gd;
3219 	u32 index;
3220 	struct device *dev;
3221 
3222 	sdp = sdkp->device;
3223 	gd = sdkp->disk;
3224 	index = sdkp->index;
3225 	dev = &sdp->sdev_gendev;
3226 
3227 	gd->major = sd_major((index & 0xf0) >> 4);
3228 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3229 
3230 	gd->fops = &sd_fops;
3231 	gd->private_data = &sdkp->driver;
3232 	gd->queue = sdkp->device->request_queue;
3233 
3234 	/* defaults, until the device tells us otherwise */
3235 	sdp->sector_size = 512;
3236 	sdkp->capacity = 0;
3237 	sdkp->media_present = 1;
3238 	sdkp->write_prot = 0;
3239 	sdkp->cache_override = 0;
3240 	sdkp->WCE = 0;
3241 	sdkp->RCD = 0;
3242 	sdkp->ATO = 0;
3243 	sdkp->first_scan = 1;
3244 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3245 
3246 	sd_revalidate_disk(gd);
3247 
3248 	gd->flags = GENHD_FL_EXT_DEVT;
3249 	if (sdp->removable) {
3250 		gd->flags |= GENHD_FL_REMOVABLE;
3251 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3252 	}
3253 
3254 	blk_pm_runtime_init(sdp->request_queue, dev);
3255 	device_add_disk(dev, gd);
3256 	if (sdkp->capacity)
3257 		sd_dif_config_host(sdkp);
3258 
3259 	sd_revalidate_disk(gd);
3260 
3261 	if (sdkp->security) {
3262 		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3263 		if (sdkp->opal_dev)
3264 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3265 	}
3266 
3267 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3268 		  sdp->removable ? "removable " : "");
3269 	scsi_autopm_put_device(sdp);
3270 	put_device(&sdkp->dev);
3271 }
3272 
3273 /**
3274  *	sd_probe - called during driver initialization and whenever a
3275  *	new scsi device is attached to the system. It is called once
3276  *	for each scsi device (not just disks) present.
3277  *	@dev: pointer to device object
3278  *
3279  *	Returns 0 if successful (or not interested in this scsi device
3280  *	(e.g. scanner)); 1 when there is an error.
3281  *
3282  *	Note: this function is invoked from the scsi mid-level.
3283  *	This function sets up the mapping between a given
3284  *	<host,channel,id,lun> (found in sdp) and new device name
3285  *	(e.g. /dev/sda). More precisely it is the block device major
3286  *	and minor number that is chosen here.
3287  *
3288  *	Assume sd_probe is not re-entrant (for time being)
3289  *	Also think about sd_probe() and sd_remove() running coincidentally.
3290  **/
3291 static int sd_probe(struct device *dev)
3292 {
3293 	struct scsi_device *sdp = to_scsi_device(dev);
3294 	struct scsi_disk *sdkp;
3295 	struct gendisk *gd;
3296 	int index;
3297 	int error;
3298 
3299 	scsi_autopm_get_device(sdp);
3300 	error = -ENODEV;
3301 	if (sdp->type != TYPE_DISK &&
3302 	    sdp->type != TYPE_ZBC &&
3303 	    sdp->type != TYPE_MOD &&
3304 	    sdp->type != TYPE_RBC)
3305 		goto out;
3306 
3307 #ifndef CONFIG_BLK_DEV_ZONED
3308 	if (sdp->type == TYPE_ZBC)
3309 		goto out;
3310 #endif
3311 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3312 					"sd_probe\n"));
3313 
3314 	error = -ENOMEM;
3315 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3316 	if (!sdkp)
3317 		goto out;
3318 
3319 	gd = alloc_disk(SD_MINORS);
3320 	if (!gd)
3321 		goto out_free;
3322 
3323 	do {
3324 		if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3325 			goto out_put;
3326 
3327 		spin_lock(&sd_index_lock);
3328 		error = ida_get_new(&sd_index_ida, &index);
3329 		spin_unlock(&sd_index_lock);
3330 	} while (error == -EAGAIN);
3331 
3332 	if (error) {
3333 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3334 		goto out_put;
3335 	}
3336 
3337 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3338 	if (error) {
3339 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3340 		goto out_free_index;
3341 	}
3342 
3343 	sdkp->device = sdp;
3344 	sdkp->driver = &sd_template;
3345 	sdkp->disk = gd;
3346 	sdkp->index = index;
3347 	atomic_set(&sdkp->openers, 0);
3348 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3349 
3350 	if (!sdp->request_queue->rq_timeout) {
3351 		if (sdp->type != TYPE_MOD)
3352 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3353 		else
3354 			blk_queue_rq_timeout(sdp->request_queue,
3355 					     SD_MOD_TIMEOUT);
3356 	}
3357 
3358 	device_initialize(&sdkp->dev);
3359 	sdkp->dev.parent = dev;
3360 	sdkp->dev.class = &sd_disk_class;
3361 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3362 
3363 	error = device_add(&sdkp->dev);
3364 	if (error)
3365 		goto out_free_index;
3366 
3367 	get_device(dev);
3368 	dev_set_drvdata(dev, sdkp);
3369 
3370 	get_device(&sdkp->dev);	/* prevent release before async_schedule */
3371 	async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3372 
3373 	return 0;
3374 
3375  out_free_index:
3376 	spin_lock(&sd_index_lock);
3377 	ida_remove(&sd_index_ida, index);
3378 	spin_unlock(&sd_index_lock);
3379  out_put:
3380 	put_disk(gd);
3381  out_free:
3382 	kfree(sdkp);
3383  out:
3384 	scsi_autopm_put_device(sdp);
3385 	return error;
3386 }
3387 
3388 /**
3389  *	sd_remove - called whenever a scsi disk (previously recognized by
3390  *	sd_probe) is detached from the system. It is called (potentially
3391  *	multiple times) during sd module unload.
3392  *	@dev: pointer to device object
3393  *
3394  *	Note: this function is invoked from the scsi mid-level.
3395  *	This function potentially frees up a device name (e.g. /dev/sdc)
3396  *	that could be re-used by a subsequent sd_probe().
3397  *	This function is not called when the built-in sd driver is "exit-ed".
3398  **/
3399 static int sd_remove(struct device *dev)
3400 {
3401 	struct scsi_disk *sdkp;
3402 	dev_t devt;
3403 
3404 	sdkp = dev_get_drvdata(dev);
3405 	devt = disk_devt(sdkp->disk);
3406 	scsi_autopm_get_device(sdkp->device);
3407 
3408 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3409 	async_synchronize_full_domain(&scsi_sd_probe_domain);
3410 	device_del(&sdkp->dev);
3411 	del_gendisk(sdkp->disk);
3412 	sd_shutdown(dev);
3413 
3414 	sd_zbc_remove(sdkp);
3415 
3416 	free_opal_dev(sdkp->opal_dev);
3417 
3418 	blk_register_region(devt, SD_MINORS, NULL,
3419 			    sd_default_probe, NULL, NULL);
3420 
3421 	mutex_lock(&sd_ref_mutex);
3422 	dev_set_drvdata(dev, NULL);
3423 	put_device(&sdkp->dev);
3424 	mutex_unlock(&sd_ref_mutex);
3425 
3426 	return 0;
3427 }
3428 
3429 /**
3430  *	scsi_disk_release - Called to free the scsi_disk structure
3431  *	@dev: pointer to embedded class device
3432  *
3433  *	sd_ref_mutex must be held entering this routine.  Because it is
3434  *	called on last put, you should always use the scsi_disk_get()
3435  *	scsi_disk_put() helpers which manipulate the semaphore directly
3436  *	and never do a direct put_device.
3437  **/
3438 static void scsi_disk_release(struct device *dev)
3439 {
3440 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3441 	struct gendisk *disk = sdkp->disk;
3442 
3443 	spin_lock(&sd_index_lock);
3444 	ida_remove(&sd_index_ida, sdkp->index);
3445 	spin_unlock(&sd_index_lock);
3446 
3447 	disk->private_data = NULL;
3448 	put_disk(disk);
3449 	put_device(&sdkp->device->sdev_gendev);
3450 
3451 	kfree(sdkp);
3452 }
3453 
3454 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3455 {
3456 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3457 	struct scsi_sense_hdr sshdr;
3458 	struct scsi_device *sdp = sdkp->device;
3459 	int res;
3460 
3461 	if (start)
3462 		cmd[4] |= 1;	/* START */
3463 
3464 	if (sdp->start_stop_pwr_cond)
3465 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3466 
3467 	if (!scsi_device_online(sdp))
3468 		return -ENODEV;
3469 
3470 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3471 			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3472 	if (res) {
3473 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3474 		if (driver_byte(res) & DRIVER_SENSE)
3475 			sd_print_sense_hdr(sdkp, &sshdr);
3476 		if (scsi_sense_valid(&sshdr) &&
3477 			/* 0x3a is medium not present */
3478 			sshdr.asc == 0x3a)
3479 			res = 0;
3480 	}
3481 
3482 	/* SCSI error codes must not go to the generic layer */
3483 	if (res)
3484 		return -EIO;
3485 
3486 	return 0;
3487 }
3488 
3489 /*
3490  * Send a SYNCHRONIZE CACHE instruction down to the device through
3491  * the normal SCSI command structure.  Wait for the command to
3492  * complete.
3493  */
3494 static void sd_shutdown(struct device *dev)
3495 {
3496 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3497 
3498 	if (!sdkp)
3499 		return;         /* this can happen */
3500 
3501 	if (pm_runtime_suspended(dev))
3502 		return;
3503 
3504 	if (sdkp->WCE && sdkp->media_present) {
3505 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3506 		sd_sync_cache(sdkp, NULL);
3507 	}
3508 
3509 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3510 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3511 		sd_start_stop_device(sdkp, 0);
3512 	}
3513 }
3514 
3515 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3516 {
3517 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3518 	struct scsi_sense_hdr sshdr;
3519 	int ret = 0;
3520 
3521 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3522 		return 0;
3523 
3524 	if (sdkp->WCE && sdkp->media_present) {
3525 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3526 		ret = sd_sync_cache(sdkp, &sshdr);
3527 
3528 		if (ret) {
3529 			/* ignore OFFLINE device */
3530 			if (ret == -ENODEV)
3531 				return 0;
3532 
3533 			if (!scsi_sense_valid(&sshdr) ||
3534 			    sshdr.sense_key != ILLEGAL_REQUEST)
3535 				return ret;
3536 
3537 			/*
3538 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3539 			 * doesn't support sync. There's not much to do and
3540 			 * suspend shouldn't fail.
3541 			 */
3542 			ret = 0;
3543 		}
3544 	}
3545 
3546 	if (sdkp->device->manage_start_stop) {
3547 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3548 		/* an error is not worth aborting a system sleep */
3549 		ret = sd_start_stop_device(sdkp, 0);
3550 		if (ignore_stop_errors)
3551 			ret = 0;
3552 	}
3553 
3554 	return ret;
3555 }
3556 
3557 static int sd_suspend_system(struct device *dev)
3558 {
3559 	return sd_suspend_common(dev, true);
3560 }
3561 
3562 static int sd_suspend_runtime(struct device *dev)
3563 {
3564 	return sd_suspend_common(dev, false);
3565 }
3566 
3567 static int sd_resume(struct device *dev)
3568 {
3569 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3570 	int ret;
3571 
3572 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3573 		return 0;
3574 
3575 	if (!sdkp->device->manage_start_stop)
3576 		return 0;
3577 
3578 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3579 	ret = sd_start_stop_device(sdkp, 1);
3580 	if (!ret)
3581 		opal_unlock_from_suspend(sdkp->opal_dev);
3582 	return ret;
3583 }
3584 
3585 /**
3586  *	init_sd - entry point for this driver (both when built in or when
3587  *	a module).
3588  *
3589  *	Note: this function registers this driver with the scsi mid-level.
3590  **/
3591 static int __init init_sd(void)
3592 {
3593 	int majors = 0, i, err;
3594 
3595 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3596 
3597 	for (i = 0; i < SD_MAJORS; i++) {
3598 		if (register_blkdev(sd_major(i), "sd") != 0)
3599 			continue;
3600 		majors++;
3601 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3602 				    sd_default_probe, NULL, NULL);
3603 	}
3604 
3605 	if (!majors)
3606 		return -ENODEV;
3607 
3608 	err = class_register(&sd_disk_class);
3609 	if (err)
3610 		goto err_out;
3611 
3612 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3613 					 0, 0, NULL);
3614 	if (!sd_cdb_cache) {
3615 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3616 		err = -ENOMEM;
3617 		goto err_out_class;
3618 	}
3619 
3620 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3621 	if (!sd_cdb_pool) {
3622 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3623 		err = -ENOMEM;
3624 		goto err_out_cache;
3625 	}
3626 
3627 	err = scsi_register_driver(&sd_template.gendrv);
3628 	if (err)
3629 		goto err_out_driver;
3630 
3631 	return 0;
3632 
3633 err_out_driver:
3634 	mempool_destroy(sd_cdb_pool);
3635 
3636 err_out_cache:
3637 	kmem_cache_destroy(sd_cdb_cache);
3638 
3639 err_out_class:
3640 	class_unregister(&sd_disk_class);
3641 err_out:
3642 	for (i = 0; i < SD_MAJORS; i++)
3643 		unregister_blkdev(sd_major(i), "sd");
3644 	return err;
3645 }
3646 
3647 /**
3648  *	exit_sd - exit point for this driver (when it is a module).
3649  *
3650  *	Note: this function unregisters this driver from the scsi mid-level.
3651  **/
3652 static void __exit exit_sd(void)
3653 {
3654 	int i;
3655 
3656 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3657 
3658 	scsi_unregister_driver(&sd_template.gendrv);
3659 	mempool_destroy(sd_cdb_pool);
3660 	kmem_cache_destroy(sd_cdb_cache);
3661 
3662 	class_unregister(&sd_disk_class);
3663 
3664 	for (i = 0; i < SD_MAJORS; i++) {
3665 		blk_unregister_region(sd_major(i), SD_MINORS);
3666 		unregister_blkdev(sd_major(i), "sd");
3667 	}
3668 }
3669 
3670 module_init(init_sd);
3671 module_exit(exit_sd);
3672 
3673 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3674 			       struct scsi_sense_hdr *sshdr)
3675 {
3676 	scsi_print_sense_hdr(sdkp->device,
3677 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3678 }
3679 
3680 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3681 			    int result)
3682 {
3683 	const char *hb_string = scsi_hostbyte_string(result);
3684 	const char *db_string = scsi_driverbyte_string(result);
3685 
3686 	if (hb_string || db_string)
3687 		sd_printk(KERN_INFO, sdkp,
3688 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3689 			  hb_string ? hb_string : "invalid",
3690 			  db_string ? db_string : "invalid");
3691 	else
3692 		sd_printk(KERN_INFO, sdkp,
3693 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3694 			  msg, host_byte(result), driver_byte(result));
3695 }
3696 
3697