1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/genhd.h> 42 #include <linux/hdreg.h> 43 #include <linux/errno.h> 44 #include <linux/idr.h> 45 #include <linux/interrupt.h> 46 #include <linux/init.h> 47 #include <linux/blkdev.h> 48 #include <linux/blkpg.h> 49 #include <linux/blk-pm.h> 50 #include <linux/delay.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/async.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <asm/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_driver.h> 67 #include <scsi/scsi_eh.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_ioctl.h> 70 #include <scsi/scsicam.h> 71 72 #include "sd.h" 73 #include "scsi_priv.h" 74 #include "scsi_logging.h" 75 76 MODULE_AUTHOR("Eric Youngdale"); 77 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 78 MODULE_LICENSE("GPL"); 79 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 100 101 #define SD_MINORS 16 102 103 static void sd_config_discard(struct scsi_disk *, unsigned int); 104 static void sd_config_write_same(struct scsi_disk *); 105 static int sd_revalidate_disk(struct gendisk *); 106 static void sd_unlock_native_capacity(struct gendisk *disk); 107 static int sd_probe(struct device *); 108 static int sd_remove(struct device *); 109 static void sd_shutdown(struct device *); 110 static int sd_suspend_system(struct device *); 111 static int sd_suspend_runtime(struct device *); 112 static int sd_resume_system(struct device *); 113 static int sd_resume_runtime(struct device *); 114 static void sd_rescan(struct device *); 115 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 116 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 117 static int sd_done(struct scsi_cmnd *); 118 static void sd_eh_reset(struct scsi_cmnd *); 119 static int sd_eh_action(struct scsi_cmnd *, int); 120 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 121 static void scsi_disk_release(struct device *cdev); 122 123 static DEFINE_IDA(sd_index_ida); 124 125 /* This semaphore is used to mediate the 0->1 reference get in the 126 * face of object destruction (i.e. we can't allow a get on an 127 * object after last put) */ 128 static DEFINE_MUTEX(sd_ref_mutex); 129 130 static struct kmem_cache *sd_cdb_cache; 131 static mempool_t *sd_cdb_pool; 132 static mempool_t *sd_page_pool; 133 static struct lock_class_key sd_bio_compl_lkclass; 134 135 static const char *sd_cache_types[] = { 136 "write through", "none", "write back", 137 "write back, no read (daft)" 138 }; 139 140 static void sd_set_flush_flag(struct scsi_disk *sdkp) 141 { 142 bool wc = false, fua = false; 143 144 if (sdkp->WCE) { 145 wc = true; 146 if (sdkp->DPOFUA) 147 fua = true; 148 } 149 150 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 151 } 152 153 static ssize_t 154 cache_type_store(struct device *dev, struct device_attribute *attr, 155 const char *buf, size_t count) 156 { 157 int ct, rcd, wce, sp; 158 struct scsi_disk *sdkp = to_scsi_disk(dev); 159 struct scsi_device *sdp = sdkp->device; 160 char buffer[64]; 161 char *buffer_data; 162 struct scsi_mode_data data; 163 struct scsi_sense_hdr sshdr; 164 static const char temp[] = "temporary "; 165 int len; 166 167 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 168 /* no cache control on RBC devices; theoretically they 169 * can do it, but there's probably so many exceptions 170 * it's not worth the risk */ 171 return -EINVAL; 172 173 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 174 buf += sizeof(temp) - 1; 175 sdkp->cache_override = 1; 176 } else { 177 sdkp->cache_override = 0; 178 } 179 180 ct = sysfs_match_string(sd_cache_types, buf); 181 if (ct < 0) 182 return -EINVAL; 183 184 rcd = ct & 0x01 ? 1 : 0; 185 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 186 187 if (sdkp->cache_override) { 188 sdkp->WCE = wce; 189 sdkp->RCD = rcd; 190 sd_set_flush_flag(sdkp); 191 return count; 192 } 193 194 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 195 sdkp->max_retries, &data, NULL)) 196 return -EINVAL; 197 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 198 data.block_descriptor_length); 199 buffer_data = buffer + data.header_length + 200 data.block_descriptor_length; 201 buffer_data[2] &= ~0x05; 202 buffer_data[2] |= wce << 2 | rcd; 203 sp = buffer_data[0] & 0x80 ? 1 : 0; 204 buffer_data[0] &= ~0x80; 205 206 /* 207 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 208 * received mode parameter buffer before doing MODE SELECT. 209 */ 210 data.device_specific = 0; 211 212 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 213 sdkp->max_retries, &data, &sshdr)) { 214 if (scsi_sense_valid(&sshdr)) 215 sd_print_sense_hdr(sdkp, &sshdr); 216 return -EINVAL; 217 } 218 sd_revalidate_disk(sdkp->disk); 219 return count; 220 } 221 222 static ssize_t 223 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 224 char *buf) 225 { 226 struct scsi_disk *sdkp = to_scsi_disk(dev); 227 struct scsi_device *sdp = sdkp->device; 228 229 return sprintf(buf, "%u\n", sdp->manage_start_stop); 230 } 231 232 static ssize_t 233 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 234 const char *buf, size_t count) 235 { 236 struct scsi_disk *sdkp = to_scsi_disk(dev); 237 struct scsi_device *sdp = sdkp->device; 238 bool v; 239 240 if (!capable(CAP_SYS_ADMIN)) 241 return -EACCES; 242 243 if (kstrtobool(buf, &v)) 244 return -EINVAL; 245 246 sdp->manage_start_stop = v; 247 248 return count; 249 } 250 static DEVICE_ATTR_RW(manage_start_stop); 251 252 static ssize_t 253 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 254 { 255 struct scsi_disk *sdkp = to_scsi_disk(dev); 256 257 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 258 } 259 260 static ssize_t 261 allow_restart_store(struct device *dev, struct device_attribute *attr, 262 const char *buf, size_t count) 263 { 264 bool v; 265 struct scsi_disk *sdkp = to_scsi_disk(dev); 266 struct scsi_device *sdp = sdkp->device; 267 268 if (!capable(CAP_SYS_ADMIN)) 269 return -EACCES; 270 271 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 272 return -EINVAL; 273 274 if (kstrtobool(buf, &v)) 275 return -EINVAL; 276 277 sdp->allow_restart = v; 278 279 return count; 280 } 281 static DEVICE_ATTR_RW(allow_restart); 282 283 static ssize_t 284 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 285 { 286 struct scsi_disk *sdkp = to_scsi_disk(dev); 287 int ct = sdkp->RCD + 2*sdkp->WCE; 288 289 return sprintf(buf, "%s\n", sd_cache_types[ct]); 290 } 291 static DEVICE_ATTR_RW(cache_type); 292 293 static ssize_t 294 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 295 { 296 struct scsi_disk *sdkp = to_scsi_disk(dev); 297 298 return sprintf(buf, "%u\n", sdkp->DPOFUA); 299 } 300 static DEVICE_ATTR_RO(FUA); 301 302 static ssize_t 303 protection_type_show(struct device *dev, struct device_attribute *attr, 304 char *buf) 305 { 306 struct scsi_disk *sdkp = to_scsi_disk(dev); 307 308 return sprintf(buf, "%u\n", sdkp->protection_type); 309 } 310 311 static ssize_t 312 protection_type_store(struct device *dev, struct device_attribute *attr, 313 const char *buf, size_t count) 314 { 315 struct scsi_disk *sdkp = to_scsi_disk(dev); 316 unsigned int val; 317 int err; 318 319 if (!capable(CAP_SYS_ADMIN)) 320 return -EACCES; 321 322 err = kstrtouint(buf, 10, &val); 323 324 if (err) 325 return err; 326 327 if (val <= T10_PI_TYPE3_PROTECTION) 328 sdkp->protection_type = val; 329 330 return count; 331 } 332 static DEVICE_ATTR_RW(protection_type); 333 334 static ssize_t 335 protection_mode_show(struct device *dev, struct device_attribute *attr, 336 char *buf) 337 { 338 struct scsi_disk *sdkp = to_scsi_disk(dev); 339 struct scsi_device *sdp = sdkp->device; 340 unsigned int dif, dix; 341 342 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 343 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 344 345 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 346 dif = 0; 347 dix = 1; 348 } 349 350 if (!dif && !dix) 351 return sprintf(buf, "none\n"); 352 353 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 354 } 355 static DEVICE_ATTR_RO(protection_mode); 356 357 static ssize_t 358 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 359 { 360 struct scsi_disk *sdkp = to_scsi_disk(dev); 361 362 return sprintf(buf, "%u\n", sdkp->ATO); 363 } 364 static DEVICE_ATTR_RO(app_tag_own); 365 366 static ssize_t 367 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 368 char *buf) 369 { 370 struct scsi_disk *sdkp = to_scsi_disk(dev); 371 372 return sprintf(buf, "%u\n", sdkp->lbpme); 373 } 374 static DEVICE_ATTR_RO(thin_provisioning); 375 376 /* sysfs_match_string() requires dense arrays */ 377 static const char *lbp_mode[] = { 378 [SD_LBP_FULL] = "full", 379 [SD_LBP_UNMAP] = "unmap", 380 [SD_LBP_WS16] = "writesame_16", 381 [SD_LBP_WS10] = "writesame_10", 382 [SD_LBP_ZERO] = "writesame_zero", 383 [SD_LBP_DISABLE] = "disabled", 384 }; 385 386 static ssize_t 387 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 388 char *buf) 389 { 390 struct scsi_disk *sdkp = to_scsi_disk(dev); 391 392 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 393 } 394 395 static ssize_t 396 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 397 const char *buf, size_t count) 398 { 399 struct scsi_disk *sdkp = to_scsi_disk(dev); 400 struct scsi_device *sdp = sdkp->device; 401 int mode; 402 403 if (!capable(CAP_SYS_ADMIN)) 404 return -EACCES; 405 406 if (sd_is_zoned(sdkp)) { 407 sd_config_discard(sdkp, SD_LBP_DISABLE); 408 return count; 409 } 410 411 if (sdp->type != TYPE_DISK) 412 return -EINVAL; 413 414 mode = sysfs_match_string(lbp_mode, buf); 415 if (mode < 0) 416 return -EINVAL; 417 418 sd_config_discard(sdkp, mode); 419 420 return count; 421 } 422 static DEVICE_ATTR_RW(provisioning_mode); 423 424 /* sysfs_match_string() requires dense arrays */ 425 static const char *zeroing_mode[] = { 426 [SD_ZERO_WRITE] = "write", 427 [SD_ZERO_WS] = "writesame", 428 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 429 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 430 }; 431 432 static ssize_t 433 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 434 char *buf) 435 { 436 struct scsi_disk *sdkp = to_scsi_disk(dev); 437 438 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 439 } 440 441 static ssize_t 442 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 443 const char *buf, size_t count) 444 { 445 struct scsi_disk *sdkp = to_scsi_disk(dev); 446 int mode; 447 448 if (!capable(CAP_SYS_ADMIN)) 449 return -EACCES; 450 451 mode = sysfs_match_string(zeroing_mode, buf); 452 if (mode < 0) 453 return -EINVAL; 454 455 sdkp->zeroing_mode = mode; 456 457 return count; 458 } 459 static DEVICE_ATTR_RW(zeroing_mode); 460 461 static ssize_t 462 max_medium_access_timeouts_show(struct device *dev, 463 struct device_attribute *attr, char *buf) 464 { 465 struct scsi_disk *sdkp = to_scsi_disk(dev); 466 467 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 468 } 469 470 static ssize_t 471 max_medium_access_timeouts_store(struct device *dev, 472 struct device_attribute *attr, const char *buf, 473 size_t count) 474 { 475 struct scsi_disk *sdkp = to_scsi_disk(dev); 476 int err; 477 478 if (!capable(CAP_SYS_ADMIN)) 479 return -EACCES; 480 481 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 482 483 return err ? err : count; 484 } 485 static DEVICE_ATTR_RW(max_medium_access_timeouts); 486 487 static ssize_t 488 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 489 char *buf) 490 { 491 struct scsi_disk *sdkp = to_scsi_disk(dev); 492 493 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 494 } 495 496 static ssize_t 497 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 498 const char *buf, size_t count) 499 { 500 struct scsi_disk *sdkp = to_scsi_disk(dev); 501 struct scsi_device *sdp = sdkp->device; 502 unsigned long max; 503 int err; 504 505 if (!capable(CAP_SYS_ADMIN)) 506 return -EACCES; 507 508 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 509 return -EINVAL; 510 511 err = kstrtoul(buf, 10, &max); 512 513 if (err) 514 return err; 515 516 if (max == 0) 517 sdp->no_write_same = 1; 518 else if (max <= SD_MAX_WS16_BLOCKS) { 519 sdp->no_write_same = 0; 520 sdkp->max_ws_blocks = max; 521 } 522 523 sd_config_write_same(sdkp); 524 525 return count; 526 } 527 static DEVICE_ATTR_RW(max_write_same_blocks); 528 529 static ssize_t 530 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 531 { 532 struct scsi_disk *sdkp = to_scsi_disk(dev); 533 534 if (sdkp->device->type == TYPE_ZBC) 535 return sprintf(buf, "host-managed\n"); 536 if (sdkp->zoned == 1) 537 return sprintf(buf, "host-aware\n"); 538 if (sdkp->zoned == 2) 539 return sprintf(buf, "drive-managed\n"); 540 return sprintf(buf, "none\n"); 541 } 542 static DEVICE_ATTR_RO(zoned_cap); 543 544 static ssize_t 545 max_retries_store(struct device *dev, struct device_attribute *attr, 546 const char *buf, size_t count) 547 { 548 struct scsi_disk *sdkp = to_scsi_disk(dev); 549 struct scsi_device *sdev = sdkp->device; 550 int retries, err; 551 552 err = kstrtoint(buf, 10, &retries); 553 if (err) 554 return err; 555 556 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 557 sdkp->max_retries = retries; 558 return count; 559 } 560 561 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 562 SD_MAX_RETRIES); 563 return -EINVAL; 564 } 565 566 static ssize_t 567 max_retries_show(struct device *dev, struct device_attribute *attr, 568 char *buf) 569 { 570 struct scsi_disk *sdkp = to_scsi_disk(dev); 571 572 return sprintf(buf, "%d\n", sdkp->max_retries); 573 } 574 575 static DEVICE_ATTR_RW(max_retries); 576 577 static struct attribute *sd_disk_attrs[] = { 578 &dev_attr_cache_type.attr, 579 &dev_attr_FUA.attr, 580 &dev_attr_allow_restart.attr, 581 &dev_attr_manage_start_stop.attr, 582 &dev_attr_protection_type.attr, 583 &dev_attr_protection_mode.attr, 584 &dev_attr_app_tag_own.attr, 585 &dev_attr_thin_provisioning.attr, 586 &dev_attr_provisioning_mode.attr, 587 &dev_attr_zeroing_mode.attr, 588 &dev_attr_max_write_same_blocks.attr, 589 &dev_attr_max_medium_access_timeouts.attr, 590 &dev_attr_zoned_cap.attr, 591 &dev_attr_max_retries.attr, 592 NULL, 593 }; 594 ATTRIBUTE_GROUPS(sd_disk); 595 596 static struct class sd_disk_class = { 597 .name = "scsi_disk", 598 .owner = THIS_MODULE, 599 .dev_release = scsi_disk_release, 600 .dev_groups = sd_disk_groups, 601 }; 602 603 static const struct dev_pm_ops sd_pm_ops = { 604 .suspend = sd_suspend_system, 605 .resume = sd_resume_system, 606 .poweroff = sd_suspend_system, 607 .restore = sd_resume_system, 608 .runtime_suspend = sd_suspend_runtime, 609 .runtime_resume = sd_resume_runtime, 610 }; 611 612 static struct scsi_driver sd_template = { 613 .gendrv = { 614 .name = "sd", 615 .owner = THIS_MODULE, 616 .probe = sd_probe, 617 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 618 .remove = sd_remove, 619 .shutdown = sd_shutdown, 620 .pm = &sd_pm_ops, 621 }, 622 .rescan = sd_rescan, 623 .init_command = sd_init_command, 624 .uninit_command = sd_uninit_command, 625 .done = sd_done, 626 .eh_action = sd_eh_action, 627 .eh_reset = sd_eh_reset, 628 }; 629 630 /* 631 * Don't request a new module, as that could deadlock in multipath 632 * environment. 633 */ 634 static void sd_default_probe(dev_t devt) 635 { 636 } 637 638 /* 639 * Device no to disk mapping: 640 * 641 * major disc2 disc p1 642 * |............|.............|....|....| <- dev_t 643 * 31 20 19 8 7 4 3 0 644 * 645 * Inside a major, we have 16k disks, however mapped non- 646 * contiguously. The first 16 disks are for major0, the next 647 * ones with major1, ... Disk 256 is for major0 again, disk 272 648 * for major1, ... 649 * As we stay compatible with our numbering scheme, we can reuse 650 * the well-know SCSI majors 8, 65--71, 136--143. 651 */ 652 static int sd_major(int major_idx) 653 { 654 switch (major_idx) { 655 case 0: 656 return SCSI_DISK0_MAJOR; 657 case 1 ... 7: 658 return SCSI_DISK1_MAJOR + major_idx - 1; 659 case 8 ... 15: 660 return SCSI_DISK8_MAJOR + major_idx - 8; 661 default: 662 BUG(); 663 return 0; /* shut up gcc */ 664 } 665 } 666 667 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 668 { 669 struct scsi_disk *sdkp = NULL; 670 671 mutex_lock(&sd_ref_mutex); 672 673 if (disk->private_data) { 674 sdkp = scsi_disk(disk); 675 if (scsi_device_get(sdkp->device) == 0) 676 get_device(&sdkp->dev); 677 else 678 sdkp = NULL; 679 } 680 mutex_unlock(&sd_ref_mutex); 681 return sdkp; 682 } 683 684 static void scsi_disk_put(struct scsi_disk *sdkp) 685 { 686 struct scsi_device *sdev = sdkp->device; 687 688 mutex_lock(&sd_ref_mutex); 689 put_device(&sdkp->dev); 690 scsi_device_put(sdev); 691 mutex_unlock(&sd_ref_mutex); 692 } 693 694 #ifdef CONFIG_BLK_SED_OPAL 695 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 696 size_t len, bool send) 697 { 698 struct scsi_disk *sdkp = data; 699 struct scsi_device *sdev = sdkp->device; 700 u8 cdb[12] = { 0, }; 701 int ret; 702 703 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 704 cdb[1] = secp; 705 put_unaligned_be16(spsp, &cdb[2]); 706 put_unaligned_be32(len, &cdb[6]); 707 708 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 709 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0, 710 RQF_PM, NULL); 711 return ret <= 0 ? ret : -EIO; 712 } 713 #endif /* CONFIG_BLK_SED_OPAL */ 714 715 /* 716 * Look up the DIX operation based on whether the command is read or 717 * write and whether dix and dif are enabled. 718 */ 719 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 720 { 721 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 722 static const unsigned int ops[] = { /* wrt dix dif */ 723 SCSI_PROT_NORMAL, /* 0 0 0 */ 724 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 725 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 726 SCSI_PROT_READ_PASS, /* 0 1 1 */ 727 SCSI_PROT_NORMAL, /* 1 0 0 */ 728 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 729 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 730 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 731 }; 732 733 return ops[write << 2 | dix << 1 | dif]; 734 } 735 736 /* 737 * Returns a mask of the protection flags that are valid for a given DIX 738 * operation. 739 */ 740 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 741 { 742 static const unsigned int flag_mask[] = { 743 [SCSI_PROT_NORMAL] = 0, 744 745 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 746 SCSI_PROT_GUARD_CHECK | 747 SCSI_PROT_REF_CHECK | 748 SCSI_PROT_REF_INCREMENT, 749 750 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 751 SCSI_PROT_IP_CHECKSUM, 752 753 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 754 SCSI_PROT_GUARD_CHECK | 755 SCSI_PROT_REF_CHECK | 756 SCSI_PROT_REF_INCREMENT | 757 SCSI_PROT_IP_CHECKSUM, 758 759 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 760 SCSI_PROT_REF_INCREMENT, 761 762 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 763 SCSI_PROT_REF_CHECK | 764 SCSI_PROT_REF_INCREMENT | 765 SCSI_PROT_IP_CHECKSUM, 766 767 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 768 SCSI_PROT_GUARD_CHECK | 769 SCSI_PROT_REF_CHECK | 770 SCSI_PROT_REF_INCREMENT | 771 SCSI_PROT_IP_CHECKSUM, 772 }; 773 774 return flag_mask[prot_op]; 775 } 776 777 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 778 unsigned int dix, unsigned int dif) 779 { 780 struct request *rq = scsi_cmd_to_rq(scmd); 781 struct bio *bio = rq->bio; 782 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 783 unsigned int protect = 0; 784 785 if (dix) { /* DIX Type 0, 1, 2, 3 */ 786 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 787 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 788 789 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 790 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 791 } 792 793 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 794 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 795 796 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 797 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 798 } 799 800 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 801 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 802 803 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 804 protect = 3 << 5; /* Disable target PI checking */ 805 else 806 protect = 1 << 5; /* Enable target PI checking */ 807 } 808 809 scsi_set_prot_op(scmd, prot_op); 810 scsi_set_prot_type(scmd, dif); 811 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 812 813 return protect; 814 } 815 816 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 817 { 818 struct request_queue *q = sdkp->disk->queue; 819 unsigned int logical_block_size = sdkp->device->sector_size; 820 unsigned int max_blocks = 0; 821 822 q->limits.discard_alignment = 823 sdkp->unmap_alignment * logical_block_size; 824 q->limits.discard_granularity = 825 max(sdkp->physical_block_size, 826 sdkp->unmap_granularity * logical_block_size); 827 sdkp->provisioning_mode = mode; 828 829 switch (mode) { 830 831 case SD_LBP_FULL: 832 case SD_LBP_DISABLE: 833 blk_queue_max_discard_sectors(q, 0); 834 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 835 return; 836 837 case SD_LBP_UNMAP: 838 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 839 (u32)SD_MAX_WS16_BLOCKS); 840 break; 841 842 case SD_LBP_WS16: 843 if (sdkp->device->unmap_limit_for_ws) 844 max_blocks = sdkp->max_unmap_blocks; 845 else 846 max_blocks = sdkp->max_ws_blocks; 847 848 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 849 break; 850 851 case SD_LBP_WS10: 852 if (sdkp->device->unmap_limit_for_ws) 853 max_blocks = sdkp->max_unmap_blocks; 854 else 855 max_blocks = sdkp->max_ws_blocks; 856 857 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 858 break; 859 860 case SD_LBP_ZERO: 861 max_blocks = min_not_zero(sdkp->max_ws_blocks, 862 (u32)SD_MAX_WS10_BLOCKS); 863 break; 864 } 865 866 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 867 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 868 } 869 870 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 871 { 872 struct scsi_device *sdp = cmd->device; 873 struct request *rq = scsi_cmd_to_rq(cmd); 874 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 875 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 876 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 877 unsigned int data_len = 24; 878 char *buf; 879 880 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 881 if (!rq->special_vec.bv_page) 882 return BLK_STS_RESOURCE; 883 clear_highpage(rq->special_vec.bv_page); 884 rq->special_vec.bv_offset = 0; 885 rq->special_vec.bv_len = data_len; 886 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 887 888 cmd->cmd_len = 10; 889 cmd->cmnd[0] = UNMAP; 890 cmd->cmnd[8] = 24; 891 892 buf = bvec_virt(&rq->special_vec); 893 put_unaligned_be16(6 + 16, &buf[0]); 894 put_unaligned_be16(16, &buf[2]); 895 put_unaligned_be64(lba, &buf[8]); 896 put_unaligned_be32(nr_blocks, &buf[16]); 897 898 cmd->allowed = sdkp->max_retries; 899 cmd->transfersize = data_len; 900 rq->timeout = SD_TIMEOUT; 901 902 return scsi_alloc_sgtables(cmd); 903 } 904 905 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 906 bool unmap) 907 { 908 struct scsi_device *sdp = cmd->device; 909 struct request *rq = scsi_cmd_to_rq(cmd); 910 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 911 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 912 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 913 u32 data_len = sdp->sector_size; 914 915 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 916 if (!rq->special_vec.bv_page) 917 return BLK_STS_RESOURCE; 918 clear_highpage(rq->special_vec.bv_page); 919 rq->special_vec.bv_offset = 0; 920 rq->special_vec.bv_len = data_len; 921 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 922 923 cmd->cmd_len = 16; 924 cmd->cmnd[0] = WRITE_SAME_16; 925 if (unmap) 926 cmd->cmnd[1] = 0x8; /* UNMAP */ 927 put_unaligned_be64(lba, &cmd->cmnd[2]); 928 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 929 930 cmd->allowed = sdkp->max_retries; 931 cmd->transfersize = data_len; 932 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 933 934 return scsi_alloc_sgtables(cmd); 935 } 936 937 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 938 bool unmap) 939 { 940 struct scsi_device *sdp = cmd->device; 941 struct request *rq = scsi_cmd_to_rq(cmd); 942 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 943 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 944 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 945 u32 data_len = sdp->sector_size; 946 947 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 948 if (!rq->special_vec.bv_page) 949 return BLK_STS_RESOURCE; 950 clear_highpage(rq->special_vec.bv_page); 951 rq->special_vec.bv_offset = 0; 952 rq->special_vec.bv_len = data_len; 953 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 954 955 cmd->cmd_len = 10; 956 cmd->cmnd[0] = WRITE_SAME; 957 if (unmap) 958 cmd->cmnd[1] = 0x8; /* UNMAP */ 959 put_unaligned_be32(lba, &cmd->cmnd[2]); 960 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 961 962 cmd->allowed = sdkp->max_retries; 963 cmd->transfersize = data_len; 964 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 965 966 return scsi_alloc_sgtables(cmd); 967 } 968 969 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 970 { 971 struct request *rq = scsi_cmd_to_rq(cmd); 972 struct scsi_device *sdp = cmd->device; 973 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 974 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 975 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 976 977 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 978 switch (sdkp->zeroing_mode) { 979 case SD_ZERO_WS16_UNMAP: 980 return sd_setup_write_same16_cmnd(cmd, true); 981 case SD_ZERO_WS10_UNMAP: 982 return sd_setup_write_same10_cmnd(cmd, true); 983 } 984 } 985 986 if (sdp->no_write_same) { 987 rq->rq_flags |= RQF_QUIET; 988 return BLK_STS_TARGET; 989 } 990 991 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 992 return sd_setup_write_same16_cmnd(cmd, false); 993 994 return sd_setup_write_same10_cmnd(cmd, false); 995 } 996 997 static void sd_config_write_same(struct scsi_disk *sdkp) 998 { 999 struct request_queue *q = sdkp->disk->queue; 1000 unsigned int logical_block_size = sdkp->device->sector_size; 1001 1002 if (sdkp->device->no_write_same) { 1003 sdkp->max_ws_blocks = 0; 1004 goto out; 1005 } 1006 1007 /* Some devices can not handle block counts above 0xffff despite 1008 * supporting WRITE SAME(16). Consequently we default to 64k 1009 * blocks per I/O unless the device explicitly advertises a 1010 * bigger limit. 1011 */ 1012 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 1013 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1014 (u32)SD_MAX_WS16_BLOCKS); 1015 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 1016 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1017 (u32)SD_MAX_WS10_BLOCKS); 1018 else { 1019 sdkp->device->no_write_same = 1; 1020 sdkp->max_ws_blocks = 0; 1021 } 1022 1023 if (sdkp->lbprz && sdkp->lbpws) 1024 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 1025 else if (sdkp->lbprz && sdkp->lbpws10) 1026 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 1027 else if (sdkp->max_ws_blocks) 1028 sdkp->zeroing_mode = SD_ZERO_WS; 1029 else 1030 sdkp->zeroing_mode = SD_ZERO_WRITE; 1031 1032 if (sdkp->max_ws_blocks && 1033 sdkp->physical_block_size > logical_block_size) { 1034 /* 1035 * Reporting a maximum number of blocks that is not aligned 1036 * on the device physical size would cause a large write same 1037 * request to be split into physically unaligned chunks by 1038 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 1039 * even if the caller of these functions took care to align the 1040 * large request. So make sure the maximum reported is aligned 1041 * to the device physical block size. This is only an optional 1042 * optimization for regular disks, but this is mandatory to 1043 * avoid failure of large write same requests directed at 1044 * sequential write required zones of host-managed ZBC disks. 1045 */ 1046 sdkp->max_ws_blocks = 1047 round_down(sdkp->max_ws_blocks, 1048 bytes_to_logical(sdkp->device, 1049 sdkp->physical_block_size)); 1050 } 1051 1052 out: 1053 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 1054 (logical_block_size >> 9)); 1055 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1056 (logical_block_size >> 9)); 1057 } 1058 1059 /** 1060 * sd_setup_write_same_cmnd - write the same data to multiple blocks 1061 * @cmd: command to prepare 1062 * 1063 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 1064 * the preference indicated by the target device. 1065 **/ 1066 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 1067 { 1068 struct request *rq = scsi_cmd_to_rq(cmd); 1069 struct scsi_device *sdp = cmd->device; 1070 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1071 struct bio *bio = rq->bio; 1072 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1073 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1074 blk_status_t ret; 1075 1076 if (sdkp->device->no_write_same) 1077 return BLK_STS_TARGET; 1078 1079 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 1080 1081 rq->timeout = SD_WRITE_SAME_TIMEOUT; 1082 1083 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) { 1084 cmd->cmd_len = 16; 1085 cmd->cmnd[0] = WRITE_SAME_16; 1086 put_unaligned_be64(lba, &cmd->cmnd[2]); 1087 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1088 } else { 1089 cmd->cmd_len = 10; 1090 cmd->cmnd[0] = WRITE_SAME; 1091 put_unaligned_be32(lba, &cmd->cmnd[2]); 1092 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1093 } 1094 1095 cmd->transfersize = sdp->sector_size; 1096 cmd->allowed = sdkp->max_retries; 1097 1098 /* 1099 * For WRITE SAME the data transferred via the DATA OUT buffer is 1100 * different from the amount of data actually written to the target. 1101 * 1102 * We set up __data_len to the amount of data transferred via the 1103 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 1104 * to transfer a single sector of data first, but then reset it to 1105 * the amount of data to be written right after so that the I/O path 1106 * knows how much to actually write. 1107 */ 1108 rq->__data_len = sdp->sector_size; 1109 ret = scsi_alloc_sgtables(cmd); 1110 rq->__data_len = blk_rq_bytes(rq); 1111 1112 return ret; 1113 } 1114 1115 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1116 { 1117 struct request *rq = scsi_cmd_to_rq(cmd); 1118 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1119 1120 /* flush requests don't perform I/O, zero the S/G table */ 1121 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1122 1123 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1124 cmd->cmd_len = 10; 1125 cmd->transfersize = 0; 1126 cmd->allowed = sdkp->max_retries; 1127 1128 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1129 return BLK_STS_OK; 1130 } 1131 1132 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1133 sector_t lba, unsigned int nr_blocks, 1134 unsigned char flags) 1135 { 1136 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1137 if (unlikely(cmd->cmnd == NULL)) 1138 return BLK_STS_RESOURCE; 1139 1140 cmd->cmd_len = SD_EXT_CDB_SIZE; 1141 memset(cmd->cmnd, 0, cmd->cmd_len); 1142 1143 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1144 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1145 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1146 cmd->cmnd[10] = flags; 1147 put_unaligned_be64(lba, &cmd->cmnd[12]); 1148 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1149 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1150 1151 return BLK_STS_OK; 1152 } 1153 1154 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1155 sector_t lba, unsigned int nr_blocks, 1156 unsigned char flags) 1157 { 1158 cmd->cmd_len = 16; 1159 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1160 cmd->cmnd[1] = flags; 1161 cmd->cmnd[14] = 0; 1162 cmd->cmnd[15] = 0; 1163 put_unaligned_be64(lba, &cmd->cmnd[2]); 1164 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1165 1166 return BLK_STS_OK; 1167 } 1168 1169 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1170 sector_t lba, unsigned int nr_blocks, 1171 unsigned char flags) 1172 { 1173 cmd->cmd_len = 10; 1174 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1175 cmd->cmnd[1] = flags; 1176 cmd->cmnd[6] = 0; 1177 cmd->cmnd[9] = 0; 1178 put_unaligned_be32(lba, &cmd->cmnd[2]); 1179 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1180 1181 return BLK_STS_OK; 1182 } 1183 1184 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1185 sector_t lba, unsigned int nr_blocks, 1186 unsigned char flags) 1187 { 1188 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1189 if (WARN_ON_ONCE(nr_blocks == 0)) 1190 return BLK_STS_IOERR; 1191 1192 if (unlikely(flags & 0x8)) { 1193 /* 1194 * This happens only if this drive failed 10byte rw 1195 * command with ILLEGAL_REQUEST during operation and 1196 * thus turned off use_10_for_rw. 1197 */ 1198 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1199 return BLK_STS_IOERR; 1200 } 1201 1202 cmd->cmd_len = 6; 1203 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1204 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1205 cmd->cmnd[2] = (lba >> 8) & 0xff; 1206 cmd->cmnd[3] = lba & 0xff; 1207 cmd->cmnd[4] = nr_blocks; 1208 cmd->cmnd[5] = 0; 1209 1210 return BLK_STS_OK; 1211 } 1212 1213 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1214 { 1215 struct request *rq = scsi_cmd_to_rq(cmd); 1216 struct scsi_device *sdp = cmd->device; 1217 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1218 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1219 sector_t threshold; 1220 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1221 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1222 bool write = rq_data_dir(rq) == WRITE; 1223 unsigned char protect, fua; 1224 blk_status_t ret; 1225 unsigned int dif; 1226 bool dix; 1227 1228 ret = scsi_alloc_sgtables(cmd); 1229 if (ret != BLK_STS_OK) 1230 return ret; 1231 1232 ret = BLK_STS_IOERR; 1233 if (!scsi_device_online(sdp) || sdp->changed) { 1234 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1235 goto fail; 1236 } 1237 1238 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) { 1239 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1240 goto fail; 1241 } 1242 1243 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1244 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1245 goto fail; 1246 } 1247 1248 /* 1249 * Some SD card readers can't handle accesses which touch the 1250 * last one or two logical blocks. Split accesses as needed. 1251 */ 1252 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1253 1254 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1255 if (lba < threshold) { 1256 /* Access up to the threshold but not beyond */ 1257 nr_blocks = threshold - lba; 1258 } else { 1259 /* Access only a single logical block */ 1260 nr_blocks = 1; 1261 } 1262 } 1263 1264 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1265 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1266 if (ret) 1267 goto fail; 1268 } 1269 1270 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1271 dix = scsi_prot_sg_count(cmd); 1272 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1273 1274 if (dif || dix) 1275 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1276 else 1277 protect = 0; 1278 1279 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1280 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1281 protect | fua); 1282 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1283 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1284 protect | fua); 1285 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1286 sdp->use_10_for_rw || protect) { 1287 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1288 protect | fua); 1289 } else { 1290 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1291 protect | fua); 1292 } 1293 1294 if (unlikely(ret != BLK_STS_OK)) 1295 goto fail; 1296 1297 /* 1298 * We shouldn't disconnect in the middle of a sector, so with a dumb 1299 * host adapter, it's safe to assume that we can at least transfer 1300 * this many bytes between each connect / disconnect. 1301 */ 1302 cmd->transfersize = sdp->sector_size; 1303 cmd->underflow = nr_blocks << 9; 1304 cmd->allowed = sdkp->max_retries; 1305 cmd->sdb.length = nr_blocks * sdp->sector_size; 1306 1307 SCSI_LOG_HLQUEUE(1, 1308 scmd_printk(KERN_INFO, cmd, 1309 "%s: block=%llu, count=%d\n", __func__, 1310 (unsigned long long)blk_rq_pos(rq), 1311 blk_rq_sectors(rq))); 1312 SCSI_LOG_HLQUEUE(2, 1313 scmd_printk(KERN_INFO, cmd, 1314 "%s %d/%u 512 byte blocks.\n", 1315 write ? "writing" : "reading", nr_blocks, 1316 blk_rq_sectors(rq))); 1317 1318 /* 1319 * This indicates that the command is ready from our end to be queued. 1320 */ 1321 return BLK_STS_OK; 1322 fail: 1323 scsi_free_sgtables(cmd); 1324 return ret; 1325 } 1326 1327 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1328 { 1329 struct request *rq = scsi_cmd_to_rq(cmd); 1330 1331 switch (req_op(rq)) { 1332 case REQ_OP_DISCARD: 1333 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1334 case SD_LBP_UNMAP: 1335 return sd_setup_unmap_cmnd(cmd); 1336 case SD_LBP_WS16: 1337 return sd_setup_write_same16_cmnd(cmd, true); 1338 case SD_LBP_WS10: 1339 return sd_setup_write_same10_cmnd(cmd, true); 1340 case SD_LBP_ZERO: 1341 return sd_setup_write_same10_cmnd(cmd, false); 1342 default: 1343 return BLK_STS_TARGET; 1344 } 1345 case REQ_OP_WRITE_ZEROES: 1346 return sd_setup_write_zeroes_cmnd(cmd); 1347 case REQ_OP_WRITE_SAME: 1348 return sd_setup_write_same_cmnd(cmd); 1349 case REQ_OP_FLUSH: 1350 return sd_setup_flush_cmnd(cmd); 1351 case REQ_OP_READ: 1352 case REQ_OP_WRITE: 1353 case REQ_OP_ZONE_APPEND: 1354 return sd_setup_read_write_cmnd(cmd); 1355 case REQ_OP_ZONE_RESET: 1356 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1357 false); 1358 case REQ_OP_ZONE_RESET_ALL: 1359 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1360 true); 1361 case REQ_OP_ZONE_OPEN: 1362 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1363 case REQ_OP_ZONE_CLOSE: 1364 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1365 case REQ_OP_ZONE_FINISH: 1366 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1367 default: 1368 WARN_ON_ONCE(1); 1369 return BLK_STS_NOTSUPP; 1370 } 1371 } 1372 1373 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1374 { 1375 struct request *rq = scsi_cmd_to_rq(SCpnt); 1376 u8 *cmnd; 1377 1378 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1379 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1380 1381 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1382 cmnd = SCpnt->cmnd; 1383 SCpnt->cmnd = NULL; 1384 SCpnt->cmd_len = 0; 1385 mempool_free(cmnd, sd_cdb_pool); 1386 } 1387 } 1388 1389 static bool sd_need_revalidate(struct block_device *bdev, 1390 struct scsi_disk *sdkp) 1391 { 1392 if (sdkp->device->removable || sdkp->write_prot) { 1393 if (bdev_check_media_change(bdev)) 1394 return true; 1395 } 1396 1397 /* 1398 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1399 * nothing to do with partitions, BLKRRPART is used to force a full 1400 * revalidate after things like a format for historical reasons. 1401 */ 1402 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 1403 } 1404 1405 /** 1406 * sd_open - open a scsi disk device 1407 * @bdev: Block device of the scsi disk to open 1408 * @mode: FMODE_* mask 1409 * 1410 * Returns 0 if successful. Returns a negated errno value in case 1411 * of error. 1412 * 1413 * Note: This can be called from a user context (e.g. fsck(1) ) 1414 * or from within the kernel (e.g. as a result of a mount(1) ). 1415 * In the latter case @inode and @filp carry an abridged amount 1416 * of information as noted above. 1417 * 1418 * Locking: called with bdev->bd_disk->open_mutex held. 1419 **/ 1420 static int sd_open(struct block_device *bdev, fmode_t mode) 1421 { 1422 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1423 struct scsi_device *sdev; 1424 int retval; 1425 1426 if (!sdkp) 1427 return -ENXIO; 1428 1429 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1430 1431 sdev = sdkp->device; 1432 1433 /* 1434 * If the device is in error recovery, wait until it is done. 1435 * If the device is offline, then disallow any access to it. 1436 */ 1437 retval = -ENXIO; 1438 if (!scsi_block_when_processing_errors(sdev)) 1439 goto error_out; 1440 1441 if (sd_need_revalidate(bdev, sdkp)) 1442 sd_revalidate_disk(bdev->bd_disk); 1443 1444 /* 1445 * If the drive is empty, just let the open fail. 1446 */ 1447 retval = -ENOMEDIUM; 1448 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1449 goto error_out; 1450 1451 /* 1452 * If the device has the write protect tab set, have the open fail 1453 * if the user expects to be able to write to the thing. 1454 */ 1455 retval = -EROFS; 1456 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1457 goto error_out; 1458 1459 /* 1460 * It is possible that the disk changing stuff resulted in 1461 * the device being taken offline. If this is the case, 1462 * report this to the user, and don't pretend that the 1463 * open actually succeeded. 1464 */ 1465 retval = -ENXIO; 1466 if (!scsi_device_online(sdev)) 1467 goto error_out; 1468 1469 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1470 if (scsi_block_when_processing_errors(sdev)) 1471 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1472 } 1473 1474 return 0; 1475 1476 error_out: 1477 scsi_disk_put(sdkp); 1478 return retval; 1479 } 1480 1481 /** 1482 * sd_release - invoked when the (last) close(2) is called on this 1483 * scsi disk. 1484 * @disk: disk to release 1485 * @mode: FMODE_* mask 1486 * 1487 * Returns 0. 1488 * 1489 * Note: may block (uninterruptible) if error recovery is underway 1490 * on this disk. 1491 * 1492 * Locking: called with bdev->bd_disk->open_mutex held. 1493 **/ 1494 static void sd_release(struct gendisk *disk, fmode_t mode) 1495 { 1496 struct scsi_disk *sdkp = scsi_disk(disk); 1497 struct scsi_device *sdev = sdkp->device; 1498 1499 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1500 1501 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1502 if (scsi_block_when_processing_errors(sdev)) 1503 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1504 } 1505 1506 scsi_disk_put(sdkp); 1507 } 1508 1509 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1510 { 1511 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1512 struct scsi_device *sdp = sdkp->device; 1513 struct Scsi_Host *host = sdp->host; 1514 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1515 int diskinfo[4]; 1516 1517 /* default to most commonly used values */ 1518 diskinfo[0] = 0x40; /* 1 << 6 */ 1519 diskinfo[1] = 0x20; /* 1 << 5 */ 1520 diskinfo[2] = capacity >> 11; 1521 1522 /* override with calculated, extended default, or driver values */ 1523 if (host->hostt->bios_param) 1524 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1525 else 1526 scsicam_bios_param(bdev, capacity, diskinfo); 1527 1528 geo->heads = diskinfo[0]; 1529 geo->sectors = diskinfo[1]; 1530 geo->cylinders = diskinfo[2]; 1531 return 0; 1532 } 1533 1534 /** 1535 * sd_ioctl - process an ioctl 1536 * @bdev: target block device 1537 * @mode: FMODE_* mask 1538 * @cmd: ioctl command number 1539 * @arg: this is third argument given to ioctl(2) system call. 1540 * Often contains a pointer. 1541 * 1542 * Returns 0 if successful (some ioctls return positive numbers on 1543 * success as well). Returns a negated errno value in case of error. 1544 * 1545 * Note: most ioctls are forward onto the block subsystem or further 1546 * down in the scsi subsystem. 1547 **/ 1548 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1549 unsigned int cmd, unsigned long arg) 1550 { 1551 struct gendisk *disk = bdev->bd_disk; 1552 struct scsi_disk *sdkp = scsi_disk(disk); 1553 struct scsi_device *sdp = sdkp->device; 1554 void __user *p = (void __user *)arg; 1555 int error; 1556 1557 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1558 "cmd=0x%x\n", disk->disk_name, cmd)); 1559 1560 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1561 return -ENOIOCTLCMD; 1562 1563 /* 1564 * If we are in the middle of error recovery, don't let anyone 1565 * else try and use this device. Also, if error recovery fails, it 1566 * may try and take the device offline, in which case all further 1567 * access to the device is prohibited. 1568 */ 1569 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1570 (mode & FMODE_NDELAY) != 0); 1571 if (error) 1572 return error; 1573 1574 if (is_sed_ioctl(cmd)) 1575 return sed_ioctl(sdkp->opal_dev, cmd, p); 1576 return scsi_ioctl(sdp, disk, mode, cmd, p); 1577 } 1578 1579 static void set_media_not_present(struct scsi_disk *sdkp) 1580 { 1581 if (sdkp->media_present) 1582 sdkp->device->changed = 1; 1583 1584 if (sdkp->device->removable) { 1585 sdkp->media_present = 0; 1586 sdkp->capacity = 0; 1587 } 1588 } 1589 1590 static int media_not_present(struct scsi_disk *sdkp, 1591 struct scsi_sense_hdr *sshdr) 1592 { 1593 if (!scsi_sense_valid(sshdr)) 1594 return 0; 1595 1596 /* not invoked for commands that could return deferred errors */ 1597 switch (sshdr->sense_key) { 1598 case UNIT_ATTENTION: 1599 case NOT_READY: 1600 /* medium not present */ 1601 if (sshdr->asc == 0x3A) { 1602 set_media_not_present(sdkp); 1603 return 1; 1604 } 1605 } 1606 return 0; 1607 } 1608 1609 /** 1610 * sd_check_events - check media events 1611 * @disk: kernel device descriptor 1612 * @clearing: disk events currently being cleared 1613 * 1614 * Returns mask of DISK_EVENT_*. 1615 * 1616 * Note: this function is invoked from the block subsystem. 1617 **/ 1618 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1619 { 1620 struct scsi_disk *sdkp = scsi_disk_get(disk); 1621 struct scsi_device *sdp; 1622 int retval; 1623 bool disk_changed; 1624 1625 if (!sdkp) 1626 return 0; 1627 1628 sdp = sdkp->device; 1629 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1630 1631 /* 1632 * If the device is offline, don't send any commands - just pretend as 1633 * if the command failed. If the device ever comes back online, we 1634 * can deal with it then. It is only because of unrecoverable errors 1635 * that we would ever take a device offline in the first place. 1636 */ 1637 if (!scsi_device_online(sdp)) { 1638 set_media_not_present(sdkp); 1639 goto out; 1640 } 1641 1642 /* 1643 * Using TEST_UNIT_READY enables differentiation between drive with 1644 * no cartridge loaded - NOT READY, drive with changed cartridge - 1645 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1646 * 1647 * Drives that auto spin down. eg iomega jaz 1G, will be started 1648 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1649 * sd_revalidate() is called. 1650 */ 1651 if (scsi_block_when_processing_errors(sdp)) { 1652 struct scsi_sense_hdr sshdr = { 0, }; 1653 1654 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1655 &sshdr); 1656 1657 /* failed to execute TUR, assume media not present */ 1658 if (retval < 0 || host_byte(retval)) { 1659 set_media_not_present(sdkp); 1660 goto out; 1661 } 1662 1663 if (media_not_present(sdkp, &sshdr)) 1664 goto out; 1665 } 1666 1667 /* 1668 * For removable scsi disk we have to recognise the presence 1669 * of a disk in the drive. 1670 */ 1671 if (!sdkp->media_present) 1672 sdp->changed = 1; 1673 sdkp->media_present = 1; 1674 out: 1675 /* 1676 * sdp->changed is set under the following conditions: 1677 * 1678 * Medium present state has changed in either direction. 1679 * Device has indicated UNIT_ATTENTION. 1680 */ 1681 disk_changed = sdp->changed; 1682 sdp->changed = 0; 1683 scsi_disk_put(sdkp); 1684 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1685 } 1686 1687 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1688 { 1689 int retries, res; 1690 struct scsi_device *sdp = sdkp->device; 1691 const int timeout = sdp->request_queue->rq_timeout 1692 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1693 struct scsi_sense_hdr my_sshdr; 1694 1695 if (!scsi_device_online(sdp)) 1696 return -ENODEV; 1697 1698 /* caller might not be interested in sense, but we need it */ 1699 if (!sshdr) 1700 sshdr = &my_sshdr; 1701 1702 for (retries = 3; retries > 0; --retries) { 1703 unsigned char cmd[10] = { 0 }; 1704 1705 cmd[0] = SYNCHRONIZE_CACHE; 1706 /* 1707 * Leave the rest of the command zero to indicate 1708 * flush everything. 1709 */ 1710 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1711 timeout, sdkp->max_retries, 0, RQF_PM, NULL); 1712 if (res == 0) 1713 break; 1714 } 1715 1716 if (res) { 1717 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1718 1719 if (res < 0) 1720 return res; 1721 1722 if (scsi_status_is_check_condition(res) && 1723 scsi_sense_valid(sshdr)) { 1724 sd_print_sense_hdr(sdkp, sshdr); 1725 1726 /* we need to evaluate the error return */ 1727 if (sshdr->asc == 0x3a || /* medium not present */ 1728 sshdr->asc == 0x20 || /* invalid command */ 1729 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1730 /* this is no error here */ 1731 return 0; 1732 } 1733 1734 switch (host_byte(res)) { 1735 /* ignore errors due to racing a disconnection */ 1736 case DID_BAD_TARGET: 1737 case DID_NO_CONNECT: 1738 return 0; 1739 /* signal the upper layer it might try again */ 1740 case DID_BUS_BUSY: 1741 case DID_IMM_RETRY: 1742 case DID_REQUEUE: 1743 case DID_SOFT_ERROR: 1744 return -EBUSY; 1745 default: 1746 return -EIO; 1747 } 1748 } 1749 return 0; 1750 } 1751 1752 static void sd_rescan(struct device *dev) 1753 { 1754 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1755 1756 sd_revalidate_disk(sdkp->disk); 1757 } 1758 1759 static char sd_pr_type(enum pr_type type) 1760 { 1761 switch (type) { 1762 case PR_WRITE_EXCLUSIVE: 1763 return 0x01; 1764 case PR_EXCLUSIVE_ACCESS: 1765 return 0x03; 1766 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1767 return 0x05; 1768 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1769 return 0x06; 1770 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1771 return 0x07; 1772 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1773 return 0x08; 1774 default: 1775 return 0; 1776 } 1777 }; 1778 1779 static int sd_pr_command(struct block_device *bdev, u8 sa, 1780 u64 key, u64 sa_key, u8 type, u8 flags) 1781 { 1782 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1783 struct scsi_device *sdev = sdkp->device; 1784 struct scsi_sense_hdr sshdr; 1785 int result; 1786 u8 cmd[16] = { 0, }; 1787 u8 data[24] = { 0, }; 1788 1789 cmd[0] = PERSISTENT_RESERVE_OUT; 1790 cmd[1] = sa; 1791 cmd[2] = type; 1792 put_unaligned_be32(sizeof(data), &cmd[5]); 1793 1794 put_unaligned_be64(key, &data[0]); 1795 put_unaligned_be64(sa_key, &data[8]); 1796 data[20] = flags; 1797 1798 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1799 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL); 1800 1801 if (scsi_status_is_check_condition(result) && 1802 scsi_sense_valid(&sshdr)) { 1803 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1804 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1805 } 1806 1807 return result; 1808 } 1809 1810 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1811 u32 flags) 1812 { 1813 if (flags & ~PR_FL_IGNORE_KEY) 1814 return -EOPNOTSUPP; 1815 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1816 old_key, new_key, 0, 1817 (1 << 0) /* APTPL */); 1818 } 1819 1820 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1821 u32 flags) 1822 { 1823 if (flags) 1824 return -EOPNOTSUPP; 1825 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1826 } 1827 1828 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1829 { 1830 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1831 } 1832 1833 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1834 enum pr_type type, bool abort) 1835 { 1836 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1837 sd_pr_type(type), 0); 1838 } 1839 1840 static int sd_pr_clear(struct block_device *bdev, u64 key) 1841 { 1842 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1843 } 1844 1845 static const struct pr_ops sd_pr_ops = { 1846 .pr_register = sd_pr_register, 1847 .pr_reserve = sd_pr_reserve, 1848 .pr_release = sd_pr_release, 1849 .pr_preempt = sd_pr_preempt, 1850 .pr_clear = sd_pr_clear, 1851 }; 1852 1853 static const struct block_device_operations sd_fops = { 1854 .owner = THIS_MODULE, 1855 .open = sd_open, 1856 .release = sd_release, 1857 .ioctl = sd_ioctl, 1858 .getgeo = sd_getgeo, 1859 .compat_ioctl = blkdev_compat_ptr_ioctl, 1860 .check_events = sd_check_events, 1861 .unlock_native_capacity = sd_unlock_native_capacity, 1862 .report_zones = sd_zbc_report_zones, 1863 .pr_ops = &sd_pr_ops, 1864 }; 1865 1866 /** 1867 * sd_eh_reset - reset error handling callback 1868 * @scmd: sd-issued command that has failed 1869 * 1870 * This function is called by the SCSI midlayer before starting 1871 * SCSI EH. When counting medium access failures we have to be 1872 * careful to register it only only once per device and SCSI EH run; 1873 * there might be several timed out commands which will cause the 1874 * 'max_medium_access_timeouts' counter to trigger after the first 1875 * SCSI EH run already and set the device to offline. 1876 * So this function resets the internal counter before starting SCSI EH. 1877 **/ 1878 static void sd_eh_reset(struct scsi_cmnd *scmd) 1879 { 1880 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->rq_disk); 1881 1882 /* New SCSI EH run, reset gate variable */ 1883 sdkp->ignore_medium_access_errors = false; 1884 } 1885 1886 /** 1887 * sd_eh_action - error handling callback 1888 * @scmd: sd-issued command that has failed 1889 * @eh_disp: The recovery disposition suggested by the midlayer 1890 * 1891 * This function is called by the SCSI midlayer upon completion of an 1892 * error test command (currently TEST UNIT READY). The result of sending 1893 * the eh command is passed in eh_disp. We're looking for devices that 1894 * fail medium access commands but are OK with non access commands like 1895 * test unit ready (so wrongly see the device as having a successful 1896 * recovery) 1897 **/ 1898 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1899 { 1900 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->rq_disk); 1901 struct scsi_device *sdev = scmd->device; 1902 1903 if (!scsi_device_online(sdev) || 1904 !scsi_medium_access_command(scmd) || 1905 host_byte(scmd->result) != DID_TIME_OUT || 1906 eh_disp != SUCCESS) 1907 return eh_disp; 1908 1909 /* 1910 * The device has timed out executing a medium access command. 1911 * However, the TEST UNIT READY command sent during error 1912 * handling completed successfully. Either the device is in the 1913 * process of recovering or has it suffered an internal failure 1914 * that prevents access to the storage medium. 1915 */ 1916 if (!sdkp->ignore_medium_access_errors) { 1917 sdkp->medium_access_timed_out++; 1918 sdkp->ignore_medium_access_errors = true; 1919 } 1920 1921 /* 1922 * If the device keeps failing read/write commands but TEST UNIT 1923 * READY always completes successfully we assume that medium 1924 * access is no longer possible and take the device offline. 1925 */ 1926 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1927 scmd_printk(KERN_ERR, scmd, 1928 "Medium access timeout failure. Offlining disk!\n"); 1929 mutex_lock(&sdev->state_mutex); 1930 scsi_device_set_state(sdev, SDEV_OFFLINE); 1931 mutex_unlock(&sdev->state_mutex); 1932 1933 return SUCCESS; 1934 } 1935 1936 return eh_disp; 1937 } 1938 1939 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1940 { 1941 struct request *req = scsi_cmd_to_rq(scmd); 1942 struct scsi_device *sdev = scmd->device; 1943 unsigned int transferred, good_bytes; 1944 u64 start_lba, end_lba, bad_lba; 1945 1946 /* 1947 * Some commands have a payload smaller than the device logical 1948 * block size (e.g. INQUIRY on a 4K disk). 1949 */ 1950 if (scsi_bufflen(scmd) <= sdev->sector_size) 1951 return 0; 1952 1953 /* Check if we have a 'bad_lba' information */ 1954 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1955 SCSI_SENSE_BUFFERSIZE, 1956 &bad_lba)) 1957 return 0; 1958 1959 /* 1960 * If the bad lba was reported incorrectly, we have no idea where 1961 * the error is. 1962 */ 1963 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1964 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1965 if (bad_lba < start_lba || bad_lba >= end_lba) 1966 return 0; 1967 1968 /* 1969 * resid is optional but mostly filled in. When it's unused, 1970 * its value is zero, so we assume the whole buffer transferred 1971 */ 1972 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1973 1974 /* This computation should always be done in terms of the 1975 * resolution of the device's medium. 1976 */ 1977 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1978 1979 return min(good_bytes, transferred); 1980 } 1981 1982 /** 1983 * sd_done - bottom half handler: called when the lower level 1984 * driver has completed (successfully or otherwise) a scsi command. 1985 * @SCpnt: mid-level's per command structure. 1986 * 1987 * Note: potentially run from within an ISR. Must not block. 1988 **/ 1989 static int sd_done(struct scsi_cmnd *SCpnt) 1990 { 1991 int result = SCpnt->result; 1992 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1993 unsigned int sector_size = SCpnt->device->sector_size; 1994 unsigned int resid; 1995 struct scsi_sense_hdr sshdr; 1996 struct request *req = scsi_cmd_to_rq(SCpnt); 1997 struct scsi_disk *sdkp = scsi_disk(req->rq_disk); 1998 int sense_valid = 0; 1999 int sense_deferred = 0; 2000 2001 switch (req_op(req)) { 2002 case REQ_OP_DISCARD: 2003 case REQ_OP_WRITE_ZEROES: 2004 case REQ_OP_WRITE_SAME: 2005 case REQ_OP_ZONE_RESET: 2006 case REQ_OP_ZONE_RESET_ALL: 2007 case REQ_OP_ZONE_OPEN: 2008 case REQ_OP_ZONE_CLOSE: 2009 case REQ_OP_ZONE_FINISH: 2010 if (!result) { 2011 good_bytes = blk_rq_bytes(req); 2012 scsi_set_resid(SCpnt, 0); 2013 } else { 2014 good_bytes = 0; 2015 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2016 } 2017 break; 2018 default: 2019 /* 2020 * In case of bogus fw or device, we could end up having 2021 * an unaligned partial completion. Check this here and force 2022 * alignment. 2023 */ 2024 resid = scsi_get_resid(SCpnt); 2025 if (resid & (sector_size - 1)) { 2026 sd_printk(KERN_INFO, sdkp, 2027 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2028 resid, sector_size); 2029 scsi_print_command(SCpnt); 2030 resid = min(scsi_bufflen(SCpnt), 2031 round_up(resid, sector_size)); 2032 scsi_set_resid(SCpnt, resid); 2033 } 2034 } 2035 2036 if (result) { 2037 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2038 if (sense_valid) 2039 sense_deferred = scsi_sense_is_deferred(&sshdr); 2040 } 2041 sdkp->medium_access_timed_out = 0; 2042 2043 if (!scsi_status_is_check_condition(result) && 2044 (!sense_valid || sense_deferred)) 2045 goto out; 2046 2047 switch (sshdr.sense_key) { 2048 case HARDWARE_ERROR: 2049 case MEDIUM_ERROR: 2050 good_bytes = sd_completed_bytes(SCpnt); 2051 break; 2052 case RECOVERED_ERROR: 2053 good_bytes = scsi_bufflen(SCpnt); 2054 break; 2055 case NO_SENSE: 2056 /* This indicates a false check condition, so ignore it. An 2057 * unknown amount of data was transferred so treat it as an 2058 * error. 2059 */ 2060 SCpnt->result = 0; 2061 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2062 break; 2063 case ABORTED_COMMAND: 2064 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2065 good_bytes = sd_completed_bytes(SCpnt); 2066 break; 2067 case ILLEGAL_REQUEST: 2068 switch (sshdr.asc) { 2069 case 0x10: /* DIX: Host detected corruption */ 2070 good_bytes = sd_completed_bytes(SCpnt); 2071 break; 2072 case 0x20: /* INVALID COMMAND OPCODE */ 2073 case 0x24: /* INVALID FIELD IN CDB */ 2074 switch (SCpnt->cmnd[0]) { 2075 case UNMAP: 2076 sd_config_discard(sdkp, SD_LBP_DISABLE); 2077 break; 2078 case WRITE_SAME_16: 2079 case WRITE_SAME: 2080 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2081 sd_config_discard(sdkp, SD_LBP_DISABLE); 2082 } else { 2083 sdkp->device->no_write_same = 1; 2084 sd_config_write_same(sdkp); 2085 req->rq_flags |= RQF_QUIET; 2086 } 2087 break; 2088 } 2089 } 2090 break; 2091 default: 2092 break; 2093 } 2094 2095 out: 2096 if (sd_is_zoned(sdkp)) 2097 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2098 2099 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2100 "sd_done: completed %d of %d bytes\n", 2101 good_bytes, scsi_bufflen(SCpnt))); 2102 2103 return good_bytes; 2104 } 2105 2106 /* 2107 * spinup disk - called only in sd_revalidate_disk() 2108 */ 2109 static void 2110 sd_spinup_disk(struct scsi_disk *sdkp) 2111 { 2112 unsigned char cmd[10]; 2113 unsigned long spintime_expire = 0; 2114 int retries, spintime; 2115 unsigned int the_result; 2116 struct scsi_sense_hdr sshdr; 2117 int sense_valid = 0; 2118 2119 spintime = 0; 2120 2121 /* Spin up drives, as required. Only do this at boot time */ 2122 /* Spinup needs to be done for module loads too. */ 2123 do { 2124 retries = 0; 2125 2126 do { 2127 bool media_was_present = sdkp->media_present; 2128 2129 cmd[0] = TEST_UNIT_READY; 2130 memset((void *) &cmd[1], 0, 9); 2131 2132 the_result = scsi_execute_req(sdkp->device, cmd, 2133 DMA_NONE, NULL, 0, 2134 &sshdr, SD_TIMEOUT, 2135 sdkp->max_retries, NULL); 2136 2137 /* 2138 * If the drive has indicated to us that it 2139 * doesn't have any media in it, don't bother 2140 * with any more polling. 2141 */ 2142 if (media_not_present(sdkp, &sshdr)) { 2143 if (media_was_present) 2144 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); 2145 return; 2146 } 2147 2148 if (the_result) 2149 sense_valid = scsi_sense_valid(&sshdr); 2150 retries++; 2151 } while (retries < 3 && 2152 (!scsi_status_is_good(the_result) || 2153 (scsi_status_is_check_condition(the_result) && 2154 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2155 2156 if (!scsi_status_is_check_condition(the_result)) { 2157 /* no sense, TUR either succeeded or failed 2158 * with a status error */ 2159 if(!spintime && !scsi_status_is_good(the_result)) { 2160 sd_print_result(sdkp, "Test Unit Ready failed", 2161 the_result); 2162 } 2163 break; 2164 } 2165 2166 /* 2167 * The device does not want the automatic start to be issued. 2168 */ 2169 if (sdkp->device->no_start_on_add) 2170 break; 2171 2172 if (sense_valid && sshdr.sense_key == NOT_READY) { 2173 if (sshdr.asc == 4 && sshdr.ascq == 3) 2174 break; /* manual intervention required */ 2175 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2176 break; /* standby */ 2177 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2178 break; /* unavailable */ 2179 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2180 break; /* sanitize in progress */ 2181 /* 2182 * Issue command to spin up drive when not ready 2183 */ 2184 if (!spintime) { 2185 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2186 cmd[0] = START_STOP; 2187 cmd[1] = 1; /* Return immediately */ 2188 memset((void *) &cmd[2], 0, 8); 2189 cmd[4] = 1; /* Start spin cycle */ 2190 if (sdkp->device->start_stop_pwr_cond) 2191 cmd[4] |= 1 << 4; 2192 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2193 NULL, 0, &sshdr, 2194 SD_TIMEOUT, sdkp->max_retries, 2195 NULL); 2196 spintime_expire = jiffies + 100 * HZ; 2197 spintime = 1; 2198 } 2199 /* Wait 1 second for next try */ 2200 msleep(1000); 2201 printk(KERN_CONT "."); 2202 2203 /* 2204 * Wait for USB flash devices with slow firmware. 2205 * Yes, this sense key/ASC combination shouldn't 2206 * occur here. It's characteristic of these devices. 2207 */ 2208 } else if (sense_valid && 2209 sshdr.sense_key == UNIT_ATTENTION && 2210 sshdr.asc == 0x28) { 2211 if (!spintime) { 2212 spintime_expire = jiffies + 5 * HZ; 2213 spintime = 1; 2214 } 2215 /* Wait 1 second for next try */ 2216 msleep(1000); 2217 } else { 2218 /* we don't understand the sense code, so it's 2219 * probably pointless to loop */ 2220 if(!spintime) { 2221 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2222 sd_print_sense_hdr(sdkp, &sshdr); 2223 } 2224 break; 2225 } 2226 2227 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2228 2229 if (spintime) { 2230 if (scsi_status_is_good(the_result)) 2231 printk(KERN_CONT "ready\n"); 2232 else 2233 printk(KERN_CONT "not responding...\n"); 2234 } 2235 } 2236 2237 /* 2238 * Determine whether disk supports Data Integrity Field. 2239 */ 2240 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2241 { 2242 struct scsi_device *sdp = sdkp->device; 2243 u8 type; 2244 int ret = 0; 2245 2246 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2247 sdkp->protection_type = 0; 2248 return ret; 2249 } 2250 2251 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2252 2253 if (type > T10_PI_TYPE3_PROTECTION) 2254 ret = -ENODEV; 2255 else if (scsi_host_dif_capable(sdp->host, type)) 2256 ret = 1; 2257 2258 if (sdkp->first_scan || type != sdkp->protection_type) 2259 switch (ret) { 2260 case -ENODEV: 2261 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2262 " protection type %u. Disabling disk!\n", 2263 type); 2264 break; 2265 case 1: 2266 sd_printk(KERN_NOTICE, sdkp, 2267 "Enabling DIF Type %u protection\n", type); 2268 break; 2269 case 0: 2270 sd_printk(KERN_NOTICE, sdkp, 2271 "Disabling DIF Type %u protection\n", type); 2272 break; 2273 } 2274 2275 sdkp->protection_type = type; 2276 2277 return ret; 2278 } 2279 2280 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2281 struct scsi_sense_hdr *sshdr, int sense_valid, 2282 int the_result) 2283 { 2284 if (sense_valid) 2285 sd_print_sense_hdr(sdkp, sshdr); 2286 else 2287 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2288 2289 /* 2290 * Set dirty bit for removable devices if not ready - 2291 * sometimes drives will not report this properly. 2292 */ 2293 if (sdp->removable && 2294 sense_valid && sshdr->sense_key == NOT_READY) 2295 set_media_not_present(sdkp); 2296 2297 /* 2298 * We used to set media_present to 0 here to indicate no media 2299 * in the drive, but some drives fail read capacity even with 2300 * media present, so we can't do that. 2301 */ 2302 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2303 } 2304 2305 #define RC16_LEN 32 2306 #if RC16_LEN > SD_BUF_SIZE 2307 #error RC16_LEN must not be more than SD_BUF_SIZE 2308 #endif 2309 2310 #define READ_CAPACITY_RETRIES_ON_RESET 10 2311 2312 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2313 unsigned char *buffer) 2314 { 2315 unsigned char cmd[16]; 2316 struct scsi_sense_hdr sshdr; 2317 int sense_valid = 0; 2318 int the_result; 2319 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2320 unsigned int alignment; 2321 unsigned long long lba; 2322 unsigned sector_size; 2323 2324 if (sdp->no_read_capacity_16) 2325 return -EINVAL; 2326 2327 do { 2328 memset(cmd, 0, 16); 2329 cmd[0] = SERVICE_ACTION_IN_16; 2330 cmd[1] = SAI_READ_CAPACITY_16; 2331 cmd[13] = RC16_LEN; 2332 memset(buffer, 0, RC16_LEN); 2333 2334 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2335 buffer, RC16_LEN, &sshdr, 2336 SD_TIMEOUT, sdkp->max_retries, NULL); 2337 2338 if (media_not_present(sdkp, &sshdr)) 2339 return -ENODEV; 2340 2341 if (the_result > 0) { 2342 sense_valid = scsi_sense_valid(&sshdr); 2343 if (sense_valid && 2344 sshdr.sense_key == ILLEGAL_REQUEST && 2345 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2346 sshdr.ascq == 0x00) 2347 /* Invalid Command Operation Code or 2348 * Invalid Field in CDB, just retry 2349 * silently with RC10 */ 2350 return -EINVAL; 2351 if (sense_valid && 2352 sshdr.sense_key == UNIT_ATTENTION && 2353 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2354 /* Device reset might occur several times, 2355 * give it one more chance */ 2356 if (--reset_retries > 0) 2357 continue; 2358 } 2359 retries--; 2360 2361 } while (the_result && retries); 2362 2363 if (the_result) { 2364 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2365 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2366 return -EINVAL; 2367 } 2368 2369 sector_size = get_unaligned_be32(&buffer[8]); 2370 lba = get_unaligned_be64(&buffer[0]); 2371 2372 if (sd_read_protection_type(sdkp, buffer) < 0) { 2373 sdkp->capacity = 0; 2374 return -ENODEV; 2375 } 2376 2377 /* Logical blocks per physical block exponent */ 2378 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2379 2380 /* RC basis */ 2381 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2382 2383 /* Lowest aligned logical block */ 2384 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2385 blk_queue_alignment_offset(sdp->request_queue, alignment); 2386 if (alignment && sdkp->first_scan) 2387 sd_printk(KERN_NOTICE, sdkp, 2388 "physical block alignment offset: %u\n", alignment); 2389 2390 if (buffer[14] & 0x80) { /* LBPME */ 2391 sdkp->lbpme = 1; 2392 2393 if (buffer[14] & 0x40) /* LBPRZ */ 2394 sdkp->lbprz = 1; 2395 2396 sd_config_discard(sdkp, SD_LBP_WS16); 2397 } 2398 2399 sdkp->capacity = lba + 1; 2400 return sector_size; 2401 } 2402 2403 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2404 unsigned char *buffer) 2405 { 2406 unsigned char cmd[16]; 2407 struct scsi_sense_hdr sshdr; 2408 int sense_valid = 0; 2409 int the_result; 2410 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2411 sector_t lba; 2412 unsigned sector_size; 2413 2414 do { 2415 cmd[0] = READ_CAPACITY; 2416 memset(&cmd[1], 0, 9); 2417 memset(buffer, 0, 8); 2418 2419 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2420 buffer, 8, &sshdr, 2421 SD_TIMEOUT, sdkp->max_retries, NULL); 2422 2423 if (media_not_present(sdkp, &sshdr)) 2424 return -ENODEV; 2425 2426 if (the_result > 0) { 2427 sense_valid = scsi_sense_valid(&sshdr); 2428 if (sense_valid && 2429 sshdr.sense_key == UNIT_ATTENTION && 2430 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2431 /* Device reset might occur several times, 2432 * give it one more chance */ 2433 if (--reset_retries > 0) 2434 continue; 2435 } 2436 retries--; 2437 2438 } while (the_result && retries); 2439 2440 if (the_result) { 2441 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2442 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2443 return -EINVAL; 2444 } 2445 2446 sector_size = get_unaligned_be32(&buffer[4]); 2447 lba = get_unaligned_be32(&buffer[0]); 2448 2449 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2450 /* Some buggy (usb cardreader) devices return an lba of 2451 0xffffffff when the want to report a size of 0 (with 2452 which they really mean no media is present) */ 2453 sdkp->capacity = 0; 2454 sdkp->physical_block_size = sector_size; 2455 return sector_size; 2456 } 2457 2458 sdkp->capacity = lba + 1; 2459 sdkp->physical_block_size = sector_size; 2460 return sector_size; 2461 } 2462 2463 static int sd_try_rc16_first(struct scsi_device *sdp) 2464 { 2465 if (sdp->host->max_cmd_len < 16) 2466 return 0; 2467 if (sdp->try_rc_10_first) 2468 return 0; 2469 if (sdp->scsi_level > SCSI_SPC_2) 2470 return 1; 2471 if (scsi_device_protection(sdp)) 2472 return 1; 2473 return 0; 2474 } 2475 2476 /* 2477 * read disk capacity 2478 */ 2479 static void 2480 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2481 { 2482 int sector_size; 2483 struct scsi_device *sdp = sdkp->device; 2484 2485 if (sd_try_rc16_first(sdp)) { 2486 sector_size = read_capacity_16(sdkp, sdp, buffer); 2487 if (sector_size == -EOVERFLOW) 2488 goto got_data; 2489 if (sector_size == -ENODEV) 2490 return; 2491 if (sector_size < 0) 2492 sector_size = read_capacity_10(sdkp, sdp, buffer); 2493 if (sector_size < 0) 2494 return; 2495 } else { 2496 sector_size = read_capacity_10(sdkp, sdp, buffer); 2497 if (sector_size == -EOVERFLOW) 2498 goto got_data; 2499 if (sector_size < 0) 2500 return; 2501 if ((sizeof(sdkp->capacity) > 4) && 2502 (sdkp->capacity > 0xffffffffULL)) { 2503 int old_sector_size = sector_size; 2504 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2505 "Trying to use READ CAPACITY(16).\n"); 2506 sector_size = read_capacity_16(sdkp, sdp, buffer); 2507 if (sector_size < 0) { 2508 sd_printk(KERN_NOTICE, sdkp, 2509 "Using 0xffffffff as device size\n"); 2510 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2511 sector_size = old_sector_size; 2512 goto got_data; 2513 } 2514 /* Remember that READ CAPACITY(16) succeeded */ 2515 sdp->try_rc_10_first = 0; 2516 } 2517 } 2518 2519 /* Some devices are known to return the total number of blocks, 2520 * not the highest block number. Some devices have versions 2521 * which do this and others which do not. Some devices we might 2522 * suspect of doing this but we don't know for certain. 2523 * 2524 * If we know the reported capacity is wrong, decrement it. If 2525 * we can only guess, then assume the number of blocks is even 2526 * (usually true but not always) and err on the side of lowering 2527 * the capacity. 2528 */ 2529 if (sdp->fix_capacity || 2530 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2531 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2532 "from its reported value: %llu\n", 2533 (unsigned long long) sdkp->capacity); 2534 --sdkp->capacity; 2535 } 2536 2537 got_data: 2538 if (sector_size == 0) { 2539 sector_size = 512; 2540 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2541 "assuming 512.\n"); 2542 } 2543 2544 if (sector_size != 512 && 2545 sector_size != 1024 && 2546 sector_size != 2048 && 2547 sector_size != 4096) { 2548 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2549 sector_size); 2550 /* 2551 * The user might want to re-format the drive with 2552 * a supported sectorsize. Once this happens, it 2553 * would be relatively trivial to set the thing up. 2554 * For this reason, we leave the thing in the table. 2555 */ 2556 sdkp->capacity = 0; 2557 /* 2558 * set a bogus sector size so the normal read/write 2559 * logic in the block layer will eventually refuse any 2560 * request on this device without tripping over power 2561 * of two sector size assumptions 2562 */ 2563 sector_size = 512; 2564 } 2565 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2566 blk_queue_physical_block_size(sdp->request_queue, 2567 sdkp->physical_block_size); 2568 sdkp->device->sector_size = sector_size; 2569 2570 if (sdkp->capacity > 0xffffffff) 2571 sdp->use_16_for_rw = 1; 2572 2573 } 2574 2575 /* 2576 * Print disk capacity 2577 */ 2578 static void 2579 sd_print_capacity(struct scsi_disk *sdkp, 2580 sector_t old_capacity) 2581 { 2582 int sector_size = sdkp->device->sector_size; 2583 char cap_str_2[10], cap_str_10[10]; 2584 2585 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2586 return; 2587 2588 string_get_size(sdkp->capacity, sector_size, 2589 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2590 string_get_size(sdkp->capacity, sector_size, 2591 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2592 2593 sd_printk(KERN_NOTICE, sdkp, 2594 "%llu %d-byte logical blocks: (%s/%s)\n", 2595 (unsigned long long)sdkp->capacity, 2596 sector_size, cap_str_10, cap_str_2); 2597 2598 if (sdkp->physical_block_size != sector_size) 2599 sd_printk(KERN_NOTICE, sdkp, 2600 "%u-byte physical blocks\n", 2601 sdkp->physical_block_size); 2602 } 2603 2604 /* called with buffer of length 512 */ 2605 static inline int 2606 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2607 unsigned char *buffer, int len, struct scsi_mode_data *data, 2608 struct scsi_sense_hdr *sshdr) 2609 { 2610 /* 2611 * If we must use MODE SENSE(10), make sure that the buffer length 2612 * is at least 8 bytes so that the mode sense header fits. 2613 */ 2614 if (sdkp->device->use_10_for_ms && len < 8) 2615 len = 8; 2616 2617 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2618 SD_TIMEOUT, sdkp->max_retries, data, 2619 sshdr); 2620 } 2621 2622 /* 2623 * read write protect setting, if possible - called only in sd_revalidate_disk() 2624 * called with buffer of length SD_BUF_SIZE 2625 */ 2626 static void 2627 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2628 { 2629 int res; 2630 struct scsi_device *sdp = sdkp->device; 2631 struct scsi_mode_data data; 2632 int old_wp = sdkp->write_prot; 2633 2634 set_disk_ro(sdkp->disk, 0); 2635 if (sdp->skip_ms_page_3f) { 2636 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2637 return; 2638 } 2639 2640 if (sdp->use_192_bytes_for_3f) { 2641 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2642 } else { 2643 /* 2644 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2645 * We have to start carefully: some devices hang if we ask 2646 * for more than is available. 2647 */ 2648 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2649 2650 /* 2651 * Second attempt: ask for page 0 When only page 0 is 2652 * implemented, a request for page 3F may return Sense Key 2653 * 5: Illegal Request, Sense Code 24: Invalid field in 2654 * CDB. 2655 */ 2656 if (res < 0) 2657 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2658 2659 /* 2660 * Third attempt: ask 255 bytes, as we did earlier. 2661 */ 2662 if (res < 0) 2663 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2664 &data, NULL); 2665 } 2666 2667 if (res < 0) { 2668 sd_first_printk(KERN_WARNING, sdkp, 2669 "Test WP failed, assume Write Enabled\n"); 2670 } else { 2671 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2672 set_disk_ro(sdkp->disk, sdkp->write_prot); 2673 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2674 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2675 sdkp->write_prot ? "on" : "off"); 2676 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2677 } 2678 } 2679 } 2680 2681 /* 2682 * sd_read_cache_type - called only from sd_revalidate_disk() 2683 * called with buffer of length SD_BUF_SIZE 2684 */ 2685 static void 2686 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2687 { 2688 int len = 0, res; 2689 struct scsi_device *sdp = sdkp->device; 2690 2691 int dbd; 2692 int modepage; 2693 int first_len; 2694 struct scsi_mode_data data; 2695 struct scsi_sense_hdr sshdr; 2696 int old_wce = sdkp->WCE; 2697 int old_rcd = sdkp->RCD; 2698 int old_dpofua = sdkp->DPOFUA; 2699 2700 2701 if (sdkp->cache_override) 2702 return; 2703 2704 first_len = 4; 2705 if (sdp->skip_ms_page_8) { 2706 if (sdp->type == TYPE_RBC) 2707 goto defaults; 2708 else { 2709 if (sdp->skip_ms_page_3f) 2710 goto defaults; 2711 modepage = 0x3F; 2712 if (sdp->use_192_bytes_for_3f) 2713 first_len = 192; 2714 dbd = 0; 2715 } 2716 } else if (sdp->type == TYPE_RBC) { 2717 modepage = 6; 2718 dbd = 8; 2719 } else { 2720 modepage = 8; 2721 dbd = 0; 2722 } 2723 2724 /* cautiously ask */ 2725 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2726 &data, &sshdr); 2727 2728 if (res < 0) 2729 goto bad_sense; 2730 2731 if (!data.header_length) { 2732 modepage = 6; 2733 first_len = 0; 2734 sd_first_printk(KERN_ERR, sdkp, 2735 "Missing header in MODE_SENSE response\n"); 2736 } 2737 2738 /* that went OK, now ask for the proper length */ 2739 len = data.length; 2740 2741 /* 2742 * We're only interested in the first three bytes, actually. 2743 * But the data cache page is defined for the first 20. 2744 */ 2745 if (len < 3) 2746 goto bad_sense; 2747 else if (len > SD_BUF_SIZE) { 2748 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2749 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2750 len = SD_BUF_SIZE; 2751 } 2752 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2753 len = 192; 2754 2755 /* Get the data */ 2756 if (len > first_len) 2757 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2758 &data, &sshdr); 2759 2760 if (!res) { 2761 int offset = data.header_length + data.block_descriptor_length; 2762 2763 while (offset < len) { 2764 u8 page_code = buffer[offset] & 0x3F; 2765 u8 spf = buffer[offset] & 0x40; 2766 2767 if (page_code == 8 || page_code == 6) { 2768 /* We're interested only in the first 3 bytes. 2769 */ 2770 if (len - offset <= 2) { 2771 sd_first_printk(KERN_ERR, sdkp, 2772 "Incomplete mode parameter " 2773 "data\n"); 2774 goto defaults; 2775 } else { 2776 modepage = page_code; 2777 goto Page_found; 2778 } 2779 } else { 2780 /* Go to the next page */ 2781 if (spf && len - offset > 3) 2782 offset += 4 + (buffer[offset+2] << 8) + 2783 buffer[offset+3]; 2784 else if (!spf && len - offset > 1) 2785 offset += 2 + buffer[offset+1]; 2786 else { 2787 sd_first_printk(KERN_ERR, sdkp, 2788 "Incomplete mode " 2789 "parameter data\n"); 2790 goto defaults; 2791 } 2792 } 2793 } 2794 2795 sd_first_printk(KERN_WARNING, sdkp, 2796 "No Caching mode page found\n"); 2797 goto defaults; 2798 2799 Page_found: 2800 if (modepage == 8) { 2801 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2802 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2803 } else { 2804 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2805 sdkp->RCD = 0; 2806 } 2807 2808 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2809 if (sdp->broken_fua) { 2810 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2811 sdkp->DPOFUA = 0; 2812 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2813 !sdkp->device->use_16_for_rw) { 2814 sd_first_printk(KERN_NOTICE, sdkp, 2815 "Uses READ/WRITE(6), disabling FUA\n"); 2816 sdkp->DPOFUA = 0; 2817 } 2818 2819 /* No cache flush allowed for write protected devices */ 2820 if (sdkp->WCE && sdkp->write_prot) 2821 sdkp->WCE = 0; 2822 2823 if (sdkp->first_scan || old_wce != sdkp->WCE || 2824 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2825 sd_printk(KERN_NOTICE, sdkp, 2826 "Write cache: %s, read cache: %s, %s\n", 2827 sdkp->WCE ? "enabled" : "disabled", 2828 sdkp->RCD ? "disabled" : "enabled", 2829 sdkp->DPOFUA ? "supports DPO and FUA" 2830 : "doesn't support DPO or FUA"); 2831 2832 return; 2833 } 2834 2835 bad_sense: 2836 if (scsi_sense_valid(&sshdr) && 2837 sshdr.sense_key == ILLEGAL_REQUEST && 2838 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2839 /* Invalid field in CDB */ 2840 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2841 else 2842 sd_first_printk(KERN_ERR, sdkp, 2843 "Asking for cache data failed\n"); 2844 2845 defaults: 2846 if (sdp->wce_default_on) { 2847 sd_first_printk(KERN_NOTICE, sdkp, 2848 "Assuming drive cache: write back\n"); 2849 sdkp->WCE = 1; 2850 } else { 2851 sd_first_printk(KERN_WARNING, sdkp, 2852 "Assuming drive cache: write through\n"); 2853 sdkp->WCE = 0; 2854 } 2855 sdkp->RCD = 0; 2856 sdkp->DPOFUA = 0; 2857 } 2858 2859 /* 2860 * The ATO bit indicates whether the DIF application tag is available 2861 * for use by the operating system. 2862 */ 2863 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2864 { 2865 int res, offset; 2866 struct scsi_device *sdp = sdkp->device; 2867 struct scsi_mode_data data; 2868 struct scsi_sense_hdr sshdr; 2869 2870 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2871 return; 2872 2873 if (sdkp->protection_type == 0) 2874 return; 2875 2876 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2877 sdkp->max_retries, &data, &sshdr); 2878 2879 if (res < 0 || !data.header_length || 2880 data.length < 6) { 2881 sd_first_printk(KERN_WARNING, sdkp, 2882 "getting Control mode page failed, assume no ATO\n"); 2883 2884 if (scsi_sense_valid(&sshdr)) 2885 sd_print_sense_hdr(sdkp, &sshdr); 2886 2887 return; 2888 } 2889 2890 offset = data.header_length + data.block_descriptor_length; 2891 2892 if ((buffer[offset] & 0x3f) != 0x0a) { 2893 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2894 return; 2895 } 2896 2897 if ((buffer[offset + 5] & 0x80) == 0) 2898 return; 2899 2900 sdkp->ATO = 1; 2901 2902 return; 2903 } 2904 2905 /** 2906 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2907 * @sdkp: disk to query 2908 */ 2909 static void sd_read_block_limits(struct scsi_disk *sdkp) 2910 { 2911 unsigned int sector_sz = sdkp->device->sector_size; 2912 const int vpd_len = 64; 2913 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2914 2915 if (!buffer || 2916 /* Block Limits VPD */ 2917 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2918 goto out; 2919 2920 blk_queue_io_min(sdkp->disk->queue, 2921 get_unaligned_be16(&buffer[6]) * sector_sz); 2922 2923 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2924 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2925 2926 if (buffer[3] == 0x3c) { 2927 unsigned int lba_count, desc_count; 2928 2929 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2930 2931 if (!sdkp->lbpme) 2932 goto out; 2933 2934 lba_count = get_unaligned_be32(&buffer[20]); 2935 desc_count = get_unaligned_be32(&buffer[24]); 2936 2937 if (lba_count && desc_count) 2938 sdkp->max_unmap_blocks = lba_count; 2939 2940 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2941 2942 if (buffer[32] & 0x80) 2943 sdkp->unmap_alignment = 2944 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2945 2946 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2947 2948 if (sdkp->max_unmap_blocks) 2949 sd_config_discard(sdkp, SD_LBP_UNMAP); 2950 else 2951 sd_config_discard(sdkp, SD_LBP_WS16); 2952 2953 } else { /* LBP VPD page tells us what to use */ 2954 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2955 sd_config_discard(sdkp, SD_LBP_UNMAP); 2956 else if (sdkp->lbpws) 2957 sd_config_discard(sdkp, SD_LBP_WS16); 2958 else if (sdkp->lbpws10) 2959 sd_config_discard(sdkp, SD_LBP_WS10); 2960 else 2961 sd_config_discard(sdkp, SD_LBP_DISABLE); 2962 } 2963 } 2964 2965 out: 2966 kfree(buffer); 2967 } 2968 2969 /** 2970 * sd_read_block_characteristics - Query block dev. characteristics 2971 * @sdkp: disk to query 2972 */ 2973 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2974 { 2975 struct request_queue *q = sdkp->disk->queue; 2976 unsigned char *buffer; 2977 u16 rot; 2978 const int vpd_len = 64; 2979 2980 buffer = kmalloc(vpd_len, GFP_KERNEL); 2981 2982 if (!buffer || 2983 /* Block Device Characteristics VPD */ 2984 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2985 goto out; 2986 2987 rot = get_unaligned_be16(&buffer[4]); 2988 2989 if (rot == 1) { 2990 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2991 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2992 } 2993 2994 if (sdkp->device->type == TYPE_ZBC) { 2995 /* Host-managed */ 2996 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM); 2997 } else { 2998 sdkp->zoned = (buffer[8] >> 4) & 3; 2999 if (sdkp->zoned == 1) { 3000 /* Host-aware */ 3001 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA); 3002 } else { 3003 /* Regular disk or drive managed disk */ 3004 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3005 } 3006 } 3007 3008 if (!sdkp->first_scan) 3009 goto out; 3010 3011 if (blk_queue_is_zoned(q)) { 3012 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3013 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3014 } else { 3015 if (sdkp->zoned == 1) 3016 sd_printk(KERN_NOTICE, sdkp, 3017 "Host-aware SMR disk used as regular disk\n"); 3018 else if (sdkp->zoned == 2) 3019 sd_printk(KERN_NOTICE, sdkp, 3020 "Drive-managed SMR disk\n"); 3021 } 3022 3023 out: 3024 kfree(buffer); 3025 } 3026 3027 /** 3028 * sd_read_block_provisioning - Query provisioning VPD page 3029 * @sdkp: disk to query 3030 */ 3031 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3032 { 3033 unsigned char *buffer; 3034 const int vpd_len = 8; 3035 3036 if (sdkp->lbpme == 0) 3037 return; 3038 3039 buffer = kmalloc(vpd_len, GFP_KERNEL); 3040 3041 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 3042 goto out; 3043 3044 sdkp->lbpvpd = 1; 3045 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 3046 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 3047 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 3048 3049 out: 3050 kfree(buffer); 3051 } 3052 3053 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3054 { 3055 struct scsi_device *sdev = sdkp->device; 3056 3057 if (sdev->host->no_write_same) { 3058 sdev->no_write_same = 1; 3059 3060 return; 3061 } 3062 3063 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3064 /* too large values might cause issues with arcmsr */ 3065 int vpd_buf_len = 64; 3066 3067 sdev->no_report_opcodes = 1; 3068 3069 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3070 * CODES is unsupported and the device has an ATA 3071 * Information VPD page (SAT). 3072 */ 3073 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3074 sdev->no_write_same = 1; 3075 } 3076 3077 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3078 sdkp->ws16 = 1; 3079 3080 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3081 sdkp->ws10 = 1; 3082 } 3083 3084 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3085 { 3086 struct scsi_device *sdev = sdkp->device; 3087 3088 if (!sdev->security_supported) 3089 return; 3090 3091 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3092 SECURITY_PROTOCOL_IN) == 1 && 3093 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3094 SECURITY_PROTOCOL_OUT) == 1) 3095 sdkp->security = 1; 3096 } 3097 3098 /* 3099 * Determine the device's preferred I/O size for reads and writes 3100 * unless the reported value is unreasonably small, large, not a 3101 * multiple of the physical block size, or simply garbage. 3102 */ 3103 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3104 unsigned int dev_max) 3105 { 3106 struct scsi_device *sdp = sdkp->device; 3107 unsigned int opt_xfer_bytes = 3108 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3109 3110 if (sdkp->opt_xfer_blocks == 0) 3111 return false; 3112 3113 if (sdkp->opt_xfer_blocks > dev_max) { 3114 sd_first_printk(KERN_WARNING, sdkp, 3115 "Optimal transfer size %u logical blocks " \ 3116 "> dev_max (%u logical blocks)\n", 3117 sdkp->opt_xfer_blocks, dev_max); 3118 return false; 3119 } 3120 3121 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3122 sd_first_printk(KERN_WARNING, sdkp, 3123 "Optimal transfer size %u logical blocks " \ 3124 "> sd driver limit (%u logical blocks)\n", 3125 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3126 return false; 3127 } 3128 3129 if (opt_xfer_bytes < PAGE_SIZE) { 3130 sd_first_printk(KERN_WARNING, sdkp, 3131 "Optimal transfer size %u bytes < " \ 3132 "PAGE_SIZE (%u bytes)\n", 3133 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3134 return false; 3135 } 3136 3137 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3138 sd_first_printk(KERN_WARNING, sdkp, 3139 "Optimal transfer size %u bytes not a " \ 3140 "multiple of physical block size (%u bytes)\n", 3141 opt_xfer_bytes, sdkp->physical_block_size); 3142 return false; 3143 } 3144 3145 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3146 opt_xfer_bytes); 3147 return true; 3148 } 3149 3150 /** 3151 * sd_revalidate_disk - called the first time a new disk is seen, 3152 * performs disk spin up, read_capacity, etc. 3153 * @disk: struct gendisk we care about 3154 **/ 3155 static int sd_revalidate_disk(struct gendisk *disk) 3156 { 3157 struct scsi_disk *sdkp = scsi_disk(disk); 3158 struct scsi_device *sdp = sdkp->device; 3159 struct request_queue *q = sdkp->disk->queue; 3160 sector_t old_capacity = sdkp->capacity; 3161 unsigned char *buffer; 3162 unsigned int dev_max, rw_max; 3163 3164 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3165 "sd_revalidate_disk\n")); 3166 3167 /* 3168 * If the device is offline, don't try and read capacity or any 3169 * of the other niceties. 3170 */ 3171 if (!scsi_device_online(sdp)) 3172 goto out; 3173 3174 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3175 if (!buffer) { 3176 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3177 "allocation failure.\n"); 3178 goto out; 3179 } 3180 3181 sd_spinup_disk(sdkp); 3182 3183 /* 3184 * Without media there is no reason to ask; moreover, some devices 3185 * react badly if we do. 3186 */ 3187 if (sdkp->media_present) { 3188 sd_read_capacity(sdkp, buffer); 3189 3190 /* 3191 * set the default to rotational. All non-rotational devices 3192 * support the block characteristics VPD page, which will 3193 * cause this to be updated correctly and any device which 3194 * doesn't support it should be treated as rotational. 3195 */ 3196 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3197 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3198 3199 if (scsi_device_supports_vpd(sdp)) { 3200 sd_read_block_provisioning(sdkp); 3201 sd_read_block_limits(sdkp); 3202 sd_read_block_characteristics(sdkp); 3203 sd_zbc_read_zones(sdkp, buffer); 3204 } 3205 3206 sd_print_capacity(sdkp, old_capacity); 3207 3208 sd_read_write_protect_flag(sdkp, buffer); 3209 sd_read_cache_type(sdkp, buffer); 3210 sd_read_app_tag_own(sdkp, buffer); 3211 sd_read_write_same(sdkp, buffer); 3212 sd_read_security(sdkp, buffer); 3213 } 3214 3215 /* 3216 * We now have all cache related info, determine how we deal 3217 * with flush requests. 3218 */ 3219 sd_set_flush_flag(sdkp); 3220 3221 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3222 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3223 3224 /* Some devices report a maximum block count for READ/WRITE requests. */ 3225 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3226 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3227 3228 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3229 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3230 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3231 } else { 3232 q->limits.io_opt = 0; 3233 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3234 (sector_t)BLK_DEF_MAX_SECTORS); 3235 } 3236 3237 /* Do not exceed controller limit */ 3238 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3239 3240 /* 3241 * Only update max_sectors if previously unset or if the current value 3242 * exceeds the capabilities of the hardware. 3243 */ 3244 if (sdkp->first_scan || 3245 q->limits.max_sectors > q->limits.max_dev_sectors || 3246 q->limits.max_sectors > q->limits.max_hw_sectors) 3247 q->limits.max_sectors = rw_max; 3248 3249 sdkp->first_scan = 0; 3250 3251 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3252 sd_config_write_same(sdkp); 3253 kfree(buffer); 3254 3255 /* 3256 * For a zoned drive, revalidating the zones can be done only once 3257 * the gendisk capacity is set. So if this fails, set back the gendisk 3258 * capacity to 0. 3259 */ 3260 if (sd_zbc_revalidate_zones(sdkp)) 3261 set_capacity_and_notify(disk, 0); 3262 3263 out: 3264 return 0; 3265 } 3266 3267 /** 3268 * sd_unlock_native_capacity - unlock native capacity 3269 * @disk: struct gendisk to set capacity for 3270 * 3271 * Block layer calls this function if it detects that partitions 3272 * on @disk reach beyond the end of the device. If the SCSI host 3273 * implements ->unlock_native_capacity() method, it's invoked to 3274 * give it a chance to adjust the device capacity. 3275 * 3276 * CONTEXT: 3277 * Defined by block layer. Might sleep. 3278 */ 3279 static void sd_unlock_native_capacity(struct gendisk *disk) 3280 { 3281 struct scsi_device *sdev = scsi_disk(disk)->device; 3282 3283 if (sdev->host->hostt->unlock_native_capacity) 3284 sdev->host->hostt->unlock_native_capacity(sdev); 3285 } 3286 3287 /** 3288 * sd_format_disk_name - format disk name 3289 * @prefix: name prefix - ie. "sd" for SCSI disks 3290 * @index: index of the disk to format name for 3291 * @buf: output buffer 3292 * @buflen: length of the output buffer 3293 * 3294 * SCSI disk names starts at sda. The 26th device is sdz and the 3295 * 27th is sdaa. The last one for two lettered suffix is sdzz 3296 * which is followed by sdaaa. 3297 * 3298 * This is basically 26 base counting with one extra 'nil' entry 3299 * at the beginning from the second digit on and can be 3300 * determined using similar method as 26 base conversion with the 3301 * index shifted -1 after each digit is computed. 3302 * 3303 * CONTEXT: 3304 * Don't care. 3305 * 3306 * RETURNS: 3307 * 0 on success, -errno on failure. 3308 */ 3309 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3310 { 3311 const int base = 'z' - 'a' + 1; 3312 char *begin = buf + strlen(prefix); 3313 char *end = buf + buflen; 3314 char *p; 3315 int unit; 3316 3317 p = end - 1; 3318 *p = '\0'; 3319 unit = base; 3320 do { 3321 if (p == begin) 3322 return -EINVAL; 3323 *--p = 'a' + (index % unit); 3324 index = (index / unit) - 1; 3325 } while (index >= 0); 3326 3327 memmove(begin, p, end - p); 3328 memcpy(buf, prefix, strlen(prefix)); 3329 3330 return 0; 3331 } 3332 3333 /** 3334 * sd_probe - called during driver initialization and whenever a 3335 * new scsi device is attached to the system. It is called once 3336 * for each scsi device (not just disks) present. 3337 * @dev: pointer to device object 3338 * 3339 * Returns 0 if successful (or not interested in this scsi device 3340 * (e.g. scanner)); 1 when there is an error. 3341 * 3342 * Note: this function is invoked from the scsi mid-level. 3343 * This function sets up the mapping between a given 3344 * <host,channel,id,lun> (found in sdp) and new device name 3345 * (e.g. /dev/sda). More precisely it is the block device major 3346 * and minor number that is chosen here. 3347 * 3348 * Assume sd_probe is not re-entrant (for time being) 3349 * Also think about sd_probe() and sd_remove() running coincidentally. 3350 **/ 3351 static int sd_probe(struct device *dev) 3352 { 3353 struct scsi_device *sdp = to_scsi_device(dev); 3354 struct scsi_disk *sdkp; 3355 struct gendisk *gd; 3356 int index; 3357 int error; 3358 3359 scsi_autopm_get_device(sdp); 3360 error = -ENODEV; 3361 if (sdp->type != TYPE_DISK && 3362 sdp->type != TYPE_ZBC && 3363 sdp->type != TYPE_MOD && 3364 sdp->type != TYPE_RBC) 3365 goto out; 3366 3367 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3368 sdev_printk(KERN_WARNING, sdp, 3369 "Unsupported ZBC host-managed device.\n"); 3370 goto out; 3371 } 3372 3373 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3374 "sd_probe\n")); 3375 3376 error = -ENOMEM; 3377 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3378 if (!sdkp) 3379 goto out; 3380 3381 gd = __alloc_disk_node(sdp->request_queue, NUMA_NO_NODE, 3382 &sd_bio_compl_lkclass); 3383 if (!gd) 3384 goto out_free; 3385 3386 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3387 if (index < 0) { 3388 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3389 goto out_put; 3390 } 3391 3392 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3393 if (error) { 3394 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3395 goto out_free_index; 3396 } 3397 3398 sdkp->device = sdp; 3399 sdkp->driver = &sd_template; 3400 sdkp->disk = gd; 3401 sdkp->index = index; 3402 sdkp->max_retries = SD_MAX_RETRIES; 3403 atomic_set(&sdkp->openers, 0); 3404 atomic_set(&sdkp->device->ioerr_cnt, 0); 3405 3406 if (!sdp->request_queue->rq_timeout) { 3407 if (sdp->type != TYPE_MOD) 3408 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3409 else 3410 blk_queue_rq_timeout(sdp->request_queue, 3411 SD_MOD_TIMEOUT); 3412 } 3413 3414 device_initialize(&sdkp->dev); 3415 sdkp->dev.parent = get_device(dev); 3416 sdkp->dev.class = &sd_disk_class; 3417 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3418 3419 error = device_add(&sdkp->dev); 3420 if (error) { 3421 put_device(&sdkp->dev); 3422 goto out; 3423 } 3424 3425 dev_set_drvdata(dev, sdkp); 3426 3427 gd->major = sd_major((index & 0xf0) >> 4); 3428 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3429 gd->minors = SD_MINORS; 3430 3431 gd->fops = &sd_fops; 3432 gd->private_data = &sdkp->driver; 3433 3434 /* defaults, until the device tells us otherwise */ 3435 sdp->sector_size = 512; 3436 sdkp->capacity = 0; 3437 sdkp->media_present = 1; 3438 sdkp->write_prot = 0; 3439 sdkp->cache_override = 0; 3440 sdkp->WCE = 0; 3441 sdkp->RCD = 0; 3442 sdkp->ATO = 0; 3443 sdkp->first_scan = 1; 3444 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3445 3446 sd_revalidate_disk(gd); 3447 3448 gd->flags = GENHD_FL_EXT_DEVT; 3449 if (sdp->removable) { 3450 gd->flags |= GENHD_FL_REMOVABLE; 3451 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3452 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3453 } 3454 3455 blk_pm_runtime_init(sdp->request_queue, dev); 3456 if (sdp->rpm_autosuspend) { 3457 pm_runtime_set_autosuspend_delay(dev, 3458 sdp->host->hostt->rpm_autosuspend_delay); 3459 } 3460 device_add_disk(dev, gd, NULL); 3461 if (sdkp->capacity) 3462 sd_dif_config_host(sdkp); 3463 3464 sd_revalidate_disk(gd); 3465 3466 if (sdkp->security) { 3467 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3468 if (sdkp->opal_dev) 3469 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3470 } 3471 3472 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3473 sdp->removable ? "removable " : ""); 3474 scsi_autopm_put_device(sdp); 3475 3476 return 0; 3477 3478 out_free_index: 3479 ida_free(&sd_index_ida, index); 3480 out_put: 3481 put_disk(gd); 3482 out_free: 3483 sd_zbc_release_disk(sdkp); 3484 kfree(sdkp); 3485 out: 3486 scsi_autopm_put_device(sdp); 3487 return error; 3488 } 3489 3490 /** 3491 * sd_remove - called whenever a scsi disk (previously recognized by 3492 * sd_probe) is detached from the system. It is called (potentially 3493 * multiple times) during sd module unload. 3494 * @dev: pointer to device object 3495 * 3496 * Note: this function is invoked from the scsi mid-level. 3497 * This function potentially frees up a device name (e.g. /dev/sdc) 3498 * that could be re-used by a subsequent sd_probe(). 3499 * This function is not called when the built-in sd driver is "exit-ed". 3500 **/ 3501 static int sd_remove(struct device *dev) 3502 { 3503 struct scsi_disk *sdkp; 3504 3505 sdkp = dev_get_drvdata(dev); 3506 scsi_autopm_get_device(sdkp->device); 3507 3508 device_del(&sdkp->dev); 3509 del_gendisk(sdkp->disk); 3510 sd_shutdown(dev); 3511 3512 free_opal_dev(sdkp->opal_dev); 3513 3514 mutex_lock(&sd_ref_mutex); 3515 dev_set_drvdata(dev, NULL); 3516 put_device(&sdkp->dev); 3517 mutex_unlock(&sd_ref_mutex); 3518 3519 return 0; 3520 } 3521 3522 /** 3523 * scsi_disk_release - Called to free the scsi_disk structure 3524 * @dev: pointer to embedded class device 3525 * 3526 * sd_ref_mutex must be held entering this routine. Because it is 3527 * called on last put, you should always use the scsi_disk_get() 3528 * scsi_disk_put() helpers which manipulate the semaphore directly 3529 * and never do a direct put_device. 3530 **/ 3531 static void scsi_disk_release(struct device *dev) 3532 { 3533 struct scsi_disk *sdkp = to_scsi_disk(dev); 3534 struct gendisk *disk = sdkp->disk; 3535 struct request_queue *q = disk->queue; 3536 3537 ida_free(&sd_index_ida, sdkp->index); 3538 3539 /* 3540 * Wait until all requests that are in progress have completed. 3541 * This is necessary to avoid that e.g. scsi_end_request() crashes 3542 * due to clearing the disk->private_data pointer. Wait from inside 3543 * scsi_disk_release() instead of from sd_release() to avoid that 3544 * freezing and unfreezing the request queue affects user space I/O 3545 * in case multiple processes open a /dev/sd... node concurrently. 3546 */ 3547 blk_mq_freeze_queue(q); 3548 blk_mq_unfreeze_queue(q); 3549 3550 disk->private_data = NULL; 3551 put_disk(disk); 3552 put_device(&sdkp->device->sdev_gendev); 3553 3554 sd_zbc_release_disk(sdkp); 3555 3556 kfree(sdkp); 3557 } 3558 3559 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3560 { 3561 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3562 struct scsi_sense_hdr sshdr; 3563 struct scsi_device *sdp = sdkp->device; 3564 int res; 3565 3566 if (start) 3567 cmd[4] |= 1; /* START */ 3568 3569 if (sdp->start_stop_pwr_cond) 3570 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3571 3572 if (!scsi_device_online(sdp)) 3573 return -ENODEV; 3574 3575 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3576 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL); 3577 if (res) { 3578 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3579 if (res > 0 && scsi_sense_valid(&sshdr)) { 3580 sd_print_sense_hdr(sdkp, &sshdr); 3581 /* 0x3a is medium not present */ 3582 if (sshdr.asc == 0x3a) 3583 res = 0; 3584 } 3585 } 3586 3587 /* SCSI error codes must not go to the generic layer */ 3588 if (res) 3589 return -EIO; 3590 3591 return 0; 3592 } 3593 3594 /* 3595 * Send a SYNCHRONIZE CACHE instruction down to the device through 3596 * the normal SCSI command structure. Wait for the command to 3597 * complete. 3598 */ 3599 static void sd_shutdown(struct device *dev) 3600 { 3601 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3602 3603 if (!sdkp) 3604 return; /* this can happen */ 3605 3606 if (pm_runtime_suspended(dev)) 3607 return; 3608 3609 if (sdkp->WCE && sdkp->media_present) { 3610 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3611 sd_sync_cache(sdkp, NULL); 3612 } 3613 3614 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3615 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3616 sd_start_stop_device(sdkp, 0); 3617 } 3618 } 3619 3620 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3621 { 3622 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3623 struct scsi_sense_hdr sshdr; 3624 int ret = 0; 3625 3626 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3627 return 0; 3628 3629 if (sdkp->WCE && sdkp->media_present) { 3630 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3631 ret = sd_sync_cache(sdkp, &sshdr); 3632 3633 if (ret) { 3634 /* ignore OFFLINE device */ 3635 if (ret == -ENODEV) 3636 return 0; 3637 3638 if (!scsi_sense_valid(&sshdr) || 3639 sshdr.sense_key != ILLEGAL_REQUEST) 3640 return ret; 3641 3642 /* 3643 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3644 * doesn't support sync. There's not much to do and 3645 * suspend shouldn't fail. 3646 */ 3647 ret = 0; 3648 } 3649 } 3650 3651 if (sdkp->device->manage_start_stop) { 3652 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3653 /* an error is not worth aborting a system sleep */ 3654 ret = sd_start_stop_device(sdkp, 0); 3655 if (ignore_stop_errors) 3656 ret = 0; 3657 } 3658 3659 return ret; 3660 } 3661 3662 static int sd_suspend_system(struct device *dev) 3663 { 3664 if (pm_runtime_suspended(dev)) 3665 return 0; 3666 3667 return sd_suspend_common(dev, true); 3668 } 3669 3670 static int sd_suspend_runtime(struct device *dev) 3671 { 3672 return sd_suspend_common(dev, false); 3673 } 3674 3675 static int sd_resume(struct device *dev) 3676 { 3677 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3678 int ret; 3679 3680 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3681 return 0; 3682 3683 if (!sdkp->device->manage_start_stop) 3684 return 0; 3685 3686 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3687 ret = sd_start_stop_device(sdkp, 1); 3688 if (!ret) 3689 opal_unlock_from_suspend(sdkp->opal_dev); 3690 return ret; 3691 } 3692 3693 static int sd_resume_system(struct device *dev) 3694 { 3695 if (pm_runtime_suspended(dev)) 3696 return 0; 3697 3698 return sd_resume(dev); 3699 } 3700 3701 static int sd_resume_runtime(struct device *dev) 3702 { 3703 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3704 struct scsi_device *sdp = sdkp->device; 3705 3706 if (sdp->ignore_media_change) { 3707 /* clear the device's sense data */ 3708 static const u8 cmd[10] = { REQUEST_SENSE }; 3709 3710 if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, 3711 NULL, sdp->request_queue->rq_timeout, 1, 0, 3712 RQF_PM, NULL)) 3713 sd_printk(KERN_NOTICE, sdkp, 3714 "Failed to clear sense data\n"); 3715 } 3716 3717 return sd_resume(dev); 3718 } 3719 3720 /** 3721 * init_sd - entry point for this driver (both when built in or when 3722 * a module). 3723 * 3724 * Note: this function registers this driver with the scsi mid-level. 3725 **/ 3726 static int __init init_sd(void) 3727 { 3728 int majors = 0, i, err; 3729 3730 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3731 3732 for (i = 0; i < SD_MAJORS; i++) { 3733 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3734 continue; 3735 majors++; 3736 } 3737 3738 if (!majors) 3739 return -ENODEV; 3740 3741 err = class_register(&sd_disk_class); 3742 if (err) 3743 goto err_out; 3744 3745 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3746 0, 0, NULL); 3747 if (!sd_cdb_cache) { 3748 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3749 err = -ENOMEM; 3750 goto err_out_class; 3751 } 3752 3753 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3754 if (!sd_cdb_pool) { 3755 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3756 err = -ENOMEM; 3757 goto err_out_cache; 3758 } 3759 3760 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3761 if (!sd_page_pool) { 3762 printk(KERN_ERR "sd: can't init discard page pool\n"); 3763 err = -ENOMEM; 3764 goto err_out_ppool; 3765 } 3766 3767 err = scsi_register_driver(&sd_template.gendrv); 3768 if (err) 3769 goto err_out_driver; 3770 3771 return 0; 3772 3773 err_out_driver: 3774 mempool_destroy(sd_page_pool); 3775 3776 err_out_ppool: 3777 mempool_destroy(sd_cdb_pool); 3778 3779 err_out_cache: 3780 kmem_cache_destroy(sd_cdb_cache); 3781 3782 err_out_class: 3783 class_unregister(&sd_disk_class); 3784 err_out: 3785 for (i = 0; i < SD_MAJORS; i++) 3786 unregister_blkdev(sd_major(i), "sd"); 3787 return err; 3788 } 3789 3790 /** 3791 * exit_sd - exit point for this driver (when it is a module). 3792 * 3793 * Note: this function unregisters this driver from the scsi mid-level. 3794 **/ 3795 static void __exit exit_sd(void) 3796 { 3797 int i; 3798 3799 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3800 3801 scsi_unregister_driver(&sd_template.gendrv); 3802 mempool_destroy(sd_cdb_pool); 3803 mempool_destroy(sd_page_pool); 3804 kmem_cache_destroy(sd_cdb_cache); 3805 3806 class_unregister(&sd_disk_class); 3807 3808 for (i = 0; i < SD_MAJORS; i++) 3809 unregister_blkdev(sd_major(i), "sd"); 3810 } 3811 3812 module_init(init_sd); 3813 module_exit(exit_sd); 3814 3815 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3816 { 3817 scsi_print_sense_hdr(sdkp->device, 3818 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3819 } 3820 3821 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3822 { 3823 const char *hb_string = scsi_hostbyte_string(result); 3824 3825 if (hb_string) 3826 sd_printk(KERN_INFO, sdkp, 3827 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3828 hb_string ? hb_string : "invalid", 3829 "DRIVER_OK"); 3830 else 3831 sd_printk(KERN_INFO, sdkp, 3832 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 3833 msg, host_byte(result), "DRIVER_OK"); 3834 } 3835