1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/genhd.h> 42 #include <linux/hdreg.h> 43 #include <linux/errno.h> 44 #include <linux/idr.h> 45 #include <linux/interrupt.h> 46 #include <linux/init.h> 47 #include <linux/blkdev.h> 48 #include <linux/blkpg.h> 49 #include <linux/blk-pm.h> 50 #include <linux/delay.h> 51 #include <linux/major.h> 52 #include <linux/mutex.h> 53 #include <linux/string_helpers.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <asm/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_driver.h> 67 #include <scsi/scsi_eh.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_ioctl.h> 70 #include <scsi/scsicam.h> 71 72 #include "sd.h" 73 #include "scsi_priv.h" 74 #include "scsi_logging.h" 75 76 MODULE_AUTHOR("Eric Youngdale"); 77 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 78 MODULE_LICENSE("GPL"); 79 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 100 101 #define SD_MINORS 16 102 103 static void sd_config_discard(struct scsi_disk *, unsigned int); 104 static void sd_config_write_same(struct scsi_disk *); 105 static int sd_revalidate_disk(struct gendisk *); 106 static void sd_unlock_native_capacity(struct gendisk *disk); 107 static int sd_probe(struct device *); 108 static int sd_remove(struct device *); 109 static void sd_shutdown(struct device *); 110 static int sd_suspend_system(struct device *); 111 static int sd_suspend_runtime(struct device *); 112 static int sd_resume_system(struct device *); 113 static int sd_resume_runtime(struct device *); 114 static void sd_rescan(struct device *); 115 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 116 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 117 static int sd_done(struct scsi_cmnd *); 118 static void sd_eh_reset(struct scsi_cmnd *); 119 static int sd_eh_action(struct scsi_cmnd *, int); 120 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 121 static void scsi_disk_release(struct device *cdev); 122 123 static DEFINE_IDA(sd_index_ida); 124 125 /* This semaphore is used to mediate the 0->1 reference get in the 126 * face of object destruction (i.e. we can't allow a get on an 127 * object after last put) */ 128 static DEFINE_MUTEX(sd_ref_mutex); 129 130 static struct kmem_cache *sd_cdb_cache; 131 static mempool_t *sd_cdb_pool; 132 static mempool_t *sd_page_pool; 133 static struct lock_class_key sd_bio_compl_lkclass; 134 135 static const char *sd_cache_types[] = { 136 "write through", "none", "write back", 137 "write back, no read (daft)" 138 }; 139 140 static void sd_set_flush_flag(struct scsi_disk *sdkp) 141 { 142 bool wc = false, fua = false; 143 144 if (sdkp->WCE) { 145 wc = true; 146 if (sdkp->DPOFUA) 147 fua = true; 148 } 149 150 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 151 } 152 153 static ssize_t 154 cache_type_store(struct device *dev, struct device_attribute *attr, 155 const char *buf, size_t count) 156 { 157 int ct, rcd, wce, sp; 158 struct scsi_disk *sdkp = to_scsi_disk(dev); 159 struct scsi_device *sdp = sdkp->device; 160 char buffer[64]; 161 char *buffer_data; 162 struct scsi_mode_data data; 163 struct scsi_sense_hdr sshdr; 164 static const char temp[] = "temporary "; 165 int len; 166 167 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 168 /* no cache control on RBC devices; theoretically they 169 * can do it, but there's probably so many exceptions 170 * it's not worth the risk */ 171 return -EINVAL; 172 173 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 174 buf += sizeof(temp) - 1; 175 sdkp->cache_override = 1; 176 } else { 177 sdkp->cache_override = 0; 178 } 179 180 ct = sysfs_match_string(sd_cache_types, buf); 181 if (ct < 0) 182 return -EINVAL; 183 184 rcd = ct & 0x01 ? 1 : 0; 185 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 186 187 if (sdkp->cache_override) { 188 sdkp->WCE = wce; 189 sdkp->RCD = rcd; 190 sd_set_flush_flag(sdkp); 191 return count; 192 } 193 194 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 195 sdkp->max_retries, &data, NULL)) 196 return -EINVAL; 197 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 198 data.block_descriptor_length); 199 buffer_data = buffer + data.header_length + 200 data.block_descriptor_length; 201 buffer_data[2] &= ~0x05; 202 buffer_data[2] |= wce << 2 | rcd; 203 sp = buffer_data[0] & 0x80 ? 1 : 0; 204 buffer_data[0] &= ~0x80; 205 206 /* 207 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 208 * received mode parameter buffer before doing MODE SELECT. 209 */ 210 data.device_specific = 0; 211 212 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 213 sdkp->max_retries, &data, &sshdr)) { 214 if (scsi_sense_valid(&sshdr)) 215 sd_print_sense_hdr(sdkp, &sshdr); 216 return -EINVAL; 217 } 218 sd_revalidate_disk(sdkp->disk); 219 return count; 220 } 221 222 static ssize_t 223 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 224 char *buf) 225 { 226 struct scsi_disk *sdkp = to_scsi_disk(dev); 227 struct scsi_device *sdp = sdkp->device; 228 229 return sprintf(buf, "%u\n", sdp->manage_start_stop); 230 } 231 232 static ssize_t 233 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 234 const char *buf, size_t count) 235 { 236 struct scsi_disk *sdkp = to_scsi_disk(dev); 237 struct scsi_device *sdp = sdkp->device; 238 bool v; 239 240 if (!capable(CAP_SYS_ADMIN)) 241 return -EACCES; 242 243 if (kstrtobool(buf, &v)) 244 return -EINVAL; 245 246 sdp->manage_start_stop = v; 247 248 return count; 249 } 250 static DEVICE_ATTR_RW(manage_start_stop); 251 252 static ssize_t 253 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 254 { 255 struct scsi_disk *sdkp = to_scsi_disk(dev); 256 257 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 258 } 259 260 static ssize_t 261 allow_restart_store(struct device *dev, struct device_attribute *attr, 262 const char *buf, size_t count) 263 { 264 bool v; 265 struct scsi_disk *sdkp = to_scsi_disk(dev); 266 struct scsi_device *sdp = sdkp->device; 267 268 if (!capable(CAP_SYS_ADMIN)) 269 return -EACCES; 270 271 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 272 return -EINVAL; 273 274 if (kstrtobool(buf, &v)) 275 return -EINVAL; 276 277 sdp->allow_restart = v; 278 279 return count; 280 } 281 static DEVICE_ATTR_RW(allow_restart); 282 283 static ssize_t 284 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 285 { 286 struct scsi_disk *sdkp = to_scsi_disk(dev); 287 int ct = sdkp->RCD + 2*sdkp->WCE; 288 289 return sprintf(buf, "%s\n", sd_cache_types[ct]); 290 } 291 static DEVICE_ATTR_RW(cache_type); 292 293 static ssize_t 294 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 295 { 296 struct scsi_disk *sdkp = to_scsi_disk(dev); 297 298 return sprintf(buf, "%u\n", sdkp->DPOFUA); 299 } 300 static DEVICE_ATTR_RO(FUA); 301 302 static ssize_t 303 protection_type_show(struct device *dev, struct device_attribute *attr, 304 char *buf) 305 { 306 struct scsi_disk *sdkp = to_scsi_disk(dev); 307 308 return sprintf(buf, "%u\n", sdkp->protection_type); 309 } 310 311 static ssize_t 312 protection_type_store(struct device *dev, struct device_attribute *attr, 313 const char *buf, size_t count) 314 { 315 struct scsi_disk *sdkp = to_scsi_disk(dev); 316 unsigned int val; 317 int err; 318 319 if (!capable(CAP_SYS_ADMIN)) 320 return -EACCES; 321 322 err = kstrtouint(buf, 10, &val); 323 324 if (err) 325 return err; 326 327 if (val <= T10_PI_TYPE3_PROTECTION) 328 sdkp->protection_type = val; 329 330 return count; 331 } 332 static DEVICE_ATTR_RW(protection_type); 333 334 static ssize_t 335 protection_mode_show(struct device *dev, struct device_attribute *attr, 336 char *buf) 337 { 338 struct scsi_disk *sdkp = to_scsi_disk(dev); 339 struct scsi_device *sdp = sdkp->device; 340 unsigned int dif, dix; 341 342 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 343 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 344 345 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 346 dif = 0; 347 dix = 1; 348 } 349 350 if (!dif && !dix) 351 return sprintf(buf, "none\n"); 352 353 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 354 } 355 static DEVICE_ATTR_RO(protection_mode); 356 357 static ssize_t 358 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 359 { 360 struct scsi_disk *sdkp = to_scsi_disk(dev); 361 362 return sprintf(buf, "%u\n", sdkp->ATO); 363 } 364 static DEVICE_ATTR_RO(app_tag_own); 365 366 static ssize_t 367 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 368 char *buf) 369 { 370 struct scsi_disk *sdkp = to_scsi_disk(dev); 371 372 return sprintf(buf, "%u\n", sdkp->lbpme); 373 } 374 static DEVICE_ATTR_RO(thin_provisioning); 375 376 /* sysfs_match_string() requires dense arrays */ 377 static const char *lbp_mode[] = { 378 [SD_LBP_FULL] = "full", 379 [SD_LBP_UNMAP] = "unmap", 380 [SD_LBP_WS16] = "writesame_16", 381 [SD_LBP_WS10] = "writesame_10", 382 [SD_LBP_ZERO] = "writesame_zero", 383 [SD_LBP_DISABLE] = "disabled", 384 }; 385 386 static ssize_t 387 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 388 char *buf) 389 { 390 struct scsi_disk *sdkp = to_scsi_disk(dev); 391 392 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 393 } 394 395 static ssize_t 396 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 397 const char *buf, size_t count) 398 { 399 struct scsi_disk *sdkp = to_scsi_disk(dev); 400 struct scsi_device *sdp = sdkp->device; 401 int mode; 402 403 if (!capable(CAP_SYS_ADMIN)) 404 return -EACCES; 405 406 if (sd_is_zoned(sdkp)) { 407 sd_config_discard(sdkp, SD_LBP_DISABLE); 408 return count; 409 } 410 411 if (sdp->type != TYPE_DISK) 412 return -EINVAL; 413 414 mode = sysfs_match_string(lbp_mode, buf); 415 if (mode < 0) 416 return -EINVAL; 417 418 sd_config_discard(sdkp, mode); 419 420 return count; 421 } 422 static DEVICE_ATTR_RW(provisioning_mode); 423 424 /* sysfs_match_string() requires dense arrays */ 425 static const char *zeroing_mode[] = { 426 [SD_ZERO_WRITE] = "write", 427 [SD_ZERO_WS] = "writesame", 428 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 429 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 430 }; 431 432 static ssize_t 433 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 434 char *buf) 435 { 436 struct scsi_disk *sdkp = to_scsi_disk(dev); 437 438 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 439 } 440 441 static ssize_t 442 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 443 const char *buf, size_t count) 444 { 445 struct scsi_disk *sdkp = to_scsi_disk(dev); 446 int mode; 447 448 if (!capable(CAP_SYS_ADMIN)) 449 return -EACCES; 450 451 mode = sysfs_match_string(zeroing_mode, buf); 452 if (mode < 0) 453 return -EINVAL; 454 455 sdkp->zeroing_mode = mode; 456 457 return count; 458 } 459 static DEVICE_ATTR_RW(zeroing_mode); 460 461 static ssize_t 462 max_medium_access_timeouts_show(struct device *dev, 463 struct device_attribute *attr, char *buf) 464 { 465 struct scsi_disk *sdkp = to_scsi_disk(dev); 466 467 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 468 } 469 470 static ssize_t 471 max_medium_access_timeouts_store(struct device *dev, 472 struct device_attribute *attr, const char *buf, 473 size_t count) 474 { 475 struct scsi_disk *sdkp = to_scsi_disk(dev); 476 int err; 477 478 if (!capable(CAP_SYS_ADMIN)) 479 return -EACCES; 480 481 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 482 483 return err ? err : count; 484 } 485 static DEVICE_ATTR_RW(max_medium_access_timeouts); 486 487 static ssize_t 488 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 489 char *buf) 490 { 491 struct scsi_disk *sdkp = to_scsi_disk(dev); 492 493 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 494 } 495 496 static ssize_t 497 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 498 const char *buf, size_t count) 499 { 500 struct scsi_disk *sdkp = to_scsi_disk(dev); 501 struct scsi_device *sdp = sdkp->device; 502 unsigned long max; 503 int err; 504 505 if (!capable(CAP_SYS_ADMIN)) 506 return -EACCES; 507 508 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 509 return -EINVAL; 510 511 err = kstrtoul(buf, 10, &max); 512 513 if (err) 514 return err; 515 516 if (max == 0) 517 sdp->no_write_same = 1; 518 else if (max <= SD_MAX_WS16_BLOCKS) { 519 sdp->no_write_same = 0; 520 sdkp->max_ws_blocks = max; 521 } 522 523 sd_config_write_same(sdkp); 524 525 return count; 526 } 527 static DEVICE_ATTR_RW(max_write_same_blocks); 528 529 static ssize_t 530 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 531 { 532 struct scsi_disk *sdkp = to_scsi_disk(dev); 533 534 if (sdkp->device->type == TYPE_ZBC) 535 return sprintf(buf, "host-managed\n"); 536 if (sdkp->zoned == 1) 537 return sprintf(buf, "host-aware\n"); 538 if (sdkp->zoned == 2) 539 return sprintf(buf, "drive-managed\n"); 540 return sprintf(buf, "none\n"); 541 } 542 static DEVICE_ATTR_RO(zoned_cap); 543 544 static ssize_t 545 max_retries_store(struct device *dev, struct device_attribute *attr, 546 const char *buf, size_t count) 547 { 548 struct scsi_disk *sdkp = to_scsi_disk(dev); 549 struct scsi_device *sdev = sdkp->device; 550 int retries, err; 551 552 err = kstrtoint(buf, 10, &retries); 553 if (err) 554 return err; 555 556 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 557 sdkp->max_retries = retries; 558 return count; 559 } 560 561 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 562 SD_MAX_RETRIES); 563 return -EINVAL; 564 } 565 566 static ssize_t 567 max_retries_show(struct device *dev, struct device_attribute *attr, 568 char *buf) 569 { 570 struct scsi_disk *sdkp = to_scsi_disk(dev); 571 572 return sprintf(buf, "%d\n", sdkp->max_retries); 573 } 574 575 static DEVICE_ATTR_RW(max_retries); 576 577 static struct attribute *sd_disk_attrs[] = { 578 &dev_attr_cache_type.attr, 579 &dev_attr_FUA.attr, 580 &dev_attr_allow_restart.attr, 581 &dev_attr_manage_start_stop.attr, 582 &dev_attr_protection_type.attr, 583 &dev_attr_protection_mode.attr, 584 &dev_attr_app_tag_own.attr, 585 &dev_attr_thin_provisioning.attr, 586 &dev_attr_provisioning_mode.attr, 587 &dev_attr_zeroing_mode.attr, 588 &dev_attr_max_write_same_blocks.attr, 589 &dev_attr_max_medium_access_timeouts.attr, 590 &dev_attr_zoned_cap.attr, 591 &dev_attr_max_retries.attr, 592 NULL, 593 }; 594 ATTRIBUTE_GROUPS(sd_disk); 595 596 static struct class sd_disk_class = { 597 .name = "scsi_disk", 598 .owner = THIS_MODULE, 599 .dev_release = scsi_disk_release, 600 .dev_groups = sd_disk_groups, 601 }; 602 603 static const struct dev_pm_ops sd_pm_ops = { 604 .suspend = sd_suspend_system, 605 .resume = sd_resume_system, 606 .poweroff = sd_suspend_system, 607 .restore = sd_resume_system, 608 .runtime_suspend = sd_suspend_runtime, 609 .runtime_resume = sd_resume_runtime, 610 }; 611 612 static struct scsi_driver sd_template = { 613 .gendrv = { 614 .name = "sd", 615 .owner = THIS_MODULE, 616 .probe = sd_probe, 617 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 618 .remove = sd_remove, 619 .shutdown = sd_shutdown, 620 .pm = &sd_pm_ops, 621 }, 622 .rescan = sd_rescan, 623 .init_command = sd_init_command, 624 .uninit_command = sd_uninit_command, 625 .done = sd_done, 626 .eh_action = sd_eh_action, 627 .eh_reset = sd_eh_reset, 628 }; 629 630 /* 631 * Don't request a new module, as that could deadlock in multipath 632 * environment. 633 */ 634 static void sd_default_probe(dev_t devt) 635 { 636 } 637 638 /* 639 * Device no to disk mapping: 640 * 641 * major disc2 disc p1 642 * |............|.............|....|....| <- dev_t 643 * 31 20 19 8 7 4 3 0 644 * 645 * Inside a major, we have 16k disks, however mapped non- 646 * contiguously. The first 16 disks are for major0, the next 647 * ones with major1, ... Disk 256 is for major0 again, disk 272 648 * for major1, ... 649 * As we stay compatible with our numbering scheme, we can reuse 650 * the well-know SCSI majors 8, 65--71, 136--143. 651 */ 652 static int sd_major(int major_idx) 653 { 654 switch (major_idx) { 655 case 0: 656 return SCSI_DISK0_MAJOR; 657 case 1 ... 7: 658 return SCSI_DISK1_MAJOR + major_idx - 1; 659 case 8 ... 15: 660 return SCSI_DISK8_MAJOR + major_idx - 8; 661 default: 662 BUG(); 663 return 0; /* shut up gcc */ 664 } 665 } 666 667 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 668 { 669 struct scsi_disk *sdkp = NULL; 670 671 mutex_lock(&sd_ref_mutex); 672 673 if (disk->private_data) { 674 sdkp = scsi_disk(disk); 675 if (scsi_device_get(sdkp->device) == 0) 676 get_device(&sdkp->dev); 677 else 678 sdkp = NULL; 679 } 680 mutex_unlock(&sd_ref_mutex); 681 return sdkp; 682 } 683 684 static void scsi_disk_put(struct scsi_disk *sdkp) 685 { 686 struct scsi_device *sdev = sdkp->device; 687 688 mutex_lock(&sd_ref_mutex); 689 put_device(&sdkp->dev); 690 scsi_device_put(sdev); 691 mutex_unlock(&sd_ref_mutex); 692 } 693 694 #ifdef CONFIG_BLK_SED_OPAL 695 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 696 size_t len, bool send) 697 { 698 struct scsi_disk *sdkp = data; 699 struct scsi_device *sdev = sdkp->device; 700 u8 cdb[12] = { 0, }; 701 int ret; 702 703 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 704 cdb[1] = secp; 705 put_unaligned_be16(spsp, &cdb[2]); 706 put_unaligned_be32(len, &cdb[6]); 707 708 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 709 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0, 710 RQF_PM, NULL); 711 return ret <= 0 ? ret : -EIO; 712 } 713 #endif /* CONFIG_BLK_SED_OPAL */ 714 715 /* 716 * Look up the DIX operation based on whether the command is read or 717 * write and whether dix and dif are enabled. 718 */ 719 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 720 { 721 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 722 static const unsigned int ops[] = { /* wrt dix dif */ 723 SCSI_PROT_NORMAL, /* 0 0 0 */ 724 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 725 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 726 SCSI_PROT_READ_PASS, /* 0 1 1 */ 727 SCSI_PROT_NORMAL, /* 1 0 0 */ 728 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 729 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 730 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 731 }; 732 733 return ops[write << 2 | dix << 1 | dif]; 734 } 735 736 /* 737 * Returns a mask of the protection flags that are valid for a given DIX 738 * operation. 739 */ 740 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 741 { 742 static const unsigned int flag_mask[] = { 743 [SCSI_PROT_NORMAL] = 0, 744 745 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 746 SCSI_PROT_GUARD_CHECK | 747 SCSI_PROT_REF_CHECK | 748 SCSI_PROT_REF_INCREMENT, 749 750 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 751 SCSI_PROT_IP_CHECKSUM, 752 753 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 754 SCSI_PROT_GUARD_CHECK | 755 SCSI_PROT_REF_CHECK | 756 SCSI_PROT_REF_INCREMENT | 757 SCSI_PROT_IP_CHECKSUM, 758 759 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 760 SCSI_PROT_REF_INCREMENT, 761 762 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 763 SCSI_PROT_REF_CHECK | 764 SCSI_PROT_REF_INCREMENT | 765 SCSI_PROT_IP_CHECKSUM, 766 767 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 768 SCSI_PROT_GUARD_CHECK | 769 SCSI_PROT_REF_CHECK | 770 SCSI_PROT_REF_INCREMENT | 771 SCSI_PROT_IP_CHECKSUM, 772 }; 773 774 return flag_mask[prot_op]; 775 } 776 777 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 778 unsigned int dix, unsigned int dif) 779 { 780 struct request *rq = scsi_cmd_to_rq(scmd); 781 struct bio *bio = rq->bio; 782 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 783 unsigned int protect = 0; 784 785 if (dix) { /* DIX Type 0, 1, 2, 3 */ 786 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 787 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 788 789 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 790 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 791 } 792 793 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 794 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 795 796 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 797 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 798 } 799 800 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 801 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 802 803 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 804 protect = 3 << 5; /* Disable target PI checking */ 805 else 806 protect = 1 << 5; /* Enable target PI checking */ 807 } 808 809 scsi_set_prot_op(scmd, prot_op); 810 scsi_set_prot_type(scmd, dif); 811 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 812 813 return protect; 814 } 815 816 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 817 { 818 struct request_queue *q = sdkp->disk->queue; 819 unsigned int logical_block_size = sdkp->device->sector_size; 820 unsigned int max_blocks = 0; 821 822 q->limits.discard_alignment = 823 sdkp->unmap_alignment * logical_block_size; 824 q->limits.discard_granularity = 825 max(sdkp->physical_block_size, 826 sdkp->unmap_granularity * logical_block_size); 827 sdkp->provisioning_mode = mode; 828 829 switch (mode) { 830 831 case SD_LBP_FULL: 832 case SD_LBP_DISABLE: 833 blk_queue_max_discard_sectors(q, 0); 834 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 835 return; 836 837 case SD_LBP_UNMAP: 838 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 839 (u32)SD_MAX_WS16_BLOCKS); 840 break; 841 842 case SD_LBP_WS16: 843 if (sdkp->device->unmap_limit_for_ws) 844 max_blocks = sdkp->max_unmap_blocks; 845 else 846 max_blocks = sdkp->max_ws_blocks; 847 848 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 849 break; 850 851 case SD_LBP_WS10: 852 if (sdkp->device->unmap_limit_for_ws) 853 max_blocks = sdkp->max_unmap_blocks; 854 else 855 max_blocks = sdkp->max_ws_blocks; 856 857 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 858 break; 859 860 case SD_LBP_ZERO: 861 max_blocks = min_not_zero(sdkp->max_ws_blocks, 862 (u32)SD_MAX_WS10_BLOCKS); 863 break; 864 } 865 866 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 867 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 868 } 869 870 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 871 { 872 struct scsi_device *sdp = cmd->device; 873 struct request *rq = scsi_cmd_to_rq(cmd); 874 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 875 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 876 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 877 unsigned int data_len = 24; 878 char *buf; 879 880 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 881 if (!rq->special_vec.bv_page) 882 return BLK_STS_RESOURCE; 883 clear_highpage(rq->special_vec.bv_page); 884 rq->special_vec.bv_offset = 0; 885 rq->special_vec.bv_len = data_len; 886 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 887 888 cmd->cmd_len = 10; 889 cmd->cmnd[0] = UNMAP; 890 cmd->cmnd[8] = 24; 891 892 buf = bvec_virt(&rq->special_vec); 893 put_unaligned_be16(6 + 16, &buf[0]); 894 put_unaligned_be16(16, &buf[2]); 895 put_unaligned_be64(lba, &buf[8]); 896 put_unaligned_be32(nr_blocks, &buf[16]); 897 898 cmd->allowed = sdkp->max_retries; 899 cmd->transfersize = data_len; 900 rq->timeout = SD_TIMEOUT; 901 902 return scsi_alloc_sgtables(cmd); 903 } 904 905 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 906 bool unmap) 907 { 908 struct scsi_device *sdp = cmd->device; 909 struct request *rq = scsi_cmd_to_rq(cmd); 910 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 911 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 912 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 913 u32 data_len = sdp->sector_size; 914 915 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 916 if (!rq->special_vec.bv_page) 917 return BLK_STS_RESOURCE; 918 clear_highpage(rq->special_vec.bv_page); 919 rq->special_vec.bv_offset = 0; 920 rq->special_vec.bv_len = data_len; 921 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 922 923 cmd->cmd_len = 16; 924 cmd->cmnd[0] = WRITE_SAME_16; 925 if (unmap) 926 cmd->cmnd[1] = 0x8; /* UNMAP */ 927 put_unaligned_be64(lba, &cmd->cmnd[2]); 928 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 929 930 cmd->allowed = sdkp->max_retries; 931 cmd->transfersize = data_len; 932 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 933 934 return scsi_alloc_sgtables(cmd); 935 } 936 937 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 938 bool unmap) 939 { 940 struct scsi_device *sdp = cmd->device; 941 struct request *rq = scsi_cmd_to_rq(cmd); 942 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 943 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 944 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 945 u32 data_len = sdp->sector_size; 946 947 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 948 if (!rq->special_vec.bv_page) 949 return BLK_STS_RESOURCE; 950 clear_highpage(rq->special_vec.bv_page); 951 rq->special_vec.bv_offset = 0; 952 rq->special_vec.bv_len = data_len; 953 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 954 955 cmd->cmd_len = 10; 956 cmd->cmnd[0] = WRITE_SAME; 957 if (unmap) 958 cmd->cmnd[1] = 0x8; /* UNMAP */ 959 put_unaligned_be32(lba, &cmd->cmnd[2]); 960 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 961 962 cmd->allowed = sdkp->max_retries; 963 cmd->transfersize = data_len; 964 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 965 966 return scsi_alloc_sgtables(cmd); 967 } 968 969 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 970 { 971 struct request *rq = scsi_cmd_to_rq(cmd); 972 struct scsi_device *sdp = cmd->device; 973 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 974 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 975 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 976 977 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 978 switch (sdkp->zeroing_mode) { 979 case SD_ZERO_WS16_UNMAP: 980 return sd_setup_write_same16_cmnd(cmd, true); 981 case SD_ZERO_WS10_UNMAP: 982 return sd_setup_write_same10_cmnd(cmd, true); 983 } 984 } 985 986 if (sdp->no_write_same) { 987 rq->rq_flags |= RQF_QUIET; 988 return BLK_STS_TARGET; 989 } 990 991 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 992 return sd_setup_write_same16_cmnd(cmd, false); 993 994 return sd_setup_write_same10_cmnd(cmd, false); 995 } 996 997 static void sd_config_write_same(struct scsi_disk *sdkp) 998 { 999 struct request_queue *q = sdkp->disk->queue; 1000 unsigned int logical_block_size = sdkp->device->sector_size; 1001 1002 if (sdkp->device->no_write_same) { 1003 sdkp->max_ws_blocks = 0; 1004 goto out; 1005 } 1006 1007 /* Some devices can not handle block counts above 0xffff despite 1008 * supporting WRITE SAME(16). Consequently we default to 64k 1009 * blocks per I/O unless the device explicitly advertises a 1010 * bigger limit. 1011 */ 1012 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 1013 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1014 (u32)SD_MAX_WS16_BLOCKS); 1015 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 1016 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1017 (u32)SD_MAX_WS10_BLOCKS); 1018 else { 1019 sdkp->device->no_write_same = 1; 1020 sdkp->max_ws_blocks = 0; 1021 } 1022 1023 if (sdkp->lbprz && sdkp->lbpws) 1024 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 1025 else if (sdkp->lbprz && sdkp->lbpws10) 1026 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 1027 else if (sdkp->max_ws_blocks) 1028 sdkp->zeroing_mode = SD_ZERO_WS; 1029 else 1030 sdkp->zeroing_mode = SD_ZERO_WRITE; 1031 1032 if (sdkp->max_ws_blocks && 1033 sdkp->physical_block_size > logical_block_size) { 1034 /* 1035 * Reporting a maximum number of blocks that is not aligned 1036 * on the device physical size would cause a large write same 1037 * request to be split into physically unaligned chunks by 1038 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 1039 * even if the caller of these functions took care to align the 1040 * large request. So make sure the maximum reported is aligned 1041 * to the device physical block size. This is only an optional 1042 * optimization for regular disks, but this is mandatory to 1043 * avoid failure of large write same requests directed at 1044 * sequential write required zones of host-managed ZBC disks. 1045 */ 1046 sdkp->max_ws_blocks = 1047 round_down(sdkp->max_ws_blocks, 1048 bytes_to_logical(sdkp->device, 1049 sdkp->physical_block_size)); 1050 } 1051 1052 out: 1053 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 1054 (logical_block_size >> 9)); 1055 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1056 (logical_block_size >> 9)); 1057 } 1058 1059 /** 1060 * sd_setup_write_same_cmnd - write the same data to multiple blocks 1061 * @cmd: command to prepare 1062 * 1063 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 1064 * the preference indicated by the target device. 1065 **/ 1066 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 1067 { 1068 struct request *rq = scsi_cmd_to_rq(cmd); 1069 struct scsi_device *sdp = cmd->device; 1070 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1071 struct bio *bio = rq->bio; 1072 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1073 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1074 blk_status_t ret; 1075 1076 if (sdkp->device->no_write_same) 1077 return BLK_STS_TARGET; 1078 1079 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 1080 1081 rq->timeout = SD_WRITE_SAME_TIMEOUT; 1082 1083 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) { 1084 cmd->cmd_len = 16; 1085 cmd->cmnd[0] = WRITE_SAME_16; 1086 put_unaligned_be64(lba, &cmd->cmnd[2]); 1087 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1088 } else { 1089 cmd->cmd_len = 10; 1090 cmd->cmnd[0] = WRITE_SAME; 1091 put_unaligned_be32(lba, &cmd->cmnd[2]); 1092 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1093 } 1094 1095 cmd->transfersize = sdp->sector_size; 1096 cmd->allowed = sdkp->max_retries; 1097 1098 /* 1099 * For WRITE SAME the data transferred via the DATA OUT buffer is 1100 * different from the amount of data actually written to the target. 1101 * 1102 * We set up __data_len to the amount of data transferred via the 1103 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 1104 * to transfer a single sector of data first, but then reset it to 1105 * the amount of data to be written right after so that the I/O path 1106 * knows how much to actually write. 1107 */ 1108 rq->__data_len = sdp->sector_size; 1109 ret = scsi_alloc_sgtables(cmd); 1110 rq->__data_len = blk_rq_bytes(rq); 1111 1112 return ret; 1113 } 1114 1115 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1116 { 1117 struct request *rq = scsi_cmd_to_rq(cmd); 1118 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1119 1120 /* flush requests don't perform I/O, zero the S/G table */ 1121 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1122 1123 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1124 cmd->cmd_len = 10; 1125 cmd->transfersize = 0; 1126 cmd->allowed = sdkp->max_retries; 1127 1128 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1129 return BLK_STS_OK; 1130 } 1131 1132 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1133 sector_t lba, unsigned int nr_blocks, 1134 unsigned char flags) 1135 { 1136 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1137 if (unlikely(cmd->cmnd == NULL)) 1138 return BLK_STS_RESOURCE; 1139 1140 cmd->cmd_len = SD_EXT_CDB_SIZE; 1141 memset(cmd->cmnd, 0, cmd->cmd_len); 1142 1143 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1144 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1145 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1146 cmd->cmnd[10] = flags; 1147 put_unaligned_be64(lba, &cmd->cmnd[12]); 1148 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1149 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1150 1151 return BLK_STS_OK; 1152 } 1153 1154 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1155 sector_t lba, unsigned int nr_blocks, 1156 unsigned char flags) 1157 { 1158 cmd->cmd_len = 16; 1159 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1160 cmd->cmnd[1] = flags; 1161 cmd->cmnd[14] = 0; 1162 cmd->cmnd[15] = 0; 1163 put_unaligned_be64(lba, &cmd->cmnd[2]); 1164 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1165 1166 return BLK_STS_OK; 1167 } 1168 1169 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1170 sector_t lba, unsigned int nr_blocks, 1171 unsigned char flags) 1172 { 1173 cmd->cmd_len = 10; 1174 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1175 cmd->cmnd[1] = flags; 1176 cmd->cmnd[6] = 0; 1177 cmd->cmnd[9] = 0; 1178 put_unaligned_be32(lba, &cmd->cmnd[2]); 1179 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1180 1181 return BLK_STS_OK; 1182 } 1183 1184 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1185 sector_t lba, unsigned int nr_blocks, 1186 unsigned char flags) 1187 { 1188 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1189 if (WARN_ON_ONCE(nr_blocks == 0)) 1190 return BLK_STS_IOERR; 1191 1192 if (unlikely(flags & 0x8)) { 1193 /* 1194 * This happens only if this drive failed 10byte rw 1195 * command with ILLEGAL_REQUEST during operation and 1196 * thus turned off use_10_for_rw. 1197 */ 1198 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1199 return BLK_STS_IOERR; 1200 } 1201 1202 cmd->cmd_len = 6; 1203 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1204 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1205 cmd->cmnd[2] = (lba >> 8) & 0xff; 1206 cmd->cmnd[3] = lba & 0xff; 1207 cmd->cmnd[4] = nr_blocks; 1208 cmd->cmnd[5] = 0; 1209 1210 return BLK_STS_OK; 1211 } 1212 1213 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1214 { 1215 struct request *rq = scsi_cmd_to_rq(cmd); 1216 struct scsi_device *sdp = cmd->device; 1217 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1218 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1219 sector_t threshold; 1220 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1221 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1222 bool write = rq_data_dir(rq) == WRITE; 1223 unsigned char protect, fua; 1224 blk_status_t ret; 1225 unsigned int dif; 1226 bool dix; 1227 1228 ret = scsi_alloc_sgtables(cmd); 1229 if (ret != BLK_STS_OK) 1230 return ret; 1231 1232 ret = BLK_STS_IOERR; 1233 if (!scsi_device_online(sdp) || sdp->changed) { 1234 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1235 goto fail; 1236 } 1237 1238 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1239 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1240 goto fail; 1241 } 1242 1243 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1244 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1245 goto fail; 1246 } 1247 1248 /* 1249 * Some SD card readers can't handle accesses which touch the 1250 * last one or two logical blocks. Split accesses as needed. 1251 */ 1252 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1253 1254 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1255 if (lba < threshold) { 1256 /* Access up to the threshold but not beyond */ 1257 nr_blocks = threshold - lba; 1258 } else { 1259 /* Access only a single logical block */ 1260 nr_blocks = 1; 1261 } 1262 } 1263 1264 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1265 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1266 if (ret) 1267 goto fail; 1268 } 1269 1270 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1271 dix = scsi_prot_sg_count(cmd); 1272 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1273 1274 if (dif || dix) 1275 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1276 else 1277 protect = 0; 1278 1279 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1280 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1281 protect | fua); 1282 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1283 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1284 protect | fua); 1285 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1286 sdp->use_10_for_rw || protect) { 1287 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1288 protect | fua); 1289 } else { 1290 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1291 protect | fua); 1292 } 1293 1294 if (unlikely(ret != BLK_STS_OK)) 1295 goto fail; 1296 1297 /* 1298 * We shouldn't disconnect in the middle of a sector, so with a dumb 1299 * host adapter, it's safe to assume that we can at least transfer 1300 * this many bytes between each connect / disconnect. 1301 */ 1302 cmd->transfersize = sdp->sector_size; 1303 cmd->underflow = nr_blocks << 9; 1304 cmd->allowed = sdkp->max_retries; 1305 cmd->sdb.length = nr_blocks * sdp->sector_size; 1306 1307 SCSI_LOG_HLQUEUE(1, 1308 scmd_printk(KERN_INFO, cmd, 1309 "%s: block=%llu, count=%d\n", __func__, 1310 (unsigned long long)blk_rq_pos(rq), 1311 blk_rq_sectors(rq))); 1312 SCSI_LOG_HLQUEUE(2, 1313 scmd_printk(KERN_INFO, cmd, 1314 "%s %d/%u 512 byte blocks.\n", 1315 write ? "writing" : "reading", nr_blocks, 1316 blk_rq_sectors(rq))); 1317 1318 /* 1319 * This indicates that the command is ready from our end to be queued. 1320 */ 1321 return BLK_STS_OK; 1322 fail: 1323 scsi_free_sgtables(cmd); 1324 return ret; 1325 } 1326 1327 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1328 { 1329 struct request *rq = scsi_cmd_to_rq(cmd); 1330 1331 switch (req_op(rq)) { 1332 case REQ_OP_DISCARD: 1333 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1334 case SD_LBP_UNMAP: 1335 return sd_setup_unmap_cmnd(cmd); 1336 case SD_LBP_WS16: 1337 return sd_setup_write_same16_cmnd(cmd, true); 1338 case SD_LBP_WS10: 1339 return sd_setup_write_same10_cmnd(cmd, true); 1340 case SD_LBP_ZERO: 1341 return sd_setup_write_same10_cmnd(cmd, false); 1342 default: 1343 return BLK_STS_TARGET; 1344 } 1345 case REQ_OP_WRITE_ZEROES: 1346 return sd_setup_write_zeroes_cmnd(cmd); 1347 case REQ_OP_WRITE_SAME: 1348 return sd_setup_write_same_cmnd(cmd); 1349 case REQ_OP_FLUSH: 1350 return sd_setup_flush_cmnd(cmd); 1351 case REQ_OP_READ: 1352 case REQ_OP_WRITE: 1353 case REQ_OP_ZONE_APPEND: 1354 return sd_setup_read_write_cmnd(cmd); 1355 case REQ_OP_ZONE_RESET: 1356 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1357 false); 1358 case REQ_OP_ZONE_RESET_ALL: 1359 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1360 true); 1361 case REQ_OP_ZONE_OPEN: 1362 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1363 case REQ_OP_ZONE_CLOSE: 1364 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1365 case REQ_OP_ZONE_FINISH: 1366 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1367 default: 1368 WARN_ON_ONCE(1); 1369 return BLK_STS_NOTSUPP; 1370 } 1371 } 1372 1373 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1374 { 1375 struct request *rq = scsi_cmd_to_rq(SCpnt); 1376 u8 *cmnd; 1377 1378 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1379 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1380 1381 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1382 cmnd = SCpnt->cmnd; 1383 SCpnt->cmnd = NULL; 1384 SCpnt->cmd_len = 0; 1385 mempool_free(cmnd, sd_cdb_pool); 1386 } 1387 } 1388 1389 static bool sd_need_revalidate(struct block_device *bdev, 1390 struct scsi_disk *sdkp) 1391 { 1392 if (sdkp->device->removable || sdkp->write_prot) { 1393 if (bdev_check_media_change(bdev)) 1394 return true; 1395 } 1396 1397 /* 1398 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1399 * nothing to do with partitions, BLKRRPART is used to force a full 1400 * revalidate after things like a format for historical reasons. 1401 */ 1402 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 1403 } 1404 1405 /** 1406 * sd_open - open a scsi disk device 1407 * @bdev: Block device of the scsi disk to open 1408 * @mode: FMODE_* mask 1409 * 1410 * Returns 0 if successful. Returns a negated errno value in case 1411 * of error. 1412 * 1413 * Note: This can be called from a user context (e.g. fsck(1) ) 1414 * or from within the kernel (e.g. as a result of a mount(1) ). 1415 * In the latter case @inode and @filp carry an abridged amount 1416 * of information as noted above. 1417 * 1418 * Locking: called with bdev->bd_disk->open_mutex held. 1419 **/ 1420 static int sd_open(struct block_device *bdev, fmode_t mode) 1421 { 1422 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1423 struct scsi_device *sdev; 1424 int retval; 1425 1426 if (!sdkp) 1427 return -ENXIO; 1428 1429 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1430 1431 sdev = sdkp->device; 1432 1433 /* 1434 * If the device is in error recovery, wait until it is done. 1435 * If the device is offline, then disallow any access to it. 1436 */ 1437 retval = -ENXIO; 1438 if (!scsi_block_when_processing_errors(sdev)) 1439 goto error_out; 1440 1441 if (sd_need_revalidate(bdev, sdkp)) 1442 sd_revalidate_disk(bdev->bd_disk); 1443 1444 /* 1445 * If the drive is empty, just let the open fail. 1446 */ 1447 retval = -ENOMEDIUM; 1448 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1449 goto error_out; 1450 1451 /* 1452 * If the device has the write protect tab set, have the open fail 1453 * if the user expects to be able to write to the thing. 1454 */ 1455 retval = -EROFS; 1456 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1457 goto error_out; 1458 1459 /* 1460 * It is possible that the disk changing stuff resulted in 1461 * the device being taken offline. If this is the case, 1462 * report this to the user, and don't pretend that the 1463 * open actually succeeded. 1464 */ 1465 retval = -ENXIO; 1466 if (!scsi_device_online(sdev)) 1467 goto error_out; 1468 1469 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1470 if (scsi_block_when_processing_errors(sdev)) 1471 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1472 } 1473 1474 return 0; 1475 1476 error_out: 1477 scsi_disk_put(sdkp); 1478 return retval; 1479 } 1480 1481 /** 1482 * sd_release - invoked when the (last) close(2) is called on this 1483 * scsi disk. 1484 * @disk: disk to release 1485 * @mode: FMODE_* mask 1486 * 1487 * Returns 0. 1488 * 1489 * Note: may block (uninterruptible) if error recovery is underway 1490 * on this disk. 1491 * 1492 * Locking: called with bdev->bd_disk->open_mutex held. 1493 **/ 1494 static void sd_release(struct gendisk *disk, fmode_t mode) 1495 { 1496 struct scsi_disk *sdkp = scsi_disk(disk); 1497 struct scsi_device *sdev = sdkp->device; 1498 1499 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1500 1501 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1502 if (scsi_block_when_processing_errors(sdev)) 1503 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1504 } 1505 1506 scsi_disk_put(sdkp); 1507 } 1508 1509 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1510 { 1511 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1512 struct scsi_device *sdp = sdkp->device; 1513 struct Scsi_Host *host = sdp->host; 1514 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1515 int diskinfo[4]; 1516 1517 /* default to most commonly used values */ 1518 diskinfo[0] = 0x40; /* 1 << 6 */ 1519 diskinfo[1] = 0x20; /* 1 << 5 */ 1520 diskinfo[2] = capacity >> 11; 1521 1522 /* override with calculated, extended default, or driver values */ 1523 if (host->hostt->bios_param) 1524 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1525 else 1526 scsicam_bios_param(bdev, capacity, diskinfo); 1527 1528 geo->heads = diskinfo[0]; 1529 geo->sectors = diskinfo[1]; 1530 geo->cylinders = diskinfo[2]; 1531 return 0; 1532 } 1533 1534 /** 1535 * sd_ioctl - process an ioctl 1536 * @bdev: target block device 1537 * @mode: FMODE_* mask 1538 * @cmd: ioctl command number 1539 * @arg: this is third argument given to ioctl(2) system call. 1540 * Often contains a pointer. 1541 * 1542 * Returns 0 if successful (some ioctls return positive numbers on 1543 * success as well). Returns a negated errno value in case of error. 1544 * 1545 * Note: most ioctls are forward onto the block subsystem or further 1546 * down in the scsi subsystem. 1547 **/ 1548 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1549 unsigned int cmd, unsigned long arg) 1550 { 1551 struct gendisk *disk = bdev->bd_disk; 1552 struct scsi_disk *sdkp = scsi_disk(disk); 1553 struct scsi_device *sdp = sdkp->device; 1554 void __user *p = (void __user *)arg; 1555 int error; 1556 1557 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1558 "cmd=0x%x\n", disk->disk_name, cmd)); 1559 1560 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1561 return -ENOIOCTLCMD; 1562 1563 /* 1564 * If we are in the middle of error recovery, don't let anyone 1565 * else try and use this device. Also, if error recovery fails, it 1566 * may try and take the device offline, in which case all further 1567 * access to the device is prohibited. 1568 */ 1569 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1570 (mode & FMODE_NDELAY) != 0); 1571 if (error) 1572 return error; 1573 1574 if (is_sed_ioctl(cmd)) 1575 return sed_ioctl(sdkp->opal_dev, cmd, p); 1576 return scsi_ioctl(sdp, mode, cmd, p); 1577 } 1578 1579 static void set_media_not_present(struct scsi_disk *sdkp) 1580 { 1581 if (sdkp->media_present) 1582 sdkp->device->changed = 1; 1583 1584 if (sdkp->device->removable) { 1585 sdkp->media_present = 0; 1586 sdkp->capacity = 0; 1587 } 1588 } 1589 1590 static int media_not_present(struct scsi_disk *sdkp, 1591 struct scsi_sense_hdr *sshdr) 1592 { 1593 if (!scsi_sense_valid(sshdr)) 1594 return 0; 1595 1596 /* not invoked for commands that could return deferred errors */ 1597 switch (sshdr->sense_key) { 1598 case UNIT_ATTENTION: 1599 case NOT_READY: 1600 /* medium not present */ 1601 if (sshdr->asc == 0x3A) { 1602 set_media_not_present(sdkp); 1603 return 1; 1604 } 1605 } 1606 return 0; 1607 } 1608 1609 /** 1610 * sd_check_events - check media events 1611 * @disk: kernel device descriptor 1612 * @clearing: disk events currently being cleared 1613 * 1614 * Returns mask of DISK_EVENT_*. 1615 * 1616 * Note: this function is invoked from the block subsystem. 1617 **/ 1618 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1619 { 1620 struct scsi_disk *sdkp = scsi_disk_get(disk); 1621 struct scsi_device *sdp; 1622 int retval; 1623 bool disk_changed; 1624 1625 if (!sdkp) 1626 return 0; 1627 1628 sdp = sdkp->device; 1629 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1630 1631 /* 1632 * If the device is offline, don't send any commands - just pretend as 1633 * if the command failed. If the device ever comes back online, we 1634 * can deal with it then. It is only because of unrecoverable errors 1635 * that we would ever take a device offline in the first place. 1636 */ 1637 if (!scsi_device_online(sdp)) { 1638 set_media_not_present(sdkp); 1639 goto out; 1640 } 1641 1642 /* 1643 * Using TEST_UNIT_READY enables differentiation between drive with 1644 * no cartridge loaded - NOT READY, drive with changed cartridge - 1645 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1646 * 1647 * Drives that auto spin down. eg iomega jaz 1G, will be started 1648 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1649 * sd_revalidate() is called. 1650 */ 1651 if (scsi_block_when_processing_errors(sdp)) { 1652 struct scsi_sense_hdr sshdr = { 0, }; 1653 1654 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1655 &sshdr); 1656 1657 /* failed to execute TUR, assume media not present */ 1658 if (retval < 0 || host_byte(retval)) { 1659 set_media_not_present(sdkp); 1660 goto out; 1661 } 1662 1663 if (media_not_present(sdkp, &sshdr)) 1664 goto out; 1665 } 1666 1667 /* 1668 * For removable scsi disk we have to recognise the presence 1669 * of a disk in the drive. 1670 */ 1671 if (!sdkp->media_present) 1672 sdp->changed = 1; 1673 sdkp->media_present = 1; 1674 out: 1675 /* 1676 * sdp->changed is set under the following conditions: 1677 * 1678 * Medium present state has changed in either direction. 1679 * Device has indicated UNIT_ATTENTION. 1680 */ 1681 disk_changed = sdp->changed; 1682 sdp->changed = 0; 1683 scsi_disk_put(sdkp); 1684 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1685 } 1686 1687 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1688 { 1689 int retries, res; 1690 struct scsi_device *sdp = sdkp->device; 1691 const int timeout = sdp->request_queue->rq_timeout 1692 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1693 struct scsi_sense_hdr my_sshdr; 1694 1695 if (!scsi_device_online(sdp)) 1696 return -ENODEV; 1697 1698 /* caller might not be interested in sense, but we need it */ 1699 if (!sshdr) 1700 sshdr = &my_sshdr; 1701 1702 for (retries = 3; retries > 0; --retries) { 1703 unsigned char cmd[10] = { 0 }; 1704 1705 cmd[0] = SYNCHRONIZE_CACHE; 1706 /* 1707 * Leave the rest of the command zero to indicate 1708 * flush everything. 1709 */ 1710 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1711 timeout, sdkp->max_retries, 0, RQF_PM, NULL); 1712 if (res == 0) 1713 break; 1714 } 1715 1716 if (res) { 1717 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1718 1719 if (res < 0) 1720 return res; 1721 1722 if (scsi_status_is_check_condition(res) && 1723 scsi_sense_valid(sshdr)) { 1724 sd_print_sense_hdr(sdkp, sshdr); 1725 1726 /* we need to evaluate the error return */ 1727 if (sshdr->asc == 0x3a || /* medium not present */ 1728 sshdr->asc == 0x20 || /* invalid command */ 1729 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1730 /* this is no error here */ 1731 return 0; 1732 } 1733 1734 switch (host_byte(res)) { 1735 /* ignore errors due to racing a disconnection */ 1736 case DID_BAD_TARGET: 1737 case DID_NO_CONNECT: 1738 return 0; 1739 /* signal the upper layer it might try again */ 1740 case DID_BUS_BUSY: 1741 case DID_IMM_RETRY: 1742 case DID_REQUEUE: 1743 case DID_SOFT_ERROR: 1744 return -EBUSY; 1745 default: 1746 return -EIO; 1747 } 1748 } 1749 return 0; 1750 } 1751 1752 static void sd_rescan(struct device *dev) 1753 { 1754 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1755 1756 sd_revalidate_disk(sdkp->disk); 1757 } 1758 1759 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1760 enum blk_unique_id type) 1761 { 1762 struct scsi_device *sdev = scsi_disk(disk)->device; 1763 const struct scsi_vpd *vpd; 1764 const unsigned char *d; 1765 int ret = -ENXIO, len; 1766 1767 rcu_read_lock(); 1768 vpd = rcu_dereference(sdev->vpd_pg83); 1769 if (!vpd) 1770 goto out_unlock; 1771 1772 ret = -EINVAL; 1773 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1774 /* we only care about designators with LU association */ 1775 if (((d[1] >> 4) & 0x3) != 0x00) 1776 continue; 1777 if ((d[1] & 0xf) != type) 1778 continue; 1779 1780 /* 1781 * Only exit early if a 16-byte descriptor was found. Otherwise 1782 * keep looking as one with more entropy might still show up. 1783 */ 1784 len = d[3]; 1785 if (len != 8 && len != 12 && len != 16) 1786 continue; 1787 ret = len; 1788 memcpy(id, d + 4, len); 1789 if (len == 16) 1790 break; 1791 } 1792 out_unlock: 1793 rcu_read_unlock(); 1794 return ret; 1795 } 1796 1797 static char sd_pr_type(enum pr_type type) 1798 { 1799 switch (type) { 1800 case PR_WRITE_EXCLUSIVE: 1801 return 0x01; 1802 case PR_EXCLUSIVE_ACCESS: 1803 return 0x03; 1804 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1805 return 0x05; 1806 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1807 return 0x06; 1808 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1809 return 0x07; 1810 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1811 return 0x08; 1812 default: 1813 return 0; 1814 } 1815 }; 1816 1817 static int sd_pr_command(struct block_device *bdev, u8 sa, 1818 u64 key, u64 sa_key, u8 type, u8 flags) 1819 { 1820 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1821 struct scsi_device *sdev = sdkp->device; 1822 struct scsi_sense_hdr sshdr; 1823 int result; 1824 u8 cmd[16] = { 0, }; 1825 u8 data[24] = { 0, }; 1826 1827 cmd[0] = PERSISTENT_RESERVE_OUT; 1828 cmd[1] = sa; 1829 cmd[2] = type; 1830 put_unaligned_be32(sizeof(data), &cmd[5]); 1831 1832 put_unaligned_be64(key, &data[0]); 1833 put_unaligned_be64(sa_key, &data[8]); 1834 data[20] = flags; 1835 1836 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1837 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL); 1838 1839 if (scsi_status_is_check_condition(result) && 1840 scsi_sense_valid(&sshdr)) { 1841 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1842 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1843 } 1844 1845 return result; 1846 } 1847 1848 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1849 u32 flags) 1850 { 1851 if (flags & ~PR_FL_IGNORE_KEY) 1852 return -EOPNOTSUPP; 1853 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1854 old_key, new_key, 0, 1855 (1 << 0) /* APTPL */); 1856 } 1857 1858 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1859 u32 flags) 1860 { 1861 if (flags) 1862 return -EOPNOTSUPP; 1863 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1864 } 1865 1866 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1867 { 1868 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1869 } 1870 1871 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1872 enum pr_type type, bool abort) 1873 { 1874 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1875 sd_pr_type(type), 0); 1876 } 1877 1878 static int sd_pr_clear(struct block_device *bdev, u64 key) 1879 { 1880 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1881 } 1882 1883 static const struct pr_ops sd_pr_ops = { 1884 .pr_register = sd_pr_register, 1885 .pr_reserve = sd_pr_reserve, 1886 .pr_release = sd_pr_release, 1887 .pr_preempt = sd_pr_preempt, 1888 .pr_clear = sd_pr_clear, 1889 }; 1890 1891 static const struct block_device_operations sd_fops = { 1892 .owner = THIS_MODULE, 1893 .open = sd_open, 1894 .release = sd_release, 1895 .ioctl = sd_ioctl, 1896 .getgeo = sd_getgeo, 1897 .compat_ioctl = blkdev_compat_ptr_ioctl, 1898 .check_events = sd_check_events, 1899 .unlock_native_capacity = sd_unlock_native_capacity, 1900 .report_zones = sd_zbc_report_zones, 1901 .get_unique_id = sd_get_unique_id, 1902 .pr_ops = &sd_pr_ops, 1903 }; 1904 1905 /** 1906 * sd_eh_reset - reset error handling callback 1907 * @scmd: sd-issued command that has failed 1908 * 1909 * This function is called by the SCSI midlayer before starting 1910 * SCSI EH. When counting medium access failures we have to be 1911 * careful to register it only only once per device and SCSI EH run; 1912 * there might be several timed out commands which will cause the 1913 * 'max_medium_access_timeouts' counter to trigger after the first 1914 * SCSI EH run already and set the device to offline. 1915 * So this function resets the internal counter before starting SCSI EH. 1916 **/ 1917 static void sd_eh_reset(struct scsi_cmnd *scmd) 1918 { 1919 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1920 1921 /* New SCSI EH run, reset gate variable */ 1922 sdkp->ignore_medium_access_errors = false; 1923 } 1924 1925 /** 1926 * sd_eh_action - error handling callback 1927 * @scmd: sd-issued command that has failed 1928 * @eh_disp: The recovery disposition suggested by the midlayer 1929 * 1930 * This function is called by the SCSI midlayer upon completion of an 1931 * error test command (currently TEST UNIT READY). The result of sending 1932 * the eh command is passed in eh_disp. We're looking for devices that 1933 * fail medium access commands but are OK with non access commands like 1934 * test unit ready (so wrongly see the device as having a successful 1935 * recovery) 1936 **/ 1937 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1938 { 1939 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1940 struct scsi_device *sdev = scmd->device; 1941 1942 if (!scsi_device_online(sdev) || 1943 !scsi_medium_access_command(scmd) || 1944 host_byte(scmd->result) != DID_TIME_OUT || 1945 eh_disp != SUCCESS) 1946 return eh_disp; 1947 1948 /* 1949 * The device has timed out executing a medium access command. 1950 * However, the TEST UNIT READY command sent during error 1951 * handling completed successfully. Either the device is in the 1952 * process of recovering or has it suffered an internal failure 1953 * that prevents access to the storage medium. 1954 */ 1955 if (!sdkp->ignore_medium_access_errors) { 1956 sdkp->medium_access_timed_out++; 1957 sdkp->ignore_medium_access_errors = true; 1958 } 1959 1960 /* 1961 * If the device keeps failing read/write commands but TEST UNIT 1962 * READY always completes successfully we assume that medium 1963 * access is no longer possible and take the device offline. 1964 */ 1965 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1966 scmd_printk(KERN_ERR, scmd, 1967 "Medium access timeout failure. Offlining disk!\n"); 1968 mutex_lock(&sdev->state_mutex); 1969 scsi_device_set_state(sdev, SDEV_OFFLINE); 1970 mutex_unlock(&sdev->state_mutex); 1971 1972 return SUCCESS; 1973 } 1974 1975 return eh_disp; 1976 } 1977 1978 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1979 { 1980 struct request *req = scsi_cmd_to_rq(scmd); 1981 struct scsi_device *sdev = scmd->device; 1982 unsigned int transferred, good_bytes; 1983 u64 start_lba, end_lba, bad_lba; 1984 1985 /* 1986 * Some commands have a payload smaller than the device logical 1987 * block size (e.g. INQUIRY on a 4K disk). 1988 */ 1989 if (scsi_bufflen(scmd) <= sdev->sector_size) 1990 return 0; 1991 1992 /* Check if we have a 'bad_lba' information */ 1993 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1994 SCSI_SENSE_BUFFERSIZE, 1995 &bad_lba)) 1996 return 0; 1997 1998 /* 1999 * If the bad lba was reported incorrectly, we have no idea where 2000 * the error is. 2001 */ 2002 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 2003 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 2004 if (bad_lba < start_lba || bad_lba >= end_lba) 2005 return 0; 2006 2007 /* 2008 * resid is optional but mostly filled in. When it's unused, 2009 * its value is zero, so we assume the whole buffer transferred 2010 */ 2011 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 2012 2013 /* This computation should always be done in terms of the 2014 * resolution of the device's medium. 2015 */ 2016 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2017 2018 return min(good_bytes, transferred); 2019 } 2020 2021 /** 2022 * sd_done - bottom half handler: called when the lower level 2023 * driver has completed (successfully or otherwise) a scsi command. 2024 * @SCpnt: mid-level's per command structure. 2025 * 2026 * Note: potentially run from within an ISR. Must not block. 2027 **/ 2028 static int sd_done(struct scsi_cmnd *SCpnt) 2029 { 2030 int result = SCpnt->result; 2031 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2032 unsigned int sector_size = SCpnt->device->sector_size; 2033 unsigned int resid; 2034 struct scsi_sense_hdr sshdr; 2035 struct request *req = scsi_cmd_to_rq(SCpnt); 2036 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 2037 int sense_valid = 0; 2038 int sense_deferred = 0; 2039 2040 switch (req_op(req)) { 2041 case REQ_OP_DISCARD: 2042 case REQ_OP_WRITE_ZEROES: 2043 case REQ_OP_WRITE_SAME: 2044 case REQ_OP_ZONE_RESET: 2045 case REQ_OP_ZONE_RESET_ALL: 2046 case REQ_OP_ZONE_OPEN: 2047 case REQ_OP_ZONE_CLOSE: 2048 case REQ_OP_ZONE_FINISH: 2049 if (!result) { 2050 good_bytes = blk_rq_bytes(req); 2051 scsi_set_resid(SCpnt, 0); 2052 } else { 2053 good_bytes = 0; 2054 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2055 } 2056 break; 2057 default: 2058 /* 2059 * In case of bogus fw or device, we could end up having 2060 * an unaligned partial completion. Check this here and force 2061 * alignment. 2062 */ 2063 resid = scsi_get_resid(SCpnt); 2064 if (resid & (sector_size - 1)) { 2065 sd_printk(KERN_INFO, sdkp, 2066 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2067 resid, sector_size); 2068 scsi_print_command(SCpnt); 2069 resid = min(scsi_bufflen(SCpnt), 2070 round_up(resid, sector_size)); 2071 scsi_set_resid(SCpnt, resid); 2072 } 2073 } 2074 2075 if (result) { 2076 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2077 if (sense_valid) 2078 sense_deferred = scsi_sense_is_deferred(&sshdr); 2079 } 2080 sdkp->medium_access_timed_out = 0; 2081 2082 if (!scsi_status_is_check_condition(result) && 2083 (!sense_valid || sense_deferred)) 2084 goto out; 2085 2086 switch (sshdr.sense_key) { 2087 case HARDWARE_ERROR: 2088 case MEDIUM_ERROR: 2089 good_bytes = sd_completed_bytes(SCpnt); 2090 break; 2091 case RECOVERED_ERROR: 2092 good_bytes = scsi_bufflen(SCpnt); 2093 break; 2094 case NO_SENSE: 2095 /* This indicates a false check condition, so ignore it. An 2096 * unknown amount of data was transferred so treat it as an 2097 * error. 2098 */ 2099 SCpnt->result = 0; 2100 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2101 break; 2102 case ABORTED_COMMAND: 2103 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2104 good_bytes = sd_completed_bytes(SCpnt); 2105 break; 2106 case ILLEGAL_REQUEST: 2107 switch (sshdr.asc) { 2108 case 0x10: /* DIX: Host detected corruption */ 2109 good_bytes = sd_completed_bytes(SCpnt); 2110 break; 2111 case 0x20: /* INVALID COMMAND OPCODE */ 2112 case 0x24: /* INVALID FIELD IN CDB */ 2113 switch (SCpnt->cmnd[0]) { 2114 case UNMAP: 2115 sd_config_discard(sdkp, SD_LBP_DISABLE); 2116 break; 2117 case WRITE_SAME_16: 2118 case WRITE_SAME: 2119 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2120 sd_config_discard(sdkp, SD_LBP_DISABLE); 2121 } else { 2122 sdkp->device->no_write_same = 1; 2123 sd_config_write_same(sdkp); 2124 req->rq_flags |= RQF_QUIET; 2125 } 2126 break; 2127 } 2128 } 2129 break; 2130 default: 2131 break; 2132 } 2133 2134 out: 2135 if (sd_is_zoned(sdkp)) 2136 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2137 2138 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2139 "sd_done: completed %d of %d bytes\n", 2140 good_bytes, scsi_bufflen(SCpnt))); 2141 2142 return good_bytes; 2143 } 2144 2145 /* 2146 * spinup disk - called only in sd_revalidate_disk() 2147 */ 2148 static void 2149 sd_spinup_disk(struct scsi_disk *sdkp) 2150 { 2151 unsigned char cmd[10]; 2152 unsigned long spintime_expire = 0; 2153 int retries, spintime; 2154 unsigned int the_result; 2155 struct scsi_sense_hdr sshdr; 2156 int sense_valid = 0; 2157 2158 spintime = 0; 2159 2160 /* Spin up drives, as required. Only do this at boot time */ 2161 /* Spinup needs to be done for module loads too. */ 2162 do { 2163 retries = 0; 2164 2165 do { 2166 bool media_was_present = sdkp->media_present; 2167 2168 cmd[0] = TEST_UNIT_READY; 2169 memset((void *) &cmd[1], 0, 9); 2170 2171 the_result = scsi_execute_req(sdkp->device, cmd, 2172 DMA_NONE, NULL, 0, 2173 &sshdr, SD_TIMEOUT, 2174 sdkp->max_retries, NULL); 2175 2176 /* 2177 * If the drive has indicated to us that it 2178 * doesn't have any media in it, don't bother 2179 * with any more polling. 2180 */ 2181 if (media_not_present(sdkp, &sshdr)) { 2182 if (media_was_present) 2183 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); 2184 return; 2185 } 2186 2187 if (the_result) 2188 sense_valid = scsi_sense_valid(&sshdr); 2189 retries++; 2190 } while (retries < 3 && 2191 (!scsi_status_is_good(the_result) || 2192 (scsi_status_is_check_condition(the_result) && 2193 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2194 2195 if (!scsi_status_is_check_condition(the_result)) { 2196 /* no sense, TUR either succeeded or failed 2197 * with a status error */ 2198 if(!spintime && !scsi_status_is_good(the_result)) { 2199 sd_print_result(sdkp, "Test Unit Ready failed", 2200 the_result); 2201 } 2202 break; 2203 } 2204 2205 /* 2206 * The device does not want the automatic start to be issued. 2207 */ 2208 if (sdkp->device->no_start_on_add) 2209 break; 2210 2211 if (sense_valid && sshdr.sense_key == NOT_READY) { 2212 if (sshdr.asc == 4 && sshdr.ascq == 3) 2213 break; /* manual intervention required */ 2214 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2215 break; /* standby */ 2216 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2217 break; /* unavailable */ 2218 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2219 break; /* sanitize in progress */ 2220 /* 2221 * Issue command to spin up drive when not ready 2222 */ 2223 if (!spintime) { 2224 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2225 cmd[0] = START_STOP; 2226 cmd[1] = 1; /* Return immediately */ 2227 memset((void *) &cmd[2], 0, 8); 2228 cmd[4] = 1; /* Start spin cycle */ 2229 if (sdkp->device->start_stop_pwr_cond) 2230 cmd[4] |= 1 << 4; 2231 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2232 NULL, 0, &sshdr, 2233 SD_TIMEOUT, sdkp->max_retries, 2234 NULL); 2235 spintime_expire = jiffies + 100 * HZ; 2236 spintime = 1; 2237 } 2238 /* Wait 1 second for next try */ 2239 msleep(1000); 2240 printk(KERN_CONT "."); 2241 2242 /* 2243 * Wait for USB flash devices with slow firmware. 2244 * Yes, this sense key/ASC combination shouldn't 2245 * occur here. It's characteristic of these devices. 2246 */ 2247 } else if (sense_valid && 2248 sshdr.sense_key == UNIT_ATTENTION && 2249 sshdr.asc == 0x28) { 2250 if (!spintime) { 2251 spintime_expire = jiffies + 5 * HZ; 2252 spintime = 1; 2253 } 2254 /* Wait 1 second for next try */ 2255 msleep(1000); 2256 } else { 2257 /* we don't understand the sense code, so it's 2258 * probably pointless to loop */ 2259 if(!spintime) { 2260 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2261 sd_print_sense_hdr(sdkp, &sshdr); 2262 } 2263 break; 2264 } 2265 2266 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2267 2268 if (spintime) { 2269 if (scsi_status_is_good(the_result)) 2270 printk(KERN_CONT "ready\n"); 2271 else 2272 printk(KERN_CONT "not responding...\n"); 2273 } 2274 } 2275 2276 /* 2277 * Determine whether disk supports Data Integrity Field. 2278 */ 2279 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2280 { 2281 struct scsi_device *sdp = sdkp->device; 2282 u8 type; 2283 int ret = 0; 2284 2285 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2286 sdkp->protection_type = 0; 2287 return ret; 2288 } 2289 2290 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2291 2292 if (type > T10_PI_TYPE3_PROTECTION) 2293 ret = -ENODEV; 2294 else if (scsi_host_dif_capable(sdp->host, type)) 2295 ret = 1; 2296 2297 if (sdkp->first_scan || type != sdkp->protection_type) 2298 switch (ret) { 2299 case -ENODEV: 2300 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2301 " protection type %u. Disabling disk!\n", 2302 type); 2303 break; 2304 case 1: 2305 sd_printk(KERN_NOTICE, sdkp, 2306 "Enabling DIF Type %u protection\n", type); 2307 break; 2308 case 0: 2309 sd_printk(KERN_NOTICE, sdkp, 2310 "Disabling DIF Type %u protection\n", type); 2311 break; 2312 } 2313 2314 sdkp->protection_type = type; 2315 2316 return ret; 2317 } 2318 2319 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2320 struct scsi_sense_hdr *sshdr, int sense_valid, 2321 int the_result) 2322 { 2323 if (sense_valid) 2324 sd_print_sense_hdr(sdkp, sshdr); 2325 else 2326 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2327 2328 /* 2329 * Set dirty bit for removable devices if not ready - 2330 * sometimes drives will not report this properly. 2331 */ 2332 if (sdp->removable && 2333 sense_valid && sshdr->sense_key == NOT_READY) 2334 set_media_not_present(sdkp); 2335 2336 /* 2337 * We used to set media_present to 0 here to indicate no media 2338 * in the drive, but some drives fail read capacity even with 2339 * media present, so we can't do that. 2340 */ 2341 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2342 } 2343 2344 #define RC16_LEN 32 2345 #if RC16_LEN > SD_BUF_SIZE 2346 #error RC16_LEN must not be more than SD_BUF_SIZE 2347 #endif 2348 2349 #define READ_CAPACITY_RETRIES_ON_RESET 10 2350 2351 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2352 unsigned char *buffer) 2353 { 2354 unsigned char cmd[16]; 2355 struct scsi_sense_hdr sshdr; 2356 int sense_valid = 0; 2357 int the_result; 2358 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2359 unsigned int alignment; 2360 unsigned long long lba; 2361 unsigned sector_size; 2362 2363 if (sdp->no_read_capacity_16) 2364 return -EINVAL; 2365 2366 do { 2367 memset(cmd, 0, 16); 2368 cmd[0] = SERVICE_ACTION_IN_16; 2369 cmd[1] = SAI_READ_CAPACITY_16; 2370 cmd[13] = RC16_LEN; 2371 memset(buffer, 0, RC16_LEN); 2372 2373 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2374 buffer, RC16_LEN, &sshdr, 2375 SD_TIMEOUT, sdkp->max_retries, NULL); 2376 2377 if (media_not_present(sdkp, &sshdr)) 2378 return -ENODEV; 2379 2380 if (the_result > 0) { 2381 sense_valid = scsi_sense_valid(&sshdr); 2382 if (sense_valid && 2383 sshdr.sense_key == ILLEGAL_REQUEST && 2384 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2385 sshdr.ascq == 0x00) 2386 /* Invalid Command Operation Code or 2387 * Invalid Field in CDB, just retry 2388 * silently with RC10 */ 2389 return -EINVAL; 2390 if (sense_valid && 2391 sshdr.sense_key == UNIT_ATTENTION && 2392 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2393 /* Device reset might occur several times, 2394 * give it one more chance */ 2395 if (--reset_retries > 0) 2396 continue; 2397 } 2398 retries--; 2399 2400 } while (the_result && retries); 2401 2402 if (the_result) { 2403 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2404 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2405 return -EINVAL; 2406 } 2407 2408 sector_size = get_unaligned_be32(&buffer[8]); 2409 lba = get_unaligned_be64(&buffer[0]); 2410 2411 if (sd_read_protection_type(sdkp, buffer) < 0) { 2412 sdkp->capacity = 0; 2413 return -ENODEV; 2414 } 2415 2416 /* Logical blocks per physical block exponent */ 2417 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2418 2419 /* RC basis */ 2420 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2421 2422 /* Lowest aligned logical block */ 2423 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2424 blk_queue_alignment_offset(sdp->request_queue, alignment); 2425 if (alignment && sdkp->first_scan) 2426 sd_printk(KERN_NOTICE, sdkp, 2427 "physical block alignment offset: %u\n", alignment); 2428 2429 if (buffer[14] & 0x80) { /* LBPME */ 2430 sdkp->lbpme = 1; 2431 2432 if (buffer[14] & 0x40) /* LBPRZ */ 2433 sdkp->lbprz = 1; 2434 2435 sd_config_discard(sdkp, SD_LBP_WS16); 2436 } 2437 2438 sdkp->capacity = lba + 1; 2439 return sector_size; 2440 } 2441 2442 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2443 unsigned char *buffer) 2444 { 2445 unsigned char cmd[16]; 2446 struct scsi_sense_hdr sshdr; 2447 int sense_valid = 0; 2448 int the_result; 2449 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2450 sector_t lba; 2451 unsigned sector_size; 2452 2453 do { 2454 cmd[0] = READ_CAPACITY; 2455 memset(&cmd[1], 0, 9); 2456 memset(buffer, 0, 8); 2457 2458 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2459 buffer, 8, &sshdr, 2460 SD_TIMEOUT, sdkp->max_retries, NULL); 2461 2462 if (media_not_present(sdkp, &sshdr)) 2463 return -ENODEV; 2464 2465 if (the_result > 0) { 2466 sense_valid = scsi_sense_valid(&sshdr); 2467 if (sense_valid && 2468 sshdr.sense_key == UNIT_ATTENTION && 2469 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2470 /* Device reset might occur several times, 2471 * give it one more chance */ 2472 if (--reset_retries > 0) 2473 continue; 2474 } 2475 retries--; 2476 2477 } while (the_result && retries); 2478 2479 if (the_result) { 2480 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2481 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2482 return -EINVAL; 2483 } 2484 2485 sector_size = get_unaligned_be32(&buffer[4]); 2486 lba = get_unaligned_be32(&buffer[0]); 2487 2488 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2489 /* Some buggy (usb cardreader) devices return an lba of 2490 0xffffffff when the want to report a size of 0 (with 2491 which they really mean no media is present) */ 2492 sdkp->capacity = 0; 2493 sdkp->physical_block_size = sector_size; 2494 return sector_size; 2495 } 2496 2497 sdkp->capacity = lba + 1; 2498 sdkp->physical_block_size = sector_size; 2499 return sector_size; 2500 } 2501 2502 static int sd_try_rc16_first(struct scsi_device *sdp) 2503 { 2504 if (sdp->host->max_cmd_len < 16) 2505 return 0; 2506 if (sdp->try_rc_10_first) 2507 return 0; 2508 if (sdp->scsi_level > SCSI_SPC_2) 2509 return 1; 2510 if (scsi_device_protection(sdp)) 2511 return 1; 2512 return 0; 2513 } 2514 2515 /* 2516 * read disk capacity 2517 */ 2518 static void 2519 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2520 { 2521 int sector_size; 2522 struct scsi_device *sdp = sdkp->device; 2523 2524 if (sd_try_rc16_first(sdp)) { 2525 sector_size = read_capacity_16(sdkp, sdp, buffer); 2526 if (sector_size == -EOVERFLOW) 2527 goto got_data; 2528 if (sector_size == -ENODEV) 2529 return; 2530 if (sector_size < 0) 2531 sector_size = read_capacity_10(sdkp, sdp, buffer); 2532 if (sector_size < 0) 2533 return; 2534 } else { 2535 sector_size = read_capacity_10(sdkp, sdp, buffer); 2536 if (sector_size == -EOVERFLOW) 2537 goto got_data; 2538 if (sector_size < 0) 2539 return; 2540 if ((sizeof(sdkp->capacity) > 4) && 2541 (sdkp->capacity > 0xffffffffULL)) { 2542 int old_sector_size = sector_size; 2543 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2544 "Trying to use READ CAPACITY(16).\n"); 2545 sector_size = read_capacity_16(sdkp, sdp, buffer); 2546 if (sector_size < 0) { 2547 sd_printk(KERN_NOTICE, sdkp, 2548 "Using 0xffffffff as device size\n"); 2549 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2550 sector_size = old_sector_size; 2551 goto got_data; 2552 } 2553 /* Remember that READ CAPACITY(16) succeeded */ 2554 sdp->try_rc_10_first = 0; 2555 } 2556 } 2557 2558 /* Some devices are known to return the total number of blocks, 2559 * not the highest block number. Some devices have versions 2560 * which do this and others which do not. Some devices we might 2561 * suspect of doing this but we don't know for certain. 2562 * 2563 * If we know the reported capacity is wrong, decrement it. If 2564 * we can only guess, then assume the number of blocks is even 2565 * (usually true but not always) and err on the side of lowering 2566 * the capacity. 2567 */ 2568 if (sdp->fix_capacity || 2569 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2570 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2571 "from its reported value: %llu\n", 2572 (unsigned long long) sdkp->capacity); 2573 --sdkp->capacity; 2574 } 2575 2576 got_data: 2577 if (sector_size == 0) { 2578 sector_size = 512; 2579 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2580 "assuming 512.\n"); 2581 } 2582 2583 if (sector_size != 512 && 2584 sector_size != 1024 && 2585 sector_size != 2048 && 2586 sector_size != 4096) { 2587 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2588 sector_size); 2589 /* 2590 * The user might want to re-format the drive with 2591 * a supported sectorsize. Once this happens, it 2592 * would be relatively trivial to set the thing up. 2593 * For this reason, we leave the thing in the table. 2594 */ 2595 sdkp->capacity = 0; 2596 /* 2597 * set a bogus sector size so the normal read/write 2598 * logic in the block layer will eventually refuse any 2599 * request on this device without tripping over power 2600 * of two sector size assumptions 2601 */ 2602 sector_size = 512; 2603 } 2604 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2605 blk_queue_physical_block_size(sdp->request_queue, 2606 sdkp->physical_block_size); 2607 sdkp->device->sector_size = sector_size; 2608 2609 if (sdkp->capacity > 0xffffffff) 2610 sdp->use_16_for_rw = 1; 2611 2612 } 2613 2614 /* 2615 * Print disk capacity 2616 */ 2617 static void 2618 sd_print_capacity(struct scsi_disk *sdkp, 2619 sector_t old_capacity) 2620 { 2621 int sector_size = sdkp->device->sector_size; 2622 char cap_str_2[10], cap_str_10[10]; 2623 2624 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2625 return; 2626 2627 string_get_size(sdkp->capacity, sector_size, 2628 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2629 string_get_size(sdkp->capacity, sector_size, 2630 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2631 2632 sd_printk(KERN_NOTICE, sdkp, 2633 "%llu %d-byte logical blocks: (%s/%s)\n", 2634 (unsigned long long)sdkp->capacity, 2635 sector_size, cap_str_10, cap_str_2); 2636 2637 if (sdkp->physical_block_size != sector_size) 2638 sd_printk(KERN_NOTICE, sdkp, 2639 "%u-byte physical blocks\n", 2640 sdkp->physical_block_size); 2641 } 2642 2643 /* called with buffer of length 512 */ 2644 static inline int 2645 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2646 unsigned char *buffer, int len, struct scsi_mode_data *data, 2647 struct scsi_sense_hdr *sshdr) 2648 { 2649 /* 2650 * If we must use MODE SENSE(10), make sure that the buffer length 2651 * is at least 8 bytes so that the mode sense header fits. 2652 */ 2653 if (sdkp->device->use_10_for_ms && len < 8) 2654 len = 8; 2655 2656 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2657 SD_TIMEOUT, sdkp->max_retries, data, 2658 sshdr); 2659 } 2660 2661 /* 2662 * read write protect setting, if possible - called only in sd_revalidate_disk() 2663 * called with buffer of length SD_BUF_SIZE 2664 */ 2665 static void 2666 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2667 { 2668 int res; 2669 struct scsi_device *sdp = sdkp->device; 2670 struct scsi_mode_data data; 2671 int old_wp = sdkp->write_prot; 2672 2673 set_disk_ro(sdkp->disk, 0); 2674 if (sdp->skip_ms_page_3f) { 2675 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2676 return; 2677 } 2678 2679 if (sdp->use_192_bytes_for_3f) { 2680 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2681 } else { 2682 /* 2683 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2684 * We have to start carefully: some devices hang if we ask 2685 * for more than is available. 2686 */ 2687 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2688 2689 /* 2690 * Second attempt: ask for page 0 When only page 0 is 2691 * implemented, a request for page 3F may return Sense Key 2692 * 5: Illegal Request, Sense Code 24: Invalid field in 2693 * CDB. 2694 */ 2695 if (res < 0) 2696 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2697 2698 /* 2699 * Third attempt: ask 255 bytes, as we did earlier. 2700 */ 2701 if (res < 0) 2702 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2703 &data, NULL); 2704 } 2705 2706 if (res < 0) { 2707 sd_first_printk(KERN_WARNING, sdkp, 2708 "Test WP failed, assume Write Enabled\n"); 2709 } else { 2710 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2711 set_disk_ro(sdkp->disk, sdkp->write_prot); 2712 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2713 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2714 sdkp->write_prot ? "on" : "off"); 2715 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2716 } 2717 } 2718 } 2719 2720 /* 2721 * sd_read_cache_type - called only from sd_revalidate_disk() 2722 * called with buffer of length SD_BUF_SIZE 2723 */ 2724 static void 2725 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2726 { 2727 int len = 0, res; 2728 struct scsi_device *sdp = sdkp->device; 2729 2730 int dbd; 2731 int modepage; 2732 int first_len; 2733 struct scsi_mode_data data; 2734 struct scsi_sense_hdr sshdr; 2735 int old_wce = sdkp->WCE; 2736 int old_rcd = sdkp->RCD; 2737 int old_dpofua = sdkp->DPOFUA; 2738 2739 2740 if (sdkp->cache_override) 2741 return; 2742 2743 first_len = 4; 2744 if (sdp->skip_ms_page_8) { 2745 if (sdp->type == TYPE_RBC) 2746 goto defaults; 2747 else { 2748 if (sdp->skip_ms_page_3f) 2749 goto defaults; 2750 modepage = 0x3F; 2751 if (sdp->use_192_bytes_for_3f) 2752 first_len = 192; 2753 dbd = 0; 2754 } 2755 } else if (sdp->type == TYPE_RBC) { 2756 modepage = 6; 2757 dbd = 8; 2758 } else { 2759 modepage = 8; 2760 dbd = 0; 2761 } 2762 2763 /* cautiously ask */ 2764 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2765 &data, &sshdr); 2766 2767 if (res < 0) 2768 goto bad_sense; 2769 2770 if (!data.header_length) { 2771 modepage = 6; 2772 first_len = 0; 2773 sd_first_printk(KERN_ERR, sdkp, 2774 "Missing header in MODE_SENSE response\n"); 2775 } 2776 2777 /* that went OK, now ask for the proper length */ 2778 len = data.length; 2779 2780 /* 2781 * We're only interested in the first three bytes, actually. 2782 * But the data cache page is defined for the first 20. 2783 */ 2784 if (len < 3) 2785 goto bad_sense; 2786 else if (len > SD_BUF_SIZE) { 2787 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2788 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2789 len = SD_BUF_SIZE; 2790 } 2791 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2792 len = 192; 2793 2794 /* Get the data */ 2795 if (len > first_len) 2796 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2797 &data, &sshdr); 2798 2799 if (!res) { 2800 int offset = data.header_length + data.block_descriptor_length; 2801 2802 while (offset < len) { 2803 u8 page_code = buffer[offset] & 0x3F; 2804 u8 spf = buffer[offset] & 0x40; 2805 2806 if (page_code == 8 || page_code == 6) { 2807 /* We're interested only in the first 3 bytes. 2808 */ 2809 if (len - offset <= 2) { 2810 sd_first_printk(KERN_ERR, sdkp, 2811 "Incomplete mode parameter " 2812 "data\n"); 2813 goto defaults; 2814 } else { 2815 modepage = page_code; 2816 goto Page_found; 2817 } 2818 } else { 2819 /* Go to the next page */ 2820 if (spf && len - offset > 3) 2821 offset += 4 + (buffer[offset+2] << 8) + 2822 buffer[offset+3]; 2823 else if (!spf && len - offset > 1) 2824 offset += 2 + buffer[offset+1]; 2825 else { 2826 sd_first_printk(KERN_ERR, sdkp, 2827 "Incomplete mode " 2828 "parameter data\n"); 2829 goto defaults; 2830 } 2831 } 2832 } 2833 2834 sd_first_printk(KERN_WARNING, sdkp, 2835 "No Caching mode page found\n"); 2836 goto defaults; 2837 2838 Page_found: 2839 if (modepage == 8) { 2840 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2841 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2842 } else { 2843 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2844 sdkp->RCD = 0; 2845 } 2846 2847 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2848 if (sdp->broken_fua) { 2849 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2850 sdkp->DPOFUA = 0; 2851 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2852 !sdkp->device->use_16_for_rw) { 2853 sd_first_printk(KERN_NOTICE, sdkp, 2854 "Uses READ/WRITE(6), disabling FUA\n"); 2855 sdkp->DPOFUA = 0; 2856 } 2857 2858 /* No cache flush allowed for write protected devices */ 2859 if (sdkp->WCE && sdkp->write_prot) 2860 sdkp->WCE = 0; 2861 2862 if (sdkp->first_scan || old_wce != sdkp->WCE || 2863 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2864 sd_printk(KERN_NOTICE, sdkp, 2865 "Write cache: %s, read cache: %s, %s\n", 2866 sdkp->WCE ? "enabled" : "disabled", 2867 sdkp->RCD ? "disabled" : "enabled", 2868 sdkp->DPOFUA ? "supports DPO and FUA" 2869 : "doesn't support DPO or FUA"); 2870 2871 return; 2872 } 2873 2874 bad_sense: 2875 if (scsi_sense_valid(&sshdr) && 2876 sshdr.sense_key == ILLEGAL_REQUEST && 2877 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2878 /* Invalid field in CDB */ 2879 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2880 else 2881 sd_first_printk(KERN_ERR, sdkp, 2882 "Asking for cache data failed\n"); 2883 2884 defaults: 2885 if (sdp->wce_default_on) { 2886 sd_first_printk(KERN_NOTICE, sdkp, 2887 "Assuming drive cache: write back\n"); 2888 sdkp->WCE = 1; 2889 } else { 2890 sd_first_printk(KERN_WARNING, sdkp, 2891 "Assuming drive cache: write through\n"); 2892 sdkp->WCE = 0; 2893 } 2894 sdkp->RCD = 0; 2895 sdkp->DPOFUA = 0; 2896 } 2897 2898 /* 2899 * The ATO bit indicates whether the DIF application tag is available 2900 * for use by the operating system. 2901 */ 2902 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2903 { 2904 int res, offset; 2905 struct scsi_device *sdp = sdkp->device; 2906 struct scsi_mode_data data; 2907 struct scsi_sense_hdr sshdr; 2908 2909 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2910 return; 2911 2912 if (sdkp->protection_type == 0) 2913 return; 2914 2915 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2916 sdkp->max_retries, &data, &sshdr); 2917 2918 if (res < 0 || !data.header_length || 2919 data.length < 6) { 2920 sd_first_printk(KERN_WARNING, sdkp, 2921 "getting Control mode page failed, assume no ATO\n"); 2922 2923 if (scsi_sense_valid(&sshdr)) 2924 sd_print_sense_hdr(sdkp, &sshdr); 2925 2926 return; 2927 } 2928 2929 offset = data.header_length + data.block_descriptor_length; 2930 2931 if ((buffer[offset] & 0x3f) != 0x0a) { 2932 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2933 return; 2934 } 2935 2936 if ((buffer[offset + 5] & 0x80) == 0) 2937 return; 2938 2939 sdkp->ATO = 1; 2940 2941 return; 2942 } 2943 2944 /** 2945 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2946 * @sdkp: disk to query 2947 */ 2948 static void sd_read_block_limits(struct scsi_disk *sdkp) 2949 { 2950 unsigned int sector_sz = sdkp->device->sector_size; 2951 const int vpd_len = 64; 2952 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2953 2954 if (!buffer || 2955 /* Block Limits VPD */ 2956 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2957 goto out; 2958 2959 blk_queue_io_min(sdkp->disk->queue, 2960 get_unaligned_be16(&buffer[6]) * sector_sz); 2961 2962 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2963 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2964 2965 if (buffer[3] == 0x3c) { 2966 unsigned int lba_count, desc_count; 2967 2968 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2969 2970 if (!sdkp->lbpme) 2971 goto out; 2972 2973 lba_count = get_unaligned_be32(&buffer[20]); 2974 desc_count = get_unaligned_be32(&buffer[24]); 2975 2976 if (lba_count && desc_count) 2977 sdkp->max_unmap_blocks = lba_count; 2978 2979 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2980 2981 if (buffer[32] & 0x80) 2982 sdkp->unmap_alignment = 2983 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2984 2985 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2986 2987 if (sdkp->max_unmap_blocks) 2988 sd_config_discard(sdkp, SD_LBP_UNMAP); 2989 else 2990 sd_config_discard(sdkp, SD_LBP_WS16); 2991 2992 } else { /* LBP VPD page tells us what to use */ 2993 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2994 sd_config_discard(sdkp, SD_LBP_UNMAP); 2995 else if (sdkp->lbpws) 2996 sd_config_discard(sdkp, SD_LBP_WS16); 2997 else if (sdkp->lbpws10) 2998 sd_config_discard(sdkp, SD_LBP_WS10); 2999 else 3000 sd_config_discard(sdkp, SD_LBP_DISABLE); 3001 } 3002 } 3003 3004 out: 3005 kfree(buffer); 3006 } 3007 3008 /** 3009 * sd_read_block_characteristics - Query block dev. characteristics 3010 * @sdkp: disk to query 3011 */ 3012 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 3013 { 3014 struct request_queue *q = sdkp->disk->queue; 3015 unsigned char *buffer; 3016 u16 rot; 3017 const int vpd_len = 64; 3018 3019 buffer = kmalloc(vpd_len, GFP_KERNEL); 3020 3021 if (!buffer || 3022 /* Block Device Characteristics VPD */ 3023 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 3024 goto out; 3025 3026 rot = get_unaligned_be16(&buffer[4]); 3027 3028 if (rot == 1) { 3029 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 3030 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 3031 } 3032 3033 if (sdkp->device->type == TYPE_ZBC) { 3034 /* Host-managed */ 3035 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM); 3036 } else { 3037 sdkp->zoned = (buffer[8] >> 4) & 3; 3038 if (sdkp->zoned == 1) { 3039 /* Host-aware */ 3040 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA); 3041 } else { 3042 /* Regular disk or drive managed disk */ 3043 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3044 } 3045 } 3046 3047 if (!sdkp->first_scan) 3048 goto out; 3049 3050 if (blk_queue_is_zoned(q)) { 3051 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3052 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3053 } else { 3054 if (sdkp->zoned == 1) 3055 sd_printk(KERN_NOTICE, sdkp, 3056 "Host-aware SMR disk used as regular disk\n"); 3057 else if (sdkp->zoned == 2) 3058 sd_printk(KERN_NOTICE, sdkp, 3059 "Drive-managed SMR disk\n"); 3060 } 3061 3062 out: 3063 kfree(buffer); 3064 } 3065 3066 /** 3067 * sd_read_block_provisioning - Query provisioning VPD page 3068 * @sdkp: disk to query 3069 */ 3070 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3071 { 3072 unsigned char *buffer; 3073 const int vpd_len = 8; 3074 3075 if (sdkp->lbpme == 0) 3076 return; 3077 3078 buffer = kmalloc(vpd_len, GFP_KERNEL); 3079 3080 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 3081 goto out; 3082 3083 sdkp->lbpvpd = 1; 3084 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 3085 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 3086 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 3087 3088 out: 3089 kfree(buffer); 3090 } 3091 3092 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3093 { 3094 struct scsi_device *sdev = sdkp->device; 3095 3096 if (sdev->host->no_write_same) { 3097 sdev->no_write_same = 1; 3098 3099 return; 3100 } 3101 3102 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3103 /* too large values might cause issues with arcmsr */ 3104 int vpd_buf_len = 64; 3105 3106 sdev->no_report_opcodes = 1; 3107 3108 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3109 * CODES is unsupported and the device has an ATA 3110 * Information VPD page (SAT). 3111 */ 3112 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3113 sdev->no_write_same = 1; 3114 } 3115 3116 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3117 sdkp->ws16 = 1; 3118 3119 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3120 sdkp->ws10 = 1; 3121 } 3122 3123 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3124 { 3125 struct scsi_device *sdev = sdkp->device; 3126 3127 if (!sdev->security_supported) 3128 return; 3129 3130 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3131 SECURITY_PROTOCOL_IN) == 1 && 3132 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3133 SECURITY_PROTOCOL_OUT) == 1) 3134 sdkp->security = 1; 3135 } 3136 3137 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3138 { 3139 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3140 } 3141 3142 /** 3143 * sd_read_cpr - Query concurrent positioning ranges 3144 * @sdkp: disk to query 3145 */ 3146 static void sd_read_cpr(struct scsi_disk *sdkp) 3147 { 3148 struct blk_independent_access_ranges *iars = NULL; 3149 unsigned char *buffer = NULL; 3150 unsigned int nr_cpr = 0; 3151 int i, vpd_len, buf_len = SD_BUF_SIZE; 3152 u8 *desc; 3153 3154 /* 3155 * We need to have the capacity set first for the block layer to be 3156 * able to check the ranges. 3157 */ 3158 if (sdkp->first_scan) 3159 return; 3160 3161 if (!sdkp->capacity) 3162 goto out; 3163 3164 /* 3165 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3166 * leading to a maximum page size of 64 + 256*32 bytes. 3167 */ 3168 buf_len = 64 + 256*32; 3169 buffer = kmalloc(buf_len, GFP_KERNEL); 3170 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3171 goto out; 3172 3173 /* We must have at least a 64B header and one 32B range descriptor */ 3174 vpd_len = get_unaligned_be16(&buffer[2]) + 3; 3175 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3176 sd_printk(KERN_ERR, sdkp, 3177 "Invalid Concurrent Positioning Ranges VPD page\n"); 3178 goto out; 3179 } 3180 3181 nr_cpr = (vpd_len - 64) / 32; 3182 if (nr_cpr == 1) { 3183 nr_cpr = 0; 3184 goto out; 3185 } 3186 3187 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3188 if (!iars) { 3189 nr_cpr = 0; 3190 goto out; 3191 } 3192 3193 desc = &buffer[64]; 3194 for (i = 0; i < nr_cpr; i++, desc += 32) { 3195 if (desc[0] != i) { 3196 sd_printk(KERN_ERR, sdkp, 3197 "Invalid Concurrent Positioning Range number\n"); 3198 nr_cpr = 0; 3199 break; 3200 } 3201 3202 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3203 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3204 } 3205 3206 out: 3207 disk_set_independent_access_ranges(sdkp->disk, iars); 3208 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3209 sd_printk(KERN_NOTICE, sdkp, 3210 "%u concurrent positioning ranges\n", nr_cpr); 3211 sdkp->nr_actuators = nr_cpr; 3212 } 3213 3214 kfree(buffer); 3215 } 3216 3217 /* 3218 * Determine the device's preferred I/O size for reads and writes 3219 * unless the reported value is unreasonably small, large, not a 3220 * multiple of the physical block size, or simply garbage. 3221 */ 3222 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3223 unsigned int dev_max) 3224 { 3225 struct scsi_device *sdp = sdkp->device; 3226 unsigned int opt_xfer_bytes = 3227 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3228 3229 if (sdkp->opt_xfer_blocks == 0) 3230 return false; 3231 3232 if (sdkp->opt_xfer_blocks > dev_max) { 3233 sd_first_printk(KERN_WARNING, sdkp, 3234 "Optimal transfer size %u logical blocks " \ 3235 "> dev_max (%u logical blocks)\n", 3236 sdkp->opt_xfer_blocks, dev_max); 3237 return false; 3238 } 3239 3240 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3241 sd_first_printk(KERN_WARNING, sdkp, 3242 "Optimal transfer size %u logical blocks " \ 3243 "> sd driver limit (%u logical blocks)\n", 3244 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3245 return false; 3246 } 3247 3248 if (opt_xfer_bytes < PAGE_SIZE) { 3249 sd_first_printk(KERN_WARNING, sdkp, 3250 "Optimal transfer size %u bytes < " \ 3251 "PAGE_SIZE (%u bytes)\n", 3252 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3253 return false; 3254 } 3255 3256 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3257 sd_first_printk(KERN_WARNING, sdkp, 3258 "Optimal transfer size %u bytes not a " \ 3259 "multiple of physical block size (%u bytes)\n", 3260 opt_xfer_bytes, sdkp->physical_block_size); 3261 return false; 3262 } 3263 3264 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3265 opt_xfer_bytes); 3266 return true; 3267 } 3268 3269 /** 3270 * sd_revalidate_disk - called the first time a new disk is seen, 3271 * performs disk spin up, read_capacity, etc. 3272 * @disk: struct gendisk we care about 3273 **/ 3274 static int sd_revalidate_disk(struct gendisk *disk) 3275 { 3276 struct scsi_disk *sdkp = scsi_disk(disk); 3277 struct scsi_device *sdp = sdkp->device; 3278 struct request_queue *q = sdkp->disk->queue; 3279 sector_t old_capacity = sdkp->capacity; 3280 unsigned char *buffer; 3281 unsigned int dev_max, rw_max; 3282 3283 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3284 "sd_revalidate_disk\n")); 3285 3286 /* 3287 * If the device is offline, don't try and read capacity or any 3288 * of the other niceties. 3289 */ 3290 if (!scsi_device_online(sdp)) 3291 goto out; 3292 3293 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3294 if (!buffer) { 3295 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3296 "allocation failure.\n"); 3297 goto out; 3298 } 3299 3300 sd_spinup_disk(sdkp); 3301 3302 /* 3303 * Without media there is no reason to ask; moreover, some devices 3304 * react badly if we do. 3305 */ 3306 if (sdkp->media_present) { 3307 sd_read_capacity(sdkp, buffer); 3308 3309 /* 3310 * set the default to rotational. All non-rotational devices 3311 * support the block characteristics VPD page, which will 3312 * cause this to be updated correctly and any device which 3313 * doesn't support it should be treated as rotational. 3314 */ 3315 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3316 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3317 3318 if (scsi_device_supports_vpd(sdp)) { 3319 sd_read_block_provisioning(sdkp); 3320 sd_read_block_limits(sdkp); 3321 sd_read_block_characteristics(sdkp); 3322 sd_zbc_read_zones(sdkp, buffer); 3323 } 3324 3325 sd_print_capacity(sdkp, old_capacity); 3326 3327 sd_read_write_protect_flag(sdkp, buffer); 3328 sd_read_cache_type(sdkp, buffer); 3329 sd_read_app_tag_own(sdkp, buffer); 3330 sd_read_write_same(sdkp, buffer); 3331 sd_read_security(sdkp, buffer); 3332 sd_read_cpr(sdkp); 3333 } 3334 3335 /* 3336 * We now have all cache related info, determine how we deal 3337 * with flush requests. 3338 */ 3339 sd_set_flush_flag(sdkp); 3340 3341 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3342 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3343 3344 /* Some devices report a maximum block count for READ/WRITE requests. */ 3345 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3346 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3347 3348 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3349 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3350 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3351 } else { 3352 q->limits.io_opt = 0; 3353 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3354 (sector_t)BLK_DEF_MAX_SECTORS); 3355 } 3356 3357 /* Do not exceed controller limit */ 3358 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3359 3360 /* 3361 * Only update max_sectors if previously unset or if the current value 3362 * exceeds the capabilities of the hardware. 3363 */ 3364 if (sdkp->first_scan || 3365 q->limits.max_sectors > q->limits.max_dev_sectors || 3366 q->limits.max_sectors > q->limits.max_hw_sectors) 3367 q->limits.max_sectors = rw_max; 3368 3369 sdkp->first_scan = 0; 3370 3371 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3372 sd_config_write_same(sdkp); 3373 kfree(buffer); 3374 3375 /* 3376 * For a zoned drive, revalidating the zones can be done only once 3377 * the gendisk capacity is set. So if this fails, set back the gendisk 3378 * capacity to 0. 3379 */ 3380 if (sd_zbc_revalidate_zones(sdkp)) 3381 set_capacity_and_notify(disk, 0); 3382 3383 out: 3384 return 0; 3385 } 3386 3387 /** 3388 * sd_unlock_native_capacity - unlock native capacity 3389 * @disk: struct gendisk to set capacity for 3390 * 3391 * Block layer calls this function if it detects that partitions 3392 * on @disk reach beyond the end of the device. If the SCSI host 3393 * implements ->unlock_native_capacity() method, it's invoked to 3394 * give it a chance to adjust the device capacity. 3395 * 3396 * CONTEXT: 3397 * Defined by block layer. Might sleep. 3398 */ 3399 static void sd_unlock_native_capacity(struct gendisk *disk) 3400 { 3401 struct scsi_device *sdev = scsi_disk(disk)->device; 3402 3403 if (sdev->host->hostt->unlock_native_capacity) 3404 sdev->host->hostt->unlock_native_capacity(sdev); 3405 } 3406 3407 /** 3408 * sd_format_disk_name - format disk name 3409 * @prefix: name prefix - ie. "sd" for SCSI disks 3410 * @index: index of the disk to format name for 3411 * @buf: output buffer 3412 * @buflen: length of the output buffer 3413 * 3414 * SCSI disk names starts at sda. The 26th device is sdz and the 3415 * 27th is sdaa. The last one for two lettered suffix is sdzz 3416 * which is followed by sdaaa. 3417 * 3418 * This is basically 26 base counting with one extra 'nil' entry 3419 * at the beginning from the second digit on and can be 3420 * determined using similar method as 26 base conversion with the 3421 * index shifted -1 after each digit is computed. 3422 * 3423 * CONTEXT: 3424 * Don't care. 3425 * 3426 * RETURNS: 3427 * 0 on success, -errno on failure. 3428 */ 3429 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3430 { 3431 const int base = 'z' - 'a' + 1; 3432 char *begin = buf + strlen(prefix); 3433 char *end = buf + buflen; 3434 char *p; 3435 int unit; 3436 3437 p = end - 1; 3438 *p = '\0'; 3439 unit = base; 3440 do { 3441 if (p == begin) 3442 return -EINVAL; 3443 *--p = 'a' + (index % unit); 3444 index = (index / unit) - 1; 3445 } while (index >= 0); 3446 3447 memmove(begin, p, end - p); 3448 memcpy(buf, prefix, strlen(prefix)); 3449 3450 return 0; 3451 } 3452 3453 /** 3454 * sd_probe - called during driver initialization and whenever a 3455 * new scsi device is attached to the system. It is called once 3456 * for each scsi device (not just disks) present. 3457 * @dev: pointer to device object 3458 * 3459 * Returns 0 if successful (or not interested in this scsi device 3460 * (e.g. scanner)); 1 when there is an error. 3461 * 3462 * Note: this function is invoked from the scsi mid-level. 3463 * This function sets up the mapping between a given 3464 * <host,channel,id,lun> (found in sdp) and new device name 3465 * (e.g. /dev/sda). More precisely it is the block device major 3466 * and minor number that is chosen here. 3467 * 3468 * Assume sd_probe is not re-entrant (for time being) 3469 * Also think about sd_probe() and sd_remove() running coincidentally. 3470 **/ 3471 static int sd_probe(struct device *dev) 3472 { 3473 struct scsi_device *sdp = to_scsi_device(dev); 3474 struct scsi_disk *sdkp; 3475 struct gendisk *gd; 3476 int index; 3477 int error; 3478 3479 scsi_autopm_get_device(sdp); 3480 error = -ENODEV; 3481 if (sdp->type != TYPE_DISK && 3482 sdp->type != TYPE_ZBC && 3483 sdp->type != TYPE_MOD && 3484 sdp->type != TYPE_RBC) 3485 goto out; 3486 3487 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3488 sdev_printk(KERN_WARNING, sdp, 3489 "Unsupported ZBC host-managed device.\n"); 3490 goto out; 3491 } 3492 3493 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3494 "sd_probe\n")); 3495 3496 error = -ENOMEM; 3497 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3498 if (!sdkp) 3499 goto out; 3500 3501 gd = __alloc_disk_node(sdp->request_queue, NUMA_NO_NODE, 3502 &sd_bio_compl_lkclass); 3503 if (!gd) 3504 goto out_free; 3505 3506 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3507 if (index < 0) { 3508 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3509 goto out_put; 3510 } 3511 3512 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3513 if (error) { 3514 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3515 goto out_free_index; 3516 } 3517 3518 sdkp->device = sdp; 3519 sdkp->driver = &sd_template; 3520 sdkp->disk = gd; 3521 sdkp->index = index; 3522 sdkp->max_retries = SD_MAX_RETRIES; 3523 atomic_set(&sdkp->openers, 0); 3524 atomic_set(&sdkp->device->ioerr_cnt, 0); 3525 3526 if (!sdp->request_queue->rq_timeout) { 3527 if (sdp->type != TYPE_MOD) 3528 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3529 else 3530 blk_queue_rq_timeout(sdp->request_queue, 3531 SD_MOD_TIMEOUT); 3532 } 3533 3534 device_initialize(&sdkp->dev); 3535 sdkp->dev.parent = get_device(dev); 3536 sdkp->dev.class = &sd_disk_class; 3537 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3538 3539 error = device_add(&sdkp->dev); 3540 if (error) { 3541 put_device(&sdkp->dev); 3542 goto out; 3543 } 3544 3545 dev_set_drvdata(dev, sdkp); 3546 3547 gd->major = sd_major((index & 0xf0) >> 4); 3548 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3549 gd->minors = SD_MINORS; 3550 3551 gd->fops = &sd_fops; 3552 gd->private_data = &sdkp->driver; 3553 3554 /* defaults, until the device tells us otherwise */ 3555 sdp->sector_size = 512; 3556 sdkp->capacity = 0; 3557 sdkp->media_present = 1; 3558 sdkp->write_prot = 0; 3559 sdkp->cache_override = 0; 3560 sdkp->WCE = 0; 3561 sdkp->RCD = 0; 3562 sdkp->ATO = 0; 3563 sdkp->first_scan = 1; 3564 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3565 3566 sd_revalidate_disk(gd); 3567 3568 if (sdp->removable) { 3569 gd->flags |= GENHD_FL_REMOVABLE; 3570 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3571 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3572 } 3573 3574 blk_pm_runtime_init(sdp->request_queue, dev); 3575 if (sdp->rpm_autosuspend) { 3576 pm_runtime_set_autosuspend_delay(dev, 3577 sdp->host->hostt->rpm_autosuspend_delay); 3578 } 3579 3580 error = device_add_disk(dev, gd, NULL); 3581 if (error) { 3582 put_device(&sdkp->dev); 3583 goto out; 3584 } 3585 3586 if (sdkp->capacity) 3587 sd_dif_config_host(sdkp); 3588 3589 sd_revalidate_disk(gd); 3590 3591 if (sdkp->security) { 3592 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3593 if (sdkp->opal_dev) 3594 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3595 } 3596 3597 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3598 sdp->removable ? "removable " : ""); 3599 scsi_autopm_put_device(sdp); 3600 3601 return 0; 3602 3603 out_free_index: 3604 ida_free(&sd_index_ida, index); 3605 out_put: 3606 put_disk(gd); 3607 out_free: 3608 sd_zbc_release_disk(sdkp); 3609 kfree(sdkp); 3610 out: 3611 scsi_autopm_put_device(sdp); 3612 return error; 3613 } 3614 3615 /** 3616 * sd_remove - called whenever a scsi disk (previously recognized by 3617 * sd_probe) is detached from the system. It is called (potentially 3618 * multiple times) during sd module unload. 3619 * @dev: pointer to device object 3620 * 3621 * Note: this function is invoked from the scsi mid-level. 3622 * This function potentially frees up a device name (e.g. /dev/sdc) 3623 * that could be re-used by a subsequent sd_probe(). 3624 * This function is not called when the built-in sd driver is "exit-ed". 3625 **/ 3626 static int sd_remove(struct device *dev) 3627 { 3628 struct scsi_disk *sdkp; 3629 3630 sdkp = dev_get_drvdata(dev); 3631 scsi_autopm_get_device(sdkp->device); 3632 3633 device_del(&sdkp->dev); 3634 del_gendisk(sdkp->disk); 3635 sd_shutdown(dev); 3636 3637 free_opal_dev(sdkp->opal_dev); 3638 3639 mutex_lock(&sd_ref_mutex); 3640 dev_set_drvdata(dev, NULL); 3641 put_device(&sdkp->dev); 3642 mutex_unlock(&sd_ref_mutex); 3643 3644 return 0; 3645 } 3646 3647 /** 3648 * scsi_disk_release - Called to free the scsi_disk structure 3649 * @dev: pointer to embedded class device 3650 * 3651 * sd_ref_mutex must be held entering this routine. Because it is 3652 * called on last put, you should always use the scsi_disk_get() 3653 * scsi_disk_put() helpers which manipulate the semaphore directly 3654 * and never do a direct put_device. 3655 **/ 3656 static void scsi_disk_release(struct device *dev) 3657 { 3658 struct scsi_disk *sdkp = to_scsi_disk(dev); 3659 struct gendisk *disk = sdkp->disk; 3660 struct request_queue *q = disk->queue; 3661 3662 ida_free(&sd_index_ida, sdkp->index); 3663 3664 /* 3665 * Wait until all requests that are in progress have completed. 3666 * This is necessary to avoid that e.g. scsi_end_request() crashes 3667 * due to clearing the disk->private_data pointer. Wait from inside 3668 * scsi_disk_release() instead of from sd_release() to avoid that 3669 * freezing and unfreezing the request queue affects user space I/O 3670 * in case multiple processes open a /dev/sd... node concurrently. 3671 */ 3672 blk_mq_freeze_queue(q); 3673 blk_mq_unfreeze_queue(q); 3674 3675 disk->private_data = NULL; 3676 put_disk(disk); 3677 put_device(&sdkp->device->sdev_gendev); 3678 3679 sd_zbc_release_disk(sdkp); 3680 3681 kfree(sdkp); 3682 } 3683 3684 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3685 { 3686 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3687 struct scsi_sense_hdr sshdr; 3688 struct scsi_device *sdp = sdkp->device; 3689 int res; 3690 3691 if (start) 3692 cmd[4] |= 1; /* START */ 3693 3694 if (sdp->start_stop_pwr_cond) 3695 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3696 3697 if (!scsi_device_online(sdp)) 3698 return -ENODEV; 3699 3700 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3701 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL); 3702 if (res) { 3703 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3704 if (res > 0 && scsi_sense_valid(&sshdr)) { 3705 sd_print_sense_hdr(sdkp, &sshdr); 3706 /* 0x3a is medium not present */ 3707 if (sshdr.asc == 0x3a) 3708 res = 0; 3709 } 3710 } 3711 3712 /* SCSI error codes must not go to the generic layer */ 3713 if (res) 3714 return -EIO; 3715 3716 return 0; 3717 } 3718 3719 /* 3720 * Send a SYNCHRONIZE CACHE instruction down to the device through 3721 * the normal SCSI command structure. Wait for the command to 3722 * complete. 3723 */ 3724 static void sd_shutdown(struct device *dev) 3725 { 3726 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3727 3728 if (!sdkp) 3729 return; /* this can happen */ 3730 3731 if (pm_runtime_suspended(dev)) 3732 return; 3733 3734 if (sdkp->WCE && sdkp->media_present) { 3735 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3736 sd_sync_cache(sdkp, NULL); 3737 } 3738 3739 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3740 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3741 sd_start_stop_device(sdkp, 0); 3742 } 3743 } 3744 3745 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3746 { 3747 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3748 struct scsi_sense_hdr sshdr; 3749 int ret = 0; 3750 3751 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3752 return 0; 3753 3754 if (sdkp->WCE && sdkp->media_present) { 3755 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3756 ret = sd_sync_cache(sdkp, &sshdr); 3757 3758 if (ret) { 3759 /* ignore OFFLINE device */ 3760 if (ret == -ENODEV) 3761 return 0; 3762 3763 if (!scsi_sense_valid(&sshdr) || 3764 sshdr.sense_key != ILLEGAL_REQUEST) 3765 return ret; 3766 3767 /* 3768 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3769 * doesn't support sync. There's not much to do and 3770 * suspend shouldn't fail. 3771 */ 3772 ret = 0; 3773 } 3774 } 3775 3776 if (sdkp->device->manage_start_stop) { 3777 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3778 /* an error is not worth aborting a system sleep */ 3779 ret = sd_start_stop_device(sdkp, 0); 3780 if (ignore_stop_errors) 3781 ret = 0; 3782 } 3783 3784 return ret; 3785 } 3786 3787 static int sd_suspend_system(struct device *dev) 3788 { 3789 if (pm_runtime_suspended(dev)) 3790 return 0; 3791 3792 return sd_suspend_common(dev, true); 3793 } 3794 3795 static int sd_suspend_runtime(struct device *dev) 3796 { 3797 return sd_suspend_common(dev, false); 3798 } 3799 3800 static int sd_resume(struct device *dev) 3801 { 3802 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3803 int ret; 3804 3805 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3806 return 0; 3807 3808 if (!sdkp->device->manage_start_stop) 3809 return 0; 3810 3811 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3812 ret = sd_start_stop_device(sdkp, 1); 3813 if (!ret) 3814 opal_unlock_from_suspend(sdkp->opal_dev); 3815 return ret; 3816 } 3817 3818 static int sd_resume_system(struct device *dev) 3819 { 3820 if (pm_runtime_suspended(dev)) 3821 return 0; 3822 3823 return sd_resume(dev); 3824 } 3825 3826 static int sd_resume_runtime(struct device *dev) 3827 { 3828 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3829 struct scsi_device *sdp; 3830 3831 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3832 return 0; 3833 3834 sdp = sdkp->device; 3835 3836 if (sdp->ignore_media_change) { 3837 /* clear the device's sense data */ 3838 static const u8 cmd[10] = { REQUEST_SENSE }; 3839 3840 if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, 3841 NULL, sdp->request_queue->rq_timeout, 1, 0, 3842 RQF_PM, NULL)) 3843 sd_printk(KERN_NOTICE, sdkp, 3844 "Failed to clear sense data\n"); 3845 } 3846 3847 return sd_resume(dev); 3848 } 3849 3850 /** 3851 * init_sd - entry point for this driver (both when built in or when 3852 * a module). 3853 * 3854 * Note: this function registers this driver with the scsi mid-level. 3855 **/ 3856 static int __init init_sd(void) 3857 { 3858 int majors = 0, i, err; 3859 3860 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3861 3862 for (i = 0; i < SD_MAJORS; i++) { 3863 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3864 continue; 3865 majors++; 3866 } 3867 3868 if (!majors) 3869 return -ENODEV; 3870 3871 err = class_register(&sd_disk_class); 3872 if (err) 3873 goto err_out; 3874 3875 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3876 0, 0, NULL); 3877 if (!sd_cdb_cache) { 3878 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3879 err = -ENOMEM; 3880 goto err_out_class; 3881 } 3882 3883 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3884 if (!sd_cdb_pool) { 3885 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3886 err = -ENOMEM; 3887 goto err_out_cache; 3888 } 3889 3890 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3891 if (!sd_page_pool) { 3892 printk(KERN_ERR "sd: can't init discard page pool\n"); 3893 err = -ENOMEM; 3894 goto err_out_ppool; 3895 } 3896 3897 err = scsi_register_driver(&sd_template.gendrv); 3898 if (err) 3899 goto err_out_driver; 3900 3901 return 0; 3902 3903 err_out_driver: 3904 mempool_destroy(sd_page_pool); 3905 3906 err_out_ppool: 3907 mempool_destroy(sd_cdb_pool); 3908 3909 err_out_cache: 3910 kmem_cache_destroy(sd_cdb_cache); 3911 3912 err_out_class: 3913 class_unregister(&sd_disk_class); 3914 err_out: 3915 for (i = 0; i < SD_MAJORS; i++) 3916 unregister_blkdev(sd_major(i), "sd"); 3917 return err; 3918 } 3919 3920 /** 3921 * exit_sd - exit point for this driver (when it is a module). 3922 * 3923 * Note: this function unregisters this driver from the scsi mid-level. 3924 **/ 3925 static void __exit exit_sd(void) 3926 { 3927 int i; 3928 3929 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3930 3931 scsi_unregister_driver(&sd_template.gendrv); 3932 mempool_destroy(sd_cdb_pool); 3933 mempool_destroy(sd_page_pool); 3934 kmem_cache_destroy(sd_cdb_cache); 3935 3936 class_unregister(&sd_disk_class); 3937 3938 for (i = 0; i < SD_MAJORS; i++) 3939 unregister_blkdev(sd_major(i), "sd"); 3940 } 3941 3942 module_init(init_sd); 3943 module_exit(exit_sd); 3944 3945 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3946 { 3947 scsi_print_sense_hdr(sdkp->device, 3948 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3949 } 3950 3951 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3952 { 3953 const char *hb_string = scsi_hostbyte_string(result); 3954 3955 if (hb_string) 3956 sd_printk(KERN_INFO, sdkp, 3957 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3958 hb_string ? hb_string : "invalid", 3959 "DRIVER_OK"); 3960 else 3961 sd_printk(KERN_INFO, sdkp, 3962 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 3963 msg, host_byte(result), "DRIVER_OK"); 3964 } 3965