xref: /openbmc/linux/drivers/scsi/sd.c (revision 2c6467d2)
1 /*
2  *      sd.c Copyright (C) 1992 Drew Eckhardt
3  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4  *
5  *      Linux scsi disk driver
6  *              Initial versions: Drew Eckhardt
7  *              Subsequent revisions: Eric Youngdale
8  *	Modification history:
9  *       - Drew Eckhardt <drew@colorado.edu> original
10  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11  *         outstanding request, and other enhancements.
12  *         Support loadable low-level scsi drivers.
13  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14  *         eight major numbers.
15  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17  *	   sd_init and cleanups.
18  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
19  *	   not being read in sd_open. Fix problem where removable media
20  *	   could be ejected after sd_open.
21  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24  *	   Support 32k/1M disks.
25  *
26  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
27  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
31  *	Note: when the logging level is set by the user, it must be greater
32  *	than the level indicated above to trigger output.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/mutex.h>
51 #include <linux/string_helpers.h>
52 #include <linux/async.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60 
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70 
71 #include "sd.h"
72 #include "scsi_priv.h"
73 #include "scsi_logging.h"
74 
75 MODULE_AUTHOR("Eric Youngdale");
76 MODULE_DESCRIPTION("SCSI disk (sd) driver");
77 MODULE_LICENSE("GPL");
78 
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
99 
100 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
101 #define SD_MINORS	16
102 #else
103 #define SD_MINORS	0
104 #endif
105 
106 static void sd_config_discard(struct scsi_disk *, unsigned int);
107 static void sd_config_write_same(struct scsi_disk *);
108 static int  sd_revalidate_disk(struct gendisk *);
109 static void sd_unlock_native_capacity(struct gendisk *disk);
110 static int  sd_probe(struct device *);
111 static int  sd_remove(struct device *);
112 static void sd_shutdown(struct device *);
113 static int sd_suspend_system(struct device *);
114 static int sd_suspend_runtime(struct device *);
115 static int sd_resume(struct device *);
116 static void sd_rescan(struct device *);
117 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
118 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
119 static int sd_done(struct scsi_cmnd *);
120 static void sd_eh_reset(struct scsi_cmnd *);
121 static int sd_eh_action(struct scsi_cmnd *, int);
122 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
123 static void scsi_disk_release(struct device *cdev);
124 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
125 static void sd_print_result(const struct scsi_disk *, const char *, int);
126 
127 static DEFINE_IDA(sd_index_ida);
128 
129 /* This semaphore is used to mediate the 0->1 reference get in the
130  * face of object destruction (i.e. we can't allow a get on an
131  * object after last put) */
132 static DEFINE_MUTEX(sd_ref_mutex);
133 
134 static struct kmem_cache *sd_cdb_cache;
135 static mempool_t *sd_cdb_pool;
136 static mempool_t *sd_page_pool;
137 
138 static const char *sd_cache_types[] = {
139 	"write through", "none", "write back",
140 	"write back, no read (daft)"
141 };
142 
143 static void sd_set_flush_flag(struct scsi_disk *sdkp)
144 {
145 	bool wc = false, fua = false;
146 
147 	if (sdkp->WCE) {
148 		wc = true;
149 		if (sdkp->DPOFUA)
150 			fua = true;
151 	}
152 
153 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
154 }
155 
156 static ssize_t
157 cache_type_store(struct device *dev, struct device_attribute *attr,
158 		 const char *buf, size_t count)
159 {
160 	int ct, rcd, wce, sp;
161 	struct scsi_disk *sdkp = to_scsi_disk(dev);
162 	struct scsi_device *sdp = sdkp->device;
163 	char buffer[64];
164 	char *buffer_data;
165 	struct scsi_mode_data data;
166 	struct scsi_sense_hdr sshdr;
167 	static const char temp[] = "temporary ";
168 	int len;
169 
170 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
171 		/* no cache control on RBC devices; theoretically they
172 		 * can do it, but there's probably so many exceptions
173 		 * it's not worth the risk */
174 		return -EINVAL;
175 
176 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
177 		buf += sizeof(temp) - 1;
178 		sdkp->cache_override = 1;
179 	} else {
180 		sdkp->cache_override = 0;
181 	}
182 
183 	ct = sysfs_match_string(sd_cache_types, buf);
184 	if (ct < 0)
185 		return -EINVAL;
186 
187 	rcd = ct & 0x01 ? 1 : 0;
188 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
189 
190 	if (sdkp->cache_override) {
191 		sdkp->WCE = wce;
192 		sdkp->RCD = rcd;
193 		sd_set_flush_flag(sdkp);
194 		return count;
195 	}
196 
197 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
198 			    SD_MAX_RETRIES, &data, NULL))
199 		return -EINVAL;
200 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
201 		  data.block_descriptor_length);
202 	buffer_data = buffer + data.header_length +
203 		data.block_descriptor_length;
204 	buffer_data[2] &= ~0x05;
205 	buffer_data[2] |= wce << 2 | rcd;
206 	sp = buffer_data[0] & 0x80 ? 1 : 0;
207 	buffer_data[0] &= ~0x80;
208 
209 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
210 			     SD_MAX_RETRIES, &data, &sshdr)) {
211 		if (scsi_sense_valid(&sshdr))
212 			sd_print_sense_hdr(sdkp, &sshdr);
213 		return -EINVAL;
214 	}
215 	revalidate_disk(sdkp->disk);
216 	return count;
217 }
218 
219 static ssize_t
220 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
221 		       char *buf)
222 {
223 	struct scsi_disk *sdkp = to_scsi_disk(dev);
224 	struct scsi_device *sdp = sdkp->device;
225 
226 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
227 }
228 
229 static ssize_t
230 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
231 			const char *buf, size_t count)
232 {
233 	struct scsi_disk *sdkp = to_scsi_disk(dev);
234 	struct scsi_device *sdp = sdkp->device;
235 	bool v;
236 
237 	if (!capable(CAP_SYS_ADMIN))
238 		return -EACCES;
239 
240 	if (kstrtobool(buf, &v))
241 		return -EINVAL;
242 
243 	sdp->manage_start_stop = v;
244 
245 	return count;
246 }
247 static DEVICE_ATTR_RW(manage_start_stop);
248 
249 static ssize_t
250 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
251 {
252 	struct scsi_disk *sdkp = to_scsi_disk(dev);
253 
254 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
255 }
256 
257 static ssize_t
258 allow_restart_store(struct device *dev, struct device_attribute *attr,
259 		    const char *buf, size_t count)
260 {
261 	bool v;
262 	struct scsi_disk *sdkp = to_scsi_disk(dev);
263 	struct scsi_device *sdp = sdkp->device;
264 
265 	if (!capable(CAP_SYS_ADMIN))
266 		return -EACCES;
267 
268 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
269 		return -EINVAL;
270 
271 	if (kstrtobool(buf, &v))
272 		return -EINVAL;
273 
274 	sdp->allow_restart = v;
275 
276 	return count;
277 }
278 static DEVICE_ATTR_RW(allow_restart);
279 
280 static ssize_t
281 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
282 {
283 	struct scsi_disk *sdkp = to_scsi_disk(dev);
284 	int ct = sdkp->RCD + 2*sdkp->WCE;
285 
286 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
287 }
288 static DEVICE_ATTR_RW(cache_type);
289 
290 static ssize_t
291 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
292 {
293 	struct scsi_disk *sdkp = to_scsi_disk(dev);
294 
295 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
296 }
297 static DEVICE_ATTR_RO(FUA);
298 
299 static ssize_t
300 protection_type_show(struct device *dev, struct device_attribute *attr,
301 		     char *buf)
302 {
303 	struct scsi_disk *sdkp = to_scsi_disk(dev);
304 
305 	return sprintf(buf, "%u\n", sdkp->protection_type);
306 }
307 
308 static ssize_t
309 protection_type_store(struct device *dev, struct device_attribute *attr,
310 		      const char *buf, size_t count)
311 {
312 	struct scsi_disk *sdkp = to_scsi_disk(dev);
313 	unsigned int val;
314 	int err;
315 
316 	if (!capable(CAP_SYS_ADMIN))
317 		return -EACCES;
318 
319 	err = kstrtouint(buf, 10, &val);
320 
321 	if (err)
322 		return err;
323 
324 	if (val <= T10_PI_TYPE3_PROTECTION)
325 		sdkp->protection_type = val;
326 
327 	return count;
328 }
329 static DEVICE_ATTR_RW(protection_type);
330 
331 static ssize_t
332 protection_mode_show(struct device *dev, struct device_attribute *attr,
333 		     char *buf)
334 {
335 	struct scsi_disk *sdkp = to_scsi_disk(dev);
336 	struct scsi_device *sdp = sdkp->device;
337 	unsigned int dif, dix;
338 
339 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
340 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
341 
342 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
343 		dif = 0;
344 		dix = 1;
345 	}
346 
347 	if (!dif && !dix)
348 		return sprintf(buf, "none\n");
349 
350 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
351 }
352 static DEVICE_ATTR_RO(protection_mode);
353 
354 static ssize_t
355 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
356 {
357 	struct scsi_disk *sdkp = to_scsi_disk(dev);
358 
359 	return sprintf(buf, "%u\n", sdkp->ATO);
360 }
361 static DEVICE_ATTR_RO(app_tag_own);
362 
363 static ssize_t
364 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
365 		       char *buf)
366 {
367 	struct scsi_disk *sdkp = to_scsi_disk(dev);
368 
369 	return sprintf(buf, "%u\n", sdkp->lbpme);
370 }
371 static DEVICE_ATTR_RO(thin_provisioning);
372 
373 /* sysfs_match_string() requires dense arrays */
374 static const char *lbp_mode[] = {
375 	[SD_LBP_FULL]		= "full",
376 	[SD_LBP_UNMAP]		= "unmap",
377 	[SD_LBP_WS16]		= "writesame_16",
378 	[SD_LBP_WS10]		= "writesame_10",
379 	[SD_LBP_ZERO]		= "writesame_zero",
380 	[SD_LBP_DISABLE]	= "disabled",
381 };
382 
383 static ssize_t
384 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
385 		       char *buf)
386 {
387 	struct scsi_disk *sdkp = to_scsi_disk(dev);
388 
389 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
390 }
391 
392 static ssize_t
393 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
394 			const char *buf, size_t count)
395 {
396 	struct scsi_disk *sdkp = to_scsi_disk(dev);
397 	struct scsi_device *sdp = sdkp->device;
398 	int mode;
399 
400 	if (!capable(CAP_SYS_ADMIN))
401 		return -EACCES;
402 
403 	if (sd_is_zoned(sdkp)) {
404 		sd_config_discard(sdkp, SD_LBP_DISABLE);
405 		return count;
406 	}
407 
408 	if (sdp->type != TYPE_DISK)
409 		return -EINVAL;
410 
411 	mode = sysfs_match_string(lbp_mode, buf);
412 	if (mode < 0)
413 		return -EINVAL;
414 
415 	sd_config_discard(sdkp, mode);
416 
417 	return count;
418 }
419 static DEVICE_ATTR_RW(provisioning_mode);
420 
421 /* sysfs_match_string() requires dense arrays */
422 static const char *zeroing_mode[] = {
423 	[SD_ZERO_WRITE]		= "write",
424 	[SD_ZERO_WS]		= "writesame",
425 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
426 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
427 };
428 
429 static ssize_t
430 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
431 		  char *buf)
432 {
433 	struct scsi_disk *sdkp = to_scsi_disk(dev);
434 
435 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
436 }
437 
438 static ssize_t
439 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
440 		   const char *buf, size_t count)
441 {
442 	struct scsi_disk *sdkp = to_scsi_disk(dev);
443 	int mode;
444 
445 	if (!capable(CAP_SYS_ADMIN))
446 		return -EACCES;
447 
448 	mode = sysfs_match_string(zeroing_mode, buf);
449 	if (mode < 0)
450 		return -EINVAL;
451 
452 	sdkp->zeroing_mode = mode;
453 
454 	return count;
455 }
456 static DEVICE_ATTR_RW(zeroing_mode);
457 
458 static ssize_t
459 max_medium_access_timeouts_show(struct device *dev,
460 				struct device_attribute *attr, char *buf)
461 {
462 	struct scsi_disk *sdkp = to_scsi_disk(dev);
463 
464 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
465 }
466 
467 static ssize_t
468 max_medium_access_timeouts_store(struct device *dev,
469 				 struct device_attribute *attr, const char *buf,
470 				 size_t count)
471 {
472 	struct scsi_disk *sdkp = to_scsi_disk(dev);
473 	int err;
474 
475 	if (!capable(CAP_SYS_ADMIN))
476 		return -EACCES;
477 
478 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
479 
480 	return err ? err : count;
481 }
482 static DEVICE_ATTR_RW(max_medium_access_timeouts);
483 
484 static ssize_t
485 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
486 			   char *buf)
487 {
488 	struct scsi_disk *sdkp = to_scsi_disk(dev);
489 
490 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
491 }
492 
493 static ssize_t
494 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
495 			    const char *buf, size_t count)
496 {
497 	struct scsi_disk *sdkp = to_scsi_disk(dev);
498 	struct scsi_device *sdp = sdkp->device;
499 	unsigned long max;
500 	int err;
501 
502 	if (!capable(CAP_SYS_ADMIN))
503 		return -EACCES;
504 
505 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
506 		return -EINVAL;
507 
508 	err = kstrtoul(buf, 10, &max);
509 
510 	if (err)
511 		return err;
512 
513 	if (max == 0)
514 		sdp->no_write_same = 1;
515 	else if (max <= SD_MAX_WS16_BLOCKS) {
516 		sdp->no_write_same = 0;
517 		sdkp->max_ws_blocks = max;
518 	}
519 
520 	sd_config_write_same(sdkp);
521 
522 	return count;
523 }
524 static DEVICE_ATTR_RW(max_write_same_blocks);
525 
526 static struct attribute *sd_disk_attrs[] = {
527 	&dev_attr_cache_type.attr,
528 	&dev_attr_FUA.attr,
529 	&dev_attr_allow_restart.attr,
530 	&dev_attr_manage_start_stop.attr,
531 	&dev_attr_protection_type.attr,
532 	&dev_attr_protection_mode.attr,
533 	&dev_attr_app_tag_own.attr,
534 	&dev_attr_thin_provisioning.attr,
535 	&dev_attr_provisioning_mode.attr,
536 	&dev_attr_zeroing_mode.attr,
537 	&dev_attr_max_write_same_blocks.attr,
538 	&dev_attr_max_medium_access_timeouts.attr,
539 	NULL,
540 };
541 ATTRIBUTE_GROUPS(sd_disk);
542 
543 static struct class sd_disk_class = {
544 	.name		= "scsi_disk",
545 	.owner		= THIS_MODULE,
546 	.dev_release	= scsi_disk_release,
547 	.dev_groups	= sd_disk_groups,
548 };
549 
550 static const struct dev_pm_ops sd_pm_ops = {
551 	.suspend		= sd_suspend_system,
552 	.resume			= sd_resume,
553 	.poweroff		= sd_suspend_system,
554 	.restore		= sd_resume,
555 	.runtime_suspend	= sd_suspend_runtime,
556 	.runtime_resume		= sd_resume,
557 };
558 
559 static struct scsi_driver sd_template = {
560 	.gendrv = {
561 		.name		= "sd",
562 		.owner		= THIS_MODULE,
563 		.probe		= sd_probe,
564 		.remove		= sd_remove,
565 		.shutdown	= sd_shutdown,
566 		.pm		= &sd_pm_ops,
567 	},
568 	.rescan			= sd_rescan,
569 	.init_command		= sd_init_command,
570 	.uninit_command		= sd_uninit_command,
571 	.done			= sd_done,
572 	.eh_action		= sd_eh_action,
573 	.eh_reset		= sd_eh_reset,
574 };
575 
576 /*
577  * Dummy kobj_map->probe function.
578  * The default ->probe function will call modprobe, which is
579  * pointless as this module is already loaded.
580  */
581 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
582 {
583 	return NULL;
584 }
585 
586 /*
587  * Device no to disk mapping:
588  *
589  *       major         disc2     disc  p1
590  *   |............|.............|....|....| <- dev_t
591  *    31        20 19          8 7  4 3  0
592  *
593  * Inside a major, we have 16k disks, however mapped non-
594  * contiguously. The first 16 disks are for major0, the next
595  * ones with major1, ... Disk 256 is for major0 again, disk 272
596  * for major1, ...
597  * As we stay compatible with our numbering scheme, we can reuse
598  * the well-know SCSI majors 8, 65--71, 136--143.
599  */
600 static int sd_major(int major_idx)
601 {
602 	switch (major_idx) {
603 	case 0:
604 		return SCSI_DISK0_MAJOR;
605 	case 1 ... 7:
606 		return SCSI_DISK1_MAJOR + major_idx - 1;
607 	case 8 ... 15:
608 		return SCSI_DISK8_MAJOR + major_idx - 8;
609 	default:
610 		BUG();
611 		return 0;	/* shut up gcc */
612 	}
613 }
614 
615 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
616 {
617 	struct scsi_disk *sdkp = NULL;
618 
619 	mutex_lock(&sd_ref_mutex);
620 
621 	if (disk->private_data) {
622 		sdkp = scsi_disk(disk);
623 		if (scsi_device_get(sdkp->device) == 0)
624 			get_device(&sdkp->dev);
625 		else
626 			sdkp = NULL;
627 	}
628 	mutex_unlock(&sd_ref_mutex);
629 	return sdkp;
630 }
631 
632 static void scsi_disk_put(struct scsi_disk *sdkp)
633 {
634 	struct scsi_device *sdev = sdkp->device;
635 
636 	mutex_lock(&sd_ref_mutex);
637 	put_device(&sdkp->dev);
638 	scsi_device_put(sdev);
639 	mutex_unlock(&sd_ref_mutex);
640 }
641 
642 #ifdef CONFIG_BLK_SED_OPAL
643 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
644 		size_t len, bool send)
645 {
646 	struct scsi_device *sdev = data;
647 	u8 cdb[12] = { 0, };
648 	int ret;
649 
650 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
651 	cdb[1] = secp;
652 	put_unaligned_be16(spsp, &cdb[2]);
653 	put_unaligned_be32(len, &cdb[6]);
654 
655 	ret = scsi_execute_req(sdev, cdb,
656 			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
657 			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
658 	return ret <= 0 ? ret : -EIO;
659 }
660 #endif /* CONFIG_BLK_SED_OPAL */
661 
662 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
663 					   unsigned int dix, unsigned int dif)
664 {
665 	struct bio *bio = scmd->request->bio;
666 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
667 	unsigned int protect = 0;
668 
669 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
670 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
671 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
672 
673 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
674 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
675 	}
676 
677 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
678 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
679 
680 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
681 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
682 	}
683 
684 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
685 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
686 
687 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
688 			protect = 3 << 5;	/* Disable target PI checking */
689 		else
690 			protect = 1 << 5;	/* Enable target PI checking */
691 	}
692 
693 	scsi_set_prot_op(scmd, prot_op);
694 	scsi_set_prot_type(scmd, dif);
695 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
696 
697 	return protect;
698 }
699 
700 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
701 {
702 	struct request_queue *q = sdkp->disk->queue;
703 	unsigned int logical_block_size = sdkp->device->sector_size;
704 	unsigned int max_blocks = 0;
705 
706 	q->limits.discard_alignment =
707 		sdkp->unmap_alignment * logical_block_size;
708 	q->limits.discard_granularity =
709 		max(sdkp->physical_block_size,
710 		    sdkp->unmap_granularity * logical_block_size);
711 	sdkp->provisioning_mode = mode;
712 
713 	switch (mode) {
714 
715 	case SD_LBP_FULL:
716 	case SD_LBP_DISABLE:
717 		blk_queue_max_discard_sectors(q, 0);
718 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
719 		return;
720 
721 	case SD_LBP_UNMAP:
722 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
723 					  (u32)SD_MAX_WS16_BLOCKS);
724 		break;
725 
726 	case SD_LBP_WS16:
727 		if (sdkp->device->unmap_limit_for_ws)
728 			max_blocks = sdkp->max_unmap_blocks;
729 		else
730 			max_blocks = sdkp->max_ws_blocks;
731 
732 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
733 		break;
734 
735 	case SD_LBP_WS10:
736 		if (sdkp->device->unmap_limit_for_ws)
737 			max_blocks = sdkp->max_unmap_blocks;
738 		else
739 			max_blocks = sdkp->max_ws_blocks;
740 
741 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
742 		break;
743 
744 	case SD_LBP_ZERO:
745 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
746 					  (u32)SD_MAX_WS10_BLOCKS);
747 		break;
748 	}
749 
750 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
751 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
752 }
753 
754 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
755 {
756 	struct scsi_device *sdp = cmd->device;
757 	struct request *rq = cmd->request;
758 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
759 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
760 	unsigned int data_len = 24;
761 	char *buf;
762 
763 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
764 	if (!rq->special_vec.bv_page)
765 		return BLK_STS_RESOURCE;
766 	clear_highpage(rq->special_vec.bv_page);
767 	rq->special_vec.bv_offset = 0;
768 	rq->special_vec.bv_len = data_len;
769 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
770 
771 	cmd->cmd_len = 10;
772 	cmd->cmnd[0] = UNMAP;
773 	cmd->cmnd[8] = 24;
774 
775 	buf = page_address(rq->special_vec.bv_page);
776 	put_unaligned_be16(6 + 16, &buf[0]);
777 	put_unaligned_be16(16, &buf[2]);
778 	put_unaligned_be64(sector, &buf[8]);
779 	put_unaligned_be32(nr_sectors, &buf[16]);
780 
781 	cmd->allowed = SD_MAX_RETRIES;
782 	cmd->transfersize = data_len;
783 	rq->timeout = SD_TIMEOUT;
784 	scsi_req(rq)->resid_len = data_len;
785 
786 	return scsi_init_io(cmd);
787 }
788 
789 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
790 		bool unmap)
791 {
792 	struct scsi_device *sdp = cmd->device;
793 	struct request *rq = cmd->request;
794 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
795 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
796 	u32 data_len = sdp->sector_size;
797 
798 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
799 	if (!rq->special_vec.bv_page)
800 		return BLK_STS_RESOURCE;
801 	clear_highpage(rq->special_vec.bv_page);
802 	rq->special_vec.bv_offset = 0;
803 	rq->special_vec.bv_len = data_len;
804 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
805 
806 	cmd->cmd_len = 16;
807 	cmd->cmnd[0] = WRITE_SAME_16;
808 	if (unmap)
809 		cmd->cmnd[1] = 0x8; /* UNMAP */
810 	put_unaligned_be64(sector, &cmd->cmnd[2]);
811 	put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
812 
813 	cmd->allowed = SD_MAX_RETRIES;
814 	cmd->transfersize = data_len;
815 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
816 	scsi_req(rq)->resid_len = data_len;
817 
818 	return scsi_init_io(cmd);
819 }
820 
821 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
822 		bool unmap)
823 {
824 	struct scsi_device *sdp = cmd->device;
825 	struct request *rq = cmd->request;
826 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
827 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
828 	u32 data_len = sdp->sector_size;
829 
830 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
831 	if (!rq->special_vec.bv_page)
832 		return BLK_STS_RESOURCE;
833 	clear_highpage(rq->special_vec.bv_page);
834 	rq->special_vec.bv_offset = 0;
835 	rq->special_vec.bv_len = data_len;
836 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
837 
838 	cmd->cmd_len = 10;
839 	cmd->cmnd[0] = WRITE_SAME;
840 	if (unmap)
841 		cmd->cmnd[1] = 0x8; /* UNMAP */
842 	put_unaligned_be32(sector, &cmd->cmnd[2]);
843 	put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
844 
845 	cmd->allowed = SD_MAX_RETRIES;
846 	cmd->transfersize = data_len;
847 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
848 	scsi_req(rq)->resid_len = data_len;
849 
850 	return scsi_init_io(cmd);
851 }
852 
853 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
854 {
855 	struct request *rq = cmd->request;
856 	struct scsi_device *sdp = cmd->device;
857 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
858 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
859 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
860 
861 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
862 		switch (sdkp->zeroing_mode) {
863 		case SD_ZERO_WS16_UNMAP:
864 			return sd_setup_write_same16_cmnd(cmd, true);
865 		case SD_ZERO_WS10_UNMAP:
866 			return sd_setup_write_same10_cmnd(cmd, true);
867 		}
868 	}
869 
870 	if (sdp->no_write_same)
871 		return BLK_STS_TARGET;
872 
873 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
874 		return sd_setup_write_same16_cmnd(cmd, false);
875 
876 	return sd_setup_write_same10_cmnd(cmd, false);
877 }
878 
879 static void sd_config_write_same(struct scsi_disk *sdkp)
880 {
881 	struct request_queue *q = sdkp->disk->queue;
882 	unsigned int logical_block_size = sdkp->device->sector_size;
883 
884 	if (sdkp->device->no_write_same) {
885 		sdkp->max_ws_blocks = 0;
886 		goto out;
887 	}
888 
889 	/* Some devices can not handle block counts above 0xffff despite
890 	 * supporting WRITE SAME(16). Consequently we default to 64k
891 	 * blocks per I/O unless the device explicitly advertises a
892 	 * bigger limit.
893 	 */
894 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
895 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
896 						   (u32)SD_MAX_WS16_BLOCKS);
897 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
898 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
899 						   (u32)SD_MAX_WS10_BLOCKS);
900 	else {
901 		sdkp->device->no_write_same = 1;
902 		sdkp->max_ws_blocks = 0;
903 	}
904 
905 	if (sdkp->lbprz && sdkp->lbpws)
906 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
907 	else if (sdkp->lbprz && sdkp->lbpws10)
908 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
909 	else if (sdkp->max_ws_blocks)
910 		sdkp->zeroing_mode = SD_ZERO_WS;
911 	else
912 		sdkp->zeroing_mode = SD_ZERO_WRITE;
913 
914 	if (sdkp->max_ws_blocks &&
915 	    sdkp->physical_block_size > logical_block_size) {
916 		/*
917 		 * Reporting a maximum number of blocks that is not aligned
918 		 * on the device physical size would cause a large write same
919 		 * request to be split into physically unaligned chunks by
920 		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
921 		 * even if the caller of these functions took care to align the
922 		 * large request. So make sure the maximum reported is aligned
923 		 * to the device physical block size. This is only an optional
924 		 * optimization for regular disks, but this is mandatory to
925 		 * avoid failure of large write same requests directed at
926 		 * sequential write required zones of host-managed ZBC disks.
927 		 */
928 		sdkp->max_ws_blocks =
929 			round_down(sdkp->max_ws_blocks,
930 				   bytes_to_logical(sdkp->device,
931 						    sdkp->physical_block_size));
932 	}
933 
934 out:
935 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
936 					 (logical_block_size >> 9));
937 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
938 					 (logical_block_size >> 9));
939 }
940 
941 /**
942  * sd_setup_write_same_cmnd - write the same data to multiple blocks
943  * @cmd: command to prepare
944  *
945  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
946  * the preference indicated by the target device.
947  **/
948 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
949 {
950 	struct request *rq = cmd->request;
951 	struct scsi_device *sdp = cmd->device;
952 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
953 	struct bio *bio = rq->bio;
954 	sector_t sector = blk_rq_pos(rq);
955 	unsigned int nr_sectors = blk_rq_sectors(rq);
956 	unsigned int nr_bytes = blk_rq_bytes(rq);
957 	blk_status_t ret;
958 
959 	if (sdkp->device->no_write_same)
960 		return BLK_STS_TARGET;
961 
962 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
963 
964 	sector >>= ilog2(sdp->sector_size) - 9;
965 	nr_sectors >>= ilog2(sdp->sector_size) - 9;
966 
967 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
968 
969 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
970 		cmd->cmd_len = 16;
971 		cmd->cmnd[0] = WRITE_SAME_16;
972 		put_unaligned_be64(sector, &cmd->cmnd[2]);
973 		put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
974 	} else {
975 		cmd->cmd_len = 10;
976 		cmd->cmnd[0] = WRITE_SAME;
977 		put_unaligned_be32(sector, &cmd->cmnd[2]);
978 		put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
979 	}
980 
981 	cmd->transfersize = sdp->sector_size;
982 	cmd->allowed = SD_MAX_RETRIES;
983 
984 	/*
985 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
986 	 * different from the amount of data actually written to the target.
987 	 *
988 	 * We set up __data_len to the amount of data transferred via the
989 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
990 	 * to transfer a single sector of data first, but then reset it to
991 	 * the amount of data to be written right after so that the I/O path
992 	 * knows how much to actually write.
993 	 */
994 	rq->__data_len = sdp->sector_size;
995 	ret = scsi_init_io(cmd);
996 	rq->__data_len = nr_bytes;
997 
998 	return ret;
999 }
1000 
1001 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1002 {
1003 	struct request *rq = cmd->request;
1004 
1005 	/* flush requests don't perform I/O, zero the S/G table */
1006 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1007 
1008 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1009 	cmd->cmd_len = 10;
1010 	cmd->transfersize = 0;
1011 	cmd->allowed = SD_MAX_RETRIES;
1012 
1013 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1014 	return BLK_STS_OK;
1015 }
1016 
1017 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
1018 {
1019 	struct request *rq = SCpnt->request;
1020 	struct scsi_device *sdp = SCpnt->device;
1021 	struct gendisk *disk = rq->rq_disk;
1022 	struct scsi_disk *sdkp = scsi_disk(disk);
1023 	sector_t block = blk_rq_pos(rq);
1024 	sector_t threshold;
1025 	unsigned int this_count = blk_rq_sectors(rq);
1026 	unsigned int dif, dix;
1027 	unsigned char protect;
1028 	blk_status_t ret;
1029 
1030 	ret = scsi_init_io(SCpnt);
1031 	if (ret != BLK_STS_OK)
1032 		return ret;
1033 	WARN_ON_ONCE(SCpnt != rq->special);
1034 
1035 	SCSI_LOG_HLQUEUE(1,
1036 		scmd_printk(KERN_INFO, SCpnt,
1037 			"%s: block=%llu, count=%d\n",
1038 			__func__, (unsigned long long)block, this_count));
1039 
1040 	if (!sdp || !scsi_device_online(sdp) ||
1041 	    block + blk_rq_sectors(rq) > get_capacity(disk)) {
1042 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1043 						"Finishing %u sectors\n",
1044 						blk_rq_sectors(rq)));
1045 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1046 						"Retry with 0x%p\n", SCpnt));
1047 		return BLK_STS_IOERR;
1048 	}
1049 
1050 	if (sdp->changed) {
1051 		/*
1052 		 * quietly refuse to do anything to a changed disc until
1053 		 * the changed bit has been reset
1054 		 */
1055 		/* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1056 		return BLK_STS_IOERR;
1057 	}
1058 
1059 	/*
1060 	 * Some SD card readers can't handle multi-sector accesses which touch
1061 	 * the last one or two hardware sectors.  Split accesses as needed.
1062 	 */
1063 	threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1064 		(sdp->sector_size / 512);
1065 
1066 	if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1067 		if (block < threshold) {
1068 			/* Access up to the threshold but not beyond */
1069 			this_count = threshold - block;
1070 		} else {
1071 			/* Access only a single hardware sector */
1072 			this_count = sdp->sector_size / 512;
1073 		}
1074 	}
1075 
1076 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1077 					(unsigned long long)block));
1078 
1079 	/*
1080 	 * If we have a 1K hardware sectorsize, prevent access to single
1081 	 * 512 byte sectors.  In theory we could handle this - in fact
1082 	 * the scsi cdrom driver must be able to handle this because
1083 	 * we typically use 1K blocksizes, and cdroms typically have
1084 	 * 2K hardware sectorsizes.  Of course, things are simpler
1085 	 * with the cdrom, since it is read-only.  For performance
1086 	 * reasons, the filesystems should be able to handle this
1087 	 * and not force the scsi disk driver to use bounce buffers
1088 	 * for this.
1089 	 */
1090 	if (sdp->sector_size == 1024) {
1091 		if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1092 			scmd_printk(KERN_ERR, SCpnt,
1093 				    "Bad block number requested\n");
1094 			return BLK_STS_IOERR;
1095 		}
1096 		block = block >> 1;
1097 		this_count = this_count >> 1;
1098 	}
1099 	if (sdp->sector_size == 2048) {
1100 		if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1101 			scmd_printk(KERN_ERR, SCpnt,
1102 				    "Bad block number requested\n");
1103 			return BLK_STS_IOERR;
1104 		}
1105 		block = block >> 2;
1106 		this_count = this_count >> 2;
1107 	}
1108 	if (sdp->sector_size == 4096) {
1109 		if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1110 			scmd_printk(KERN_ERR, SCpnt,
1111 				    "Bad block number requested\n");
1112 			return BLK_STS_IOERR;
1113 		}
1114 		block = block >> 3;
1115 		this_count = this_count >> 3;
1116 	}
1117 	if (rq_data_dir(rq) == WRITE) {
1118 		SCpnt->cmnd[0] = WRITE_6;
1119 
1120 		if (blk_integrity_rq(rq))
1121 			t10_pi_prepare(SCpnt->request, sdkp->protection_type);
1122 
1123 	} else if (rq_data_dir(rq) == READ) {
1124 		SCpnt->cmnd[0] = READ_6;
1125 	} else {
1126 		scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1127 		return BLK_STS_IOERR;
1128 	}
1129 
1130 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1131 					"%s %d/%u 512 byte blocks.\n",
1132 					(rq_data_dir(rq) == WRITE) ?
1133 					"writing" : "reading", this_count,
1134 					blk_rq_sectors(rq)));
1135 
1136 	dix = scsi_prot_sg_count(SCpnt);
1137 	dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1138 
1139 	if (dif || dix)
1140 		protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1141 	else
1142 		protect = 0;
1143 
1144 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1145 		SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1146 
1147 		if (unlikely(!SCpnt->cmnd))
1148 			return BLK_STS_RESOURCE;
1149 
1150 		SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1151 		memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1152 		SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1153 		SCpnt->cmnd[7] = 0x18;
1154 		SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1155 		SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1156 
1157 		/* LBA */
1158 		SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1159 		SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1160 		SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1161 		SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1162 		SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1163 		SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1164 		SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1165 		SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1166 
1167 		/* Expected Indirect LBA */
1168 		SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1169 		SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1170 		SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1171 		SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1172 
1173 		/* Transfer length */
1174 		SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1175 		SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1176 		SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1177 		SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1178 	} else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1179 		SCpnt->cmnd[0] += READ_16 - READ_6;
1180 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1181 		SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1182 		SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1183 		SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1184 		SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1185 		SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1186 		SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1187 		SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1188 		SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1189 		SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1190 		SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1191 		SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1192 		SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1193 		SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1194 	} else if ((this_count > 0xff) || (block > 0x1fffff) ||
1195 		   scsi_device_protection(SCpnt->device) ||
1196 		   SCpnt->device->use_10_for_rw) {
1197 		SCpnt->cmnd[0] += READ_10 - READ_6;
1198 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1199 		SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1200 		SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1201 		SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1202 		SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1203 		SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1204 		SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1205 		SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1206 	} else {
1207 		if (unlikely(rq->cmd_flags & REQ_FUA)) {
1208 			/*
1209 			 * This happens only if this drive failed
1210 			 * 10byte rw command with ILLEGAL_REQUEST
1211 			 * during operation and thus turned off
1212 			 * use_10_for_rw.
1213 			 */
1214 			scmd_printk(KERN_ERR, SCpnt,
1215 				    "FUA write on READ/WRITE(6) drive\n");
1216 			return BLK_STS_IOERR;
1217 		}
1218 
1219 		SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1220 		SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1221 		SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1222 		SCpnt->cmnd[4] = (unsigned char) this_count;
1223 		SCpnt->cmnd[5] = 0;
1224 	}
1225 	SCpnt->sdb.length = this_count * sdp->sector_size;
1226 
1227 	/*
1228 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1229 	 * host adapter, it's safe to assume that we can at least transfer
1230 	 * this many bytes between each connect / disconnect.
1231 	 */
1232 	SCpnt->transfersize = sdp->sector_size;
1233 	SCpnt->underflow = this_count << 9;
1234 	SCpnt->allowed = SD_MAX_RETRIES;
1235 
1236 	/*
1237 	 * This indicates that the command is ready from our end to be
1238 	 * queued.
1239 	 */
1240 	return BLK_STS_OK;
1241 }
1242 
1243 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1244 {
1245 	struct request *rq = cmd->request;
1246 
1247 	switch (req_op(rq)) {
1248 	case REQ_OP_DISCARD:
1249 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1250 		case SD_LBP_UNMAP:
1251 			return sd_setup_unmap_cmnd(cmd);
1252 		case SD_LBP_WS16:
1253 			return sd_setup_write_same16_cmnd(cmd, true);
1254 		case SD_LBP_WS10:
1255 			return sd_setup_write_same10_cmnd(cmd, true);
1256 		case SD_LBP_ZERO:
1257 			return sd_setup_write_same10_cmnd(cmd, false);
1258 		default:
1259 			return BLK_STS_TARGET;
1260 		}
1261 	case REQ_OP_WRITE_ZEROES:
1262 		return sd_setup_write_zeroes_cmnd(cmd);
1263 	case REQ_OP_WRITE_SAME:
1264 		return sd_setup_write_same_cmnd(cmd);
1265 	case REQ_OP_FLUSH:
1266 		return sd_setup_flush_cmnd(cmd);
1267 	case REQ_OP_READ:
1268 	case REQ_OP_WRITE:
1269 		return sd_setup_read_write_cmnd(cmd);
1270 	case REQ_OP_ZONE_RESET:
1271 		return sd_zbc_setup_reset_cmnd(cmd);
1272 	default:
1273 		WARN_ON_ONCE(1);
1274 		return BLK_STS_NOTSUPP;
1275 	}
1276 }
1277 
1278 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1279 {
1280 	struct request *rq = SCpnt->request;
1281 	u8 *cmnd;
1282 
1283 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1284 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1285 
1286 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1287 		cmnd = SCpnt->cmnd;
1288 		SCpnt->cmnd = NULL;
1289 		SCpnt->cmd_len = 0;
1290 		mempool_free(cmnd, sd_cdb_pool);
1291 	}
1292 }
1293 
1294 /**
1295  *	sd_open - open a scsi disk device
1296  *	@bdev: Block device of the scsi disk to open
1297  *	@mode: FMODE_* mask
1298  *
1299  *	Returns 0 if successful. Returns a negated errno value in case
1300  *	of error.
1301  *
1302  *	Note: This can be called from a user context (e.g. fsck(1) )
1303  *	or from within the kernel (e.g. as a result of a mount(1) ).
1304  *	In the latter case @inode and @filp carry an abridged amount
1305  *	of information as noted above.
1306  *
1307  *	Locking: called with bdev->bd_mutex held.
1308  **/
1309 static int sd_open(struct block_device *bdev, fmode_t mode)
1310 {
1311 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1312 	struct scsi_device *sdev;
1313 	int retval;
1314 
1315 	if (!sdkp)
1316 		return -ENXIO;
1317 
1318 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1319 
1320 	sdev = sdkp->device;
1321 
1322 	/*
1323 	 * If the device is in error recovery, wait until it is done.
1324 	 * If the device is offline, then disallow any access to it.
1325 	 */
1326 	retval = -ENXIO;
1327 	if (!scsi_block_when_processing_errors(sdev))
1328 		goto error_out;
1329 
1330 	if (sdev->removable || sdkp->write_prot)
1331 		check_disk_change(bdev);
1332 
1333 	/*
1334 	 * If the drive is empty, just let the open fail.
1335 	 */
1336 	retval = -ENOMEDIUM;
1337 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1338 		goto error_out;
1339 
1340 	/*
1341 	 * If the device has the write protect tab set, have the open fail
1342 	 * if the user expects to be able to write to the thing.
1343 	 */
1344 	retval = -EROFS;
1345 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1346 		goto error_out;
1347 
1348 	/*
1349 	 * It is possible that the disk changing stuff resulted in
1350 	 * the device being taken offline.  If this is the case,
1351 	 * report this to the user, and don't pretend that the
1352 	 * open actually succeeded.
1353 	 */
1354 	retval = -ENXIO;
1355 	if (!scsi_device_online(sdev))
1356 		goto error_out;
1357 
1358 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1359 		if (scsi_block_when_processing_errors(sdev))
1360 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1361 	}
1362 
1363 	return 0;
1364 
1365 error_out:
1366 	scsi_disk_put(sdkp);
1367 	return retval;
1368 }
1369 
1370 /**
1371  *	sd_release - invoked when the (last) close(2) is called on this
1372  *	scsi disk.
1373  *	@disk: disk to release
1374  *	@mode: FMODE_* mask
1375  *
1376  *	Returns 0.
1377  *
1378  *	Note: may block (uninterruptible) if error recovery is underway
1379  *	on this disk.
1380  *
1381  *	Locking: called with bdev->bd_mutex held.
1382  **/
1383 static void sd_release(struct gendisk *disk, fmode_t mode)
1384 {
1385 	struct scsi_disk *sdkp = scsi_disk(disk);
1386 	struct scsi_device *sdev = sdkp->device;
1387 
1388 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1389 
1390 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1391 		if (scsi_block_when_processing_errors(sdev))
1392 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1393 	}
1394 
1395 	/*
1396 	 * XXX and what if there are packets in flight and this close()
1397 	 * XXX is followed by a "rmmod sd_mod"?
1398 	 */
1399 
1400 	scsi_disk_put(sdkp);
1401 }
1402 
1403 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1404 {
1405 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1406 	struct scsi_device *sdp = sdkp->device;
1407 	struct Scsi_Host *host = sdp->host;
1408 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1409 	int diskinfo[4];
1410 
1411 	/* default to most commonly used values */
1412 	diskinfo[0] = 0x40;	/* 1 << 6 */
1413 	diskinfo[1] = 0x20;	/* 1 << 5 */
1414 	diskinfo[2] = capacity >> 11;
1415 
1416 	/* override with calculated, extended default, or driver values */
1417 	if (host->hostt->bios_param)
1418 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1419 	else
1420 		scsicam_bios_param(bdev, capacity, diskinfo);
1421 
1422 	geo->heads = diskinfo[0];
1423 	geo->sectors = diskinfo[1];
1424 	geo->cylinders = diskinfo[2];
1425 	return 0;
1426 }
1427 
1428 /**
1429  *	sd_ioctl - process an ioctl
1430  *	@bdev: target block device
1431  *	@mode: FMODE_* mask
1432  *	@cmd: ioctl command number
1433  *	@arg: this is third argument given to ioctl(2) system call.
1434  *	Often contains a pointer.
1435  *
1436  *	Returns 0 if successful (some ioctls return positive numbers on
1437  *	success as well). Returns a negated errno value in case of error.
1438  *
1439  *	Note: most ioctls are forward onto the block subsystem or further
1440  *	down in the scsi subsystem.
1441  **/
1442 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1443 		    unsigned int cmd, unsigned long arg)
1444 {
1445 	struct gendisk *disk = bdev->bd_disk;
1446 	struct scsi_disk *sdkp = scsi_disk(disk);
1447 	struct scsi_device *sdp = sdkp->device;
1448 	void __user *p = (void __user *)arg;
1449 	int error;
1450 
1451 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1452 				    "cmd=0x%x\n", disk->disk_name, cmd));
1453 
1454 	error = scsi_verify_blk_ioctl(bdev, cmd);
1455 	if (error < 0)
1456 		return error;
1457 
1458 	/*
1459 	 * If we are in the middle of error recovery, don't let anyone
1460 	 * else try and use this device.  Also, if error recovery fails, it
1461 	 * may try and take the device offline, in which case all further
1462 	 * access to the device is prohibited.
1463 	 */
1464 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1465 			(mode & FMODE_NDELAY) != 0);
1466 	if (error)
1467 		goto out;
1468 
1469 	if (is_sed_ioctl(cmd))
1470 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1471 
1472 	/*
1473 	 * Send SCSI addressing ioctls directly to mid level, send other
1474 	 * ioctls to block level and then onto mid level if they can't be
1475 	 * resolved.
1476 	 */
1477 	switch (cmd) {
1478 		case SCSI_IOCTL_GET_IDLUN:
1479 		case SCSI_IOCTL_GET_BUS_NUMBER:
1480 			error = scsi_ioctl(sdp, cmd, p);
1481 			break;
1482 		default:
1483 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1484 			if (error != -ENOTTY)
1485 				break;
1486 			error = scsi_ioctl(sdp, cmd, p);
1487 			break;
1488 	}
1489 out:
1490 	return error;
1491 }
1492 
1493 static void set_media_not_present(struct scsi_disk *sdkp)
1494 {
1495 	if (sdkp->media_present)
1496 		sdkp->device->changed = 1;
1497 
1498 	if (sdkp->device->removable) {
1499 		sdkp->media_present = 0;
1500 		sdkp->capacity = 0;
1501 	}
1502 }
1503 
1504 static int media_not_present(struct scsi_disk *sdkp,
1505 			     struct scsi_sense_hdr *sshdr)
1506 {
1507 	if (!scsi_sense_valid(sshdr))
1508 		return 0;
1509 
1510 	/* not invoked for commands that could return deferred errors */
1511 	switch (sshdr->sense_key) {
1512 	case UNIT_ATTENTION:
1513 	case NOT_READY:
1514 		/* medium not present */
1515 		if (sshdr->asc == 0x3A) {
1516 			set_media_not_present(sdkp);
1517 			return 1;
1518 		}
1519 	}
1520 	return 0;
1521 }
1522 
1523 /**
1524  *	sd_check_events - check media events
1525  *	@disk: kernel device descriptor
1526  *	@clearing: disk events currently being cleared
1527  *
1528  *	Returns mask of DISK_EVENT_*.
1529  *
1530  *	Note: this function is invoked from the block subsystem.
1531  **/
1532 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1533 {
1534 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1535 	struct scsi_device *sdp;
1536 	int retval;
1537 
1538 	if (!sdkp)
1539 		return 0;
1540 
1541 	sdp = sdkp->device;
1542 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1543 
1544 	/*
1545 	 * If the device is offline, don't send any commands - just pretend as
1546 	 * if the command failed.  If the device ever comes back online, we
1547 	 * can deal with it then.  It is only because of unrecoverable errors
1548 	 * that we would ever take a device offline in the first place.
1549 	 */
1550 	if (!scsi_device_online(sdp)) {
1551 		set_media_not_present(sdkp);
1552 		goto out;
1553 	}
1554 
1555 	/*
1556 	 * Using TEST_UNIT_READY enables differentiation between drive with
1557 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1558 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1559 	 *
1560 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1561 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1562 	 * sd_revalidate() is called.
1563 	 */
1564 	if (scsi_block_when_processing_errors(sdp)) {
1565 		struct scsi_sense_hdr sshdr = { 0, };
1566 
1567 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1568 					      &sshdr);
1569 
1570 		/* failed to execute TUR, assume media not present */
1571 		if (host_byte(retval)) {
1572 			set_media_not_present(sdkp);
1573 			goto out;
1574 		}
1575 
1576 		if (media_not_present(sdkp, &sshdr))
1577 			goto out;
1578 	}
1579 
1580 	/*
1581 	 * For removable scsi disk we have to recognise the presence
1582 	 * of a disk in the drive.
1583 	 */
1584 	if (!sdkp->media_present)
1585 		sdp->changed = 1;
1586 	sdkp->media_present = 1;
1587 out:
1588 	/*
1589 	 * sdp->changed is set under the following conditions:
1590 	 *
1591 	 *	Medium present state has changed in either direction.
1592 	 *	Device has indicated UNIT_ATTENTION.
1593 	 */
1594 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1595 	sdp->changed = 0;
1596 	scsi_disk_put(sdkp);
1597 	return retval;
1598 }
1599 
1600 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1601 {
1602 	int retries, res;
1603 	struct scsi_device *sdp = sdkp->device;
1604 	const int timeout = sdp->request_queue->rq_timeout
1605 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1606 	struct scsi_sense_hdr my_sshdr;
1607 
1608 	if (!scsi_device_online(sdp))
1609 		return -ENODEV;
1610 
1611 	/* caller might not be interested in sense, but we need it */
1612 	if (!sshdr)
1613 		sshdr = &my_sshdr;
1614 
1615 	for (retries = 3; retries > 0; --retries) {
1616 		unsigned char cmd[10] = { 0 };
1617 
1618 		cmd[0] = SYNCHRONIZE_CACHE;
1619 		/*
1620 		 * Leave the rest of the command zero to indicate
1621 		 * flush everything.
1622 		 */
1623 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1624 				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1625 		if (res == 0)
1626 			break;
1627 	}
1628 
1629 	if (res) {
1630 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1631 
1632 		if (driver_byte(res) == DRIVER_SENSE)
1633 			sd_print_sense_hdr(sdkp, sshdr);
1634 
1635 		/* we need to evaluate the error return  */
1636 		if (scsi_sense_valid(sshdr) &&
1637 			(sshdr->asc == 0x3a ||	/* medium not present */
1638 			 sshdr->asc == 0x20))	/* invalid command */
1639 				/* this is no error here */
1640 				return 0;
1641 
1642 		switch (host_byte(res)) {
1643 		/* ignore errors due to racing a disconnection */
1644 		case DID_BAD_TARGET:
1645 		case DID_NO_CONNECT:
1646 			return 0;
1647 		/* signal the upper layer it might try again */
1648 		case DID_BUS_BUSY:
1649 		case DID_IMM_RETRY:
1650 		case DID_REQUEUE:
1651 		case DID_SOFT_ERROR:
1652 			return -EBUSY;
1653 		default:
1654 			return -EIO;
1655 		}
1656 	}
1657 	return 0;
1658 }
1659 
1660 static void sd_rescan(struct device *dev)
1661 {
1662 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1663 
1664 	revalidate_disk(sdkp->disk);
1665 }
1666 
1667 
1668 #ifdef CONFIG_COMPAT
1669 /*
1670  * This gets directly called from VFS. When the ioctl
1671  * is not recognized we go back to the other translation paths.
1672  */
1673 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1674 			   unsigned int cmd, unsigned long arg)
1675 {
1676 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1677 	int error;
1678 
1679 	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1680 			(mode & FMODE_NDELAY) != 0);
1681 	if (error)
1682 		return error;
1683 
1684 	/*
1685 	 * Let the static ioctl translation table take care of it.
1686 	 */
1687 	if (!sdev->host->hostt->compat_ioctl)
1688 		return -ENOIOCTLCMD;
1689 	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1690 }
1691 #endif
1692 
1693 static char sd_pr_type(enum pr_type type)
1694 {
1695 	switch (type) {
1696 	case PR_WRITE_EXCLUSIVE:
1697 		return 0x01;
1698 	case PR_EXCLUSIVE_ACCESS:
1699 		return 0x03;
1700 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1701 		return 0x05;
1702 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1703 		return 0x06;
1704 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1705 		return 0x07;
1706 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1707 		return 0x08;
1708 	default:
1709 		return 0;
1710 	}
1711 };
1712 
1713 static int sd_pr_command(struct block_device *bdev, u8 sa,
1714 		u64 key, u64 sa_key, u8 type, u8 flags)
1715 {
1716 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1717 	struct scsi_sense_hdr sshdr;
1718 	int result;
1719 	u8 cmd[16] = { 0, };
1720 	u8 data[24] = { 0, };
1721 
1722 	cmd[0] = PERSISTENT_RESERVE_OUT;
1723 	cmd[1] = sa;
1724 	cmd[2] = type;
1725 	put_unaligned_be32(sizeof(data), &cmd[5]);
1726 
1727 	put_unaligned_be64(key, &data[0]);
1728 	put_unaligned_be64(sa_key, &data[8]);
1729 	data[20] = flags;
1730 
1731 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1732 			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1733 
1734 	if (driver_byte(result) == DRIVER_SENSE &&
1735 	    scsi_sense_valid(&sshdr)) {
1736 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1737 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1738 	}
1739 
1740 	return result;
1741 }
1742 
1743 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1744 		u32 flags)
1745 {
1746 	if (flags & ~PR_FL_IGNORE_KEY)
1747 		return -EOPNOTSUPP;
1748 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1749 			old_key, new_key, 0,
1750 			(1 << 0) /* APTPL */);
1751 }
1752 
1753 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1754 		u32 flags)
1755 {
1756 	if (flags)
1757 		return -EOPNOTSUPP;
1758 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1759 }
1760 
1761 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1762 {
1763 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1764 }
1765 
1766 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1767 		enum pr_type type, bool abort)
1768 {
1769 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1770 			     sd_pr_type(type), 0);
1771 }
1772 
1773 static int sd_pr_clear(struct block_device *bdev, u64 key)
1774 {
1775 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1776 }
1777 
1778 static const struct pr_ops sd_pr_ops = {
1779 	.pr_register	= sd_pr_register,
1780 	.pr_reserve	= sd_pr_reserve,
1781 	.pr_release	= sd_pr_release,
1782 	.pr_preempt	= sd_pr_preempt,
1783 	.pr_clear	= sd_pr_clear,
1784 };
1785 
1786 static const struct block_device_operations sd_fops = {
1787 	.owner			= THIS_MODULE,
1788 	.open			= sd_open,
1789 	.release		= sd_release,
1790 	.ioctl			= sd_ioctl,
1791 	.getgeo			= sd_getgeo,
1792 #ifdef CONFIG_COMPAT
1793 	.compat_ioctl		= sd_compat_ioctl,
1794 #endif
1795 	.check_events		= sd_check_events,
1796 	.revalidate_disk	= sd_revalidate_disk,
1797 	.unlock_native_capacity	= sd_unlock_native_capacity,
1798 	.report_zones		= sd_zbc_report_zones,
1799 	.pr_ops			= &sd_pr_ops,
1800 };
1801 
1802 /**
1803  *	sd_eh_reset - reset error handling callback
1804  *	@scmd:		sd-issued command that has failed
1805  *
1806  *	This function is called by the SCSI midlayer before starting
1807  *	SCSI EH. When counting medium access failures we have to be
1808  *	careful to register it only only once per device and SCSI EH run;
1809  *	there might be several timed out commands which will cause the
1810  *	'max_medium_access_timeouts' counter to trigger after the first
1811  *	SCSI EH run already and set the device to offline.
1812  *	So this function resets the internal counter before starting SCSI EH.
1813  **/
1814 static void sd_eh_reset(struct scsi_cmnd *scmd)
1815 {
1816 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1817 
1818 	/* New SCSI EH run, reset gate variable */
1819 	sdkp->ignore_medium_access_errors = false;
1820 }
1821 
1822 /**
1823  *	sd_eh_action - error handling callback
1824  *	@scmd:		sd-issued command that has failed
1825  *	@eh_disp:	The recovery disposition suggested by the midlayer
1826  *
1827  *	This function is called by the SCSI midlayer upon completion of an
1828  *	error test command (currently TEST UNIT READY). The result of sending
1829  *	the eh command is passed in eh_disp.  We're looking for devices that
1830  *	fail medium access commands but are OK with non access commands like
1831  *	test unit ready (so wrongly see the device as having a successful
1832  *	recovery)
1833  **/
1834 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1835 {
1836 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1837 	struct scsi_device *sdev = scmd->device;
1838 
1839 	if (!scsi_device_online(sdev) ||
1840 	    !scsi_medium_access_command(scmd) ||
1841 	    host_byte(scmd->result) != DID_TIME_OUT ||
1842 	    eh_disp != SUCCESS)
1843 		return eh_disp;
1844 
1845 	/*
1846 	 * The device has timed out executing a medium access command.
1847 	 * However, the TEST UNIT READY command sent during error
1848 	 * handling completed successfully. Either the device is in the
1849 	 * process of recovering or has it suffered an internal failure
1850 	 * that prevents access to the storage medium.
1851 	 */
1852 	if (!sdkp->ignore_medium_access_errors) {
1853 		sdkp->medium_access_timed_out++;
1854 		sdkp->ignore_medium_access_errors = true;
1855 	}
1856 
1857 	/*
1858 	 * If the device keeps failing read/write commands but TEST UNIT
1859 	 * READY always completes successfully we assume that medium
1860 	 * access is no longer possible and take the device offline.
1861 	 */
1862 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1863 		scmd_printk(KERN_ERR, scmd,
1864 			    "Medium access timeout failure. Offlining disk!\n");
1865 		mutex_lock(&sdev->state_mutex);
1866 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1867 		mutex_unlock(&sdev->state_mutex);
1868 
1869 		return SUCCESS;
1870 	}
1871 
1872 	return eh_disp;
1873 }
1874 
1875 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1876 {
1877 	struct request *req = scmd->request;
1878 	struct scsi_device *sdev = scmd->device;
1879 	unsigned int transferred, good_bytes;
1880 	u64 start_lba, end_lba, bad_lba;
1881 
1882 	/*
1883 	 * Some commands have a payload smaller than the device logical
1884 	 * block size (e.g. INQUIRY on a 4K disk).
1885 	 */
1886 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1887 		return 0;
1888 
1889 	/* Check if we have a 'bad_lba' information */
1890 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1891 				     SCSI_SENSE_BUFFERSIZE,
1892 				     &bad_lba))
1893 		return 0;
1894 
1895 	/*
1896 	 * If the bad lba was reported incorrectly, we have no idea where
1897 	 * the error is.
1898 	 */
1899 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1900 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1901 	if (bad_lba < start_lba || bad_lba >= end_lba)
1902 		return 0;
1903 
1904 	/*
1905 	 * resid is optional but mostly filled in.  When it's unused,
1906 	 * its value is zero, so we assume the whole buffer transferred
1907 	 */
1908 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1909 
1910 	/* This computation should always be done in terms of the
1911 	 * resolution of the device's medium.
1912 	 */
1913 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1914 
1915 	return min(good_bytes, transferred);
1916 }
1917 
1918 /**
1919  *	sd_done - bottom half handler: called when the lower level
1920  *	driver has completed (successfully or otherwise) a scsi command.
1921  *	@SCpnt: mid-level's per command structure.
1922  *
1923  *	Note: potentially run from within an ISR. Must not block.
1924  **/
1925 static int sd_done(struct scsi_cmnd *SCpnt)
1926 {
1927 	int result = SCpnt->result;
1928 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1929 	unsigned int sector_size = SCpnt->device->sector_size;
1930 	unsigned int resid;
1931 	struct scsi_sense_hdr sshdr;
1932 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1933 	struct request *req = SCpnt->request;
1934 	int sense_valid = 0;
1935 	int sense_deferred = 0;
1936 
1937 	switch (req_op(req)) {
1938 	case REQ_OP_DISCARD:
1939 	case REQ_OP_WRITE_ZEROES:
1940 	case REQ_OP_WRITE_SAME:
1941 	case REQ_OP_ZONE_RESET:
1942 		if (!result) {
1943 			good_bytes = blk_rq_bytes(req);
1944 			scsi_set_resid(SCpnt, 0);
1945 		} else {
1946 			good_bytes = 0;
1947 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1948 		}
1949 		break;
1950 	default:
1951 		/*
1952 		 * In case of bogus fw or device, we could end up having
1953 		 * an unaligned partial completion. Check this here and force
1954 		 * alignment.
1955 		 */
1956 		resid = scsi_get_resid(SCpnt);
1957 		if (resid & (sector_size - 1)) {
1958 			sd_printk(KERN_INFO, sdkp,
1959 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1960 				resid, sector_size);
1961 			resid = min(scsi_bufflen(SCpnt),
1962 				    round_up(resid, sector_size));
1963 			scsi_set_resid(SCpnt, resid);
1964 		}
1965 	}
1966 
1967 	if (result) {
1968 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1969 		if (sense_valid)
1970 			sense_deferred = scsi_sense_is_deferred(&sshdr);
1971 	}
1972 	sdkp->medium_access_timed_out = 0;
1973 
1974 	if (driver_byte(result) != DRIVER_SENSE &&
1975 	    (!sense_valid || sense_deferred))
1976 		goto out;
1977 
1978 	switch (sshdr.sense_key) {
1979 	case HARDWARE_ERROR:
1980 	case MEDIUM_ERROR:
1981 		good_bytes = sd_completed_bytes(SCpnt);
1982 		break;
1983 	case RECOVERED_ERROR:
1984 		good_bytes = scsi_bufflen(SCpnt);
1985 		break;
1986 	case NO_SENSE:
1987 		/* This indicates a false check condition, so ignore it.  An
1988 		 * unknown amount of data was transferred so treat it as an
1989 		 * error.
1990 		 */
1991 		SCpnt->result = 0;
1992 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1993 		break;
1994 	case ABORTED_COMMAND:
1995 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
1996 			good_bytes = sd_completed_bytes(SCpnt);
1997 		break;
1998 	case ILLEGAL_REQUEST:
1999 		switch (sshdr.asc) {
2000 		case 0x10:	/* DIX: Host detected corruption */
2001 			good_bytes = sd_completed_bytes(SCpnt);
2002 			break;
2003 		case 0x20:	/* INVALID COMMAND OPCODE */
2004 		case 0x24:	/* INVALID FIELD IN CDB */
2005 			switch (SCpnt->cmnd[0]) {
2006 			case UNMAP:
2007 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2008 				break;
2009 			case WRITE_SAME_16:
2010 			case WRITE_SAME:
2011 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2012 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2013 				} else {
2014 					sdkp->device->no_write_same = 1;
2015 					sd_config_write_same(sdkp);
2016 					req->rq_flags |= RQF_QUIET;
2017 				}
2018 				break;
2019 			}
2020 		}
2021 		break;
2022 	default:
2023 		break;
2024 	}
2025 
2026  out:
2027 	if (sd_is_zoned(sdkp))
2028 		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2029 
2030 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2031 					   "sd_done: completed %d of %d bytes\n",
2032 					   good_bytes, scsi_bufflen(SCpnt)));
2033 
2034 	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt) &&
2035 	    good_bytes)
2036 		t10_pi_complete(SCpnt->request, sdkp->protection_type,
2037 				good_bytes / scsi_prot_interval(SCpnt));
2038 
2039 	return good_bytes;
2040 }
2041 
2042 /*
2043  * spinup disk - called only in sd_revalidate_disk()
2044  */
2045 static void
2046 sd_spinup_disk(struct scsi_disk *sdkp)
2047 {
2048 	unsigned char cmd[10];
2049 	unsigned long spintime_expire = 0;
2050 	int retries, spintime;
2051 	unsigned int the_result;
2052 	struct scsi_sense_hdr sshdr;
2053 	int sense_valid = 0;
2054 
2055 	spintime = 0;
2056 
2057 	/* Spin up drives, as required.  Only do this at boot time */
2058 	/* Spinup needs to be done for module loads too. */
2059 	do {
2060 		retries = 0;
2061 
2062 		do {
2063 			cmd[0] = TEST_UNIT_READY;
2064 			memset((void *) &cmd[1], 0, 9);
2065 
2066 			the_result = scsi_execute_req(sdkp->device, cmd,
2067 						      DMA_NONE, NULL, 0,
2068 						      &sshdr, SD_TIMEOUT,
2069 						      SD_MAX_RETRIES, NULL);
2070 
2071 			/*
2072 			 * If the drive has indicated to us that it
2073 			 * doesn't have any media in it, don't bother
2074 			 * with any more polling.
2075 			 */
2076 			if (media_not_present(sdkp, &sshdr))
2077 				return;
2078 
2079 			if (the_result)
2080 				sense_valid = scsi_sense_valid(&sshdr);
2081 			retries++;
2082 		} while (retries < 3 &&
2083 			 (!scsi_status_is_good(the_result) ||
2084 			  ((driver_byte(the_result) == DRIVER_SENSE) &&
2085 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2086 
2087 		if (driver_byte(the_result) != DRIVER_SENSE) {
2088 			/* no sense, TUR either succeeded or failed
2089 			 * with a status error */
2090 			if(!spintime && !scsi_status_is_good(the_result)) {
2091 				sd_print_result(sdkp, "Test Unit Ready failed",
2092 						the_result);
2093 			}
2094 			break;
2095 		}
2096 
2097 		/*
2098 		 * The device does not want the automatic start to be issued.
2099 		 */
2100 		if (sdkp->device->no_start_on_add)
2101 			break;
2102 
2103 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2104 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2105 				break;	/* manual intervention required */
2106 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2107 				break;	/* standby */
2108 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2109 				break;	/* unavailable */
2110 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2111 				break;	/* sanitize in progress */
2112 			/*
2113 			 * Issue command to spin up drive when not ready
2114 			 */
2115 			if (!spintime) {
2116 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2117 				cmd[0] = START_STOP;
2118 				cmd[1] = 1;	/* Return immediately */
2119 				memset((void *) &cmd[2], 0, 8);
2120 				cmd[4] = 1;	/* Start spin cycle */
2121 				if (sdkp->device->start_stop_pwr_cond)
2122 					cmd[4] |= 1 << 4;
2123 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2124 						 NULL, 0, &sshdr,
2125 						 SD_TIMEOUT, SD_MAX_RETRIES,
2126 						 NULL);
2127 				spintime_expire = jiffies + 100 * HZ;
2128 				spintime = 1;
2129 			}
2130 			/* Wait 1 second for next try */
2131 			msleep(1000);
2132 			printk(KERN_CONT ".");
2133 
2134 		/*
2135 		 * Wait for USB flash devices with slow firmware.
2136 		 * Yes, this sense key/ASC combination shouldn't
2137 		 * occur here.  It's characteristic of these devices.
2138 		 */
2139 		} else if (sense_valid &&
2140 				sshdr.sense_key == UNIT_ATTENTION &&
2141 				sshdr.asc == 0x28) {
2142 			if (!spintime) {
2143 				spintime_expire = jiffies + 5 * HZ;
2144 				spintime = 1;
2145 			}
2146 			/* Wait 1 second for next try */
2147 			msleep(1000);
2148 		} else {
2149 			/* we don't understand the sense code, so it's
2150 			 * probably pointless to loop */
2151 			if(!spintime) {
2152 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2153 				sd_print_sense_hdr(sdkp, &sshdr);
2154 			}
2155 			break;
2156 		}
2157 
2158 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2159 
2160 	if (spintime) {
2161 		if (scsi_status_is_good(the_result))
2162 			printk(KERN_CONT "ready\n");
2163 		else
2164 			printk(KERN_CONT "not responding...\n");
2165 	}
2166 }
2167 
2168 /*
2169  * Determine whether disk supports Data Integrity Field.
2170  */
2171 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2172 {
2173 	struct scsi_device *sdp = sdkp->device;
2174 	u8 type;
2175 	int ret = 0;
2176 
2177 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2178 		return ret;
2179 
2180 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2181 
2182 	if (type > T10_PI_TYPE3_PROTECTION)
2183 		ret = -ENODEV;
2184 	else if (scsi_host_dif_capable(sdp->host, type))
2185 		ret = 1;
2186 
2187 	if (sdkp->first_scan || type != sdkp->protection_type)
2188 		switch (ret) {
2189 		case -ENODEV:
2190 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2191 				  " protection type %u. Disabling disk!\n",
2192 				  type);
2193 			break;
2194 		case 1:
2195 			sd_printk(KERN_NOTICE, sdkp,
2196 				  "Enabling DIF Type %u protection\n", type);
2197 			break;
2198 		case 0:
2199 			sd_printk(KERN_NOTICE, sdkp,
2200 				  "Disabling DIF Type %u protection\n", type);
2201 			break;
2202 		}
2203 
2204 	sdkp->protection_type = type;
2205 
2206 	return ret;
2207 }
2208 
2209 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2210 			struct scsi_sense_hdr *sshdr, int sense_valid,
2211 			int the_result)
2212 {
2213 	if (driver_byte(the_result) == DRIVER_SENSE)
2214 		sd_print_sense_hdr(sdkp, sshdr);
2215 	else
2216 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2217 
2218 	/*
2219 	 * Set dirty bit for removable devices if not ready -
2220 	 * sometimes drives will not report this properly.
2221 	 */
2222 	if (sdp->removable &&
2223 	    sense_valid && sshdr->sense_key == NOT_READY)
2224 		set_media_not_present(sdkp);
2225 
2226 	/*
2227 	 * We used to set media_present to 0 here to indicate no media
2228 	 * in the drive, but some drives fail read capacity even with
2229 	 * media present, so we can't do that.
2230 	 */
2231 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2232 }
2233 
2234 #define RC16_LEN 32
2235 #if RC16_LEN > SD_BUF_SIZE
2236 #error RC16_LEN must not be more than SD_BUF_SIZE
2237 #endif
2238 
2239 #define READ_CAPACITY_RETRIES_ON_RESET	10
2240 
2241 /*
2242  * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2243  * and the reported logical block size is bigger than 512 bytes. Note
2244  * that last_sector is a u64 and therefore logical_to_sectors() is not
2245  * applicable.
2246  */
2247 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2248 {
2249 	u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2250 
2251 	if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2252 		return false;
2253 
2254 	return true;
2255 }
2256 
2257 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2258 						unsigned char *buffer)
2259 {
2260 	unsigned char cmd[16];
2261 	struct scsi_sense_hdr sshdr;
2262 	int sense_valid = 0;
2263 	int the_result;
2264 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2265 	unsigned int alignment;
2266 	unsigned long long lba;
2267 	unsigned sector_size;
2268 
2269 	if (sdp->no_read_capacity_16)
2270 		return -EINVAL;
2271 
2272 	do {
2273 		memset(cmd, 0, 16);
2274 		cmd[0] = SERVICE_ACTION_IN_16;
2275 		cmd[1] = SAI_READ_CAPACITY_16;
2276 		cmd[13] = RC16_LEN;
2277 		memset(buffer, 0, RC16_LEN);
2278 
2279 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2280 					buffer, RC16_LEN, &sshdr,
2281 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2282 
2283 		if (media_not_present(sdkp, &sshdr))
2284 			return -ENODEV;
2285 
2286 		if (the_result) {
2287 			sense_valid = scsi_sense_valid(&sshdr);
2288 			if (sense_valid &&
2289 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2290 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2291 			    sshdr.ascq == 0x00)
2292 				/* Invalid Command Operation Code or
2293 				 * Invalid Field in CDB, just retry
2294 				 * silently with RC10 */
2295 				return -EINVAL;
2296 			if (sense_valid &&
2297 			    sshdr.sense_key == UNIT_ATTENTION &&
2298 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2299 				/* Device reset might occur several times,
2300 				 * give it one more chance */
2301 				if (--reset_retries > 0)
2302 					continue;
2303 		}
2304 		retries--;
2305 
2306 	} while (the_result && retries);
2307 
2308 	if (the_result) {
2309 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2310 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2311 		return -EINVAL;
2312 	}
2313 
2314 	sector_size = get_unaligned_be32(&buffer[8]);
2315 	lba = get_unaligned_be64(&buffer[0]);
2316 
2317 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2318 		sdkp->capacity = 0;
2319 		return -ENODEV;
2320 	}
2321 
2322 	if (!sd_addressable_capacity(lba, sector_size)) {
2323 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2324 			"kernel compiled with support for large block "
2325 			"devices.\n");
2326 		sdkp->capacity = 0;
2327 		return -EOVERFLOW;
2328 	}
2329 
2330 	/* Logical blocks per physical block exponent */
2331 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2332 
2333 	/* RC basis */
2334 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2335 
2336 	/* Lowest aligned logical block */
2337 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2338 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2339 	if (alignment && sdkp->first_scan)
2340 		sd_printk(KERN_NOTICE, sdkp,
2341 			  "physical block alignment offset: %u\n", alignment);
2342 
2343 	if (buffer[14] & 0x80) { /* LBPME */
2344 		sdkp->lbpme = 1;
2345 
2346 		if (buffer[14] & 0x40) /* LBPRZ */
2347 			sdkp->lbprz = 1;
2348 
2349 		sd_config_discard(sdkp, SD_LBP_WS16);
2350 	}
2351 
2352 	sdkp->capacity = lba + 1;
2353 	return sector_size;
2354 }
2355 
2356 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2357 						unsigned char *buffer)
2358 {
2359 	unsigned char cmd[16];
2360 	struct scsi_sense_hdr sshdr;
2361 	int sense_valid = 0;
2362 	int the_result;
2363 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2364 	sector_t lba;
2365 	unsigned sector_size;
2366 
2367 	do {
2368 		cmd[0] = READ_CAPACITY;
2369 		memset(&cmd[1], 0, 9);
2370 		memset(buffer, 0, 8);
2371 
2372 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2373 					buffer, 8, &sshdr,
2374 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2375 
2376 		if (media_not_present(sdkp, &sshdr))
2377 			return -ENODEV;
2378 
2379 		if (the_result) {
2380 			sense_valid = scsi_sense_valid(&sshdr);
2381 			if (sense_valid &&
2382 			    sshdr.sense_key == UNIT_ATTENTION &&
2383 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2384 				/* Device reset might occur several times,
2385 				 * give it one more chance */
2386 				if (--reset_retries > 0)
2387 					continue;
2388 		}
2389 		retries--;
2390 
2391 	} while (the_result && retries);
2392 
2393 	if (the_result) {
2394 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2395 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2396 		return -EINVAL;
2397 	}
2398 
2399 	sector_size = get_unaligned_be32(&buffer[4]);
2400 	lba = get_unaligned_be32(&buffer[0]);
2401 
2402 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2403 		/* Some buggy (usb cardreader) devices return an lba of
2404 		   0xffffffff when the want to report a size of 0 (with
2405 		   which they really mean no media is present) */
2406 		sdkp->capacity = 0;
2407 		sdkp->physical_block_size = sector_size;
2408 		return sector_size;
2409 	}
2410 
2411 	if (!sd_addressable_capacity(lba, sector_size)) {
2412 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2413 			"kernel compiled with support for large block "
2414 			"devices.\n");
2415 		sdkp->capacity = 0;
2416 		return -EOVERFLOW;
2417 	}
2418 
2419 	sdkp->capacity = lba + 1;
2420 	sdkp->physical_block_size = sector_size;
2421 	return sector_size;
2422 }
2423 
2424 static int sd_try_rc16_first(struct scsi_device *sdp)
2425 {
2426 	if (sdp->host->max_cmd_len < 16)
2427 		return 0;
2428 	if (sdp->try_rc_10_first)
2429 		return 0;
2430 	if (sdp->scsi_level > SCSI_SPC_2)
2431 		return 1;
2432 	if (scsi_device_protection(sdp))
2433 		return 1;
2434 	return 0;
2435 }
2436 
2437 /*
2438  * read disk capacity
2439  */
2440 static void
2441 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2442 {
2443 	int sector_size;
2444 	struct scsi_device *sdp = sdkp->device;
2445 
2446 	if (sd_try_rc16_first(sdp)) {
2447 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2448 		if (sector_size == -EOVERFLOW)
2449 			goto got_data;
2450 		if (sector_size == -ENODEV)
2451 			return;
2452 		if (sector_size < 0)
2453 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2454 		if (sector_size < 0)
2455 			return;
2456 	} else {
2457 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2458 		if (sector_size == -EOVERFLOW)
2459 			goto got_data;
2460 		if (sector_size < 0)
2461 			return;
2462 		if ((sizeof(sdkp->capacity) > 4) &&
2463 		    (sdkp->capacity > 0xffffffffULL)) {
2464 			int old_sector_size = sector_size;
2465 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2466 					"Trying to use READ CAPACITY(16).\n");
2467 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2468 			if (sector_size < 0) {
2469 				sd_printk(KERN_NOTICE, sdkp,
2470 					"Using 0xffffffff as device size\n");
2471 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2472 				sector_size = old_sector_size;
2473 				goto got_data;
2474 			}
2475 			/* Remember that READ CAPACITY(16) succeeded */
2476 			sdp->try_rc_10_first = 0;
2477 		}
2478 	}
2479 
2480 	/* Some devices are known to return the total number of blocks,
2481 	 * not the highest block number.  Some devices have versions
2482 	 * which do this and others which do not.  Some devices we might
2483 	 * suspect of doing this but we don't know for certain.
2484 	 *
2485 	 * If we know the reported capacity is wrong, decrement it.  If
2486 	 * we can only guess, then assume the number of blocks is even
2487 	 * (usually true but not always) and err on the side of lowering
2488 	 * the capacity.
2489 	 */
2490 	if (sdp->fix_capacity ||
2491 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2492 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2493 				"from its reported value: %llu\n",
2494 				(unsigned long long) sdkp->capacity);
2495 		--sdkp->capacity;
2496 	}
2497 
2498 got_data:
2499 	if (sector_size == 0) {
2500 		sector_size = 512;
2501 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2502 			  "assuming 512.\n");
2503 	}
2504 
2505 	if (sector_size != 512 &&
2506 	    sector_size != 1024 &&
2507 	    sector_size != 2048 &&
2508 	    sector_size != 4096) {
2509 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2510 			  sector_size);
2511 		/*
2512 		 * The user might want to re-format the drive with
2513 		 * a supported sectorsize.  Once this happens, it
2514 		 * would be relatively trivial to set the thing up.
2515 		 * For this reason, we leave the thing in the table.
2516 		 */
2517 		sdkp->capacity = 0;
2518 		/*
2519 		 * set a bogus sector size so the normal read/write
2520 		 * logic in the block layer will eventually refuse any
2521 		 * request on this device without tripping over power
2522 		 * of two sector size assumptions
2523 		 */
2524 		sector_size = 512;
2525 	}
2526 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2527 	blk_queue_physical_block_size(sdp->request_queue,
2528 				      sdkp->physical_block_size);
2529 	sdkp->device->sector_size = sector_size;
2530 
2531 	if (sdkp->capacity > 0xffffffff)
2532 		sdp->use_16_for_rw = 1;
2533 
2534 }
2535 
2536 /*
2537  * Print disk capacity
2538  */
2539 static void
2540 sd_print_capacity(struct scsi_disk *sdkp,
2541 		  sector_t old_capacity)
2542 {
2543 	int sector_size = sdkp->device->sector_size;
2544 	char cap_str_2[10], cap_str_10[10];
2545 
2546 	string_get_size(sdkp->capacity, sector_size,
2547 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2548 	string_get_size(sdkp->capacity, sector_size,
2549 			STRING_UNITS_10, cap_str_10,
2550 			sizeof(cap_str_10));
2551 
2552 	if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2553 		sd_printk(KERN_NOTICE, sdkp,
2554 			  "%llu %d-byte logical blocks: (%s/%s)\n",
2555 			  (unsigned long long)sdkp->capacity,
2556 			  sector_size, cap_str_10, cap_str_2);
2557 
2558 		if (sdkp->physical_block_size != sector_size)
2559 			sd_printk(KERN_NOTICE, sdkp,
2560 				  "%u-byte physical blocks\n",
2561 				  sdkp->physical_block_size);
2562 
2563 		sd_zbc_print_zones(sdkp);
2564 	}
2565 }
2566 
2567 /* called with buffer of length 512 */
2568 static inline int
2569 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2570 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2571 		 struct scsi_sense_hdr *sshdr)
2572 {
2573 	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2574 			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2575 			       sshdr);
2576 }
2577 
2578 /*
2579  * read write protect setting, if possible - called only in sd_revalidate_disk()
2580  * called with buffer of length SD_BUF_SIZE
2581  */
2582 static void
2583 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2584 {
2585 	int res;
2586 	struct scsi_device *sdp = sdkp->device;
2587 	struct scsi_mode_data data;
2588 	int disk_ro = get_disk_ro(sdkp->disk);
2589 	int old_wp = sdkp->write_prot;
2590 
2591 	set_disk_ro(sdkp->disk, 0);
2592 	if (sdp->skip_ms_page_3f) {
2593 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2594 		return;
2595 	}
2596 
2597 	if (sdp->use_192_bytes_for_3f) {
2598 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2599 	} else {
2600 		/*
2601 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2602 		 * We have to start carefully: some devices hang if we ask
2603 		 * for more than is available.
2604 		 */
2605 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2606 
2607 		/*
2608 		 * Second attempt: ask for page 0 When only page 0 is
2609 		 * implemented, a request for page 3F may return Sense Key
2610 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2611 		 * CDB.
2612 		 */
2613 		if (!scsi_status_is_good(res))
2614 			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2615 
2616 		/*
2617 		 * Third attempt: ask 255 bytes, as we did earlier.
2618 		 */
2619 		if (!scsi_status_is_good(res))
2620 			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2621 					       &data, NULL);
2622 	}
2623 
2624 	if (!scsi_status_is_good(res)) {
2625 		sd_first_printk(KERN_WARNING, sdkp,
2626 			  "Test WP failed, assume Write Enabled\n");
2627 	} else {
2628 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2629 		set_disk_ro(sdkp->disk, sdkp->write_prot || disk_ro);
2630 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2631 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2632 				  sdkp->write_prot ? "on" : "off");
2633 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2634 		}
2635 	}
2636 }
2637 
2638 /*
2639  * sd_read_cache_type - called only from sd_revalidate_disk()
2640  * called with buffer of length SD_BUF_SIZE
2641  */
2642 static void
2643 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2644 {
2645 	int len = 0, res;
2646 	struct scsi_device *sdp = sdkp->device;
2647 
2648 	int dbd;
2649 	int modepage;
2650 	int first_len;
2651 	struct scsi_mode_data data;
2652 	struct scsi_sense_hdr sshdr;
2653 	int old_wce = sdkp->WCE;
2654 	int old_rcd = sdkp->RCD;
2655 	int old_dpofua = sdkp->DPOFUA;
2656 
2657 
2658 	if (sdkp->cache_override)
2659 		return;
2660 
2661 	first_len = 4;
2662 	if (sdp->skip_ms_page_8) {
2663 		if (sdp->type == TYPE_RBC)
2664 			goto defaults;
2665 		else {
2666 			if (sdp->skip_ms_page_3f)
2667 				goto defaults;
2668 			modepage = 0x3F;
2669 			if (sdp->use_192_bytes_for_3f)
2670 				first_len = 192;
2671 			dbd = 0;
2672 		}
2673 	} else if (sdp->type == TYPE_RBC) {
2674 		modepage = 6;
2675 		dbd = 8;
2676 	} else {
2677 		modepage = 8;
2678 		dbd = 0;
2679 	}
2680 
2681 	/* cautiously ask */
2682 	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2683 			&data, &sshdr);
2684 
2685 	if (!scsi_status_is_good(res))
2686 		goto bad_sense;
2687 
2688 	if (!data.header_length) {
2689 		modepage = 6;
2690 		first_len = 0;
2691 		sd_first_printk(KERN_ERR, sdkp,
2692 				"Missing header in MODE_SENSE response\n");
2693 	}
2694 
2695 	/* that went OK, now ask for the proper length */
2696 	len = data.length;
2697 
2698 	/*
2699 	 * We're only interested in the first three bytes, actually.
2700 	 * But the data cache page is defined for the first 20.
2701 	 */
2702 	if (len < 3)
2703 		goto bad_sense;
2704 	else if (len > SD_BUF_SIZE) {
2705 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2706 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2707 		len = SD_BUF_SIZE;
2708 	}
2709 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2710 		len = 192;
2711 
2712 	/* Get the data */
2713 	if (len > first_len)
2714 		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2715 				&data, &sshdr);
2716 
2717 	if (scsi_status_is_good(res)) {
2718 		int offset = data.header_length + data.block_descriptor_length;
2719 
2720 		while (offset < len) {
2721 			u8 page_code = buffer[offset] & 0x3F;
2722 			u8 spf       = buffer[offset] & 0x40;
2723 
2724 			if (page_code == 8 || page_code == 6) {
2725 				/* We're interested only in the first 3 bytes.
2726 				 */
2727 				if (len - offset <= 2) {
2728 					sd_first_printk(KERN_ERR, sdkp,
2729 						"Incomplete mode parameter "
2730 							"data\n");
2731 					goto defaults;
2732 				} else {
2733 					modepage = page_code;
2734 					goto Page_found;
2735 				}
2736 			} else {
2737 				/* Go to the next page */
2738 				if (spf && len - offset > 3)
2739 					offset += 4 + (buffer[offset+2] << 8) +
2740 						buffer[offset+3];
2741 				else if (!spf && len - offset > 1)
2742 					offset += 2 + buffer[offset+1];
2743 				else {
2744 					sd_first_printk(KERN_ERR, sdkp,
2745 							"Incomplete mode "
2746 							"parameter data\n");
2747 					goto defaults;
2748 				}
2749 			}
2750 		}
2751 
2752 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2753 		goto defaults;
2754 
2755 	Page_found:
2756 		if (modepage == 8) {
2757 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2758 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2759 		} else {
2760 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2761 			sdkp->RCD = 0;
2762 		}
2763 
2764 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2765 		if (sdp->broken_fua) {
2766 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2767 			sdkp->DPOFUA = 0;
2768 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2769 			   !sdkp->device->use_16_for_rw) {
2770 			sd_first_printk(KERN_NOTICE, sdkp,
2771 				  "Uses READ/WRITE(6), disabling FUA\n");
2772 			sdkp->DPOFUA = 0;
2773 		}
2774 
2775 		/* No cache flush allowed for write protected devices */
2776 		if (sdkp->WCE && sdkp->write_prot)
2777 			sdkp->WCE = 0;
2778 
2779 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2780 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2781 			sd_printk(KERN_NOTICE, sdkp,
2782 				  "Write cache: %s, read cache: %s, %s\n",
2783 				  sdkp->WCE ? "enabled" : "disabled",
2784 				  sdkp->RCD ? "disabled" : "enabled",
2785 				  sdkp->DPOFUA ? "supports DPO and FUA"
2786 				  : "doesn't support DPO or FUA");
2787 
2788 		return;
2789 	}
2790 
2791 bad_sense:
2792 	if (scsi_sense_valid(&sshdr) &&
2793 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2794 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2795 		/* Invalid field in CDB */
2796 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2797 	else
2798 		sd_first_printk(KERN_ERR, sdkp,
2799 				"Asking for cache data failed\n");
2800 
2801 defaults:
2802 	if (sdp->wce_default_on) {
2803 		sd_first_printk(KERN_NOTICE, sdkp,
2804 				"Assuming drive cache: write back\n");
2805 		sdkp->WCE = 1;
2806 	} else {
2807 		sd_first_printk(KERN_ERR, sdkp,
2808 				"Assuming drive cache: write through\n");
2809 		sdkp->WCE = 0;
2810 	}
2811 	sdkp->RCD = 0;
2812 	sdkp->DPOFUA = 0;
2813 }
2814 
2815 /*
2816  * The ATO bit indicates whether the DIF application tag is available
2817  * for use by the operating system.
2818  */
2819 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2820 {
2821 	int res, offset;
2822 	struct scsi_device *sdp = sdkp->device;
2823 	struct scsi_mode_data data;
2824 	struct scsi_sense_hdr sshdr;
2825 
2826 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2827 		return;
2828 
2829 	if (sdkp->protection_type == 0)
2830 		return;
2831 
2832 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2833 			      SD_MAX_RETRIES, &data, &sshdr);
2834 
2835 	if (!scsi_status_is_good(res) || !data.header_length ||
2836 	    data.length < 6) {
2837 		sd_first_printk(KERN_WARNING, sdkp,
2838 			  "getting Control mode page failed, assume no ATO\n");
2839 
2840 		if (scsi_sense_valid(&sshdr))
2841 			sd_print_sense_hdr(sdkp, &sshdr);
2842 
2843 		return;
2844 	}
2845 
2846 	offset = data.header_length + data.block_descriptor_length;
2847 
2848 	if ((buffer[offset] & 0x3f) != 0x0a) {
2849 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2850 		return;
2851 	}
2852 
2853 	if ((buffer[offset + 5] & 0x80) == 0)
2854 		return;
2855 
2856 	sdkp->ATO = 1;
2857 
2858 	return;
2859 }
2860 
2861 /**
2862  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2863  * @sdkp: disk to query
2864  */
2865 static void sd_read_block_limits(struct scsi_disk *sdkp)
2866 {
2867 	unsigned int sector_sz = sdkp->device->sector_size;
2868 	const int vpd_len = 64;
2869 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2870 
2871 	if (!buffer ||
2872 	    /* Block Limits VPD */
2873 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2874 		goto out;
2875 
2876 	blk_queue_io_min(sdkp->disk->queue,
2877 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2878 
2879 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2880 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2881 
2882 	if (buffer[3] == 0x3c) {
2883 		unsigned int lba_count, desc_count;
2884 
2885 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2886 
2887 		if (!sdkp->lbpme)
2888 			goto out;
2889 
2890 		lba_count = get_unaligned_be32(&buffer[20]);
2891 		desc_count = get_unaligned_be32(&buffer[24]);
2892 
2893 		if (lba_count && desc_count)
2894 			sdkp->max_unmap_blocks = lba_count;
2895 
2896 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2897 
2898 		if (buffer[32] & 0x80)
2899 			sdkp->unmap_alignment =
2900 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2901 
2902 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2903 
2904 			if (sdkp->max_unmap_blocks)
2905 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2906 			else
2907 				sd_config_discard(sdkp, SD_LBP_WS16);
2908 
2909 		} else {	/* LBP VPD page tells us what to use */
2910 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2911 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2912 			else if (sdkp->lbpws)
2913 				sd_config_discard(sdkp, SD_LBP_WS16);
2914 			else if (sdkp->lbpws10)
2915 				sd_config_discard(sdkp, SD_LBP_WS10);
2916 			else
2917 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2918 		}
2919 	}
2920 
2921  out:
2922 	kfree(buffer);
2923 }
2924 
2925 /**
2926  * sd_read_block_characteristics - Query block dev. characteristics
2927  * @sdkp: disk to query
2928  */
2929 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2930 {
2931 	struct request_queue *q = sdkp->disk->queue;
2932 	unsigned char *buffer;
2933 	u16 rot;
2934 	const int vpd_len = 64;
2935 
2936 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2937 
2938 	if (!buffer ||
2939 	    /* Block Device Characteristics VPD */
2940 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2941 		goto out;
2942 
2943 	rot = get_unaligned_be16(&buffer[4]);
2944 
2945 	if (rot == 1) {
2946 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2947 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2948 	} else {
2949 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2950 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
2951 	}
2952 
2953 	if (sdkp->device->type == TYPE_ZBC) {
2954 		/* Host-managed */
2955 		q->limits.zoned = BLK_ZONED_HM;
2956 	} else {
2957 		sdkp->zoned = (buffer[8] >> 4) & 3;
2958 		if (sdkp->zoned == 1)
2959 			/* Host-aware */
2960 			q->limits.zoned = BLK_ZONED_HA;
2961 		else
2962 			/*
2963 			 * Treat drive-managed devices as
2964 			 * regular block devices.
2965 			 */
2966 			q->limits.zoned = BLK_ZONED_NONE;
2967 	}
2968 	if (blk_queue_is_zoned(q) && sdkp->first_scan)
2969 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2970 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2971 
2972  out:
2973 	kfree(buffer);
2974 }
2975 
2976 /**
2977  * sd_read_block_provisioning - Query provisioning VPD page
2978  * @sdkp: disk to query
2979  */
2980 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2981 {
2982 	unsigned char *buffer;
2983 	const int vpd_len = 8;
2984 
2985 	if (sdkp->lbpme == 0)
2986 		return;
2987 
2988 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2989 
2990 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2991 		goto out;
2992 
2993 	sdkp->lbpvpd	= 1;
2994 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
2995 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
2996 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
2997 
2998  out:
2999 	kfree(buffer);
3000 }
3001 
3002 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3003 {
3004 	struct scsi_device *sdev = sdkp->device;
3005 
3006 	if (sdev->host->no_write_same) {
3007 		sdev->no_write_same = 1;
3008 
3009 		return;
3010 	}
3011 
3012 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3013 		/* too large values might cause issues with arcmsr */
3014 		int vpd_buf_len = 64;
3015 
3016 		sdev->no_report_opcodes = 1;
3017 
3018 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3019 		 * CODES is unsupported and the device has an ATA
3020 		 * Information VPD page (SAT).
3021 		 */
3022 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3023 			sdev->no_write_same = 1;
3024 	}
3025 
3026 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3027 		sdkp->ws16 = 1;
3028 
3029 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3030 		sdkp->ws10 = 1;
3031 }
3032 
3033 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3034 {
3035 	struct scsi_device *sdev = sdkp->device;
3036 
3037 	if (!sdev->security_supported)
3038 		return;
3039 
3040 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3041 			SECURITY_PROTOCOL_IN) == 1 &&
3042 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3043 			SECURITY_PROTOCOL_OUT) == 1)
3044 		sdkp->security = 1;
3045 }
3046 
3047 /**
3048  *	sd_revalidate_disk - called the first time a new disk is seen,
3049  *	performs disk spin up, read_capacity, etc.
3050  *	@disk: struct gendisk we care about
3051  **/
3052 static int sd_revalidate_disk(struct gendisk *disk)
3053 {
3054 	struct scsi_disk *sdkp = scsi_disk(disk);
3055 	struct scsi_device *sdp = sdkp->device;
3056 	struct request_queue *q = sdkp->disk->queue;
3057 	sector_t old_capacity = sdkp->capacity;
3058 	unsigned char *buffer;
3059 	unsigned int dev_max, rw_max;
3060 
3061 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3062 				      "sd_revalidate_disk\n"));
3063 
3064 	/*
3065 	 * If the device is offline, don't try and read capacity or any
3066 	 * of the other niceties.
3067 	 */
3068 	if (!scsi_device_online(sdp))
3069 		goto out;
3070 
3071 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3072 	if (!buffer) {
3073 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3074 			  "allocation failure.\n");
3075 		goto out;
3076 	}
3077 
3078 	sd_spinup_disk(sdkp);
3079 
3080 	/*
3081 	 * Without media there is no reason to ask; moreover, some devices
3082 	 * react badly if we do.
3083 	 */
3084 	if (sdkp->media_present) {
3085 		sd_read_capacity(sdkp, buffer);
3086 
3087 		if (scsi_device_supports_vpd(sdp)) {
3088 			sd_read_block_provisioning(sdkp);
3089 			sd_read_block_limits(sdkp);
3090 			sd_read_block_characteristics(sdkp);
3091 			sd_zbc_read_zones(sdkp, buffer);
3092 		}
3093 
3094 		sd_print_capacity(sdkp, old_capacity);
3095 
3096 		sd_read_write_protect_flag(sdkp, buffer);
3097 		sd_read_cache_type(sdkp, buffer);
3098 		sd_read_app_tag_own(sdkp, buffer);
3099 		sd_read_write_same(sdkp, buffer);
3100 		sd_read_security(sdkp, buffer);
3101 	}
3102 
3103 	/*
3104 	 * We now have all cache related info, determine how we deal
3105 	 * with flush requests.
3106 	 */
3107 	sd_set_flush_flag(sdkp);
3108 
3109 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3110 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3111 
3112 	/* Some devices report a maximum block count for READ/WRITE requests. */
3113 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3114 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3115 
3116 	/*
3117 	 * Determine the device's preferred I/O size for reads and writes
3118 	 * unless the reported value is unreasonably small, large, or
3119 	 * garbage.
3120 	 */
3121 	if (sdkp->opt_xfer_blocks &&
3122 	    sdkp->opt_xfer_blocks <= dev_max &&
3123 	    sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3124 	    logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3125 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3126 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3127 	} else
3128 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3129 				      (sector_t)BLK_DEF_MAX_SECTORS);
3130 
3131 	/* Do not exceed controller limit */
3132 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3133 
3134 	/*
3135 	 * Only update max_sectors if previously unset or if the current value
3136 	 * exceeds the capabilities of the hardware.
3137 	 */
3138 	if (sdkp->first_scan ||
3139 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3140 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3141 		q->limits.max_sectors = rw_max;
3142 
3143 	sdkp->first_scan = 0;
3144 
3145 	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3146 	sd_config_write_same(sdkp);
3147 	kfree(buffer);
3148 
3149  out:
3150 	return 0;
3151 }
3152 
3153 /**
3154  *	sd_unlock_native_capacity - unlock native capacity
3155  *	@disk: struct gendisk to set capacity for
3156  *
3157  *	Block layer calls this function if it detects that partitions
3158  *	on @disk reach beyond the end of the device.  If the SCSI host
3159  *	implements ->unlock_native_capacity() method, it's invoked to
3160  *	give it a chance to adjust the device capacity.
3161  *
3162  *	CONTEXT:
3163  *	Defined by block layer.  Might sleep.
3164  */
3165 static void sd_unlock_native_capacity(struct gendisk *disk)
3166 {
3167 	struct scsi_device *sdev = scsi_disk(disk)->device;
3168 
3169 	if (sdev->host->hostt->unlock_native_capacity)
3170 		sdev->host->hostt->unlock_native_capacity(sdev);
3171 }
3172 
3173 /**
3174  *	sd_format_disk_name - format disk name
3175  *	@prefix: name prefix - ie. "sd" for SCSI disks
3176  *	@index: index of the disk to format name for
3177  *	@buf: output buffer
3178  *	@buflen: length of the output buffer
3179  *
3180  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3181  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3182  *	which is followed by sdaaa.
3183  *
3184  *	This is basically 26 base counting with one extra 'nil' entry
3185  *	at the beginning from the second digit on and can be
3186  *	determined using similar method as 26 base conversion with the
3187  *	index shifted -1 after each digit is computed.
3188  *
3189  *	CONTEXT:
3190  *	Don't care.
3191  *
3192  *	RETURNS:
3193  *	0 on success, -errno on failure.
3194  */
3195 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3196 {
3197 	const int base = 'z' - 'a' + 1;
3198 	char *begin = buf + strlen(prefix);
3199 	char *end = buf + buflen;
3200 	char *p;
3201 	int unit;
3202 
3203 	p = end - 1;
3204 	*p = '\0';
3205 	unit = base;
3206 	do {
3207 		if (p == begin)
3208 			return -EINVAL;
3209 		*--p = 'a' + (index % unit);
3210 		index = (index / unit) - 1;
3211 	} while (index >= 0);
3212 
3213 	memmove(begin, p, end - p);
3214 	memcpy(buf, prefix, strlen(prefix));
3215 
3216 	return 0;
3217 }
3218 
3219 /*
3220  * The asynchronous part of sd_probe
3221  */
3222 static void sd_probe_async(void *data, async_cookie_t cookie)
3223 {
3224 	struct scsi_disk *sdkp = data;
3225 	struct scsi_device *sdp;
3226 	struct gendisk *gd;
3227 	u32 index;
3228 	struct device *dev;
3229 
3230 	sdp = sdkp->device;
3231 	gd = sdkp->disk;
3232 	index = sdkp->index;
3233 	dev = &sdp->sdev_gendev;
3234 
3235 	gd->major = sd_major((index & 0xf0) >> 4);
3236 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3237 
3238 	gd->fops = &sd_fops;
3239 	gd->private_data = &sdkp->driver;
3240 	gd->queue = sdkp->device->request_queue;
3241 
3242 	/* defaults, until the device tells us otherwise */
3243 	sdp->sector_size = 512;
3244 	sdkp->capacity = 0;
3245 	sdkp->media_present = 1;
3246 	sdkp->write_prot = 0;
3247 	sdkp->cache_override = 0;
3248 	sdkp->WCE = 0;
3249 	sdkp->RCD = 0;
3250 	sdkp->ATO = 0;
3251 	sdkp->first_scan = 1;
3252 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3253 
3254 	sd_revalidate_disk(gd);
3255 
3256 	gd->flags = GENHD_FL_EXT_DEVT;
3257 	if (sdp->removable) {
3258 		gd->flags |= GENHD_FL_REMOVABLE;
3259 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3260 	}
3261 
3262 	blk_pm_runtime_init(sdp->request_queue, dev);
3263 	device_add_disk(dev, gd, NULL);
3264 	if (sdkp->capacity)
3265 		sd_dif_config_host(sdkp);
3266 
3267 	sd_revalidate_disk(gd);
3268 
3269 	if (sdkp->security) {
3270 		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3271 		if (sdkp->opal_dev)
3272 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3273 	}
3274 
3275 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3276 		  sdp->removable ? "removable " : "");
3277 	scsi_autopm_put_device(sdp);
3278 	put_device(&sdkp->dev);
3279 }
3280 
3281 /**
3282  *	sd_probe - called during driver initialization and whenever a
3283  *	new scsi device is attached to the system. It is called once
3284  *	for each scsi device (not just disks) present.
3285  *	@dev: pointer to device object
3286  *
3287  *	Returns 0 if successful (or not interested in this scsi device
3288  *	(e.g. scanner)); 1 when there is an error.
3289  *
3290  *	Note: this function is invoked from the scsi mid-level.
3291  *	This function sets up the mapping between a given
3292  *	<host,channel,id,lun> (found in sdp) and new device name
3293  *	(e.g. /dev/sda). More precisely it is the block device major
3294  *	and minor number that is chosen here.
3295  *
3296  *	Assume sd_probe is not re-entrant (for time being)
3297  *	Also think about sd_probe() and sd_remove() running coincidentally.
3298  **/
3299 static int sd_probe(struct device *dev)
3300 {
3301 	struct scsi_device *sdp = to_scsi_device(dev);
3302 	struct scsi_disk *sdkp;
3303 	struct gendisk *gd;
3304 	int index;
3305 	int error;
3306 
3307 	scsi_autopm_get_device(sdp);
3308 	error = -ENODEV;
3309 	if (sdp->type != TYPE_DISK &&
3310 	    sdp->type != TYPE_ZBC &&
3311 	    sdp->type != TYPE_MOD &&
3312 	    sdp->type != TYPE_RBC)
3313 		goto out;
3314 
3315 #ifndef CONFIG_BLK_DEV_ZONED
3316 	if (sdp->type == TYPE_ZBC)
3317 		goto out;
3318 #endif
3319 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3320 					"sd_probe\n"));
3321 
3322 	error = -ENOMEM;
3323 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3324 	if (!sdkp)
3325 		goto out;
3326 
3327 	gd = alloc_disk(SD_MINORS);
3328 	if (!gd)
3329 		goto out_free;
3330 
3331 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3332 	if (index < 0) {
3333 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3334 		goto out_put;
3335 	}
3336 
3337 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3338 	if (error) {
3339 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3340 		goto out_free_index;
3341 	}
3342 
3343 	sdkp->device = sdp;
3344 	sdkp->driver = &sd_template;
3345 	sdkp->disk = gd;
3346 	sdkp->index = index;
3347 	atomic_set(&sdkp->openers, 0);
3348 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3349 
3350 	if (!sdp->request_queue->rq_timeout) {
3351 		if (sdp->type != TYPE_MOD)
3352 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3353 		else
3354 			blk_queue_rq_timeout(sdp->request_queue,
3355 					     SD_MOD_TIMEOUT);
3356 	}
3357 
3358 	device_initialize(&sdkp->dev);
3359 	sdkp->dev.parent = dev;
3360 	sdkp->dev.class = &sd_disk_class;
3361 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3362 
3363 	error = device_add(&sdkp->dev);
3364 	if (error)
3365 		goto out_free_index;
3366 
3367 	get_device(dev);
3368 	dev_set_drvdata(dev, sdkp);
3369 
3370 	get_device(&sdkp->dev);	/* prevent release before async_schedule */
3371 	async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3372 
3373 	return 0;
3374 
3375  out_free_index:
3376 	ida_free(&sd_index_ida, index);
3377  out_put:
3378 	put_disk(gd);
3379  out_free:
3380 	kfree(sdkp);
3381  out:
3382 	scsi_autopm_put_device(sdp);
3383 	return error;
3384 }
3385 
3386 /**
3387  *	sd_remove - called whenever a scsi disk (previously recognized by
3388  *	sd_probe) is detached from the system. It is called (potentially
3389  *	multiple times) during sd module unload.
3390  *	@dev: pointer to device object
3391  *
3392  *	Note: this function is invoked from the scsi mid-level.
3393  *	This function potentially frees up a device name (e.g. /dev/sdc)
3394  *	that could be re-used by a subsequent sd_probe().
3395  *	This function is not called when the built-in sd driver is "exit-ed".
3396  **/
3397 static int sd_remove(struct device *dev)
3398 {
3399 	struct scsi_disk *sdkp;
3400 	dev_t devt;
3401 
3402 	sdkp = dev_get_drvdata(dev);
3403 	devt = disk_devt(sdkp->disk);
3404 	scsi_autopm_get_device(sdkp->device);
3405 
3406 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3407 	async_synchronize_full_domain(&scsi_sd_probe_domain);
3408 	device_del(&sdkp->dev);
3409 	del_gendisk(sdkp->disk);
3410 	sd_shutdown(dev);
3411 
3412 	free_opal_dev(sdkp->opal_dev);
3413 
3414 	blk_register_region(devt, SD_MINORS, NULL,
3415 			    sd_default_probe, NULL, NULL);
3416 
3417 	mutex_lock(&sd_ref_mutex);
3418 	dev_set_drvdata(dev, NULL);
3419 	put_device(&sdkp->dev);
3420 	mutex_unlock(&sd_ref_mutex);
3421 
3422 	return 0;
3423 }
3424 
3425 /**
3426  *	scsi_disk_release - Called to free the scsi_disk structure
3427  *	@dev: pointer to embedded class device
3428  *
3429  *	sd_ref_mutex must be held entering this routine.  Because it is
3430  *	called on last put, you should always use the scsi_disk_get()
3431  *	scsi_disk_put() helpers which manipulate the semaphore directly
3432  *	and never do a direct put_device.
3433  **/
3434 static void scsi_disk_release(struct device *dev)
3435 {
3436 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3437 	struct gendisk *disk = sdkp->disk;
3438 
3439 	ida_free(&sd_index_ida, sdkp->index);
3440 
3441 	disk->private_data = NULL;
3442 	put_disk(disk);
3443 	put_device(&sdkp->device->sdev_gendev);
3444 
3445 	kfree(sdkp);
3446 }
3447 
3448 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3449 {
3450 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3451 	struct scsi_sense_hdr sshdr;
3452 	struct scsi_device *sdp = sdkp->device;
3453 	int res;
3454 
3455 	if (start)
3456 		cmd[4] |= 1;	/* START */
3457 
3458 	if (sdp->start_stop_pwr_cond)
3459 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3460 
3461 	if (!scsi_device_online(sdp))
3462 		return -ENODEV;
3463 
3464 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3465 			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3466 	if (res) {
3467 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3468 		if (driver_byte(res) == DRIVER_SENSE)
3469 			sd_print_sense_hdr(sdkp, &sshdr);
3470 		if (scsi_sense_valid(&sshdr) &&
3471 			/* 0x3a is medium not present */
3472 			sshdr.asc == 0x3a)
3473 			res = 0;
3474 	}
3475 
3476 	/* SCSI error codes must not go to the generic layer */
3477 	if (res)
3478 		return -EIO;
3479 
3480 	return 0;
3481 }
3482 
3483 /*
3484  * Send a SYNCHRONIZE CACHE instruction down to the device through
3485  * the normal SCSI command structure.  Wait for the command to
3486  * complete.
3487  */
3488 static void sd_shutdown(struct device *dev)
3489 {
3490 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3491 
3492 	if (!sdkp)
3493 		return;         /* this can happen */
3494 
3495 	if (pm_runtime_suspended(dev))
3496 		return;
3497 
3498 	if (sdkp->WCE && sdkp->media_present) {
3499 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3500 		sd_sync_cache(sdkp, NULL);
3501 	}
3502 
3503 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3504 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3505 		sd_start_stop_device(sdkp, 0);
3506 	}
3507 }
3508 
3509 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3510 {
3511 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3512 	struct scsi_sense_hdr sshdr;
3513 	int ret = 0;
3514 
3515 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3516 		return 0;
3517 
3518 	if (sdkp->WCE && sdkp->media_present) {
3519 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3520 		ret = sd_sync_cache(sdkp, &sshdr);
3521 
3522 		if (ret) {
3523 			/* ignore OFFLINE device */
3524 			if (ret == -ENODEV)
3525 				return 0;
3526 
3527 			if (!scsi_sense_valid(&sshdr) ||
3528 			    sshdr.sense_key != ILLEGAL_REQUEST)
3529 				return ret;
3530 
3531 			/*
3532 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3533 			 * doesn't support sync. There's not much to do and
3534 			 * suspend shouldn't fail.
3535 			 */
3536 			ret = 0;
3537 		}
3538 	}
3539 
3540 	if (sdkp->device->manage_start_stop) {
3541 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3542 		/* an error is not worth aborting a system sleep */
3543 		ret = sd_start_stop_device(sdkp, 0);
3544 		if (ignore_stop_errors)
3545 			ret = 0;
3546 	}
3547 
3548 	return ret;
3549 }
3550 
3551 static int sd_suspend_system(struct device *dev)
3552 {
3553 	return sd_suspend_common(dev, true);
3554 }
3555 
3556 static int sd_suspend_runtime(struct device *dev)
3557 {
3558 	return sd_suspend_common(dev, false);
3559 }
3560 
3561 static int sd_resume(struct device *dev)
3562 {
3563 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3564 	int ret;
3565 
3566 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3567 		return 0;
3568 
3569 	if (!sdkp->device->manage_start_stop)
3570 		return 0;
3571 
3572 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3573 	ret = sd_start_stop_device(sdkp, 1);
3574 	if (!ret)
3575 		opal_unlock_from_suspend(sdkp->opal_dev);
3576 	return ret;
3577 }
3578 
3579 /**
3580  *	init_sd - entry point for this driver (both when built in or when
3581  *	a module).
3582  *
3583  *	Note: this function registers this driver with the scsi mid-level.
3584  **/
3585 static int __init init_sd(void)
3586 {
3587 	int majors = 0, i, err;
3588 
3589 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3590 
3591 	for (i = 0; i < SD_MAJORS; i++) {
3592 		if (register_blkdev(sd_major(i), "sd") != 0)
3593 			continue;
3594 		majors++;
3595 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3596 				    sd_default_probe, NULL, NULL);
3597 	}
3598 
3599 	if (!majors)
3600 		return -ENODEV;
3601 
3602 	err = class_register(&sd_disk_class);
3603 	if (err)
3604 		goto err_out;
3605 
3606 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3607 					 0, 0, NULL);
3608 	if (!sd_cdb_cache) {
3609 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3610 		err = -ENOMEM;
3611 		goto err_out_class;
3612 	}
3613 
3614 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3615 	if (!sd_cdb_pool) {
3616 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3617 		err = -ENOMEM;
3618 		goto err_out_cache;
3619 	}
3620 
3621 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3622 	if (!sd_page_pool) {
3623 		printk(KERN_ERR "sd: can't init discard page pool\n");
3624 		err = -ENOMEM;
3625 		goto err_out_ppool;
3626 	}
3627 
3628 	err = scsi_register_driver(&sd_template.gendrv);
3629 	if (err)
3630 		goto err_out_driver;
3631 
3632 	return 0;
3633 
3634 err_out_driver:
3635 	mempool_destroy(sd_page_pool);
3636 
3637 err_out_ppool:
3638 	mempool_destroy(sd_cdb_pool);
3639 
3640 err_out_cache:
3641 	kmem_cache_destroy(sd_cdb_cache);
3642 
3643 err_out_class:
3644 	class_unregister(&sd_disk_class);
3645 err_out:
3646 	for (i = 0; i < SD_MAJORS; i++)
3647 		unregister_blkdev(sd_major(i), "sd");
3648 	return err;
3649 }
3650 
3651 /**
3652  *	exit_sd - exit point for this driver (when it is a module).
3653  *
3654  *	Note: this function unregisters this driver from the scsi mid-level.
3655  **/
3656 static void __exit exit_sd(void)
3657 {
3658 	int i;
3659 
3660 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3661 
3662 	scsi_unregister_driver(&sd_template.gendrv);
3663 	mempool_destroy(sd_cdb_pool);
3664 	mempool_destroy(sd_page_pool);
3665 	kmem_cache_destroy(sd_cdb_cache);
3666 
3667 	class_unregister(&sd_disk_class);
3668 
3669 	for (i = 0; i < SD_MAJORS; i++) {
3670 		blk_unregister_region(sd_major(i), SD_MINORS);
3671 		unregister_blkdev(sd_major(i), "sd");
3672 	}
3673 }
3674 
3675 module_init(init_sd);
3676 module_exit(exit_sd);
3677 
3678 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3679 			       struct scsi_sense_hdr *sshdr)
3680 {
3681 	scsi_print_sense_hdr(sdkp->device,
3682 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3683 }
3684 
3685 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3686 			    int result)
3687 {
3688 	const char *hb_string = scsi_hostbyte_string(result);
3689 	const char *db_string = scsi_driverbyte_string(result);
3690 
3691 	if (hb_string || db_string)
3692 		sd_printk(KERN_INFO, sdkp,
3693 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3694 			  hb_string ? hb_string : "invalid",
3695 			  db_string ? db_string : "invalid");
3696 	else
3697 		sd_printk(KERN_INFO, sdkp,
3698 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3699 			  msg, host_byte(result), driver_byte(result));
3700 }
3701 
3702