1 /* 2 * sd.c Copyright (C) 1992 Drew Eckhardt 3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 4 * 5 * Linux scsi disk driver 6 * Initial versions: Drew Eckhardt 7 * Subsequent revisions: Eric Youngdale 8 * Modification history: 9 * - Drew Eckhardt <drew@colorado.edu> original 10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 11 * outstanding request, and other enhancements. 12 * Support loadable low-level scsi drivers. 13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 14 * eight major numbers. 15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 17 * sd_init and cleanups. 18 * - Alex Davis <letmein@erols.com> Fix problem where partition info 19 * not being read in sd_open. Fix problem where removable media 20 * could be ejected after sd_open. 21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 24 * Support 32k/1M disks. 25 * 26 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 30 * - entering other commands: SCSI_LOG_HLQUEUE level 3 31 * Note: when the logging level is set by the user, it must be greater 32 * than the level indicated above to trigger output. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/fs.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/bio.h> 40 #include <linux/genhd.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/mutex.h> 51 #include <linux/string_helpers.h> 52 #include <linux/async.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 71 #include "sd.h" 72 #include "scsi_priv.h" 73 #include "scsi_logging.h" 74 75 MODULE_AUTHOR("Eric Youngdale"); 76 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 77 MODULE_LICENSE("GPL"); 78 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 99 100 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 101 #define SD_MINORS 16 102 #else 103 #define SD_MINORS 0 104 #endif 105 106 static void sd_config_discard(struct scsi_disk *, unsigned int); 107 static void sd_config_write_same(struct scsi_disk *); 108 static int sd_revalidate_disk(struct gendisk *); 109 static void sd_unlock_native_capacity(struct gendisk *disk); 110 static int sd_probe(struct device *); 111 static int sd_remove(struct device *); 112 static void sd_shutdown(struct device *); 113 static int sd_suspend_system(struct device *); 114 static int sd_suspend_runtime(struct device *); 115 static int sd_resume(struct device *); 116 static void sd_rescan(struct device *); 117 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 118 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 119 static int sd_done(struct scsi_cmnd *); 120 static void sd_eh_reset(struct scsi_cmnd *); 121 static int sd_eh_action(struct scsi_cmnd *, int); 122 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 123 static void scsi_disk_release(struct device *cdev); 124 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 125 static void sd_print_result(const struct scsi_disk *, const char *, int); 126 127 static DEFINE_IDA(sd_index_ida); 128 129 /* This semaphore is used to mediate the 0->1 reference get in the 130 * face of object destruction (i.e. we can't allow a get on an 131 * object after last put) */ 132 static DEFINE_MUTEX(sd_ref_mutex); 133 134 static struct kmem_cache *sd_cdb_cache; 135 static mempool_t *sd_cdb_pool; 136 static mempool_t *sd_page_pool; 137 138 static const char *sd_cache_types[] = { 139 "write through", "none", "write back", 140 "write back, no read (daft)" 141 }; 142 143 static void sd_set_flush_flag(struct scsi_disk *sdkp) 144 { 145 bool wc = false, fua = false; 146 147 if (sdkp->WCE) { 148 wc = true; 149 if (sdkp->DPOFUA) 150 fua = true; 151 } 152 153 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 154 } 155 156 static ssize_t 157 cache_type_store(struct device *dev, struct device_attribute *attr, 158 const char *buf, size_t count) 159 { 160 int ct, rcd, wce, sp; 161 struct scsi_disk *sdkp = to_scsi_disk(dev); 162 struct scsi_device *sdp = sdkp->device; 163 char buffer[64]; 164 char *buffer_data; 165 struct scsi_mode_data data; 166 struct scsi_sense_hdr sshdr; 167 static const char temp[] = "temporary "; 168 int len; 169 170 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 171 /* no cache control on RBC devices; theoretically they 172 * can do it, but there's probably so many exceptions 173 * it's not worth the risk */ 174 return -EINVAL; 175 176 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 177 buf += sizeof(temp) - 1; 178 sdkp->cache_override = 1; 179 } else { 180 sdkp->cache_override = 0; 181 } 182 183 ct = sysfs_match_string(sd_cache_types, buf); 184 if (ct < 0) 185 return -EINVAL; 186 187 rcd = ct & 0x01 ? 1 : 0; 188 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 189 190 if (sdkp->cache_override) { 191 sdkp->WCE = wce; 192 sdkp->RCD = rcd; 193 sd_set_flush_flag(sdkp); 194 return count; 195 } 196 197 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 198 SD_MAX_RETRIES, &data, NULL)) 199 return -EINVAL; 200 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 201 data.block_descriptor_length); 202 buffer_data = buffer + data.header_length + 203 data.block_descriptor_length; 204 buffer_data[2] &= ~0x05; 205 buffer_data[2] |= wce << 2 | rcd; 206 sp = buffer_data[0] & 0x80 ? 1 : 0; 207 buffer_data[0] &= ~0x80; 208 209 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 210 SD_MAX_RETRIES, &data, &sshdr)) { 211 if (scsi_sense_valid(&sshdr)) 212 sd_print_sense_hdr(sdkp, &sshdr); 213 return -EINVAL; 214 } 215 revalidate_disk(sdkp->disk); 216 return count; 217 } 218 219 static ssize_t 220 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 221 char *buf) 222 { 223 struct scsi_disk *sdkp = to_scsi_disk(dev); 224 struct scsi_device *sdp = sdkp->device; 225 226 return sprintf(buf, "%u\n", sdp->manage_start_stop); 227 } 228 229 static ssize_t 230 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 231 const char *buf, size_t count) 232 { 233 struct scsi_disk *sdkp = to_scsi_disk(dev); 234 struct scsi_device *sdp = sdkp->device; 235 bool v; 236 237 if (!capable(CAP_SYS_ADMIN)) 238 return -EACCES; 239 240 if (kstrtobool(buf, &v)) 241 return -EINVAL; 242 243 sdp->manage_start_stop = v; 244 245 return count; 246 } 247 static DEVICE_ATTR_RW(manage_start_stop); 248 249 static ssize_t 250 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 251 { 252 struct scsi_disk *sdkp = to_scsi_disk(dev); 253 254 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 255 } 256 257 static ssize_t 258 allow_restart_store(struct device *dev, struct device_attribute *attr, 259 const char *buf, size_t count) 260 { 261 bool v; 262 struct scsi_disk *sdkp = to_scsi_disk(dev); 263 struct scsi_device *sdp = sdkp->device; 264 265 if (!capable(CAP_SYS_ADMIN)) 266 return -EACCES; 267 268 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 269 return -EINVAL; 270 271 if (kstrtobool(buf, &v)) 272 return -EINVAL; 273 274 sdp->allow_restart = v; 275 276 return count; 277 } 278 static DEVICE_ATTR_RW(allow_restart); 279 280 static ssize_t 281 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 282 { 283 struct scsi_disk *sdkp = to_scsi_disk(dev); 284 int ct = sdkp->RCD + 2*sdkp->WCE; 285 286 return sprintf(buf, "%s\n", sd_cache_types[ct]); 287 } 288 static DEVICE_ATTR_RW(cache_type); 289 290 static ssize_t 291 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 292 { 293 struct scsi_disk *sdkp = to_scsi_disk(dev); 294 295 return sprintf(buf, "%u\n", sdkp->DPOFUA); 296 } 297 static DEVICE_ATTR_RO(FUA); 298 299 static ssize_t 300 protection_type_show(struct device *dev, struct device_attribute *attr, 301 char *buf) 302 { 303 struct scsi_disk *sdkp = to_scsi_disk(dev); 304 305 return sprintf(buf, "%u\n", sdkp->protection_type); 306 } 307 308 static ssize_t 309 protection_type_store(struct device *dev, struct device_attribute *attr, 310 const char *buf, size_t count) 311 { 312 struct scsi_disk *sdkp = to_scsi_disk(dev); 313 unsigned int val; 314 int err; 315 316 if (!capable(CAP_SYS_ADMIN)) 317 return -EACCES; 318 319 err = kstrtouint(buf, 10, &val); 320 321 if (err) 322 return err; 323 324 if (val <= T10_PI_TYPE3_PROTECTION) 325 sdkp->protection_type = val; 326 327 return count; 328 } 329 static DEVICE_ATTR_RW(protection_type); 330 331 static ssize_t 332 protection_mode_show(struct device *dev, struct device_attribute *attr, 333 char *buf) 334 { 335 struct scsi_disk *sdkp = to_scsi_disk(dev); 336 struct scsi_device *sdp = sdkp->device; 337 unsigned int dif, dix; 338 339 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 340 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 341 342 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 343 dif = 0; 344 dix = 1; 345 } 346 347 if (!dif && !dix) 348 return sprintf(buf, "none\n"); 349 350 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 351 } 352 static DEVICE_ATTR_RO(protection_mode); 353 354 static ssize_t 355 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 356 { 357 struct scsi_disk *sdkp = to_scsi_disk(dev); 358 359 return sprintf(buf, "%u\n", sdkp->ATO); 360 } 361 static DEVICE_ATTR_RO(app_tag_own); 362 363 static ssize_t 364 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 365 char *buf) 366 { 367 struct scsi_disk *sdkp = to_scsi_disk(dev); 368 369 return sprintf(buf, "%u\n", sdkp->lbpme); 370 } 371 static DEVICE_ATTR_RO(thin_provisioning); 372 373 /* sysfs_match_string() requires dense arrays */ 374 static const char *lbp_mode[] = { 375 [SD_LBP_FULL] = "full", 376 [SD_LBP_UNMAP] = "unmap", 377 [SD_LBP_WS16] = "writesame_16", 378 [SD_LBP_WS10] = "writesame_10", 379 [SD_LBP_ZERO] = "writesame_zero", 380 [SD_LBP_DISABLE] = "disabled", 381 }; 382 383 static ssize_t 384 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 385 char *buf) 386 { 387 struct scsi_disk *sdkp = to_scsi_disk(dev); 388 389 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 390 } 391 392 static ssize_t 393 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 394 const char *buf, size_t count) 395 { 396 struct scsi_disk *sdkp = to_scsi_disk(dev); 397 struct scsi_device *sdp = sdkp->device; 398 int mode; 399 400 if (!capable(CAP_SYS_ADMIN)) 401 return -EACCES; 402 403 if (sd_is_zoned(sdkp)) { 404 sd_config_discard(sdkp, SD_LBP_DISABLE); 405 return count; 406 } 407 408 if (sdp->type != TYPE_DISK) 409 return -EINVAL; 410 411 mode = sysfs_match_string(lbp_mode, buf); 412 if (mode < 0) 413 return -EINVAL; 414 415 sd_config_discard(sdkp, mode); 416 417 return count; 418 } 419 static DEVICE_ATTR_RW(provisioning_mode); 420 421 /* sysfs_match_string() requires dense arrays */ 422 static const char *zeroing_mode[] = { 423 [SD_ZERO_WRITE] = "write", 424 [SD_ZERO_WS] = "writesame", 425 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 426 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 427 }; 428 429 static ssize_t 430 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 431 char *buf) 432 { 433 struct scsi_disk *sdkp = to_scsi_disk(dev); 434 435 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 436 } 437 438 static ssize_t 439 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 440 const char *buf, size_t count) 441 { 442 struct scsi_disk *sdkp = to_scsi_disk(dev); 443 int mode; 444 445 if (!capable(CAP_SYS_ADMIN)) 446 return -EACCES; 447 448 mode = sysfs_match_string(zeroing_mode, buf); 449 if (mode < 0) 450 return -EINVAL; 451 452 sdkp->zeroing_mode = mode; 453 454 return count; 455 } 456 static DEVICE_ATTR_RW(zeroing_mode); 457 458 static ssize_t 459 max_medium_access_timeouts_show(struct device *dev, 460 struct device_attribute *attr, char *buf) 461 { 462 struct scsi_disk *sdkp = to_scsi_disk(dev); 463 464 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 465 } 466 467 static ssize_t 468 max_medium_access_timeouts_store(struct device *dev, 469 struct device_attribute *attr, const char *buf, 470 size_t count) 471 { 472 struct scsi_disk *sdkp = to_scsi_disk(dev); 473 int err; 474 475 if (!capable(CAP_SYS_ADMIN)) 476 return -EACCES; 477 478 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 479 480 return err ? err : count; 481 } 482 static DEVICE_ATTR_RW(max_medium_access_timeouts); 483 484 static ssize_t 485 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 486 char *buf) 487 { 488 struct scsi_disk *sdkp = to_scsi_disk(dev); 489 490 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 491 } 492 493 static ssize_t 494 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 495 const char *buf, size_t count) 496 { 497 struct scsi_disk *sdkp = to_scsi_disk(dev); 498 struct scsi_device *sdp = sdkp->device; 499 unsigned long max; 500 int err; 501 502 if (!capable(CAP_SYS_ADMIN)) 503 return -EACCES; 504 505 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 506 return -EINVAL; 507 508 err = kstrtoul(buf, 10, &max); 509 510 if (err) 511 return err; 512 513 if (max == 0) 514 sdp->no_write_same = 1; 515 else if (max <= SD_MAX_WS16_BLOCKS) { 516 sdp->no_write_same = 0; 517 sdkp->max_ws_blocks = max; 518 } 519 520 sd_config_write_same(sdkp); 521 522 return count; 523 } 524 static DEVICE_ATTR_RW(max_write_same_blocks); 525 526 static struct attribute *sd_disk_attrs[] = { 527 &dev_attr_cache_type.attr, 528 &dev_attr_FUA.attr, 529 &dev_attr_allow_restart.attr, 530 &dev_attr_manage_start_stop.attr, 531 &dev_attr_protection_type.attr, 532 &dev_attr_protection_mode.attr, 533 &dev_attr_app_tag_own.attr, 534 &dev_attr_thin_provisioning.attr, 535 &dev_attr_provisioning_mode.attr, 536 &dev_attr_zeroing_mode.attr, 537 &dev_attr_max_write_same_blocks.attr, 538 &dev_attr_max_medium_access_timeouts.attr, 539 NULL, 540 }; 541 ATTRIBUTE_GROUPS(sd_disk); 542 543 static struct class sd_disk_class = { 544 .name = "scsi_disk", 545 .owner = THIS_MODULE, 546 .dev_release = scsi_disk_release, 547 .dev_groups = sd_disk_groups, 548 }; 549 550 static const struct dev_pm_ops sd_pm_ops = { 551 .suspend = sd_suspend_system, 552 .resume = sd_resume, 553 .poweroff = sd_suspend_system, 554 .restore = sd_resume, 555 .runtime_suspend = sd_suspend_runtime, 556 .runtime_resume = sd_resume, 557 }; 558 559 static struct scsi_driver sd_template = { 560 .gendrv = { 561 .name = "sd", 562 .owner = THIS_MODULE, 563 .probe = sd_probe, 564 .remove = sd_remove, 565 .shutdown = sd_shutdown, 566 .pm = &sd_pm_ops, 567 }, 568 .rescan = sd_rescan, 569 .init_command = sd_init_command, 570 .uninit_command = sd_uninit_command, 571 .done = sd_done, 572 .eh_action = sd_eh_action, 573 .eh_reset = sd_eh_reset, 574 }; 575 576 /* 577 * Dummy kobj_map->probe function. 578 * The default ->probe function will call modprobe, which is 579 * pointless as this module is already loaded. 580 */ 581 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 582 { 583 return NULL; 584 } 585 586 /* 587 * Device no to disk mapping: 588 * 589 * major disc2 disc p1 590 * |............|.............|....|....| <- dev_t 591 * 31 20 19 8 7 4 3 0 592 * 593 * Inside a major, we have 16k disks, however mapped non- 594 * contiguously. The first 16 disks are for major0, the next 595 * ones with major1, ... Disk 256 is for major0 again, disk 272 596 * for major1, ... 597 * As we stay compatible with our numbering scheme, we can reuse 598 * the well-know SCSI majors 8, 65--71, 136--143. 599 */ 600 static int sd_major(int major_idx) 601 { 602 switch (major_idx) { 603 case 0: 604 return SCSI_DISK0_MAJOR; 605 case 1 ... 7: 606 return SCSI_DISK1_MAJOR + major_idx - 1; 607 case 8 ... 15: 608 return SCSI_DISK8_MAJOR + major_idx - 8; 609 default: 610 BUG(); 611 return 0; /* shut up gcc */ 612 } 613 } 614 615 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 616 { 617 struct scsi_disk *sdkp = NULL; 618 619 mutex_lock(&sd_ref_mutex); 620 621 if (disk->private_data) { 622 sdkp = scsi_disk(disk); 623 if (scsi_device_get(sdkp->device) == 0) 624 get_device(&sdkp->dev); 625 else 626 sdkp = NULL; 627 } 628 mutex_unlock(&sd_ref_mutex); 629 return sdkp; 630 } 631 632 static void scsi_disk_put(struct scsi_disk *sdkp) 633 { 634 struct scsi_device *sdev = sdkp->device; 635 636 mutex_lock(&sd_ref_mutex); 637 put_device(&sdkp->dev); 638 scsi_device_put(sdev); 639 mutex_unlock(&sd_ref_mutex); 640 } 641 642 #ifdef CONFIG_BLK_SED_OPAL 643 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 644 size_t len, bool send) 645 { 646 struct scsi_device *sdev = data; 647 u8 cdb[12] = { 0, }; 648 int ret; 649 650 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 651 cdb[1] = secp; 652 put_unaligned_be16(spsp, &cdb[2]); 653 put_unaligned_be32(len, &cdb[6]); 654 655 ret = scsi_execute_req(sdev, cdb, 656 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 657 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 658 return ret <= 0 ? ret : -EIO; 659 } 660 #endif /* CONFIG_BLK_SED_OPAL */ 661 662 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 663 unsigned int dix, unsigned int dif) 664 { 665 struct bio *bio = scmd->request->bio; 666 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 667 unsigned int protect = 0; 668 669 if (dix) { /* DIX Type 0, 1, 2, 3 */ 670 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 671 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 672 673 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 674 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 675 } 676 677 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 678 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 679 680 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 681 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 682 } 683 684 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 685 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 686 687 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 688 protect = 3 << 5; /* Disable target PI checking */ 689 else 690 protect = 1 << 5; /* Enable target PI checking */ 691 } 692 693 scsi_set_prot_op(scmd, prot_op); 694 scsi_set_prot_type(scmd, dif); 695 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 696 697 return protect; 698 } 699 700 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 701 { 702 struct request_queue *q = sdkp->disk->queue; 703 unsigned int logical_block_size = sdkp->device->sector_size; 704 unsigned int max_blocks = 0; 705 706 q->limits.discard_alignment = 707 sdkp->unmap_alignment * logical_block_size; 708 q->limits.discard_granularity = 709 max(sdkp->physical_block_size, 710 sdkp->unmap_granularity * logical_block_size); 711 sdkp->provisioning_mode = mode; 712 713 switch (mode) { 714 715 case SD_LBP_FULL: 716 case SD_LBP_DISABLE: 717 blk_queue_max_discard_sectors(q, 0); 718 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 719 return; 720 721 case SD_LBP_UNMAP: 722 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 723 (u32)SD_MAX_WS16_BLOCKS); 724 break; 725 726 case SD_LBP_WS16: 727 if (sdkp->device->unmap_limit_for_ws) 728 max_blocks = sdkp->max_unmap_blocks; 729 else 730 max_blocks = sdkp->max_ws_blocks; 731 732 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 733 break; 734 735 case SD_LBP_WS10: 736 if (sdkp->device->unmap_limit_for_ws) 737 max_blocks = sdkp->max_unmap_blocks; 738 else 739 max_blocks = sdkp->max_ws_blocks; 740 741 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 742 break; 743 744 case SD_LBP_ZERO: 745 max_blocks = min_not_zero(sdkp->max_ws_blocks, 746 (u32)SD_MAX_WS10_BLOCKS); 747 break; 748 } 749 750 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 751 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 752 } 753 754 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 755 { 756 struct scsi_device *sdp = cmd->device; 757 struct request *rq = cmd->request; 758 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 759 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 760 unsigned int data_len = 24; 761 char *buf; 762 763 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 764 if (!rq->special_vec.bv_page) 765 return BLK_STS_RESOURCE; 766 clear_highpage(rq->special_vec.bv_page); 767 rq->special_vec.bv_offset = 0; 768 rq->special_vec.bv_len = data_len; 769 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 770 771 cmd->cmd_len = 10; 772 cmd->cmnd[0] = UNMAP; 773 cmd->cmnd[8] = 24; 774 775 buf = page_address(rq->special_vec.bv_page); 776 put_unaligned_be16(6 + 16, &buf[0]); 777 put_unaligned_be16(16, &buf[2]); 778 put_unaligned_be64(sector, &buf[8]); 779 put_unaligned_be32(nr_sectors, &buf[16]); 780 781 cmd->allowed = SD_MAX_RETRIES; 782 cmd->transfersize = data_len; 783 rq->timeout = SD_TIMEOUT; 784 scsi_req(rq)->resid_len = data_len; 785 786 return scsi_init_io(cmd); 787 } 788 789 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 790 bool unmap) 791 { 792 struct scsi_device *sdp = cmd->device; 793 struct request *rq = cmd->request; 794 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 795 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 796 u32 data_len = sdp->sector_size; 797 798 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 799 if (!rq->special_vec.bv_page) 800 return BLK_STS_RESOURCE; 801 clear_highpage(rq->special_vec.bv_page); 802 rq->special_vec.bv_offset = 0; 803 rq->special_vec.bv_len = data_len; 804 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 805 806 cmd->cmd_len = 16; 807 cmd->cmnd[0] = WRITE_SAME_16; 808 if (unmap) 809 cmd->cmnd[1] = 0x8; /* UNMAP */ 810 put_unaligned_be64(sector, &cmd->cmnd[2]); 811 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 812 813 cmd->allowed = SD_MAX_RETRIES; 814 cmd->transfersize = data_len; 815 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 816 scsi_req(rq)->resid_len = data_len; 817 818 return scsi_init_io(cmd); 819 } 820 821 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 822 bool unmap) 823 { 824 struct scsi_device *sdp = cmd->device; 825 struct request *rq = cmd->request; 826 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 827 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 828 u32 data_len = sdp->sector_size; 829 830 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 831 if (!rq->special_vec.bv_page) 832 return BLK_STS_RESOURCE; 833 clear_highpage(rq->special_vec.bv_page); 834 rq->special_vec.bv_offset = 0; 835 rq->special_vec.bv_len = data_len; 836 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 837 838 cmd->cmd_len = 10; 839 cmd->cmnd[0] = WRITE_SAME; 840 if (unmap) 841 cmd->cmnd[1] = 0x8; /* UNMAP */ 842 put_unaligned_be32(sector, &cmd->cmnd[2]); 843 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 844 845 cmd->allowed = SD_MAX_RETRIES; 846 cmd->transfersize = data_len; 847 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 848 scsi_req(rq)->resid_len = data_len; 849 850 return scsi_init_io(cmd); 851 } 852 853 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 854 { 855 struct request *rq = cmd->request; 856 struct scsi_device *sdp = cmd->device; 857 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 858 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 859 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 860 861 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 862 switch (sdkp->zeroing_mode) { 863 case SD_ZERO_WS16_UNMAP: 864 return sd_setup_write_same16_cmnd(cmd, true); 865 case SD_ZERO_WS10_UNMAP: 866 return sd_setup_write_same10_cmnd(cmd, true); 867 } 868 } 869 870 if (sdp->no_write_same) 871 return BLK_STS_TARGET; 872 873 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) 874 return sd_setup_write_same16_cmnd(cmd, false); 875 876 return sd_setup_write_same10_cmnd(cmd, false); 877 } 878 879 static void sd_config_write_same(struct scsi_disk *sdkp) 880 { 881 struct request_queue *q = sdkp->disk->queue; 882 unsigned int logical_block_size = sdkp->device->sector_size; 883 884 if (sdkp->device->no_write_same) { 885 sdkp->max_ws_blocks = 0; 886 goto out; 887 } 888 889 /* Some devices can not handle block counts above 0xffff despite 890 * supporting WRITE SAME(16). Consequently we default to 64k 891 * blocks per I/O unless the device explicitly advertises a 892 * bigger limit. 893 */ 894 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 895 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 896 (u32)SD_MAX_WS16_BLOCKS); 897 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 898 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 899 (u32)SD_MAX_WS10_BLOCKS); 900 else { 901 sdkp->device->no_write_same = 1; 902 sdkp->max_ws_blocks = 0; 903 } 904 905 if (sdkp->lbprz && sdkp->lbpws) 906 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 907 else if (sdkp->lbprz && sdkp->lbpws10) 908 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 909 else if (sdkp->max_ws_blocks) 910 sdkp->zeroing_mode = SD_ZERO_WS; 911 else 912 sdkp->zeroing_mode = SD_ZERO_WRITE; 913 914 if (sdkp->max_ws_blocks && 915 sdkp->physical_block_size > logical_block_size) { 916 /* 917 * Reporting a maximum number of blocks that is not aligned 918 * on the device physical size would cause a large write same 919 * request to be split into physically unaligned chunks by 920 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 921 * even if the caller of these functions took care to align the 922 * large request. So make sure the maximum reported is aligned 923 * to the device physical block size. This is only an optional 924 * optimization for regular disks, but this is mandatory to 925 * avoid failure of large write same requests directed at 926 * sequential write required zones of host-managed ZBC disks. 927 */ 928 sdkp->max_ws_blocks = 929 round_down(sdkp->max_ws_blocks, 930 bytes_to_logical(sdkp->device, 931 sdkp->physical_block_size)); 932 } 933 934 out: 935 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 936 (logical_block_size >> 9)); 937 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 938 (logical_block_size >> 9)); 939 } 940 941 /** 942 * sd_setup_write_same_cmnd - write the same data to multiple blocks 943 * @cmd: command to prepare 944 * 945 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 946 * the preference indicated by the target device. 947 **/ 948 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 949 { 950 struct request *rq = cmd->request; 951 struct scsi_device *sdp = cmd->device; 952 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 953 struct bio *bio = rq->bio; 954 sector_t sector = blk_rq_pos(rq); 955 unsigned int nr_sectors = blk_rq_sectors(rq); 956 unsigned int nr_bytes = blk_rq_bytes(rq); 957 blk_status_t ret; 958 959 if (sdkp->device->no_write_same) 960 return BLK_STS_TARGET; 961 962 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 963 964 sector >>= ilog2(sdp->sector_size) - 9; 965 nr_sectors >>= ilog2(sdp->sector_size) - 9; 966 967 rq->timeout = SD_WRITE_SAME_TIMEOUT; 968 969 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) { 970 cmd->cmd_len = 16; 971 cmd->cmnd[0] = WRITE_SAME_16; 972 put_unaligned_be64(sector, &cmd->cmnd[2]); 973 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 974 } else { 975 cmd->cmd_len = 10; 976 cmd->cmnd[0] = WRITE_SAME; 977 put_unaligned_be32(sector, &cmd->cmnd[2]); 978 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 979 } 980 981 cmd->transfersize = sdp->sector_size; 982 cmd->allowed = SD_MAX_RETRIES; 983 984 /* 985 * For WRITE SAME the data transferred via the DATA OUT buffer is 986 * different from the amount of data actually written to the target. 987 * 988 * We set up __data_len to the amount of data transferred via the 989 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 990 * to transfer a single sector of data first, but then reset it to 991 * the amount of data to be written right after so that the I/O path 992 * knows how much to actually write. 993 */ 994 rq->__data_len = sdp->sector_size; 995 ret = scsi_init_io(cmd); 996 rq->__data_len = nr_bytes; 997 998 return ret; 999 } 1000 1001 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1002 { 1003 struct request *rq = cmd->request; 1004 1005 /* flush requests don't perform I/O, zero the S/G table */ 1006 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1007 1008 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1009 cmd->cmd_len = 10; 1010 cmd->transfersize = 0; 1011 cmd->allowed = SD_MAX_RETRIES; 1012 1013 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1014 return BLK_STS_OK; 1015 } 1016 1017 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt) 1018 { 1019 struct request *rq = SCpnt->request; 1020 struct scsi_device *sdp = SCpnt->device; 1021 struct gendisk *disk = rq->rq_disk; 1022 struct scsi_disk *sdkp = scsi_disk(disk); 1023 sector_t block = blk_rq_pos(rq); 1024 sector_t threshold; 1025 unsigned int this_count = blk_rq_sectors(rq); 1026 unsigned int dif, dix; 1027 unsigned char protect; 1028 blk_status_t ret; 1029 1030 ret = scsi_init_io(SCpnt); 1031 if (ret != BLK_STS_OK) 1032 return ret; 1033 WARN_ON_ONCE(SCpnt != rq->special); 1034 1035 SCSI_LOG_HLQUEUE(1, 1036 scmd_printk(KERN_INFO, SCpnt, 1037 "%s: block=%llu, count=%d\n", 1038 __func__, (unsigned long long)block, this_count)); 1039 1040 if (!sdp || !scsi_device_online(sdp) || 1041 block + blk_rq_sectors(rq) > get_capacity(disk)) { 1042 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1043 "Finishing %u sectors\n", 1044 blk_rq_sectors(rq))); 1045 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1046 "Retry with 0x%p\n", SCpnt)); 1047 return BLK_STS_IOERR; 1048 } 1049 1050 if (sdp->changed) { 1051 /* 1052 * quietly refuse to do anything to a changed disc until 1053 * the changed bit has been reset 1054 */ 1055 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */ 1056 return BLK_STS_IOERR; 1057 } 1058 1059 /* 1060 * Some SD card readers can't handle multi-sector accesses which touch 1061 * the last one or two hardware sectors. Split accesses as needed. 1062 */ 1063 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS * 1064 (sdp->sector_size / 512); 1065 1066 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) { 1067 if (block < threshold) { 1068 /* Access up to the threshold but not beyond */ 1069 this_count = threshold - block; 1070 } else { 1071 /* Access only a single hardware sector */ 1072 this_count = sdp->sector_size / 512; 1073 } 1074 } 1075 1076 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", 1077 (unsigned long long)block)); 1078 1079 /* 1080 * If we have a 1K hardware sectorsize, prevent access to single 1081 * 512 byte sectors. In theory we could handle this - in fact 1082 * the scsi cdrom driver must be able to handle this because 1083 * we typically use 1K blocksizes, and cdroms typically have 1084 * 2K hardware sectorsizes. Of course, things are simpler 1085 * with the cdrom, since it is read-only. For performance 1086 * reasons, the filesystems should be able to handle this 1087 * and not force the scsi disk driver to use bounce buffers 1088 * for this. 1089 */ 1090 if (sdp->sector_size == 1024) { 1091 if ((block & 1) || (blk_rq_sectors(rq) & 1)) { 1092 scmd_printk(KERN_ERR, SCpnt, 1093 "Bad block number requested\n"); 1094 return BLK_STS_IOERR; 1095 } 1096 block = block >> 1; 1097 this_count = this_count >> 1; 1098 } 1099 if (sdp->sector_size == 2048) { 1100 if ((block & 3) || (blk_rq_sectors(rq) & 3)) { 1101 scmd_printk(KERN_ERR, SCpnt, 1102 "Bad block number requested\n"); 1103 return BLK_STS_IOERR; 1104 } 1105 block = block >> 2; 1106 this_count = this_count >> 2; 1107 } 1108 if (sdp->sector_size == 4096) { 1109 if ((block & 7) || (blk_rq_sectors(rq) & 7)) { 1110 scmd_printk(KERN_ERR, SCpnt, 1111 "Bad block number requested\n"); 1112 return BLK_STS_IOERR; 1113 } 1114 block = block >> 3; 1115 this_count = this_count >> 3; 1116 } 1117 if (rq_data_dir(rq) == WRITE) { 1118 SCpnt->cmnd[0] = WRITE_6; 1119 1120 if (blk_integrity_rq(rq)) 1121 t10_pi_prepare(SCpnt->request, sdkp->protection_type); 1122 1123 } else if (rq_data_dir(rq) == READ) { 1124 SCpnt->cmnd[0] = READ_6; 1125 } else { 1126 scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq)); 1127 return BLK_STS_IOERR; 1128 } 1129 1130 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1131 "%s %d/%u 512 byte blocks.\n", 1132 (rq_data_dir(rq) == WRITE) ? 1133 "writing" : "reading", this_count, 1134 blk_rq_sectors(rq))); 1135 1136 dix = scsi_prot_sg_count(SCpnt); 1137 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type); 1138 1139 if (dif || dix) 1140 protect = sd_setup_protect_cmnd(SCpnt, dix, dif); 1141 else 1142 protect = 0; 1143 1144 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1145 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1146 1147 if (unlikely(!SCpnt->cmnd)) 1148 return BLK_STS_RESOURCE; 1149 1150 SCpnt->cmd_len = SD_EXT_CDB_SIZE; 1151 memset(SCpnt->cmnd, 0, SCpnt->cmd_len); 1152 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD; 1153 SCpnt->cmnd[7] = 0x18; 1154 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32; 1155 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1156 1157 /* LBA */ 1158 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1159 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1160 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1161 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1162 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff; 1163 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff; 1164 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff; 1165 SCpnt->cmnd[19] = (unsigned char) block & 0xff; 1166 1167 /* Expected Indirect LBA */ 1168 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff; 1169 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff; 1170 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff; 1171 SCpnt->cmnd[23] = (unsigned char) block & 0xff; 1172 1173 /* Transfer length */ 1174 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff; 1175 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff; 1176 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff; 1177 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff; 1178 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) { 1179 SCpnt->cmnd[0] += READ_16 - READ_6; 1180 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1181 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1182 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1183 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1184 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1185 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; 1186 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; 1187 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; 1188 SCpnt->cmnd[9] = (unsigned char) block & 0xff; 1189 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; 1190 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; 1191 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; 1192 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; 1193 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; 1194 } else if ((this_count > 0xff) || (block > 0x1fffff) || 1195 scsi_device_protection(SCpnt->device) || 1196 SCpnt->device->use_10_for_rw) { 1197 SCpnt->cmnd[0] += READ_10 - READ_6; 1198 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1199 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; 1200 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; 1201 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; 1202 SCpnt->cmnd[5] = (unsigned char) block & 0xff; 1203 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; 1204 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; 1205 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; 1206 } else { 1207 if (unlikely(rq->cmd_flags & REQ_FUA)) { 1208 /* 1209 * This happens only if this drive failed 1210 * 10byte rw command with ILLEGAL_REQUEST 1211 * during operation and thus turned off 1212 * use_10_for_rw. 1213 */ 1214 scmd_printk(KERN_ERR, SCpnt, 1215 "FUA write on READ/WRITE(6) drive\n"); 1216 return BLK_STS_IOERR; 1217 } 1218 1219 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); 1220 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); 1221 SCpnt->cmnd[3] = (unsigned char) block & 0xff; 1222 SCpnt->cmnd[4] = (unsigned char) this_count; 1223 SCpnt->cmnd[5] = 0; 1224 } 1225 SCpnt->sdb.length = this_count * sdp->sector_size; 1226 1227 /* 1228 * We shouldn't disconnect in the middle of a sector, so with a dumb 1229 * host adapter, it's safe to assume that we can at least transfer 1230 * this many bytes between each connect / disconnect. 1231 */ 1232 SCpnt->transfersize = sdp->sector_size; 1233 SCpnt->underflow = this_count << 9; 1234 SCpnt->allowed = SD_MAX_RETRIES; 1235 1236 /* 1237 * This indicates that the command is ready from our end to be 1238 * queued. 1239 */ 1240 return BLK_STS_OK; 1241 } 1242 1243 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1244 { 1245 struct request *rq = cmd->request; 1246 1247 switch (req_op(rq)) { 1248 case REQ_OP_DISCARD: 1249 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1250 case SD_LBP_UNMAP: 1251 return sd_setup_unmap_cmnd(cmd); 1252 case SD_LBP_WS16: 1253 return sd_setup_write_same16_cmnd(cmd, true); 1254 case SD_LBP_WS10: 1255 return sd_setup_write_same10_cmnd(cmd, true); 1256 case SD_LBP_ZERO: 1257 return sd_setup_write_same10_cmnd(cmd, false); 1258 default: 1259 return BLK_STS_TARGET; 1260 } 1261 case REQ_OP_WRITE_ZEROES: 1262 return sd_setup_write_zeroes_cmnd(cmd); 1263 case REQ_OP_WRITE_SAME: 1264 return sd_setup_write_same_cmnd(cmd); 1265 case REQ_OP_FLUSH: 1266 return sd_setup_flush_cmnd(cmd); 1267 case REQ_OP_READ: 1268 case REQ_OP_WRITE: 1269 return sd_setup_read_write_cmnd(cmd); 1270 case REQ_OP_ZONE_RESET: 1271 return sd_zbc_setup_reset_cmnd(cmd); 1272 default: 1273 WARN_ON_ONCE(1); 1274 return BLK_STS_NOTSUPP; 1275 } 1276 } 1277 1278 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1279 { 1280 struct request *rq = SCpnt->request; 1281 u8 *cmnd; 1282 1283 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1284 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1285 1286 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1287 cmnd = SCpnt->cmnd; 1288 SCpnt->cmnd = NULL; 1289 SCpnt->cmd_len = 0; 1290 mempool_free(cmnd, sd_cdb_pool); 1291 } 1292 } 1293 1294 /** 1295 * sd_open - open a scsi disk device 1296 * @bdev: Block device of the scsi disk to open 1297 * @mode: FMODE_* mask 1298 * 1299 * Returns 0 if successful. Returns a negated errno value in case 1300 * of error. 1301 * 1302 * Note: This can be called from a user context (e.g. fsck(1) ) 1303 * or from within the kernel (e.g. as a result of a mount(1) ). 1304 * In the latter case @inode and @filp carry an abridged amount 1305 * of information as noted above. 1306 * 1307 * Locking: called with bdev->bd_mutex held. 1308 **/ 1309 static int sd_open(struct block_device *bdev, fmode_t mode) 1310 { 1311 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1312 struct scsi_device *sdev; 1313 int retval; 1314 1315 if (!sdkp) 1316 return -ENXIO; 1317 1318 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1319 1320 sdev = sdkp->device; 1321 1322 /* 1323 * If the device is in error recovery, wait until it is done. 1324 * If the device is offline, then disallow any access to it. 1325 */ 1326 retval = -ENXIO; 1327 if (!scsi_block_when_processing_errors(sdev)) 1328 goto error_out; 1329 1330 if (sdev->removable || sdkp->write_prot) 1331 check_disk_change(bdev); 1332 1333 /* 1334 * If the drive is empty, just let the open fail. 1335 */ 1336 retval = -ENOMEDIUM; 1337 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1338 goto error_out; 1339 1340 /* 1341 * If the device has the write protect tab set, have the open fail 1342 * if the user expects to be able to write to the thing. 1343 */ 1344 retval = -EROFS; 1345 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1346 goto error_out; 1347 1348 /* 1349 * It is possible that the disk changing stuff resulted in 1350 * the device being taken offline. If this is the case, 1351 * report this to the user, and don't pretend that the 1352 * open actually succeeded. 1353 */ 1354 retval = -ENXIO; 1355 if (!scsi_device_online(sdev)) 1356 goto error_out; 1357 1358 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1359 if (scsi_block_when_processing_errors(sdev)) 1360 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1361 } 1362 1363 return 0; 1364 1365 error_out: 1366 scsi_disk_put(sdkp); 1367 return retval; 1368 } 1369 1370 /** 1371 * sd_release - invoked when the (last) close(2) is called on this 1372 * scsi disk. 1373 * @disk: disk to release 1374 * @mode: FMODE_* mask 1375 * 1376 * Returns 0. 1377 * 1378 * Note: may block (uninterruptible) if error recovery is underway 1379 * on this disk. 1380 * 1381 * Locking: called with bdev->bd_mutex held. 1382 **/ 1383 static void sd_release(struct gendisk *disk, fmode_t mode) 1384 { 1385 struct scsi_disk *sdkp = scsi_disk(disk); 1386 struct scsi_device *sdev = sdkp->device; 1387 1388 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1389 1390 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1391 if (scsi_block_when_processing_errors(sdev)) 1392 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1393 } 1394 1395 /* 1396 * XXX and what if there are packets in flight and this close() 1397 * XXX is followed by a "rmmod sd_mod"? 1398 */ 1399 1400 scsi_disk_put(sdkp); 1401 } 1402 1403 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1404 { 1405 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1406 struct scsi_device *sdp = sdkp->device; 1407 struct Scsi_Host *host = sdp->host; 1408 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1409 int diskinfo[4]; 1410 1411 /* default to most commonly used values */ 1412 diskinfo[0] = 0x40; /* 1 << 6 */ 1413 diskinfo[1] = 0x20; /* 1 << 5 */ 1414 diskinfo[2] = capacity >> 11; 1415 1416 /* override with calculated, extended default, or driver values */ 1417 if (host->hostt->bios_param) 1418 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1419 else 1420 scsicam_bios_param(bdev, capacity, diskinfo); 1421 1422 geo->heads = diskinfo[0]; 1423 geo->sectors = diskinfo[1]; 1424 geo->cylinders = diskinfo[2]; 1425 return 0; 1426 } 1427 1428 /** 1429 * sd_ioctl - process an ioctl 1430 * @bdev: target block device 1431 * @mode: FMODE_* mask 1432 * @cmd: ioctl command number 1433 * @arg: this is third argument given to ioctl(2) system call. 1434 * Often contains a pointer. 1435 * 1436 * Returns 0 if successful (some ioctls return positive numbers on 1437 * success as well). Returns a negated errno value in case of error. 1438 * 1439 * Note: most ioctls are forward onto the block subsystem or further 1440 * down in the scsi subsystem. 1441 **/ 1442 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1443 unsigned int cmd, unsigned long arg) 1444 { 1445 struct gendisk *disk = bdev->bd_disk; 1446 struct scsi_disk *sdkp = scsi_disk(disk); 1447 struct scsi_device *sdp = sdkp->device; 1448 void __user *p = (void __user *)arg; 1449 int error; 1450 1451 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1452 "cmd=0x%x\n", disk->disk_name, cmd)); 1453 1454 error = scsi_verify_blk_ioctl(bdev, cmd); 1455 if (error < 0) 1456 return error; 1457 1458 /* 1459 * If we are in the middle of error recovery, don't let anyone 1460 * else try and use this device. Also, if error recovery fails, it 1461 * may try and take the device offline, in which case all further 1462 * access to the device is prohibited. 1463 */ 1464 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1465 (mode & FMODE_NDELAY) != 0); 1466 if (error) 1467 goto out; 1468 1469 if (is_sed_ioctl(cmd)) 1470 return sed_ioctl(sdkp->opal_dev, cmd, p); 1471 1472 /* 1473 * Send SCSI addressing ioctls directly to mid level, send other 1474 * ioctls to block level and then onto mid level if they can't be 1475 * resolved. 1476 */ 1477 switch (cmd) { 1478 case SCSI_IOCTL_GET_IDLUN: 1479 case SCSI_IOCTL_GET_BUS_NUMBER: 1480 error = scsi_ioctl(sdp, cmd, p); 1481 break; 1482 default: 1483 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1484 if (error != -ENOTTY) 1485 break; 1486 error = scsi_ioctl(sdp, cmd, p); 1487 break; 1488 } 1489 out: 1490 return error; 1491 } 1492 1493 static void set_media_not_present(struct scsi_disk *sdkp) 1494 { 1495 if (sdkp->media_present) 1496 sdkp->device->changed = 1; 1497 1498 if (sdkp->device->removable) { 1499 sdkp->media_present = 0; 1500 sdkp->capacity = 0; 1501 } 1502 } 1503 1504 static int media_not_present(struct scsi_disk *sdkp, 1505 struct scsi_sense_hdr *sshdr) 1506 { 1507 if (!scsi_sense_valid(sshdr)) 1508 return 0; 1509 1510 /* not invoked for commands that could return deferred errors */ 1511 switch (sshdr->sense_key) { 1512 case UNIT_ATTENTION: 1513 case NOT_READY: 1514 /* medium not present */ 1515 if (sshdr->asc == 0x3A) { 1516 set_media_not_present(sdkp); 1517 return 1; 1518 } 1519 } 1520 return 0; 1521 } 1522 1523 /** 1524 * sd_check_events - check media events 1525 * @disk: kernel device descriptor 1526 * @clearing: disk events currently being cleared 1527 * 1528 * Returns mask of DISK_EVENT_*. 1529 * 1530 * Note: this function is invoked from the block subsystem. 1531 **/ 1532 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1533 { 1534 struct scsi_disk *sdkp = scsi_disk_get(disk); 1535 struct scsi_device *sdp; 1536 int retval; 1537 1538 if (!sdkp) 1539 return 0; 1540 1541 sdp = sdkp->device; 1542 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1543 1544 /* 1545 * If the device is offline, don't send any commands - just pretend as 1546 * if the command failed. If the device ever comes back online, we 1547 * can deal with it then. It is only because of unrecoverable errors 1548 * that we would ever take a device offline in the first place. 1549 */ 1550 if (!scsi_device_online(sdp)) { 1551 set_media_not_present(sdkp); 1552 goto out; 1553 } 1554 1555 /* 1556 * Using TEST_UNIT_READY enables differentiation between drive with 1557 * no cartridge loaded - NOT READY, drive with changed cartridge - 1558 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1559 * 1560 * Drives that auto spin down. eg iomega jaz 1G, will be started 1561 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1562 * sd_revalidate() is called. 1563 */ 1564 if (scsi_block_when_processing_errors(sdp)) { 1565 struct scsi_sense_hdr sshdr = { 0, }; 1566 1567 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1568 &sshdr); 1569 1570 /* failed to execute TUR, assume media not present */ 1571 if (host_byte(retval)) { 1572 set_media_not_present(sdkp); 1573 goto out; 1574 } 1575 1576 if (media_not_present(sdkp, &sshdr)) 1577 goto out; 1578 } 1579 1580 /* 1581 * For removable scsi disk we have to recognise the presence 1582 * of a disk in the drive. 1583 */ 1584 if (!sdkp->media_present) 1585 sdp->changed = 1; 1586 sdkp->media_present = 1; 1587 out: 1588 /* 1589 * sdp->changed is set under the following conditions: 1590 * 1591 * Medium present state has changed in either direction. 1592 * Device has indicated UNIT_ATTENTION. 1593 */ 1594 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1595 sdp->changed = 0; 1596 scsi_disk_put(sdkp); 1597 return retval; 1598 } 1599 1600 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1601 { 1602 int retries, res; 1603 struct scsi_device *sdp = sdkp->device; 1604 const int timeout = sdp->request_queue->rq_timeout 1605 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1606 struct scsi_sense_hdr my_sshdr; 1607 1608 if (!scsi_device_online(sdp)) 1609 return -ENODEV; 1610 1611 /* caller might not be interested in sense, but we need it */ 1612 if (!sshdr) 1613 sshdr = &my_sshdr; 1614 1615 for (retries = 3; retries > 0; --retries) { 1616 unsigned char cmd[10] = { 0 }; 1617 1618 cmd[0] = SYNCHRONIZE_CACHE; 1619 /* 1620 * Leave the rest of the command zero to indicate 1621 * flush everything. 1622 */ 1623 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1624 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL); 1625 if (res == 0) 1626 break; 1627 } 1628 1629 if (res) { 1630 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1631 1632 if (driver_byte(res) == DRIVER_SENSE) 1633 sd_print_sense_hdr(sdkp, sshdr); 1634 1635 /* we need to evaluate the error return */ 1636 if (scsi_sense_valid(sshdr) && 1637 (sshdr->asc == 0x3a || /* medium not present */ 1638 sshdr->asc == 0x20)) /* invalid command */ 1639 /* this is no error here */ 1640 return 0; 1641 1642 switch (host_byte(res)) { 1643 /* ignore errors due to racing a disconnection */ 1644 case DID_BAD_TARGET: 1645 case DID_NO_CONNECT: 1646 return 0; 1647 /* signal the upper layer it might try again */ 1648 case DID_BUS_BUSY: 1649 case DID_IMM_RETRY: 1650 case DID_REQUEUE: 1651 case DID_SOFT_ERROR: 1652 return -EBUSY; 1653 default: 1654 return -EIO; 1655 } 1656 } 1657 return 0; 1658 } 1659 1660 static void sd_rescan(struct device *dev) 1661 { 1662 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1663 1664 revalidate_disk(sdkp->disk); 1665 } 1666 1667 1668 #ifdef CONFIG_COMPAT 1669 /* 1670 * This gets directly called from VFS. When the ioctl 1671 * is not recognized we go back to the other translation paths. 1672 */ 1673 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1674 unsigned int cmd, unsigned long arg) 1675 { 1676 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1677 int error; 1678 1679 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1680 (mode & FMODE_NDELAY) != 0); 1681 if (error) 1682 return error; 1683 1684 /* 1685 * Let the static ioctl translation table take care of it. 1686 */ 1687 if (!sdev->host->hostt->compat_ioctl) 1688 return -ENOIOCTLCMD; 1689 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1690 } 1691 #endif 1692 1693 static char sd_pr_type(enum pr_type type) 1694 { 1695 switch (type) { 1696 case PR_WRITE_EXCLUSIVE: 1697 return 0x01; 1698 case PR_EXCLUSIVE_ACCESS: 1699 return 0x03; 1700 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1701 return 0x05; 1702 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1703 return 0x06; 1704 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1705 return 0x07; 1706 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1707 return 0x08; 1708 default: 1709 return 0; 1710 } 1711 }; 1712 1713 static int sd_pr_command(struct block_device *bdev, u8 sa, 1714 u64 key, u64 sa_key, u8 type, u8 flags) 1715 { 1716 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1717 struct scsi_sense_hdr sshdr; 1718 int result; 1719 u8 cmd[16] = { 0, }; 1720 u8 data[24] = { 0, }; 1721 1722 cmd[0] = PERSISTENT_RESERVE_OUT; 1723 cmd[1] = sa; 1724 cmd[2] = type; 1725 put_unaligned_be32(sizeof(data), &cmd[5]); 1726 1727 put_unaligned_be64(key, &data[0]); 1728 put_unaligned_be64(sa_key, &data[8]); 1729 data[20] = flags; 1730 1731 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1732 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1733 1734 if (driver_byte(result) == DRIVER_SENSE && 1735 scsi_sense_valid(&sshdr)) { 1736 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1737 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1738 } 1739 1740 return result; 1741 } 1742 1743 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1744 u32 flags) 1745 { 1746 if (flags & ~PR_FL_IGNORE_KEY) 1747 return -EOPNOTSUPP; 1748 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1749 old_key, new_key, 0, 1750 (1 << 0) /* APTPL */); 1751 } 1752 1753 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1754 u32 flags) 1755 { 1756 if (flags) 1757 return -EOPNOTSUPP; 1758 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1759 } 1760 1761 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1762 { 1763 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1764 } 1765 1766 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1767 enum pr_type type, bool abort) 1768 { 1769 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1770 sd_pr_type(type), 0); 1771 } 1772 1773 static int sd_pr_clear(struct block_device *bdev, u64 key) 1774 { 1775 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1776 } 1777 1778 static const struct pr_ops sd_pr_ops = { 1779 .pr_register = sd_pr_register, 1780 .pr_reserve = sd_pr_reserve, 1781 .pr_release = sd_pr_release, 1782 .pr_preempt = sd_pr_preempt, 1783 .pr_clear = sd_pr_clear, 1784 }; 1785 1786 static const struct block_device_operations sd_fops = { 1787 .owner = THIS_MODULE, 1788 .open = sd_open, 1789 .release = sd_release, 1790 .ioctl = sd_ioctl, 1791 .getgeo = sd_getgeo, 1792 #ifdef CONFIG_COMPAT 1793 .compat_ioctl = sd_compat_ioctl, 1794 #endif 1795 .check_events = sd_check_events, 1796 .revalidate_disk = sd_revalidate_disk, 1797 .unlock_native_capacity = sd_unlock_native_capacity, 1798 .report_zones = sd_zbc_report_zones, 1799 .pr_ops = &sd_pr_ops, 1800 }; 1801 1802 /** 1803 * sd_eh_reset - reset error handling callback 1804 * @scmd: sd-issued command that has failed 1805 * 1806 * This function is called by the SCSI midlayer before starting 1807 * SCSI EH. When counting medium access failures we have to be 1808 * careful to register it only only once per device and SCSI EH run; 1809 * there might be several timed out commands which will cause the 1810 * 'max_medium_access_timeouts' counter to trigger after the first 1811 * SCSI EH run already and set the device to offline. 1812 * So this function resets the internal counter before starting SCSI EH. 1813 **/ 1814 static void sd_eh_reset(struct scsi_cmnd *scmd) 1815 { 1816 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1817 1818 /* New SCSI EH run, reset gate variable */ 1819 sdkp->ignore_medium_access_errors = false; 1820 } 1821 1822 /** 1823 * sd_eh_action - error handling callback 1824 * @scmd: sd-issued command that has failed 1825 * @eh_disp: The recovery disposition suggested by the midlayer 1826 * 1827 * This function is called by the SCSI midlayer upon completion of an 1828 * error test command (currently TEST UNIT READY). The result of sending 1829 * the eh command is passed in eh_disp. We're looking for devices that 1830 * fail medium access commands but are OK with non access commands like 1831 * test unit ready (so wrongly see the device as having a successful 1832 * recovery) 1833 **/ 1834 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1835 { 1836 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1837 struct scsi_device *sdev = scmd->device; 1838 1839 if (!scsi_device_online(sdev) || 1840 !scsi_medium_access_command(scmd) || 1841 host_byte(scmd->result) != DID_TIME_OUT || 1842 eh_disp != SUCCESS) 1843 return eh_disp; 1844 1845 /* 1846 * The device has timed out executing a medium access command. 1847 * However, the TEST UNIT READY command sent during error 1848 * handling completed successfully. Either the device is in the 1849 * process of recovering or has it suffered an internal failure 1850 * that prevents access to the storage medium. 1851 */ 1852 if (!sdkp->ignore_medium_access_errors) { 1853 sdkp->medium_access_timed_out++; 1854 sdkp->ignore_medium_access_errors = true; 1855 } 1856 1857 /* 1858 * If the device keeps failing read/write commands but TEST UNIT 1859 * READY always completes successfully we assume that medium 1860 * access is no longer possible and take the device offline. 1861 */ 1862 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1863 scmd_printk(KERN_ERR, scmd, 1864 "Medium access timeout failure. Offlining disk!\n"); 1865 mutex_lock(&sdev->state_mutex); 1866 scsi_device_set_state(sdev, SDEV_OFFLINE); 1867 mutex_unlock(&sdev->state_mutex); 1868 1869 return SUCCESS; 1870 } 1871 1872 return eh_disp; 1873 } 1874 1875 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1876 { 1877 struct request *req = scmd->request; 1878 struct scsi_device *sdev = scmd->device; 1879 unsigned int transferred, good_bytes; 1880 u64 start_lba, end_lba, bad_lba; 1881 1882 /* 1883 * Some commands have a payload smaller than the device logical 1884 * block size (e.g. INQUIRY on a 4K disk). 1885 */ 1886 if (scsi_bufflen(scmd) <= sdev->sector_size) 1887 return 0; 1888 1889 /* Check if we have a 'bad_lba' information */ 1890 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1891 SCSI_SENSE_BUFFERSIZE, 1892 &bad_lba)) 1893 return 0; 1894 1895 /* 1896 * If the bad lba was reported incorrectly, we have no idea where 1897 * the error is. 1898 */ 1899 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1900 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1901 if (bad_lba < start_lba || bad_lba >= end_lba) 1902 return 0; 1903 1904 /* 1905 * resid is optional but mostly filled in. When it's unused, 1906 * its value is zero, so we assume the whole buffer transferred 1907 */ 1908 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1909 1910 /* This computation should always be done in terms of the 1911 * resolution of the device's medium. 1912 */ 1913 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1914 1915 return min(good_bytes, transferred); 1916 } 1917 1918 /** 1919 * sd_done - bottom half handler: called when the lower level 1920 * driver has completed (successfully or otherwise) a scsi command. 1921 * @SCpnt: mid-level's per command structure. 1922 * 1923 * Note: potentially run from within an ISR. Must not block. 1924 **/ 1925 static int sd_done(struct scsi_cmnd *SCpnt) 1926 { 1927 int result = SCpnt->result; 1928 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1929 unsigned int sector_size = SCpnt->device->sector_size; 1930 unsigned int resid; 1931 struct scsi_sense_hdr sshdr; 1932 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1933 struct request *req = SCpnt->request; 1934 int sense_valid = 0; 1935 int sense_deferred = 0; 1936 1937 switch (req_op(req)) { 1938 case REQ_OP_DISCARD: 1939 case REQ_OP_WRITE_ZEROES: 1940 case REQ_OP_WRITE_SAME: 1941 case REQ_OP_ZONE_RESET: 1942 if (!result) { 1943 good_bytes = blk_rq_bytes(req); 1944 scsi_set_resid(SCpnt, 0); 1945 } else { 1946 good_bytes = 0; 1947 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1948 } 1949 break; 1950 default: 1951 /* 1952 * In case of bogus fw or device, we could end up having 1953 * an unaligned partial completion. Check this here and force 1954 * alignment. 1955 */ 1956 resid = scsi_get_resid(SCpnt); 1957 if (resid & (sector_size - 1)) { 1958 sd_printk(KERN_INFO, sdkp, 1959 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 1960 resid, sector_size); 1961 resid = min(scsi_bufflen(SCpnt), 1962 round_up(resid, sector_size)); 1963 scsi_set_resid(SCpnt, resid); 1964 } 1965 } 1966 1967 if (result) { 1968 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1969 if (sense_valid) 1970 sense_deferred = scsi_sense_is_deferred(&sshdr); 1971 } 1972 sdkp->medium_access_timed_out = 0; 1973 1974 if (driver_byte(result) != DRIVER_SENSE && 1975 (!sense_valid || sense_deferred)) 1976 goto out; 1977 1978 switch (sshdr.sense_key) { 1979 case HARDWARE_ERROR: 1980 case MEDIUM_ERROR: 1981 good_bytes = sd_completed_bytes(SCpnt); 1982 break; 1983 case RECOVERED_ERROR: 1984 good_bytes = scsi_bufflen(SCpnt); 1985 break; 1986 case NO_SENSE: 1987 /* This indicates a false check condition, so ignore it. An 1988 * unknown amount of data was transferred so treat it as an 1989 * error. 1990 */ 1991 SCpnt->result = 0; 1992 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1993 break; 1994 case ABORTED_COMMAND: 1995 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 1996 good_bytes = sd_completed_bytes(SCpnt); 1997 break; 1998 case ILLEGAL_REQUEST: 1999 switch (sshdr.asc) { 2000 case 0x10: /* DIX: Host detected corruption */ 2001 good_bytes = sd_completed_bytes(SCpnt); 2002 break; 2003 case 0x20: /* INVALID COMMAND OPCODE */ 2004 case 0x24: /* INVALID FIELD IN CDB */ 2005 switch (SCpnt->cmnd[0]) { 2006 case UNMAP: 2007 sd_config_discard(sdkp, SD_LBP_DISABLE); 2008 break; 2009 case WRITE_SAME_16: 2010 case WRITE_SAME: 2011 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2012 sd_config_discard(sdkp, SD_LBP_DISABLE); 2013 } else { 2014 sdkp->device->no_write_same = 1; 2015 sd_config_write_same(sdkp); 2016 req->rq_flags |= RQF_QUIET; 2017 } 2018 break; 2019 } 2020 } 2021 break; 2022 default: 2023 break; 2024 } 2025 2026 out: 2027 if (sd_is_zoned(sdkp)) 2028 sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2029 2030 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2031 "sd_done: completed %d of %d bytes\n", 2032 good_bytes, scsi_bufflen(SCpnt))); 2033 2034 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt) && 2035 good_bytes) 2036 t10_pi_complete(SCpnt->request, sdkp->protection_type, 2037 good_bytes / scsi_prot_interval(SCpnt)); 2038 2039 return good_bytes; 2040 } 2041 2042 /* 2043 * spinup disk - called only in sd_revalidate_disk() 2044 */ 2045 static void 2046 sd_spinup_disk(struct scsi_disk *sdkp) 2047 { 2048 unsigned char cmd[10]; 2049 unsigned long spintime_expire = 0; 2050 int retries, spintime; 2051 unsigned int the_result; 2052 struct scsi_sense_hdr sshdr; 2053 int sense_valid = 0; 2054 2055 spintime = 0; 2056 2057 /* Spin up drives, as required. Only do this at boot time */ 2058 /* Spinup needs to be done for module loads too. */ 2059 do { 2060 retries = 0; 2061 2062 do { 2063 cmd[0] = TEST_UNIT_READY; 2064 memset((void *) &cmd[1], 0, 9); 2065 2066 the_result = scsi_execute_req(sdkp->device, cmd, 2067 DMA_NONE, NULL, 0, 2068 &sshdr, SD_TIMEOUT, 2069 SD_MAX_RETRIES, NULL); 2070 2071 /* 2072 * If the drive has indicated to us that it 2073 * doesn't have any media in it, don't bother 2074 * with any more polling. 2075 */ 2076 if (media_not_present(sdkp, &sshdr)) 2077 return; 2078 2079 if (the_result) 2080 sense_valid = scsi_sense_valid(&sshdr); 2081 retries++; 2082 } while (retries < 3 && 2083 (!scsi_status_is_good(the_result) || 2084 ((driver_byte(the_result) == DRIVER_SENSE) && 2085 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2086 2087 if (driver_byte(the_result) != DRIVER_SENSE) { 2088 /* no sense, TUR either succeeded or failed 2089 * with a status error */ 2090 if(!spintime && !scsi_status_is_good(the_result)) { 2091 sd_print_result(sdkp, "Test Unit Ready failed", 2092 the_result); 2093 } 2094 break; 2095 } 2096 2097 /* 2098 * The device does not want the automatic start to be issued. 2099 */ 2100 if (sdkp->device->no_start_on_add) 2101 break; 2102 2103 if (sense_valid && sshdr.sense_key == NOT_READY) { 2104 if (sshdr.asc == 4 && sshdr.ascq == 3) 2105 break; /* manual intervention required */ 2106 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2107 break; /* standby */ 2108 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2109 break; /* unavailable */ 2110 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2111 break; /* sanitize in progress */ 2112 /* 2113 * Issue command to spin up drive when not ready 2114 */ 2115 if (!spintime) { 2116 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2117 cmd[0] = START_STOP; 2118 cmd[1] = 1; /* Return immediately */ 2119 memset((void *) &cmd[2], 0, 8); 2120 cmd[4] = 1; /* Start spin cycle */ 2121 if (sdkp->device->start_stop_pwr_cond) 2122 cmd[4] |= 1 << 4; 2123 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2124 NULL, 0, &sshdr, 2125 SD_TIMEOUT, SD_MAX_RETRIES, 2126 NULL); 2127 spintime_expire = jiffies + 100 * HZ; 2128 spintime = 1; 2129 } 2130 /* Wait 1 second for next try */ 2131 msleep(1000); 2132 printk(KERN_CONT "."); 2133 2134 /* 2135 * Wait for USB flash devices with slow firmware. 2136 * Yes, this sense key/ASC combination shouldn't 2137 * occur here. It's characteristic of these devices. 2138 */ 2139 } else if (sense_valid && 2140 sshdr.sense_key == UNIT_ATTENTION && 2141 sshdr.asc == 0x28) { 2142 if (!spintime) { 2143 spintime_expire = jiffies + 5 * HZ; 2144 spintime = 1; 2145 } 2146 /* Wait 1 second for next try */ 2147 msleep(1000); 2148 } else { 2149 /* we don't understand the sense code, so it's 2150 * probably pointless to loop */ 2151 if(!spintime) { 2152 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2153 sd_print_sense_hdr(sdkp, &sshdr); 2154 } 2155 break; 2156 } 2157 2158 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2159 2160 if (spintime) { 2161 if (scsi_status_is_good(the_result)) 2162 printk(KERN_CONT "ready\n"); 2163 else 2164 printk(KERN_CONT "not responding...\n"); 2165 } 2166 } 2167 2168 /* 2169 * Determine whether disk supports Data Integrity Field. 2170 */ 2171 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2172 { 2173 struct scsi_device *sdp = sdkp->device; 2174 u8 type; 2175 int ret = 0; 2176 2177 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 2178 return ret; 2179 2180 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2181 2182 if (type > T10_PI_TYPE3_PROTECTION) 2183 ret = -ENODEV; 2184 else if (scsi_host_dif_capable(sdp->host, type)) 2185 ret = 1; 2186 2187 if (sdkp->first_scan || type != sdkp->protection_type) 2188 switch (ret) { 2189 case -ENODEV: 2190 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2191 " protection type %u. Disabling disk!\n", 2192 type); 2193 break; 2194 case 1: 2195 sd_printk(KERN_NOTICE, sdkp, 2196 "Enabling DIF Type %u protection\n", type); 2197 break; 2198 case 0: 2199 sd_printk(KERN_NOTICE, sdkp, 2200 "Disabling DIF Type %u protection\n", type); 2201 break; 2202 } 2203 2204 sdkp->protection_type = type; 2205 2206 return ret; 2207 } 2208 2209 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2210 struct scsi_sense_hdr *sshdr, int sense_valid, 2211 int the_result) 2212 { 2213 if (driver_byte(the_result) == DRIVER_SENSE) 2214 sd_print_sense_hdr(sdkp, sshdr); 2215 else 2216 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2217 2218 /* 2219 * Set dirty bit for removable devices if not ready - 2220 * sometimes drives will not report this properly. 2221 */ 2222 if (sdp->removable && 2223 sense_valid && sshdr->sense_key == NOT_READY) 2224 set_media_not_present(sdkp); 2225 2226 /* 2227 * We used to set media_present to 0 here to indicate no media 2228 * in the drive, but some drives fail read capacity even with 2229 * media present, so we can't do that. 2230 */ 2231 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2232 } 2233 2234 #define RC16_LEN 32 2235 #if RC16_LEN > SD_BUF_SIZE 2236 #error RC16_LEN must not be more than SD_BUF_SIZE 2237 #endif 2238 2239 #define READ_CAPACITY_RETRIES_ON_RESET 10 2240 2241 /* 2242 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set 2243 * and the reported logical block size is bigger than 512 bytes. Note 2244 * that last_sector is a u64 and therefore logical_to_sectors() is not 2245 * applicable. 2246 */ 2247 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size) 2248 { 2249 u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9); 2250 2251 if (sizeof(sector_t) == 4 && last_sector > U32_MAX) 2252 return false; 2253 2254 return true; 2255 } 2256 2257 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2258 unsigned char *buffer) 2259 { 2260 unsigned char cmd[16]; 2261 struct scsi_sense_hdr sshdr; 2262 int sense_valid = 0; 2263 int the_result; 2264 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2265 unsigned int alignment; 2266 unsigned long long lba; 2267 unsigned sector_size; 2268 2269 if (sdp->no_read_capacity_16) 2270 return -EINVAL; 2271 2272 do { 2273 memset(cmd, 0, 16); 2274 cmd[0] = SERVICE_ACTION_IN_16; 2275 cmd[1] = SAI_READ_CAPACITY_16; 2276 cmd[13] = RC16_LEN; 2277 memset(buffer, 0, RC16_LEN); 2278 2279 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2280 buffer, RC16_LEN, &sshdr, 2281 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2282 2283 if (media_not_present(sdkp, &sshdr)) 2284 return -ENODEV; 2285 2286 if (the_result) { 2287 sense_valid = scsi_sense_valid(&sshdr); 2288 if (sense_valid && 2289 sshdr.sense_key == ILLEGAL_REQUEST && 2290 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2291 sshdr.ascq == 0x00) 2292 /* Invalid Command Operation Code or 2293 * Invalid Field in CDB, just retry 2294 * silently with RC10 */ 2295 return -EINVAL; 2296 if (sense_valid && 2297 sshdr.sense_key == UNIT_ATTENTION && 2298 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2299 /* Device reset might occur several times, 2300 * give it one more chance */ 2301 if (--reset_retries > 0) 2302 continue; 2303 } 2304 retries--; 2305 2306 } while (the_result && retries); 2307 2308 if (the_result) { 2309 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2310 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2311 return -EINVAL; 2312 } 2313 2314 sector_size = get_unaligned_be32(&buffer[8]); 2315 lba = get_unaligned_be64(&buffer[0]); 2316 2317 if (sd_read_protection_type(sdkp, buffer) < 0) { 2318 sdkp->capacity = 0; 2319 return -ENODEV; 2320 } 2321 2322 if (!sd_addressable_capacity(lba, sector_size)) { 2323 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2324 "kernel compiled with support for large block " 2325 "devices.\n"); 2326 sdkp->capacity = 0; 2327 return -EOVERFLOW; 2328 } 2329 2330 /* Logical blocks per physical block exponent */ 2331 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2332 2333 /* RC basis */ 2334 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2335 2336 /* Lowest aligned logical block */ 2337 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2338 blk_queue_alignment_offset(sdp->request_queue, alignment); 2339 if (alignment && sdkp->first_scan) 2340 sd_printk(KERN_NOTICE, sdkp, 2341 "physical block alignment offset: %u\n", alignment); 2342 2343 if (buffer[14] & 0x80) { /* LBPME */ 2344 sdkp->lbpme = 1; 2345 2346 if (buffer[14] & 0x40) /* LBPRZ */ 2347 sdkp->lbprz = 1; 2348 2349 sd_config_discard(sdkp, SD_LBP_WS16); 2350 } 2351 2352 sdkp->capacity = lba + 1; 2353 return sector_size; 2354 } 2355 2356 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2357 unsigned char *buffer) 2358 { 2359 unsigned char cmd[16]; 2360 struct scsi_sense_hdr sshdr; 2361 int sense_valid = 0; 2362 int the_result; 2363 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2364 sector_t lba; 2365 unsigned sector_size; 2366 2367 do { 2368 cmd[0] = READ_CAPACITY; 2369 memset(&cmd[1], 0, 9); 2370 memset(buffer, 0, 8); 2371 2372 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2373 buffer, 8, &sshdr, 2374 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2375 2376 if (media_not_present(sdkp, &sshdr)) 2377 return -ENODEV; 2378 2379 if (the_result) { 2380 sense_valid = scsi_sense_valid(&sshdr); 2381 if (sense_valid && 2382 sshdr.sense_key == UNIT_ATTENTION && 2383 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2384 /* Device reset might occur several times, 2385 * give it one more chance */ 2386 if (--reset_retries > 0) 2387 continue; 2388 } 2389 retries--; 2390 2391 } while (the_result && retries); 2392 2393 if (the_result) { 2394 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2395 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2396 return -EINVAL; 2397 } 2398 2399 sector_size = get_unaligned_be32(&buffer[4]); 2400 lba = get_unaligned_be32(&buffer[0]); 2401 2402 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2403 /* Some buggy (usb cardreader) devices return an lba of 2404 0xffffffff when the want to report a size of 0 (with 2405 which they really mean no media is present) */ 2406 sdkp->capacity = 0; 2407 sdkp->physical_block_size = sector_size; 2408 return sector_size; 2409 } 2410 2411 if (!sd_addressable_capacity(lba, sector_size)) { 2412 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2413 "kernel compiled with support for large block " 2414 "devices.\n"); 2415 sdkp->capacity = 0; 2416 return -EOVERFLOW; 2417 } 2418 2419 sdkp->capacity = lba + 1; 2420 sdkp->physical_block_size = sector_size; 2421 return sector_size; 2422 } 2423 2424 static int sd_try_rc16_first(struct scsi_device *sdp) 2425 { 2426 if (sdp->host->max_cmd_len < 16) 2427 return 0; 2428 if (sdp->try_rc_10_first) 2429 return 0; 2430 if (sdp->scsi_level > SCSI_SPC_2) 2431 return 1; 2432 if (scsi_device_protection(sdp)) 2433 return 1; 2434 return 0; 2435 } 2436 2437 /* 2438 * read disk capacity 2439 */ 2440 static void 2441 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2442 { 2443 int sector_size; 2444 struct scsi_device *sdp = sdkp->device; 2445 2446 if (sd_try_rc16_first(sdp)) { 2447 sector_size = read_capacity_16(sdkp, sdp, buffer); 2448 if (sector_size == -EOVERFLOW) 2449 goto got_data; 2450 if (sector_size == -ENODEV) 2451 return; 2452 if (sector_size < 0) 2453 sector_size = read_capacity_10(sdkp, sdp, buffer); 2454 if (sector_size < 0) 2455 return; 2456 } else { 2457 sector_size = read_capacity_10(sdkp, sdp, buffer); 2458 if (sector_size == -EOVERFLOW) 2459 goto got_data; 2460 if (sector_size < 0) 2461 return; 2462 if ((sizeof(sdkp->capacity) > 4) && 2463 (sdkp->capacity > 0xffffffffULL)) { 2464 int old_sector_size = sector_size; 2465 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2466 "Trying to use READ CAPACITY(16).\n"); 2467 sector_size = read_capacity_16(sdkp, sdp, buffer); 2468 if (sector_size < 0) { 2469 sd_printk(KERN_NOTICE, sdkp, 2470 "Using 0xffffffff as device size\n"); 2471 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2472 sector_size = old_sector_size; 2473 goto got_data; 2474 } 2475 /* Remember that READ CAPACITY(16) succeeded */ 2476 sdp->try_rc_10_first = 0; 2477 } 2478 } 2479 2480 /* Some devices are known to return the total number of blocks, 2481 * not the highest block number. Some devices have versions 2482 * which do this and others which do not. Some devices we might 2483 * suspect of doing this but we don't know for certain. 2484 * 2485 * If we know the reported capacity is wrong, decrement it. If 2486 * we can only guess, then assume the number of blocks is even 2487 * (usually true but not always) and err on the side of lowering 2488 * the capacity. 2489 */ 2490 if (sdp->fix_capacity || 2491 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2492 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2493 "from its reported value: %llu\n", 2494 (unsigned long long) sdkp->capacity); 2495 --sdkp->capacity; 2496 } 2497 2498 got_data: 2499 if (sector_size == 0) { 2500 sector_size = 512; 2501 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2502 "assuming 512.\n"); 2503 } 2504 2505 if (sector_size != 512 && 2506 sector_size != 1024 && 2507 sector_size != 2048 && 2508 sector_size != 4096) { 2509 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2510 sector_size); 2511 /* 2512 * The user might want to re-format the drive with 2513 * a supported sectorsize. Once this happens, it 2514 * would be relatively trivial to set the thing up. 2515 * For this reason, we leave the thing in the table. 2516 */ 2517 sdkp->capacity = 0; 2518 /* 2519 * set a bogus sector size so the normal read/write 2520 * logic in the block layer will eventually refuse any 2521 * request on this device without tripping over power 2522 * of two sector size assumptions 2523 */ 2524 sector_size = 512; 2525 } 2526 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2527 blk_queue_physical_block_size(sdp->request_queue, 2528 sdkp->physical_block_size); 2529 sdkp->device->sector_size = sector_size; 2530 2531 if (sdkp->capacity > 0xffffffff) 2532 sdp->use_16_for_rw = 1; 2533 2534 } 2535 2536 /* 2537 * Print disk capacity 2538 */ 2539 static void 2540 sd_print_capacity(struct scsi_disk *sdkp, 2541 sector_t old_capacity) 2542 { 2543 int sector_size = sdkp->device->sector_size; 2544 char cap_str_2[10], cap_str_10[10]; 2545 2546 string_get_size(sdkp->capacity, sector_size, 2547 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2548 string_get_size(sdkp->capacity, sector_size, 2549 STRING_UNITS_10, cap_str_10, 2550 sizeof(cap_str_10)); 2551 2552 if (sdkp->first_scan || old_capacity != sdkp->capacity) { 2553 sd_printk(KERN_NOTICE, sdkp, 2554 "%llu %d-byte logical blocks: (%s/%s)\n", 2555 (unsigned long long)sdkp->capacity, 2556 sector_size, cap_str_10, cap_str_2); 2557 2558 if (sdkp->physical_block_size != sector_size) 2559 sd_printk(KERN_NOTICE, sdkp, 2560 "%u-byte physical blocks\n", 2561 sdkp->physical_block_size); 2562 2563 sd_zbc_print_zones(sdkp); 2564 } 2565 } 2566 2567 /* called with buffer of length 512 */ 2568 static inline int 2569 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2570 unsigned char *buffer, int len, struct scsi_mode_data *data, 2571 struct scsi_sense_hdr *sshdr) 2572 { 2573 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2574 SD_TIMEOUT, SD_MAX_RETRIES, data, 2575 sshdr); 2576 } 2577 2578 /* 2579 * read write protect setting, if possible - called only in sd_revalidate_disk() 2580 * called with buffer of length SD_BUF_SIZE 2581 */ 2582 static void 2583 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2584 { 2585 int res; 2586 struct scsi_device *sdp = sdkp->device; 2587 struct scsi_mode_data data; 2588 int disk_ro = get_disk_ro(sdkp->disk); 2589 int old_wp = sdkp->write_prot; 2590 2591 set_disk_ro(sdkp->disk, 0); 2592 if (sdp->skip_ms_page_3f) { 2593 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2594 return; 2595 } 2596 2597 if (sdp->use_192_bytes_for_3f) { 2598 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2599 } else { 2600 /* 2601 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2602 * We have to start carefully: some devices hang if we ask 2603 * for more than is available. 2604 */ 2605 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2606 2607 /* 2608 * Second attempt: ask for page 0 When only page 0 is 2609 * implemented, a request for page 3F may return Sense Key 2610 * 5: Illegal Request, Sense Code 24: Invalid field in 2611 * CDB. 2612 */ 2613 if (!scsi_status_is_good(res)) 2614 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2615 2616 /* 2617 * Third attempt: ask 255 bytes, as we did earlier. 2618 */ 2619 if (!scsi_status_is_good(res)) 2620 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2621 &data, NULL); 2622 } 2623 2624 if (!scsi_status_is_good(res)) { 2625 sd_first_printk(KERN_WARNING, sdkp, 2626 "Test WP failed, assume Write Enabled\n"); 2627 } else { 2628 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2629 set_disk_ro(sdkp->disk, sdkp->write_prot || disk_ro); 2630 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2631 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2632 sdkp->write_prot ? "on" : "off"); 2633 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2634 } 2635 } 2636 } 2637 2638 /* 2639 * sd_read_cache_type - called only from sd_revalidate_disk() 2640 * called with buffer of length SD_BUF_SIZE 2641 */ 2642 static void 2643 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2644 { 2645 int len = 0, res; 2646 struct scsi_device *sdp = sdkp->device; 2647 2648 int dbd; 2649 int modepage; 2650 int first_len; 2651 struct scsi_mode_data data; 2652 struct scsi_sense_hdr sshdr; 2653 int old_wce = sdkp->WCE; 2654 int old_rcd = sdkp->RCD; 2655 int old_dpofua = sdkp->DPOFUA; 2656 2657 2658 if (sdkp->cache_override) 2659 return; 2660 2661 first_len = 4; 2662 if (sdp->skip_ms_page_8) { 2663 if (sdp->type == TYPE_RBC) 2664 goto defaults; 2665 else { 2666 if (sdp->skip_ms_page_3f) 2667 goto defaults; 2668 modepage = 0x3F; 2669 if (sdp->use_192_bytes_for_3f) 2670 first_len = 192; 2671 dbd = 0; 2672 } 2673 } else if (sdp->type == TYPE_RBC) { 2674 modepage = 6; 2675 dbd = 8; 2676 } else { 2677 modepage = 8; 2678 dbd = 0; 2679 } 2680 2681 /* cautiously ask */ 2682 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2683 &data, &sshdr); 2684 2685 if (!scsi_status_is_good(res)) 2686 goto bad_sense; 2687 2688 if (!data.header_length) { 2689 modepage = 6; 2690 first_len = 0; 2691 sd_first_printk(KERN_ERR, sdkp, 2692 "Missing header in MODE_SENSE response\n"); 2693 } 2694 2695 /* that went OK, now ask for the proper length */ 2696 len = data.length; 2697 2698 /* 2699 * We're only interested in the first three bytes, actually. 2700 * But the data cache page is defined for the first 20. 2701 */ 2702 if (len < 3) 2703 goto bad_sense; 2704 else if (len > SD_BUF_SIZE) { 2705 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2706 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2707 len = SD_BUF_SIZE; 2708 } 2709 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2710 len = 192; 2711 2712 /* Get the data */ 2713 if (len > first_len) 2714 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2715 &data, &sshdr); 2716 2717 if (scsi_status_is_good(res)) { 2718 int offset = data.header_length + data.block_descriptor_length; 2719 2720 while (offset < len) { 2721 u8 page_code = buffer[offset] & 0x3F; 2722 u8 spf = buffer[offset] & 0x40; 2723 2724 if (page_code == 8 || page_code == 6) { 2725 /* We're interested only in the first 3 bytes. 2726 */ 2727 if (len - offset <= 2) { 2728 sd_first_printk(KERN_ERR, sdkp, 2729 "Incomplete mode parameter " 2730 "data\n"); 2731 goto defaults; 2732 } else { 2733 modepage = page_code; 2734 goto Page_found; 2735 } 2736 } else { 2737 /* Go to the next page */ 2738 if (spf && len - offset > 3) 2739 offset += 4 + (buffer[offset+2] << 8) + 2740 buffer[offset+3]; 2741 else if (!spf && len - offset > 1) 2742 offset += 2 + buffer[offset+1]; 2743 else { 2744 sd_first_printk(KERN_ERR, sdkp, 2745 "Incomplete mode " 2746 "parameter data\n"); 2747 goto defaults; 2748 } 2749 } 2750 } 2751 2752 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2753 goto defaults; 2754 2755 Page_found: 2756 if (modepage == 8) { 2757 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2758 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2759 } else { 2760 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2761 sdkp->RCD = 0; 2762 } 2763 2764 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2765 if (sdp->broken_fua) { 2766 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2767 sdkp->DPOFUA = 0; 2768 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2769 !sdkp->device->use_16_for_rw) { 2770 sd_first_printk(KERN_NOTICE, sdkp, 2771 "Uses READ/WRITE(6), disabling FUA\n"); 2772 sdkp->DPOFUA = 0; 2773 } 2774 2775 /* No cache flush allowed for write protected devices */ 2776 if (sdkp->WCE && sdkp->write_prot) 2777 sdkp->WCE = 0; 2778 2779 if (sdkp->first_scan || old_wce != sdkp->WCE || 2780 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2781 sd_printk(KERN_NOTICE, sdkp, 2782 "Write cache: %s, read cache: %s, %s\n", 2783 sdkp->WCE ? "enabled" : "disabled", 2784 sdkp->RCD ? "disabled" : "enabled", 2785 sdkp->DPOFUA ? "supports DPO and FUA" 2786 : "doesn't support DPO or FUA"); 2787 2788 return; 2789 } 2790 2791 bad_sense: 2792 if (scsi_sense_valid(&sshdr) && 2793 sshdr.sense_key == ILLEGAL_REQUEST && 2794 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2795 /* Invalid field in CDB */ 2796 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2797 else 2798 sd_first_printk(KERN_ERR, sdkp, 2799 "Asking for cache data failed\n"); 2800 2801 defaults: 2802 if (sdp->wce_default_on) { 2803 sd_first_printk(KERN_NOTICE, sdkp, 2804 "Assuming drive cache: write back\n"); 2805 sdkp->WCE = 1; 2806 } else { 2807 sd_first_printk(KERN_ERR, sdkp, 2808 "Assuming drive cache: write through\n"); 2809 sdkp->WCE = 0; 2810 } 2811 sdkp->RCD = 0; 2812 sdkp->DPOFUA = 0; 2813 } 2814 2815 /* 2816 * The ATO bit indicates whether the DIF application tag is available 2817 * for use by the operating system. 2818 */ 2819 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2820 { 2821 int res, offset; 2822 struct scsi_device *sdp = sdkp->device; 2823 struct scsi_mode_data data; 2824 struct scsi_sense_hdr sshdr; 2825 2826 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2827 return; 2828 2829 if (sdkp->protection_type == 0) 2830 return; 2831 2832 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2833 SD_MAX_RETRIES, &data, &sshdr); 2834 2835 if (!scsi_status_is_good(res) || !data.header_length || 2836 data.length < 6) { 2837 sd_first_printk(KERN_WARNING, sdkp, 2838 "getting Control mode page failed, assume no ATO\n"); 2839 2840 if (scsi_sense_valid(&sshdr)) 2841 sd_print_sense_hdr(sdkp, &sshdr); 2842 2843 return; 2844 } 2845 2846 offset = data.header_length + data.block_descriptor_length; 2847 2848 if ((buffer[offset] & 0x3f) != 0x0a) { 2849 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2850 return; 2851 } 2852 2853 if ((buffer[offset + 5] & 0x80) == 0) 2854 return; 2855 2856 sdkp->ATO = 1; 2857 2858 return; 2859 } 2860 2861 /** 2862 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2863 * @sdkp: disk to query 2864 */ 2865 static void sd_read_block_limits(struct scsi_disk *sdkp) 2866 { 2867 unsigned int sector_sz = sdkp->device->sector_size; 2868 const int vpd_len = 64; 2869 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2870 2871 if (!buffer || 2872 /* Block Limits VPD */ 2873 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2874 goto out; 2875 2876 blk_queue_io_min(sdkp->disk->queue, 2877 get_unaligned_be16(&buffer[6]) * sector_sz); 2878 2879 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2880 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2881 2882 if (buffer[3] == 0x3c) { 2883 unsigned int lba_count, desc_count; 2884 2885 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2886 2887 if (!sdkp->lbpme) 2888 goto out; 2889 2890 lba_count = get_unaligned_be32(&buffer[20]); 2891 desc_count = get_unaligned_be32(&buffer[24]); 2892 2893 if (lba_count && desc_count) 2894 sdkp->max_unmap_blocks = lba_count; 2895 2896 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2897 2898 if (buffer[32] & 0x80) 2899 sdkp->unmap_alignment = 2900 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2901 2902 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2903 2904 if (sdkp->max_unmap_blocks) 2905 sd_config_discard(sdkp, SD_LBP_UNMAP); 2906 else 2907 sd_config_discard(sdkp, SD_LBP_WS16); 2908 2909 } else { /* LBP VPD page tells us what to use */ 2910 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2911 sd_config_discard(sdkp, SD_LBP_UNMAP); 2912 else if (sdkp->lbpws) 2913 sd_config_discard(sdkp, SD_LBP_WS16); 2914 else if (sdkp->lbpws10) 2915 sd_config_discard(sdkp, SD_LBP_WS10); 2916 else 2917 sd_config_discard(sdkp, SD_LBP_DISABLE); 2918 } 2919 } 2920 2921 out: 2922 kfree(buffer); 2923 } 2924 2925 /** 2926 * sd_read_block_characteristics - Query block dev. characteristics 2927 * @sdkp: disk to query 2928 */ 2929 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2930 { 2931 struct request_queue *q = sdkp->disk->queue; 2932 unsigned char *buffer; 2933 u16 rot; 2934 const int vpd_len = 64; 2935 2936 buffer = kmalloc(vpd_len, GFP_KERNEL); 2937 2938 if (!buffer || 2939 /* Block Device Characteristics VPD */ 2940 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2941 goto out; 2942 2943 rot = get_unaligned_be16(&buffer[4]); 2944 2945 if (rot == 1) { 2946 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2947 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2948 } else { 2949 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 2950 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 2951 } 2952 2953 if (sdkp->device->type == TYPE_ZBC) { 2954 /* Host-managed */ 2955 q->limits.zoned = BLK_ZONED_HM; 2956 } else { 2957 sdkp->zoned = (buffer[8] >> 4) & 3; 2958 if (sdkp->zoned == 1) 2959 /* Host-aware */ 2960 q->limits.zoned = BLK_ZONED_HA; 2961 else 2962 /* 2963 * Treat drive-managed devices as 2964 * regular block devices. 2965 */ 2966 q->limits.zoned = BLK_ZONED_NONE; 2967 } 2968 if (blk_queue_is_zoned(q) && sdkp->first_scan) 2969 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2970 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2971 2972 out: 2973 kfree(buffer); 2974 } 2975 2976 /** 2977 * sd_read_block_provisioning - Query provisioning VPD page 2978 * @sdkp: disk to query 2979 */ 2980 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2981 { 2982 unsigned char *buffer; 2983 const int vpd_len = 8; 2984 2985 if (sdkp->lbpme == 0) 2986 return; 2987 2988 buffer = kmalloc(vpd_len, GFP_KERNEL); 2989 2990 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2991 goto out; 2992 2993 sdkp->lbpvpd = 1; 2994 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 2995 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 2996 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 2997 2998 out: 2999 kfree(buffer); 3000 } 3001 3002 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3003 { 3004 struct scsi_device *sdev = sdkp->device; 3005 3006 if (sdev->host->no_write_same) { 3007 sdev->no_write_same = 1; 3008 3009 return; 3010 } 3011 3012 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3013 /* too large values might cause issues with arcmsr */ 3014 int vpd_buf_len = 64; 3015 3016 sdev->no_report_opcodes = 1; 3017 3018 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3019 * CODES is unsupported and the device has an ATA 3020 * Information VPD page (SAT). 3021 */ 3022 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3023 sdev->no_write_same = 1; 3024 } 3025 3026 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3027 sdkp->ws16 = 1; 3028 3029 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3030 sdkp->ws10 = 1; 3031 } 3032 3033 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3034 { 3035 struct scsi_device *sdev = sdkp->device; 3036 3037 if (!sdev->security_supported) 3038 return; 3039 3040 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3041 SECURITY_PROTOCOL_IN) == 1 && 3042 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3043 SECURITY_PROTOCOL_OUT) == 1) 3044 sdkp->security = 1; 3045 } 3046 3047 /** 3048 * sd_revalidate_disk - called the first time a new disk is seen, 3049 * performs disk spin up, read_capacity, etc. 3050 * @disk: struct gendisk we care about 3051 **/ 3052 static int sd_revalidate_disk(struct gendisk *disk) 3053 { 3054 struct scsi_disk *sdkp = scsi_disk(disk); 3055 struct scsi_device *sdp = sdkp->device; 3056 struct request_queue *q = sdkp->disk->queue; 3057 sector_t old_capacity = sdkp->capacity; 3058 unsigned char *buffer; 3059 unsigned int dev_max, rw_max; 3060 3061 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3062 "sd_revalidate_disk\n")); 3063 3064 /* 3065 * If the device is offline, don't try and read capacity or any 3066 * of the other niceties. 3067 */ 3068 if (!scsi_device_online(sdp)) 3069 goto out; 3070 3071 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3072 if (!buffer) { 3073 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3074 "allocation failure.\n"); 3075 goto out; 3076 } 3077 3078 sd_spinup_disk(sdkp); 3079 3080 /* 3081 * Without media there is no reason to ask; moreover, some devices 3082 * react badly if we do. 3083 */ 3084 if (sdkp->media_present) { 3085 sd_read_capacity(sdkp, buffer); 3086 3087 if (scsi_device_supports_vpd(sdp)) { 3088 sd_read_block_provisioning(sdkp); 3089 sd_read_block_limits(sdkp); 3090 sd_read_block_characteristics(sdkp); 3091 sd_zbc_read_zones(sdkp, buffer); 3092 } 3093 3094 sd_print_capacity(sdkp, old_capacity); 3095 3096 sd_read_write_protect_flag(sdkp, buffer); 3097 sd_read_cache_type(sdkp, buffer); 3098 sd_read_app_tag_own(sdkp, buffer); 3099 sd_read_write_same(sdkp, buffer); 3100 sd_read_security(sdkp, buffer); 3101 } 3102 3103 /* 3104 * We now have all cache related info, determine how we deal 3105 * with flush requests. 3106 */ 3107 sd_set_flush_flag(sdkp); 3108 3109 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3110 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3111 3112 /* Some devices report a maximum block count for READ/WRITE requests. */ 3113 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3114 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3115 3116 /* 3117 * Determine the device's preferred I/O size for reads and writes 3118 * unless the reported value is unreasonably small, large, or 3119 * garbage. 3120 */ 3121 if (sdkp->opt_xfer_blocks && 3122 sdkp->opt_xfer_blocks <= dev_max && 3123 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS && 3124 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) { 3125 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3126 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3127 } else 3128 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3129 (sector_t)BLK_DEF_MAX_SECTORS); 3130 3131 /* Do not exceed controller limit */ 3132 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3133 3134 /* 3135 * Only update max_sectors if previously unset or if the current value 3136 * exceeds the capabilities of the hardware. 3137 */ 3138 if (sdkp->first_scan || 3139 q->limits.max_sectors > q->limits.max_dev_sectors || 3140 q->limits.max_sectors > q->limits.max_hw_sectors) 3141 q->limits.max_sectors = rw_max; 3142 3143 sdkp->first_scan = 0; 3144 3145 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); 3146 sd_config_write_same(sdkp); 3147 kfree(buffer); 3148 3149 out: 3150 return 0; 3151 } 3152 3153 /** 3154 * sd_unlock_native_capacity - unlock native capacity 3155 * @disk: struct gendisk to set capacity for 3156 * 3157 * Block layer calls this function if it detects that partitions 3158 * on @disk reach beyond the end of the device. If the SCSI host 3159 * implements ->unlock_native_capacity() method, it's invoked to 3160 * give it a chance to adjust the device capacity. 3161 * 3162 * CONTEXT: 3163 * Defined by block layer. Might sleep. 3164 */ 3165 static void sd_unlock_native_capacity(struct gendisk *disk) 3166 { 3167 struct scsi_device *sdev = scsi_disk(disk)->device; 3168 3169 if (sdev->host->hostt->unlock_native_capacity) 3170 sdev->host->hostt->unlock_native_capacity(sdev); 3171 } 3172 3173 /** 3174 * sd_format_disk_name - format disk name 3175 * @prefix: name prefix - ie. "sd" for SCSI disks 3176 * @index: index of the disk to format name for 3177 * @buf: output buffer 3178 * @buflen: length of the output buffer 3179 * 3180 * SCSI disk names starts at sda. The 26th device is sdz and the 3181 * 27th is sdaa. The last one for two lettered suffix is sdzz 3182 * which is followed by sdaaa. 3183 * 3184 * This is basically 26 base counting with one extra 'nil' entry 3185 * at the beginning from the second digit on and can be 3186 * determined using similar method as 26 base conversion with the 3187 * index shifted -1 after each digit is computed. 3188 * 3189 * CONTEXT: 3190 * Don't care. 3191 * 3192 * RETURNS: 3193 * 0 on success, -errno on failure. 3194 */ 3195 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3196 { 3197 const int base = 'z' - 'a' + 1; 3198 char *begin = buf + strlen(prefix); 3199 char *end = buf + buflen; 3200 char *p; 3201 int unit; 3202 3203 p = end - 1; 3204 *p = '\0'; 3205 unit = base; 3206 do { 3207 if (p == begin) 3208 return -EINVAL; 3209 *--p = 'a' + (index % unit); 3210 index = (index / unit) - 1; 3211 } while (index >= 0); 3212 3213 memmove(begin, p, end - p); 3214 memcpy(buf, prefix, strlen(prefix)); 3215 3216 return 0; 3217 } 3218 3219 /* 3220 * The asynchronous part of sd_probe 3221 */ 3222 static void sd_probe_async(void *data, async_cookie_t cookie) 3223 { 3224 struct scsi_disk *sdkp = data; 3225 struct scsi_device *sdp; 3226 struct gendisk *gd; 3227 u32 index; 3228 struct device *dev; 3229 3230 sdp = sdkp->device; 3231 gd = sdkp->disk; 3232 index = sdkp->index; 3233 dev = &sdp->sdev_gendev; 3234 3235 gd->major = sd_major((index & 0xf0) >> 4); 3236 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3237 3238 gd->fops = &sd_fops; 3239 gd->private_data = &sdkp->driver; 3240 gd->queue = sdkp->device->request_queue; 3241 3242 /* defaults, until the device tells us otherwise */ 3243 sdp->sector_size = 512; 3244 sdkp->capacity = 0; 3245 sdkp->media_present = 1; 3246 sdkp->write_prot = 0; 3247 sdkp->cache_override = 0; 3248 sdkp->WCE = 0; 3249 sdkp->RCD = 0; 3250 sdkp->ATO = 0; 3251 sdkp->first_scan = 1; 3252 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3253 3254 sd_revalidate_disk(gd); 3255 3256 gd->flags = GENHD_FL_EXT_DEVT; 3257 if (sdp->removable) { 3258 gd->flags |= GENHD_FL_REMOVABLE; 3259 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3260 } 3261 3262 blk_pm_runtime_init(sdp->request_queue, dev); 3263 device_add_disk(dev, gd, NULL); 3264 if (sdkp->capacity) 3265 sd_dif_config_host(sdkp); 3266 3267 sd_revalidate_disk(gd); 3268 3269 if (sdkp->security) { 3270 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit); 3271 if (sdkp->opal_dev) 3272 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3273 } 3274 3275 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3276 sdp->removable ? "removable " : ""); 3277 scsi_autopm_put_device(sdp); 3278 put_device(&sdkp->dev); 3279 } 3280 3281 /** 3282 * sd_probe - called during driver initialization and whenever a 3283 * new scsi device is attached to the system. It is called once 3284 * for each scsi device (not just disks) present. 3285 * @dev: pointer to device object 3286 * 3287 * Returns 0 if successful (or not interested in this scsi device 3288 * (e.g. scanner)); 1 when there is an error. 3289 * 3290 * Note: this function is invoked from the scsi mid-level. 3291 * This function sets up the mapping between a given 3292 * <host,channel,id,lun> (found in sdp) and new device name 3293 * (e.g. /dev/sda). More precisely it is the block device major 3294 * and minor number that is chosen here. 3295 * 3296 * Assume sd_probe is not re-entrant (for time being) 3297 * Also think about sd_probe() and sd_remove() running coincidentally. 3298 **/ 3299 static int sd_probe(struct device *dev) 3300 { 3301 struct scsi_device *sdp = to_scsi_device(dev); 3302 struct scsi_disk *sdkp; 3303 struct gendisk *gd; 3304 int index; 3305 int error; 3306 3307 scsi_autopm_get_device(sdp); 3308 error = -ENODEV; 3309 if (sdp->type != TYPE_DISK && 3310 sdp->type != TYPE_ZBC && 3311 sdp->type != TYPE_MOD && 3312 sdp->type != TYPE_RBC) 3313 goto out; 3314 3315 #ifndef CONFIG_BLK_DEV_ZONED 3316 if (sdp->type == TYPE_ZBC) 3317 goto out; 3318 #endif 3319 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3320 "sd_probe\n")); 3321 3322 error = -ENOMEM; 3323 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3324 if (!sdkp) 3325 goto out; 3326 3327 gd = alloc_disk(SD_MINORS); 3328 if (!gd) 3329 goto out_free; 3330 3331 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3332 if (index < 0) { 3333 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3334 goto out_put; 3335 } 3336 3337 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3338 if (error) { 3339 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3340 goto out_free_index; 3341 } 3342 3343 sdkp->device = sdp; 3344 sdkp->driver = &sd_template; 3345 sdkp->disk = gd; 3346 sdkp->index = index; 3347 atomic_set(&sdkp->openers, 0); 3348 atomic_set(&sdkp->device->ioerr_cnt, 0); 3349 3350 if (!sdp->request_queue->rq_timeout) { 3351 if (sdp->type != TYPE_MOD) 3352 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3353 else 3354 blk_queue_rq_timeout(sdp->request_queue, 3355 SD_MOD_TIMEOUT); 3356 } 3357 3358 device_initialize(&sdkp->dev); 3359 sdkp->dev.parent = dev; 3360 sdkp->dev.class = &sd_disk_class; 3361 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3362 3363 error = device_add(&sdkp->dev); 3364 if (error) 3365 goto out_free_index; 3366 3367 get_device(dev); 3368 dev_set_drvdata(dev, sdkp); 3369 3370 get_device(&sdkp->dev); /* prevent release before async_schedule */ 3371 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); 3372 3373 return 0; 3374 3375 out_free_index: 3376 ida_free(&sd_index_ida, index); 3377 out_put: 3378 put_disk(gd); 3379 out_free: 3380 kfree(sdkp); 3381 out: 3382 scsi_autopm_put_device(sdp); 3383 return error; 3384 } 3385 3386 /** 3387 * sd_remove - called whenever a scsi disk (previously recognized by 3388 * sd_probe) is detached from the system. It is called (potentially 3389 * multiple times) during sd module unload. 3390 * @dev: pointer to device object 3391 * 3392 * Note: this function is invoked from the scsi mid-level. 3393 * This function potentially frees up a device name (e.g. /dev/sdc) 3394 * that could be re-used by a subsequent sd_probe(). 3395 * This function is not called when the built-in sd driver is "exit-ed". 3396 **/ 3397 static int sd_remove(struct device *dev) 3398 { 3399 struct scsi_disk *sdkp; 3400 dev_t devt; 3401 3402 sdkp = dev_get_drvdata(dev); 3403 devt = disk_devt(sdkp->disk); 3404 scsi_autopm_get_device(sdkp->device); 3405 3406 async_synchronize_full_domain(&scsi_sd_pm_domain); 3407 async_synchronize_full_domain(&scsi_sd_probe_domain); 3408 device_del(&sdkp->dev); 3409 del_gendisk(sdkp->disk); 3410 sd_shutdown(dev); 3411 3412 free_opal_dev(sdkp->opal_dev); 3413 3414 blk_register_region(devt, SD_MINORS, NULL, 3415 sd_default_probe, NULL, NULL); 3416 3417 mutex_lock(&sd_ref_mutex); 3418 dev_set_drvdata(dev, NULL); 3419 put_device(&sdkp->dev); 3420 mutex_unlock(&sd_ref_mutex); 3421 3422 return 0; 3423 } 3424 3425 /** 3426 * scsi_disk_release - Called to free the scsi_disk structure 3427 * @dev: pointer to embedded class device 3428 * 3429 * sd_ref_mutex must be held entering this routine. Because it is 3430 * called on last put, you should always use the scsi_disk_get() 3431 * scsi_disk_put() helpers which manipulate the semaphore directly 3432 * and never do a direct put_device. 3433 **/ 3434 static void scsi_disk_release(struct device *dev) 3435 { 3436 struct scsi_disk *sdkp = to_scsi_disk(dev); 3437 struct gendisk *disk = sdkp->disk; 3438 3439 ida_free(&sd_index_ida, sdkp->index); 3440 3441 disk->private_data = NULL; 3442 put_disk(disk); 3443 put_device(&sdkp->device->sdev_gendev); 3444 3445 kfree(sdkp); 3446 } 3447 3448 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3449 { 3450 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3451 struct scsi_sense_hdr sshdr; 3452 struct scsi_device *sdp = sdkp->device; 3453 int res; 3454 3455 if (start) 3456 cmd[4] |= 1; /* START */ 3457 3458 if (sdp->start_stop_pwr_cond) 3459 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3460 3461 if (!scsi_device_online(sdp)) 3462 return -ENODEV; 3463 3464 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3465 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL); 3466 if (res) { 3467 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3468 if (driver_byte(res) == DRIVER_SENSE) 3469 sd_print_sense_hdr(sdkp, &sshdr); 3470 if (scsi_sense_valid(&sshdr) && 3471 /* 0x3a is medium not present */ 3472 sshdr.asc == 0x3a) 3473 res = 0; 3474 } 3475 3476 /* SCSI error codes must not go to the generic layer */ 3477 if (res) 3478 return -EIO; 3479 3480 return 0; 3481 } 3482 3483 /* 3484 * Send a SYNCHRONIZE CACHE instruction down to the device through 3485 * the normal SCSI command structure. Wait for the command to 3486 * complete. 3487 */ 3488 static void sd_shutdown(struct device *dev) 3489 { 3490 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3491 3492 if (!sdkp) 3493 return; /* this can happen */ 3494 3495 if (pm_runtime_suspended(dev)) 3496 return; 3497 3498 if (sdkp->WCE && sdkp->media_present) { 3499 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3500 sd_sync_cache(sdkp, NULL); 3501 } 3502 3503 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3504 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3505 sd_start_stop_device(sdkp, 0); 3506 } 3507 } 3508 3509 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3510 { 3511 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3512 struct scsi_sense_hdr sshdr; 3513 int ret = 0; 3514 3515 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3516 return 0; 3517 3518 if (sdkp->WCE && sdkp->media_present) { 3519 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3520 ret = sd_sync_cache(sdkp, &sshdr); 3521 3522 if (ret) { 3523 /* ignore OFFLINE device */ 3524 if (ret == -ENODEV) 3525 return 0; 3526 3527 if (!scsi_sense_valid(&sshdr) || 3528 sshdr.sense_key != ILLEGAL_REQUEST) 3529 return ret; 3530 3531 /* 3532 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3533 * doesn't support sync. There's not much to do and 3534 * suspend shouldn't fail. 3535 */ 3536 ret = 0; 3537 } 3538 } 3539 3540 if (sdkp->device->manage_start_stop) { 3541 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3542 /* an error is not worth aborting a system sleep */ 3543 ret = sd_start_stop_device(sdkp, 0); 3544 if (ignore_stop_errors) 3545 ret = 0; 3546 } 3547 3548 return ret; 3549 } 3550 3551 static int sd_suspend_system(struct device *dev) 3552 { 3553 return sd_suspend_common(dev, true); 3554 } 3555 3556 static int sd_suspend_runtime(struct device *dev) 3557 { 3558 return sd_suspend_common(dev, false); 3559 } 3560 3561 static int sd_resume(struct device *dev) 3562 { 3563 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3564 int ret; 3565 3566 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3567 return 0; 3568 3569 if (!sdkp->device->manage_start_stop) 3570 return 0; 3571 3572 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3573 ret = sd_start_stop_device(sdkp, 1); 3574 if (!ret) 3575 opal_unlock_from_suspend(sdkp->opal_dev); 3576 return ret; 3577 } 3578 3579 /** 3580 * init_sd - entry point for this driver (both when built in or when 3581 * a module). 3582 * 3583 * Note: this function registers this driver with the scsi mid-level. 3584 **/ 3585 static int __init init_sd(void) 3586 { 3587 int majors = 0, i, err; 3588 3589 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3590 3591 for (i = 0; i < SD_MAJORS; i++) { 3592 if (register_blkdev(sd_major(i), "sd") != 0) 3593 continue; 3594 majors++; 3595 blk_register_region(sd_major(i), SD_MINORS, NULL, 3596 sd_default_probe, NULL, NULL); 3597 } 3598 3599 if (!majors) 3600 return -ENODEV; 3601 3602 err = class_register(&sd_disk_class); 3603 if (err) 3604 goto err_out; 3605 3606 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3607 0, 0, NULL); 3608 if (!sd_cdb_cache) { 3609 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3610 err = -ENOMEM; 3611 goto err_out_class; 3612 } 3613 3614 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3615 if (!sd_cdb_pool) { 3616 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3617 err = -ENOMEM; 3618 goto err_out_cache; 3619 } 3620 3621 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3622 if (!sd_page_pool) { 3623 printk(KERN_ERR "sd: can't init discard page pool\n"); 3624 err = -ENOMEM; 3625 goto err_out_ppool; 3626 } 3627 3628 err = scsi_register_driver(&sd_template.gendrv); 3629 if (err) 3630 goto err_out_driver; 3631 3632 return 0; 3633 3634 err_out_driver: 3635 mempool_destroy(sd_page_pool); 3636 3637 err_out_ppool: 3638 mempool_destroy(sd_cdb_pool); 3639 3640 err_out_cache: 3641 kmem_cache_destroy(sd_cdb_cache); 3642 3643 err_out_class: 3644 class_unregister(&sd_disk_class); 3645 err_out: 3646 for (i = 0; i < SD_MAJORS; i++) 3647 unregister_blkdev(sd_major(i), "sd"); 3648 return err; 3649 } 3650 3651 /** 3652 * exit_sd - exit point for this driver (when it is a module). 3653 * 3654 * Note: this function unregisters this driver from the scsi mid-level. 3655 **/ 3656 static void __exit exit_sd(void) 3657 { 3658 int i; 3659 3660 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3661 3662 scsi_unregister_driver(&sd_template.gendrv); 3663 mempool_destroy(sd_cdb_pool); 3664 mempool_destroy(sd_page_pool); 3665 kmem_cache_destroy(sd_cdb_cache); 3666 3667 class_unregister(&sd_disk_class); 3668 3669 for (i = 0; i < SD_MAJORS; i++) { 3670 blk_unregister_region(sd_major(i), SD_MINORS); 3671 unregister_blkdev(sd_major(i), "sd"); 3672 } 3673 } 3674 3675 module_init(init_sd); 3676 module_exit(exit_sd); 3677 3678 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3679 struct scsi_sense_hdr *sshdr) 3680 { 3681 scsi_print_sense_hdr(sdkp->device, 3682 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3683 } 3684 3685 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3686 int result) 3687 { 3688 const char *hb_string = scsi_hostbyte_string(result); 3689 const char *db_string = scsi_driverbyte_string(result); 3690 3691 if (hb_string || db_string) 3692 sd_printk(KERN_INFO, sdkp, 3693 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3694 hb_string ? hb_string : "invalid", 3695 db_string ? db_string : "invalid"); 3696 else 3697 sd_printk(KERN_INFO, sdkp, 3698 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3699 msg, host_byte(result), driver_byte(result)); 3700 } 3701 3702