1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/major.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 71 #include "sd.h" 72 #include "scsi_priv.h" 73 #include "scsi_logging.h" 74 75 MODULE_AUTHOR("Eric Youngdale"); 76 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 77 MODULE_LICENSE("GPL"); 78 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 99 100 #define SD_MINORS 16 101 102 static void sd_config_discard(struct scsi_disk *, unsigned int); 103 static void sd_config_write_same(struct scsi_disk *); 104 static int sd_revalidate_disk(struct gendisk *); 105 static void sd_unlock_native_capacity(struct gendisk *disk); 106 static int sd_probe(struct device *); 107 static int sd_remove(struct device *); 108 static void sd_shutdown(struct device *); 109 static int sd_suspend_system(struct device *); 110 static int sd_suspend_runtime(struct device *); 111 static int sd_resume_system(struct device *); 112 static int sd_resume_runtime(struct device *); 113 static void sd_rescan(struct device *); 114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 115 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 116 static int sd_done(struct scsi_cmnd *); 117 static void sd_eh_reset(struct scsi_cmnd *); 118 static int sd_eh_action(struct scsi_cmnd *, int); 119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 120 static void scsi_disk_release(struct device *cdev); 121 122 static DEFINE_IDA(sd_index_ida); 123 124 static mempool_t *sd_page_pool; 125 static struct lock_class_key sd_bio_compl_lkclass; 126 127 static const char *sd_cache_types[] = { 128 "write through", "none", "write back", 129 "write back, no read (daft)" 130 }; 131 132 static void sd_set_flush_flag(struct scsi_disk *sdkp) 133 { 134 bool wc = false, fua = false; 135 136 if (sdkp->WCE) { 137 wc = true; 138 if (sdkp->DPOFUA) 139 fua = true; 140 } 141 142 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 143 } 144 145 static ssize_t 146 cache_type_store(struct device *dev, struct device_attribute *attr, 147 const char *buf, size_t count) 148 { 149 int ct, rcd, wce, sp; 150 struct scsi_disk *sdkp = to_scsi_disk(dev); 151 struct scsi_device *sdp = sdkp->device; 152 char buffer[64]; 153 char *buffer_data; 154 struct scsi_mode_data data; 155 struct scsi_sense_hdr sshdr; 156 static const char temp[] = "temporary "; 157 int len; 158 159 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 160 /* no cache control on RBC devices; theoretically they 161 * can do it, but there's probably so many exceptions 162 * it's not worth the risk */ 163 return -EINVAL; 164 165 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 166 buf += sizeof(temp) - 1; 167 sdkp->cache_override = 1; 168 } else { 169 sdkp->cache_override = 0; 170 } 171 172 ct = sysfs_match_string(sd_cache_types, buf); 173 if (ct < 0) 174 return -EINVAL; 175 176 rcd = ct & 0x01 ? 1 : 0; 177 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 178 179 if (sdkp->cache_override) { 180 sdkp->WCE = wce; 181 sdkp->RCD = rcd; 182 sd_set_flush_flag(sdkp); 183 return count; 184 } 185 186 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 187 sdkp->max_retries, &data, NULL)) 188 return -EINVAL; 189 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 190 data.block_descriptor_length); 191 buffer_data = buffer + data.header_length + 192 data.block_descriptor_length; 193 buffer_data[2] &= ~0x05; 194 buffer_data[2] |= wce << 2 | rcd; 195 sp = buffer_data[0] & 0x80 ? 1 : 0; 196 buffer_data[0] &= ~0x80; 197 198 /* 199 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 200 * received mode parameter buffer before doing MODE SELECT. 201 */ 202 data.device_specific = 0; 203 204 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 205 sdkp->max_retries, &data, &sshdr)) { 206 if (scsi_sense_valid(&sshdr)) 207 sd_print_sense_hdr(sdkp, &sshdr); 208 return -EINVAL; 209 } 210 sd_revalidate_disk(sdkp->disk); 211 return count; 212 } 213 214 static ssize_t 215 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 216 char *buf) 217 { 218 struct scsi_disk *sdkp = to_scsi_disk(dev); 219 struct scsi_device *sdp = sdkp->device; 220 221 return sprintf(buf, "%u\n", sdp->manage_start_stop); 222 } 223 224 static ssize_t 225 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 226 const char *buf, size_t count) 227 { 228 struct scsi_disk *sdkp = to_scsi_disk(dev); 229 struct scsi_device *sdp = sdkp->device; 230 bool v; 231 232 if (!capable(CAP_SYS_ADMIN)) 233 return -EACCES; 234 235 if (kstrtobool(buf, &v)) 236 return -EINVAL; 237 238 sdp->manage_start_stop = v; 239 240 return count; 241 } 242 static DEVICE_ATTR_RW(manage_start_stop); 243 244 static ssize_t 245 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 246 { 247 struct scsi_disk *sdkp = to_scsi_disk(dev); 248 249 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 250 } 251 252 static ssize_t 253 allow_restart_store(struct device *dev, struct device_attribute *attr, 254 const char *buf, size_t count) 255 { 256 bool v; 257 struct scsi_disk *sdkp = to_scsi_disk(dev); 258 struct scsi_device *sdp = sdkp->device; 259 260 if (!capable(CAP_SYS_ADMIN)) 261 return -EACCES; 262 263 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 264 return -EINVAL; 265 266 if (kstrtobool(buf, &v)) 267 return -EINVAL; 268 269 sdp->allow_restart = v; 270 271 return count; 272 } 273 static DEVICE_ATTR_RW(allow_restart); 274 275 static ssize_t 276 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 277 { 278 struct scsi_disk *sdkp = to_scsi_disk(dev); 279 int ct = sdkp->RCD + 2*sdkp->WCE; 280 281 return sprintf(buf, "%s\n", sd_cache_types[ct]); 282 } 283 static DEVICE_ATTR_RW(cache_type); 284 285 static ssize_t 286 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 287 { 288 struct scsi_disk *sdkp = to_scsi_disk(dev); 289 290 return sprintf(buf, "%u\n", sdkp->DPOFUA); 291 } 292 static DEVICE_ATTR_RO(FUA); 293 294 static ssize_t 295 protection_type_show(struct device *dev, struct device_attribute *attr, 296 char *buf) 297 { 298 struct scsi_disk *sdkp = to_scsi_disk(dev); 299 300 return sprintf(buf, "%u\n", sdkp->protection_type); 301 } 302 303 static ssize_t 304 protection_type_store(struct device *dev, struct device_attribute *attr, 305 const char *buf, size_t count) 306 { 307 struct scsi_disk *sdkp = to_scsi_disk(dev); 308 unsigned int val; 309 int err; 310 311 if (!capable(CAP_SYS_ADMIN)) 312 return -EACCES; 313 314 err = kstrtouint(buf, 10, &val); 315 316 if (err) 317 return err; 318 319 if (val <= T10_PI_TYPE3_PROTECTION) 320 sdkp->protection_type = val; 321 322 return count; 323 } 324 static DEVICE_ATTR_RW(protection_type); 325 326 static ssize_t 327 protection_mode_show(struct device *dev, struct device_attribute *attr, 328 char *buf) 329 { 330 struct scsi_disk *sdkp = to_scsi_disk(dev); 331 struct scsi_device *sdp = sdkp->device; 332 unsigned int dif, dix; 333 334 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 335 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 336 337 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 338 dif = 0; 339 dix = 1; 340 } 341 342 if (!dif && !dix) 343 return sprintf(buf, "none\n"); 344 345 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 346 } 347 static DEVICE_ATTR_RO(protection_mode); 348 349 static ssize_t 350 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 351 { 352 struct scsi_disk *sdkp = to_scsi_disk(dev); 353 354 return sprintf(buf, "%u\n", sdkp->ATO); 355 } 356 static DEVICE_ATTR_RO(app_tag_own); 357 358 static ssize_t 359 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 360 char *buf) 361 { 362 struct scsi_disk *sdkp = to_scsi_disk(dev); 363 364 return sprintf(buf, "%u\n", sdkp->lbpme); 365 } 366 static DEVICE_ATTR_RO(thin_provisioning); 367 368 /* sysfs_match_string() requires dense arrays */ 369 static const char *lbp_mode[] = { 370 [SD_LBP_FULL] = "full", 371 [SD_LBP_UNMAP] = "unmap", 372 [SD_LBP_WS16] = "writesame_16", 373 [SD_LBP_WS10] = "writesame_10", 374 [SD_LBP_ZERO] = "writesame_zero", 375 [SD_LBP_DISABLE] = "disabled", 376 }; 377 378 static ssize_t 379 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 380 char *buf) 381 { 382 struct scsi_disk *sdkp = to_scsi_disk(dev); 383 384 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 385 } 386 387 static ssize_t 388 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 389 const char *buf, size_t count) 390 { 391 struct scsi_disk *sdkp = to_scsi_disk(dev); 392 struct scsi_device *sdp = sdkp->device; 393 int mode; 394 395 if (!capable(CAP_SYS_ADMIN)) 396 return -EACCES; 397 398 if (sd_is_zoned(sdkp)) { 399 sd_config_discard(sdkp, SD_LBP_DISABLE); 400 return count; 401 } 402 403 if (sdp->type != TYPE_DISK) 404 return -EINVAL; 405 406 mode = sysfs_match_string(lbp_mode, buf); 407 if (mode < 0) 408 return -EINVAL; 409 410 sd_config_discard(sdkp, mode); 411 412 return count; 413 } 414 static DEVICE_ATTR_RW(provisioning_mode); 415 416 /* sysfs_match_string() requires dense arrays */ 417 static const char *zeroing_mode[] = { 418 [SD_ZERO_WRITE] = "write", 419 [SD_ZERO_WS] = "writesame", 420 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 421 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 422 }; 423 424 static ssize_t 425 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 426 char *buf) 427 { 428 struct scsi_disk *sdkp = to_scsi_disk(dev); 429 430 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 431 } 432 433 static ssize_t 434 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 435 const char *buf, size_t count) 436 { 437 struct scsi_disk *sdkp = to_scsi_disk(dev); 438 int mode; 439 440 if (!capable(CAP_SYS_ADMIN)) 441 return -EACCES; 442 443 mode = sysfs_match_string(zeroing_mode, buf); 444 if (mode < 0) 445 return -EINVAL; 446 447 sdkp->zeroing_mode = mode; 448 449 return count; 450 } 451 static DEVICE_ATTR_RW(zeroing_mode); 452 453 static ssize_t 454 max_medium_access_timeouts_show(struct device *dev, 455 struct device_attribute *attr, char *buf) 456 { 457 struct scsi_disk *sdkp = to_scsi_disk(dev); 458 459 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 460 } 461 462 static ssize_t 463 max_medium_access_timeouts_store(struct device *dev, 464 struct device_attribute *attr, const char *buf, 465 size_t count) 466 { 467 struct scsi_disk *sdkp = to_scsi_disk(dev); 468 int err; 469 470 if (!capable(CAP_SYS_ADMIN)) 471 return -EACCES; 472 473 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 474 475 return err ? err : count; 476 } 477 static DEVICE_ATTR_RW(max_medium_access_timeouts); 478 479 static ssize_t 480 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 481 char *buf) 482 { 483 struct scsi_disk *sdkp = to_scsi_disk(dev); 484 485 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 486 } 487 488 static ssize_t 489 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 490 const char *buf, size_t count) 491 { 492 struct scsi_disk *sdkp = to_scsi_disk(dev); 493 struct scsi_device *sdp = sdkp->device; 494 unsigned long max; 495 int err; 496 497 if (!capable(CAP_SYS_ADMIN)) 498 return -EACCES; 499 500 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 501 return -EINVAL; 502 503 err = kstrtoul(buf, 10, &max); 504 505 if (err) 506 return err; 507 508 if (max == 0) 509 sdp->no_write_same = 1; 510 else if (max <= SD_MAX_WS16_BLOCKS) { 511 sdp->no_write_same = 0; 512 sdkp->max_ws_blocks = max; 513 } 514 515 sd_config_write_same(sdkp); 516 517 return count; 518 } 519 static DEVICE_ATTR_RW(max_write_same_blocks); 520 521 static ssize_t 522 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 523 { 524 struct scsi_disk *sdkp = to_scsi_disk(dev); 525 526 if (sdkp->device->type == TYPE_ZBC) 527 return sprintf(buf, "host-managed\n"); 528 if (sdkp->zoned == 1) 529 return sprintf(buf, "host-aware\n"); 530 if (sdkp->zoned == 2) 531 return sprintf(buf, "drive-managed\n"); 532 return sprintf(buf, "none\n"); 533 } 534 static DEVICE_ATTR_RO(zoned_cap); 535 536 static ssize_t 537 max_retries_store(struct device *dev, struct device_attribute *attr, 538 const char *buf, size_t count) 539 { 540 struct scsi_disk *sdkp = to_scsi_disk(dev); 541 struct scsi_device *sdev = sdkp->device; 542 int retries, err; 543 544 err = kstrtoint(buf, 10, &retries); 545 if (err) 546 return err; 547 548 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 549 sdkp->max_retries = retries; 550 return count; 551 } 552 553 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 554 SD_MAX_RETRIES); 555 return -EINVAL; 556 } 557 558 static ssize_t 559 max_retries_show(struct device *dev, struct device_attribute *attr, 560 char *buf) 561 { 562 struct scsi_disk *sdkp = to_scsi_disk(dev); 563 564 return sprintf(buf, "%d\n", sdkp->max_retries); 565 } 566 567 static DEVICE_ATTR_RW(max_retries); 568 569 static struct attribute *sd_disk_attrs[] = { 570 &dev_attr_cache_type.attr, 571 &dev_attr_FUA.attr, 572 &dev_attr_allow_restart.attr, 573 &dev_attr_manage_start_stop.attr, 574 &dev_attr_protection_type.attr, 575 &dev_attr_protection_mode.attr, 576 &dev_attr_app_tag_own.attr, 577 &dev_attr_thin_provisioning.attr, 578 &dev_attr_provisioning_mode.attr, 579 &dev_attr_zeroing_mode.attr, 580 &dev_attr_max_write_same_blocks.attr, 581 &dev_attr_max_medium_access_timeouts.attr, 582 &dev_attr_zoned_cap.attr, 583 &dev_attr_max_retries.attr, 584 NULL, 585 }; 586 ATTRIBUTE_GROUPS(sd_disk); 587 588 static struct class sd_disk_class = { 589 .name = "scsi_disk", 590 .owner = THIS_MODULE, 591 .dev_release = scsi_disk_release, 592 .dev_groups = sd_disk_groups, 593 }; 594 595 static const struct dev_pm_ops sd_pm_ops = { 596 .suspend = sd_suspend_system, 597 .resume = sd_resume_system, 598 .poweroff = sd_suspend_system, 599 .restore = sd_resume_system, 600 .runtime_suspend = sd_suspend_runtime, 601 .runtime_resume = sd_resume_runtime, 602 }; 603 604 static struct scsi_driver sd_template = { 605 .gendrv = { 606 .name = "sd", 607 .owner = THIS_MODULE, 608 .probe = sd_probe, 609 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 610 .remove = sd_remove, 611 .shutdown = sd_shutdown, 612 .pm = &sd_pm_ops, 613 }, 614 .rescan = sd_rescan, 615 .init_command = sd_init_command, 616 .uninit_command = sd_uninit_command, 617 .done = sd_done, 618 .eh_action = sd_eh_action, 619 .eh_reset = sd_eh_reset, 620 }; 621 622 /* 623 * Don't request a new module, as that could deadlock in multipath 624 * environment. 625 */ 626 static void sd_default_probe(dev_t devt) 627 { 628 } 629 630 /* 631 * Device no to disk mapping: 632 * 633 * major disc2 disc p1 634 * |............|.............|....|....| <- dev_t 635 * 31 20 19 8 7 4 3 0 636 * 637 * Inside a major, we have 16k disks, however mapped non- 638 * contiguously. The first 16 disks are for major0, the next 639 * ones with major1, ... Disk 256 is for major0 again, disk 272 640 * for major1, ... 641 * As we stay compatible with our numbering scheme, we can reuse 642 * the well-know SCSI majors 8, 65--71, 136--143. 643 */ 644 static int sd_major(int major_idx) 645 { 646 switch (major_idx) { 647 case 0: 648 return SCSI_DISK0_MAJOR; 649 case 1 ... 7: 650 return SCSI_DISK1_MAJOR + major_idx - 1; 651 case 8 ... 15: 652 return SCSI_DISK8_MAJOR + major_idx - 8; 653 default: 654 BUG(); 655 return 0; /* shut up gcc */ 656 } 657 } 658 659 #ifdef CONFIG_BLK_SED_OPAL 660 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 661 size_t len, bool send) 662 { 663 struct scsi_disk *sdkp = data; 664 struct scsi_device *sdev = sdkp->device; 665 u8 cdb[12] = { 0, }; 666 const struct scsi_exec_args exec_args = { 667 .req_flags = BLK_MQ_REQ_PM, 668 }; 669 int ret; 670 671 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 672 cdb[1] = secp; 673 put_unaligned_be16(spsp, &cdb[2]); 674 put_unaligned_be32(len, &cdb[6]); 675 676 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 677 buffer, len, SD_TIMEOUT, sdkp->max_retries, 678 &exec_args); 679 return ret <= 0 ? ret : -EIO; 680 } 681 #endif /* CONFIG_BLK_SED_OPAL */ 682 683 /* 684 * Look up the DIX operation based on whether the command is read or 685 * write and whether dix and dif are enabled. 686 */ 687 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 688 { 689 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 690 static const unsigned int ops[] = { /* wrt dix dif */ 691 SCSI_PROT_NORMAL, /* 0 0 0 */ 692 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 693 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 694 SCSI_PROT_READ_PASS, /* 0 1 1 */ 695 SCSI_PROT_NORMAL, /* 1 0 0 */ 696 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 697 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 698 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 699 }; 700 701 return ops[write << 2 | dix << 1 | dif]; 702 } 703 704 /* 705 * Returns a mask of the protection flags that are valid for a given DIX 706 * operation. 707 */ 708 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 709 { 710 static const unsigned int flag_mask[] = { 711 [SCSI_PROT_NORMAL] = 0, 712 713 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 714 SCSI_PROT_GUARD_CHECK | 715 SCSI_PROT_REF_CHECK | 716 SCSI_PROT_REF_INCREMENT, 717 718 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 719 SCSI_PROT_IP_CHECKSUM, 720 721 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 722 SCSI_PROT_GUARD_CHECK | 723 SCSI_PROT_REF_CHECK | 724 SCSI_PROT_REF_INCREMENT | 725 SCSI_PROT_IP_CHECKSUM, 726 727 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 728 SCSI_PROT_REF_INCREMENT, 729 730 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 731 SCSI_PROT_REF_CHECK | 732 SCSI_PROT_REF_INCREMENT | 733 SCSI_PROT_IP_CHECKSUM, 734 735 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 736 SCSI_PROT_GUARD_CHECK | 737 SCSI_PROT_REF_CHECK | 738 SCSI_PROT_REF_INCREMENT | 739 SCSI_PROT_IP_CHECKSUM, 740 }; 741 742 return flag_mask[prot_op]; 743 } 744 745 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 746 unsigned int dix, unsigned int dif) 747 { 748 struct request *rq = scsi_cmd_to_rq(scmd); 749 struct bio *bio = rq->bio; 750 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 751 unsigned int protect = 0; 752 753 if (dix) { /* DIX Type 0, 1, 2, 3 */ 754 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 755 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 756 757 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 758 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 759 } 760 761 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 762 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 763 764 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 765 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 766 } 767 768 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 769 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 770 771 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 772 protect = 3 << 5; /* Disable target PI checking */ 773 else 774 protect = 1 << 5; /* Enable target PI checking */ 775 } 776 777 scsi_set_prot_op(scmd, prot_op); 778 scsi_set_prot_type(scmd, dif); 779 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 780 781 return protect; 782 } 783 784 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 785 { 786 struct request_queue *q = sdkp->disk->queue; 787 unsigned int logical_block_size = sdkp->device->sector_size; 788 unsigned int max_blocks = 0; 789 790 q->limits.discard_alignment = 791 sdkp->unmap_alignment * logical_block_size; 792 q->limits.discard_granularity = 793 max(sdkp->physical_block_size, 794 sdkp->unmap_granularity * logical_block_size); 795 sdkp->provisioning_mode = mode; 796 797 switch (mode) { 798 799 case SD_LBP_FULL: 800 case SD_LBP_DISABLE: 801 blk_queue_max_discard_sectors(q, 0); 802 return; 803 804 case SD_LBP_UNMAP: 805 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 806 (u32)SD_MAX_WS16_BLOCKS); 807 break; 808 809 case SD_LBP_WS16: 810 if (sdkp->device->unmap_limit_for_ws) 811 max_blocks = sdkp->max_unmap_blocks; 812 else 813 max_blocks = sdkp->max_ws_blocks; 814 815 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 816 break; 817 818 case SD_LBP_WS10: 819 if (sdkp->device->unmap_limit_for_ws) 820 max_blocks = sdkp->max_unmap_blocks; 821 else 822 max_blocks = sdkp->max_ws_blocks; 823 824 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 825 break; 826 827 case SD_LBP_ZERO: 828 max_blocks = min_not_zero(sdkp->max_ws_blocks, 829 (u32)SD_MAX_WS10_BLOCKS); 830 break; 831 } 832 833 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 834 } 835 836 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len) 837 { 838 struct page *page; 839 840 page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 841 if (!page) 842 return NULL; 843 clear_highpage(page); 844 bvec_set_page(&rq->special_vec, page, data_len, 0); 845 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 846 return bvec_virt(&rq->special_vec); 847 } 848 849 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 850 { 851 struct scsi_device *sdp = cmd->device; 852 struct request *rq = scsi_cmd_to_rq(cmd); 853 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 854 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 855 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 856 unsigned int data_len = 24; 857 char *buf; 858 859 buf = sd_set_special_bvec(rq, data_len); 860 if (!buf) 861 return BLK_STS_RESOURCE; 862 863 cmd->cmd_len = 10; 864 cmd->cmnd[0] = UNMAP; 865 cmd->cmnd[8] = 24; 866 867 put_unaligned_be16(6 + 16, &buf[0]); 868 put_unaligned_be16(16, &buf[2]); 869 put_unaligned_be64(lba, &buf[8]); 870 put_unaligned_be32(nr_blocks, &buf[16]); 871 872 cmd->allowed = sdkp->max_retries; 873 cmd->transfersize = data_len; 874 rq->timeout = SD_TIMEOUT; 875 876 return scsi_alloc_sgtables(cmd); 877 } 878 879 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 880 bool unmap) 881 { 882 struct scsi_device *sdp = cmd->device; 883 struct request *rq = scsi_cmd_to_rq(cmd); 884 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 885 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 886 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 887 u32 data_len = sdp->sector_size; 888 889 if (!sd_set_special_bvec(rq, data_len)) 890 return BLK_STS_RESOURCE; 891 892 cmd->cmd_len = 16; 893 cmd->cmnd[0] = WRITE_SAME_16; 894 if (unmap) 895 cmd->cmnd[1] = 0x8; /* UNMAP */ 896 put_unaligned_be64(lba, &cmd->cmnd[2]); 897 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 898 899 cmd->allowed = sdkp->max_retries; 900 cmd->transfersize = data_len; 901 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 902 903 return scsi_alloc_sgtables(cmd); 904 } 905 906 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 907 bool unmap) 908 { 909 struct scsi_device *sdp = cmd->device; 910 struct request *rq = scsi_cmd_to_rq(cmd); 911 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 912 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 913 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 914 u32 data_len = sdp->sector_size; 915 916 if (!sd_set_special_bvec(rq, data_len)) 917 return BLK_STS_RESOURCE; 918 919 cmd->cmd_len = 10; 920 cmd->cmnd[0] = WRITE_SAME; 921 if (unmap) 922 cmd->cmnd[1] = 0x8; /* UNMAP */ 923 put_unaligned_be32(lba, &cmd->cmnd[2]); 924 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 925 926 cmd->allowed = sdkp->max_retries; 927 cmd->transfersize = data_len; 928 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 929 930 return scsi_alloc_sgtables(cmd); 931 } 932 933 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 934 { 935 struct request *rq = scsi_cmd_to_rq(cmd); 936 struct scsi_device *sdp = cmd->device; 937 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 938 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 939 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 940 941 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 942 switch (sdkp->zeroing_mode) { 943 case SD_ZERO_WS16_UNMAP: 944 return sd_setup_write_same16_cmnd(cmd, true); 945 case SD_ZERO_WS10_UNMAP: 946 return sd_setup_write_same10_cmnd(cmd, true); 947 } 948 } 949 950 if (sdp->no_write_same) { 951 rq->rq_flags |= RQF_QUIET; 952 return BLK_STS_TARGET; 953 } 954 955 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 956 return sd_setup_write_same16_cmnd(cmd, false); 957 958 return sd_setup_write_same10_cmnd(cmd, false); 959 } 960 961 static void sd_config_write_same(struct scsi_disk *sdkp) 962 { 963 struct request_queue *q = sdkp->disk->queue; 964 unsigned int logical_block_size = sdkp->device->sector_size; 965 966 if (sdkp->device->no_write_same) { 967 sdkp->max_ws_blocks = 0; 968 goto out; 969 } 970 971 /* Some devices can not handle block counts above 0xffff despite 972 * supporting WRITE SAME(16). Consequently we default to 64k 973 * blocks per I/O unless the device explicitly advertises a 974 * bigger limit. 975 */ 976 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 977 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 978 (u32)SD_MAX_WS16_BLOCKS); 979 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 980 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 981 (u32)SD_MAX_WS10_BLOCKS); 982 else { 983 sdkp->device->no_write_same = 1; 984 sdkp->max_ws_blocks = 0; 985 } 986 987 if (sdkp->lbprz && sdkp->lbpws) 988 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 989 else if (sdkp->lbprz && sdkp->lbpws10) 990 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 991 else if (sdkp->max_ws_blocks) 992 sdkp->zeroing_mode = SD_ZERO_WS; 993 else 994 sdkp->zeroing_mode = SD_ZERO_WRITE; 995 996 if (sdkp->max_ws_blocks && 997 sdkp->physical_block_size > logical_block_size) { 998 /* 999 * Reporting a maximum number of blocks that is not aligned 1000 * on the device physical size would cause a large write same 1001 * request to be split into physically unaligned chunks by 1002 * __blkdev_issue_write_zeroes() even if the caller of this 1003 * functions took care to align the large request. So make sure 1004 * the maximum reported is aligned to the device physical block 1005 * size. This is only an optional optimization for regular 1006 * disks, but this is mandatory to avoid failure of large write 1007 * same requests directed at sequential write required zones of 1008 * host-managed ZBC disks. 1009 */ 1010 sdkp->max_ws_blocks = 1011 round_down(sdkp->max_ws_blocks, 1012 bytes_to_logical(sdkp->device, 1013 sdkp->physical_block_size)); 1014 } 1015 1016 out: 1017 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1018 (logical_block_size >> 9)); 1019 } 1020 1021 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1022 { 1023 struct request *rq = scsi_cmd_to_rq(cmd); 1024 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1025 1026 /* flush requests don't perform I/O, zero the S/G table */ 1027 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1028 1029 if (cmd->device->use_16_for_sync) { 1030 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16; 1031 cmd->cmd_len = 16; 1032 } else { 1033 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1034 cmd->cmd_len = 10; 1035 } 1036 cmd->transfersize = 0; 1037 cmd->allowed = sdkp->max_retries; 1038 1039 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1040 return BLK_STS_OK; 1041 } 1042 1043 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1044 sector_t lba, unsigned int nr_blocks, 1045 unsigned char flags) 1046 { 1047 cmd->cmd_len = SD_EXT_CDB_SIZE; 1048 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1049 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1050 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1051 cmd->cmnd[10] = flags; 1052 put_unaligned_be64(lba, &cmd->cmnd[12]); 1053 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1054 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1055 1056 return BLK_STS_OK; 1057 } 1058 1059 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1060 sector_t lba, unsigned int nr_blocks, 1061 unsigned char flags) 1062 { 1063 cmd->cmd_len = 16; 1064 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1065 cmd->cmnd[1] = flags; 1066 cmd->cmnd[14] = 0; 1067 cmd->cmnd[15] = 0; 1068 put_unaligned_be64(lba, &cmd->cmnd[2]); 1069 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1070 1071 return BLK_STS_OK; 1072 } 1073 1074 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1075 sector_t lba, unsigned int nr_blocks, 1076 unsigned char flags) 1077 { 1078 cmd->cmd_len = 10; 1079 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1080 cmd->cmnd[1] = flags; 1081 cmd->cmnd[6] = 0; 1082 cmd->cmnd[9] = 0; 1083 put_unaligned_be32(lba, &cmd->cmnd[2]); 1084 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1085 1086 return BLK_STS_OK; 1087 } 1088 1089 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1090 sector_t lba, unsigned int nr_blocks, 1091 unsigned char flags) 1092 { 1093 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1094 if (WARN_ON_ONCE(nr_blocks == 0)) 1095 return BLK_STS_IOERR; 1096 1097 if (unlikely(flags & 0x8)) { 1098 /* 1099 * This happens only if this drive failed 10byte rw 1100 * command with ILLEGAL_REQUEST during operation and 1101 * thus turned off use_10_for_rw. 1102 */ 1103 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1104 return BLK_STS_IOERR; 1105 } 1106 1107 cmd->cmd_len = 6; 1108 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1109 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1110 cmd->cmnd[2] = (lba >> 8) & 0xff; 1111 cmd->cmnd[3] = lba & 0xff; 1112 cmd->cmnd[4] = nr_blocks; 1113 cmd->cmnd[5] = 0; 1114 1115 return BLK_STS_OK; 1116 } 1117 1118 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1119 { 1120 struct request *rq = scsi_cmd_to_rq(cmd); 1121 struct scsi_device *sdp = cmd->device; 1122 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1123 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1124 sector_t threshold; 1125 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1126 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1127 bool write = rq_data_dir(rq) == WRITE; 1128 unsigned char protect, fua; 1129 blk_status_t ret; 1130 unsigned int dif; 1131 bool dix; 1132 1133 ret = scsi_alloc_sgtables(cmd); 1134 if (ret != BLK_STS_OK) 1135 return ret; 1136 1137 ret = BLK_STS_IOERR; 1138 if (!scsi_device_online(sdp) || sdp->changed) { 1139 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1140 goto fail; 1141 } 1142 1143 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1144 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1145 goto fail; 1146 } 1147 1148 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1149 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1150 goto fail; 1151 } 1152 1153 /* 1154 * Some SD card readers can't handle accesses which touch the 1155 * last one or two logical blocks. Split accesses as needed. 1156 */ 1157 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1158 1159 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1160 if (lba < threshold) { 1161 /* Access up to the threshold but not beyond */ 1162 nr_blocks = threshold - lba; 1163 } else { 1164 /* Access only a single logical block */ 1165 nr_blocks = 1; 1166 } 1167 } 1168 1169 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1170 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1171 if (ret) 1172 goto fail; 1173 } 1174 1175 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1176 dix = scsi_prot_sg_count(cmd); 1177 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1178 1179 if (dif || dix) 1180 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1181 else 1182 protect = 0; 1183 1184 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1185 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1186 protect | fua); 1187 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1188 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1189 protect | fua); 1190 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1191 sdp->use_10_for_rw || protect) { 1192 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1193 protect | fua); 1194 } else { 1195 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1196 protect | fua); 1197 } 1198 1199 if (unlikely(ret != BLK_STS_OK)) 1200 goto fail; 1201 1202 /* 1203 * We shouldn't disconnect in the middle of a sector, so with a dumb 1204 * host adapter, it's safe to assume that we can at least transfer 1205 * this many bytes between each connect / disconnect. 1206 */ 1207 cmd->transfersize = sdp->sector_size; 1208 cmd->underflow = nr_blocks << 9; 1209 cmd->allowed = sdkp->max_retries; 1210 cmd->sdb.length = nr_blocks * sdp->sector_size; 1211 1212 SCSI_LOG_HLQUEUE(1, 1213 scmd_printk(KERN_INFO, cmd, 1214 "%s: block=%llu, count=%d\n", __func__, 1215 (unsigned long long)blk_rq_pos(rq), 1216 blk_rq_sectors(rq))); 1217 SCSI_LOG_HLQUEUE(2, 1218 scmd_printk(KERN_INFO, cmd, 1219 "%s %d/%u 512 byte blocks.\n", 1220 write ? "writing" : "reading", nr_blocks, 1221 blk_rq_sectors(rq))); 1222 1223 /* 1224 * This indicates that the command is ready from our end to be queued. 1225 */ 1226 return BLK_STS_OK; 1227 fail: 1228 scsi_free_sgtables(cmd); 1229 return ret; 1230 } 1231 1232 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1233 { 1234 struct request *rq = scsi_cmd_to_rq(cmd); 1235 1236 switch (req_op(rq)) { 1237 case REQ_OP_DISCARD: 1238 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1239 case SD_LBP_UNMAP: 1240 return sd_setup_unmap_cmnd(cmd); 1241 case SD_LBP_WS16: 1242 return sd_setup_write_same16_cmnd(cmd, true); 1243 case SD_LBP_WS10: 1244 return sd_setup_write_same10_cmnd(cmd, true); 1245 case SD_LBP_ZERO: 1246 return sd_setup_write_same10_cmnd(cmd, false); 1247 default: 1248 return BLK_STS_TARGET; 1249 } 1250 case REQ_OP_WRITE_ZEROES: 1251 return sd_setup_write_zeroes_cmnd(cmd); 1252 case REQ_OP_FLUSH: 1253 return sd_setup_flush_cmnd(cmd); 1254 case REQ_OP_READ: 1255 case REQ_OP_WRITE: 1256 case REQ_OP_ZONE_APPEND: 1257 return sd_setup_read_write_cmnd(cmd); 1258 case REQ_OP_ZONE_RESET: 1259 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1260 false); 1261 case REQ_OP_ZONE_RESET_ALL: 1262 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1263 true); 1264 case REQ_OP_ZONE_OPEN: 1265 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1266 case REQ_OP_ZONE_CLOSE: 1267 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1268 case REQ_OP_ZONE_FINISH: 1269 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1270 default: 1271 WARN_ON_ONCE(1); 1272 return BLK_STS_NOTSUPP; 1273 } 1274 } 1275 1276 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1277 { 1278 struct request *rq = scsi_cmd_to_rq(SCpnt); 1279 1280 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1281 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1282 } 1283 1284 static bool sd_need_revalidate(struct block_device *bdev, 1285 struct scsi_disk *sdkp) 1286 { 1287 if (sdkp->device->removable || sdkp->write_prot) { 1288 if (bdev_check_media_change(bdev)) 1289 return true; 1290 } 1291 1292 /* 1293 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1294 * nothing to do with partitions, BLKRRPART is used to force a full 1295 * revalidate after things like a format for historical reasons. 1296 */ 1297 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 1298 } 1299 1300 /** 1301 * sd_open - open a scsi disk device 1302 * @bdev: Block device of the scsi disk to open 1303 * @mode: FMODE_* mask 1304 * 1305 * Returns 0 if successful. Returns a negated errno value in case 1306 * of error. 1307 * 1308 * Note: This can be called from a user context (e.g. fsck(1) ) 1309 * or from within the kernel (e.g. as a result of a mount(1) ). 1310 * In the latter case @inode and @filp carry an abridged amount 1311 * of information as noted above. 1312 * 1313 * Locking: called with bdev->bd_disk->open_mutex held. 1314 **/ 1315 static int sd_open(struct block_device *bdev, fmode_t mode) 1316 { 1317 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1318 struct scsi_device *sdev = sdkp->device; 1319 int retval; 1320 1321 if (scsi_device_get(sdev)) 1322 return -ENXIO; 1323 1324 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1325 1326 /* 1327 * If the device is in error recovery, wait until it is done. 1328 * If the device is offline, then disallow any access to it. 1329 */ 1330 retval = -ENXIO; 1331 if (!scsi_block_when_processing_errors(sdev)) 1332 goto error_out; 1333 1334 if (sd_need_revalidate(bdev, sdkp)) 1335 sd_revalidate_disk(bdev->bd_disk); 1336 1337 /* 1338 * If the drive is empty, just let the open fail. 1339 */ 1340 retval = -ENOMEDIUM; 1341 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1342 goto error_out; 1343 1344 /* 1345 * If the device has the write protect tab set, have the open fail 1346 * if the user expects to be able to write to the thing. 1347 */ 1348 retval = -EROFS; 1349 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1350 goto error_out; 1351 1352 /* 1353 * It is possible that the disk changing stuff resulted in 1354 * the device being taken offline. If this is the case, 1355 * report this to the user, and don't pretend that the 1356 * open actually succeeded. 1357 */ 1358 retval = -ENXIO; 1359 if (!scsi_device_online(sdev)) 1360 goto error_out; 1361 1362 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1363 if (scsi_block_when_processing_errors(sdev)) 1364 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1365 } 1366 1367 return 0; 1368 1369 error_out: 1370 scsi_device_put(sdev); 1371 return retval; 1372 } 1373 1374 /** 1375 * sd_release - invoked when the (last) close(2) is called on this 1376 * scsi disk. 1377 * @disk: disk to release 1378 * @mode: FMODE_* mask 1379 * 1380 * Returns 0. 1381 * 1382 * Note: may block (uninterruptible) if error recovery is underway 1383 * on this disk. 1384 * 1385 * Locking: called with bdev->bd_disk->open_mutex held. 1386 **/ 1387 static void sd_release(struct gendisk *disk, fmode_t mode) 1388 { 1389 struct scsi_disk *sdkp = scsi_disk(disk); 1390 struct scsi_device *sdev = sdkp->device; 1391 1392 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1393 1394 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1395 if (scsi_block_when_processing_errors(sdev)) 1396 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1397 } 1398 1399 scsi_device_put(sdev); 1400 } 1401 1402 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1403 { 1404 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1405 struct scsi_device *sdp = sdkp->device; 1406 struct Scsi_Host *host = sdp->host; 1407 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1408 int diskinfo[4]; 1409 1410 /* default to most commonly used values */ 1411 diskinfo[0] = 0x40; /* 1 << 6 */ 1412 diskinfo[1] = 0x20; /* 1 << 5 */ 1413 diskinfo[2] = capacity >> 11; 1414 1415 /* override with calculated, extended default, or driver values */ 1416 if (host->hostt->bios_param) 1417 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1418 else 1419 scsicam_bios_param(bdev, capacity, diskinfo); 1420 1421 geo->heads = diskinfo[0]; 1422 geo->sectors = diskinfo[1]; 1423 geo->cylinders = diskinfo[2]; 1424 return 0; 1425 } 1426 1427 /** 1428 * sd_ioctl - process an ioctl 1429 * @bdev: target block device 1430 * @mode: FMODE_* mask 1431 * @cmd: ioctl command number 1432 * @arg: this is third argument given to ioctl(2) system call. 1433 * Often contains a pointer. 1434 * 1435 * Returns 0 if successful (some ioctls return positive numbers on 1436 * success as well). Returns a negated errno value in case of error. 1437 * 1438 * Note: most ioctls are forward onto the block subsystem or further 1439 * down in the scsi subsystem. 1440 **/ 1441 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1442 unsigned int cmd, unsigned long arg) 1443 { 1444 struct gendisk *disk = bdev->bd_disk; 1445 struct scsi_disk *sdkp = scsi_disk(disk); 1446 struct scsi_device *sdp = sdkp->device; 1447 void __user *p = (void __user *)arg; 1448 int error; 1449 1450 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1451 "cmd=0x%x\n", disk->disk_name, cmd)); 1452 1453 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1454 return -ENOIOCTLCMD; 1455 1456 /* 1457 * If we are in the middle of error recovery, don't let anyone 1458 * else try and use this device. Also, if error recovery fails, it 1459 * may try and take the device offline, in which case all further 1460 * access to the device is prohibited. 1461 */ 1462 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1463 (mode & FMODE_NDELAY) != 0); 1464 if (error) 1465 return error; 1466 1467 if (is_sed_ioctl(cmd)) 1468 return sed_ioctl(sdkp->opal_dev, cmd, p); 1469 return scsi_ioctl(sdp, mode, cmd, p); 1470 } 1471 1472 static void set_media_not_present(struct scsi_disk *sdkp) 1473 { 1474 if (sdkp->media_present) 1475 sdkp->device->changed = 1; 1476 1477 if (sdkp->device->removable) { 1478 sdkp->media_present = 0; 1479 sdkp->capacity = 0; 1480 } 1481 } 1482 1483 static int media_not_present(struct scsi_disk *sdkp, 1484 struct scsi_sense_hdr *sshdr) 1485 { 1486 if (!scsi_sense_valid(sshdr)) 1487 return 0; 1488 1489 /* not invoked for commands that could return deferred errors */ 1490 switch (sshdr->sense_key) { 1491 case UNIT_ATTENTION: 1492 case NOT_READY: 1493 /* medium not present */ 1494 if (sshdr->asc == 0x3A) { 1495 set_media_not_present(sdkp); 1496 return 1; 1497 } 1498 } 1499 return 0; 1500 } 1501 1502 /** 1503 * sd_check_events - check media events 1504 * @disk: kernel device descriptor 1505 * @clearing: disk events currently being cleared 1506 * 1507 * Returns mask of DISK_EVENT_*. 1508 * 1509 * Note: this function is invoked from the block subsystem. 1510 **/ 1511 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1512 { 1513 struct scsi_disk *sdkp = disk->private_data; 1514 struct scsi_device *sdp; 1515 int retval; 1516 bool disk_changed; 1517 1518 if (!sdkp) 1519 return 0; 1520 1521 sdp = sdkp->device; 1522 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1523 1524 /* 1525 * If the device is offline, don't send any commands - just pretend as 1526 * if the command failed. If the device ever comes back online, we 1527 * can deal with it then. It is only because of unrecoverable errors 1528 * that we would ever take a device offline in the first place. 1529 */ 1530 if (!scsi_device_online(sdp)) { 1531 set_media_not_present(sdkp); 1532 goto out; 1533 } 1534 1535 /* 1536 * Using TEST_UNIT_READY enables differentiation between drive with 1537 * no cartridge loaded - NOT READY, drive with changed cartridge - 1538 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1539 * 1540 * Drives that auto spin down. eg iomega jaz 1G, will be started 1541 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1542 * sd_revalidate() is called. 1543 */ 1544 if (scsi_block_when_processing_errors(sdp)) { 1545 struct scsi_sense_hdr sshdr = { 0, }; 1546 1547 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1548 &sshdr); 1549 1550 /* failed to execute TUR, assume media not present */ 1551 if (retval < 0 || host_byte(retval)) { 1552 set_media_not_present(sdkp); 1553 goto out; 1554 } 1555 1556 if (media_not_present(sdkp, &sshdr)) 1557 goto out; 1558 } 1559 1560 /* 1561 * For removable scsi disk we have to recognise the presence 1562 * of a disk in the drive. 1563 */ 1564 if (!sdkp->media_present) 1565 sdp->changed = 1; 1566 sdkp->media_present = 1; 1567 out: 1568 /* 1569 * sdp->changed is set under the following conditions: 1570 * 1571 * Medium present state has changed in either direction. 1572 * Device has indicated UNIT_ATTENTION. 1573 */ 1574 disk_changed = sdp->changed; 1575 sdp->changed = 0; 1576 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1577 } 1578 1579 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1580 { 1581 int retries, res; 1582 struct scsi_device *sdp = sdkp->device; 1583 const int timeout = sdp->request_queue->rq_timeout 1584 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1585 struct scsi_sense_hdr my_sshdr; 1586 const struct scsi_exec_args exec_args = { 1587 .req_flags = BLK_MQ_REQ_PM, 1588 /* caller might not be interested in sense, but we need it */ 1589 .sshdr = sshdr ? : &my_sshdr, 1590 }; 1591 1592 if (!scsi_device_online(sdp)) 1593 return -ENODEV; 1594 1595 sshdr = exec_args.sshdr; 1596 1597 for (retries = 3; retries > 0; --retries) { 1598 unsigned char cmd[16] = { 0 }; 1599 1600 if (sdp->use_16_for_sync) 1601 cmd[0] = SYNCHRONIZE_CACHE_16; 1602 else 1603 cmd[0] = SYNCHRONIZE_CACHE; 1604 /* 1605 * Leave the rest of the command zero to indicate 1606 * flush everything. 1607 */ 1608 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 1609 timeout, sdkp->max_retries, &exec_args); 1610 if (res == 0) 1611 break; 1612 } 1613 1614 if (res) { 1615 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1616 1617 if (res < 0) 1618 return res; 1619 1620 if (scsi_status_is_check_condition(res) && 1621 scsi_sense_valid(sshdr)) { 1622 sd_print_sense_hdr(sdkp, sshdr); 1623 1624 /* we need to evaluate the error return */ 1625 if (sshdr->asc == 0x3a || /* medium not present */ 1626 sshdr->asc == 0x20 || /* invalid command */ 1627 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1628 /* this is no error here */ 1629 return 0; 1630 } 1631 1632 switch (host_byte(res)) { 1633 /* ignore errors due to racing a disconnection */ 1634 case DID_BAD_TARGET: 1635 case DID_NO_CONNECT: 1636 return 0; 1637 /* signal the upper layer it might try again */ 1638 case DID_BUS_BUSY: 1639 case DID_IMM_RETRY: 1640 case DID_REQUEUE: 1641 case DID_SOFT_ERROR: 1642 return -EBUSY; 1643 default: 1644 return -EIO; 1645 } 1646 } 1647 return 0; 1648 } 1649 1650 static void sd_rescan(struct device *dev) 1651 { 1652 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1653 1654 sd_revalidate_disk(sdkp->disk); 1655 } 1656 1657 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1658 enum blk_unique_id type) 1659 { 1660 struct scsi_device *sdev = scsi_disk(disk)->device; 1661 const struct scsi_vpd *vpd; 1662 const unsigned char *d; 1663 int ret = -ENXIO, len; 1664 1665 rcu_read_lock(); 1666 vpd = rcu_dereference(sdev->vpd_pg83); 1667 if (!vpd) 1668 goto out_unlock; 1669 1670 ret = -EINVAL; 1671 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1672 /* we only care about designators with LU association */ 1673 if (((d[1] >> 4) & 0x3) != 0x00) 1674 continue; 1675 if ((d[1] & 0xf) != type) 1676 continue; 1677 1678 /* 1679 * Only exit early if a 16-byte descriptor was found. Otherwise 1680 * keep looking as one with more entropy might still show up. 1681 */ 1682 len = d[3]; 1683 if (len != 8 && len != 12 && len != 16) 1684 continue; 1685 ret = len; 1686 memcpy(id, d + 4, len); 1687 if (len == 16) 1688 break; 1689 } 1690 out_unlock: 1691 rcu_read_unlock(); 1692 return ret; 1693 } 1694 1695 static char sd_pr_type(enum pr_type type) 1696 { 1697 switch (type) { 1698 case PR_WRITE_EXCLUSIVE: 1699 return 0x01; 1700 case PR_EXCLUSIVE_ACCESS: 1701 return 0x03; 1702 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1703 return 0x05; 1704 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1705 return 0x06; 1706 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1707 return 0x07; 1708 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1709 return 0x08; 1710 default: 1711 return 0; 1712 } 1713 }; 1714 1715 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result) 1716 { 1717 switch (host_byte(result)) { 1718 case DID_TRANSPORT_MARGINAL: 1719 case DID_TRANSPORT_DISRUPTED: 1720 case DID_BUS_BUSY: 1721 return PR_STS_RETRY_PATH_FAILURE; 1722 case DID_NO_CONNECT: 1723 return PR_STS_PATH_FAILED; 1724 case DID_TRANSPORT_FAILFAST: 1725 return PR_STS_PATH_FAST_FAILED; 1726 } 1727 1728 switch (status_byte(result)) { 1729 case SAM_STAT_RESERVATION_CONFLICT: 1730 return PR_STS_RESERVATION_CONFLICT; 1731 case SAM_STAT_CHECK_CONDITION: 1732 if (!scsi_sense_valid(sshdr)) 1733 return PR_STS_IOERR; 1734 1735 if (sshdr->sense_key == ILLEGAL_REQUEST && 1736 (sshdr->asc == 0x26 || sshdr->asc == 0x24)) 1737 return -EINVAL; 1738 1739 fallthrough; 1740 default: 1741 return PR_STS_IOERR; 1742 } 1743 } 1744 1745 static int sd_pr_command(struct block_device *bdev, u8 sa, 1746 u64 key, u64 sa_key, u8 type, u8 flags) 1747 { 1748 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1749 struct scsi_device *sdev = sdkp->device; 1750 struct scsi_sense_hdr sshdr; 1751 const struct scsi_exec_args exec_args = { 1752 .sshdr = &sshdr, 1753 }; 1754 int result; 1755 u8 cmd[16] = { 0, }; 1756 u8 data[24] = { 0, }; 1757 1758 cmd[0] = PERSISTENT_RESERVE_OUT; 1759 cmd[1] = sa; 1760 cmd[2] = type; 1761 put_unaligned_be32(sizeof(data), &cmd[5]); 1762 1763 put_unaligned_be64(key, &data[0]); 1764 put_unaligned_be64(sa_key, &data[8]); 1765 data[20] = flags; 1766 1767 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data, 1768 sizeof(data), SD_TIMEOUT, sdkp->max_retries, 1769 &exec_args); 1770 1771 if (scsi_status_is_check_condition(result) && 1772 scsi_sense_valid(&sshdr)) { 1773 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1774 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1775 } 1776 1777 if (result <= 0) 1778 return result; 1779 1780 return sd_scsi_to_pr_err(&sshdr, result); 1781 } 1782 1783 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1784 u32 flags) 1785 { 1786 if (flags & ~PR_FL_IGNORE_KEY) 1787 return -EOPNOTSUPP; 1788 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1789 old_key, new_key, 0, 1790 (1 << 0) /* APTPL */); 1791 } 1792 1793 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1794 u32 flags) 1795 { 1796 if (flags) 1797 return -EOPNOTSUPP; 1798 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1799 } 1800 1801 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1802 { 1803 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1804 } 1805 1806 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1807 enum pr_type type, bool abort) 1808 { 1809 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1810 sd_pr_type(type), 0); 1811 } 1812 1813 static int sd_pr_clear(struct block_device *bdev, u64 key) 1814 { 1815 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1816 } 1817 1818 static const struct pr_ops sd_pr_ops = { 1819 .pr_register = sd_pr_register, 1820 .pr_reserve = sd_pr_reserve, 1821 .pr_release = sd_pr_release, 1822 .pr_preempt = sd_pr_preempt, 1823 .pr_clear = sd_pr_clear, 1824 }; 1825 1826 static void scsi_disk_free_disk(struct gendisk *disk) 1827 { 1828 struct scsi_disk *sdkp = scsi_disk(disk); 1829 1830 put_device(&sdkp->disk_dev); 1831 } 1832 1833 static const struct block_device_operations sd_fops = { 1834 .owner = THIS_MODULE, 1835 .open = sd_open, 1836 .release = sd_release, 1837 .ioctl = sd_ioctl, 1838 .getgeo = sd_getgeo, 1839 .compat_ioctl = blkdev_compat_ptr_ioctl, 1840 .check_events = sd_check_events, 1841 .unlock_native_capacity = sd_unlock_native_capacity, 1842 .report_zones = sd_zbc_report_zones, 1843 .get_unique_id = sd_get_unique_id, 1844 .free_disk = scsi_disk_free_disk, 1845 .pr_ops = &sd_pr_ops, 1846 }; 1847 1848 /** 1849 * sd_eh_reset - reset error handling callback 1850 * @scmd: sd-issued command that has failed 1851 * 1852 * This function is called by the SCSI midlayer before starting 1853 * SCSI EH. When counting medium access failures we have to be 1854 * careful to register it only only once per device and SCSI EH run; 1855 * there might be several timed out commands which will cause the 1856 * 'max_medium_access_timeouts' counter to trigger after the first 1857 * SCSI EH run already and set the device to offline. 1858 * So this function resets the internal counter before starting SCSI EH. 1859 **/ 1860 static void sd_eh_reset(struct scsi_cmnd *scmd) 1861 { 1862 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1863 1864 /* New SCSI EH run, reset gate variable */ 1865 sdkp->ignore_medium_access_errors = false; 1866 } 1867 1868 /** 1869 * sd_eh_action - error handling callback 1870 * @scmd: sd-issued command that has failed 1871 * @eh_disp: The recovery disposition suggested by the midlayer 1872 * 1873 * This function is called by the SCSI midlayer upon completion of an 1874 * error test command (currently TEST UNIT READY). The result of sending 1875 * the eh command is passed in eh_disp. We're looking for devices that 1876 * fail medium access commands but are OK with non access commands like 1877 * test unit ready (so wrongly see the device as having a successful 1878 * recovery) 1879 **/ 1880 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1881 { 1882 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1883 struct scsi_device *sdev = scmd->device; 1884 1885 if (!scsi_device_online(sdev) || 1886 !scsi_medium_access_command(scmd) || 1887 host_byte(scmd->result) != DID_TIME_OUT || 1888 eh_disp != SUCCESS) 1889 return eh_disp; 1890 1891 /* 1892 * The device has timed out executing a medium access command. 1893 * However, the TEST UNIT READY command sent during error 1894 * handling completed successfully. Either the device is in the 1895 * process of recovering or has it suffered an internal failure 1896 * that prevents access to the storage medium. 1897 */ 1898 if (!sdkp->ignore_medium_access_errors) { 1899 sdkp->medium_access_timed_out++; 1900 sdkp->ignore_medium_access_errors = true; 1901 } 1902 1903 /* 1904 * If the device keeps failing read/write commands but TEST UNIT 1905 * READY always completes successfully we assume that medium 1906 * access is no longer possible and take the device offline. 1907 */ 1908 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1909 scmd_printk(KERN_ERR, scmd, 1910 "Medium access timeout failure. Offlining disk!\n"); 1911 mutex_lock(&sdev->state_mutex); 1912 scsi_device_set_state(sdev, SDEV_OFFLINE); 1913 mutex_unlock(&sdev->state_mutex); 1914 1915 return SUCCESS; 1916 } 1917 1918 return eh_disp; 1919 } 1920 1921 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1922 { 1923 struct request *req = scsi_cmd_to_rq(scmd); 1924 struct scsi_device *sdev = scmd->device; 1925 unsigned int transferred, good_bytes; 1926 u64 start_lba, end_lba, bad_lba; 1927 1928 /* 1929 * Some commands have a payload smaller than the device logical 1930 * block size (e.g. INQUIRY on a 4K disk). 1931 */ 1932 if (scsi_bufflen(scmd) <= sdev->sector_size) 1933 return 0; 1934 1935 /* Check if we have a 'bad_lba' information */ 1936 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1937 SCSI_SENSE_BUFFERSIZE, 1938 &bad_lba)) 1939 return 0; 1940 1941 /* 1942 * If the bad lba was reported incorrectly, we have no idea where 1943 * the error is. 1944 */ 1945 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1946 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1947 if (bad_lba < start_lba || bad_lba >= end_lba) 1948 return 0; 1949 1950 /* 1951 * resid is optional but mostly filled in. When it's unused, 1952 * its value is zero, so we assume the whole buffer transferred 1953 */ 1954 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1955 1956 /* This computation should always be done in terms of the 1957 * resolution of the device's medium. 1958 */ 1959 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1960 1961 return min(good_bytes, transferred); 1962 } 1963 1964 /** 1965 * sd_done - bottom half handler: called when the lower level 1966 * driver has completed (successfully or otherwise) a scsi command. 1967 * @SCpnt: mid-level's per command structure. 1968 * 1969 * Note: potentially run from within an ISR. Must not block. 1970 **/ 1971 static int sd_done(struct scsi_cmnd *SCpnt) 1972 { 1973 int result = SCpnt->result; 1974 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1975 unsigned int sector_size = SCpnt->device->sector_size; 1976 unsigned int resid; 1977 struct scsi_sense_hdr sshdr; 1978 struct request *req = scsi_cmd_to_rq(SCpnt); 1979 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 1980 int sense_valid = 0; 1981 int sense_deferred = 0; 1982 1983 switch (req_op(req)) { 1984 case REQ_OP_DISCARD: 1985 case REQ_OP_WRITE_ZEROES: 1986 case REQ_OP_ZONE_RESET: 1987 case REQ_OP_ZONE_RESET_ALL: 1988 case REQ_OP_ZONE_OPEN: 1989 case REQ_OP_ZONE_CLOSE: 1990 case REQ_OP_ZONE_FINISH: 1991 if (!result) { 1992 good_bytes = blk_rq_bytes(req); 1993 scsi_set_resid(SCpnt, 0); 1994 } else { 1995 good_bytes = 0; 1996 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1997 } 1998 break; 1999 default: 2000 /* 2001 * In case of bogus fw or device, we could end up having 2002 * an unaligned partial completion. Check this here and force 2003 * alignment. 2004 */ 2005 resid = scsi_get_resid(SCpnt); 2006 if (resid & (sector_size - 1)) { 2007 sd_printk(KERN_INFO, sdkp, 2008 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2009 resid, sector_size); 2010 scsi_print_command(SCpnt); 2011 resid = min(scsi_bufflen(SCpnt), 2012 round_up(resid, sector_size)); 2013 scsi_set_resid(SCpnt, resid); 2014 } 2015 } 2016 2017 if (result) { 2018 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2019 if (sense_valid) 2020 sense_deferred = scsi_sense_is_deferred(&sshdr); 2021 } 2022 sdkp->medium_access_timed_out = 0; 2023 2024 if (!scsi_status_is_check_condition(result) && 2025 (!sense_valid || sense_deferred)) 2026 goto out; 2027 2028 switch (sshdr.sense_key) { 2029 case HARDWARE_ERROR: 2030 case MEDIUM_ERROR: 2031 good_bytes = sd_completed_bytes(SCpnt); 2032 break; 2033 case RECOVERED_ERROR: 2034 good_bytes = scsi_bufflen(SCpnt); 2035 break; 2036 case NO_SENSE: 2037 /* This indicates a false check condition, so ignore it. An 2038 * unknown amount of data was transferred so treat it as an 2039 * error. 2040 */ 2041 SCpnt->result = 0; 2042 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2043 break; 2044 case ABORTED_COMMAND: 2045 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2046 good_bytes = sd_completed_bytes(SCpnt); 2047 break; 2048 case ILLEGAL_REQUEST: 2049 switch (sshdr.asc) { 2050 case 0x10: /* DIX: Host detected corruption */ 2051 good_bytes = sd_completed_bytes(SCpnt); 2052 break; 2053 case 0x20: /* INVALID COMMAND OPCODE */ 2054 case 0x24: /* INVALID FIELD IN CDB */ 2055 switch (SCpnt->cmnd[0]) { 2056 case UNMAP: 2057 sd_config_discard(sdkp, SD_LBP_DISABLE); 2058 break; 2059 case WRITE_SAME_16: 2060 case WRITE_SAME: 2061 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2062 sd_config_discard(sdkp, SD_LBP_DISABLE); 2063 } else { 2064 sdkp->device->no_write_same = 1; 2065 sd_config_write_same(sdkp); 2066 req->rq_flags |= RQF_QUIET; 2067 } 2068 break; 2069 } 2070 } 2071 break; 2072 default: 2073 break; 2074 } 2075 2076 out: 2077 if (sd_is_zoned(sdkp)) 2078 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2079 2080 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2081 "sd_done: completed %d of %d bytes\n", 2082 good_bytes, scsi_bufflen(SCpnt))); 2083 2084 return good_bytes; 2085 } 2086 2087 /* 2088 * spinup disk - called only in sd_revalidate_disk() 2089 */ 2090 static void 2091 sd_spinup_disk(struct scsi_disk *sdkp) 2092 { 2093 unsigned char cmd[10]; 2094 unsigned long spintime_expire = 0; 2095 int retries, spintime; 2096 unsigned int the_result; 2097 struct scsi_sense_hdr sshdr; 2098 const struct scsi_exec_args exec_args = { 2099 .sshdr = &sshdr, 2100 }; 2101 int sense_valid = 0; 2102 2103 spintime = 0; 2104 2105 /* Spin up drives, as required. Only do this at boot time */ 2106 /* Spinup needs to be done for module loads too. */ 2107 do { 2108 retries = 0; 2109 2110 do { 2111 bool media_was_present = sdkp->media_present; 2112 2113 cmd[0] = TEST_UNIT_READY; 2114 memset((void *) &cmd[1], 0, 9); 2115 2116 the_result = scsi_execute_cmd(sdkp->device, cmd, 2117 REQ_OP_DRV_IN, NULL, 0, 2118 SD_TIMEOUT, 2119 sdkp->max_retries, 2120 &exec_args); 2121 2122 /* 2123 * If the drive has indicated to us that it 2124 * doesn't have any media in it, don't bother 2125 * with any more polling. 2126 */ 2127 if (media_not_present(sdkp, &sshdr)) { 2128 if (media_was_present) 2129 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); 2130 return; 2131 } 2132 2133 if (the_result) 2134 sense_valid = scsi_sense_valid(&sshdr); 2135 retries++; 2136 } while (retries < 3 && 2137 (!scsi_status_is_good(the_result) || 2138 (scsi_status_is_check_condition(the_result) && 2139 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2140 2141 if (!scsi_status_is_check_condition(the_result)) { 2142 /* no sense, TUR either succeeded or failed 2143 * with a status error */ 2144 if(!spintime && !scsi_status_is_good(the_result)) { 2145 sd_print_result(sdkp, "Test Unit Ready failed", 2146 the_result); 2147 } 2148 break; 2149 } 2150 2151 /* 2152 * The device does not want the automatic start to be issued. 2153 */ 2154 if (sdkp->device->no_start_on_add) 2155 break; 2156 2157 if (sense_valid && sshdr.sense_key == NOT_READY) { 2158 if (sshdr.asc == 4 && sshdr.ascq == 3) 2159 break; /* manual intervention required */ 2160 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2161 break; /* standby */ 2162 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2163 break; /* unavailable */ 2164 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2165 break; /* sanitize in progress */ 2166 /* 2167 * Issue command to spin up drive when not ready 2168 */ 2169 if (!spintime) { 2170 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2171 cmd[0] = START_STOP; 2172 cmd[1] = 1; /* Return immediately */ 2173 memset((void *) &cmd[2], 0, 8); 2174 cmd[4] = 1; /* Start spin cycle */ 2175 if (sdkp->device->start_stop_pwr_cond) 2176 cmd[4] |= 1 << 4; 2177 scsi_execute_cmd(sdkp->device, cmd, 2178 REQ_OP_DRV_IN, NULL, 0, 2179 SD_TIMEOUT, sdkp->max_retries, 2180 &exec_args); 2181 spintime_expire = jiffies + 100 * HZ; 2182 spintime = 1; 2183 } 2184 /* Wait 1 second for next try */ 2185 msleep(1000); 2186 printk(KERN_CONT "."); 2187 2188 /* 2189 * Wait for USB flash devices with slow firmware. 2190 * Yes, this sense key/ASC combination shouldn't 2191 * occur here. It's characteristic of these devices. 2192 */ 2193 } else if (sense_valid && 2194 sshdr.sense_key == UNIT_ATTENTION && 2195 sshdr.asc == 0x28) { 2196 if (!spintime) { 2197 spintime_expire = jiffies + 5 * HZ; 2198 spintime = 1; 2199 } 2200 /* Wait 1 second for next try */ 2201 msleep(1000); 2202 } else { 2203 /* we don't understand the sense code, so it's 2204 * probably pointless to loop */ 2205 if(!spintime) { 2206 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2207 sd_print_sense_hdr(sdkp, &sshdr); 2208 } 2209 break; 2210 } 2211 2212 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2213 2214 if (spintime) { 2215 if (scsi_status_is_good(the_result)) 2216 printk(KERN_CONT "ready\n"); 2217 else 2218 printk(KERN_CONT "not responding...\n"); 2219 } 2220 } 2221 2222 /* 2223 * Determine whether disk supports Data Integrity Field. 2224 */ 2225 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2226 { 2227 struct scsi_device *sdp = sdkp->device; 2228 u8 type; 2229 2230 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2231 sdkp->protection_type = 0; 2232 return 0; 2233 } 2234 2235 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2236 2237 if (type > T10_PI_TYPE3_PROTECTION) { 2238 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2239 " protection type %u. Disabling disk!\n", 2240 type); 2241 sdkp->protection_type = 0; 2242 return -ENODEV; 2243 } 2244 2245 sdkp->protection_type = type; 2246 2247 return 0; 2248 } 2249 2250 static void sd_config_protection(struct scsi_disk *sdkp) 2251 { 2252 struct scsi_device *sdp = sdkp->device; 2253 2254 sd_dif_config_host(sdkp); 2255 2256 if (!sdkp->protection_type) 2257 return; 2258 2259 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2260 sd_first_printk(KERN_NOTICE, sdkp, 2261 "Disabling DIF Type %u protection\n", 2262 sdkp->protection_type); 2263 sdkp->protection_type = 0; 2264 } 2265 2266 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2267 sdkp->protection_type); 2268 } 2269 2270 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2271 struct scsi_sense_hdr *sshdr, int sense_valid, 2272 int the_result) 2273 { 2274 if (sense_valid) 2275 sd_print_sense_hdr(sdkp, sshdr); 2276 else 2277 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2278 2279 /* 2280 * Set dirty bit for removable devices if not ready - 2281 * sometimes drives will not report this properly. 2282 */ 2283 if (sdp->removable && 2284 sense_valid && sshdr->sense_key == NOT_READY) 2285 set_media_not_present(sdkp); 2286 2287 /* 2288 * We used to set media_present to 0 here to indicate no media 2289 * in the drive, but some drives fail read capacity even with 2290 * media present, so we can't do that. 2291 */ 2292 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2293 } 2294 2295 #define RC16_LEN 32 2296 #if RC16_LEN > SD_BUF_SIZE 2297 #error RC16_LEN must not be more than SD_BUF_SIZE 2298 #endif 2299 2300 #define READ_CAPACITY_RETRIES_ON_RESET 10 2301 2302 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2303 unsigned char *buffer) 2304 { 2305 unsigned char cmd[16]; 2306 struct scsi_sense_hdr sshdr; 2307 const struct scsi_exec_args exec_args = { 2308 .sshdr = &sshdr, 2309 }; 2310 int sense_valid = 0; 2311 int the_result; 2312 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2313 unsigned int alignment; 2314 unsigned long long lba; 2315 unsigned sector_size; 2316 2317 if (sdp->no_read_capacity_16) 2318 return -EINVAL; 2319 2320 do { 2321 memset(cmd, 0, 16); 2322 cmd[0] = SERVICE_ACTION_IN_16; 2323 cmd[1] = SAI_READ_CAPACITY_16; 2324 cmd[13] = RC16_LEN; 2325 memset(buffer, 0, RC16_LEN); 2326 2327 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, 2328 buffer, RC16_LEN, SD_TIMEOUT, 2329 sdkp->max_retries, &exec_args); 2330 2331 if (media_not_present(sdkp, &sshdr)) 2332 return -ENODEV; 2333 2334 if (the_result > 0) { 2335 sense_valid = scsi_sense_valid(&sshdr); 2336 if (sense_valid && 2337 sshdr.sense_key == ILLEGAL_REQUEST && 2338 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2339 sshdr.ascq == 0x00) 2340 /* Invalid Command Operation Code or 2341 * Invalid Field in CDB, just retry 2342 * silently with RC10 */ 2343 return -EINVAL; 2344 if (sense_valid && 2345 sshdr.sense_key == UNIT_ATTENTION && 2346 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2347 /* Device reset might occur several times, 2348 * give it one more chance */ 2349 if (--reset_retries > 0) 2350 continue; 2351 } 2352 retries--; 2353 2354 } while (the_result && retries); 2355 2356 if (the_result) { 2357 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2358 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2359 return -EINVAL; 2360 } 2361 2362 sector_size = get_unaligned_be32(&buffer[8]); 2363 lba = get_unaligned_be64(&buffer[0]); 2364 2365 if (sd_read_protection_type(sdkp, buffer) < 0) { 2366 sdkp->capacity = 0; 2367 return -ENODEV; 2368 } 2369 2370 /* Logical blocks per physical block exponent */ 2371 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2372 2373 /* RC basis */ 2374 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2375 2376 /* Lowest aligned logical block */ 2377 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2378 blk_queue_alignment_offset(sdp->request_queue, alignment); 2379 if (alignment && sdkp->first_scan) 2380 sd_printk(KERN_NOTICE, sdkp, 2381 "physical block alignment offset: %u\n", alignment); 2382 2383 if (buffer[14] & 0x80) { /* LBPME */ 2384 sdkp->lbpme = 1; 2385 2386 if (buffer[14] & 0x40) /* LBPRZ */ 2387 sdkp->lbprz = 1; 2388 2389 sd_config_discard(sdkp, SD_LBP_WS16); 2390 } 2391 2392 sdkp->capacity = lba + 1; 2393 return sector_size; 2394 } 2395 2396 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2397 unsigned char *buffer) 2398 { 2399 unsigned char cmd[16]; 2400 struct scsi_sense_hdr sshdr; 2401 const struct scsi_exec_args exec_args = { 2402 .sshdr = &sshdr, 2403 }; 2404 int sense_valid = 0; 2405 int the_result; 2406 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2407 sector_t lba; 2408 unsigned sector_size; 2409 2410 do { 2411 cmd[0] = READ_CAPACITY; 2412 memset(&cmd[1], 0, 9); 2413 memset(buffer, 0, 8); 2414 2415 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer, 2416 8, SD_TIMEOUT, sdkp->max_retries, 2417 &exec_args); 2418 2419 if (media_not_present(sdkp, &sshdr)) 2420 return -ENODEV; 2421 2422 if (the_result > 0) { 2423 sense_valid = scsi_sense_valid(&sshdr); 2424 if (sense_valid && 2425 sshdr.sense_key == UNIT_ATTENTION && 2426 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2427 /* Device reset might occur several times, 2428 * give it one more chance */ 2429 if (--reset_retries > 0) 2430 continue; 2431 } 2432 retries--; 2433 2434 } while (the_result && retries); 2435 2436 if (the_result) { 2437 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2438 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2439 return -EINVAL; 2440 } 2441 2442 sector_size = get_unaligned_be32(&buffer[4]); 2443 lba = get_unaligned_be32(&buffer[0]); 2444 2445 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2446 /* Some buggy (usb cardreader) devices return an lba of 2447 0xffffffff when the want to report a size of 0 (with 2448 which they really mean no media is present) */ 2449 sdkp->capacity = 0; 2450 sdkp->physical_block_size = sector_size; 2451 return sector_size; 2452 } 2453 2454 sdkp->capacity = lba + 1; 2455 sdkp->physical_block_size = sector_size; 2456 return sector_size; 2457 } 2458 2459 static int sd_try_rc16_first(struct scsi_device *sdp) 2460 { 2461 if (sdp->host->max_cmd_len < 16) 2462 return 0; 2463 if (sdp->try_rc_10_first) 2464 return 0; 2465 if (sdp->scsi_level > SCSI_SPC_2) 2466 return 1; 2467 if (scsi_device_protection(sdp)) 2468 return 1; 2469 return 0; 2470 } 2471 2472 /* 2473 * read disk capacity 2474 */ 2475 static void 2476 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2477 { 2478 int sector_size; 2479 struct scsi_device *sdp = sdkp->device; 2480 2481 if (sd_try_rc16_first(sdp)) { 2482 sector_size = read_capacity_16(sdkp, sdp, buffer); 2483 if (sector_size == -EOVERFLOW) 2484 goto got_data; 2485 if (sector_size == -ENODEV) 2486 return; 2487 if (sector_size < 0) 2488 sector_size = read_capacity_10(sdkp, sdp, buffer); 2489 if (sector_size < 0) 2490 return; 2491 } else { 2492 sector_size = read_capacity_10(sdkp, sdp, buffer); 2493 if (sector_size == -EOVERFLOW) 2494 goto got_data; 2495 if (sector_size < 0) 2496 return; 2497 if ((sizeof(sdkp->capacity) > 4) && 2498 (sdkp->capacity > 0xffffffffULL)) { 2499 int old_sector_size = sector_size; 2500 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2501 "Trying to use READ CAPACITY(16).\n"); 2502 sector_size = read_capacity_16(sdkp, sdp, buffer); 2503 if (sector_size < 0) { 2504 sd_printk(KERN_NOTICE, sdkp, 2505 "Using 0xffffffff as device size\n"); 2506 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2507 sector_size = old_sector_size; 2508 goto got_data; 2509 } 2510 /* Remember that READ CAPACITY(16) succeeded */ 2511 sdp->try_rc_10_first = 0; 2512 } 2513 } 2514 2515 /* Some devices are known to return the total number of blocks, 2516 * not the highest block number. Some devices have versions 2517 * which do this and others which do not. Some devices we might 2518 * suspect of doing this but we don't know for certain. 2519 * 2520 * If we know the reported capacity is wrong, decrement it. If 2521 * we can only guess, then assume the number of blocks is even 2522 * (usually true but not always) and err on the side of lowering 2523 * the capacity. 2524 */ 2525 if (sdp->fix_capacity || 2526 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2527 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2528 "from its reported value: %llu\n", 2529 (unsigned long long) sdkp->capacity); 2530 --sdkp->capacity; 2531 } 2532 2533 got_data: 2534 if (sector_size == 0) { 2535 sector_size = 512; 2536 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2537 "assuming 512.\n"); 2538 } 2539 2540 if (sector_size != 512 && 2541 sector_size != 1024 && 2542 sector_size != 2048 && 2543 sector_size != 4096) { 2544 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2545 sector_size); 2546 /* 2547 * The user might want to re-format the drive with 2548 * a supported sectorsize. Once this happens, it 2549 * would be relatively trivial to set the thing up. 2550 * For this reason, we leave the thing in the table. 2551 */ 2552 sdkp->capacity = 0; 2553 /* 2554 * set a bogus sector size so the normal read/write 2555 * logic in the block layer will eventually refuse any 2556 * request on this device without tripping over power 2557 * of two sector size assumptions 2558 */ 2559 sector_size = 512; 2560 } 2561 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2562 blk_queue_physical_block_size(sdp->request_queue, 2563 sdkp->physical_block_size); 2564 sdkp->device->sector_size = sector_size; 2565 2566 if (sdkp->capacity > 0xffffffff) 2567 sdp->use_16_for_rw = 1; 2568 2569 } 2570 2571 /* 2572 * Print disk capacity 2573 */ 2574 static void 2575 sd_print_capacity(struct scsi_disk *sdkp, 2576 sector_t old_capacity) 2577 { 2578 int sector_size = sdkp->device->sector_size; 2579 char cap_str_2[10], cap_str_10[10]; 2580 2581 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2582 return; 2583 2584 string_get_size(sdkp->capacity, sector_size, 2585 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2586 string_get_size(sdkp->capacity, sector_size, 2587 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2588 2589 sd_printk(KERN_NOTICE, sdkp, 2590 "%llu %d-byte logical blocks: (%s/%s)\n", 2591 (unsigned long long)sdkp->capacity, 2592 sector_size, cap_str_10, cap_str_2); 2593 2594 if (sdkp->physical_block_size != sector_size) 2595 sd_printk(KERN_NOTICE, sdkp, 2596 "%u-byte physical blocks\n", 2597 sdkp->physical_block_size); 2598 } 2599 2600 /* called with buffer of length 512 */ 2601 static inline int 2602 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2603 unsigned char *buffer, int len, struct scsi_mode_data *data, 2604 struct scsi_sense_hdr *sshdr) 2605 { 2606 /* 2607 * If we must use MODE SENSE(10), make sure that the buffer length 2608 * is at least 8 bytes so that the mode sense header fits. 2609 */ 2610 if (sdkp->device->use_10_for_ms && len < 8) 2611 len = 8; 2612 2613 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2614 SD_TIMEOUT, sdkp->max_retries, data, 2615 sshdr); 2616 } 2617 2618 /* 2619 * read write protect setting, if possible - called only in sd_revalidate_disk() 2620 * called with buffer of length SD_BUF_SIZE 2621 */ 2622 static void 2623 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2624 { 2625 int res; 2626 struct scsi_device *sdp = sdkp->device; 2627 struct scsi_mode_data data; 2628 int old_wp = sdkp->write_prot; 2629 2630 set_disk_ro(sdkp->disk, 0); 2631 if (sdp->skip_ms_page_3f) { 2632 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2633 return; 2634 } 2635 2636 if (sdp->use_192_bytes_for_3f) { 2637 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2638 } else { 2639 /* 2640 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2641 * We have to start carefully: some devices hang if we ask 2642 * for more than is available. 2643 */ 2644 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2645 2646 /* 2647 * Second attempt: ask for page 0 When only page 0 is 2648 * implemented, a request for page 3F may return Sense Key 2649 * 5: Illegal Request, Sense Code 24: Invalid field in 2650 * CDB. 2651 */ 2652 if (res < 0) 2653 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2654 2655 /* 2656 * Third attempt: ask 255 bytes, as we did earlier. 2657 */ 2658 if (res < 0) 2659 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2660 &data, NULL); 2661 } 2662 2663 if (res < 0) { 2664 sd_first_printk(KERN_WARNING, sdkp, 2665 "Test WP failed, assume Write Enabled\n"); 2666 } else { 2667 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2668 set_disk_ro(sdkp->disk, sdkp->write_prot); 2669 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2670 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2671 sdkp->write_prot ? "on" : "off"); 2672 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2673 } 2674 } 2675 } 2676 2677 /* 2678 * sd_read_cache_type - called only from sd_revalidate_disk() 2679 * called with buffer of length SD_BUF_SIZE 2680 */ 2681 static void 2682 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2683 { 2684 int len = 0, res; 2685 struct scsi_device *sdp = sdkp->device; 2686 2687 int dbd; 2688 int modepage; 2689 int first_len; 2690 struct scsi_mode_data data; 2691 struct scsi_sense_hdr sshdr; 2692 int old_wce = sdkp->WCE; 2693 int old_rcd = sdkp->RCD; 2694 int old_dpofua = sdkp->DPOFUA; 2695 2696 2697 if (sdkp->cache_override) 2698 return; 2699 2700 first_len = 4; 2701 if (sdp->skip_ms_page_8) { 2702 if (sdp->type == TYPE_RBC) 2703 goto defaults; 2704 else { 2705 if (sdp->skip_ms_page_3f) 2706 goto defaults; 2707 modepage = 0x3F; 2708 if (sdp->use_192_bytes_for_3f) 2709 first_len = 192; 2710 dbd = 0; 2711 } 2712 } else if (sdp->type == TYPE_RBC) { 2713 modepage = 6; 2714 dbd = 8; 2715 } else { 2716 modepage = 8; 2717 dbd = 0; 2718 } 2719 2720 /* cautiously ask */ 2721 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2722 &data, &sshdr); 2723 2724 if (res < 0) 2725 goto bad_sense; 2726 2727 if (!data.header_length) { 2728 modepage = 6; 2729 first_len = 0; 2730 sd_first_printk(KERN_ERR, sdkp, 2731 "Missing header in MODE_SENSE response\n"); 2732 } 2733 2734 /* that went OK, now ask for the proper length */ 2735 len = data.length; 2736 2737 /* 2738 * We're only interested in the first three bytes, actually. 2739 * But the data cache page is defined for the first 20. 2740 */ 2741 if (len < 3) 2742 goto bad_sense; 2743 else if (len > SD_BUF_SIZE) { 2744 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2745 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2746 len = SD_BUF_SIZE; 2747 } 2748 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2749 len = 192; 2750 2751 /* Get the data */ 2752 if (len > first_len) 2753 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2754 &data, &sshdr); 2755 2756 if (!res) { 2757 int offset = data.header_length + data.block_descriptor_length; 2758 2759 while (offset < len) { 2760 u8 page_code = buffer[offset] & 0x3F; 2761 u8 spf = buffer[offset] & 0x40; 2762 2763 if (page_code == 8 || page_code == 6) { 2764 /* We're interested only in the first 3 bytes. 2765 */ 2766 if (len - offset <= 2) { 2767 sd_first_printk(KERN_ERR, sdkp, 2768 "Incomplete mode parameter " 2769 "data\n"); 2770 goto defaults; 2771 } else { 2772 modepage = page_code; 2773 goto Page_found; 2774 } 2775 } else { 2776 /* Go to the next page */ 2777 if (spf && len - offset > 3) 2778 offset += 4 + (buffer[offset+2] << 8) + 2779 buffer[offset+3]; 2780 else if (!spf && len - offset > 1) 2781 offset += 2 + buffer[offset+1]; 2782 else { 2783 sd_first_printk(KERN_ERR, sdkp, 2784 "Incomplete mode " 2785 "parameter data\n"); 2786 goto defaults; 2787 } 2788 } 2789 } 2790 2791 sd_first_printk(KERN_WARNING, sdkp, 2792 "No Caching mode page found\n"); 2793 goto defaults; 2794 2795 Page_found: 2796 if (modepage == 8) { 2797 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2798 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2799 } else { 2800 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2801 sdkp->RCD = 0; 2802 } 2803 2804 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2805 if (sdp->broken_fua) { 2806 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2807 sdkp->DPOFUA = 0; 2808 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2809 !sdkp->device->use_16_for_rw) { 2810 sd_first_printk(KERN_NOTICE, sdkp, 2811 "Uses READ/WRITE(6), disabling FUA\n"); 2812 sdkp->DPOFUA = 0; 2813 } 2814 2815 /* No cache flush allowed for write protected devices */ 2816 if (sdkp->WCE && sdkp->write_prot) 2817 sdkp->WCE = 0; 2818 2819 if (sdkp->first_scan || old_wce != sdkp->WCE || 2820 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2821 sd_printk(KERN_NOTICE, sdkp, 2822 "Write cache: %s, read cache: %s, %s\n", 2823 sdkp->WCE ? "enabled" : "disabled", 2824 sdkp->RCD ? "disabled" : "enabled", 2825 sdkp->DPOFUA ? "supports DPO and FUA" 2826 : "doesn't support DPO or FUA"); 2827 2828 return; 2829 } 2830 2831 bad_sense: 2832 if (scsi_sense_valid(&sshdr) && 2833 sshdr.sense_key == ILLEGAL_REQUEST && 2834 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2835 /* Invalid field in CDB */ 2836 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2837 else 2838 sd_first_printk(KERN_ERR, sdkp, 2839 "Asking for cache data failed\n"); 2840 2841 defaults: 2842 if (sdp->wce_default_on) { 2843 sd_first_printk(KERN_NOTICE, sdkp, 2844 "Assuming drive cache: write back\n"); 2845 sdkp->WCE = 1; 2846 } else { 2847 sd_first_printk(KERN_WARNING, sdkp, 2848 "Assuming drive cache: write through\n"); 2849 sdkp->WCE = 0; 2850 } 2851 sdkp->RCD = 0; 2852 sdkp->DPOFUA = 0; 2853 } 2854 2855 /* 2856 * The ATO bit indicates whether the DIF application tag is available 2857 * for use by the operating system. 2858 */ 2859 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2860 { 2861 int res, offset; 2862 struct scsi_device *sdp = sdkp->device; 2863 struct scsi_mode_data data; 2864 struct scsi_sense_hdr sshdr; 2865 2866 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2867 return; 2868 2869 if (sdkp->protection_type == 0) 2870 return; 2871 2872 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2873 sdkp->max_retries, &data, &sshdr); 2874 2875 if (res < 0 || !data.header_length || 2876 data.length < 6) { 2877 sd_first_printk(KERN_WARNING, sdkp, 2878 "getting Control mode page failed, assume no ATO\n"); 2879 2880 if (scsi_sense_valid(&sshdr)) 2881 sd_print_sense_hdr(sdkp, &sshdr); 2882 2883 return; 2884 } 2885 2886 offset = data.header_length + data.block_descriptor_length; 2887 2888 if ((buffer[offset] & 0x3f) != 0x0a) { 2889 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2890 return; 2891 } 2892 2893 if ((buffer[offset + 5] & 0x80) == 0) 2894 return; 2895 2896 sdkp->ATO = 1; 2897 2898 return; 2899 } 2900 2901 /** 2902 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2903 * @sdkp: disk to query 2904 */ 2905 static void sd_read_block_limits(struct scsi_disk *sdkp) 2906 { 2907 struct scsi_vpd *vpd; 2908 2909 rcu_read_lock(); 2910 2911 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 2912 if (!vpd || vpd->len < 16) 2913 goto out; 2914 2915 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 2916 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 2917 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 2918 2919 if (vpd->len >= 64) { 2920 unsigned int lba_count, desc_count; 2921 2922 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 2923 2924 if (!sdkp->lbpme) 2925 goto out; 2926 2927 lba_count = get_unaligned_be32(&vpd->data[20]); 2928 desc_count = get_unaligned_be32(&vpd->data[24]); 2929 2930 if (lba_count && desc_count) 2931 sdkp->max_unmap_blocks = lba_count; 2932 2933 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 2934 2935 if (vpd->data[32] & 0x80) 2936 sdkp->unmap_alignment = 2937 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 2938 2939 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2940 2941 if (sdkp->max_unmap_blocks) 2942 sd_config_discard(sdkp, SD_LBP_UNMAP); 2943 else 2944 sd_config_discard(sdkp, SD_LBP_WS16); 2945 2946 } else { /* LBP VPD page tells us what to use */ 2947 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2948 sd_config_discard(sdkp, SD_LBP_UNMAP); 2949 else if (sdkp->lbpws) 2950 sd_config_discard(sdkp, SD_LBP_WS16); 2951 else if (sdkp->lbpws10) 2952 sd_config_discard(sdkp, SD_LBP_WS10); 2953 else 2954 sd_config_discard(sdkp, SD_LBP_DISABLE); 2955 } 2956 } 2957 2958 out: 2959 rcu_read_unlock(); 2960 } 2961 2962 /** 2963 * sd_read_block_characteristics - Query block dev. characteristics 2964 * @sdkp: disk to query 2965 */ 2966 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2967 { 2968 struct request_queue *q = sdkp->disk->queue; 2969 struct scsi_vpd *vpd; 2970 u16 rot; 2971 u8 zoned; 2972 2973 rcu_read_lock(); 2974 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 2975 2976 if (!vpd || vpd->len < 8) { 2977 rcu_read_unlock(); 2978 return; 2979 } 2980 2981 rot = get_unaligned_be16(&vpd->data[4]); 2982 zoned = (vpd->data[8] >> 4) & 3; 2983 rcu_read_unlock(); 2984 2985 if (rot == 1) { 2986 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2987 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2988 } 2989 2990 if (sdkp->device->type == TYPE_ZBC) { 2991 /* 2992 * Host-managed: Per ZBC and ZAC specifications, writes in 2993 * sequential write required zones of host-managed devices must 2994 * be aligned to the device physical block size. 2995 */ 2996 disk_set_zoned(sdkp->disk, BLK_ZONED_HM); 2997 blk_queue_zone_write_granularity(q, sdkp->physical_block_size); 2998 } else { 2999 sdkp->zoned = zoned; 3000 if (sdkp->zoned == 1) { 3001 /* Host-aware */ 3002 disk_set_zoned(sdkp->disk, BLK_ZONED_HA); 3003 } else { 3004 /* Regular disk or drive managed disk */ 3005 disk_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3006 } 3007 } 3008 3009 if (!sdkp->first_scan) 3010 return; 3011 3012 if (blk_queue_is_zoned(q)) { 3013 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3014 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3015 } else { 3016 if (sdkp->zoned == 1) 3017 sd_printk(KERN_NOTICE, sdkp, 3018 "Host-aware SMR disk used as regular disk\n"); 3019 else if (sdkp->zoned == 2) 3020 sd_printk(KERN_NOTICE, sdkp, 3021 "Drive-managed SMR disk\n"); 3022 } 3023 } 3024 3025 /** 3026 * sd_read_block_provisioning - Query provisioning VPD page 3027 * @sdkp: disk to query 3028 */ 3029 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3030 { 3031 struct scsi_vpd *vpd; 3032 3033 if (sdkp->lbpme == 0) 3034 return; 3035 3036 rcu_read_lock(); 3037 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 3038 3039 if (!vpd || vpd->len < 8) { 3040 rcu_read_unlock(); 3041 return; 3042 } 3043 3044 sdkp->lbpvpd = 1; 3045 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 3046 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 3047 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 3048 rcu_read_unlock(); 3049 } 3050 3051 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3052 { 3053 struct scsi_device *sdev = sdkp->device; 3054 3055 if (sdev->host->no_write_same) { 3056 sdev->no_write_same = 1; 3057 3058 return; 3059 } 3060 3061 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3062 struct scsi_vpd *vpd; 3063 3064 sdev->no_report_opcodes = 1; 3065 3066 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3067 * CODES is unsupported and the device has an ATA 3068 * Information VPD page (SAT). 3069 */ 3070 rcu_read_lock(); 3071 vpd = rcu_dereference(sdev->vpd_pg89); 3072 if (vpd) 3073 sdev->no_write_same = 1; 3074 rcu_read_unlock(); 3075 } 3076 3077 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3078 sdkp->ws16 = 1; 3079 3080 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3081 sdkp->ws10 = 1; 3082 } 3083 3084 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3085 { 3086 struct scsi_device *sdev = sdkp->device; 3087 3088 if (!sdev->security_supported) 3089 return; 3090 3091 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3092 SECURITY_PROTOCOL_IN) == 1 && 3093 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3094 SECURITY_PROTOCOL_OUT) == 1) 3095 sdkp->security = 1; 3096 } 3097 3098 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3099 { 3100 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3101 } 3102 3103 /** 3104 * sd_read_cpr - Query concurrent positioning ranges 3105 * @sdkp: disk to query 3106 */ 3107 static void sd_read_cpr(struct scsi_disk *sdkp) 3108 { 3109 struct blk_independent_access_ranges *iars = NULL; 3110 unsigned char *buffer = NULL; 3111 unsigned int nr_cpr = 0; 3112 int i, vpd_len, buf_len = SD_BUF_SIZE; 3113 u8 *desc; 3114 3115 /* 3116 * We need to have the capacity set first for the block layer to be 3117 * able to check the ranges. 3118 */ 3119 if (sdkp->first_scan) 3120 return; 3121 3122 if (!sdkp->capacity) 3123 goto out; 3124 3125 /* 3126 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3127 * leading to a maximum page size of 64 + 256*32 bytes. 3128 */ 3129 buf_len = 64 + 256*32; 3130 buffer = kmalloc(buf_len, GFP_KERNEL); 3131 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3132 goto out; 3133 3134 /* We must have at least a 64B header and one 32B range descriptor */ 3135 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3136 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3137 sd_printk(KERN_ERR, sdkp, 3138 "Invalid Concurrent Positioning Ranges VPD page\n"); 3139 goto out; 3140 } 3141 3142 nr_cpr = (vpd_len - 64) / 32; 3143 if (nr_cpr == 1) { 3144 nr_cpr = 0; 3145 goto out; 3146 } 3147 3148 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3149 if (!iars) { 3150 nr_cpr = 0; 3151 goto out; 3152 } 3153 3154 desc = &buffer[64]; 3155 for (i = 0; i < nr_cpr; i++, desc += 32) { 3156 if (desc[0] != i) { 3157 sd_printk(KERN_ERR, sdkp, 3158 "Invalid Concurrent Positioning Range number\n"); 3159 nr_cpr = 0; 3160 break; 3161 } 3162 3163 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3164 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3165 } 3166 3167 out: 3168 disk_set_independent_access_ranges(sdkp->disk, iars); 3169 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3170 sd_printk(KERN_NOTICE, sdkp, 3171 "%u concurrent positioning ranges\n", nr_cpr); 3172 sdkp->nr_actuators = nr_cpr; 3173 } 3174 3175 kfree(buffer); 3176 } 3177 3178 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3179 { 3180 struct scsi_device *sdp = sdkp->device; 3181 unsigned int min_xfer_bytes = 3182 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3183 3184 if (sdkp->min_xfer_blocks == 0) 3185 return false; 3186 3187 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3188 sd_first_printk(KERN_WARNING, sdkp, 3189 "Preferred minimum I/O size %u bytes not a " \ 3190 "multiple of physical block size (%u bytes)\n", 3191 min_xfer_bytes, sdkp->physical_block_size); 3192 sdkp->min_xfer_blocks = 0; 3193 return false; 3194 } 3195 3196 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3197 min_xfer_bytes); 3198 return true; 3199 } 3200 3201 /* 3202 * Determine the device's preferred I/O size for reads and writes 3203 * unless the reported value is unreasonably small, large, not a 3204 * multiple of the physical block size, or simply garbage. 3205 */ 3206 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3207 unsigned int dev_max) 3208 { 3209 struct scsi_device *sdp = sdkp->device; 3210 unsigned int opt_xfer_bytes = 3211 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3212 unsigned int min_xfer_bytes = 3213 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3214 3215 if (sdkp->opt_xfer_blocks == 0) 3216 return false; 3217 3218 if (sdkp->opt_xfer_blocks > dev_max) { 3219 sd_first_printk(KERN_WARNING, sdkp, 3220 "Optimal transfer size %u logical blocks " \ 3221 "> dev_max (%u logical blocks)\n", 3222 sdkp->opt_xfer_blocks, dev_max); 3223 return false; 3224 } 3225 3226 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3227 sd_first_printk(KERN_WARNING, sdkp, 3228 "Optimal transfer size %u logical blocks " \ 3229 "> sd driver limit (%u logical blocks)\n", 3230 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3231 return false; 3232 } 3233 3234 if (opt_xfer_bytes < PAGE_SIZE) { 3235 sd_first_printk(KERN_WARNING, sdkp, 3236 "Optimal transfer size %u bytes < " \ 3237 "PAGE_SIZE (%u bytes)\n", 3238 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3239 return false; 3240 } 3241 3242 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3243 sd_first_printk(KERN_WARNING, sdkp, 3244 "Optimal transfer size %u bytes not a " \ 3245 "multiple of preferred minimum block " \ 3246 "size (%u bytes)\n", 3247 opt_xfer_bytes, min_xfer_bytes); 3248 return false; 3249 } 3250 3251 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3252 sd_first_printk(KERN_WARNING, sdkp, 3253 "Optimal transfer size %u bytes not a " \ 3254 "multiple of physical block size (%u bytes)\n", 3255 opt_xfer_bytes, sdkp->physical_block_size); 3256 return false; 3257 } 3258 3259 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3260 opt_xfer_bytes); 3261 return true; 3262 } 3263 3264 /** 3265 * sd_revalidate_disk - called the first time a new disk is seen, 3266 * performs disk spin up, read_capacity, etc. 3267 * @disk: struct gendisk we care about 3268 **/ 3269 static int sd_revalidate_disk(struct gendisk *disk) 3270 { 3271 struct scsi_disk *sdkp = scsi_disk(disk); 3272 struct scsi_device *sdp = sdkp->device; 3273 struct request_queue *q = sdkp->disk->queue; 3274 sector_t old_capacity = sdkp->capacity; 3275 unsigned char *buffer; 3276 unsigned int dev_max, rw_max; 3277 3278 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3279 "sd_revalidate_disk\n")); 3280 3281 /* 3282 * If the device is offline, don't try and read capacity or any 3283 * of the other niceties. 3284 */ 3285 if (!scsi_device_online(sdp)) 3286 goto out; 3287 3288 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3289 if (!buffer) { 3290 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3291 "allocation failure.\n"); 3292 goto out; 3293 } 3294 3295 sd_spinup_disk(sdkp); 3296 3297 /* 3298 * Without media there is no reason to ask; moreover, some devices 3299 * react badly if we do. 3300 */ 3301 if (sdkp->media_present) { 3302 sd_read_capacity(sdkp, buffer); 3303 3304 /* 3305 * set the default to rotational. All non-rotational devices 3306 * support the block characteristics VPD page, which will 3307 * cause this to be updated correctly and any device which 3308 * doesn't support it should be treated as rotational. 3309 */ 3310 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3311 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3312 3313 if (scsi_device_supports_vpd(sdp)) { 3314 sd_read_block_provisioning(sdkp); 3315 sd_read_block_limits(sdkp); 3316 sd_read_block_characteristics(sdkp); 3317 sd_zbc_read_zones(sdkp, buffer); 3318 sd_read_cpr(sdkp); 3319 } 3320 3321 sd_print_capacity(sdkp, old_capacity); 3322 3323 sd_read_write_protect_flag(sdkp, buffer); 3324 sd_read_cache_type(sdkp, buffer); 3325 sd_read_app_tag_own(sdkp, buffer); 3326 sd_read_write_same(sdkp, buffer); 3327 sd_read_security(sdkp, buffer); 3328 sd_config_protection(sdkp); 3329 } 3330 3331 /* 3332 * We now have all cache related info, determine how we deal 3333 * with flush requests. 3334 */ 3335 sd_set_flush_flag(sdkp); 3336 3337 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3338 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3339 3340 /* Some devices report a maximum block count for READ/WRITE requests. */ 3341 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3342 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3343 3344 if (sd_validate_min_xfer_size(sdkp)) 3345 blk_queue_io_min(sdkp->disk->queue, 3346 logical_to_bytes(sdp, sdkp->min_xfer_blocks)); 3347 else 3348 blk_queue_io_min(sdkp->disk->queue, 0); 3349 3350 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3351 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3352 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3353 } else { 3354 q->limits.io_opt = 0; 3355 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3356 (sector_t)BLK_DEF_MAX_SECTORS); 3357 } 3358 3359 /* 3360 * Limit default to SCSI host optimal sector limit if set. There may be 3361 * an impact on performance for when the size of a request exceeds this 3362 * host limit. 3363 */ 3364 rw_max = min_not_zero(rw_max, sdp->host->opt_sectors); 3365 3366 /* Do not exceed controller limit */ 3367 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3368 3369 /* 3370 * Only update max_sectors if previously unset or if the current value 3371 * exceeds the capabilities of the hardware. 3372 */ 3373 if (sdkp->first_scan || 3374 q->limits.max_sectors > q->limits.max_dev_sectors || 3375 q->limits.max_sectors > q->limits.max_hw_sectors) 3376 q->limits.max_sectors = rw_max; 3377 3378 sdkp->first_scan = 0; 3379 3380 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3381 sd_config_write_same(sdkp); 3382 kfree(buffer); 3383 3384 /* 3385 * For a zoned drive, revalidating the zones can be done only once 3386 * the gendisk capacity is set. So if this fails, set back the gendisk 3387 * capacity to 0. 3388 */ 3389 if (sd_zbc_revalidate_zones(sdkp)) 3390 set_capacity_and_notify(disk, 0); 3391 3392 out: 3393 return 0; 3394 } 3395 3396 /** 3397 * sd_unlock_native_capacity - unlock native capacity 3398 * @disk: struct gendisk to set capacity for 3399 * 3400 * Block layer calls this function if it detects that partitions 3401 * on @disk reach beyond the end of the device. If the SCSI host 3402 * implements ->unlock_native_capacity() method, it's invoked to 3403 * give it a chance to adjust the device capacity. 3404 * 3405 * CONTEXT: 3406 * Defined by block layer. Might sleep. 3407 */ 3408 static void sd_unlock_native_capacity(struct gendisk *disk) 3409 { 3410 struct scsi_device *sdev = scsi_disk(disk)->device; 3411 3412 if (sdev->host->hostt->unlock_native_capacity) 3413 sdev->host->hostt->unlock_native_capacity(sdev); 3414 } 3415 3416 /** 3417 * sd_format_disk_name - format disk name 3418 * @prefix: name prefix - ie. "sd" for SCSI disks 3419 * @index: index of the disk to format name for 3420 * @buf: output buffer 3421 * @buflen: length of the output buffer 3422 * 3423 * SCSI disk names starts at sda. The 26th device is sdz and the 3424 * 27th is sdaa. The last one for two lettered suffix is sdzz 3425 * which is followed by sdaaa. 3426 * 3427 * This is basically 26 base counting with one extra 'nil' entry 3428 * at the beginning from the second digit on and can be 3429 * determined using similar method as 26 base conversion with the 3430 * index shifted -1 after each digit is computed. 3431 * 3432 * CONTEXT: 3433 * Don't care. 3434 * 3435 * RETURNS: 3436 * 0 on success, -errno on failure. 3437 */ 3438 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3439 { 3440 const int base = 'z' - 'a' + 1; 3441 char *begin = buf + strlen(prefix); 3442 char *end = buf + buflen; 3443 char *p; 3444 int unit; 3445 3446 p = end - 1; 3447 *p = '\0'; 3448 unit = base; 3449 do { 3450 if (p == begin) 3451 return -EINVAL; 3452 *--p = 'a' + (index % unit); 3453 index = (index / unit) - 1; 3454 } while (index >= 0); 3455 3456 memmove(begin, p, end - p); 3457 memcpy(buf, prefix, strlen(prefix)); 3458 3459 return 0; 3460 } 3461 3462 /** 3463 * sd_probe - called during driver initialization and whenever a 3464 * new scsi device is attached to the system. It is called once 3465 * for each scsi device (not just disks) present. 3466 * @dev: pointer to device object 3467 * 3468 * Returns 0 if successful (or not interested in this scsi device 3469 * (e.g. scanner)); 1 when there is an error. 3470 * 3471 * Note: this function is invoked from the scsi mid-level. 3472 * This function sets up the mapping between a given 3473 * <host,channel,id,lun> (found in sdp) and new device name 3474 * (e.g. /dev/sda). More precisely it is the block device major 3475 * and minor number that is chosen here. 3476 * 3477 * Assume sd_probe is not re-entrant (for time being) 3478 * Also think about sd_probe() and sd_remove() running coincidentally. 3479 **/ 3480 static int sd_probe(struct device *dev) 3481 { 3482 struct scsi_device *sdp = to_scsi_device(dev); 3483 struct scsi_disk *sdkp; 3484 struct gendisk *gd; 3485 int index; 3486 int error; 3487 3488 scsi_autopm_get_device(sdp); 3489 error = -ENODEV; 3490 if (sdp->type != TYPE_DISK && 3491 sdp->type != TYPE_ZBC && 3492 sdp->type != TYPE_MOD && 3493 sdp->type != TYPE_RBC) 3494 goto out; 3495 3496 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3497 sdev_printk(KERN_WARNING, sdp, 3498 "Unsupported ZBC host-managed device.\n"); 3499 goto out; 3500 } 3501 3502 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3503 "sd_probe\n")); 3504 3505 error = -ENOMEM; 3506 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3507 if (!sdkp) 3508 goto out; 3509 3510 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue, 3511 &sd_bio_compl_lkclass); 3512 if (!gd) 3513 goto out_free; 3514 3515 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3516 if (index < 0) { 3517 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3518 goto out_put; 3519 } 3520 3521 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3522 if (error) { 3523 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3524 goto out_free_index; 3525 } 3526 3527 sdkp->device = sdp; 3528 sdkp->disk = gd; 3529 sdkp->index = index; 3530 sdkp->max_retries = SD_MAX_RETRIES; 3531 atomic_set(&sdkp->openers, 0); 3532 atomic_set(&sdkp->device->ioerr_cnt, 0); 3533 3534 if (!sdp->request_queue->rq_timeout) { 3535 if (sdp->type != TYPE_MOD) 3536 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3537 else 3538 blk_queue_rq_timeout(sdp->request_queue, 3539 SD_MOD_TIMEOUT); 3540 } 3541 3542 device_initialize(&sdkp->disk_dev); 3543 sdkp->disk_dev.parent = get_device(dev); 3544 sdkp->disk_dev.class = &sd_disk_class; 3545 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3546 3547 error = device_add(&sdkp->disk_dev); 3548 if (error) { 3549 put_device(&sdkp->disk_dev); 3550 goto out; 3551 } 3552 3553 dev_set_drvdata(dev, sdkp); 3554 3555 gd->major = sd_major((index & 0xf0) >> 4); 3556 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3557 gd->minors = SD_MINORS; 3558 3559 gd->fops = &sd_fops; 3560 gd->private_data = sdkp; 3561 3562 /* defaults, until the device tells us otherwise */ 3563 sdp->sector_size = 512; 3564 sdkp->capacity = 0; 3565 sdkp->media_present = 1; 3566 sdkp->write_prot = 0; 3567 sdkp->cache_override = 0; 3568 sdkp->WCE = 0; 3569 sdkp->RCD = 0; 3570 sdkp->ATO = 0; 3571 sdkp->first_scan = 1; 3572 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3573 3574 sd_revalidate_disk(gd); 3575 3576 if (sdp->removable) { 3577 gd->flags |= GENHD_FL_REMOVABLE; 3578 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3579 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3580 } 3581 3582 blk_pm_runtime_init(sdp->request_queue, dev); 3583 if (sdp->rpm_autosuspend) { 3584 pm_runtime_set_autosuspend_delay(dev, 3585 sdp->host->hostt->rpm_autosuspend_delay); 3586 } 3587 3588 error = device_add_disk(dev, gd, NULL); 3589 if (error) { 3590 put_device(&sdkp->disk_dev); 3591 put_disk(gd); 3592 goto out; 3593 } 3594 3595 if (sdkp->security) { 3596 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3597 if (sdkp->opal_dev) 3598 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3599 } 3600 3601 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3602 sdp->removable ? "removable " : ""); 3603 scsi_autopm_put_device(sdp); 3604 3605 return 0; 3606 3607 out_free_index: 3608 ida_free(&sd_index_ida, index); 3609 out_put: 3610 put_disk(gd); 3611 out_free: 3612 kfree(sdkp); 3613 out: 3614 scsi_autopm_put_device(sdp); 3615 return error; 3616 } 3617 3618 /** 3619 * sd_remove - called whenever a scsi disk (previously recognized by 3620 * sd_probe) is detached from the system. It is called (potentially 3621 * multiple times) during sd module unload. 3622 * @dev: pointer to device object 3623 * 3624 * Note: this function is invoked from the scsi mid-level. 3625 * This function potentially frees up a device name (e.g. /dev/sdc) 3626 * that could be re-used by a subsequent sd_probe(). 3627 * This function is not called when the built-in sd driver is "exit-ed". 3628 **/ 3629 static int sd_remove(struct device *dev) 3630 { 3631 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3632 3633 scsi_autopm_get_device(sdkp->device); 3634 3635 device_del(&sdkp->disk_dev); 3636 del_gendisk(sdkp->disk); 3637 sd_shutdown(dev); 3638 3639 put_disk(sdkp->disk); 3640 return 0; 3641 } 3642 3643 static void scsi_disk_release(struct device *dev) 3644 { 3645 struct scsi_disk *sdkp = to_scsi_disk(dev); 3646 3647 ida_free(&sd_index_ida, sdkp->index); 3648 sd_zbc_free_zone_info(sdkp); 3649 put_device(&sdkp->device->sdev_gendev); 3650 free_opal_dev(sdkp->opal_dev); 3651 3652 kfree(sdkp); 3653 } 3654 3655 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3656 { 3657 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3658 struct scsi_sense_hdr sshdr; 3659 const struct scsi_exec_args exec_args = { 3660 .sshdr = &sshdr, 3661 .req_flags = BLK_MQ_REQ_PM, 3662 }; 3663 struct scsi_device *sdp = sdkp->device; 3664 int res; 3665 3666 if (start) 3667 cmd[4] |= 1; /* START */ 3668 3669 if (sdp->start_stop_pwr_cond) 3670 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3671 3672 if (!scsi_device_online(sdp)) 3673 return -ENODEV; 3674 3675 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, 3676 sdkp->max_retries, &exec_args); 3677 if (res) { 3678 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3679 if (res > 0 && scsi_sense_valid(&sshdr)) { 3680 sd_print_sense_hdr(sdkp, &sshdr); 3681 /* 0x3a is medium not present */ 3682 if (sshdr.asc == 0x3a) 3683 res = 0; 3684 } 3685 } 3686 3687 /* SCSI error codes must not go to the generic layer */ 3688 if (res) 3689 return -EIO; 3690 3691 return 0; 3692 } 3693 3694 /* 3695 * Send a SYNCHRONIZE CACHE instruction down to the device through 3696 * the normal SCSI command structure. Wait for the command to 3697 * complete. 3698 */ 3699 static void sd_shutdown(struct device *dev) 3700 { 3701 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3702 3703 if (!sdkp) 3704 return; /* this can happen */ 3705 3706 if (pm_runtime_suspended(dev)) 3707 return; 3708 3709 if (sdkp->WCE && sdkp->media_present) { 3710 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3711 sd_sync_cache(sdkp, NULL); 3712 } 3713 3714 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3715 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3716 sd_start_stop_device(sdkp, 0); 3717 } 3718 } 3719 3720 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3721 { 3722 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3723 struct scsi_sense_hdr sshdr; 3724 int ret = 0; 3725 3726 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3727 return 0; 3728 3729 if (sdkp->WCE && sdkp->media_present) { 3730 if (!sdkp->device->silence_suspend) 3731 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3732 ret = sd_sync_cache(sdkp, &sshdr); 3733 3734 if (ret) { 3735 /* ignore OFFLINE device */ 3736 if (ret == -ENODEV) 3737 return 0; 3738 3739 if (!scsi_sense_valid(&sshdr) || 3740 sshdr.sense_key != ILLEGAL_REQUEST) 3741 return ret; 3742 3743 /* 3744 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3745 * doesn't support sync. There's not much to do and 3746 * suspend shouldn't fail. 3747 */ 3748 ret = 0; 3749 } 3750 } 3751 3752 if (sdkp->device->manage_start_stop) { 3753 if (!sdkp->device->silence_suspend) 3754 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3755 /* an error is not worth aborting a system sleep */ 3756 ret = sd_start_stop_device(sdkp, 0); 3757 if (ignore_stop_errors) 3758 ret = 0; 3759 } 3760 3761 return ret; 3762 } 3763 3764 static int sd_suspend_system(struct device *dev) 3765 { 3766 if (pm_runtime_suspended(dev)) 3767 return 0; 3768 3769 return sd_suspend_common(dev, true); 3770 } 3771 3772 static int sd_suspend_runtime(struct device *dev) 3773 { 3774 return sd_suspend_common(dev, false); 3775 } 3776 3777 static int sd_resume(struct device *dev) 3778 { 3779 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3780 int ret; 3781 3782 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3783 return 0; 3784 3785 if (!sdkp->device->manage_start_stop) 3786 return 0; 3787 3788 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3789 ret = sd_start_stop_device(sdkp, 1); 3790 if (!ret) 3791 opal_unlock_from_suspend(sdkp->opal_dev); 3792 return ret; 3793 } 3794 3795 static int sd_resume_system(struct device *dev) 3796 { 3797 if (pm_runtime_suspended(dev)) 3798 return 0; 3799 3800 return sd_resume(dev); 3801 } 3802 3803 static int sd_resume_runtime(struct device *dev) 3804 { 3805 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3806 struct scsi_device *sdp; 3807 3808 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3809 return 0; 3810 3811 sdp = sdkp->device; 3812 3813 if (sdp->ignore_media_change) { 3814 /* clear the device's sense data */ 3815 static const u8 cmd[10] = { REQUEST_SENSE }; 3816 const struct scsi_exec_args exec_args = { 3817 .req_flags = BLK_MQ_REQ_PM, 3818 }; 3819 3820 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 3821 sdp->request_queue->rq_timeout, 1, 3822 &exec_args)) 3823 sd_printk(KERN_NOTICE, sdkp, 3824 "Failed to clear sense data\n"); 3825 } 3826 3827 return sd_resume(dev); 3828 } 3829 3830 /** 3831 * init_sd - entry point for this driver (both when built in or when 3832 * a module). 3833 * 3834 * Note: this function registers this driver with the scsi mid-level. 3835 **/ 3836 static int __init init_sd(void) 3837 { 3838 int majors = 0, i, err; 3839 3840 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3841 3842 for (i = 0; i < SD_MAJORS; i++) { 3843 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3844 continue; 3845 majors++; 3846 } 3847 3848 if (!majors) 3849 return -ENODEV; 3850 3851 err = class_register(&sd_disk_class); 3852 if (err) 3853 goto err_out; 3854 3855 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3856 if (!sd_page_pool) { 3857 printk(KERN_ERR "sd: can't init discard page pool\n"); 3858 err = -ENOMEM; 3859 goto err_out_class; 3860 } 3861 3862 err = scsi_register_driver(&sd_template.gendrv); 3863 if (err) 3864 goto err_out_driver; 3865 3866 return 0; 3867 3868 err_out_driver: 3869 mempool_destroy(sd_page_pool); 3870 err_out_class: 3871 class_unregister(&sd_disk_class); 3872 err_out: 3873 for (i = 0; i < SD_MAJORS; i++) 3874 unregister_blkdev(sd_major(i), "sd"); 3875 return err; 3876 } 3877 3878 /** 3879 * exit_sd - exit point for this driver (when it is a module). 3880 * 3881 * Note: this function unregisters this driver from the scsi mid-level. 3882 **/ 3883 static void __exit exit_sd(void) 3884 { 3885 int i; 3886 3887 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3888 3889 scsi_unregister_driver(&sd_template.gendrv); 3890 mempool_destroy(sd_page_pool); 3891 3892 class_unregister(&sd_disk_class); 3893 3894 for (i = 0; i < SD_MAJORS; i++) 3895 unregister_blkdev(sd_major(i), "sd"); 3896 } 3897 3898 module_init(init_sd); 3899 module_exit(exit_sd); 3900 3901 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3902 { 3903 scsi_print_sense_hdr(sdkp->device, 3904 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3905 } 3906 3907 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3908 { 3909 const char *hb_string = scsi_hostbyte_string(result); 3910 3911 if (hb_string) 3912 sd_printk(KERN_INFO, sdkp, 3913 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3914 hb_string ? hb_string : "invalid", 3915 "DRIVER_OK"); 3916 else 3917 sd_printk(KERN_INFO, sdkp, 3918 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 3919 msg, host_byte(result), "DRIVER_OK"); 3920 } 3921