1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/genhd.h> 42 #include <linux/hdreg.h> 43 #include <linux/errno.h> 44 #include <linux/idr.h> 45 #include <linux/interrupt.h> 46 #include <linux/init.h> 47 #include <linux/blkdev.h> 48 #include <linux/blkpg.h> 49 #include <linux/blk-pm.h> 50 #include <linux/delay.h> 51 #include <linux/major.h> 52 #include <linux/mutex.h> 53 #include <linux/string_helpers.h> 54 #include <linux/async.h> 55 #include <linux/slab.h> 56 #include <linux/sed-opal.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/pr.h> 59 #include <linux/t10-pi.h> 60 #include <linux/uaccess.h> 61 #include <asm/unaligned.h> 62 63 #include <scsi/scsi.h> 64 #include <scsi/scsi_cmnd.h> 65 #include <scsi/scsi_dbg.h> 66 #include <scsi/scsi_device.h> 67 #include <scsi/scsi_driver.h> 68 #include <scsi/scsi_eh.h> 69 #include <scsi/scsi_host.h> 70 #include <scsi/scsi_ioctl.h> 71 #include <scsi/scsicam.h> 72 73 #include "sd.h" 74 #include "scsi_priv.h" 75 #include "scsi_logging.h" 76 77 MODULE_AUTHOR("Eric Youngdale"); 78 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 79 MODULE_LICENSE("GPL"); 80 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 100 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 101 102 #define SD_MINORS 16 103 104 static void sd_config_discard(struct scsi_disk *, unsigned int); 105 static void sd_config_write_same(struct scsi_disk *); 106 static int sd_revalidate_disk(struct gendisk *); 107 static void sd_unlock_native_capacity(struct gendisk *disk); 108 static int sd_probe(struct device *); 109 static int sd_remove(struct device *); 110 static void sd_shutdown(struct device *); 111 static int sd_suspend_system(struct device *); 112 static int sd_suspend_runtime(struct device *); 113 static int sd_resume_system(struct device *); 114 static int sd_resume_runtime(struct device *); 115 static void sd_rescan(struct device *); 116 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 117 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 118 static int sd_done(struct scsi_cmnd *); 119 static void sd_eh_reset(struct scsi_cmnd *); 120 static int sd_eh_action(struct scsi_cmnd *, int); 121 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 122 static void scsi_disk_release(struct device *cdev); 123 124 static DEFINE_IDA(sd_index_ida); 125 126 /* This semaphore is used to mediate the 0->1 reference get in the 127 * face of object destruction (i.e. we can't allow a get on an 128 * object after last put) */ 129 static DEFINE_MUTEX(sd_ref_mutex); 130 131 static struct kmem_cache *sd_cdb_cache; 132 static mempool_t *sd_cdb_pool; 133 static mempool_t *sd_page_pool; 134 static struct lock_class_key sd_bio_compl_lkclass; 135 136 static const char *sd_cache_types[] = { 137 "write through", "none", "write back", 138 "write back, no read (daft)" 139 }; 140 141 static void sd_set_flush_flag(struct scsi_disk *sdkp) 142 { 143 bool wc = false, fua = false; 144 145 if (sdkp->WCE) { 146 wc = true; 147 if (sdkp->DPOFUA) 148 fua = true; 149 } 150 151 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 152 } 153 154 static ssize_t 155 cache_type_store(struct device *dev, struct device_attribute *attr, 156 const char *buf, size_t count) 157 { 158 int ct, rcd, wce, sp; 159 struct scsi_disk *sdkp = to_scsi_disk(dev); 160 struct scsi_device *sdp = sdkp->device; 161 char buffer[64]; 162 char *buffer_data; 163 struct scsi_mode_data data; 164 struct scsi_sense_hdr sshdr; 165 static const char temp[] = "temporary "; 166 int len; 167 168 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 169 /* no cache control on RBC devices; theoretically they 170 * can do it, but there's probably so many exceptions 171 * it's not worth the risk */ 172 return -EINVAL; 173 174 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 175 buf += sizeof(temp) - 1; 176 sdkp->cache_override = 1; 177 } else { 178 sdkp->cache_override = 0; 179 } 180 181 ct = sysfs_match_string(sd_cache_types, buf); 182 if (ct < 0) 183 return -EINVAL; 184 185 rcd = ct & 0x01 ? 1 : 0; 186 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 187 188 if (sdkp->cache_override) { 189 sdkp->WCE = wce; 190 sdkp->RCD = rcd; 191 sd_set_flush_flag(sdkp); 192 return count; 193 } 194 195 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 196 sdkp->max_retries, &data, NULL)) 197 return -EINVAL; 198 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 199 data.block_descriptor_length); 200 buffer_data = buffer + data.header_length + 201 data.block_descriptor_length; 202 buffer_data[2] &= ~0x05; 203 buffer_data[2] |= wce << 2 | rcd; 204 sp = buffer_data[0] & 0x80 ? 1 : 0; 205 buffer_data[0] &= ~0x80; 206 207 /* 208 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 209 * received mode parameter buffer before doing MODE SELECT. 210 */ 211 data.device_specific = 0; 212 213 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 214 sdkp->max_retries, &data, &sshdr)) { 215 if (scsi_sense_valid(&sshdr)) 216 sd_print_sense_hdr(sdkp, &sshdr); 217 return -EINVAL; 218 } 219 sd_revalidate_disk(sdkp->disk); 220 return count; 221 } 222 223 static ssize_t 224 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 225 char *buf) 226 { 227 struct scsi_disk *sdkp = to_scsi_disk(dev); 228 struct scsi_device *sdp = sdkp->device; 229 230 return sprintf(buf, "%u\n", sdp->manage_start_stop); 231 } 232 233 static ssize_t 234 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 235 const char *buf, size_t count) 236 { 237 struct scsi_disk *sdkp = to_scsi_disk(dev); 238 struct scsi_device *sdp = sdkp->device; 239 bool v; 240 241 if (!capable(CAP_SYS_ADMIN)) 242 return -EACCES; 243 244 if (kstrtobool(buf, &v)) 245 return -EINVAL; 246 247 sdp->manage_start_stop = v; 248 249 return count; 250 } 251 static DEVICE_ATTR_RW(manage_start_stop); 252 253 static ssize_t 254 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 255 { 256 struct scsi_disk *sdkp = to_scsi_disk(dev); 257 258 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 259 } 260 261 static ssize_t 262 allow_restart_store(struct device *dev, struct device_attribute *attr, 263 const char *buf, size_t count) 264 { 265 bool v; 266 struct scsi_disk *sdkp = to_scsi_disk(dev); 267 struct scsi_device *sdp = sdkp->device; 268 269 if (!capable(CAP_SYS_ADMIN)) 270 return -EACCES; 271 272 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 273 return -EINVAL; 274 275 if (kstrtobool(buf, &v)) 276 return -EINVAL; 277 278 sdp->allow_restart = v; 279 280 return count; 281 } 282 static DEVICE_ATTR_RW(allow_restart); 283 284 static ssize_t 285 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 286 { 287 struct scsi_disk *sdkp = to_scsi_disk(dev); 288 int ct = sdkp->RCD + 2*sdkp->WCE; 289 290 return sprintf(buf, "%s\n", sd_cache_types[ct]); 291 } 292 static DEVICE_ATTR_RW(cache_type); 293 294 static ssize_t 295 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 296 { 297 struct scsi_disk *sdkp = to_scsi_disk(dev); 298 299 return sprintf(buf, "%u\n", sdkp->DPOFUA); 300 } 301 static DEVICE_ATTR_RO(FUA); 302 303 static ssize_t 304 protection_type_show(struct device *dev, struct device_attribute *attr, 305 char *buf) 306 { 307 struct scsi_disk *sdkp = to_scsi_disk(dev); 308 309 return sprintf(buf, "%u\n", sdkp->protection_type); 310 } 311 312 static ssize_t 313 protection_type_store(struct device *dev, struct device_attribute *attr, 314 const char *buf, size_t count) 315 { 316 struct scsi_disk *sdkp = to_scsi_disk(dev); 317 unsigned int val; 318 int err; 319 320 if (!capable(CAP_SYS_ADMIN)) 321 return -EACCES; 322 323 err = kstrtouint(buf, 10, &val); 324 325 if (err) 326 return err; 327 328 if (val <= T10_PI_TYPE3_PROTECTION) 329 sdkp->protection_type = val; 330 331 return count; 332 } 333 static DEVICE_ATTR_RW(protection_type); 334 335 static ssize_t 336 protection_mode_show(struct device *dev, struct device_attribute *attr, 337 char *buf) 338 { 339 struct scsi_disk *sdkp = to_scsi_disk(dev); 340 struct scsi_device *sdp = sdkp->device; 341 unsigned int dif, dix; 342 343 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 344 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 345 346 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 347 dif = 0; 348 dix = 1; 349 } 350 351 if (!dif && !dix) 352 return sprintf(buf, "none\n"); 353 354 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 355 } 356 static DEVICE_ATTR_RO(protection_mode); 357 358 static ssize_t 359 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 360 { 361 struct scsi_disk *sdkp = to_scsi_disk(dev); 362 363 return sprintf(buf, "%u\n", sdkp->ATO); 364 } 365 static DEVICE_ATTR_RO(app_tag_own); 366 367 static ssize_t 368 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 369 char *buf) 370 { 371 struct scsi_disk *sdkp = to_scsi_disk(dev); 372 373 return sprintf(buf, "%u\n", sdkp->lbpme); 374 } 375 static DEVICE_ATTR_RO(thin_provisioning); 376 377 /* sysfs_match_string() requires dense arrays */ 378 static const char *lbp_mode[] = { 379 [SD_LBP_FULL] = "full", 380 [SD_LBP_UNMAP] = "unmap", 381 [SD_LBP_WS16] = "writesame_16", 382 [SD_LBP_WS10] = "writesame_10", 383 [SD_LBP_ZERO] = "writesame_zero", 384 [SD_LBP_DISABLE] = "disabled", 385 }; 386 387 static ssize_t 388 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 389 char *buf) 390 { 391 struct scsi_disk *sdkp = to_scsi_disk(dev); 392 393 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 394 } 395 396 static ssize_t 397 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 398 const char *buf, size_t count) 399 { 400 struct scsi_disk *sdkp = to_scsi_disk(dev); 401 struct scsi_device *sdp = sdkp->device; 402 int mode; 403 404 if (!capable(CAP_SYS_ADMIN)) 405 return -EACCES; 406 407 if (sd_is_zoned(sdkp)) { 408 sd_config_discard(sdkp, SD_LBP_DISABLE); 409 return count; 410 } 411 412 if (sdp->type != TYPE_DISK) 413 return -EINVAL; 414 415 mode = sysfs_match_string(lbp_mode, buf); 416 if (mode < 0) 417 return -EINVAL; 418 419 sd_config_discard(sdkp, mode); 420 421 return count; 422 } 423 static DEVICE_ATTR_RW(provisioning_mode); 424 425 /* sysfs_match_string() requires dense arrays */ 426 static const char *zeroing_mode[] = { 427 [SD_ZERO_WRITE] = "write", 428 [SD_ZERO_WS] = "writesame", 429 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 430 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 431 }; 432 433 static ssize_t 434 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 435 char *buf) 436 { 437 struct scsi_disk *sdkp = to_scsi_disk(dev); 438 439 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 440 } 441 442 static ssize_t 443 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 444 const char *buf, size_t count) 445 { 446 struct scsi_disk *sdkp = to_scsi_disk(dev); 447 int mode; 448 449 if (!capable(CAP_SYS_ADMIN)) 450 return -EACCES; 451 452 mode = sysfs_match_string(zeroing_mode, buf); 453 if (mode < 0) 454 return -EINVAL; 455 456 sdkp->zeroing_mode = mode; 457 458 return count; 459 } 460 static DEVICE_ATTR_RW(zeroing_mode); 461 462 static ssize_t 463 max_medium_access_timeouts_show(struct device *dev, 464 struct device_attribute *attr, char *buf) 465 { 466 struct scsi_disk *sdkp = to_scsi_disk(dev); 467 468 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 469 } 470 471 static ssize_t 472 max_medium_access_timeouts_store(struct device *dev, 473 struct device_attribute *attr, const char *buf, 474 size_t count) 475 { 476 struct scsi_disk *sdkp = to_scsi_disk(dev); 477 int err; 478 479 if (!capable(CAP_SYS_ADMIN)) 480 return -EACCES; 481 482 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 483 484 return err ? err : count; 485 } 486 static DEVICE_ATTR_RW(max_medium_access_timeouts); 487 488 static ssize_t 489 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 490 char *buf) 491 { 492 struct scsi_disk *sdkp = to_scsi_disk(dev); 493 494 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 495 } 496 497 static ssize_t 498 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 499 const char *buf, size_t count) 500 { 501 struct scsi_disk *sdkp = to_scsi_disk(dev); 502 struct scsi_device *sdp = sdkp->device; 503 unsigned long max; 504 int err; 505 506 if (!capable(CAP_SYS_ADMIN)) 507 return -EACCES; 508 509 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 510 return -EINVAL; 511 512 err = kstrtoul(buf, 10, &max); 513 514 if (err) 515 return err; 516 517 if (max == 0) 518 sdp->no_write_same = 1; 519 else if (max <= SD_MAX_WS16_BLOCKS) { 520 sdp->no_write_same = 0; 521 sdkp->max_ws_blocks = max; 522 } 523 524 sd_config_write_same(sdkp); 525 526 return count; 527 } 528 static DEVICE_ATTR_RW(max_write_same_blocks); 529 530 static ssize_t 531 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 532 { 533 struct scsi_disk *sdkp = to_scsi_disk(dev); 534 535 if (sdkp->device->type == TYPE_ZBC) 536 return sprintf(buf, "host-managed\n"); 537 if (sdkp->zoned == 1) 538 return sprintf(buf, "host-aware\n"); 539 if (sdkp->zoned == 2) 540 return sprintf(buf, "drive-managed\n"); 541 return sprintf(buf, "none\n"); 542 } 543 static DEVICE_ATTR_RO(zoned_cap); 544 545 static ssize_t 546 max_retries_store(struct device *dev, struct device_attribute *attr, 547 const char *buf, size_t count) 548 { 549 struct scsi_disk *sdkp = to_scsi_disk(dev); 550 struct scsi_device *sdev = sdkp->device; 551 int retries, err; 552 553 err = kstrtoint(buf, 10, &retries); 554 if (err) 555 return err; 556 557 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 558 sdkp->max_retries = retries; 559 return count; 560 } 561 562 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 563 SD_MAX_RETRIES); 564 return -EINVAL; 565 } 566 567 static ssize_t 568 max_retries_show(struct device *dev, struct device_attribute *attr, 569 char *buf) 570 { 571 struct scsi_disk *sdkp = to_scsi_disk(dev); 572 573 return sprintf(buf, "%d\n", sdkp->max_retries); 574 } 575 576 static DEVICE_ATTR_RW(max_retries); 577 578 static struct attribute *sd_disk_attrs[] = { 579 &dev_attr_cache_type.attr, 580 &dev_attr_FUA.attr, 581 &dev_attr_allow_restart.attr, 582 &dev_attr_manage_start_stop.attr, 583 &dev_attr_protection_type.attr, 584 &dev_attr_protection_mode.attr, 585 &dev_attr_app_tag_own.attr, 586 &dev_attr_thin_provisioning.attr, 587 &dev_attr_provisioning_mode.attr, 588 &dev_attr_zeroing_mode.attr, 589 &dev_attr_max_write_same_blocks.attr, 590 &dev_attr_max_medium_access_timeouts.attr, 591 &dev_attr_zoned_cap.attr, 592 &dev_attr_max_retries.attr, 593 NULL, 594 }; 595 ATTRIBUTE_GROUPS(sd_disk); 596 597 static struct class sd_disk_class = { 598 .name = "scsi_disk", 599 .owner = THIS_MODULE, 600 .dev_release = scsi_disk_release, 601 .dev_groups = sd_disk_groups, 602 }; 603 604 static const struct dev_pm_ops sd_pm_ops = { 605 .suspend = sd_suspend_system, 606 .resume = sd_resume_system, 607 .poweroff = sd_suspend_system, 608 .restore = sd_resume_system, 609 .runtime_suspend = sd_suspend_runtime, 610 .runtime_resume = sd_resume_runtime, 611 }; 612 613 static struct scsi_driver sd_template = { 614 .gendrv = { 615 .name = "sd", 616 .owner = THIS_MODULE, 617 .probe = sd_probe, 618 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 619 .remove = sd_remove, 620 .shutdown = sd_shutdown, 621 .pm = &sd_pm_ops, 622 }, 623 .rescan = sd_rescan, 624 .init_command = sd_init_command, 625 .uninit_command = sd_uninit_command, 626 .done = sd_done, 627 .eh_action = sd_eh_action, 628 .eh_reset = sd_eh_reset, 629 }; 630 631 /* 632 * Don't request a new module, as that could deadlock in multipath 633 * environment. 634 */ 635 static void sd_default_probe(dev_t devt) 636 { 637 } 638 639 /* 640 * Device no to disk mapping: 641 * 642 * major disc2 disc p1 643 * |............|.............|....|....| <- dev_t 644 * 31 20 19 8 7 4 3 0 645 * 646 * Inside a major, we have 16k disks, however mapped non- 647 * contiguously. The first 16 disks are for major0, the next 648 * ones with major1, ... Disk 256 is for major0 again, disk 272 649 * for major1, ... 650 * As we stay compatible with our numbering scheme, we can reuse 651 * the well-know SCSI majors 8, 65--71, 136--143. 652 */ 653 static int sd_major(int major_idx) 654 { 655 switch (major_idx) { 656 case 0: 657 return SCSI_DISK0_MAJOR; 658 case 1 ... 7: 659 return SCSI_DISK1_MAJOR + major_idx - 1; 660 case 8 ... 15: 661 return SCSI_DISK8_MAJOR + major_idx - 8; 662 default: 663 BUG(); 664 return 0; /* shut up gcc */ 665 } 666 } 667 668 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 669 { 670 struct scsi_disk *sdkp = NULL; 671 672 mutex_lock(&sd_ref_mutex); 673 674 if (disk->private_data) { 675 sdkp = scsi_disk(disk); 676 if (scsi_device_get(sdkp->device) == 0) 677 get_device(&sdkp->dev); 678 else 679 sdkp = NULL; 680 } 681 mutex_unlock(&sd_ref_mutex); 682 return sdkp; 683 } 684 685 static void scsi_disk_put(struct scsi_disk *sdkp) 686 { 687 struct scsi_device *sdev = sdkp->device; 688 689 mutex_lock(&sd_ref_mutex); 690 put_device(&sdkp->dev); 691 scsi_device_put(sdev); 692 mutex_unlock(&sd_ref_mutex); 693 } 694 695 #ifdef CONFIG_BLK_SED_OPAL 696 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 697 size_t len, bool send) 698 { 699 struct scsi_disk *sdkp = data; 700 struct scsi_device *sdev = sdkp->device; 701 u8 cdb[12] = { 0, }; 702 int ret; 703 704 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 705 cdb[1] = secp; 706 put_unaligned_be16(spsp, &cdb[2]); 707 put_unaligned_be32(len, &cdb[6]); 708 709 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 710 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0, 711 RQF_PM, NULL); 712 return ret <= 0 ? ret : -EIO; 713 } 714 #endif /* CONFIG_BLK_SED_OPAL */ 715 716 /* 717 * Look up the DIX operation based on whether the command is read or 718 * write and whether dix and dif are enabled. 719 */ 720 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 721 { 722 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 723 static const unsigned int ops[] = { /* wrt dix dif */ 724 SCSI_PROT_NORMAL, /* 0 0 0 */ 725 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 726 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 727 SCSI_PROT_READ_PASS, /* 0 1 1 */ 728 SCSI_PROT_NORMAL, /* 1 0 0 */ 729 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 730 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 731 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 732 }; 733 734 return ops[write << 2 | dix << 1 | dif]; 735 } 736 737 /* 738 * Returns a mask of the protection flags that are valid for a given DIX 739 * operation. 740 */ 741 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 742 { 743 static const unsigned int flag_mask[] = { 744 [SCSI_PROT_NORMAL] = 0, 745 746 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 747 SCSI_PROT_GUARD_CHECK | 748 SCSI_PROT_REF_CHECK | 749 SCSI_PROT_REF_INCREMENT, 750 751 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 752 SCSI_PROT_IP_CHECKSUM, 753 754 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 755 SCSI_PROT_GUARD_CHECK | 756 SCSI_PROT_REF_CHECK | 757 SCSI_PROT_REF_INCREMENT | 758 SCSI_PROT_IP_CHECKSUM, 759 760 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 761 SCSI_PROT_REF_INCREMENT, 762 763 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 764 SCSI_PROT_REF_CHECK | 765 SCSI_PROT_REF_INCREMENT | 766 SCSI_PROT_IP_CHECKSUM, 767 768 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 769 SCSI_PROT_GUARD_CHECK | 770 SCSI_PROT_REF_CHECK | 771 SCSI_PROT_REF_INCREMENT | 772 SCSI_PROT_IP_CHECKSUM, 773 }; 774 775 return flag_mask[prot_op]; 776 } 777 778 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 779 unsigned int dix, unsigned int dif) 780 { 781 struct request *rq = scsi_cmd_to_rq(scmd); 782 struct bio *bio = rq->bio; 783 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 784 unsigned int protect = 0; 785 786 if (dix) { /* DIX Type 0, 1, 2, 3 */ 787 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 788 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 789 790 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 791 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 792 } 793 794 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 795 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 796 797 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 798 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 799 } 800 801 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 802 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 803 804 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 805 protect = 3 << 5; /* Disable target PI checking */ 806 else 807 protect = 1 << 5; /* Enable target PI checking */ 808 } 809 810 scsi_set_prot_op(scmd, prot_op); 811 scsi_set_prot_type(scmd, dif); 812 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 813 814 return protect; 815 } 816 817 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 818 { 819 struct request_queue *q = sdkp->disk->queue; 820 unsigned int logical_block_size = sdkp->device->sector_size; 821 unsigned int max_blocks = 0; 822 823 q->limits.discard_alignment = 824 sdkp->unmap_alignment * logical_block_size; 825 q->limits.discard_granularity = 826 max(sdkp->physical_block_size, 827 sdkp->unmap_granularity * logical_block_size); 828 sdkp->provisioning_mode = mode; 829 830 switch (mode) { 831 832 case SD_LBP_FULL: 833 case SD_LBP_DISABLE: 834 blk_queue_max_discard_sectors(q, 0); 835 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 836 return; 837 838 case SD_LBP_UNMAP: 839 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 840 (u32)SD_MAX_WS16_BLOCKS); 841 break; 842 843 case SD_LBP_WS16: 844 if (sdkp->device->unmap_limit_for_ws) 845 max_blocks = sdkp->max_unmap_blocks; 846 else 847 max_blocks = sdkp->max_ws_blocks; 848 849 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 850 break; 851 852 case SD_LBP_WS10: 853 if (sdkp->device->unmap_limit_for_ws) 854 max_blocks = sdkp->max_unmap_blocks; 855 else 856 max_blocks = sdkp->max_ws_blocks; 857 858 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 859 break; 860 861 case SD_LBP_ZERO: 862 max_blocks = min_not_zero(sdkp->max_ws_blocks, 863 (u32)SD_MAX_WS10_BLOCKS); 864 break; 865 } 866 867 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 868 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 869 } 870 871 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 872 { 873 struct scsi_device *sdp = cmd->device; 874 struct request *rq = scsi_cmd_to_rq(cmd); 875 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 876 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 877 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 878 unsigned int data_len = 24; 879 char *buf; 880 881 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 882 if (!rq->special_vec.bv_page) 883 return BLK_STS_RESOURCE; 884 clear_highpage(rq->special_vec.bv_page); 885 rq->special_vec.bv_offset = 0; 886 rq->special_vec.bv_len = data_len; 887 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 888 889 cmd->cmd_len = 10; 890 cmd->cmnd[0] = UNMAP; 891 cmd->cmnd[8] = 24; 892 893 buf = bvec_virt(&rq->special_vec); 894 put_unaligned_be16(6 + 16, &buf[0]); 895 put_unaligned_be16(16, &buf[2]); 896 put_unaligned_be64(lba, &buf[8]); 897 put_unaligned_be32(nr_blocks, &buf[16]); 898 899 cmd->allowed = sdkp->max_retries; 900 cmd->transfersize = data_len; 901 rq->timeout = SD_TIMEOUT; 902 903 return scsi_alloc_sgtables(cmd); 904 } 905 906 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 907 bool unmap) 908 { 909 struct scsi_device *sdp = cmd->device; 910 struct request *rq = scsi_cmd_to_rq(cmd); 911 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 912 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 913 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 914 u32 data_len = sdp->sector_size; 915 916 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 917 if (!rq->special_vec.bv_page) 918 return BLK_STS_RESOURCE; 919 clear_highpage(rq->special_vec.bv_page); 920 rq->special_vec.bv_offset = 0; 921 rq->special_vec.bv_len = data_len; 922 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 923 924 cmd->cmd_len = 16; 925 cmd->cmnd[0] = WRITE_SAME_16; 926 if (unmap) 927 cmd->cmnd[1] = 0x8; /* UNMAP */ 928 put_unaligned_be64(lba, &cmd->cmnd[2]); 929 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 930 931 cmd->allowed = sdkp->max_retries; 932 cmd->transfersize = data_len; 933 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 934 935 return scsi_alloc_sgtables(cmd); 936 } 937 938 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 939 bool unmap) 940 { 941 struct scsi_device *sdp = cmd->device; 942 struct request *rq = scsi_cmd_to_rq(cmd); 943 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 944 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 945 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 946 u32 data_len = sdp->sector_size; 947 948 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 949 if (!rq->special_vec.bv_page) 950 return BLK_STS_RESOURCE; 951 clear_highpage(rq->special_vec.bv_page); 952 rq->special_vec.bv_offset = 0; 953 rq->special_vec.bv_len = data_len; 954 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 955 956 cmd->cmd_len = 10; 957 cmd->cmnd[0] = WRITE_SAME; 958 if (unmap) 959 cmd->cmnd[1] = 0x8; /* UNMAP */ 960 put_unaligned_be32(lba, &cmd->cmnd[2]); 961 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 962 963 cmd->allowed = sdkp->max_retries; 964 cmd->transfersize = data_len; 965 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 966 967 return scsi_alloc_sgtables(cmd); 968 } 969 970 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 971 { 972 struct request *rq = scsi_cmd_to_rq(cmd); 973 struct scsi_device *sdp = cmd->device; 974 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 975 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 976 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 977 978 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 979 switch (sdkp->zeroing_mode) { 980 case SD_ZERO_WS16_UNMAP: 981 return sd_setup_write_same16_cmnd(cmd, true); 982 case SD_ZERO_WS10_UNMAP: 983 return sd_setup_write_same10_cmnd(cmd, true); 984 } 985 } 986 987 if (sdp->no_write_same) { 988 rq->rq_flags |= RQF_QUIET; 989 return BLK_STS_TARGET; 990 } 991 992 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 993 return sd_setup_write_same16_cmnd(cmd, false); 994 995 return sd_setup_write_same10_cmnd(cmd, false); 996 } 997 998 static void sd_config_write_same(struct scsi_disk *sdkp) 999 { 1000 struct request_queue *q = sdkp->disk->queue; 1001 unsigned int logical_block_size = sdkp->device->sector_size; 1002 1003 if (sdkp->device->no_write_same) { 1004 sdkp->max_ws_blocks = 0; 1005 goto out; 1006 } 1007 1008 /* Some devices can not handle block counts above 0xffff despite 1009 * supporting WRITE SAME(16). Consequently we default to 64k 1010 * blocks per I/O unless the device explicitly advertises a 1011 * bigger limit. 1012 */ 1013 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 1014 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1015 (u32)SD_MAX_WS16_BLOCKS); 1016 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 1017 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1018 (u32)SD_MAX_WS10_BLOCKS); 1019 else { 1020 sdkp->device->no_write_same = 1; 1021 sdkp->max_ws_blocks = 0; 1022 } 1023 1024 if (sdkp->lbprz && sdkp->lbpws) 1025 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 1026 else if (sdkp->lbprz && sdkp->lbpws10) 1027 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 1028 else if (sdkp->max_ws_blocks) 1029 sdkp->zeroing_mode = SD_ZERO_WS; 1030 else 1031 sdkp->zeroing_mode = SD_ZERO_WRITE; 1032 1033 if (sdkp->max_ws_blocks && 1034 sdkp->physical_block_size > logical_block_size) { 1035 /* 1036 * Reporting a maximum number of blocks that is not aligned 1037 * on the device physical size would cause a large write same 1038 * request to be split into physically unaligned chunks by 1039 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 1040 * even if the caller of these functions took care to align the 1041 * large request. So make sure the maximum reported is aligned 1042 * to the device physical block size. This is only an optional 1043 * optimization for regular disks, but this is mandatory to 1044 * avoid failure of large write same requests directed at 1045 * sequential write required zones of host-managed ZBC disks. 1046 */ 1047 sdkp->max_ws_blocks = 1048 round_down(sdkp->max_ws_blocks, 1049 bytes_to_logical(sdkp->device, 1050 sdkp->physical_block_size)); 1051 } 1052 1053 out: 1054 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 1055 (logical_block_size >> 9)); 1056 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1057 (logical_block_size >> 9)); 1058 } 1059 1060 /** 1061 * sd_setup_write_same_cmnd - write the same data to multiple blocks 1062 * @cmd: command to prepare 1063 * 1064 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 1065 * the preference indicated by the target device. 1066 **/ 1067 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 1068 { 1069 struct request *rq = scsi_cmd_to_rq(cmd); 1070 struct scsi_device *sdp = cmd->device; 1071 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1072 struct bio *bio = rq->bio; 1073 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1074 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1075 blk_status_t ret; 1076 1077 if (sdkp->device->no_write_same) 1078 return BLK_STS_TARGET; 1079 1080 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 1081 1082 rq->timeout = SD_WRITE_SAME_TIMEOUT; 1083 1084 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) { 1085 cmd->cmd_len = 16; 1086 cmd->cmnd[0] = WRITE_SAME_16; 1087 put_unaligned_be64(lba, &cmd->cmnd[2]); 1088 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1089 } else { 1090 cmd->cmd_len = 10; 1091 cmd->cmnd[0] = WRITE_SAME; 1092 put_unaligned_be32(lba, &cmd->cmnd[2]); 1093 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1094 } 1095 1096 cmd->transfersize = sdp->sector_size; 1097 cmd->allowed = sdkp->max_retries; 1098 1099 /* 1100 * For WRITE SAME the data transferred via the DATA OUT buffer is 1101 * different from the amount of data actually written to the target. 1102 * 1103 * We set up __data_len to the amount of data transferred via the 1104 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 1105 * to transfer a single sector of data first, but then reset it to 1106 * the amount of data to be written right after so that the I/O path 1107 * knows how much to actually write. 1108 */ 1109 rq->__data_len = sdp->sector_size; 1110 ret = scsi_alloc_sgtables(cmd); 1111 rq->__data_len = blk_rq_bytes(rq); 1112 1113 return ret; 1114 } 1115 1116 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1117 { 1118 struct request *rq = scsi_cmd_to_rq(cmd); 1119 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1120 1121 /* flush requests don't perform I/O, zero the S/G table */ 1122 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1123 1124 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1125 cmd->cmd_len = 10; 1126 cmd->transfersize = 0; 1127 cmd->allowed = sdkp->max_retries; 1128 1129 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1130 return BLK_STS_OK; 1131 } 1132 1133 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1134 sector_t lba, unsigned int nr_blocks, 1135 unsigned char flags) 1136 { 1137 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1138 if (unlikely(cmd->cmnd == NULL)) 1139 return BLK_STS_RESOURCE; 1140 1141 cmd->cmd_len = SD_EXT_CDB_SIZE; 1142 memset(cmd->cmnd, 0, cmd->cmd_len); 1143 1144 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1145 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1146 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1147 cmd->cmnd[10] = flags; 1148 put_unaligned_be64(lba, &cmd->cmnd[12]); 1149 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1150 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1151 1152 return BLK_STS_OK; 1153 } 1154 1155 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1156 sector_t lba, unsigned int nr_blocks, 1157 unsigned char flags) 1158 { 1159 cmd->cmd_len = 16; 1160 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1161 cmd->cmnd[1] = flags; 1162 cmd->cmnd[14] = 0; 1163 cmd->cmnd[15] = 0; 1164 put_unaligned_be64(lba, &cmd->cmnd[2]); 1165 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1166 1167 return BLK_STS_OK; 1168 } 1169 1170 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1171 sector_t lba, unsigned int nr_blocks, 1172 unsigned char flags) 1173 { 1174 cmd->cmd_len = 10; 1175 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1176 cmd->cmnd[1] = flags; 1177 cmd->cmnd[6] = 0; 1178 cmd->cmnd[9] = 0; 1179 put_unaligned_be32(lba, &cmd->cmnd[2]); 1180 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1181 1182 return BLK_STS_OK; 1183 } 1184 1185 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1186 sector_t lba, unsigned int nr_blocks, 1187 unsigned char flags) 1188 { 1189 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1190 if (WARN_ON_ONCE(nr_blocks == 0)) 1191 return BLK_STS_IOERR; 1192 1193 if (unlikely(flags & 0x8)) { 1194 /* 1195 * This happens only if this drive failed 10byte rw 1196 * command with ILLEGAL_REQUEST during operation and 1197 * thus turned off use_10_for_rw. 1198 */ 1199 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1200 return BLK_STS_IOERR; 1201 } 1202 1203 cmd->cmd_len = 6; 1204 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1205 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1206 cmd->cmnd[2] = (lba >> 8) & 0xff; 1207 cmd->cmnd[3] = lba & 0xff; 1208 cmd->cmnd[4] = nr_blocks; 1209 cmd->cmnd[5] = 0; 1210 1211 return BLK_STS_OK; 1212 } 1213 1214 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1215 { 1216 struct request *rq = scsi_cmd_to_rq(cmd); 1217 struct scsi_device *sdp = cmd->device; 1218 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1219 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1220 sector_t threshold; 1221 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1222 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1223 bool write = rq_data_dir(rq) == WRITE; 1224 unsigned char protect, fua; 1225 blk_status_t ret; 1226 unsigned int dif; 1227 bool dix; 1228 1229 ret = scsi_alloc_sgtables(cmd); 1230 if (ret != BLK_STS_OK) 1231 return ret; 1232 1233 ret = BLK_STS_IOERR; 1234 if (!scsi_device_online(sdp) || sdp->changed) { 1235 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1236 goto fail; 1237 } 1238 1239 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) { 1240 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1241 goto fail; 1242 } 1243 1244 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1245 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1246 goto fail; 1247 } 1248 1249 /* 1250 * Some SD card readers can't handle accesses which touch the 1251 * last one or two logical blocks. Split accesses as needed. 1252 */ 1253 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1254 1255 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1256 if (lba < threshold) { 1257 /* Access up to the threshold but not beyond */ 1258 nr_blocks = threshold - lba; 1259 } else { 1260 /* Access only a single logical block */ 1261 nr_blocks = 1; 1262 } 1263 } 1264 1265 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1266 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1267 if (ret) 1268 goto fail; 1269 } 1270 1271 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1272 dix = scsi_prot_sg_count(cmd); 1273 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1274 1275 if (dif || dix) 1276 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1277 else 1278 protect = 0; 1279 1280 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1281 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1282 protect | fua); 1283 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1284 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1285 protect | fua); 1286 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1287 sdp->use_10_for_rw || protect) { 1288 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1289 protect | fua); 1290 } else { 1291 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1292 protect | fua); 1293 } 1294 1295 if (unlikely(ret != BLK_STS_OK)) 1296 goto fail; 1297 1298 /* 1299 * We shouldn't disconnect in the middle of a sector, so with a dumb 1300 * host adapter, it's safe to assume that we can at least transfer 1301 * this many bytes between each connect / disconnect. 1302 */ 1303 cmd->transfersize = sdp->sector_size; 1304 cmd->underflow = nr_blocks << 9; 1305 cmd->allowed = sdkp->max_retries; 1306 cmd->sdb.length = nr_blocks * sdp->sector_size; 1307 1308 SCSI_LOG_HLQUEUE(1, 1309 scmd_printk(KERN_INFO, cmd, 1310 "%s: block=%llu, count=%d\n", __func__, 1311 (unsigned long long)blk_rq_pos(rq), 1312 blk_rq_sectors(rq))); 1313 SCSI_LOG_HLQUEUE(2, 1314 scmd_printk(KERN_INFO, cmd, 1315 "%s %d/%u 512 byte blocks.\n", 1316 write ? "writing" : "reading", nr_blocks, 1317 blk_rq_sectors(rq))); 1318 1319 /* 1320 * This indicates that the command is ready from our end to be queued. 1321 */ 1322 return BLK_STS_OK; 1323 fail: 1324 scsi_free_sgtables(cmd); 1325 return ret; 1326 } 1327 1328 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1329 { 1330 struct request *rq = scsi_cmd_to_rq(cmd); 1331 1332 switch (req_op(rq)) { 1333 case REQ_OP_DISCARD: 1334 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1335 case SD_LBP_UNMAP: 1336 return sd_setup_unmap_cmnd(cmd); 1337 case SD_LBP_WS16: 1338 return sd_setup_write_same16_cmnd(cmd, true); 1339 case SD_LBP_WS10: 1340 return sd_setup_write_same10_cmnd(cmd, true); 1341 case SD_LBP_ZERO: 1342 return sd_setup_write_same10_cmnd(cmd, false); 1343 default: 1344 return BLK_STS_TARGET; 1345 } 1346 case REQ_OP_WRITE_ZEROES: 1347 return sd_setup_write_zeroes_cmnd(cmd); 1348 case REQ_OP_WRITE_SAME: 1349 return sd_setup_write_same_cmnd(cmd); 1350 case REQ_OP_FLUSH: 1351 return sd_setup_flush_cmnd(cmd); 1352 case REQ_OP_READ: 1353 case REQ_OP_WRITE: 1354 case REQ_OP_ZONE_APPEND: 1355 return sd_setup_read_write_cmnd(cmd); 1356 case REQ_OP_ZONE_RESET: 1357 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1358 false); 1359 case REQ_OP_ZONE_RESET_ALL: 1360 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1361 true); 1362 case REQ_OP_ZONE_OPEN: 1363 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1364 case REQ_OP_ZONE_CLOSE: 1365 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1366 case REQ_OP_ZONE_FINISH: 1367 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1368 default: 1369 WARN_ON_ONCE(1); 1370 return BLK_STS_NOTSUPP; 1371 } 1372 } 1373 1374 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1375 { 1376 struct request *rq = scsi_cmd_to_rq(SCpnt); 1377 u8 *cmnd; 1378 1379 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1380 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1381 1382 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1383 cmnd = SCpnt->cmnd; 1384 SCpnt->cmnd = NULL; 1385 SCpnt->cmd_len = 0; 1386 mempool_free(cmnd, sd_cdb_pool); 1387 } 1388 } 1389 1390 static bool sd_need_revalidate(struct block_device *bdev, 1391 struct scsi_disk *sdkp) 1392 { 1393 if (sdkp->device->removable || sdkp->write_prot) { 1394 if (bdev_check_media_change(bdev)) 1395 return true; 1396 } 1397 1398 /* 1399 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1400 * nothing to do with partitions, BLKRRPART is used to force a full 1401 * revalidate after things like a format for historical reasons. 1402 */ 1403 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 1404 } 1405 1406 /** 1407 * sd_open - open a scsi disk device 1408 * @bdev: Block device of the scsi disk to open 1409 * @mode: FMODE_* mask 1410 * 1411 * Returns 0 if successful. Returns a negated errno value in case 1412 * of error. 1413 * 1414 * Note: This can be called from a user context (e.g. fsck(1) ) 1415 * or from within the kernel (e.g. as a result of a mount(1) ). 1416 * In the latter case @inode and @filp carry an abridged amount 1417 * of information as noted above. 1418 * 1419 * Locking: called with bdev->bd_disk->open_mutex held. 1420 **/ 1421 static int sd_open(struct block_device *bdev, fmode_t mode) 1422 { 1423 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1424 struct scsi_device *sdev; 1425 int retval; 1426 1427 if (!sdkp) 1428 return -ENXIO; 1429 1430 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1431 1432 sdev = sdkp->device; 1433 1434 /* 1435 * If the device is in error recovery, wait until it is done. 1436 * If the device is offline, then disallow any access to it. 1437 */ 1438 retval = -ENXIO; 1439 if (!scsi_block_when_processing_errors(sdev)) 1440 goto error_out; 1441 1442 if (sd_need_revalidate(bdev, sdkp)) 1443 sd_revalidate_disk(bdev->bd_disk); 1444 1445 /* 1446 * If the drive is empty, just let the open fail. 1447 */ 1448 retval = -ENOMEDIUM; 1449 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1450 goto error_out; 1451 1452 /* 1453 * If the device has the write protect tab set, have the open fail 1454 * if the user expects to be able to write to the thing. 1455 */ 1456 retval = -EROFS; 1457 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1458 goto error_out; 1459 1460 /* 1461 * It is possible that the disk changing stuff resulted in 1462 * the device being taken offline. If this is the case, 1463 * report this to the user, and don't pretend that the 1464 * open actually succeeded. 1465 */ 1466 retval = -ENXIO; 1467 if (!scsi_device_online(sdev)) 1468 goto error_out; 1469 1470 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1471 if (scsi_block_when_processing_errors(sdev)) 1472 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1473 } 1474 1475 return 0; 1476 1477 error_out: 1478 scsi_disk_put(sdkp); 1479 return retval; 1480 } 1481 1482 /** 1483 * sd_release - invoked when the (last) close(2) is called on this 1484 * scsi disk. 1485 * @disk: disk to release 1486 * @mode: FMODE_* mask 1487 * 1488 * Returns 0. 1489 * 1490 * Note: may block (uninterruptible) if error recovery is underway 1491 * on this disk. 1492 * 1493 * Locking: called with bdev->bd_disk->open_mutex held. 1494 **/ 1495 static void sd_release(struct gendisk *disk, fmode_t mode) 1496 { 1497 struct scsi_disk *sdkp = scsi_disk(disk); 1498 struct scsi_device *sdev = sdkp->device; 1499 1500 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1501 1502 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1503 if (scsi_block_when_processing_errors(sdev)) 1504 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1505 } 1506 1507 scsi_disk_put(sdkp); 1508 } 1509 1510 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1511 { 1512 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1513 struct scsi_device *sdp = sdkp->device; 1514 struct Scsi_Host *host = sdp->host; 1515 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1516 int diskinfo[4]; 1517 1518 /* default to most commonly used values */ 1519 diskinfo[0] = 0x40; /* 1 << 6 */ 1520 diskinfo[1] = 0x20; /* 1 << 5 */ 1521 diskinfo[2] = capacity >> 11; 1522 1523 /* override with calculated, extended default, or driver values */ 1524 if (host->hostt->bios_param) 1525 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1526 else 1527 scsicam_bios_param(bdev, capacity, diskinfo); 1528 1529 geo->heads = diskinfo[0]; 1530 geo->sectors = diskinfo[1]; 1531 geo->cylinders = diskinfo[2]; 1532 return 0; 1533 } 1534 1535 /** 1536 * sd_ioctl - process an ioctl 1537 * @bdev: target block device 1538 * @mode: FMODE_* mask 1539 * @cmd: ioctl command number 1540 * @arg: this is third argument given to ioctl(2) system call. 1541 * Often contains a pointer. 1542 * 1543 * Returns 0 if successful (some ioctls return positive numbers on 1544 * success as well). Returns a negated errno value in case of error. 1545 * 1546 * Note: most ioctls are forward onto the block subsystem or further 1547 * down in the scsi subsystem. 1548 **/ 1549 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1550 unsigned int cmd, unsigned long arg) 1551 { 1552 struct gendisk *disk = bdev->bd_disk; 1553 struct scsi_disk *sdkp = scsi_disk(disk); 1554 struct scsi_device *sdp = sdkp->device; 1555 void __user *p = (void __user *)arg; 1556 int error; 1557 1558 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1559 "cmd=0x%x\n", disk->disk_name, cmd)); 1560 1561 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1562 return -ENOIOCTLCMD; 1563 1564 /* 1565 * If we are in the middle of error recovery, don't let anyone 1566 * else try and use this device. Also, if error recovery fails, it 1567 * may try and take the device offline, in which case all further 1568 * access to the device is prohibited. 1569 */ 1570 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1571 (mode & FMODE_NDELAY) != 0); 1572 if (error) 1573 return error; 1574 1575 if (is_sed_ioctl(cmd)) 1576 return sed_ioctl(sdkp->opal_dev, cmd, p); 1577 return scsi_ioctl(sdp, disk, mode, cmd, p); 1578 } 1579 1580 static void set_media_not_present(struct scsi_disk *sdkp) 1581 { 1582 if (sdkp->media_present) 1583 sdkp->device->changed = 1; 1584 1585 if (sdkp->device->removable) { 1586 sdkp->media_present = 0; 1587 sdkp->capacity = 0; 1588 } 1589 } 1590 1591 static int media_not_present(struct scsi_disk *sdkp, 1592 struct scsi_sense_hdr *sshdr) 1593 { 1594 if (!scsi_sense_valid(sshdr)) 1595 return 0; 1596 1597 /* not invoked for commands that could return deferred errors */ 1598 switch (sshdr->sense_key) { 1599 case UNIT_ATTENTION: 1600 case NOT_READY: 1601 /* medium not present */ 1602 if (sshdr->asc == 0x3A) { 1603 set_media_not_present(sdkp); 1604 return 1; 1605 } 1606 } 1607 return 0; 1608 } 1609 1610 /** 1611 * sd_check_events - check media events 1612 * @disk: kernel device descriptor 1613 * @clearing: disk events currently being cleared 1614 * 1615 * Returns mask of DISK_EVENT_*. 1616 * 1617 * Note: this function is invoked from the block subsystem. 1618 **/ 1619 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1620 { 1621 struct scsi_disk *sdkp = scsi_disk_get(disk); 1622 struct scsi_device *sdp; 1623 int retval; 1624 bool disk_changed; 1625 1626 if (!sdkp) 1627 return 0; 1628 1629 sdp = sdkp->device; 1630 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1631 1632 /* 1633 * If the device is offline, don't send any commands - just pretend as 1634 * if the command failed. If the device ever comes back online, we 1635 * can deal with it then. It is only because of unrecoverable errors 1636 * that we would ever take a device offline in the first place. 1637 */ 1638 if (!scsi_device_online(sdp)) { 1639 set_media_not_present(sdkp); 1640 goto out; 1641 } 1642 1643 /* 1644 * Using TEST_UNIT_READY enables differentiation between drive with 1645 * no cartridge loaded - NOT READY, drive with changed cartridge - 1646 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1647 * 1648 * Drives that auto spin down. eg iomega jaz 1G, will be started 1649 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1650 * sd_revalidate() is called. 1651 */ 1652 if (scsi_block_when_processing_errors(sdp)) { 1653 struct scsi_sense_hdr sshdr = { 0, }; 1654 1655 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1656 &sshdr); 1657 1658 /* failed to execute TUR, assume media not present */ 1659 if (retval < 0 || host_byte(retval)) { 1660 set_media_not_present(sdkp); 1661 goto out; 1662 } 1663 1664 if (media_not_present(sdkp, &sshdr)) 1665 goto out; 1666 } 1667 1668 /* 1669 * For removable scsi disk we have to recognise the presence 1670 * of a disk in the drive. 1671 */ 1672 if (!sdkp->media_present) 1673 sdp->changed = 1; 1674 sdkp->media_present = 1; 1675 out: 1676 /* 1677 * sdp->changed is set under the following conditions: 1678 * 1679 * Medium present state has changed in either direction. 1680 * Device has indicated UNIT_ATTENTION. 1681 */ 1682 disk_changed = sdp->changed; 1683 sdp->changed = 0; 1684 scsi_disk_put(sdkp); 1685 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1686 } 1687 1688 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1689 { 1690 int retries, res; 1691 struct scsi_device *sdp = sdkp->device; 1692 const int timeout = sdp->request_queue->rq_timeout 1693 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1694 struct scsi_sense_hdr my_sshdr; 1695 1696 if (!scsi_device_online(sdp)) 1697 return -ENODEV; 1698 1699 /* caller might not be interested in sense, but we need it */ 1700 if (!sshdr) 1701 sshdr = &my_sshdr; 1702 1703 for (retries = 3; retries > 0; --retries) { 1704 unsigned char cmd[10] = { 0 }; 1705 1706 cmd[0] = SYNCHRONIZE_CACHE; 1707 /* 1708 * Leave the rest of the command zero to indicate 1709 * flush everything. 1710 */ 1711 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1712 timeout, sdkp->max_retries, 0, RQF_PM, NULL); 1713 if (res == 0) 1714 break; 1715 } 1716 1717 if (res) { 1718 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1719 1720 if (res < 0) 1721 return res; 1722 1723 if (scsi_status_is_check_condition(res) && 1724 scsi_sense_valid(sshdr)) { 1725 sd_print_sense_hdr(sdkp, sshdr); 1726 1727 /* we need to evaluate the error return */ 1728 if (sshdr->asc == 0x3a || /* medium not present */ 1729 sshdr->asc == 0x20 || /* invalid command */ 1730 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1731 /* this is no error here */ 1732 return 0; 1733 } 1734 1735 switch (host_byte(res)) { 1736 /* ignore errors due to racing a disconnection */ 1737 case DID_BAD_TARGET: 1738 case DID_NO_CONNECT: 1739 return 0; 1740 /* signal the upper layer it might try again */ 1741 case DID_BUS_BUSY: 1742 case DID_IMM_RETRY: 1743 case DID_REQUEUE: 1744 case DID_SOFT_ERROR: 1745 return -EBUSY; 1746 default: 1747 return -EIO; 1748 } 1749 } 1750 return 0; 1751 } 1752 1753 static void sd_rescan(struct device *dev) 1754 { 1755 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1756 1757 sd_revalidate_disk(sdkp->disk); 1758 } 1759 1760 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1761 enum blk_unique_id type) 1762 { 1763 struct scsi_device *sdev = scsi_disk(disk)->device; 1764 const struct scsi_vpd *vpd; 1765 const unsigned char *d; 1766 int ret = -ENXIO, len; 1767 1768 rcu_read_lock(); 1769 vpd = rcu_dereference(sdev->vpd_pg83); 1770 if (!vpd) 1771 goto out_unlock; 1772 1773 ret = -EINVAL; 1774 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1775 /* we only care about designators with LU association */ 1776 if (((d[1] >> 4) & 0x3) != 0x00) 1777 continue; 1778 if ((d[1] & 0xf) != type) 1779 continue; 1780 1781 /* 1782 * Only exit early if a 16-byte descriptor was found. Otherwise 1783 * keep looking as one with more entropy might still show up. 1784 */ 1785 len = d[3]; 1786 if (len != 8 && len != 12 && len != 16) 1787 continue; 1788 ret = len; 1789 memcpy(id, d + 4, len); 1790 if (len == 16) 1791 break; 1792 } 1793 out_unlock: 1794 rcu_read_unlock(); 1795 return ret; 1796 } 1797 1798 static char sd_pr_type(enum pr_type type) 1799 { 1800 switch (type) { 1801 case PR_WRITE_EXCLUSIVE: 1802 return 0x01; 1803 case PR_EXCLUSIVE_ACCESS: 1804 return 0x03; 1805 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1806 return 0x05; 1807 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1808 return 0x06; 1809 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1810 return 0x07; 1811 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1812 return 0x08; 1813 default: 1814 return 0; 1815 } 1816 }; 1817 1818 static int sd_pr_command(struct block_device *bdev, u8 sa, 1819 u64 key, u64 sa_key, u8 type, u8 flags) 1820 { 1821 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1822 struct scsi_device *sdev = sdkp->device; 1823 struct scsi_sense_hdr sshdr; 1824 int result; 1825 u8 cmd[16] = { 0, }; 1826 u8 data[24] = { 0, }; 1827 1828 cmd[0] = PERSISTENT_RESERVE_OUT; 1829 cmd[1] = sa; 1830 cmd[2] = type; 1831 put_unaligned_be32(sizeof(data), &cmd[5]); 1832 1833 put_unaligned_be64(key, &data[0]); 1834 put_unaligned_be64(sa_key, &data[8]); 1835 data[20] = flags; 1836 1837 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1838 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL); 1839 1840 if (scsi_status_is_check_condition(result) && 1841 scsi_sense_valid(&sshdr)) { 1842 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1843 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1844 } 1845 1846 return result; 1847 } 1848 1849 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1850 u32 flags) 1851 { 1852 if (flags & ~PR_FL_IGNORE_KEY) 1853 return -EOPNOTSUPP; 1854 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1855 old_key, new_key, 0, 1856 (1 << 0) /* APTPL */); 1857 } 1858 1859 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1860 u32 flags) 1861 { 1862 if (flags) 1863 return -EOPNOTSUPP; 1864 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1865 } 1866 1867 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1868 { 1869 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1870 } 1871 1872 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1873 enum pr_type type, bool abort) 1874 { 1875 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1876 sd_pr_type(type), 0); 1877 } 1878 1879 static int sd_pr_clear(struct block_device *bdev, u64 key) 1880 { 1881 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1882 } 1883 1884 static const struct pr_ops sd_pr_ops = { 1885 .pr_register = sd_pr_register, 1886 .pr_reserve = sd_pr_reserve, 1887 .pr_release = sd_pr_release, 1888 .pr_preempt = sd_pr_preempt, 1889 .pr_clear = sd_pr_clear, 1890 }; 1891 1892 static const struct block_device_operations sd_fops = { 1893 .owner = THIS_MODULE, 1894 .open = sd_open, 1895 .release = sd_release, 1896 .ioctl = sd_ioctl, 1897 .getgeo = sd_getgeo, 1898 .compat_ioctl = blkdev_compat_ptr_ioctl, 1899 .check_events = sd_check_events, 1900 .unlock_native_capacity = sd_unlock_native_capacity, 1901 .report_zones = sd_zbc_report_zones, 1902 .get_unique_id = sd_get_unique_id, 1903 .pr_ops = &sd_pr_ops, 1904 }; 1905 1906 /** 1907 * sd_eh_reset - reset error handling callback 1908 * @scmd: sd-issued command that has failed 1909 * 1910 * This function is called by the SCSI midlayer before starting 1911 * SCSI EH. When counting medium access failures we have to be 1912 * careful to register it only only once per device and SCSI EH run; 1913 * there might be several timed out commands which will cause the 1914 * 'max_medium_access_timeouts' counter to trigger after the first 1915 * SCSI EH run already and set the device to offline. 1916 * So this function resets the internal counter before starting SCSI EH. 1917 **/ 1918 static void sd_eh_reset(struct scsi_cmnd *scmd) 1919 { 1920 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->rq_disk); 1921 1922 /* New SCSI EH run, reset gate variable */ 1923 sdkp->ignore_medium_access_errors = false; 1924 } 1925 1926 /** 1927 * sd_eh_action - error handling callback 1928 * @scmd: sd-issued command that has failed 1929 * @eh_disp: The recovery disposition suggested by the midlayer 1930 * 1931 * This function is called by the SCSI midlayer upon completion of an 1932 * error test command (currently TEST UNIT READY). The result of sending 1933 * the eh command is passed in eh_disp. We're looking for devices that 1934 * fail medium access commands but are OK with non access commands like 1935 * test unit ready (so wrongly see the device as having a successful 1936 * recovery) 1937 **/ 1938 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1939 { 1940 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->rq_disk); 1941 struct scsi_device *sdev = scmd->device; 1942 1943 if (!scsi_device_online(sdev) || 1944 !scsi_medium_access_command(scmd) || 1945 host_byte(scmd->result) != DID_TIME_OUT || 1946 eh_disp != SUCCESS) 1947 return eh_disp; 1948 1949 /* 1950 * The device has timed out executing a medium access command. 1951 * However, the TEST UNIT READY command sent during error 1952 * handling completed successfully. Either the device is in the 1953 * process of recovering or has it suffered an internal failure 1954 * that prevents access to the storage medium. 1955 */ 1956 if (!sdkp->ignore_medium_access_errors) { 1957 sdkp->medium_access_timed_out++; 1958 sdkp->ignore_medium_access_errors = true; 1959 } 1960 1961 /* 1962 * If the device keeps failing read/write commands but TEST UNIT 1963 * READY always completes successfully we assume that medium 1964 * access is no longer possible and take the device offline. 1965 */ 1966 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1967 scmd_printk(KERN_ERR, scmd, 1968 "Medium access timeout failure. Offlining disk!\n"); 1969 mutex_lock(&sdev->state_mutex); 1970 scsi_device_set_state(sdev, SDEV_OFFLINE); 1971 mutex_unlock(&sdev->state_mutex); 1972 1973 return SUCCESS; 1974 } 1975 1976 return eh_disp; 1977 } 1978 1979 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1980 { 1981 struct request *req = scsi_cmd_to_rq(scmd); 1982 struct scsi_device *sdev = scmd->device; 1983 unsigned int transferred, good_bytes; 1984 u64 start_lba, end_lba, bad_lba; 1985 1986 /* 1987 * Some commands have a payload smaller than the device logical 1988 * block size (e.g. INQUIRY on a 4K disk). 1989 */ 1990 if (scsi_bufflen(scmd) <= sdev->sector_size) 1991 return 0; 1992 1993 /* Check if we have a 'bad_lba' information */ 1994 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1995 SCSI_SENSE_BUFFERSIZE, 1996 &bad_lba)) 1997 return 0; 1998 1999 /* 2000 * If the bad lba was reported incorrectly, we have no idea where 2001 * the error is. 2002 */ 2003 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 2004 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 2005 if (bad_lba < start_lba || bad_lba >= end_lba) 2006 return 0; 2007 2008 /* 2009 * resid is optional but mostly filled in. When it's unused, 2010 * its value is zero, so we assume the whole buffer transferred 2011 */ 2012 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 2013 2014 /* This computation should always be done in terms of the 2015 * resolution of the device's medium. 2016 */ 2017 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2018 2019 return min(good_bytes, transferred); 2020 } 2021 2022 /** 2023 * sd_done - bottom half handler: called when the lower level 2024 * driver has completed (successfully or otherwise) a scsi command. 2025 * @SCpnt: mid-level's per command structure. 2026 * 2027 * Note: potentially run from within an ISR. Must not block. 2028 **/ 2029 static int sd_done(struct scsi_cmnd *SCpnt) 2030 { 2031 int result = SCpnt->result; 2032 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2033 unsigned int sector_size = SCpnt->device->sector_size; 2034 unsigned int resid; 2035 struct scsi_sense_hdr sshdr; 2036 struct request *req = scsi_cmd_to_rq(SCpnt); 2037 struct scsi_disk *sdkp = scsi_disk(req->rq_disk); 2038 int sense_valid = 0; 2039 int sense_deferred = 0; 2040 2041 switch (req_op(req)) { 2042 case REQ_OP_DISCARD: 2043 case REQ_OP_WRITE_ZEROES: 2044 case REQ_OP_WRITE_SAME: 2045 case REQ_OP_ZONE_RESET: 2046 case REQ_OP_ZONE_RESET_ALL: 2047 case REQ_OP_ZONE_OPEN: 2048 case REQ_OP_ZONE_CLOSE: 2049 case REQ_OP_ZONE_FINISH: 2050 if (!result) { 2051 good_bytes = blk_rq_bytes(req); 2052 scsi_set_resid(SCpnt, 0); 2053 } else { 2054 good_bytes = 0; 2055 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2056 } 2057 break; 2058 default: 2059 /* 2060 * In case of bogus fw or device, we could end up having 2061 * an unaligned partial completion. Check this here and force 2062 * alignment. 2063 */ 2064 resid = scsi_get_resid(SCpnt); 2065 if (resid & (sector_size - 1)) { 2066 sd_printk(KERN_INFO, sdkp, 2067 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2068 resid, sector_size); 2069 scsi_print_command(SCpnt); 2070 resid = min(scsi_bufflen(SCpnt), 2071 round_up(resid, sector_size)); 2072 scsi_set_resid(SCpnt, resid); 2073 } 2074 } 2075 2076 if (result) { 2077 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2078 if (sense_valid) 2079 sense_deferred = scsi_sense_is_deferred(&sshdr); 2080 } 2081 sdkp->medium_access_timed_out = 0; 2082 2083 if (!scsi_status_is_check_condition(result) && 2084 (!sense_valid || sense_deferred)) 2085 goto out; 2086 2087 switch (sshdr.sense_key) { 2088 case HARDWARE_ERROR: 2089 case MEDIUM_ERROR: 2090 good_bytes = sd_completed_bytes(SCpnt); 2091 break; 2092 case RECOVERED_ERROR: 2093 good_bytes = scsi_bufflen(SCpnt); 2094 break; 2095 case NO_SENSE: 2096 /* This indicates a false check condition, so ignore it. An 2097 * unknown amount of data was transferred so treat it as an 2098 * error. 2099 */ 2100 SCpnt->result = 0; 2101 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2102 break; 2103 case ABORTED_COMMAND: 2104 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2105 good_bytes = sd_completed_bytes(SCpnt); 2106 break; 2107 case ILLEGAL_REQUEST: 2108 switch (sshdr.asc) { 2109 case 0x10: /* DIX: Host detected corruption */ 2110 good_bytes = sd_completed_bytes(SCpnt); 2111 break; 2112 case 0x20: /* INVALID COMMAND OPCODE */ 2113 case 0x24: /* INVALID FIELD IN CDB */ 2114 switch (SCpnt->cmnd[0]) { 2115 case UNMAP: 2116 sd_config_discard(sdkp, SD_LBP_DISABLE); 2117 break; 2118 case WRITE_SAME_16: 2119 case WRITE_SAME: 2120 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2121 sd_config_discard(sdkp, SD_LBP_DISABLE); 2122 } else { 2123 sdkp->device->no_write_same = 1; 2124 sd_config_write_same(sdkp); 2125 req->rq_flags |= RQF_QUIET; 2126 } 2127 break; 2128 } 2129 } 2130 break; 2131 default: 2132 break; 2133 } 2134 2135 out: 2136 if (sd_is_zoned(sdkp)) 2137 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2138 2139 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2140 "sd_done: completed %d of %d bytes\n", 2141 good_bytes, scsi_bufflen(SCpnt))); 2142 2143 return good_bytes; 2144 } 2145 2146 /* 2147 * spinup disk - called only in sd_revalidate_disk() 2148 */ 2149 static void 2150 sd_spinup_disk(struct scsi_disk *sdkp) 2151 { 2152 unsigned char cmd[10]; 2153 unsigned long spintime_expire = 0; 2154 int retries, spintime; 2155 unsigned int the_result; 2156 struct scsi_sense_hdr sshdr; 2157 int sense_valid = 0; 2158 2159 spintime = 0; 2160 2161 /* Spin up drives, as required. Only do this at boot time */ 2162 /* Spinup needs to be done for module loads too. */ 2163 do { 2164 retries = 0; 2165 2166 do { 2167 bool media_was_present = sdkp->media_present; 2168 2169 cmd[0] = TEST_UNIT_READY; 2170 memset((void *) &cmd[1], 0, 9); 2171 2172 the_result = scsi_execute_req(sdkp->device, cmd, 2173 DMA_NONE, NULL, 0, 2174 &sshdr, SD_TIMEOUT, 2175 sdkp->max_retries, NULL); 2176 2177 /* 2178 * If the drive has indicated to us that it 2179 * doesn't have any media in it, don't bother 2180 * with any more polling. 2181 */ 2182 if (media_not_present(sdkp, &sshdr)) { 2183 if (media_was_present) 2184 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); 2185 return; 2186 } 2187 2188 if (the_result) 2189 sense_valid = scsi_sense_valid(&sshdr); 2190 retries++; 2191 } while (retries < 3 && 2192 (!scsi_status_is_good(the_result) || 2193 (scsi_status_is_check_condition(the_result) && 2194 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2195 2196 if (!scsi_status_is_check_condition(the_result)) { 2197 /* no sense, TUR either succeeded or failed 2198 * with a status error */ 2199 if(!spintime && !scsi_status_is_good(the_result)) { 2200 sd_print_result(sdkp, "Test Unit Ready failed", 2201 the_result); 2202 } 2203 break; 2204 } 2205 2206 /* 2207 * The device does not want the automatic start to be issued. 2208 */ 2209 if (sdkp->device->no_start_on_add) 2210 break; 2211 2212 if (sense_valid && sshdr.sense_key == NOT_READY) { 2213 if (sshdr.asc == 4 && sshdr.ascq == 3) 2214 break; /* manual intervention required */ 2215 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2216 break; /* standby */ 2217 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2218 break; /* unavailable */ 2219 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2220 break; /* sanitize in progress */ 2221 /* 2222 * Issue command to spin up drive when not ready 2223 */ 2224 if (!spintime) { 2225 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2226 cmd[0] = START_STOP; 2227 cmd[1] = 1; /* Return immediately */ 2228 memset((void *) &cmd[2], 0, 8); 2229 cmd[4] = 1; /* Start spin cycle */ 2230 if (sdkp->device->start_stop_pwr_cond) 2231 cmd[4] |= 1 << 4; 2232 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2233 NULL, 0, &sshdr, 2234 SD_TIMEOUT, sdkp->max_retries, 2235 NULL); 2236 spintime_expire = jiffies + 100 * HZ; 2237 spintime = 1; 2238 } 2239 /* Wait 1 second for next try */ 2240 msleep(1000); 2241 printk(KERN_CONT "."); 2242 2243 /* 2244 * Wait for USB flash devices with slow firmware. 2245 * Yes, this sense key/ASC combination shouldn't 2246 * occur here. It's characteristic of these devices. 2247 */ 2248 } else if (sense_valid && 2249 sshdr.sense_key == UNIT_ATTENTION && 2250 sshdr.asc == 0x28) { 2251 if (!spintime) { 2252 spintime_expire = jiffies + 5 * HZ; 2253 spintime = 1; 2254 } 2255 /* Wait 1 second for next try */ 2256 msleep(1000); 2257 } else { 2258 /* we don't understand the sense code, so it's 2259 * probably pointless to loop */ 2260 if(!spintime) { 2261 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2262 sd_print_sense_hdr(sdkp, &sshdr); 2263 } 2264 break; 2265 } 2266 2267 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2268 2269 if (spintime) { 2270 if (scsi_status_is_good(the_result)) 2271 printk(KERN_CONT "ready\n"); 2272 else 2273 printk(KERN_CONT "not responding...\n"); 2274 } 2275 } 2276 2277 /* 2278 * Determine whether disk supports Data Integrity Field. 2279 */ 2280 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2281 { 2282 struct scsi_device *sdp = sdkp->device; 2283 u8 type; 2284 int ret = 0; 2285 2286 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2287 sdkp->protection_type = 0; 2288 return ret; 2289 } 2290 2291 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2292 2293 if (type > T10_PI_TYPE3_PROTECTION) 2294 ret = -ENODEV; 2295 else if (scsi_host_dif_capable(sdp->host, type)) 2296 ret = 1; 2297 2298 if (sdkp->first_scan || type != sdkp->protection_type) 2299 switch (ret) { 2300 case -ENODEV: 2301 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2302 " protection type %u. Disabling disk!\n", 2303 type); 2304 break; 2305 case 1: 2306 sd_printk(KERN_NOTICE, sdkp, 2307 "Enabling DIF Type %u protection\n", type); 2308 break; 2309 case 0: 2310 sd_printk(KERN_NOTICE, sdkp, 2311 "Disabling DIF Type %u protection\n", type); 2312 break; 2313 } 2314 2315 sdkp->protection_type = type; 2316 2317 return ret; 2318 } 2319 2320 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2321 struct scsi_sense_hdr *sshdr, int sense_valid, 2322 int the_result) 2323 { 2324 if (sense_valid) 2325 sd_print_sense_hdr(sdkp, sshdr); 2326 else 2327 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2328 2329 /* 2330 * Set dirty bit for removable devices if not ready - 2331 * sometimes drives will not report this properly. 2332 */ 2333 if (sdp->removable && 2334 sense_valid && sshdr->sense_key == NOT_READY) 2335 set_media_not_present(sdkp); 2336 2337 /* 2338 * We used to set media_present to 0 here to indicate no media 2339 * in the drive, but some drives fail read capacity even with 2340 * media present, so we can't do that. 2341 */ 2342 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2343 } 2344 2345 #define RC16_LEN 32 2346 #if RC16_LEN > SD_BUF_SIZE 2347 #error RC16_LEN must not be more than SD_BUF_SIZE 2348 #endif 2349 2350 #define READ_CAPACITY_RETRIES_ON_RESET 10 2351 2352 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2353 unsigned char *buffer) 2354 { 2355 unsigned char cmd[16]; 2356 struct scsi_sense_hdr sshdr; 2357 int sense_valid = 0; 2358 int the_result; 2359 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2360 unsigned int alignment; 2361 unsigned long long lba; 2362 unsigned sector_size; 2363 2364 if (sdp->no_read_capacity_16) 2365 return -EINVAL; 2366 2367 do { 2368 memset(cmd, 0, 16); 2369 cmd[0] = SERVICE_ACTION_IN_16; 2370 cmd[1] = SAI_READ_CAPACITY_16; 2371 cmd[13] = RC16_LEN; 2372 memset(buffer, 0, RC16_LEN); 2373 2374 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2375 buffer, RC16_LEN, &sshdr, 2376 SD_TIMEOUT, sdkp->max_retries, NULL); 2377 2378 if (media_not_present(sdkp, &sshdr)) 2379 return -ENODEV; 2380 2381 if (the_result > 0) { 2382 sense_valid = scsi_sense_valid(&sshdr); 2383 if (sense_valid && 2384 sshdr.sense_key == ILLEGAL_REQUEST && 2385 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2386 sshdr.ascq == 0x00) 2387 /* Invalid Command Operation Code or 2388 * Invalid Field in CDB, just retry 2389 * silently with RC10 */ 2390 return -EINVAL; 2391 if (sense_valid && 2392 sshdr.sense_key == UNIT_ATTENTION && 2393 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2394 /* Device reset might occur several times, 2395 * give it one more chance */ 2396 if (--reset_retries > 0) 2397 continue; 2398 } 2399 retries--; 2400 2401 } while (the_result && retries); 2402 2403 if (the_result) { 2404 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2405 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2406 return -EINVAL; 2407 } 2408 2409 sector_size = get_unaligned_be32(&buffer[8]); 2410 lba = get_unaligned_be64(&buffer[0]); 2411 2412 if (sd_read_protection_type(sdkp, buffer) < 0) { 2413 sdkp->capacity = 0; 2414 return -ENODEV; 2415 } 2416 2417 /* Logical blocks per physical block exponent */ 2418 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2419 2420 /* RC basis */ 2421 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2422 2423 /* Lowest aligned logical block */ 2424 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2425 blk_queue_alignment_offset(sdp->request_queue, alignment); 2426 if (alignment && sdkp->first_scan) 2427 sd_printk(KERN_NOTICE, sdkp, 2428 "physical block alignment offset: %u\n", alignment); 2429 2430 if (buffer[14] & 0x80) { /* LBPME */ 2431 sdkp->lbpme = 1; 2432 2433 if (buffer[14] & 0x40) /* LBPRZ */ 2434 sdkp->lbprz = 1; 2435 2436 sd_config_discard(sdkp, SD_LBP_WS16); 2437 } 2438 2439 sdkp->capacity = lba + 1; 2440 return sector_size; 2441 } 2442 2443 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2444 unsigned char *buffer) 2445 { 2446 unsigned char cmd[16]; 2447 struct scsi_sense_hdr sshdr; 2448 int sense_valid = 0; 2449 int the_result; 2450 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2451 sector_t lba; 2452 unsigned sector_size; 2453 2454 do { 2455 cmd[0] = READ_CAPACITY; 2456 memset(&cmd[1], 0, 9); 2457 memset(buffer, 0, 8); 2458 2459 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2460 buffer, 8, &sshdr, 2461 SD_TIMEOUT, sdkp->max_retries, NULL); 2462 2463 if (media_not_present(sdkp, &sshdr)) 2464 return -ENODEV; 2465 2466 if (the_result > 0) { 2467 sense_valid = scsi_sense_valid(&sshdr); 2468 if (sense_valid && 2469 sshdr.sense_key == UNIT_ATTENTION && 2470 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2471 /* Device reset might occur several times, 2472 * give it one more chance */ 2473 if (--reset_retries > 0) 2474 continue; 2475 } 2476 retries--; 2477 2478 } while (the_result && retries); 2479 2480 if (the_result) { 2481 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2482 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2483 return -EINVAL; 2484 } 2485 2486 sector_size = get_unaligned_be32(&buffer[4]); 2487 lba = get_unaligned_be32(&buffer[0]); 2488 2489 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2490 /* Some buggy (usb cardreader) devices return an lba of 2491 0xffffffff when the want to report a size of 0 (with 2492 which they really mean no media is present) */ 2493 sdkp->capacity = 0; 2494 sdkp->physical_block_size = sector_size; 2495 return sector_size; 2496 } 2497 2498 sdkp->capacity = lba + 1; 2499 sdkp->physical_block_size = sector_size; 2500 return sector_size; 2501 } 2502 2503 static int sd_try_rc16_first(struct scsi_device *sdp) 2504 { 2505 if (sdp->host->max_cmd_len < 16) 2506 return 0; 2507 if (sdp->try_rc_10_first) 2508 return 0; 2509 if (sdp->scsi_level > SCSI_SPC_2) 2510 return 1; 2511 if (scsi_device_protection(sdp)) 2512 return 1; 2513 return 0; 2514 } 2515 2516 /* 2517 * read disk capacity 2518 */ 2519 static void 2520 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2521 { 2522 int sector_size; 2523 struct scsi_device *sdp = sdkp->device; 2524 2525 if (sd_try_rc16_first(sdp)) { 2526 sector_size = read_capacity_16(sdkp, sdp, buffer); 2527 if (sector_size == -EOVERFLOW) 2528 goto got_data; 2529 if (sector_size == -ENODEV) 2530 return; 2531 if (sector_size < 0) 2532 sector_size = read_capacity_10(sdkp, sdp, buffer); 2533 if (sector_size < 0) 2534 return; 2535 } else { 2536 sector_size = read_capacity_10(sdkp, sdp, buffer); 2537 if (sector_size == -EOVERFLOW) 2538 goto got_data; 2539 if (sector_size < 0) 2540 return; 2541 if ((sizeof(sdkp->capacity) > 4) && 2542 (sdkp->capacity > 0xffffffffULL)) { 2543 int old_sector_size = sector_size; 2544 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2545 "Trying to use READ CAPACITY(16).\n"); 2546 sector_size = read_capacity_16(sdkp, sdp, buffer); 2547 if (sector_size < 0) { 2548 sd_printk(KERN_NOTICE, sdkp, 2549 "Using 0xffffffff as device size\n"); 2550 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2551 sector_size = old_sector_size; 2552 goto got_data; 2553 } 2554 /* Remember that READ CAPACITY(16) succeeded */ 2555 sdp->try_rc_10_first = 0; 2556 } 2557 } 2558 2559 /* Some devices are known to return the total number of blocks, 2560 * not the highest block number. Some devices have versions 2561 * which do this and others which do not. Some devices we might 2562 * suspect of doing this but we don't know for certain. 2563 * 2564 * If we know the reported capacity is wrong, decrement it. If 2565 * we can only guess, then assume the number of blocks is even 2566 * (usually true but not always) and err on the side of lowering 2567 * the capacity. 2568 */ 2569 if (sdp->fix_capacity || 2570 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2571 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2572 "from its reported value: %llu\n", 2573 (unsigned long long) sdkp->capacity); 2574 --sdkp->capacity; 2575 } 2576 2577 got_data: 2578 if (sector_size == 0) { 2579 sector_size = 512; 2580 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2581 "assuming 512.\n"); 2582 } 2583 2584 if (sector_size != 512 && 2585 sector_size != 1024 && 2586 sector_size != 2048 && 2587 sector_size != 4096) { 2588 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2589 sector_size); 2590 /* 2591 * The user might want to re-format the drive with 2592 * a supported sectorsize. Once this happens, it 2593 * would be relatively trivial to set the thing up. 2594 * For this reason, we leave the thing in the table. 2595 */ 2596 sdkp->capacity = 0; 2597 /* 2598 * set a bogus sector size so the normal read/write 2599 * logic in the block layer will eventually refuse any 2600 * request on this device without tripping over power 2601 * of two sector size assumptions 2602 */ 2603 sector_size = 512; 2604 } 2605 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2606 blk_queue_physical_block_size(sdp->request_queue, 2607 sdkp->physical_block_size); 2608 sdkp->device->sector_size = sector_size; 2609 2610 if (sdkp->capacity > 0xffffffff) 2611 sdp->use_16_for_rw = 1; 2612 2613 } 2614 2615 /* 2616 * Print disk capacity 2617 */ 2618 static void 2619 sd_print_capacity(struct scsi_disk *sdkp, 2620 sector_t old_capacity) 2621 { 2622 int sector_size = sdkp->device->sector_size; 2623 char cap_str_2[10], cap_str_10[10]; 2624 2625 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2626 return; 2627 2628 string_get_size(sdkp->capacity, sector_size, 2629 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2630 string_get_size(sdkp->capacity, sector_size, 2631 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2632 2633 sd_printk(KERN_NOTICE, sdkp, 2634 "%llu %d-byte logical blocks: (%s/%s)\n", 2635 (unsigned long long)sdkp->capacity, 2636 sector_size, cap_str_10, cap_str_2); 2637 2638 if (sdkp->physical_block_size != sector_size) 2639 sd_printk(KERN_NOTICE, sdkp, 2640 "%u-byte physical blocks\n", 2641 sdkp->physical_block_size); 2642 } 2643 2644 /* called with buffer of length 512 */ 2645 static inline int 2646 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2647 unsigned char *buffer, int len, struct scsi_mode_data *data, 2648 struct scsi_sense_hdr *sshdr) 2649 { 2650 /* 2651 * If we must use MODE SENSE(10), make sure that the buffer length 2652 * is at least 8 bytes so that the mode sense header fits. 2653 */ 2654 if (sdkp->device->use_10_for_ms && len < 8) 2655 len = 8; 2656 2657 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2658 SD_TIMEOUT, sdkp->max_retries, data, 2659 sshdr); 2660 } 2661 2662 /* 2663 * read write protect setting, if possible - called only in sd_revalidate_disk() 2664 * called with buffer of length SD_BUF_SIZE 2665 */ 2666 static void 2667 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2668 { 2669 int res; 2670 struct scsi_device *sdp = sdkp->device; 2671 struct scsi_mode_data data; 2672 int old_wp = sdkp->write_prot; 2673 2674 set_disk_ro(sdkp->disk, 0); 2675 if (sdp->skip_ms_page_3f) { 2676 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2677 return; 2678 } 2679 2680 if (sdp->use_192_bytes_for_3f) { 2681 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2682 } else { 2683 /* 2684 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2685 * We have to start carefully: some devices hang if we ask 2686 * for more than is available. 2687 */ 2688 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2689 2690 /* 2691 * Second attempt: ask for page 0 When only page 0 is 2692 * implemented, a request for page 3F may return Sense Key 2693 * 5: Illegal Request, Sense Code 24: Invalid field in 2694 * CDB. 2695 */ 2696 if (res < 0) 2697 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2698 2699 /* 2700 * Third attempt: ask 255 bytes, as we did earlier. 2701 */ 2702 if (res < 0) 2703 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2704 &data, NULL); 2705 } 2706 2707 if (res < 0) { 2708 sd_first_printk(KERN_WARNING, sdkp, 2709 "Test WP failed, assume Write Enabled\n"); 2710 } else { 2711 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2712 set_disk_ro(sdkp->disk, sdkp->write_prot); 2713 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2714 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2715 sdkp->write_prot ? "on" : "off"); 2716 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2717 } 2718 } 2719 } 2720 2721 /* 2722 * sd_read_cache_type - called only from sd_revalidate_disk() 2723 * called with buffer of length SD_BUF_SIZE 2724 */ 2725 static void 2726 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2727 { 2728 int len = 0, res; 2729 struct scsi_device *sdp = sdkp->device; 2730 2731 int dbd; 2732 int modepage; 2733 int first_len; 2734 struct scsi_mode_data data; 2735 struct scsi_sense_hdr sshdr; 2736 int old_wce = sdkp->WCE; 2737 int old_rcd = sdkp->RCD; 2738 int old_dpofua = sdkp->DPOFUA; 2739 2740 2741 if (sdkp->cache_override) 2742 return; 2743 2744 first_len = 4; 2745 if (sdp->skip_ms_page_8) { 2746 if (sdp->type == TYPE_RBC) 2747 goto defaults; 2748 else { 2749 if (sdp->skip_ms_page_3f) 2750 goto defaults; 2751 modepage = 0x3F; 2752 if (sdp->use_192_bytes_for_3f) 2753 first_len = 192; 2754 dbd = 0; 2755 } 2756 } else if (sdp->type == TYPE_RBC) { 2757 modepage = 6; 2758 dbd = 8; 2759 } else { 2760 modepage = 8; 2761 dbd = 0; 2762 } 2763 2764 /* cautiously ask */ 2765 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2766 &data, &sshdr); 2767 2768 if (res < 0) 2769 goto bad_sense; 2770 2771 if (!data.header_length) { 2772 modepage = 6; 2773 first_len = 0; 2774 sd_first_printk(KERN_ERR, sdkp, 2775 "Missing header in MODE_SENSE response\n"); 2776 } 2777 2778 /* that went OK, now ask for the proper length */ 2779 len = data.length; 2780 2781 /* 2782 * We're only interested in the first three bytes, actually. 2783 * But the data cache page is defined for the first 20. 2784 */ 2785 if (len < 3) 2786 goto bad_sense; 2787 else if (len > SD_BUF_SIZE) { 2788 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2789 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2790 len = SD_BUF_SIZE; 2791 } 2792 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2793 len = 192; 2794 2795 /* Get the data */ 2796 if (len > first_len) 2797 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2798 &data, &sshdr); 2799 2800 if (!res) { 2801 int offset = data.header_length + data.block_descriptor_length; 2802 2803 while (offset < len) { 2804 u8 page_code = buffer[offset] & 0x3F; 2805 u8 spf = buffer[offset] & 0x40; 2806 2807 if (page_code == 8 || page_code == 6) { 2808 /* We're interested only in the first 3 bytes. 2809 */ 2810 if (len - offset <= 2) { 2811 sd_first_printk(KERN_ERR, sdkp, 2812 "Incomplete mode parameter " 2813 "data\n"); 2814 goto defaults; 2815 } else { 2816 modepage = page_code; 2817 goto Page_found; 2818 } 2819 } else { 2820 /* Go to the next page */ 2821 if (spf && len - offset > 3) 2822 offset += 4 + (buffer[offset+2] << 8) + 2823 buffer[offset+3]; 2824 else if (!spf && len - offset > 1) 2825 offset += 2 + buffer[offset+1]; 2826 else { 2827 sd_first_printk(KERN_ERR, sdkp, 2828 "Incomplete mode " 2829 "parameter data\n"); 2830 goto defaults; 2831 } 2832 } 2833 } 2834 2835 sd_first_printk(KERN_WARNING, sdkp, 2836 "No Caching mode page found\n"); 2837 goto defaults; 2838 2839 Page_found: 2840 if (modepage == 8) { 2841 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2842 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2843 } else { 2844 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2845 sdkp->RCD = 0; 2846 } 2847 2848 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2849 if (sdp->broken_fua) { 2850 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2851 sdkp->DPOFUA = 0; 2852 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2853 !sdkp->device->use_16_for_rw) { 2854 sd_first_printk(KERN_NOTICE, sdkp, 2855 "Uses READ/WRITE(6), disabling FUA\n"); 2856 sdkp->DPOFUA = 0; 2857 } 2858 2859 /* No cache flush allowed for write protected devices */ 2860 if (sdkp->WCE && sdkp->write_prot) 2861 sdkp->WCE = 0; 2862 2863 if (sdkp->first_scan || old_wce != sdkp->WCE || 2864 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2865 sd_printk(KERN_NOTICE, sdkp, 2866 "Write cache: %s, read cache: %s, %s\n", 2867 sdkp->WCE ? "enabled" : "disabled", 2868 sdkp->RCD ? "disabled" : "enabled", 2869 sdkp->DPOFUA ? "supports DPO and FUA" 2870 : "doesn't support DPO or FUA"); 2871 2872 return; 2873 } 2874 2875 bad_sense: 2876 if (scsi_sense_valid(&sshdr) && 2877 sshdr.sense_key == ILLEGAL_REQUEST && 2878 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2879 /* Invalid field in CDB */ 2880 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2881 else 2882 sd_first_printk(KERN_ERR, sdkp, 2883 "Asking for cache data failed\n"); 2884 2885 defaults: 2886 if (sdp->wce_default_on) { 2887 sd_first_printk(KERN_NOTICE, sdkp, 2888 "Assuming drive cache: write back\n"); 2889 sdkp->WCE = 1; 2890 } else { 2891 sd_first_printk(KERN_WARNING, sdkp, 2892 "Assuming drive cache: write through\n"); 2893 sdkp->WCE = 0; 2894 } 2895 sdkp->RCD = 0; 2896 sdkp->DPOFUA = 0; 2897 } 2898 2899 /* 2900 * The ATO bit indicates whether the DIF application tag is available 2901 * for use by the operating system. 2902 */ 2903 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2904 { 2905 int res, offset; 2906 struct scsi_device *sdp = sdkp->device; 2907 struct scsi_mode_data data; 2908 struct scsi_sense_hdr sshdr; 2909 2910 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2911 return; 2912 2913 if (sdkp->protection_type == 0) 2914 return; 2915 2916 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2917 sdkp->max_retries, &data, &sshdr); 2918 2919 if (res < 0 || !data.header_length || 2920 data.length < 6) { 2921 sd_first_printk(KERN_WARNING, sdkp, 2922 "getting Control mode page failed, assume no ATO\n"); 2923 2924 if (scsi_sense_valid(&sshdr)) 2925 sd_print_sense_hdr(sdkp, &sshdr); 2926 2927 return; 2928 } 2929 2930 offset = data.header_length + data.block_descriptor_length; 2931 2932 if ((buffer[offset] & 0x3f) != 0x0a) { 2933 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2934 return; 2935 } 2936 2937 if ((buffer[offset + 5] & 0x80) == 0) 2938 return; 2939 2940 sdkp->ATO = 1; 2941 2942 return; 2943 } 2944 2945 /** 2946 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2947 * @sdkp: disk to query 2948 */ 2949 static void sd_read_block_limits(struct scsi_disk *sdkp) 2950 { 2951 unsigned int sector_sz = sdkp->device->sector_size; 2952 const int vpd_len = 64; 2953 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2954 2955 if (!buffer || 2956 /* Block Limits VPD */ 2957 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2958 goto out; 2959 2960 blk_queue_io_min(sdkp->disk->queue, 2961 get_unaligned_be16(&buffer[6]) * sector_sz); 2962 2963 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2964 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2965 2966 if (buffer[3] == 0x3c) { 2967 unsigned int lba_count, desc_count; 2968 2969 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2970 2971 if (!sdkp->lbpme) 2972 goto out; 2973 2974 lba_count = get_unaligned_be32(&buffer[20]); 2975 desc_count = get_unaligned_be32(&buffer[24]); 2976 2977 if (lba_count && desc_count) 2978 sdkp->max_unmap_blocks = lba_count; 2979 2980 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2981 2982 if (buffer[32] & 0x80) 2983 sdkp->unmap_alignment = 2984 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2985 2986 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2987 2988 if (sdkp->max_unmap_blocks) 2989 sd_config_discard(sdkp, SD_LBP_UNMAP); 2990 else 2991 sd_config_discard(sdkp, SD_LBP_WS16); 2992 2993 } else { /* LBP VPD page tells us what to use */ 2994 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2995 sd_config_discard(sdkp, SD_LBP_UNMAP); 2996 else if (sdkp->lbpws) 2997 sd_config_discard(sdkp, SD_LBP_WS16); 2998 else if (sdkp->lbpws10) 2999 sd_config_discard(sdkp, SD_LBP_WS10); 3000 else 3001 sd_config_discard(sdkp, SD_LBP_DISABLE); 3002 } 3003 } 3004 3005 out: 3006 kfree(buffer); 3007 } 3008 3009 /** 3010 * sd_read_block_characteristics - Query block dev. characteristics 3011 * @sdkp: disk to query 3012 */ 3013 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 3014 { 3015 struct request_queue *q = sdkp->disk->queue; 3016 unsigned char *buffer; 3017 u16 rot; 3018 const int vpd_len = 64; 3019 3020 buffer = kmalloc(vpd_len, GFP_KERNEL); 3021 3022 if (!buffer || 3023 /* Block Device Characteristics VPD */ 3024 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 3025 goto out; 3026 3027 rot = get_unaligned_be16(&buffer[4]); 3028 3029 if (rot == 1) { 3030 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 3031 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 3032 } 3033 3034 if (sdkp->device->type == TYPE_ZBC) { 3035 /* Host-managed */ 3036 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM); 3037 } else { 3038 sdkp->zoned = (buffer[8] >> 4) & 3; 3039 if (sdkp->zoned == 1) { 3040 /* Host-aware */ 3041 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA); 3042 } else { 3043 /* Regular disk or drive managed disk */ 3044 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3045 } 3046 } 3047 3048 if (!sdkp->first_scan) 3049 goto out; 3050 3051 if (blk_queue_is_zoned(q)) { 3052 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3053 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3054 } else { 3055 if (sdkp->zoned == 1) 3056 sd_printk(KERN_NOTICE, sdkp, 3057 "Host-aware SMR disk used as regular disk\n"); 3058 else if (sdkp->zoned == 2) 3059 sd_printk(KERN_NOTICE, sdkp, 3060 "Drive-managed SMR disk\n"); 3061 } 3062 3063 out: 3064 kfree(buffer); 3065 } 3066 3067 /** 3068 * sd_read_block_provisioning - Query provisioning VPD page 3069 * @sdkp: disk to query 3070 */ 3071 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3072 { 3073 unsigned char *buffer; 3074 const int vpd_len = 8; 3075 3076 if (sdkp->lbpme == 0) 3077 return; 3078 3079 buffer = kmalloc(vpd_len, GFP_KERNEL); 3080 3081 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 3082 goto out; 3083 3084 sdkp->lbpvpd = 1; 3085 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 3086 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 3087 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 3088 3089 out: 3090 kfree(buffer); 3091 } 3092 3093 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3094 { 3095 struct scsi_device *sdev = sdkp->device; 3096 3097 if (sdev->host->no_write_same) { 3098 sdev->no_write_same = 1; 3099 3100 return; 3101 } 3102 3103 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3104 /* too large values might cause issues with arcmsr */ 3105 int vpd_buf_len = 64; 3106 3107 sdev->no_report_opcodes = 1; 3108 3109 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3110 * CODES is unsupported and the device has an ATA 3111 * Information VPD page (SAT). 3112 */ 3113 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3114 sdev->no_write_same = 1; 3115 } 3116 3117 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3118 sdkp->ws16 = 1; 3119 3120 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3121 sdkp->ws10 = 1; 3122 } 3123 3124 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3125 { 3126 struct scsi_device *sdev = sdkp->device; 3127 3128 if (!sdev->security_supported) 3129 return; 3130 3131 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3132 SECURITY_PROTOCOL_IN) == 1 && 3133 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3134 SECURITY_PROTOCOL_OUT) == 1) 3135 sdkp->security = 1; 3136 } 3137 3138 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3139 { 3140 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3141 } 3142 3143 /** 3144 * sd_read_cpr - Query concurrent positioning ranges 3145 * @sdkp: disk to query 3146 */ 3147 static void sd_read_cpr(struct scsi_disk *sdkp) 3148 { 3149 struct blk_independent_access_ranges *iars = NULL; 3150 unsigned char *buffer = NULL; 3151 unsigned int nr_cpr = 0; 3152 int i, vpd_len, buf_len = SD_BUF_SIZE; 3153 u8 *desc; 3154 3155 /* 3156 * We need to have the capacity set first for the block layer to be 3157 * able to check the ranges. 3158 */ 3159 if (sdkp->first_scan) 3160 return; 3161 3162 if (!sdkp->capacity) 3163 goto out; 3164 3165 /* 3166 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3167 * leading to a maximum page size of 64 + 256*32 bytes. 3168 */ 3169 buf_len = 64 + 256*32; 3170 buffer = kmalloc(buf_len, GFP_KERNEL); 3171 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3172 goto out; 3173 3174 /* We must have at least a 64B header and one 32B range descriptor */ 3175 vpd_len = get_unaligned_be16(&buffer[2]) + 3; 3176 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3177 sd_printk(KERN_ERR, sdkp, 3178 "Invalid Concurrent Positioning Ranges VPD page\n"); 3179 goto out; 3180 } 3181 3182 nr_cpr = (vpd_len - 64) / 32; 3183 if (nr_cpr == 1) { 3184 nr_cpr = 0; 3185 goto out; 3186 } 3187 3188 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3189 if (!iars) { 3190 nr_cpr = 0; 3191 goto out; 3192 } 3193 3194 desc = &buffer[64]; 3195 for (i = 0; i < nr_cpr; i++, desc += 32) { 3196 if (desc[0] != i) { 3197 sd_printk(KERN_ERR, sdkp, 3198 "Invalid Concurrent Positioning Range number\n"); 3199 nr_cpr = 0; 3200 break; 3201 } 3202 3203 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3204 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3205 } 3206 3207 out: 3208 disk_set_independent_access_ranges(sdkp->disk, iars); 3209 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3210 sd_printk(KERN_NOTICE, sdkp, 3211 "%u concurrent positioning ranges\n", nr_cpr); 3212 sdkp->nr_actuators = nr_cpr; 3213 } 3214 3215 kfree(buffer); 3216 } 3217 3218 /* 3219 * Determine the device's preferred I/O size for reads and writes 3220 * unless the reported value is unreasonably small, large, not a 3221 * multiple of the physical block size, or simply garbage. 3222 */ 3223 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3224 unsigned int dev_max) 3225 { 3226 struct scsi_device *sdp = sdkp->device; 3227 unsigned int opt_xfer_bytes = 3228 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3229 3230 if (sdkp->opt_xfer_blocks == 0) 3231 return false; 3232 3233 if (sdkp->opt_xfer_blocks > dev_max) { 3234 sd_first_printk(KERN_WARNING, sdkp, 3235 "Optimal transfer size %u logical blocks " \ 3236 "> dev_max (%u logical blocks)\n", 3237 sdkp->opt_xfer_blocks, dev_max); 3238 return false; 3239 } 3240 3241 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3242 sd_first_printk(KERN_WARNING, sdkp, 3243 "Optimal transfer size %u logical blocks " \ 3244 "> sd driver limit (%u logical blocks)\n", 3245 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3246 return false; 3247 } 3248 3249 if (opt_xfer_bytes < PAGE_SIZE) { 3250 sd_first_printk(KERN_WARNING, sdkp, 3251 "Optimal transfer size %u bytes < " \ 3252 "PAGE_SIZE (%u bytes)\n", 3253 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3254 return false; 3255 } 3256 3257 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3258 sd_first_printk(KERN_WARNING, sdkp, 3259 "Optimal transfer size %u bytes not a " \ 3260 "multiple of physical block size (%u bytes)\n", 3261 opt_xfer_bytes, sdkp->physical_block_size); 3262 return false; 3263 } 3264 3265 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3266 opt_xfer_bytes); 3267 return true; 3268 } 3269 3270 /** 3271 * sd_revalidate_disk - called the first time a new disk is seen, 3272 * performs disk spin up, read_capacity, etc. 3273 * @disk: struct gendisk we care about 3274 **/ 3275 static int sd_revalidate_disk(struct gendisk *disk) 3276 { 3277 struct scsi_disk *sdkp = scsi_disk(disk); 3278 struct scsi_device *sdp = sdkp->device; 3279 struct request_queue *q = sdkp->disk->queue; 3280 sector_t old_capacity = sdkp->capacity; 3281 unsigned char *buffer; 3282 unsigned int dev_max, rw_max; 3283 3284 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3285 "sd_revalidate_disk\n")); 3286 3287 /* 3288 * If the device is offline, don't try and read capacity or any 3289 * of the other niceties. 3290 */ 3291 if (!scsi_device_online(sdp)) 3292 goto out; 3293 3294 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3295 if (!buffer) { 3296 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3297 "allocation failure.\n"); 3298 goto out; 3299 } 3300 3301 sd_spinup_disk(sdkp); 3302 3303 /* 3304 * Without media there is no reason to ask; moreover, some devices 3305 * react badly if we do. 3306 */ 3307 if (sdkp->media_present) { 3308 sd_read_capacity(sdkp, buffer); 3309 3310 /* 3311 * set the default to rotational. All non-rotational devices 3312 * support the block characteristics VPD page, which will 3313 * cause this to be updated correctly and any device which 3314 * doesn't support it should be treated as rotational. 3315 */ 3316 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3317 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3318 3319 if (scsi_device_supports_vpd(sdp)) { 3320 sd_read_block_provisioning(sdkp); 3321 sd_read_block_limits(sdkp); 3322 sd_read_block_characteristics(sdkp); 3323 sd_zbc_read_zones(sdkp, buffer); 3324 } 3325 3326 sd_print_capacity(sdkp, old_capacity); 3327 3328 sd_read_write_protect_flag(sdkp, buffer); 3329 sd_read_cache_type(sdkp, buffer); 3330 sd_read_app_tag_own(sdkp, buffer); 3331 sd_read_write_same(sdkp, buffer); 3332 sd_read_security(sdkp, buffer); 3333 sd_read_cpr(sdkp); 3334 } 3335 3336 /* 3337 * We now have all cache related info, determine how we deal 3338 * with flush requests. 3339 */ 3340 sd_set_flush_flag(sdkp); 3341 3342 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3343 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3344 3345 /* Some devices report a maximum block count for READ/WRITE requests. */ 3346 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3347 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3348 3349 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3350 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3351 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3352 } else { 3353 q->limits.io_opt = 0; 3354 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3355 (sector_t)BLK_DEF_MAX_SECTORS); 3356 } 3357 3358 /* Do not exceed controller limit */ 3359 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3360 3361 /* 3362 * Only update max_sectors if previously unset or if the current value 3363 * exceeds the capabilities of the hardware. 3364 */ 3365 if (sdkp->first_scan || 3366 q->limits.max_sectors > q->limits.max_dev_sectors || 3367 q->limits.max_sectors > q->limits.max_hw_sectors) 3368 q->limits.max_sectors = rw_max; 3369 3370 sdkp->first_scan = 0; 3371 3372 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3373 sd_config_write_same(sdkp); 3374 kfree(buffer); 3375 3376 /* 3377 * For a zoned drive, revalidating the zones can be done only once 3378 * the gendisk capacity is set. So if this fails, set back the gendisk 3379 * capacity to 0. 3380 */ 3381 if (sd_zbc_revalidate_zones(sdkp)) 3382 set_capacity_and_notify(disk, 0); 3383 3384 out: 3385 return 0; 3386 } 3387 3388 /** 3389 * sd_unlock_native_capacity - unlock native capacity 3390 * @disk: struct gendisk to set capacity for 3391 * 3392 * Block layer calls this function if it detects that partitions 3393 * on @disk reach beyond the end of the device. If the SCSI host 3394 * implements ->unlock_native_capacity() method, it's invoked to 3395 * give it a chance to adjust the device capacity. 3396 * 3397 * CONTEXT: 3398 * Defined by block layer. Might sleep. 3399 */ 3400 static void sd_unlock_native_capacity(struct gendisk *disk) 3401 { 3402 struct scsi_device *sdev = scsi_disk(disk)->device; 3403 3404 if (sdev->host->hostt->unlock_native_capacity) 3405 sdev->host->hostt->unlock_native_capacity(sdev); 3406 } 3407 3408 /** 3409 * sd_format_disk_name - format disk name 3410 * @prefix: name prefix - ie. "sd" for SCSI disks 3411 * @index: index of the disk to format name for 3412 * @buf: output buffer 3413 * @buflen: length of the output buffer 3414 * 3415 * SCSI disk names starts at sda. The 26th device is sdz and the 3416 * 27th is sdaa. The last one for two lettered suffix is sdzz 3417 * which is followed by sdaaa. 3418 * 3419 * This is basically 26 base counting with one extra 'nil' entry 3420 * at the beginning from the second digit on and can be 3421 * determined using similar method as 26 base conversion with the 3422 * index shifted -1 after each digit is computed. 3423 * 3424 * CONTEXT: 3425 * Don't care. 3426 * 3427 * RETURNS: 3428 * 0 on success, -errno on failure. 3429 */ 3430 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3431 { 3432 const int base = 'z' - 'a' + 1; 3433 char *begin = buf + strlen(prefix); 3434 char *end = buf + buflen; 3435 char *p; 3436 int unit; 3437 3438 p = end - 1; 3439 *p = '\0'; 3440 unit = base; 3441 do { 3442 if (p == begin) 3443 return -EINVAL; 3444 *--p = 'a' + (index % unit); 3445 index = (index / unit) - 1; 3446 } while (index >= 0); 3447 3448 memmove(begin, p, end - p); 3449 memcpy(buf, prefix, strlen(prefix)); 3450 3451 return 0; 3452 } 3453 3454 /** 3455 * sd_probe - called during driver initialization and whenever a 3456 * new scsi device is attached to the system. It is called once 3457 * for each scsi device (not just disks) present. 3458 * @dev: pointer to device object 3459 * 3460 * Returns 0 if successful (or not interested in this scsi device 3461 * (e.g. scanner)); 1 when there is an error. 3462 * 3463 * Note: this function is invoked from the scsi mid-level. 3464 * This function sets up the mapping between a given 3465 * <host,channel,id,lun> (found in sdp) and new device name 3466 * (e.g. /dev/sda). More precisely it is the block device major 3467 * and minor number that is chosen here. 3468 * 3469 * Assume sd_probe is not re-entrant (for time being) 3470 * Also think about sd_probe() and sd_remove() running coincidentally. 3471 **/ 3472 static int sd_probe(struct device *dev) 3473 { 3474 struct scsi_device *sdp = to_scsi_device(dev); 3475 struct scsi_disk *sdkp; 3476 struct gendisk *gd; 3477 int index; 3478 int error; 3479 3480 scsi_autopm_get_device(sdp); 3481 error = -ENODEV; 3482 if (sdp->type != TYPE_DISK && 3483 sdp->type != TYPE_ZBC && 3484 sdp->type != TYPE_MOD && 3485 sdp->type != TYPE_RBC) 3486 goto out; 3487 3488 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3489 sdev_printk(KERN_WARNING, sdp, 3490 "Unsupported ZBC host-managed device.\n"); 3491 goto out; 3492 } 3493 3494 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3495 "sd_probe\n")); 3496 3497 error = -ENOMEM; 3498 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3499 if (!sdkp) 3500 goto out; 3501 3502 gd = __alloc_disk_node(sdp->request_queue, NUMA_NO_NODE, 3503 &sd_bio_compl_lkclass); 3504 if (!gd) 3505 goto out_free; 3506 3507 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3508 if (index < 0) { 3509 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3510 goto out_put; 3511 } 3512 3513 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3514 if (error) { 3515 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3516 goto out_free_index; 3517 } 3518 3519 sdkp->device = sdp; 3520 sdkp->driver = &sd_template; 3521 sdkp->disk = gd; 3522 sdkp->index = index; 3523 sdkp->max_retries = SD_MAX_RETRIES; 3524 atomic_set(&sdkp->openers, 0); 3525 atomic_set(&sdkp->device->ioerr_cnt, 0); 3526 3527 if (!sdp->request_queue->rq_timeout) { 3528 if (sdp->type != TYPE_MOD) 3529 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3530 else 3531 blk_queue_rq_timeout(sdp->request_queue, 3532 SD_MOD_TIMEOUT); 3533 } 3534 3535 device_initialize(&sdkp->dev); 3536 sdkp->dev.parent = get_device(dev); 3537 sdkp->dev.class = &sd_disk_class; 3538 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3539 3540 error = device_add(&sdkp->dev); 3541 if (error) { 3542 put_device(&sdkp->dev); 3543 goto out; 3544 } 3545 3546 dev_set_drvdata(dev, sdkp); 3547 3548 gd->major = sd_major((index & 0xf0) >> 4); 3549 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3550 gd->minors = SD_MINORS; 3551 3552 gd->fops = &sd_fops; 3553 gd->private_data = &sdkp->driver; 3554 3555 /* defaults, until the device tells us otherwise */ 3556 sdp->sector_size = 512; 3557 sdkp->capacity = 0; 3558 sdkp->media_present = 1; 3559 sdkp->write_prot = 0; 3560 sdkp->cache_override = 0; 3561 sdkp->WCE = 0; 3562 sdkp->RCD = 0; 3563 sdkp->ATO = 0; 3564 sdkp->first_scan = 1; 3565 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3566 3567 sd_revalidate_disk(gd); 3568 3569 gd->flags = GENHD_FL_EXT_DEVT; 3570 if (sdp->removable) { 3571 gd->flags |= GENHD_FL_REMOVABLE; 3572 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3573 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3574 } 3575 3576 blk_pm_runtime_init(sdp->request_queue, dev); 3577 if (sdp->rpm_autosuspend) { 3578 pm_runtime_set_autosuspend_delay(dev, 3579 sdp->host->hostt->rpm_autosuspend_delay); 3580 } 3581 3582 error = device_add_disk(dev, gd, NULL); 3583 if (error) { 3584 put_device(&sdkp->dev); 3585 goto out; 3586 } 3587 3588 if (sdkp->capacity) 3589 sd_dif_config_host(sdkp); 3590 3591 sd_revalidate_disk(gd); 3592 3593 if (sdkp->security) { 3594 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3595 if (sdkp->opal_dev) 3596 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3597 } 3598 3599 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3600 sdp->removable ? "removable " : ""); 3601 scsi_autopm_put_device(sdp); 3602 3603 return 0; 3604 3605 out_free_index: 3606 ida_free(&sd_index_ida, index); 3607 out_put: 3608 put_disk(gd); 3609 out_free: 3610 sd_zbc_release_disk(sdkp); 3611 kfree(sdkp); 3612 out: 3613 scsi_autopm_put_device(sdp); 3614 return error; 3615 } 3616 3617 /** 3618 * sd_remove - called whenever a scsi disk (previously recognized by 3619 * sd_probe) is detached from the system. It is called (potentially 3620 * multiple times) during sd module unload. 3621 * @dev: pointer to device object 3622 * 3623 * Note: this function is invoked from the scsi mid-level. 3624 * This function potentially frees up a device name (e.g. /dev/sdc) 3625 * that could be re-used by a subsequent sd_probe(). 3626 * This function is not called when the built-in sd driver is "exit-ed". 3627 **/ 3628 static int sd_remove(struct device *dev) 3629 { 3630 struct scsi_disk *sdkp; 3631 3632 sdkp = dev_get_drvdata(dev); 3633 scsi_autopm_get_device(sdkp->device); 3634 3635 device_del(&sdkp->dev); 3636 del_gendisk(sdkp->disk); 3637 sd_shutdown(dev); 3638 3639 free_opal_dev(sdkp->opal_dev); 3640 3641 mutex_lock(&sd_ref_mutex); 3642 dev_set_drvdata(dev, NULL); 3643 put_device(&sdkp->dev); 3644 mutex_unlock(&sd_ref_mutex); 3645 3646 return 0; 3647 } 3648 3649 /** 3650 * scsi_disk_release - Called to free the scsi_disk structure 3651 * @dev: pointer to embedded class device 3652 * 3653 * sd_ref_mutex must be held entering this routine. Because it is 3654 * called on last put, you should always use the scsi_disk_get() 3655 * scsi_disk_put() helpers which manipulate the semaphore directly 3656 * and never do a direct put_device. 3657 **/ 3658 static void scsi_disk_release(struct device *dev) 3659 { 3660 struct scsi_disk *sdkp = to_scsi_disk(dev); 3661 struct gendisk *disk = sdkp->disk; 3662 struct request_queue *q = disk->queue; 3663 3664 ida_free(&sd_index_ida, sdkp->index); 3665 3666 /* 3667 * Wait until all requests that are in progress have completed. 3668 * This is necessary to avoid that e.g. scsi_end_request() crashes 3669 * due to clearing the disk->private_data pointer. Wait from inside 3670 * scsi_disk_release() instead of from sd_release() to avoid that 3671 * freezing and unfreezing the request queue affects user space I/O 3672 * in case multiple processes open a /dev/sd... node concurrently. 3673 */ 3674 blk_mq_freeze_queue(q); 3675 blk_mq_unfreeze_queue(q); 3676 3677 disk->private_data = NULL; 3678 put_disk(disk); 3679 put_device(&sdkp->device->sdev_gendev); 3680 3681 sd_zbc_release_disk(sdkp); 3682 3683 kfree(sdkp); 3684 } 3685 3686 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3687 { 3688 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3689 struct scsi_sense_hdr sshdr; 3690 struct scsi_device *sdp = sdkp->device; 3691 int res; 3692 3693 if (start) 3694 cmd[4] |= 1; /* START */ 3695 3696 if (sdp->start_stop_pwr_cond) 3697 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3698 3699 if (!scsi_device_online(sdp)) 3700 return -ENODEV; 3701 3702 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3703 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL); 3704 if (res) { 3705 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3706 if (res > 0 && scsi_sense_valid(&sshdr)) { 3707 sd_print_sense_hdr(sdkp, &sshdr); 3708 /* 0x3a is medium not present */ 3709 if (sshdr.asc == 0x3a) 3710 res = 0; 3711 } 3712 } 3713 3714 /* SCSI error codes must not go to the generic layer */ 3715 if (res) 3716 return -EIO; 3717 3718 return 0; 3719 } 3720 3721 /* 3722 * Send a SYNCHRONIZE CACHE instruction down to the device through 3723 * the normal SCSI command structure. Wait for the command to 3724 * complete. 3725 */ 3726 static void sd_shutdown(struct device *dev) 3727 { 3728 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3729 3730 if (!sdkp) 3731 return; /* this can happen */ 3732 3733 if (pm_runtime_suspended(dev)) 3734 return; 3735 3736 if (sdkp->WCE && sdkp->media_present) { 3737 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3738 sd_sync_cache(sdkp, NULL); 3739 } 3740 3741 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3742 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3743 sd_start_stop_device(sdkp, 0); 3744 } 3745 } 3746 3747 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3748 { 3749 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3750 struct scsi_sense_hdr sshdr; 3751 int ret = 0; 3752 3753 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3754 return 0; 3755 3756 if (sdkp->WCE && sdkp->media_present) { 3757 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3758 ret = sd_sync_cache(sdkp, &sshdr); 3759 3760 if (ret) { 3761 /* ignore OFFLINE device */ 3762 if (ret == -ENODEV) 3763 return 0; 3764 3765 if (!scsi_sense_valid(&sshdr) || 3766 sshdr.sense_key != ILLEGAL_REQUEST) 3767 return ret; 3768 3769 /* 3770 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3771 * doesn't support sync. There's not much to do and 3772 * suspend shouldn't fail. 3773 */ 3774 ret = 0; 3775 } 3776 } 3777 3778 if (sdkp->device->manage_start_stop) { 3779 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3780 /* an error is not worth aborting a system sleep */ 3781 ret = sd_start_stop_device(sdkp, 0); 3782 if (ignore_stop_errors) 3783 ret = 0; 3784 } 3785 3786 return ret; 3787 } 3788 3789 static int sd_suspend_system(struct device *dev) 3790 { 3791 if (pm_runtime_suspended(dev)) 3792 return 0; 3793 3794 return sd_suspend_common(dev, true); 3795 } 3796 3797 static int sd_suspend_runtime(struct device *dev) 3798 { 3799 return sd_suspend_common(dev, false); 3800 } 3801 3802 static int sd_resume(struct device *dev) 3803 { 3804 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3805 int ret; 3806 3807 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3808 return 0; 3809 3810 if (!sdkp->device->manage_start_stop) 3811 return 0; 3812 3813 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3814 ret = sd_start_stop_device(sdkp, 1); 3815 if (!ret) 3816 opal_unlock_from_suspend(sdkp->opal_dev); 3817 return ret; 3818 } 3819 3820 static int sd_resume_system(struct device *dev) 3821 { 3822 if (pm_runtime_suspended(dev)) 3823 return 0; 3824 3825 return sd_resume(dev); 3826 } 3827 3828 static int sd_resume_runtime(struct device *dev) 3829 { 3830 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3831 struct scsi_device *sdp; 3832 3833 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3834 return 0; 3835 3836 sdp = sdkp->device; 3837 3838 if (sdp->ignore_media_change) { 3839 /* clear the device's sense data */ 3840 static const u8 cmd[10] = { REQUEST_SENSE }; 3841 3842 if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, 3843 NULL, sdp->request_queue->rq_timeout, 1, 0, 3844 RQF_PM, NULL)) 3845 sd_printk(KERN_NOTICE, sdkp, 3846 "Failed to clear sense data\n"); 3847 } 3848 3849 return sd_resume(dev); 3850 } 3851 3852 /** 3853 * init_sd - entry point for this driver (both when built in or when 3854 * a module). 3855 * 3856 * Note: this function registers this driver with the scsi mid-level. 3857 **/ 3858 static int __init init_sd(void) 3859 { 3860 int majors = 0, i, err; 3861 3862 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3863 3864 for (i = 0; i < SD_MAJORS; i++) { 3865 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3866 continue; 3867 majors++; 3868 } 3869 3870 if (!majors) 3871 return -ENODEV; 3872 3873 err = class_register(&sd_disk_class); 3874 if (err) 3875 goto err_out; 3876 3877 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3878 0, 0, NULL); 3879 if (!sd_cdb_cache) { 3880 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3881 err = -ENOMEM; 3882 goto err_out_class; 3883 } 3884 3885 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3886 if (!sd_cdb_pool) { 3887 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3888 err = -ENOMEM; 3889 goto err_out_cache; 3890 } 3891 3892 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3893 if (!sd_page_pool) { 3894 printk(KERN_ERR "sd: can't init discard page pool\n"); 3895 err = -ENOMEM; 3896 goto err_out_ppool; 3897 } 3898 3899 err = scsi_register_driver(&sd_template.gendrv); 3900 if (err) 3901 goto err_out_driver; 3902 3903 return 0; 3904 3905 err_out_driver: 3906 mempool_destroy(sd_page_pool); 3907 3908 err_out_ppool: 3909 mempool_destroy(sd_cdb_pool); 3910 3911 err_out_cache: 3912 kmem_cache_destroy(sd_cdb_cache); 3913 3914 err_out_class: 3915 class_unregister(&sd_disk_class); 3916 err_out: 3917 for (i = 0; i < SD_MAJORS; i++) 3918 unregister_blkdev(sd_major(i), "sd"); 3919 return err; 3920 } 3921 3922 /** 3923 * exit_sd - exit point for this driver (when it is a module). 3924 * 3925 * Note: this function unregisters this driver from the scsi mid-level. 3926 **/ 3927 static void __exit exit_sd(void) 3928 { 3929 int i; 3930 3931 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3932 3933 scsi_unregister_driver(&sd_template.gendrv); 3934 mempool_destroy(sd_cdb_pool); 3935 mempool_destroy(sd_page_pool); 3936 kmem_cache_destroy(sd_cdb_cache); 3937 3938 class_unregister(&sd_disk_class); 3939 3940 for (i = 0; i < SD_MAJORS; i++) 3941 unregister_blkdev(sd_major(i), "sd"); 3942 } 3943 3944 module_init(init_sd); 3945 module_exit(exit_sd); 3946 3947 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3948 { 3949 scsi_print_sense_hdr(sdkp->device, 3950 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3951 } 3952 3953 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3954 { 3955 const char *hb_string = scsi_hostbyte_string(result); 3956 3957 if (hb_string) 3958 sd_printk(KERN_INFO, sdkp, 3959 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3960 hb_string ? hb_string : "invalid", 3961 "DRIVER_OK"); 3962 else 3963 sd_printk(KERN_INFO, sdkp, 3964 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 3965 msg, host_byte(result), "DRIVER_OK"); 3966 } 3967