xref: /openbmc/linux/drivers/scsi/sd.c (revision 1a90ce36)
1 /*
2  *      sd.c Copyright (C) 1992 Drew Eckhardt
3  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4  *
5  *      Linux scsi disk driver
6  *              Initial versions: Drew Eckhardt
7  *              Subsequent revisions: Eric Youngdale
8  *	Modification history:
9  *       - Drew Eckhardt <drew@colorado.edu> original
10  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11  *         outstanding request, and other enhancements.
12  *         Support loadable low-level scsi drivers.
13  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14  *         eight major numbers.
15  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17  *	   sd_init and cleanups.
18  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
19  *	   not being read in sd_open. Fix problem where removable media
20  *	   could be ejected after sd_open.
21  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24  *	   Support 32k/1M disks.
25  *
26  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
27  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
31  *	Note: when the logging level is set by the user, it must be greater
32  *	than the level indicated above to trigger output.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/sed-opal.h>
54 #include <linux/pm_runtime.h>
55 #include <linux/pr.h>
56 #include <linux/t10-pi.h>
57 #include <linux/uaccess.h>
58 #include <asm/unaligned.h>
59 
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_dbg.h>
63 #include <scsi/scsi_device.h>
64 #include <scsi/scsi_driver.h>
65 #include <scsi/scsi_eh.h>
66 #include <scsi/scsi_host.h>
67 #include <scsi/scsi_ioctl.h>
68 #include <scsi/scsicam.h>
69 
70 #include "sd.h"
71 #include "scsi_priv.h"
72 #include "scsi_logging.h"
73 
74 MODULE_AUTHOR("Eric Youngdale");
75 MODULE_DESCRIPTION("SCSI disk (sd) driver");
76 MODULE_LICENSE("GPL");
77 
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
98 
99 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
100 #define SD_MINORS	16
101 #else
102 #define SD_MINORS	0
103 #endif
104 
105 static void sd_config_discard(struct scsi_disk *, unsigned int);
106 static void sd_config_write_same(struct scsi_disk *);
107 static int  sd_revalidate_disk(struct gendisk *);
108 static void sd_unlock_native_capacity(struct gendisk *disk);
109 static int  sd_probe(struct device *);
110 static int  sd_remove(struct device *);
111 static void sd_shutdown(struct device *);
112 static int sd_suspend_system(struct device *);
113 static int sd_suspend_runtime(struct device *);
114 static int sd_resume(struct device *);
115 static void sd_rescan(struct device *);
116 static int sd_init_command(struct scsi_cmnd *SCpnt);
117 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
118 static int sd_done(struct scsi_cmnd *);
119 static void sd_eh_reset(struct scsi_cmnd *);
120 static int sd_eh_action(struct scsi_cmnd *, int);
121 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
122 static void scsi_disk_release(struct device *cdev);
123 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
124 static void sd_print_result(const struct scsi_disk *, const char *, int);
125 
126 static DEFINE_SPINLOCK(sd_index_lock);
127 static DEFINE_IDA(sd_index_ida);
128 
129 /* This semaphore is used to mediate the 0->1 reference get in the
130  * face of object destruction (i.e. we can't allow a get on an
131  * object after last put) */
132 static DEFINE_MUTEX(sd_ref_mutex);
133 
134 static struct kmem_cache *sd_cdb_cache;
135 static mempool_t *sd_cdb_pool;
136 
137 static const char *sd_cache_types[] = {
138 	"write through", "none", "write back",
139 	"write back, no read (daft)"
140 };
141 
142 static void sd_set_flush_flag(struct scsi_disk *sdkp)
143 {
144 	bool wc = false, fua = false;
145 
146 	if (sdkp->WCE) {
147 		wc = true;
148 		if (sdkp->DPOFUA)
149 			fua = true;
150 	}
151 
152 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
153 }
154 
155 static ssize_t
156 cache_type_store(struct device *dev, struct device_attribute *attr,
157 		 const char *buf, size_t count)
158 {
159 	int ct, rcd, wce, sp;
160 	struct scsi_disk *sdkp = to_scsi_disk(dev);
161 	struct scsi_device *sdp = sdkp->device;
162 	char buffer[64];
163 	char *buffer_data;
164 	struct scsi_mode_data data;
165 	struct scsi_sense_hdr sshdr;
166 	static const char temp[] = "temporary ";
167 	int len;
168 
169 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
170 		/* no cache control on RBC devices; theoretically they
171 		 * can do it, but there's probably so many exceptions
172 		 * it's not worth the risk */
173 		return -EINVAL;
174 
175 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
176 		buf += sizeof(temp) - 1;
177 		sdkp->cache_override = 1;
178 	} else {
179 		sdkp->cache_override = 0;
180 	}
181 
182 	ct = sysfs_match_string(sd_cache_types, buf);
183 	if (ct < 0)
184 		return -EINVAL;
185 
186 	rcd = ct & 0x01 ? 1 : 0;
187 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
188 
189 	if (sdkp->cache_override) {
190 		sdkp->WCE = wce;
191 		sdkp->RCD = rcd;
192 		sd_set_flush_flag(sdkp);
193 		return count;
194 	}
195 
196 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
197 			    SD_MAX_RETRIES, &data, NULL))
198 		return -EINVAL;
199 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
200 		  data.block_descriptor_length);
201 	buffer_data = buffer + data.header_length +
202 		data.block_descriptor_length;
203 	buffer_data[2] &= ~0x05;
204 	buffer_data[2] |= wce << 2 | rcd;
205 	sp = buffer_data[0] & 0x80 ? 1 : 0;
206 	buffer_data[0] &= ~0x80;
207 
208 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
209 			     SD_MAX_RETRIES, &data, &sshdr)) {
210 		if (scsi_sense_valid(&sshdr))
211 			sd_print_sense_hdr(sdkp, &sshdr);
212 		return -EINVAL;
213 	}
214 	revalidate_disk(sdkp->disk);
215 	return count;
216 }
217 
218 static ssize_t
219 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
220 		       char *buf)
221 {
222 	struct scsi_disk *sdkp = to_scsi_disk(dev);
223 	struct scsi_device *sdp = sdkp->device;
224 
225 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
226 }
227 
228 static ssize_t
229 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
230 			const char *buf, size_t count)
231 {
232 	struct scsi_disk *sdkp = to_scsi_disk(dev);
233 	struct scsi_device *sdp = sdkp->device;
234 	bool v;
235 
236 	if (!capable(CAP_SYS_ADMIN))
237 		return -EACCES;
238 
239 	if (kstrtobool(buf, &v))
240 		return -EINVAL;
241 
242 	sdp->manage_start_stop = v;
243 
244 	return count;
245 }
246 static DEVICE_ATTR_RW(manage_start_stop);
247 
248 static ssize_t
249 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
250 {
251 	struct scsi_disk *sdkp = to_scsi_disk(dev);
252 
253 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
254 }
255 
256 static ssize_t
257 allow_restart_store(struct device *dev, struct device_attribute *attr,
258 		    const char *buf, size_t count)
259 {
260 	bool v;
261 	struct scsi_disk *sdkp = to_scsi_disk(dev);
262 	struct scsi_device *sdp = sdkp->device;
263 
264 	if (!capable(CAP_SYS_ADMIN))
265 		return -EACCES;
266 
267 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
268 		return -EINVAL;
269 
270 	if (kstrtobool(buf, &v))
271 		return -EINVAL;
272 
273 	sdp->allow_restart = v;
274 
275 	return count;
276 }
277 static DEVICE_ATTR_RW(allow_restart);
278 
279 static ssize_t
280 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
281 {
282 	struct scsi_disk *sdkp = to_scsi_disk(dev);
283 	int ct = sdkp->RCD + 2*sdkp->WCE;
284 
285 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
286 }
287 static DEVICE_ATTR_RW(cache_type);
288 
289 static ssize_t
290 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
291 {
292 	struct scsi_disk *sdkp = to_scsi_disk(dev);
293 
294 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
295 }
296 static DEVICE_ATTR_RO(FUA);
297 
298 static ssize_t
299 protection_type_show(struct device *dev, struct device_attribute *attr,
300 		     char *buf)
301 {
302 	struct scsi_disk *sdkp = to_scsi_disk(dev);
303 
304 	return sprintf(buf, "%u\n", sdkp->protection_type);
305 }
306 
307 static ssize_t
308 protection_type_store(struct device *dev, struct device_attribute *attr,
309 		      const char *buf, size_t count)
310 {
311 	struct scsi_disk *sdkp = to_scsi_disk(dev);
312 	unsigned int val;
313 	int err;
314 
315 	if (!capable(CAP_SYS_ADMIN))
316 		return -EACCES;
317 
318 	err = kstrtouint(buf, 10, &val);
319 
320 	if (err)
321 		return err;
322 
323 	if (val <= T10_PI_TYPE3_PROTECTION)
324 		sdkp->protection_type = val;
325 
326 	return count;
327 }
328 static DEVICE_ATTR_RW(protection_type);
329 
330 static ssize_t
331 protection_mode_show(struct device *dev, struct device_attribute *attr,
332 		     char *buf)
333 {
334 	struct scsi_disk *sdkp = to_scsi_disk(dev);
335 	struct scsi_device *sdp = sdkp->device;
336 	unsigned int dif, dix;
337 
338 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
339 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
340 
341 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
342 		dif = 0;
343 		dix = 1;
344 	}
345 
346 	if (!dif && !dix)
347 		return sprintf(buf, "none\n");
348 
349 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
350 }
351 static DEVICE_ATTR_RO(protection_mode);
352 
353 static ssize_t
354 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
355 {
356 	struct scsi_disk *sdkp = to_scsi_disk(dev);
357 
358 	return sprintf(buf, "%u\n", sdkp->ATO);
359 }
360 static DEVICE_ATTR_RO(app_tag_own);
361 
362 static ssize_t
363 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
364 		       char *buf)
365 {
366 	struct scsi_disk *sdkp = to_scsi_disk(dev);
367 
368 	return sprintf(buf, "%u\n", sdkp->lbpme);
369 }
370 static DEVICE_ATTR_RO(thin_provisioning);
371 
372 /* sysfs_match_string() requires dense arrays */
373 static const char *lbp_mode[] = {
374 	[SD_LBP_FULL]		= "full",
375 	[SD_LBP_UNMAP]		= "unmap",
376 	[SD_LBP_WS16]		= "writesame_16",
377 	[SD_LBP_WS10]		= "writesame_10",
378 	[SD_LBP_ZERO]		= "writesame_zero",
379 	[SD_LBP_DISABLE]	= "disabled",
380 };
381 
382 static ssize_t
383 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
384 		       char *buf)
385 {
386 	struct scsi_disk *sdkp = to_scsi_disk(dev);
387 
388 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
389 }
390 
391 static ssize_t
392 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
393 			const char *buf, size_t count)
394 {
395 	struct scsi_disk *sdkp = to_scsi_disk(dev);
396 	struct scsi_device *sdp = sdkp->device;
397 	int mode;
398 
399 	if (!capable(CAP_SYS_ADMIN))
400 		return -EACCES;
401 
402 	if (sd_is_zoned(sdkp)) {
403 		sd_config_discard(sdkp, SD_LBP_DISABLE);
404 		return count;
405 	}
406 
407 	if (sdp->type != TYPE_DISK)
408 		return -EINVAL;
409 
410 	mode = sysfs_match_string(lbp_mode, buf);
411 	if (mode < 0)
412 		return -EINVAL;
413 
414 	sd_config_discard(sdkp, mode);
415 
416 	return count;
417 }
418 static DEVICE_ATTR_RW(provisioning_mode);
419 
420 /* sysfs_match_string() requires dense arrays */
421 static const char *zeroing_mode[] = {
422 	[SD_ZERO_WRITE]		= "write",
423 	[SD_ZERO_WS]		= "writesame",
424 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
425 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
426 };
427 
428 static ssize_t
429 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
430 		  char *buf)
431 {
432 	struct scsi_disk *sdkp = to_scsi_disk(dev);
433 
434 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
435 }
436 
437 static ssize_t
438 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
439 		   const char *buf, size_t count)
440 {
441 	struct scsi_disk *sdkp = to_scsi_disk(dev);
442 	int mode;
443 
444 	if (!capable(CAP_SYS_ADMIN))
445 		return -EACCES;
446 
447 	mode = sysfs_match_string(zeroing_mode, buf);
448 	if (mode < 0)
449 		return -EINVAL;
450 
451 	sdkp->zeroing_mode = mode;
452 
453 	return count;
454 }
455 static DEVICE_ATTR_RW(zeroing_mode);
456 
457 static ssize_t
458 max_medium_access_timeouts_show(struct device *dev,
459 				struct device_attribute *attr, char *buf)
460 {
461 	struct scsi_disk *sdkp = to_scsi_disk(dev);
462 
463 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
464 }
465 
466 static ssize_t
467 max_medium_access_timeouts_store(struct device *dev,
468 				 struct device_attribute *attr, const char *buf,
469 				 size_t count)
470 {
471 	struct scsi_disk *sdkp = to_scsi_disk(dev);
472 	int err;
473 
474 	if (!capable(CAP_SYS_ADMIN))
475 		return -EACCES;
476 
477 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
478 
479 	return err ? err : count;
480 }
481 static DEVICE_ATTR_RW(max_medium_access_timeouts);
482 
483 static ssize_t
484 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
485 			   char *buf)
486 {
487 	struct scsi_disk *sdkp = to_scsi_disk(dev);
488 
489 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
490 }
491 
492 static ssize_t
493 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
494 			    const char *buf, size_t count)
495 {
496 	struct scsi_disk *sdkp = to_scsi_disk(dev);
497 	struct scsi_device *sdp = sdkp->device;
498 	unsigned long max;
499 	int err;
500 
501 	if (!capable(CAP_SYS_ADMIN))
502 		return -EACCES;
503 
504 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
505 		return -EINVAL;
506 
507 	err = kstrtoul(buf, 10, &max);
508 
509 	if (err)
510 		return err;
511 
512 	if (max == 0)
513 		sdp->no_write_same = 1;
514 	else if (max <= SD_MAX_WS16_BLOCKS) {
515 		sdp->no_write_same = 0;
516 		sdkp->max_ws_blocks = max;
517 	}
518 
519 	sd_config_write_same(sdkp);
520 
521 	return count;
522 }
523 static DEVICE_ATTR_RW(max_write_same_blocks);
524 
525 static struct attribute *sd_disk_attrs[] = {
526 	&dev_attr_cache_type.attr,
527 	&dev_attr_FUA.attr,
528 	&dev_attr_allow_restart.attr,
529 	&dev_attr_manage_start_stop.attr,
530 	&dev_attr_protection_type.attr,
531 	&dev_attr_protection_mode.attr,
532 	&dev_attr_app_tag_own.attr,
533 	&dev_attr_thin_provisioning.attr,
534 	&dev_attr_provisioning_mode.attr,
535 	&dev_attr_zeroing_mode.attr,
536 	&dev_attr_max_write_same_blocks.attr,
537 	&dev_attr_max_medium_access_timeouts.attr,
538 	NULL,
539 };
540 ATTRIBUTE_GROUPS(sd_disk);
541 
542 static struct class sd_disk_class = {
543 	.name		= "scsi_disk",
544 	.owner		= THIS_MODULE,
545 	.dev_release	= scsi_disk_release,
546 	.dev_groups	= sd_disk_groups,
547 };
548 
549 static const struct dev_pm_ops sd_pm_ops = {
550 	.suspend		= sd_suspend_system,
551 	.resume			= sd_resume,
552 	.poweroff		= sd_suspend_system,
553 	.restore		= sd_resume,
554 	.runtime_suspend	= sd_suspend_runtime,
555 	.runtime_resume		= sd_resume,
556 };
557 
558 static struct scsi_driver sd_template = {
559 	.gendrv = {
560 		.name		= "sd",
561 		.owner		= THIS_MODULE,
562 		.probe		= sd_probe,
563 		.remove		= sd_remove,
564 		.shutdown	= sd_shutdown,
565 		.pm		= &sd_pm_ops,
566 	},
567 	.rescan			= sd_rescan,
568 	.init_command		= sd_init_command,
569 	.uninit_command		= sd_uninit_command,
570 	.done			= sd_done,
571 	.eh_action		= sd_eh_action,
572 	.eh_reset		= sd_eh_reset,
573 };
574 
575 /*
576  * Dummy kobj_map->probe function.
577  * The default ->probe function will call modprobe, which is
578  * pointless as this module is already loaded.
579  */
580 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
581 {
582 	return NULL;
583 }
584 
585 /*
586  * Device no to disk mapping:
587  *
588  *       major         disc2     disc  p1
589  *   |............|.............|....|....| <- dev_t
590  *    31        20 19          8 7  4 3  0
591  *
592  * Inside a major, we have 16k disks, however mapped non-
593  * contiguously. The first 16 disks are for major0, the next
594  * ones with major1, ... Disk 256 is for major0 again, disk 272
595  * for major1, ...
596  * As we stay compatible with our numbering scheme, we can reuse
597  * the well-know SCSI majors 8, 65--71, 136--143.
598  */
599 static int sd_major(int major_idx)
600 {
601 	switch (major_idx) {
602 	case 0:
603 		return SCSI_DISK0_MAJOR;
604 	case 1 ... 7:
605 		return SCSI_DISK1_MAJOR + major_idx - 1;
606 	case 8 ... 15:
607 		return SCSI_DISK8_MAJOR + major_idx - 8;
608 	default:
609 		BUG();
610 		return 0;	/* shut up gcc */
611 	}
612 }
613 
614 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
615 {
616 	struct scsi_disk *sdkp = NULL;
617 
618 	mutex_lock(&sd_ref_mutex);
619 
620 	if (disk->private_data) {
621 		sdkp = scsi_disk(disk);
622 		if (scsi_device_get(sdkp->device) == 0)
623 			get_device(&sdkp->dev);
624 		else
625 			sdkp = NULL;
626 	}
627 	mutex_unlock(&sd_ref_mutex);
628 	return sdkp;
629 }
630 
631 static void scsi_disk_put(struct scsi_disk *sdkp)
632 {
633 	struct scsi_device *sdev = sdkp->device;
634 
635 	mutex_lock(&sd_ref_mutex);
636 	put_device(&sdkp->dev);
637 	scsi_device_put(sdev);
638 	mutex_unlock(&sd_ref_mutex);
639 }
640 
641 #ifdef CONFIG_BLK_SED_OPAL
642 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
643 		size_t len, bool send)
644 {
645 	struct scsi_device *sdev = data;
646 	u8 cdb[12] = { 0, };
647 	int ret;
648 
649 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
650 	cdb[1] = secp;
651 	put_unaligned_be16(spsp, &cdb[2]);
652 	put_unaligned_be32(len, &cdb[6]);
653 
654 	ret = scsi_execute_req(sdev, cdb,
655 			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
656 			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
657 	return ret <= 0 ? ret : -EIO;
658 }
659 #endif /* CONFIG_BLK_SED_OPAL */
660 
661 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
662 					   unsigned int dix, unsigned int dif)
663 {
664 	struct bio *bio = scmd->request->bio;
665 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
666 	unsigned int protect = 0;
667 
668 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
669 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
670 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
671 
672 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
673 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
674 	}
675 
676 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
677 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
678 
679 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
680 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
681 	}
682 
683 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
684 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
685 
686 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
687 			protect = 3 << 5;	/* Disable target PI checking */
688 		else
689 			protect = 1 << 5;	/* Enable target PI checking */
690 	}
691 
692 	scsi_set_prot_op(scmd, prot_op);
693 	scsi_set_prot_type(scmd, dif);
694 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
695 
696 	return protect;
697 }
698 
699 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
700 {
701 	struct request_queue *q = sdkp->disk->queue;
702 	unsigned int logical_block_size = sdkp->device->sector_size;
703 	unsigned int max_blocks = 0;
704 
705 	q->limits.discard_alignment =
706 		sdkp->unmap_alignment * logical_block_size;
707 	q->limits.discard_granularity =
708 		max(sdkp->physical_block_size,
709 		    sdkp->unmap_granularity * logical_block_size);
710 	sdkp->provisioning_mode = mode;
711 
712 	switch (mode) {
713 
714 	case SD_LBP_FULL:
715 	case SD_LBP_DISABLE:
716 		blk_queue_max_discard_sectors(q, 0);
717 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
718 		return;
719 
720 	case SD_LBP_UNMAP:
721 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
722 					  (u32)SD_MAX_WS16_BLOCKS);
723 		break;
724 
725 	case SD_LBP_WS16:
726 		if (sdkp->device->unmap_limit_for_ws)
727 			max_blocks = sdkp->max_unmap_blocks;
728 		else
729 			max_blocks = sdkp->max_ws_blocks;
730 
731 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
732 		break;
733 
734 	case SD_LBP_WS10:
735 		if (sdkp->device->unmap_limit_for_ws)
736 			max_blocks = sdkp->max_unmap_blocks;
737 		else
738 			max_blocks = sdkp->max_ws_blocks;
739 
740 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
741 		break;
742 
743 	case SD_LBP_ZERO:
744 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
745 					  (u32)SD_MAX_WS10_BLOCKS);
746 		break;
747 	}
748 
749 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
750 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
751 }
752 
753 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
754 {
755 	struct scsi_device *sdp = cmd->device;
756 	struct request *rq = cmd->request;
757 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
758 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
759 	unsigned int data_len = 24;
760 	char *buf;
761 
762 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
763 	if (!rq->special_vec.bv_page)
764 		return BLKPREP_DEFER;
765 	rq->special_vec.bv_offset = 0;
766 	rq->special_vec.bv_len = data_len;
767 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
768 
769 	cmd->cmd_len = 10;
770 	cmd->cmnd[0] = UNMAP;
771 	cmd->cmnd[8] = 24;
772 
773 	buf = page_address(rq->special_vec.bv_page);
774 	put_unaligned_be16(6 + 16, &buf[0]);
775 	put_unaligned_be16(16, &buf[2]);
776 	put_unaligned_be64(sector, &buf[8]);
777 	put_unaligned_be32(nr_sectors, &buf[16]);
778 
779 	cmd->allowed = SD_MAX_RETRIES;
780 	cmd->transfersize = data_len;
781 	rq->timeout = SD_TIMEOUT;
782 	scsi_req(rq)->resid_len = data_len;
783 
784 	return scsi_init_io(cmd);
785 }
786 
787 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap)
788 {
789 	struct scsi_device *sdp = cmd->device;
790 	struct request *rq = cmd->request;
791 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
792 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
793 	u32 data_len = sdp->sector_size;
794 
795 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
796 	if (!rq->special_vec.bv_page)
797 		return BLKPREP_DEFER;
798 	rq->special_vec.bv_offset = 0;
799 	rq->special_vec.bv_len = data_len;
800 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
801 
802 	cmd->cmd_len = 16;
803 	cmd->cmnd[0] = WRITE_SAME_16;
804 	if (unmap)
805 		cmd->cmnd[1] = 0x8; /* UNMAP */
806 	put_unaligned_be64(sector, &cmd->cmnd[2]);
807 	put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
808 
809 	cmd->allowed = SD_MAX_RETRIES;
810 	cmd->transfersize = data_len;
811 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
812 	scsi_req(rq)->resid_len = data_len;
813 
814 	return scsi_init_io(cmd);
815 }
816 
817 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap)
818 {
819 	struct scsi_device *sdp = cmd->device;
820 	struct request *rq = cmd->request;
821 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
822 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
823 	u32 data_len = sdp->sector_size;
824 
825 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
826 	if (!rq->special_vec.bv_page)
827 		return BLKPREP_DEFER;
828 	rq->special_vec.bv_offset = 0;
829 	rq->special_vec.bv_len = data_len;
830 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
831 
832 	cmd->cmd_len = 10;
833 	cmd->cmnd[0] = WRITE_SAME;
834 	if (unmap)
835 		cmd->cmnd[1] = 0x8; /* UNMAP */
836 	put_unaligned_be32(sector, &cmd->cmnd[2]);
837 	put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
838 
839 	cmd->allowed = SD_MAX_RETRIES;
840 	cmd->transfersize = data_len;
841 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
842 	scsi_req(rq)->resid_len = data_len;
843 
844 	return scsi_init_io(cmd);
845 }
846 
847 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
848 {
849 	struct request *rq = cmd->request;
850 	struct scsi_device *sdp = cmd->device;
851 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
852 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
853 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
854 
855 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
856 		switch (sdkp->zeroing_mode) {
857 		case SD_ZERO_WS16_UNMAP:
858 			return sd_setup_write_same16_cmnd(cmd, true);
859 		case SD_ZERO_WS10_UNMAP:
860 			return sd_setup_write_same10_cmnd(cmd, true);
861 		}
862 	}
863 
864 	if (sdp->no_write_same)
865 		return BLKPREP_INVALID;
866 
867 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
868 		return sd_setup_write_same16_cmnd(cmd, false);
869 
870 	return sd_setup_write_same10_cmnd(cmd, false);
871 }
872 
873 static void sd_config_write_same(struct scsi_disk *sdkp)
874 {
875 	struct request_queue *q = sdkp->disk->queue;
876 	unsigned int logical_block_size = sdkp->device->sector_size;
877 
878 	if (sdkp->device->no_write_same) {
879 		sdkp->max_ws_blocks = 0;
880 		goto out;
881 	}
882 
883 	/* Some devices can not handle block counts above 0xffff despite
884 	 * supporting WRITE SAME(16). Consequently we default to 64k
885 	 * blocks per I/O unless the device explicitly advertises a
886 	 * bigger limit.
887 	 */
888 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
889 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
890 						   (u32)SD_MAX_WS16_BLOCKS);
891 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
892 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
893 						   (u32)SD_MAX_WS10_BLOCKS);
894 	else {
895 		sdkp->device->no_write_same = 1;
896 		sdkp->max_ws_blocks = 0;
897 	}
898 
899 	if (sdkp->lbprz && sdkp->lbpws)
900 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
901 	else if (sdkp->lbprz && sdkp->lbpws10)
902 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
903 	else if (sdkp->max_ws_blocks)
904 		sdkp->zeroing_mode = SD_ZERO_WS;
905 	else
906 		sdkp->zeroing_mode = SD_ZERO_WRITE;
907 
908 	if (sdkp->max_ws_blocks &&
909 	    sdkp->physical_block_size > logical_block_size) {
910 		/*
911 		 * Reporting a maximum number of blocks that is not aligned
912 		 * on the device physical size would cause a large write same
913 		 * request to be split into physically unaligned chunks by
914 		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
915 		 * even if the caller of these functions took care to align the
916 		 * large request. So make sure the maximum reported is aligned
917 		 * to the device physical block size. This is only an optional
918 		 * optimization for regular disks, but this is mandatory to
919 		 * avoid failure of large write same requests directed at
920 		 * sequential write required zones of host-managed ZBC disks.
921 		 */
922 		sdkp->max_ws_blocks =
923 			round_down(sdkp->max_ws_blocks,
924 				   bytes_to_logical(sdkp->device,
925 						    sdkp->physical_block_size));
926 	}
927 
928 out:
929 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
930 					 (logical_block_size >> 9));
931 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
932 					 (logical_block_size >> 9));
933 }
934 
935 /**
936  * sd_setup_write_same_cmnd - write the same data to multiple blocks
937  * @cmd: command to prepare
938  *
939  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
940  * the preference indicated by the target device.
941  **/
942 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
943 {
944 	struct request *rq = cmd->request;
945 	struct scsi_device *sdp = cmd->device;
946 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
947 	struct bio *bio = rq->bio;
948 	sector_t sector = blk_rq_pos(rq);
949 	unsigned int nr_sectors = blk_rq_sectors(rq);
950 	unsigned int nr_bytes = blk_rq_bytes(rq);
951 	int ret;
952 
953 	if (sdkp->device->no_write_same)
954 		return BLKPREP_INVALID;
955 
956 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
957 
958 	sector >>= ilog2(sdp->sector_size) - 9;
959 	nr_sectors >>= ilog2(sdp->sector_size) - 9;
960 
961 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
962 
963 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
964 		cmd->cmd_len = 16;
965 		cmd->cmnd[0] = WRITE_SAME_16;
966 		put_unaligned_be64(sector, &cmd->cmnd[2]);
967 		put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
968 	} else {
969 		cmd->cmd_len = 10;
970 		cmd->cmnd[0] = WRITE_SAME;
971 		put_unaligned_be32(sector, &cmd->cmnd[2]);
972 		put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
973 	}
974 
975 	cmd->transfersize = sdp->sector_size;
976 	cmd->allowed = SD_MAX_RETRIES;
977 
978 	/*
979 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
980 	 * different from the amount of data actually written to the target.
981 	 *
982 	 * We set up __data_len to the amount of data transferred via the
983 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
984 	 * to transfer a single sector of data first, but then reset it to
985 	 * the amount of data to be written right after so that the I/O path
986 	 * knows how much to actually write.
987 	 */
988 	rq->__data_len = sdp->sector_size;
989 	ret = scsi_init_io(cmd);
990 	rq->__data_len = nr_bytes;
991 
992 	return ret;
993 }
994 
995 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
996 {
997 	struct request *rq = cmd->request;
998 
999 	/* flush requests don't perform I/O, zero the S/G table */
1000 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1001 
1002 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1003 	cmd->cmd_len = 10;
1004 	cmd->transfersize = 0;
1005 	cmd->allowed = SD_MAX_RETRIES;
1006 
1007 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1008 	return BLKPREP_OK;
1009 }
1010 
1011 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
1012 {
1013 	struct request *rq = SCpnt->request;
1014 	struct scsi_device *sdp = SCpnt->device;
1015 	struct gendisk *disk = rq->rq_disk;
1016 	struct scsi_disk *sdkp = scsi_disk(disk);
1017 	sector_t block = blk_rq_pos(rq);
1018 	sector_t threshold;
1019 	unsigned int this_count = blk_rq_sectors(rq);
1020 	unsigned int dif, dix;
1021 	int ret;
1022 	unsigned char protect;
1023 
1024 	ret = scsi_init_io(SCpnt);
1025 	if (ret != BLKPREP_OK)
1026 		return ret;
1027 	WARN_ON_ONCE(SCpnt != rq->special);
1028 
1029 	/* from here on until we're complete, any goto out
1030 	 * is used for a killable error condition */
1031 	ret = BLKPREP_KILL;
1032 
1033 	SCSI_LOG_HLQUEUE(1,
1034 		scmd_printk(KERN_INFO, SCpnt,
1035 			"%s: block=%llu, count=%d\n",
1036 			__func__, (unsigned long long)block, this_count));
1037 
1038 	if (!sdp || !scsi_device_online(sdp) ||
1039 	    block + blk_rq_sectors(rq) > get_capacity(disk)) {
1040 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1041 						"Finishing %u sectors\n",
1042 						blk_rq_sectors(rq)));
1043 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1044 						"Retry with 0x%p\n", SCpnt));
1045 		goto out;
1046 	}
1047 
1048 	if (sdp->changed) {
1049 		/*
1050 		 * quietly refuse to do anything to a changed disc until
1051 		 * the changed bit has been reset
1052 		 */
1053 		/* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1054 		goto out;
1055 	}
1056 
1057 	/*
1058 	 * Some SD card readers can't handle multi-sector accesses which touch
1059 	 * the last one or two hardware sectors.  Split accesses as needed.
1060 	 */
1061 	threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1062 		(sdp->sector_size / 512);
1063 
1064 	if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1065 		if (block < threshold) {
1066 			/* Access up to the threshold but not beyond */
1067 			this_count = threshold - block;
1068 		} else {
1069 			/* Access only a single hardware sector */
1070 			this_count = sdp->sector_size / 512;
1071 		}
1072 	}
1073 
1074 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1075 					(unsigned long long)block));
1076 
1077 	/*
1078 	 * If we have a 1K hardware sectorsize, prevent access to single
1079 	 * 512 byte sectors.  In theory we could handle this - in fact
1080 	 * the scsi cdrom driver must be able to handle this because
1081 	 * we typically use 1K blocksizes, and cdroms typically have
1082 	 * 2K hardware sectorsizes.  Of course, things are simpler
1083 	 * with the cdrom, since it is read-only.  For performance
1084 	 * reasons, the filesystems should be able to handle this
1085 	 * and not force the scsi disk driver to use bounce buffers
1086 	 * for this.
1087 	 */
1088 	if (sdp->sector_size == 1024) {
1089 		if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1090 			scmd_printk(KERN_ERR, SCpnt,
1091 				    "Bad block number requested\n");
1092 			goto out;
1093 		} else {
1094 			block = block >> 1;
1095 			this_count = this_count >> 1;
1096 		}
1097 	}
1098 	if (sdp->sector_size == 2048) {
1099 		if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1100 			scmd_printk(KERN_ERR, SCpnt,
1101 				    "Bad block number requested\n");
1102 			goto out;
1103 		} else {
1104 			block = block >> 2;
1105 			this_count = this_count >> 2;
1106 		}
1107 	}
1108 	if (sdp->sector_size == 4096) {
1109 		if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1110 			scmd_printk(KERN_ERR, SCpnt,
1111 				    "Bad block number requested\n");
1112 			goto out;
1113 		} else {
1114 			block = block >> 3;
1115 			this_count = this_count >> 3;
1116 		}
1117 	}
1118 	if (rq_data_dir(rq) == WRITE) {
1119 		SCpnt->cmnd[0] = WRITE_6;
1120 
1121 		if (blk_integrity_rq(rq))
1122 			sd_dif_prepare(SCpnt);
1123 
1124 	} else if (rq_data_dir(rq) == READ) {
1125 		SCpnt->cmnd[0] = READ_6;
1126 	} else {
1127 		scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1128 		goto out;
1129 	}
1130 
1131 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1132 					"%s %d/%u 512 byte blocks.\n",
1133 					(rq_data_dir(rq) == WRITE) ?
1134 					"writing" : "reading", this_count,
1135 					blk_rq_sectors(rq)));
1136 
1137 	dix = scsi_prot_sg_count(SCpnt);
1138 	dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1139 
1140 	if (dif || dix)
1141 		protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1142 	else
1143 		protect = 0;
1144 
1145 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1146 		SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1147 
1148 		if (unlikely(SCpnt->cmnd == NULL)) {
1149 			ret = BLKPREP_DEFER;
1150 			goto out;
1151 		}
1152 
1153 		SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1154 		memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1155 		SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1156 		SCpnt->cmnd[7] = 0x18;
1157 		SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1158 		SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1159 
1160 		/* LBA */
1161 		SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1162 		SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1163 		SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1164 		SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1165 		SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1166 		SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1167 		SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1168 		SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1169 
1170 		/* Expected Indirect LBA */
1171 		SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1172 		SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1173 		SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1174 		SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1175 
1176 		/* Transfer length */
1177 		SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1178 		SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1179 		SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1180 		SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1181 	} else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1182 		SCpnt->cmnd[0] += READ_16 - READ_6;
1183 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1184 		SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1185 		SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1186 		SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1187 		SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1188 		SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1189 		SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1190 		SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1191 		SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1192 		SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1193 		SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1194 		SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1195 		SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1196 		SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1197 	} else if ((this_count > 0xff) || (block > 0x1fffff) ||
1198 		   scsi_device_protection(SCpnt->device) ||
1199 		   SCpnt->device->use_10_for_rw) {
1200 		SCpnt->cmnd[0] += READ_10 - READ_6;
1201 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1202 		SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1203 		SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1204 		SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1205 		SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1206 		SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1207 		SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1208 		SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1209 	} else {
1210 		if (unlikely(rq->cmd_flags & REQ_FUA)) {
1211 			/*
1212 			 * This happens only if this drive failed
1213 			 * 10byte rw command with ILLEGAL_REQUEST
1214 			 * during operation and thus turned off
1215 			 * use_10_for_rw.
1216 			 */
1217 			scmd_printk(KERN_ERR, SCpnt,
1218 				    "FUA write on READ/WRITE(6) drive\n");
1219 			goto out;
1220 		}
1221 
1222 		SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1223 		SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1224 		SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1225 		SCpnt->cmnd[4] = (unsigned char) this_count;
1226 		SCpnt->cmnd[5] = 0;
1227 	}
1228 	SCpnt->sdb.length = this_count * sdp->sector_size;
1229 
1230 	/*
1231 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1232 	 * host adapter, it's safe to assume that we can at least transfer
1233 	 * this many bytes between each connect / disconnect.
1234 	 */
1235 	SCpnt->transfersize = sdp->sector_size;
1236 	SCpnt->underflow = this_count << 9;
1237 	SCpnt->allowed = SD_MAX_RETRIES;
1238 
1239 	/*
1240 	 * This indicates that the command is ready from our end to be
1241 	 * queued.
1242 	 */
1243 	ret = BLKPREP_OK;
1244  out:
1245 	return ret;
1246 }
1247 
1248 static int sd_init_command(struct scsi_cmnd *cmd)
1249 {
1250 	struct request *rq = cmd->request;
1251 
1252 	switch (req_op(rq)) {
1253 	case REQ_OP_DISCARD:
1254 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1255 		case SD_LBP_UNMAP:
1256 			return sd_setup_unmap_cmnd(cmd);
1257 		case SD_LBP_WS16:
1258 			return sd_setup_write_same16_cmnd(cmd, true);
1259 		case SD_LBP_WS10:
1260 			return sd_setup_write_same10_cmnd(cmd, true);
1261 		case SD_LBP_ZERO:
1262 			return sd_setup_write_same10_cmnd(cmd, false);
1263 		default:
1264 			return BLKPREP_INVALID;
1265 		}
1266 	case REQ_OP_WRITE_ZEROES:
1267 		return sd_setup_write_zeroes_cmnd(cmd);
1268 	case REQ_OP_WRITE_SAME:
1269 		return sd_setup_write_same_cmnd(cmd);
1270 	case REQ_OP_FLUSH:
1271 		return sd_setup_flush_cmnd(cmd);
1272 	case REQ_OP_READ:
1273 	case REQ_OP_WRITE:
1274 		return sd_setup_read_write_cmnd(cmd);
1275 	case REQ_OP_ZONE_REPORT:
1276 		return sd_zbc_setup_report_cmnd(cmd);
1277 	case REQ_OP_ZONE_RESET:
1278 		return sd_zbc_setup_reset_cmnd(cmd);
1279 	default:
1280 		BUG();
1281 	}
1282 }
1283 
1284 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1285 {
1286 	struct request *rq = SCpnt->request;
1287 	u8 *cmnd;
1288 
1289 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1290 		__free_page(rq->special_vec.bv_page);
1291 
1292 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1293 		cmnd = SCpnt->cmnd;
1294 		SCpnt->cmnd = NULL;
1295 		SCpnt->cmd_len = 0;
1296 		mempool_free(cmnd, sd_cdb_pool);
1297 	}
1298 }
1299 
1300 /**
1301  *	sd_open - open a scsi disk device
1302  *	@bdev: Block device of the scsi disk to open
1303  *	@mode: FMODE_* mask
1304  *
1305  *	Returns 0 if successful. Returns a negated errno value in case
1306  *	of error.
1307  *
1308  *	Note: This can be called from a user context (e.g. fsck(1) )
1309  *	or from within the kernel (e.g. as a result of a mount(1) ).
1310  *	In the latter case @inode and @filp carry an abridged amount
1311  *	of information as noted above.
1312  *
1313  *	Locking: called with bdev->bd_mutex held.
1314  **/
1315 static int sd_open(struct block_device *bdev, fmode_t mode)
1316 {
1317 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1318 	struct scsi_device *sdev;
1319 	int retval;
1320 
1321 	if (!sdkp)
1322 		return -ENXIO;
1323 
1324 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1325 
1326 	sdev = sdkp->device;
1327 
1328 	/*
1329 	 * If the device is in error recovery, wait until it is done.
1330 	 * If the device is offline, then disallow any access to it.
1331 	 */
1332 	retval = -ENXIO;
1333 	if (!scsi_block_when_processing_errors(sdev))
1334 		goto error_out;
1335 
1336 	if (sdev->removable || sdkp->write_prot)
1337 		check_disk_change(bdev);
1338 
1339 	/*
1340 	 * If the drive is empty, just let the open fail.
1341 	 */
1342 	retval = -ENOMEDIUM;
1343 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1344 		goto error_out;
1345 
1346 	/*
1347 	 * If the device has the write protect tab set, have the open fail
1348 	 * if the user expects to be able to write to the thing.
1349 	 */
1350 	retval = -EROFS;
1351 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1352 		goto error_out;
1353 
1354 	/*
1355 	 * It is possible that the disk changing stuff resulted in
1356 	 * the device being taken offline.  If this is the case,
1357 	 * report this to the user, and don't pretend that the
1358 	 * open actually succeeded.
1359 	 */
1360 	retval = -ENXIO;
1361 	if (!scsi_device_online(sdev))
1362 		goto error_out;
1363 
1364 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1365 		if (scsi_block_when_processing_errors(sdev))
1366 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1367 	}
1368 
1369 	return 0;
1370 
1371 error_out:
1372 	scsi_disk_put(sdkp);
1373 	return retval;
1374 }
1375 
1376 /**
1377  *	sd_release - invoked when the (last) close(2) is called on this
1378  *	scsi disk.
1379  *	@disk: disk to release
1380  *	@mode: FMODE_* mask
1381  *
1382  *	Returns 0.
1383  *
1384  *	Note: may block (uninterruptible) if error recovery is underway
1385  *	on this disk.
1386  *
1387  *	Locking: called with bdev->bd_mutex held.
1388  **/
1389 static void sd_release(struct gendisk *disk, fmode_t mode)
1390 {
1391 	struct scsi_disk *sdkp = scsi_disk(disk);
1392 	struct scsi_device *sdev = sdkp->device;
1393 
1394 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1395 
1396 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1397 		if (scsi_block_when_processing_errors(sdev))
1398 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1399 	}
1400 
1401 	/*
1402 	 * XXX and what if there are packets in flight and this close()
1403 	 * XXX is followed by a "rmmod sd_mod"?
1404 	 */
1405 
1406 	scsi_disk_put(sdkp);
1407 }
1408 
1409 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1410 {
1411 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1412 	struct scsi_device *sdp = sdkp->device;
1413 	struct Scsi_Host *host = sdp->host;
1414 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1415 	int diskinfo[4];
1416 
1417 	/* default to most commonly used values */
1418 	diskinfo[0] = 0x40;	/* 1 << 6 */
1419 	diskinfo[1] = 0x20;	/* 1 << 5 */
1420 	diskinfo[2] = capacity >> 11;
1421 
1422 	/* override with calculated, extended default, or driver values */
1423 	if (host->hostt->bios_param)
1424 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1425 	else
1426 		scsicam_bios_param(bdev, capacity, diskinfo);
1427 
1428 	geo->heads = diskinfo[0];
1429 	geo->sectors = diskinfo[1];
1430 	geo->cylinders = diskinfo[2];
1431 	return 0;
1432 }
1433 
1434 /**
1435  *	sd_ioctl - process an ioctl
1436  *	@bdev: target block device
1437  *	@mode: FMODE_* mask
1438  *	@cmd: ioctl command number
1439  *	@arg: this is third argument given to ioctl(2) system call.
1440  *	Often contains a pointer.
1441  *
1442  *	Returns 0 if successful (some ioctls return positive numbers on
1443  *	success as well). Returns a negated errno value in case of error.
1444  *
1445  *	Note: most ioctls are forward onto the block subsystem or further
1446  *	down in the scsi subsystem.
1447  **/
1448 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1449 		    unsigned int cmd, unsigned long arg)
1450 {
1451 	struct gendisk *disk = bdev->bd_disk;
1452 	struct scsi_disk *sdkp = scsi_disk(disk);
1453 	struct scsi_device *sdp = sdkp->device;
1454 	void __user *p = (void __user *)arg;
1455 	int error;
1456 
1457 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1458 				    "cmd=0x%x\n", disk->disk_name, cmd));
1459 
1460 	error = scsi_verify_blk_ioctl(bdev, cmd);
1461 	if (error < 0)
1462 		return error;
1463 
1464 	/*
1465 	 * If we are in the middle of error recovery, don't let anyone
1466 	 * else try and use this device.  Also, if error recovery fails, it
1467 	 * may try and take the device offline, in which case all further
1468 	 * access to the device is prohibited.
1469 	 */
1470 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1471 			(mode & FMODE_NDELAY) != 0);
1472 	if (error)
1473 		goto out;
1474 
1475 	if (is_sed_ioctl(cmd))
1476 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1477 
1478 	/*
1479 	 * Send SCSI addressing ioctls directly to mid level, send other
1480 	 * ioctls to block level and then onto mid level if they can't be
1481 	 * resolved.
1482 	 */
1483 	switch (cmd) {
1484 		case SCSI_IOCTL_GET_IDLUN:
1485 		case SCSI_IOCTL_GET_BUS_NUMBER:
1486 			error = scsi_ioctl(sdp, cmd, p);
1487 			break;
1488 		default:
1489 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1490 			if (error != -ENOTTY)
1491 				break;
1492 			error = scsi_ioctl(sdp, cmd, p);
1493 			break;
1494 	}
1495 out:
1496 	return error;
1497 }
1498 
1499 static void set_media_not_present(struct scsi_disk *sdkp)
1500 {
1501 	if (sdkp->media_present)
1502 		sdkp->device->changed = 1;
1503 
1504 	if (sdkp->device->removable) {
1505 		sdkp->media_present = 0;
1506 		sdkp->capacity = 0;
1507 	}
1508 }
1509 
1510 static int media_not_present(struct scsi_disk *sdkp,
1511 			     struct scsi_sense_hdr *sshdr)
1512 {
1513 	if (!scsi_sense_valid(sshdr))
1514 		return 0;
1515 
1516 	/* not invoked for commands that could return deferred errors */
1517 	switch (sshdr->sense_key) {
1518 	case UNIT_ATTENTION:
1519 	case NOT_READY:
1520 		/* medium not present */
1521 		if (sshdr->asc == 0x3A) {
1522 			set_media_not_present(sdkp);
1523 			return 1;
1524 		}
1525 	}
1526 	return 0;
1527 }
1528 
1529 /**
1530  *	sd_check_events - check media events
1531  *	@disk: kernel device descriptor
1532  *	@clearing: disk events currently being cleared
1533  *
1534  *	Returns mask of DISK_EVENT_*.
1535  *
1536  *	Note: this function is invoked from the block subsystem.
1537  **/
1538 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1539 {
1540 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1541 	struct scsi_device *sdp;
1542 	int retval;
1543 
1544 	if (!sdkp)
1545 		return 0;
1546 
1547 	sdp = sdkp->device;
1548 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1549 
1550 	/*
1551 	 * If the device is offline, don't send any commands - just pretend as
1552 	 * if the command failed.  If the device ever comes back online, we
1553 	 * can deal with it then.  It is only because of unrecoverable errors
1554 	 * that we would ever take a device offline in the first place.
1555 	 */
1556 	if (!scsi_device_online(sdp)) {
1557 		set_media_not_present(sdkp);
1558 		goto out;
1559 	}
1560 
1561 	/*
1562 	 * Using TEST_UNIT_READY enables differentiation between drive with
1563 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1564 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1565 	 *
1566 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1567 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1568 	 * sd_revalidate() is called.
1569 	 */
1570 	if (scsi_block_when_processing_errors(sdp)) {
1571 		struct scsi_sense_hdr sshdr = { 0, };
1572 
1573 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1574 					      &sshdr);
1575 
1576 		/* failed to execute TUR, assume media not present */
1577 		if (host_byte(retval)) {
1578 			set_media_not_present(sdkp);
1579 			goto out;
1580 		}
1581 
1582 		if (media_not_present(sdkp, &sshdr))
1583 			goto out;
1584 	}
1585 
1586 	/*
1587 	 * For removable scsi disk we have to recognise the presence
1588 	 * of a disk in the drive.
1589 	 */
1590 	if (!sdkp->media_present)
1591 		sdp->changed = 1;
1592 	sdkp->media_present = 1;
1593 out:
1594 	/*
1595 	 * sdp->changed is set under the following conditions:
1596 	 *
1597 	 *	Medium present state has changed in either direction.
1598 	 *	Device has indicated UNIT_ATTENTION.
1599 	 */
1600 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1601 	sdp->changed = 0;
1602 	scsi_disk_put(sdkp);
1603 	return retval;
1604 }
1605 
1606 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1607 {
1608 	int retries, res;
1609 	struct scsi_device *sdp = sdkp->device;
1610 	const int timeout = sdp->request_queue->rq_timeout
1611 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1612 	struct scsi_sense_hdr my_sshdr;
1613 
1614 	if (!scsi_device_online(sdp))
1615 		return -ENODEV;
1616 
1617 	/* caller might not be interested in sense, but we need it */
1618 	if (!sshdr)
1619 		sshdr = &my_sshdr;
1620 
1621 	for (retries = 3; retries > 0; --retries) {
1622 		unsigned char cmd[10] = { 0 };
1623 
1624 		cmd[0] = SYNCHRONIZE_CACHE;
1625 		/*
1626 		 * Leave the rest of the command zero to indicate
1627 		 * flush everything.
1628 		 */
1629 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1630 				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1631 		if (res == 0)
1632 			break;
1633 	}
1634 
1635 	if (res) {
1636 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1637 
1638 		if (driver_byte(res) & DRIVER_SENSE)
1639 			sd_print_sense_hdr(sdkp, sshdr);
1640 
1641 		/* we need to evaluate the error return  */
1642 		if (scsi_sense_valid(sshdr) &&
1643 			(sshdr->asc == 0x3a ||	/* medium not present */
1644 			 sshdr->asc == 0x20))	/* invalid command */
1645 				/* this is no error here */
1646 				return 0;
1647 
1648 		switch (host_byte(res)) {
1649 		/* ignore errors due to racing a disconnection */
1650 		case DID_BAD_TARGET:
1651 		case DID_NO_CONNECT:
1652 			return 0;
1653 		/* signal the upper layer it might try again */
1654 		case DID_BUS_BUSY:
1655 		case DID_IMM_RETRY:
1656 		case DID_REQUEUE:
1657 		case DID_SOFT_ERROR:
1658 			return -EBUSY;
1659 		default:
1660 			return -EIO;
1661 		}
1662 	}
1663 	return 0;
1664 }
1665 
1666 static void sd_rescan(struct device *dev)
1667 {
1668 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1669 
1670 	revalidate_disk(sdkp->disk);
1671 }
1672 
1673 
1674 #ifdef CONFIG_COMPAT
1675 /*
1676  * This gets directly called from VFS. When the ioctl
1677  * is not recognized we go back to the other translation paths.
1678  */
1679 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1680 			   unsigned int cmd, unsigned long arg)
1681 {
1682 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1683 	int error;
1684 
1685 	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1686 			(mode & FMODE_NDELAY) != 0);
1687 	if (error)
1688 		return error;
1689 
1690 	/*
1691 	 * Let the static ioctl translation table take care of it.
1692 	 */
1693 	if (!sdev->host->hostt->compat_ioctl)
1694 		return -ENOIOCTLCMD;
1695 	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1696 }
1697 #endif
1698 
1699 static char sd_pr_type(enum pr_type type)
1700 {
1701 	switch (type) {
1702 	case PR_WRITE_EXCLUSIVE:
1703 		return 0x01;
1704 	case PR_EXCLUSIVE_ACCESS:
1705 		return 0x03;
1706 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1707 		return 0x05;
1708 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1709 		return 0x06;
1710 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1711 		return 0x07;
1712 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1713 		return 0x08;
1714 	default:
1715 		return 0;
1716 	}
1717 };
1718 
1719 static int sd_pr_command(struct block_device *bdev, u8 sa,
1720 		u64 key, u64 sa_key, u8 type, u8 flags)
1721 {
1722 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1723 	struct scsi_sense_hdr sshdr;
1724 	int result;
1725 	u8 cmd[16] = { 0, };
1726 	u8 data[24] = { 0, };
1727 
1728 	cmd[0] = PERSISTENT_RESERVE_OUT;
1729 	cmd[1] = sa;
1730 	cmd[2] = type;
1731 	put_unaligned_be32(sizeof(data), &cmd[5]);
1732 
1733 	put_unaligned_be64(key, &data[0]);
1734 	put_unaligned_be64(sa_key, &data[8]);
1735 	data[20] = flags;
1736 
1737 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1738 			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1739 
1740 	if ((driver_byte(result) & DRIVER_SENSE) &&
1741 	    (scsi_sense_valid(&sshdr))) {
1742 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1743 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1744 	}
1745 
1746 	return result;
1747 }
1748 
1749 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1750 		u32 flags)
1751 {
1752 	if (flags & ~PR_FL_IGNORE_KEY)
1753 		return -EOPNOTSUPP;
1754 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1755 			old_key, new_key, 0,
1756 			(1 << 0) /* APTPL */);
1757 }
1758 
1759 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1760 		u32 flags)
1761 {
1762 	if (flags)
1763 		return -EOPNOTSUPP;
1764 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1765 }
1766 
1767 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1768 {
1769 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1770 }
1771 
1772 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1773 		enum pr_type type, bool abort)
1774 {
1775 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1776 			     sd_pr_type(type), 0);
1777 }
1778 
1779 static int sd_pr_clear(struct block_device *bdev, u64 key)
1780 {
1781 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1782 }
1783 
1784 static const struct pr_ops sd_pr_ops = {
1785 	.pr_register	= sd_pr_register,
1786 	.pr_reserve	= sd_pr_reserve,
1787 	.pr_release	= sd_pr_release,
1788 	.pr_preempt	= sd_pr_preempt,
1789 	.pr_clear	= sd_pr_clear,
1790 };
1791 
1792 static const struct block_device_operations sd_fops = {
1793 	.owner			= THIS_MODULE,
1794 	.open			= sd_open,
1795 	.release		= sd_release,
1796 	.ioctl			= sd_ioctl,
1797 	.getgeo			= sd_getgeo,
1798 #ifdef CONFIG_COMPAT
1799 	.compat_ioctl		= sd_compat_ioctl,
1800 #endif
1801 	.check_events		= sd_check_events,
1802 	.revalidate_disk	= sd_revalidate_disk,
1803 	.unlock_native_capacity	= sd_unlock_native_capacity,
1804 	.pr_ops			= &sd_pr_ops,
1805 };
1806 
1807 /**
1808  *	sd_eh_reset - reset error handling callback
1809  *	@scmd:		sd-issued command that has failed
1810  *
1811  *	This function is called by the SCSI midlayer before starting
1812  *	SCSI EH. When counting medium access failures we have to be
1813  *	careful to register it only only once per device and SCSI EH run;
1814  *	there might be several timed out commands which will cause the
1815  *	'max_medium_access_timeouts' counter to trigger after the first
1816  *	SCSI EH run already and set the device to offline.
1817  *	So this function resets the internal counter before starting SCSI EH.
1818  **/
1819 static void sd_eh_reset(struct scsi_cmnd *scmd)
1820 {
1821 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1822 
1823 	/* New SCSI EH run, reset gate variable */
1824 	sdkp->ignore_medium_access_errors = false;
1825 }
1826 
1827 /**
1828  *	sd_eh_action - error handling callback
1829  *	@scmd:		sd-issued command that has failed
1830  *	@eh_disp:	The recovery disposition suggested by the midlayer
1831  *
1832  *	This function is called by the SCSI midlayer upon completion of an
1833  *	error test command (currently TEST UNIT READY). The result of sending
1834  *	the eh command is passed in eh_disp.  We're looking for devices that
1835  *	fail medium access commands but are OK with non access commands like
1836  *	test unit ready (so wrongly see the device as having a successful
1837  *	recovery)
1838  **/
1839 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1840 {
1841 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1842 	struct scsi_device *sdev = scmd->device;
1843 
1844 	if (!scsi_device_online(sdev) ||
1845 	    !scsi_medium_access_command(scmd) ||
1846 	    host_byte(scmd->result) != DID_TIME_OUT ||
1847 	    eh_disp != SUCCESS)
1848 		return eh_disp;
1849 
1850 	/*
1851 	 * The device has timed out executing a medium access command.
1852 	 * However, the TEST UNIT READY command sent during error
1853 	 * handling completed successfully. Either the device is in the
1854 	 * process of recovering or has it suffered an internal failure
1855 	 * that prevents access to the storage medium.
1856 	 */
1857 	if (!sdkp->ignore_medium_access_errors) {
1858 		sdkp->medium_access_timed_out++;
1859 		sdkp->ignore_medium_access_errors = true;
1860 	}
1861 
1862 	/*
1863 	 * If the device keeps failing read/write commands but TEST UNIT
1864 	 * READY always completes successfully we assume that medium
1865 	 * access is no longer possible and take the device offline.
1866 	 */
1867 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1868 		scmd_printk(KERN_ERR, scmd,
1869 			    "Medium access timeout failure. Offlining disk!\n");
1870 		mutex_lock(&sdev->state_mutex);
1871 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1872 		mutex_unlock(&sdev->state_mutex);
1873 
1874 		return SUCCESS;
1875 	}
1876 
1877 	return eh_disp;
1878 }
1879 
1880 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1881 {
1882 	struct request *req = scmd->request;
1883 	struct scsi_device *sdev = scmd->device;
1884 	unsigned int transferred, good_bytes;
1885 	u64 start_lba, end_lba, bad_lba;
1886 
1887 	/*
1888 	 * Some commands have a payload smaller than the device logical
1889 	 * block size (e.g. INQUIRY on a 4K disk).
1890 	 */
1891 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1892 		return 0;
1893 
1894 	/* Check if we have a 'bad_lba' information */
1895 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1896 				     SCSI_SENSE_BUFFERSIZE,
1897 				     &bad_lba))
1898 		return 0;
1899 
1900 	/*
1901 	 * If the bad lba was reported incorrectly, we have no idea where
1902 	 * the error is.
1903 	 */
1904 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1905 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1906 	if (bad_lba < start_lba || bad_lba >= end_lba)
1907 		return 0;
1908 
1909 	/*
1910 	 * resid is optional but mostly filled in.  When it's unused,
1911 	 * its value is zero, so we assume the whole buffer transferred
1912 	 */
1913 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1914 
1915 	/* This computation should always be done in terms of the
1916 	 * resolution of the device's medium.
1917 	 */
1918 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1919 
1920 	return min(good_bytes, transferred);
1921 }
1922 
1923 /**
1924  *	sd_done - bottom half handler: called when the lower level
1925  *	driver has completed (successfully or otherwise) a scsi command.
1926  *	@SCpnt: mid-level's per command structure.
1927  *
1928  *	Note: potentially run from within an ISR. Must not block.
1929  **/
1930 static int sd_done(struct scsi_cmnd *SCpnt)
1931 {
1932 	int result = SCpnt->result;
1933 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1934 	unsigned int sector_size = SCpnt->device->sector_size;
1935 	unsigned int resid;
1936 	struct scsi_sense_hdr sshdr;
1937 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1938 	struct request *req = SCpnt->request;
1939 	int sense_valid = 0;
1940 	int sense_deferred = 0;
1941 
1942 	switch (req_op(req)) {
1943 	case REQ_OP_DISCARD:
1944 	case REQ_OP_WRITE_ZEROES:
1945 	case REQ_OP_WRITE_SAME:
1946 	case REQ_OP_ZONE_RESET:
1947 		if (!result) {
1948 			good_bytes = blk_rq_bytes(req);
1949 			scsi_set_resid(SCpnt, 0);
1950 		} else {
1951 			good_bytes = 0;
1952 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1953 		}
1954 		break;
1955 	case REQ_OP_ZONE_REPORT:
1956 		if (!result) {
1957 			good_bytes = scsi_bufflen(SCpnt)
1958 				- scsi_get_resid(SCpnt);
1959 			scsi_set_resid(SCpnt, 0);
1960 		} else {
1961 			good_bytes = 0;
1962 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1963 		}
1964 		break;
1965 	default:
1966 		/*
1967 		 * In case of bogus fw or device, we could end up having
1968 		 * an unaligned partial completion. Check this here and force
1969 		 * alignment.
1970 		 */
1971 		resid = scsi_get_resid(SCpnt);
1972 		if (resid & (sector_size - 1)) {
1973 			sd_printk(KERN_INFO, sdkp,
1974 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1975 				resid, sector_size);
1976 			resid = min(scsi_bufflen(SCpnt),
1977 				    round_up(resid, sector_size));
1978 			scsi_set_resid(SCpnt, resid);
1979 		}
1980 	}
1981 
1982 	if (result) {
1983 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1984 		if (sense_valid)
1985 			sense_deferred = scsi_sense_is_deferred(&sshdr);
1986 	}
1987 	sdkp->medium_access_timed_out = 0;
1988 
1989 	if (driver_byte(result) != DRIVER_SENSE &&
1990 	    (!sense_valid || sense_deferred))
1991 		goto out;
1992 
1993 	switch (sshdr.sense_key) {
1994 	case HARDWARE_ERROR:
1995 	case MEDIUM_ERROR:
1996 		good_bytes = sd_completed_bytes(SCpnt);
1997 		break;
1998 	case RECOVERED_ERROR:
1999 		good_bytes = scsi_bufflen(SCpnt);
2000 		break;
2001 	case NO_SENSE:
2002 		/* This indicates a false check condition, so ignore it.  An
2003 		 * unknown amount of data was transferred so treat it as an
2004 		 * error.
2005 		 */
2006 		SCpnt->result = 0;
2007 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2008 		break;
2009 	case ABORTED_COMMAND:
2010 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2011 			good_bytes = sd_completed_bytes(SCpnt);
2012 		break;
2013 	case ILLEGAL_REQUEST:
2014 		switch (sshdr.asc) {
2015 		case 0x10:	/* DIX: Host detected corruption */
2016 			good_bytes = sd_completed_bytes(SCpnt);
2017 			break;
2018 		case 0x20:	/* INVALID COMMAND OPCODE */
2019 		case 0x24:	/* INVALID FIELD IN CDB */
2020 			switch (SCpnt->cmnd[0]) {
2021 			case UNMAP:
2022 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2023 				break;
2024 			case WRITE_SAME_16:
2025 			case WRITE_SAME:
2026 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2027 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2028 				} else {
2029 					sdkp->device->no_write_same = 1;
2030 					sd_config_write_same(sdkp);
2031 					req->__data_len = blk_rq_bytes(req);
2032 					req->rq_flags |= RQF_QUIET;
2033 				}
2034 				break;
2035 			}
2036 		}
2037 		break;
2038 	default:
2039 		break;
2040 	}
2041 
2042  out:
2043 	if (sd_is_zoned(sdkp))
2044 		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2045 
2046 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2047 					   "sd_done: completed %d of %d bytes\n",
2048 					   good_bytes, scsi_bufflen(SCpnt)));
2049 
2050 	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
2051 		sd_dif_complete(SCpnt, good_bytes);
2052 
2053 	return good_bytes;
2054 }
2055 
2056 /*
2057  * spinup disk - called only in sd_revalidate_disk()
2058  */
2059 static void
2060 sd_spinup_disk(struct scsi_disk *sdkp)
2061 {
2062 	unsigned char cmd[10];
2063 	unsigned long spintime_expire = 0;
2064 	int retries, spintime;
2065 	unsigned int the_result;
2066 	struct scsi_sense_hdr sshdr;
2067 	int sense_valid = 0;
2068 
2069 	spintime = 0;
2070 
2071 	/* Spin up drives, as required.  Only do this at boot time */
2072 	/* Spinup needs to be done for module loads too. */
2073 	do {
2074 		retries = 0;
2075 
2076 		do {
2077 			cmd[0] = TEST_UNIT_READY;
2078 			memset((void *) &cmd[1], 0, 9);
2079 
2080 			the_result = scsi_execute_req(sdkp->device, cmd,
2081 						      DMA_NONE, NULL, 0,
2082 						      &sshdr, SD_TIMEOUT,
2083 						      SD_MAX_RETRIES, NULL);
2084 
2085 			/*
2086 			 * If the drive has indicated to us that it
2087 			 * doesn't have any media in it, don't bother
2088 			 * with any more polling.
2089 			 */
2090 			if (media_not_present(sdkp, &sshdr))
2091 				return;
2092 
2093 			if (the_result)
2094 				sense_valid = scsi_sense_valid(&sshdr);
2095 			retries++;
2096 		} while (retries < 3 &&
2097 			 (!scsi_status_is_good(the_result) ||
2098 			  ((driver_byte(the_result) & DRIVER_SENSE) &&
2099 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2100 
2101 		if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
2102 			/* no sense, TUR either succeeded or failed
2103 			 * with a status error */
2104 			if(!spintime && !scsi_status_is_good(the_result)) {
2105 				sd_print_result(sdkp, "Test Unit Ready failed",
2106 						the_result);
2107 			}
2108 			break;
2109 		}
2110 
2111 		/*
2112 		 * The device does not want the automatic start to be issued.
2113 		 */
2114 		if (sdkp->device->no_start_on_add)
2115 			break;
2116 
2117 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2118 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2119 				break;	/* manual intervention required */
2120 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2121 				break;	/* standby */
2122 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2123 				break;	/* unavailable */
2124 			/*
2125 			 * Issue command to spin up drive when not ready
2126 			 */
2127 			if (!spintime) {
2128 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2129 				cmd[0] = START_STOP;
2130 				cmd[1] = 1;	/* Return immediately */
2131 				memset((void *) &cmd[2], 0, 8);
2132 				cmd[4] = 1;	/* Start spin cycle */
2133 				if (sdkp->device->start_stop_pwr_cond)
2134 					cmd[4] |= 1 << 4;
2135 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2136 						 NULL, 0, &sshdr,
2137 						 SD_TIMEOUT, SD_MAX_RETRIES,
2138 						 NULL);
2139 				spintime_expire = jiffies + 100 * HZ;
2140 				spintime = 1;
2141 			}
2142 			/* Wait 1 second for next try */
2143 			msleep(1000);
2144 			printk(KERN_CONT ".");
2145 
2146 		/*
2147 		 * Wait for USB flash devices with slow firmware.
2148 		 * Yes, this sense key/ASC combination shouldn't
2149 		 * occur here.  It's characteristic of these devices.
2150 		 */
2151 		} else if (sense_valid &&
2152 				sshdr.sense_key == UNIT_ATTENTION &&
2153 				sshdr.asc == 0x28) {
2154 			if (!spintime) {
2155 				spintime_expire = jiffies + 5 * HZ;
2156 				spintime = 1;
2157 			}
2158 			/* Wait 1 second for next try */
2159 			msleep(1000);
2160 		} else {
2161 			/* we don't understand the sense code, so it's
2162 			 * probably pointless to loop */
2163 			if(!spintime) {
2164 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2165 				sd_print_sense_hdr(sdkp, &sshdr);
2166 			}
2167 			break;
2168 		}
2169 
2170 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2171 
2172 	if (spintime) {
2173 		if (scsi_status_is_good(the_result))
2174 			printk(KERN_CONT "ready\n");
2175 		else
2176 			printk(KERN_CONT "not responding...\n");
2177 	}
2178 }
2179 
2180 /*
2181  * Determine whether disk supports Data Integrity Field.
2182  */
2183 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2184 {
2185 	struct scsi_device *sdp = sdkp->device;
2186 	u8 type;
2187 	int ret = 0;
2188 
2189 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2190 		return ret;
2191 
2192 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2193 
2194 	if (type > T10_PI_TYPE3_PROTECTION)
2195 		ret = -ENODEV;
2196 	else if (scsi_host_dif_capable(sdp->host, type))
2197 		ret = 1;
2198 
2199 	if (sdkp->first_scan || type != sdkp->protection_type)
2200 		switch (ret) {
2201 		case -ENODEV:
2202 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2203 				  " protection type %u. Disabling disk!\n",
2204 				  type);
2205 			break;
2206 		case 1:
2207 			sd_printk(KERN_NOTICE, sdkp,
2208 				  "Enabling DIF Type %u protection\n", type);
2209 			break;
2210 		case 0:
2211 			sd_printk(KERN_NOTICE, sdkp,
2212 				  "Disabling DIF Type %u protection\n", type);
2213 			break;
2214 		}
2215 
2216 	sdkp->protection_type = type;
2217 
2218 	return ret;
2219 }
2220 
2221 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2222 			struct scsi_sense_hdr *sshdr, int sense_valid,
2223 			int the_result)
2224 {
2225 	if (driver_byte(the_result) & DRIVER_SENSE)
2226 		sd_print_sense_hdr(sdkp, sshdr);
2227 	else
2228 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2229 
2230 	/*
2231 	 * Set dirty bit for removable devices if not ready -
2232 	 * sometimes drives will not report this properly.
2233 	 */
2234 	if (sdp->removable &&
2235 	    sense_valid && sshdr->sense_key == NOT_READY)
2236 		set_media_not_present(sdkp);
2237 
2238 	/*
2239 	 * We used to set media_present to 0 here to indicate no media
2240 	 * in the drive, but some drives fail read capacity even with
2241 	 * media present, so we can't do that.
2242 	 */
2243 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2244 }
2245 
2246 #define RC16_LEN 32
2247 #if RC16_LEN > SD_BUF_SIZE
2248 #error RC16_LEN must not be more than SD_BUF_SIZE
2249 #endif
2250 
2251 #define READ_CAPACITY_RETRIES_ON_RESET	10
2252 
2253 /*
2254  * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2255  * and the reported logical block size is bigger than 512 bytes. Note
2256  * that last_sector is a u64 and therefore logical_to_sectors() is not
2257  * applicable.
2258  */
2259 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2260 {
2261 	u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2262 
2263 	if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2264 		return false;
2265 
2266 	return true;
2267 }
2268 
2269 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2270 						unsigned char *buffer)
2271 {
2272 	unsigned char cmd[16];
2273 	struct scsi_sense_hdr sshdr;
2274 	int sense_valid = 0;
2275 	int the_result;
2276 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2277 	unsigned int alignment;
2278 	unsigned long long lba;
2279 	unsigned sector_size;
2280 
2281 	if (sdp->no_read_capacity_16)
2282 		return -EINVAL;
2283 
2284 	do {
2285 		memset(cmd, 0, 16);
2286 		cmd[0] = SERVICE_ACTION_IN_16;
2287 		cmd[1] = SAI_READ_CAPACITY_16;
2288 		cmd[13] = RC16_LEN;
2289 		memset(buffer, 0, RC16_LEN);
2290 
2291 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2292 					buffer, RC16_LEN, &sshdr,
2293 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2294 
2295 		if (media_not_present(sdkp, &sshdr))
2296 			return -ENODEV;
2297 
2298 		if (the_result) {
2299 			sense_valid = scsi_sense_valid(&sshdr);
2300 			if (sense_valid &&
2301 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2302 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2303 			    sshdr.ascq == 0x00)
2304 				/* Invalid Command Operation Code or
2305 				 * Invalid Field in CDB, just retry
2306 				 * silently with RC10 */
2307 				return -EINVAL;
2308 			if (sense_valid &&
2309 			    sshdr.sense_key == UNIT_ATTENTION &&
2310 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2311 				/* Device reset might occur several times,
2312 				 * give it one more chance */
2313 				if (--reset_retries > 0)
2314 					continue;
2315 		}
2316 		retries--;
2317 
2318 	} while (the_result && retries);
2319 
2320 	if (the_result) {
2321 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2322 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2323 		return -EINVAL;
2324 	}
2325 
2326 	sector_size = get_unaligned_be32(&buffer[8]);
2327 	lba = get_unaligned_be64(&buffer[0]);
2328 
2329 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2330 		sdkp->capacity = 0;
2331 		return -ENODEV;
2332 	}
2333 
2334 	if (!sd_addressable_capacity(lba, sector_size)) {
2335 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2336 			"kernel compiled with support for large block "
2337 			"devices.\n");
2338 		sdkp->capacity = 0;
2339 		return -EOVERFLOW;
2340 	}
2341 
2342 	/* Logical blocks per physical block exponent */
2343 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2344 
2345 	/* RC basis */
2346 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2347 
2348 	/* Lowest aligned logical block */
2349 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2350 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2351 	if (alignment && sdkp->first_scan)
2352 		sd_printk(KERN_NOTICE, sdkp,
2353 			  "physical block alignment offset: %u\n", alignment);
2354 
2355 	if (buffer[14] & 0x80) { /* LBPME */
2356 		sdkp->lbpme = 1;
2357 
2358 		if (buffer[14] & 0x40) /* LBPRZ */
2359 			sdkp->lbprz = 1;
2360 
2361 		sd_config_discard(sdkp, SD_LBP_WS16);
2362 	}
2363 
2364 	sdkp->capacity = lba + 1;
2365 	return sector_size;
2366 }
2367 
2368 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2369 						unsigned char *buffer)
2370 {
2371 	unsigned char cmd[16];
2372 	struct scsi_sense_hdr sshdr;
2373 	int sense_valid = 0;
2374 	int the_result;
2375 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2376 	sector_t lba;
2377 	unsigned sector_size;
2378 
2379 	do {
2380 		cmd[0] = READ_CAPACITY;
2381 		memset(&cmd[1], 0, 9);
2382 		memset(buffer, 0, 8);
2383 
2384 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2385 					buffer, 8, &sshdr,
2386 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2387 
2388 		if (media_not_present(sdkp, &sshdr))
2389 			return -ENODEV;
2390 
2391 		if (the_result) {
2392 			sense_valid = scsi_sense_valid(&sshdr);
2393 			if (sense_valid &&
2394 			    sshdr.sense_key == UNIT_ATTENTION &&
2395 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2396 				/* Device reset might occur several times,
2397 				 * give it one more chance */
2398 				if (--reset_retries > 0)
2399 					continue;
2400 		}
2401 		retries--;
2402 
2403 	} while (the_result && retries);
2404 
2405 	if (the_result) {
2406 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2407 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2408 		return -EINVAL;
2409 	}
2410 
2411 	sector_size = get_unaligned_be32(&buffer[4]);
2412 	lba = get_unaligned_be32(&buffer[0]);
2413 
2414 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2415 		/* Some buggy (usb cardreader) devices return an lba of
2416 		   0xffffffff when the want to report a size of 0 (with
2417 		   which they really mean no media is present) */
2418 		sdkp->capacity = 0;
2419 		sdkp->physical_block_size = sector_size;
2420 		return sector_size;
2421 	}
2422 
2423 	if (!sd_addressable_capacity(lba, sector_size)) {
2424 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2425 			"kernel compiled with support for large block "
2426 			"devices.\n");
2427 		sdkp->capacity = 0;
2428 		return -EOVERFLOW;
2429 	}
2430 
2431 	sdkp->capacity = lba + 1;
2432 	sdkp->physical_block_size = sector_size;
2433 	return sector_size;
2434 }
2435 
2436 static int sd_try_rc16_first(struct scsi_device *sdp)
2437 {
2438 	if (sdp->host->max_cmd_len < 16)
2439 		return 0;
2440 	if (sdp->try_rc_10_first)
2441 		return 0;
2442 	if (sdp->scsi_level > SCSI_SPC_2)
2443 		return 1;
2444 	if (scsi_device_protection(sdp))
2445 		return 1;
2446 	return 0;
2447 }
2448 
2449 /*
2450  * read disk capacity
2451  */
2452 static void
2453 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2454 {
2455 	int sector_size;
2456 	struct scsi_device *sdp = sdkp->device;
2457 
2458 	if (sd_try_rc16_first(sdp)) {
2459 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2460 		if (sector_size == -EOVERFLOW)
2461 			goto got_data;
2462 		if (sector_size == -ENODEV)
2463 			return;
2464 		if (sector_size < 0)
2465 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2466 		if (sector_size < 0)
2467 			return;
2468 	} else {
2469 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2470 		if (sector_size == -EOVERFLOW)
2471 			goto got_data;
2472 		if (sector_size < 0)
2473 			return;
2474 		if ((sizeof(sdkp->capacity) > 4) &&
2475 		    (sdkp->capacity > 0xffffffffULL)) {
2476 			int old_sector_size = sector_size;
2477 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2478 					"Trying to use READ CAPACITY(16).\n");
2479 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2480 			if (sector_size < 0) {
2481 				sd_printk(KERN_NOTICE, sdkp,
2482 					"Using 0xffffffff as device size\n");
2483 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2484 				sector_size = old_sector_size;
2485 				goto got_data;
2486 			}
2487 		}
2488 	}
2489 
2490 	/* Some devices are known to return the total number of blocks,
2491 	 * not the highest block number.  Some devices have versions
2492 	 * which do this and others which do not.  Some devices we might
2493 	 * suspect of doing this but we don't know for certain.
2494 	 *
2495 	 * If we know the reported capacity is wrong, decrement it.  If
2496 	 * we can only guess, then assume the number of blocks is even
2497 	 * (usually true but not always) and err on the side of lowering
2498 	 * the capacity.
2499 	 */
2500 	if (sdp->fix_capacity ||
2501 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2502 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2503 				"from its reported value: %llu\n",
2504 				(unsigned long long) sdkp->capacity);
2505 		--sdkp->capacity;
2506 	}
2507 
2508 got_data:
2509 	if (sector_size == 0) {
2510 		sector_size = 512;
2511 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2512 			  "assuming 512.\n");
2513 	}
2514 
2515 	if (sector_size != 512 &&
2516 	    sector_size != 1024 &&
2517 	    sector_size != 2048 &&
2518 	    sector_size != 4096) {
2519 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2520 			  sector_size);
2521 		/*
2522 		 * The user might want to re-format the drive with
2523 		 * a supported sectorsize.  Once this happens, it
2524 		 * would be relatively trivial to set the thing up.
2525 		 * For this reason, we leave the thing in the table.
2526 		 */
2527 		sdkp->capacity = 0;
2528 		/*
2529 		 * set a bogus sector size so the normal read/write
2530 		 * logic in the block layer will eventually refuse any
2531 		 * request on this device without tripping over power
2532 		 * of two sector size assumptions
2533 		 */
2534 		sector_size = 512;
2535 	}
2536 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2537 	blk_queue_physical_block_size(sdp->request_queue,
2538 				      sdkp->physical_block_size);
2539 	sdkp->device->sector_size = sector_size;
2540 
2541 	if (sdkp->capacity > 0xffffffff)
2542 		sdp->use_16_for_rw = 1;
2543 
2544 }
2545 
2546 /*
2547  * Print disk capacity
2548  */
2549 static void
2550 sd_print_capacity(struct scsi_disk *sdkp,
2551 		  sector_t old_capacity)
2552 {
2553 	int sector_size = sdkp->device->sector_size;
2554 	char cap_str_2[10], cap_str_10[10];
2555 
2556 	string_get_size(sdkp->capacity, sector_size,
2557 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2558 	string_get_size(sdkp->capacity, sector_size,
2559 			STRING_UNITS_10, cap_str_10,
2560 			sizeof(cap_str_10));
2561 
2562 	if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2563 		sd_printk(KERN_NOTICE, sdkp,
2564 			  "%llu %d-byte logical blocks: (%s/%s)\n",
2565 			  (unsigned long long)sdkp->capacity,
2566 			  sector_size, cap_str_10, cap_str_2);
2567 
2568 		if (sdkp->physical_block_size != sector_size)
2569 			sd_printk(KERN_NOTICE, sdkp,
2570 				  "%u-byte physical blocks\n",
2571 				  sdkp->physical_block_size);
2572 
2573 		sd_zbc_print_zones(sdkp);
2574 	}
2575 }
2576 
2577 /* called with buffer of length 512 */
2578 static inline int
2579 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2580 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2581 		 struct scsi_sense_hdr *sshdr)
2582 {
2583 	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2584 			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2585 			       sshdr);
2586 }
2587 
2588 /*
2589  * read write protect setting, if possible - called only in sd_revalidate_disk()
2590  * called with buffer of length SD_BUF_SIZE
2591  */
2592 static void
2593 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2594 {
2595 	int res;
2596 	struct scsi_device *sdp = sdkp->device;
2597 	struct scsi_mode_data data;
2598 	int old_wp = sdkp->write_prot;
2599 
2600 	set_disk_ro(sdkp->disk, 0);
2601 	if (sdp->skip_ms_page_3f) {
2602 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2603 		return;
2604 	}
2605 
2606 	if (sdp->use_192_bytes_for_3f) {
2607 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2608 	} else {
2609 		/*
2610 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2611 		 * We have to start carefully: some devices hang if we ask
2612 		 * for more than is available.
2613 		 */
2614 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2615 
2616 		/*
2617 		 * Second attempt: ask for page 0 When only page 0 is
2618 		 * implemented, a request for page 3F may return Sense Key
2619 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2620 		 * CDB.
2621 		 */
2622 		if (!scsi_status_is_good(res))
2623 			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2624 
2625 		/*
2626 		 * Third attempt: ask 255 bytes, as we did earlier.
2627 		 */
2628 		if (!scsi_status_is_good(res))
2629 			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2630 					       &data, NULL);
2631 	}
2632 
2633 	if (!scsi_status_is_good(res)) {
2634 		sd_first_printk(KERN_WARNING, sdkp,
2635 			  "Test WP failed, assume Write Enabled\n");
2636 	} else {
2637 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2638 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2639 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2640 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2641 				  sdkp->write_prot ? "on" : "off");
2642 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2643 		}
2644 	}
2645 }
2646 
2647 /*
2648  * sd_read_cache_type - called only from sd_revalidate_disk()
2649  * called with buffer of length SD_BUF_SIZE
2650  */
2651 static void
2652 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2653 {
2654 	int len = 0, res;
2655 	struct scsi_device *sdp = sdkp->device;
2656 
2657 	int dbd;
2658 	int modepage;
2659 	int first_len;
2660 	struct scsi_mode_data data;
2661 	struct scsi_sense_hdr sshdr;
2662 	int old_wce = sdkp->WCE;
2663 	int old_rcd = sdkp->RCD;
2664 	int old_dpofua = sdkp->DPOFUA;
2665 
2666 
2667 	if (sdkp->cache_override)
2668 		return;
2669 
2670 	first_len = 4;
2671 	if (sdp->skip_ms_page_8) {
2672 		if (sdp->type == TYPE_RBC)
2673 			goto defaults;
2674 		else {
2675 			if (sdp->skip_ms_page_3f)
2676 				goto defaults;
2677 			modepage = 0x3F;
2678 			if (sdp->use_192_bytes_for_3f)
2679 				first_len = 192;
2680 			dbd = 0;
2681 		}
2682 	} else if (sdp->type == TYPE_RBC) {
2683 		modepage = 6;
2684 		dbd = 8;
2685 	} else {
2686 		modepage = 8;
2687 		dbd = 0;
2688 	}
2689 
2690 	/* cautiously ask */
2691 	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2692 			&data, &sshdr);
2693 
2694 	if (!scsi_status_is_good(res))
2695 		goto bad_sense;
2696 
2697 	if (!data.header_length) {
2698 		modepage = 6;
2699 		first_len = 0;
2700 		sd_first_printk(KERN_ERR, sdkp,
2701 				"Missing header in MODE_SENSE response\n");
2702 	}
2703 
2704 	/* that went OK, now ask for the proper length */
2705 	len = data.length;
2706 
2707 	/*
2708 	 * We're only interested in the first three bytes, actually.
2709 	 * But the data cache page is defined for the first 20.
2710 	 */
2711 	if (len < 3)
2712 		goto bad_sense;
2713 	else if (len > SD_BUF_SIZE) {
2714 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2715 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2716 		len = SD_BUF_SIZE;
2717 	}
2718 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2719 		len = 192;
2720 
2721 	/* Get the data */
2722 	if (len > first_len)
2723 		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2724 				&data, &sshdr);
2725 
2726 	if (scsi_status_is_good(res)) {
2727 		int offset = data.header_length + data.block_descriptor_length;
2728 
2729 		while (offset < len) {
2730 			u8 page_code = buffer[offset] & 0x3F;
2731 			u8 spf       = buffer[offset] & 0x40;
2732 
2733 			if (page_code == 8 || page_code == 6) {
2734 				/* We're interested only in the first 3 bytes.
2735 				 */
2736 				if (len - offset <= 2) {
2737 					sd_first_printk(KERN_ERR, sdkp,
2738 						"Incomplete mode parameter "
2739 							"data\n");
2740 					goto defaults;
2741 				} else {
2742 					modepage = page_code;
2743 					goto Page_found;
2744 				}
2745 			} else {
2746 				/* Go to the next page */
2747 				if (spf && len - offset > 3)
2748 					offset += 4 + (buffer[offset+2] << 8) +
2749 						buffer[offset+3];
2750 				else if (!spf && len - offset > 1)
2751 					offset += 2 + buffer[offset+1];
2752 				else {
2753 					sd_first_printk(KERN_ERR, sdkp,
2754 							"Incomplete mode "
2755 							"parameter data\n");
2756 					goto defaults;
2757 				}
2758 			}
2759 		}
2760 
2761 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2762 		goto defaults;
2763 
2764 	Page_found:
2765 		if (modepage == 8) {
2766 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2767 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2768 		} else {
2769 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2770 			sdkp->RCD = 0;
2771 		}
2772 
2773 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2774 		if (sdp->broken_fua) {
2775 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2776 			sdkp->DPOFUA = 0;
2777 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2778 			   !sdkp->device->use_16_for_rw) {
2779 			sd_first_printk(KERN_NOTICE, sdkp,
2780 				  "Uses READ/WRITE(6), disabling FUA\n");
2781 			sdkp->DPOFUA = 0;
2782 		}
2783 
2784 		/* No cache flush allowed for write protected devices */
2785 		if (sdkp->WCE && sdkp->write_prot)
2786 			sdkp->WCE = 0;
2787 
2788 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2789 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2790 			sd_printk(KERN_NOTICE, sdkp,
2791 				  "Write cache: %s, read cache: %s, %s\n",
2792 				  sdkp->WCE ? "enabled" : "disabled",
2793 				  sdkp->RCD ? "disabled" : "enabled",
2794 				  sdkp->DPOFUA ? "supports DPO and FUA"
2795 				  : "doesn't support DPO or FUA");
2796 
2797 		return;
2798 	}
2799 
2800 bad_sense:
2801 	if (scsi_sense_valid(&sshdr) &&
2802 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2803 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2804 		/* Invalid field in CDB */
2805 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2806 	else
2807 		sd_first_printk(KERN_ERR, sdkp,
2808 				"Asking for cache data failed\n");
2809 
2810 defaults:
2811 	if (sdp->wce_default_on) {
2812 		sd_first_printk(KERN_NOTICE, sdkp,
2813 				"Assuming drive cache: write back\n");
2814 		sdkp->WCE = 1;
2815 	} else {
2816 		sd_first_printk(KERN_ERR, sdkp,
2817 				"Assuming drive cache: write through\n");
2818 		sdkp->WCE = 0;
2819 	}
2820 	sdkp->RCD = 0;
2821 	sdkp->DPOFUA = 0;
2822 }
2823 
2824 /*
2825  * The ATO bit indicates whether the DIF application tag is available
2826  * for use by the operating system.
2827  */
2828 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2829 {
2830 	int res, offset;
2831 	struct scsi_device *sdp = sdkp->device;
2832 	struct scsi_mode_data data;
2833 	struct scsi_sense_hdr sshdr;
2834 
2835 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2836 		return;
2837 
2838 	if (sdkp->protection_type == 0)
2839 		return;
2840 
2841 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2842 			      SD_MAX_RETRIES, &data, &sshdr);
2843 
2844 	if (!scsi_status_is_good(res) || !data.header_length ||
2845 	    data.length < 6) {
2846 		sd_first_printk(KERN_WARNING, sdkp,
2847 			  "getting Control mode page failed, assume no ATO\n");
2848 
2849 		if (scsi_sense_valid(&sshdr))
2850 			sd_print_sense_hdr(sdkp, &sshdr);
2851 
2852 		return;
2853 	}
2854 
2855 	offset = data.header_length + data.block_descriptor_length;
2856 
2857 	if ((buffer[offset] & 0x3f) != 0x0a) {
2858 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2859 		return;
2860 	}
2861 
2862 	if ((buffer[offset + 5] & 0x80) == 0)
2863 		return;
2864 
2865 	sdkp->ATO = 1;
2866 
2867 	return;
2868 }
2869 
2870 /**
2871  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2872  * @sdkp: disk to query
2873  */
2874 static void sd_read_block_limits(struct scsi_disk *sdkp)
2875 {
2876 	unsigned int sector_sz = sdkp->device->sector_size;
2877 	const int vpd_len = 64;
2878 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2879 
2880 	if (!buffer ||
2881 	    /* Block Limits VPD */
2882 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2883 		goto out;
2884 
2885 	blk_queue_io_min(sdkp->disk->queue,
2886 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2887 
2888 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2889 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2890 
2891 	if (buffer[3] == 0x3c) {
2892 		unsigned int lba_count, desc_count;
2893 
2894 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2895 
2896 		if (!sdkp->lbpme)
2897 			goto out;
2898 
2899 		lba_count = get_unaligned_be32(&buffer[20]);
2900 		desc_count = get_unaligned_be32(&buffer[24]);
2901 
2902 		if (lba_count && desc_count)
2903 			sdkp->max_unmap_blocks = lba_count;
2904 
2905 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2906 
2907 		if (buffer[32] & 0x80)
2908 			sdkp->unmap_alignment =
2909 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2910 
2911 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2912 
2913 			if (sdkp->max_unmap_blocks)
2914 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2915 			else
2916 				sd_config_discard(sdkp, SD_LBP_WS16);
2917 
2918 		} else {	/* LBP VPD page tells us what to use */
2919 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2920 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2921 			else if (sdkp->lbpws)
2922 				sd_config_discard(sdkp, SD_LBP_WS16);
2923 			else if (sdkp->lbpws10)
2924 				sd_config_discard(sdkp, SD_LBP_WS10);
2925 			else
2926 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2927 		}
2928 	}
2929 
2930  out:
2931 	kfree(buffer);
2932 }
2933 
2934 /**
2935  * sd_read_block_characteristics - Query block dev. characteristics
2936  * @sdkp: disk to query
2937  */
2938 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2939 {
2940 	struct request_queue *q = sdkp->disk->queue;
2941 	unsigned char *buffer;
2942 	u16 rot;
2943 	const int vpd_len = 64;
2944 
2945 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2946 
2947 	if (!buffer ||
2948 	    /* Block Device Characteristics VPD */
2949 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2950 		goto out;
2951 
2952 	rot = get_unaligned_be16(&buffer[4]);
2953 
2954 	if (rot == 1) {
2955 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2956 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2957 	}
2958 
2959 	if (sdkp->device->type == TYPE_ZBC) {
2960 		/* Host-managed */
2961 		q->limits.zoned = BLK_ZONED_HM;
2962 	} else {
2963 		sdkp->zoned = (buffer[8] >> 4) & 3;
2964 		if (sdkp->zoned == 1)
2965 			/* Host-aware */
2966 			q->limits.zoned = BLK_ZONED_HA;
2967 		else
2968 			/*
2969 			 * Treat drive-managed devices as
2970 			 * regular block devices.
2971 			 */
2972 			q->limits.zoned = BLK_ZONED_NONE;
2973 	}
2974 	if (blk_queue_is_zoned(q) && sdkp->first_scan)
2975 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2976 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2977 
2978  out:
2979 	kfree(buffer);
2980 }
2981 
2982 /**
2983  * sd_read_block_provisioning - Query provisioning VPD page
2984  * @sdkp: disk to query
2985  */
2986 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2987 {
2988 	unsigned char *buffer;
2989 	const int vpd_len = 8;
2990 
2991 	if (sdkp->lbpme == 0)
2992 		return;
2993 
2994 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2995 
2996 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2997 		goto out;
2998 
2999 	sdkp->lbpvpd	= 1;
3000 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
3001 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
3002 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
3003 
3004  out:
3005 	kfree(buffer);
3006 }
3007 
3008 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3009 {
3010 	struct scsi_device *sdev = sdkp->device;
3011 
3012 	if (sdev->host->no_write_same) {
3013 		sdev->no_write_same = 1;
3014 
3015 		return;
3016 	}
3017 
3018 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3019 		/* too large values might cause issues with arcmsr */
3020 		int vpd_buf_len = 64;
3021 
3022 		sdev->no_report_opcodes = 1;
3023 
3024 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3025 		 * CODES is unsupported and the device has an ATA
3026 		 * Information VPD page (SAT).
3027 		 */
3028 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3029 			sdev->no_write_same = 1;
3030 	}
3031 
3032 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3033 		sdkp->ws16 = 1;
3034 
3035 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3036 		sdkp->ws10 = 1;
3037 }
3038 
3039 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3040 {
3041 	struct scsi_device *sdev = sdkp->device;
3042 
3043 	if (!sdev->security_supported)
3044 		return;
3045 
3046 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3047 			SECURITY_PROTOCOL_IN) == 1 &&
3048 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3049 			SECURITY_PROTOCOL_OUT) == 1)
3050 		sdkp->security = 1;
3051 }
3052 
3053 /**
3054  *	sd_revalidate_disk - called the first time a new disk is seen,
3055  *	performs disk spin up, read_capacity, etc.
3056  *	@disk: struct gendisk we care about
3057  **/
3058 static int sd_revalidate_disk(struct gendisk *disk)
3059 {
3060 	struct scsi_disk *sdkp = scsi_disk(disk);
3061 	struct scsi_device *sdp = sdkp->device;
3062 	struct request_queue *q = sdkp->disk->queue;
3063 	sector_t old_capacity = sdkp->capacity;
3064 	unsigned char *buffer;
3065 	unsigned int dev_max, rw_max;
3066 
3067 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3068 				      "sd_revalidate_disk\n"));
3069 
3070 	/*
3071 	 * If the device is offline, don't try and read capacity or any
3072 	 * of the other niceties.
3073 	 */
3074 	if (!scsi_device_online(sdp))
3075 		goto out;
3076 
3077 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3078 	if (!buffer) {
3079 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3080 			  "allocation failure.\n");
3081 		goto out;
3082 	}
3083 
3084 	sd_spinup_disk(sdkp);
3085 
3086 	/*
3087 	 * Without media there is no reason to ask; moreover, some devices
3088 	 * react badly if we do.
3089 	 */
3090 	if (sdkp->media_present) {
3091 		sd_read_capacity(sdkp, buffer);
3092 
3093 		if (scsi_device_supports_vpd(sdp)) {
3094 			sd_read_block_provisioning(sdkp);
3095 			sd_read_block_limits(sdkp);
3096 			sd_read_block_characteristics(sdkp);
3097 			sd_zbc_read_zones(sdkp, buffer);
3098 		}
3099 
3100 		sd_print_capacity(sdkp, old_capacity);
3101 
3102 		sd_read_write_protect_flag(sdkp, buffer);
3103 		sd_read_cache_type(sdkp, buffer);
3104 		sd_read_app_tag_own(sdkp, buffer);
3105 		sd_read_write_same(sdkp, buffer);
3106 		sd_read_security(sdkp, buffer);
3107 	}
3108 
3109 	/*
3110 	 * We now have all cache related info, determine how we deal
3111 	 * with flush requests.
3112 	 */
3113 	sd_set_flush_flag(sdkp);
3114 
3115 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3116 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3117 
3118 	/* Some devices report a maximum block count for READ/WRITE requests. */
3119 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3120 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3121 
3122 	/*
3123 	 * Determine the device's preferred I/O size for reads and writes
3124 	 * unless the reported value is unreasonably small, large, or
3125 	 * garbage.
3126 	 */
3127 	if (sdkp->opt_xfer_blocks &&
3128 	    sdkp->opt_xfer_blocks <= dev_max &&
3129 	    sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3130 	    logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3131 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3132 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3133 	} else
3134 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3135 				      (sector_t)BLK_DEF_MAX_SECTORS);
3136 
3137 	/* Do not exceed controller limit */
3138 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3139 
3140 	/*
3141 	 * Only update max_sectors if previously unset or if the current value
3142 	 * exceeds the capabilities of the hardware.
3143 	 */
3144 	if (sdkp->first_scan ||
3145 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3146 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3147 		q->limits.max_sectors = rw_max;
3148 
3149 	sdkp->first_scan = 0;
3150 
3151 	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3152 	sd_config_write_same(sdkp);
3153 	kfree(buffer);
3154 
3155  out:
3156 	return 0;
3157 }
3158 
3159 /**
3160  *	sd_unlock_native_capacity - unlock native capacity
3161  *	@disk: struct gendisk to set capacity for
3162  *
3163  *	Block layer calls this function if it detects that partitions
3164  *	on @disk reach beyond the end of the device.  If the SCSI host
3165  *	implements ->unlock_native_capacity() method, it's invoked to
3166  *	give it a chance to adjust the device capacity.
3167  *
3168  *	CONTEXT:
3169  *	Defined by block layer.  Might sleep.
3170  */
3171 static void sd_unlock_native_capacity(struct gendisk *disk)
3172 {
3173 	struct scsi_device *sdev = scsi_disk(disk)->device;
3174 
3175 	if (sdev->host->hostt->unlock_native_capacity)
3176 		sdev->host->hostt->unlock_native_capacity(sdev);
3177 }
3178 
3179 /**
3180  *	sd_format_disk_name - format disk name
3181  *	@prefix: name prefix - ie. "sd" for SCSI disks
3182  *	@index: index of the disk to format name for
3183  *	@buf: output buffer
3184  *	@buflen: length of the output buffer
3185  *
3186  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3187  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3188  *	which is followed by sdaaa.
3189  *
3190  *	This is basically 26 base counting with one extra 'nil' entry
3191  *	at the beginning from the second digit on and can be
3192  *	determined using similar method as 26 base conversion with the
3193  *	index shifted -1 after each digit is computed.
3194  *
3195  *	CONTEXT:
3196  *	Don't care.
3197  *
3198  *	RETURNS:
3199  *	0 on success, -errno on failure.
3200  */
3201 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3202 {
3203 	const int base = 'z' - 'a' + 1;
3204 	char *begin = buf + strlen(prefix);
3205 	char *end = buf + buflen;
3206 	char *p;
3207 	int unit;
3208 
3209 	p = end - 1;
3210 	*p = '\0';
3211 	unit = base;
3212 	do {
3213 		if (p == begin)
3214 			return -EINVAL;
3215 		*--p = 'a' + (index % unit);
3216 		index = (index / unit) - 1;
3217 	} while (index >= 0);
3218 
3219 	memmove(begin, p, end - p);
3220 	memcpy(buf, prefix, strlen(prefix));
3221 
3222 	return 0;
3223 }
3224 
3225 /*
3226  * The asynchronous part of sd_probe
3227  */
3228 static void sd_probe_async(void *data, async_cookie_t cookie)
3229 {
3230 	struct scsi_disk *sdkp = data;
3231 	struct scsi_device *sdp;
3232 	struct gendisk *gd;
3233 	u32 index;
3234 	struct device *dev;
3235 
3236 	sdp = sdkp->device;
3237 	gd = sdkp->disk;
3238 	index = sdkp->index;
3239 	dev = &sdp->sdev_gendev;
3240 
3241 	gd->major = sd_major((index & 0xf0) >> 4);
3242 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3243 
3244 	gd->fops = &sd_fops;
3245 	gd->private_data = &sdkp->driver;
3246 	gd->queue = sdkp->device->request_queue;
3247 
3248 	/* defaults, until the device tells us otherwise */
3249 	sdp->sector_size = 512;
3250 	sdkp->capacity = 0;
3251 	sdkp->media_present = 1;
3252 	sdkp->write_prot = 0;
3253 	sdkp->cache_override = 0;
3254 	sdkp->WCE = 0;
3255 	sdkp->RCD = 0;
3256 	sdkp->ATO = 0;
3257 	sdkp->first_scan = 1;
3258 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3259 
3260 	sd_revalidate_disk(gd);
3261 
3262 	gd->flags = GENHD_FL_EXT_DEVT;
3263 	if (sdp->removable) {
3264 		gd->flags |= GENHD_FL_REMOVABLE;
3265 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3266 	}
3267 
3268 	blk_pm_runtime_init(sdp->request_queue, dev);
3269 	device_add_disk(dev, gd);
3270 	if (sdkp->capacity)
3271 		sd_dif_config_host(sdkp);
3272 
3273 	sd_revalidate_disk(gd);
3274 
3275 	if (sdkp->security) {
3276 		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3277 		if (sdkp->opal_dev)
3278 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3279 	}
3280 
3281 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3282 		  sdp->removable ? "removable " : "");
3283 	scsi_autopm_put_device(sdp);
3284 	put_device(&sdkp->dev);
3285 }
3286 
3287 /**
3288  *	sd_probe - called during driver initialization and whenever a
3289  *	new scsi device is attached to the system. It is called once
3290  *	for each scsi device (not just disks) present.
3291  *	@dev: pointer to device object
3292  *
3293  *	Returns 0 if successful (or not interested in this scsi device
3294  *	(e.g. scanner)); 1 when there is an error.
3295  *
3296  *	Note: this function is invoked from the scsi mid-level.
3297  *	This function sets up the mapping between a given
3298  *	<host,channel,id,lun> (found in sdp) and new device name
3299  *	(e.g. /dev/sda). More precisely it is the block device major
3300  *	and minor number that is chosen here.
3301  *
3302  *	Assume sd_probe is not re-entrant (for time being)
3303  *	Also think about sd_probe() and sd_remove() running coincidentally.
3304  **/
3305 static int sd_probe(struct device *dev)
3306 {
3307 	struct scsi_device *sdp = to_scsi_device(dev);
3308 	struct scsi_disk *sdkp;
3309 	struct gendisk *gd;
3310 	int index;
3311 	int error;
3312 
3313 	scsi_autopm_get_device(sdp);
3314 	error = -ENODEV;
3315 	if (sdp->type != TYPE_DISK &&
3316 	    sdp->type != TYPE_ZBC &&
3317 	    sdp->type != TYPE_MOD &&
3318 	    sdp->type != TYPE_RBC)
3319 		goto out;
3320 
3321 #ifndef CONFIG_BLK_DEV_ZONED
3322 	if (sdp->type == TYPE_ZBC)
3323 		goto out;
3324 #endif
3325 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3326 					"sd_probe\n"));
3327 
3328 	error = -ENOMEM;
3329 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3330 	if (!sdkp)
3331 		goto out;
3332 
3333 	gd = alloc_disk(SD_MINORS);
3334 	if (!gd)
3335 		goto out_free;
3336 
3337 	do {
3338 		if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3339 			goto out_put;
3340 
3341 		spin_lock(&sd_index_lock);
3342 		error = ida_get_new(&sd_index_ida, &index);
3343 		spin_unlock(&sd_index_lock);
3344 	} while (error == -EAGAIN);
3345 
3346 	if (error) {
3347 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3348 		goto out_put;
3349 	}
3350 
3351 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3352 	if (error) {
3353 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3354 		goto out_free_index;
3355 	}
3356 
3357 	sdkp->device = sdp;
3358 	sdkp->driver = &sd_template;
3359 	sdkp->disk = gd;
3360 	sdkp->index = index;
3361 	atomic_set(&sdkp->openers, 0);
3362 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3363 
3364 	if (!sdp->request_queue->rq_timeout) {
3365 		if (sdp->type != TYPE_MOD)
3366 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3367 		else
3368 			blk_queue_rq_timeout(sdp->request_queue,
3369 					     SD_MOD_TIMEOUT);
3370 	}
3371 
3372 	device_initialize(&sdkp->dev);
3373 	sdkp->dev.parent = dev;
3374 	sdkp->dev.class = &sd_disk_class;
3375 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3376 
3377 	error = device_add(&sdkp->dev);
3378 	if (error)
3379 		goto out_free_index;
3380 
3381 	get_device(dev);
3382 	dev_set_drvdata(dev, sdkp);
3383 
3384 	get_device(&sdkp->dev);	/* prevent release before async_schedule */
3385 	async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3386 
3387 	return 0;
3388 
3389  out_free_index:
3390 	spin_lock(&sd_index_lock);
3391 	ida_remove(&sd_index_ida, index);
3392 	spin_unlock(&sd_index_lock);
3393  out_put:
3394 	put_disk(gd);
3395  out_free:
3396 	kfree(sdkp);
3397  out:
3398 	scsi_autopm_put_device(sdp);
3399 	return error;
3400 }
3401 
3402 /**
3403  *	sd_remove - called whenever a scsi disk (previously recognized by
3404  *	sd_probe) is detached from the system. It is called (potentially
3405  *	multiple times) during sd module unload.
3406  *	@dev: pointer to device object
3407  *
3408  *	Note: this function is invoked from the scsi mid-level.
3409  *	This function potentially frees up a device name (e.g. /dev/sdc)
3410  *	that could be re-used by a subsequent sd_probe().
3411  *	This function is not called when the built-in sd driver is "exit-ed".
3412  **/
3413 static int sd_remove(struct device *dev)
3414 {
3415 	struct scsi_disk *sdkp;
3416 	dev_t devt;
3417 
3418 	sdkp = dev_get_drvdata(dev);
3419 	devt = disk_devt(sdkp->disk);
3420 	scsi_autopm_get_device(sdkp->device);
3421 
3422 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3423 	async_synchronize_full_domain(&scsi_sd_probe_domain);
3424 	device_del(&sdkp->dev);
3425 	del_gendisk(sdkp->disk);
3426 	sd_shutdown(dev);
3427 
3428 	sd_zbc_remove(sdkp);
3429 
3430 	free_opal_dev(sdkp->opal_dev);
3431 
3432 	blk_register_region(devt, SD_MINORS, NULL,
3433 			    sd_default_probe, NULL, NULL);
3434 
3435 	mutex_lock(&sd_ref_mutex);
3436 	dev_set_drvdata(dev, NULL);
3437 	put_device(&sdkp->dev);
3438 	mutex_unlock(&sd_ref_mutex);
3439 
3440 	return 0;
3441 }
3442 
3443 /**
3444  *	scsi_disk_release - Called to free the scsi_disk structure
3445  *	@dev: pointer to embedded class device
3446  *
3447  *	sd_ref_mutex must be held entering this routine.  Because it is
3448  *	called on last put, you should always use the scsi_disk_get()
3449  *	scsi_disk_put() helpers which manipulate the semaphore directly
3450  *	and never do a direct put_device.
3451  **/
3452 static void scsi_disk_release(struct device *dev)
3453 {
3454 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3455 	struct gendisk *disk = sdkp->disk;
3456 
3457 	spin_lock(&sd_index_lock);
3458 	ida_remove(&sd_index_ida, sdkp->index);
3459 	spin_unlock(&sd_index_lock);
3460 
3461 	disk->private_data = NULL;
3462 	put_disk(disk);
3463 	put_device(&sdkp->device->sdev_gendev);
3464 
3465 	kfree(sdkp);
3466 }
3467 
3468 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3469 {
3470 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3471 	struct scsi_sense_hdr sshdr;
3472 	struct scsi_device *sdp = sdkp->device;
3473 	int res;
3474 
3475 	if (start)
3476 		cmd[4] |= 1;	/* START */
3477 
3478 	if (sdp->start_stop_pwr_cond)
3479 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3480 
3481 	if (!scsi_device_online(sdp))
3482 		return -ENODEV;
3483 
3484 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3485 			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3486 	if (res) {
3487 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3488 		if (driver_byte(res) & DRIVER_SENSE)
3489 			sd_print_sense_hdr(sdkp, &sshdr);
3490 		if (scsi_sense_valid(&sshdr) &&
3491 			/* 0x3a is medium not present */
3492 			sshdr.asc == 0x3a)
3493 			res = 0;
3494 	}
3495 
3496 	/* SCSI error codes must not go to the generic layer */
3497 	if (res)
3498 		return -EIO;
3499 
3500 	return 0;
3501 }
3502 
3503 /*
3504  * Send a SYNCHRONIZE CACHE instruction down to the device through
3505  * the normal SCSI command structure.  Wait for the command to
3506  * complete.
3507  */
3508 static void sd_shutdown(struct device *dev)
3509 {
3510 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3511 
3512 	if (!sdkp)
3513 		return;         /* this can happen */
3514 
3515 	if (pm_runtime_suspended(dev))
3516 		return;
3517 
3518 	if (sdkp->WCE && sdkp->media_present) {
3519 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3520 		sd_sync_cache(sdkp, NULL);
3521 	}
3522 
3523 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3524 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3525 		sd_start_stop_device(sdkp, 0);
3526 	}
3527 }
3528 
3529 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3530 {
3531 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3532 	struct scsi_sense_hdr sshdr;
3533 	int ret = 0;
3534 
3535 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3536 		return 0;
3537 
3538 	if (sdkp->WCE && sdkp->media_present) {
3539 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3540 		ret = sd_sync_cache(sdkp, &sshdr);
3541 
3542 		if (ret) {
3543 			/* ignore OFFLINE device */
3544 			if (ret == -ENODEV)
3545 				return 0;
3546 
3547 			if (!scsi_sense_valid(&sshdr) ||
3548 			    sshdr.sense_key != ILLEGAL_REQUEST)
3549 				return ret;
3550 
3551 			/*
3552 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3553 			 * doesn't support sync. There's not much to do and
3554 			 * suspend shouldn't fail.
3555 			 */
3556 			ret = 0;
3557 		}
3558 	}
3559 
3560 	if (sdkp->device->manage_start_stop) {
3561 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3562 		/* an error is not worth aborting a system sleep */
3563 		ret = sd_start_stop_device(sdkp, 0);
3564 		if (ignore_stop_errors)
3565 			ret = 0;
3566 	}
3567 
3568 	return ret;
3569 }
3570 
3571 static int sd_suspend_system(struct device *dev)
3572 {
3573 	return sd_suspend_common(dev, true);
3574 }
3575 
3576 static int sd_suspend_runtime(struct device *dev)
3577 {
3578 	return sd_suspend_common(dev, false);
3579 }
3580 
3581 static int sd_resume(struct device *dev)
3582 {
3583 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3584 	int ret;
3585 
3586 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3587 		return 0;
3588 
3589 	if (!sdkp->device->manage_start_stop)
3590 		return 0;
3591 
3592 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3593 	ret = sd_start_stop_device(sdkp, 1);
3594 	if (!ret)
3595 		opal_unlock_from_suspend(sdkp->opal_dev);
3596 	return ret;
3597 }
3598 
3599 /**
3600  *	init_sd - entry point for this driver (both when built in or when
3601  *	a module).
3602  *
3603  *	Note: this function registers this driver with the scsi mid-level.
3604  **/
3605 static int __init init_sd(void)
3606 {
3607 	int majors = 0, i, err;
3608 
3609 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3610 
3611 	for (i = 0; i < SD_MAJORS; i++) {
3612 		if (register_blkdev(sd_major(i), "sd") != 0)
3613 			continue;
3614 		majors++;
3615 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3616 				    sd_default_probe, NULL, NULL);
3617 	}
3618 
3619 	if (!majors)
3620 		return -ENODEV;
3621 
3622 	err = class_register(&sd_disk_class);
3623 	if (err)
3624 		goto err_out;
3625 
3626 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3627 					 0, 0, NULL);
3628 	if (!sd_cdb_cache) {
3629 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3630 		err = -ENOMEM;
3631 		goto err_out_class;
3632 	}
3633 
3634 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3635 	if (!sd_cdb_pool) {
3636 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3637 		err = -ENOMEM;
3638 		goto err_out_cache;
3639 	}
3640 
3641 	err = scsi_register_driver(&sd_template.gendrv);
3642 	if (err)
3643 		goto err_out_driver;
3644 
3645 	return 0;
3646 
3647 err_out_driver:
3648 	mempool_destroy(sd_cdb_pool);
3649 
3650 err_out_cache:
3651 	kmem_cache_destroy(sd_cdb_cache);
3652 
3653 err_out_class:
3654 	class_unregister(&sd_disk_class);
3655 err_out:
3656 	for (i = 0; i < SD_MAJORS; i++)
3657 		unregister_blkdev(sd_major(i), "sd");
3658 	return err;
3659 }
3660 
3661 /**
3662  *	exit_sd - exit point for this driver (when it is a module).
3663  *
3664  *	Note: this function unregisters this driver from the scsi mid-level.
3665  **/
3666 static void __exit exit_sd(void)
3667 {
3668 	int i;
3669 
3670 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3671 
3672 	scsi_unregister_driver(&sd_template.gendrv);
3673 	mempool_destroy(sd_cdb_pool);
3674 	kmem_cache_destroy(sd_cdb_cache);
3675 
3676 	class_unregister(&sd_disk_class);
3677 
3678 	for (i = 0; i < SD_MAJORS; i++) {
3679 		blk_unregister_region(sd_major(i), SD_MINORS);
3680 		unregister_blkdev(sd_major(i), "sd");
3681 	}
3682 }
3683 
3684 module_init(init_sd);
3685 module_exit(exit_sd);
3686 
3687 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3688 			       struct scsi_sense_hdr *sshdr)
3689 {
3690 	scsi_print_sense_hdr(sdkp->device,
3691 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3692 }
3693 
3694 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3695 			    int result)
3696 {
3697 	const char *hb_string = scsi_hostbyte_string(result);
3698 	const char *db_string = scsi_driverbyte_string(result);
3699 
3700 	if (hb_string || db_string)
3701 		sd_printk(KERN_INFO, sdkp,
3702 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3703 			  hb_string ? hb_string : "invalid",
3704 			  db_string ? db_string : "invalid");
3705 	else
3706 		sd_printk(KERN_INFO, sdkp,
3707 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3708 			  msg, host_byte(result), driver_byte(result));
3709 }
3710 
3711