1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/major.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 #include <scsi/scsi_common.h> 71 72 #include "sd.h" 73 #include "scsi_priv.h" 74 #include "scsi_logging.h" 75 76 MODULE_AUTHOR("Eric Youngdale"); 77 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 78 MODULE_LICENSE("GPL"); 79 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 100 101 #define SD_MINORS 16 102 103 static void sd_config_discard(struct scsi_disk *, unsigned int); 104 static void sd_config_write_same(struct scsi_disk *); 105 static int sd_revalidate_disk(struct gendisk *); 106 static void sd_unlock_native_capacity(struct gendisk *disk); 107 static int sd_probe(struct device *); 108 static int sd_remove(struct device *); 109 static void sd_shutdown(struct device *); 110 static int sd_suspend_system(struct device *); 111 static int sd_suspend_runtime(struct device *); 112 static int sd_resume_system(struct device *); 113 static int sd_resume_runtime(struct device *); 114 static void sd_rescan(struct device *); 115 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 116 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 117 static int sd_done(struct scsi_cmnd *); 118 static void sd_eh_reset(struct scsi_cmnd *); 119 static int sd_eh_action(struct scsi_cmnd *, int); 120 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 121 static void scsi_disk_release(struct device *cdev); 122 123 static DEFINE_IDA(sd_index_ida); 124 125 static mempool_t *sd_page_pool; 126 static struct lock_class_key sd_bio_compl_lkclass; 127 128 static const char *sd_cache_types[] = { 129 "write through", "none", "write back", 130 "write back, no read (daft)" 131 }; 132 133 static void sd_set_flush_flag(struct scsi_disk *sdkp) 134 { 135 bool wc = false, fua = false; 136 137 if (sdkp->WCE) { 138 wc = true; 139 if (sdkp->DPOFUA) 140 fua = true; 141 } 142 143 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 144 } 145 146 static ssize_t 147 cache_type_store(struct device *dev, struct device_attribute *attr, 148 const char *buf, size_t count) 149 { 150 int ct, rcd, wce, sp; 151 struct scsi_disk *sdkp = to_scsi_disk(dev); 152 struct scsi_device *sdp = sdkp->device; 153 char buffer[64]; 154 char *buffer_data; 155 struct scsi_mode_data data; 156 struct scsi_sense_hdr sshdr; 157 static const char temp[] = "temporary "; 158 int len; 159 160 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 161 /* no cache control on RBC devices; theoretically they 162 * can do it, but there's probably so many exceptions 163 * it's not worth the risk */ 164 return -EINVAL; 165 166 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 167 buf += sizeof(temp) - 1; 168 sdkp->cache_override = 1; 169 } else { 170 sdkp->cache_override = 0; 171 } 172 173 ct = sysfs_match_string(sd_cache_types, buf); 174 if (ct < 0) 175 return -EINVAL; 176 177 rcd = ct & 0x01 ? 1 : 0; 178 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 179 180 if (sdkp->cache_override) { 181 sdkp->WCE = wce; 182 sdkp->RCD = rcd; 183 sd_set_flush_flag(sdkp); 184 return count; 185 } 186 187 if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT, 188 sdkp->max_retries, &data, NULL)) 189 return -EINVAL; 190 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 191 data.block_descriptor_length); 192 buffer_data = buffer + data.header_length + 193 data.block_descriptor_length; 194 buffer_data[2] &= ~0x05; 195 buffer_data[2] |= wce << 2 | rcd; 196 sp = buffer_data[0] & 0x80 ? 1 : 0; 197 buffer_data[0] &= ~0x80; 198 199 /* 200 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 201 * received mode parameter buffer before doing MODE SELECT. 202 */ 203 data.device_specific = 0; 204 205 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 206 sdkp->max_retries, &data, &sshdr)) { 207 if (scsi_sense_valid(&sshdr)) 208 sd_print_sense_hdr(sdkp, &sshdr); 209 return -EINVAL; 210 } 211 sd_revalidate_disk(sdkp->disk); 212 return count; 213 } 214 215 static ssize_t 216 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 217 char *buf) 218 { 219 struct scsi_disk *sdkp = to_scsi_disk(dev); 220 struct scsi_device *sdp = sdkp->device; 221 222 return sprintf(buf, "%u\n", sdp->manage_start_stop); 223 } 224 225 static ssize_t 226 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 227 const char *buf, size_t count) 228 { 229 struct scsi_disk *sdkp = to_scsi_disk(dev); 230 struct scsi_device *sdp = sdkp->device; 231 bool v; 232 233 if (!capable(CAP_SYS_ADMIN)) 234 return -EACCES; 235 236 if (kstrtobool(buf, &v)) 237 return -EINVAL; 238 239 sdp->manage_start_stop = v; 240 241 return count; 242 } 243 static DEVICE_ATTR_RW(manage_start_stop); 244 245 static ssize_t 246 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 247 { 248 struct scsi_disk *sdkp = to_scsi_disk(dev); 249 250 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 251 } 252 253 static ssize_t 254 allow_restart_store(struct device *dev, struct device_attribute *attr, 255 const char *buf, size_t count) 256 { 257 bool v; 258 struct scsi_disk *sdkp = to_scsi_disk(dev); 259 struct scsi_device *sdp = sdkp->device; 260 261 if (!capable(CAP_SYS_ADMIN)) 262 return -EACCES; 263 264 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 265 return -EINVAL; 266 267 if (kstrtobool(buf, &v)) 268 return -EINVAL; 269 270 sdp->allow_restart = v; 271 272 return count; 273 } 274 static DEVICE_ATTR_RW(allow_restart); 275 276 static ssize_t 277 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 278 { 279 struct scsi_disk *sdkp = to_scsi_disk(dev); 280 int ct = sdkp->RCD + 2*sdkp->WCE; 281 282 return sprintf(buf, "%s\n", sd_cache_types[ct]); 283 } 284 static DEVICE_ATTR_RW(cache_type); 285 286 static ssize_t 287 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 288 { 289 struct scsi_disk *sdkp = to_scsi_disk(dev); 290 291 return sprintf(buf, "%u\n", sdkp->DPOFUA); 292 } 293 static DEVICE_ATTR_RO(FUA); 294 295 static ssize_t 296 protection_type_show(struct device *dev, struct device_attribute *attr, 297 char *buf) 298 { 299 struct scsi_disk *sdkp = to_scsi_disk(dev); 300 301 return sprintf(buf, "%u\n", sdkp->protection_type); 302 } 303 304 static ssize_t 305 protection_type_store(struct device *dev, struct device_attribute *attr, 306 const char *buf, size_t count) 307 { 308 struct scsi_disk *sdkp = to_scsi_disk(dev); 309 unsigned int val; 310 int err; 311 312 if (!capable(CAP_SYS_ADMIN)) 313 return -EACCES; 314 315 err = kstrtouint(buf, 10, &val); 316 317 if (err) 318 return err; 319 320 if (val <= T10_PI_TYPE3_PROTECTION) 321 sdkp->protection_type = val; 322 323 return count; 324 } 325 static DEVICE_ATTR_RW(protection_type); 326 327 static ssize_t 328 protection_mode_show(struct device *dev, struct device_attribute *attr, 329 char *buf) 330 { 331 struct scsi_disk *sdkp = to_scsi_disk(dev); 332 struct scsi_device *sdp = sdkp->device; 333 unsigned int dif, dix; 334 335 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 336 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 337 338 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 339 dif = 0; 340 dix = 1; 341 } 342 343 if (!dif && !dix) 344 return sprintf(buf, "none\n"); 345 346 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 347 } 348 static DEVICE_ATTR_RO(protection_mode); 349 350 static ssize_t 351 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 352 { 353 struct scsi_disk *sdkp = to_scsi_disk(dev); 354 355 return sprintf(buf, "%u\n", sdkp->ATO); 356 } 357 static DEVICE_ATTR_RO(app_tag_own); 358 359 static ssize_t 360 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 361 char *buf) 362 { 363 struct scsi_disk *sdkp = to_scsi_disk(dev); 364 365 return sprintf(buf, "%u\n", sdkp->lbpme); 366 } 367 static DEVICE_ATTR_RO(thin_provisioning); 368 369 /* sysfs_match_string() requires dense arrays */ 370 static const char *lbp_mode[] = { 371 [SD_LBP_FULL] = "full", 372 [SD_LBP_UNMAP] = "unmap", 373 [SD_LBP_WS16] = "writesame_16", 374 [SD_LBP_WS10] = "writesame_10", 375 [SD_LBP_ZERO] = "writesame_zero", 376 [SD_LBP_DISABLE] = "disabled", 377 }; 378 379 static ssize_t 380 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 381 char *buf) 382 { 383 struct scsi_disk *sdkp = to_scsi_disk(dev); 384 385 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 386 } 387 388 static ssize_t 389 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 390 const char *buf, size_t count) 391 { 392 struct scsi_disk *sdkp = to_scsi_disk(dev); 393 struct scsi_device *sdp = sdkp->device; 394 int mode; 395 396 if (!capable(CAP_SYS_ADMIN)) 397 return -EACCES; 398 399 if (sd_is_zoned(sdkp)) { 400 sd_config_discard(sdkp, SD_LBP_DISABLE); 401 return count; 402 } 403 404 if (sdp->type != TYPE_DISK) 405 return -EINVAL; 406 407 mode = sysfs_match_string(lbp_mode, buf); 408 if (mode < 0) 409 return -EINVAL; 410 411 sd_config_discard(sdkp, mode); 412 413 return count; 414 } 415 static DEVICE_ATTR_RW(provisioning_mode); 416 417 /* sysfs_match_string() requires dense arrays */ 418 static const char *zeroing_mode[] = { 419 [SD_ZERO_WRITE] = "write", 420 [SD_ZERO_WS] = "writesame", 421 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 422 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 423 }; 424 425 static ssize_t 426 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 427 char *buf) 428 { 429 struct scsi_disk *sdkp = to_scsi_disk(dev); 430 431 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 432 } 433 434 static ssize_t 435 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 436 const char *buf, size_t count) 437 { 438 struct scsi_disk *sdkp = to_scsi_disk(dev); 439 int mode; 440 441 if (!capable(CAP_SYS_ADMIN)) 442 return -EACCES; 443 444 mode = sysfs_match_string(zeroing_mode, buf); 445 if (mode < 0) 446 return -EINVAL; 447 448 sdkp->zeroing_mode = mode; 449 450 return count; 451 } 452 static DEVICE_ATTR_RW(zeroing_mode); 453 454 static ssize_t 455 max_medium_access_timeouts_show(struct device *dev, 456 struct device_attribute *attr, char *buf) 457 { 458 struct scsi_disk *sdkp = to_scsi_disk(dev); 459 460 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 461 } 462 463 static ssize_t 464 max_medium_access_timeouts_store(struct device *dev, 465 struct device_attribute *attr, const char *buf, 466 size_t count) 467 { 468 struct scsi_disk *sdkp = to_scsi_disk(dev); 469 int err; 470 471 if (!capable(CAP_SYS_ADMIN)) 472 return -EACCES; 473 474 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 475 476 return err ? err : count; 477 } 478 static DEVICE_ATTR_RW(max_medium_access_timeouts); 479 480 static ssize_t 481 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 482 char *buf) 483 { 484 struct scsi_disk *sdkp = to_scsi_disk(dev); 485 486 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 487 } 488 489 static ssize_t 490 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 491 const char *buf, size_t count) 492 { 493 struct scsi_disk *sdkp = to_scsi_disk(dev); 494 struct scsi_device *sdp = sdkp->device; 495 unsigned long max; 496 int err; 497 498 if (!capable(CAP_SYS_ADMIN)) 499 return -EACCES; 500 501 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 502 return -EINVAL; 503 504 err = kstrtoul(buf, 10, &max); 505 506 if (err) 507 return err; 508 509 if (max == 0) 510 sdp->no_write_same = 1; 511 else if (max <= SD_MAX_WS16_BLOCKS) { 512 sdp->no_write_same = 0; 513 sdkp->max_ws_blocks = max; 514 } 515 516 sd_config_write_same(sdkp); 517 518 return count; 519 } 520 static DEVICE_ATTR_RW(max_write_same_blocks); 521 522 static ssize_t 523 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 524 { 525 struct scsi_disk *sdkp = to_scsi_disk(dev); 526 527 if (sdkp->device->type == TYPE_ZBC) 528 return sprintf(buf, "host-managed\n"); 529 if (sdkp->zoned == 1) 530 return sprintf(buf, "host-aware\n"); 531 if (sdkp->zoned == 2) 532 return sprintf(buf, "drive-managed\n"); 533 return sprintf(buf, "none\n"); 534 } 535 static DEVICE_ATTR_RO(zoned_cap); 536 537 static ssize_t 538 max_retries_store(struct device *dev, struct device_attribute *attr, 539 const char *buf, size_t count) 540 { 541 struct scsi_disk *sdkp = to_scsi_disk(dev); 542 struct scsi_device *sdev = sdkp->device; 543 int retries, err; 544 545 err = kstrtoint(buf, 10, &retries); 546 if (err) 547 return err; 548 549 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 550 sdkp->max_retries = retries; 551 return count; 552 } 553 554 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 555 SD_MAX_RETRIES); 556 return -EINVAL; 557 } 558 559 static ssize_t 560 max_retries_show(struct device *dev, struct device_attribute *attr, 561 char *buf) 562 { 563 struct scsi_disk *sdkp = to_scsi_disk(dev); 564 565 return sprintf(buf, "%d\n", sdkp->max_retries); 566 } 567 568 static DEVICE_ATTR_RW(max_retries); 569 570 static struct attribute *sd_disk_attrs[] = { 571 &dev_attr_cache_type.attr, 572 &dev_attr_FUA.attr, 573 &dev_attr_allow_restart.attr, 574 &dev_attr_manage_start_stop.attr, 575 &dev_attr_protection_type.attr, 576 &dev_attr_protection_mode.attr, 577 &dev_attr_app_tag_own.attr, 578 &dev_attr_thin_provisioning.attr, 579 &dev_attr_provisioning_mode.attr, 580 &dev_attr_zeroing_mode.attr, 581 &dev_attr_max_write_same_blocks.attr, 582 &dev_attr_max_medium_access_timeouts.attr, 583 &dev_attr_zoned_cap.attr, 584 &dev_attr_max_retries.attr, 585 NULL, 586 }; 587 ATTRIBUTE_GROUPS(sd_disk); 588 589 static struct class sd_disk_class = { 590 .name = "scsi_disk", 591 .dev_release = scsi_disk_release, 592 .dev_groups = sd_disk_groups, 593 }; 594 595 static const struct dev_pm_ops sd_pm_ops = { 596 .suspend = sd_suspend_system, 597 .resume = sd_resume_system, 598 .poweroff = sd_suspend_system, 599 .restore = sd_resume_system, 600 .runtime_suspend = sd_suspend_runtime, 601 .runtime_resume = sd_resume_runtime, 602 }; 603 604 static struct scsi_driver sd_template = { 605 .gendrv = { 606 .name = "sd", 607 .owner = THIS_MODULE, 608 .probe = sd_probe, 609 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 610 .remove = sd_remove, 611 .shutdown = sd_shutdown, 612 .pm = &sd_pm_ops, 613 }, 614 .rescan = sd_rescan, 615 .init_command = sd_init_command, 616 .uninit_command = sd_uninit_command, 617 .done = sd_done, 618 .eh_action = sd_eh_action, 619 .eh_reset = sd_eh_reset, 620 }; 621 622 /* 623 * Don't request a new module, as that could deadlock in multipath 624 * environment. 625 */ 626 static void sd_default_probe(dev_t devt) 627 { 628 } 629 630 /* 631 * Device no to disk mapping: 632 * 633 * major disc2 disc p1 634 * |............|.............|....|....| <- dev_t 635 * 31 20 19 8 7 4 3 0 636 * 637 * Inside a major, we have 16k disks, however mapped non- 638 * contiguously. The first 16 disks are for major0, the next 639 * ones with major1, ... Disk 256 is for major0 again, disk 272 640 * for major1, ... 641 * As we stay compatible with our numbering scheme, we can reuse 642 * the well-know SCSI majors 8, 65--71, 136--143. 643 */ 644 static int sd_major(int major_idx) 645 { 646 switch (major_idx) { 647 case 0: 648 return SCSI_DISK0_MAJOR; 649 case 1 ... 7: 650 return SCSI_DISK1_MAJOR + major_idx - 1; 651 case 8 ... 15: 652 return SCSI_DISK8_MAJOR + major_idx - 8; 653 default: 654 BUG(); 655 return 0; /* shut up gcc */ 656 } 657 } 658 659 #ifdef CONFIG_BLK_SED_OPAL 660 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 661 size_t len, bool send) 662 { 663 struct scsi_disk *sdkp = data; 664 struct scsi_device *sdev = sdkp->device; 665 u8 cdb[12] = { 0, }; 666 const struct scsi_exec_args exec_args = { 667 .req_flags = BLK_MQ_REQ_PM, 668 }; 669 int ret; 670 671 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 672 cdb[1] = secp; 673 put_unaligned_be16(spsp, &cdb[2]); 674 put_unaligned_be32(len, &cdb[6]); 675 676 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 677 buffer, len, SD_TIMEOUT, sdkp->max_retries, 678 &exec_args); 679 return ret <= 0 ? ret : -EIO; 680 } 681 #endif /* CONFIG_BLK_SED_OPAL */ 682 683 /* 684 * Look up the DIX operation based on whether the command is read or 685 * write and whether dix and dif are enabled. 686 */ 687 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 688 { 689 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 690 static const unsigned int ops[] = { /* wrt dix dif */ 691 SCSI_PROT_NORMAL, /* 0 0 0 */ 692 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 693 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 694 SCSI_PROT_READ_PASS, /* 0 1 1 */ 695 SCSI_PROT_NORMAL, /* 1 0 0 */ 696 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 697 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 698 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 699 }; 700 701 return ops[write << 2 | dix << 1 | dif]; 702 } 703 704 /* 705 * Returns a mask of the protection flags that are valid for a given DIX 706 * operation. 707 */ 708 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 709 { 710 static const unsigned int flag_mask[] = { 711 [SCSI_PROT_NORMAL] = 0, 712 713 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 714 SCSI_PROT_GUARD_CHECK | 715 SCSI_PROT_REF_CHECK | 716 SCSI_PROT_REF_INCREMENT, 717 718 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 719 SCSI_PROT_IP_CHECKSUM, 720 721 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 722 SCSI_PROT_GUARD_CHECK | 723 SCSI_PROT_REF_CHECK | 724 SCSI_PROT_REF_INCREMENT | 725 SCSI_PROT_IP_CHECKSUM, 726 727 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 728 SCSI_PROT_REF_INCREMENT, 729 730 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 731 SCSI_PROT_REF_CHECK | 732 SCSI_PROT_REF_INCREMENT | 733 SCSI_PROT_IP_CHECKSUM, 734 735 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 736 SCSI_PROT_GUARD_CHECK | 737 SCSI_PROT_REF_CHECK | 738 SCSI_PROT_REF_INCREMENT | 739 SCSI_PROT_IP_CHECKSUM, 740 }; 741 742 return flag_mask[prot_op]; 743 } 744 745 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 746 unsigned int dix, unsigned int dif) 747 { 748 struct request *rq = scsi_cmd_to_rq(scmd); 749 struct bio *bio = rq->bio; 750 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 751 unsigned int protect = 0; 752 753 if (dix) { /* DIX Type 0, 1, 2, 3 */ 754 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 755 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 756 757 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 758 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 759 } 760 761 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 762 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 763 764 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 765 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 766 } 767 768 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 769 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 770 771 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 772 protect = 3 << 5; /* Disable target PI checking */ 773 else 774 protect = 1 << 5; /* Enable target PI checking */ 775 } 776 777 scsi_set_prot_op(scmd, prot_op); 778 scsi_set_prot_type(scmd, dif); 779 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 780 781 return protect; 782 } 783 784 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 785 { 786 struct request_queue *q = sdkp->disk->queue; 787 unsigned int logical_block_size = sdkp->device->sector_size; 788 unsigned int max_blocks = 0; 789 790 q->limits.discard_alignment = 791 sdkp->unmap_alignment * logical_block_size; 792 q->limits.discard_granularity = 793 max(sdkp->physical_block_size, 794 sdkp->unmap_granularity * logical_block_size); 795 sdkp->provisioning_mode = mode; 796 797 switch (mode) { 798 799 case SD_LBP_FULL: 800 case SD_LBP_DISABLE: 801 blk_queue_max_discard_sectors(q, 0); 802 return; 803 804 case SD_LBP_UNMAP: 805 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 806 (u32)SD_MAX_WS16_BLOCKS); 807 break; 808 809 case SD_LBP_WS16: 810 if (sdkp->device->unmap_limit_for_ws) 811 max_blocks = sdkp->max_unmap_blocks; 812 else 813 max_blocks = sdkp->max_ws_blocks; 814 815 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 816 break; 817 818 case SD_LBP_WS10: 819 if (sdkp->device->unmap_limit_for_ws) 820 max_blocks = sdkp->max_unmap_blocks; 821 else 822 max_blocks = sdkp->max_ws_blocks; 823 824 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 825 break; 826 827 case SD_LBP_ZERO: 828 max_blocks = min_not_zero(sdkp->max_ws_blocks, 829 (u32)SD_MAX_WS10_BLOCKS); 830 break; 831 } 832 833 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 834 } 835 836 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len) 837 { 838 struct page *page; 839 840 page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 841 if (!page) 842 return NULL; 843 clear_highpage(page); 844 bvec_set_page(&rq->special_vec, page, data_len, 0); 845 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 846 return bvec_virt(&rq->special_vec); 847 } 848 849 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 850 { 851 struct scsi_device *sdp = cmd->device; 852 struct request *rq = scsi_cmd_to_rq(cmd); 853 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 854 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 855 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 856 unsigned int data_len = 24; 857 char *buf; 858 859 buf = sd_set_special_bvec(rq, data_len); 860 if (!buf) 861 return BLK_STS_RESOURCE; 862 863 cmd->cmd_len = 10; 864 cmd->cmnd[0] = UNMAP; 865 cmd->cmnd[8] = 24; 866 867 put_unaligned_be16(6 + 16, &buf[0]); 868 put_unaligned_be16(16, &buf[2]); 869 put_unaligned_be64(lba, &buf[8]); 870 put_unaligned_be32(nr_blocks, &buf[16]); 871 872 cmd->allowed = sdkp->max_retries; 873 cmd->transfersize = data_len; 874 rq->timeout = SD_TIMEOUT; 875 876 return scsi_alloc_sgtables(cmd); 877 } 878 879 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 880 bool unmap) 881 { 882 struct scsi_device *sdp = cmd->device; 883 struct request *rq = scsi_cmd_to_rq(cmd); 884 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 885 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 886 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 887 u32 data_len = sdp->sector_size; 888 889 if (!sd_set_special_bvec(rq, data_len)) 890 return BLK_STS_RESOURCE; 891 892 cmd->cmd_len = 16; 893 cmd->cmnd[0] = WRITE_SAME_16; 894 if (unmap) 895 cmd->cmnd[1] = 0x8; /* UNMAP */ 896 put_unaligned_be64(lba, &cmd->cmnd[2]); 897 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 898 899 cmd->allowed = sdkp->max_retries; 900 cmd->transfersize = data_len; 901 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 902 903 return scsi_alloc_sgtables(cmd); 904 } 905 906 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 907 bool unmap) 908 { 909 struct scsi_device *sdp = cmd->device; 910 struct request *rq = scsi_cmd_to_rq(cmd); 911 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 912 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 913 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 914 u32 data_len = sdp->sector_size; 915 916 if (!sd_set_special_bvec(rq, data_len)) 917 return BLK_STS_RESOURCE; 918 919 cmd->cmd_len = 10; 920 cmd->cmnd[0] = WRITE_SAME; 921 if (unmap) 922 cmd->cmnd[1] = 0x8; /* UNMAP */ 923 put_unaligned_be32(lba, &cmd->cmnd[2]); 924 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 925 926 cmd->allowed = sdkp->max_retries; 927 cmd->transfersize = data_len; 928 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 929 930 return scsi_alloc_sgtables(cmd); 931 } 932 933 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 934 { 935 struct request *rq = scsi_cmd_to_rq(cmd); 936 struct scsi_device *sdp = cmd->device; 937 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 938 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 939 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 940 941 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 942 switch (sdkp->zeroing_mode) { 943 case SD_ZERO_WS16_UNMAP: 944 return sd_setup_write_same16_cmnd(cmd, true); 945 case SD_ZERO_WS10_UNMAP: 946 return sd_setup_write_same10_cmnd(cmd, true); 947 } 948 } 949 950 if (sdp->no_write_same) { 951 rq->rq_flags |= RQF_QUIET; 952 return BLK_STS_TARGET; 953 } 954 955 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 956 return sd_setup_write_same16_cmnd(cmd, false); 957 958 return sd_setup_write_same10_cmnd(cmd, false); 959 } 960 961 static void sd_config_write_same(struct scsi_disk *sdkp) 962 { 963 struct request_queue *q = sdkp->disk->queue; 964 unsigned int logical_block_size = sdkp->device->sector_size; 965 966 if (sdkp->device->no_write_same) { 967 sdkp->max_ws_blocks = 0; 968 goto out; 969 } 970 971 /* Some devices can not handle block counts above 0xffff despite 972 * supporting WRITE SAME(16). Consequently we default to 64k 973 * blocks per I/O unless the device explicitly advertises a 974 * bigger limit. 975 */ 976 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 977 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 978 (u32)SD_MAX_WS16_BLOCKS); 979 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 980 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 981 (u32)SD_MAX_WS10_BLOCKS); 982 else { 983 sdkp->device->no_write_same = 1; 984 sdkp->max_ws_blocks = 0; 985 } 986 987 if (sdkp->lbprz && sdkp->lbpws) 988 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 989 else if (sdkp->lbprz && sdkp->lbpws10) 990 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 991 else if (sdkp->max_ws_blocks) 992 sdkp->zeroing_mode = SD_ZERO_WS; 993 else 994 sdkp->zeroing_mode = SD_ZERO_WRITE; 995 996 if (sdkp->max_ws_blocks && 997 sdkp->physical_block_size > logical_block_size) { 998 /* 999 * Reporting a maximum number of blocks that is not aligned 1000 * on the device physical size would cause a large write same 1001 * request to be split into physically unaligned chunks by 1002 * __blkdev_issue_write_zeroes() even if the caller of this 1003 * functions took care to align the large request. So make sure 1004 * the maximum reported is aligned to the device physical block 1005 * size. This is only an optional optimization for regular 1006 * disks, but this is mandatory to avoid failure of large write 1007 * same requests directed at sequential write required zones of 1008 * host-managed ZBC disks. 1009 */ 1010 sdkp->max_ws_blocks = 1011 round_down(sdkp->max_ws_blocks, 1012 bytes_to_logical(sdkp->device, 1013 sdkp->physical_block_size)); 1014 } 1015 1016 out: 1017 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1018 (logical_block_size >> 9)); 1019 } 1020 1021 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1022 { 1023 struct request *rq = scsi_cmd_to_rq(cmd); 1024 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1025 1026 /* flush requests don't perform I/O, zero the S/G table */ 1027 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1028 1029 if (cmd->device->use_16_for_sync) { 1030 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16; 1031 cmd->cmd_len = 16; 1032 } else { 1033 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1034 cmd->cmd_len = 10; 1035 } 1036 cmd->transfersize = 0; 1037 cmd->allowed = sdkp->max_retries; 1038 1039 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1040 return BLK_STS_OK; 1041 } 1042 1043 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1044 sector_t lba, unsigned int nr_blocks, 1045 unsigned char flags, unsigned int dld) 1046 { 1047 cmd->cmd_len = SD_EXT_CDB_SIZE; 1048 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1049 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1050 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1051 cmd->cmnd[10] = flags; 1052 cmd->cmnd[11] = dld & 0x07; 1053 put_unaligned_be64(lba, &cmd->cmnd[12]); 1054 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1055 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1056 1057 return BLK_STS_OK; 1058 } 1059 1060 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1061 sector_t lba, unsigned int nr_blocks, 1062 unsigned char flags, unsigned int dld) 1063 { 1064 cmd->cmd_len = 16; 1065 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1066 cmd->cmnd[1] = flags | ((dld >> 2) & 0x01); 1067 cmd->cmnd[14] = (dld & 0x03) << 6; 1068 cmd->cmnd[15] = 0; 1069 put_unaligned_be64(lba, &cmd->cmnd[2]); 1070 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1071 1072 return BLK_STS_OK; 1073 } 1074 1075 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1076 sector_t lba, unsigned int nr_blocks, 1077 unsigned char flags) 1078 { 1079 cmd->cmd_len = 10; 1080 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1081 cmd->cmnd[1] = flags; 1082 cmd->cmnd[6] = 0; 1083 cmd->cmnd[9] = 0; 1084 put_unaligned_be32(lba, &cmd->cmnd[2]); 1085 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1086 1087 return BLK_STS_OK; 1088 } 1089 1090 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1091 sector_t lba, unsigned int nr_blocks, 1092 unsigned char flags) 1093 { 1094 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1095 if (WARN_ON_ONCE(nr_blocks == 0)) 1096 return BLK_STS_IOERR; 1097 1098 if (unlikely(flags & 0x8)) { 1099 /* 1100 * This happens only if this drive failed 10byte rw 1101 * command with ILLEGAL_REQUEST during operation and 1102 * thus turned off use_10_for_rw. 1103 */ 1104 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1105 return BLK_STS_IOERR; 1106 } 1107 1108 cmd->cmd_len = 6; 1109 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1110 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1111 cmd->cmnd[2] = (lba >> 8) & 0xff; 1112 cmd->cmnd[3] = lba & 0xff; 1113 cmd->cmnd[4] = nr_blocks; 1114 cmd->cmnd[5] = 0; 1115 1116 return BLK_STS_OK; 1117 } 1118 1119 /* 1120 * Check if a command has a duration limit set. If it does, and the target 1121 * device supports CDL and the feature is enabled, return the limit 1122 * descriptor index to use. Return 0 (no limit) otherwise. 1123 */ 1124 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd) 1125 { 1126 struct scsi_device *sdp = sdkp->device; 1127 int hint; 1128 1129 if (!sdp->cdl_supported || !sdp->cdl_enable) 1130 return 0; 1131 1132 /* 1133 * Use "no limit" if the request ioprio does not specify a duration 1134 * limit hint. 1135 */ 1136 hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd))); 1137 if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 || 1138 hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7) 1139 return 0; 1140 1141 return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1; 1142 } 1143 1144 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1145 { 1146 struct request *rq = scsi_cmd_to_rq(cmd); 1147 struct scsi_device *sdp = cmd->device; 1148 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1149 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1150 sector_t threshold; 1151 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1152 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1153 bool write = rq_data_dir(rq) == WRITE; 1154 unsigned char protect, fua; 1155 unsigned int dld; 1156 blk_status_t ret; 1157 unsigned int dif; 1158 bool dix; 1159 1160 ret = scsi_alloc_sgtables(cmd); 1161 if (ret != BLK_STS_OK) 1162 return ret; 1163 1164 ret = BLK_STS_IOERR; 1165 if (!scsi_device_online(sdp) || sdp->changed) { 1166 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1167 goto fail; 1168 } 1169 1170 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1171 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1172 goto fail; 1173 } 1174 1175 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1176 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1177 goto fail; 1178 } 1179 1180 /* 1181 * Some SD card readers can't handle accesses which touch the 1182 * last one or two logical blocks. Split accesses as needed. 1183 */ 1184 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1185 1186 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1187 if (lba < threshold) { 1188 /* Access up to the threshold but not beyond */ 1189 nr_blocks = threshold - lba; 1190 } else { 1191 /* Access only a single logical block */ 1192 nr_blocks = 1; 1193 } 1194 } 1195 1196 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1197 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1198 if (ret) 1199 goto fail; 1200 } 1201 1202 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1203 dix = scsi_prot_sg_count(cmd); 1204 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1205 dld = sd_cdl_dld(sdkp, cmd); 1206 1207 if (dif || dix) 1208 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1209 else 1210 protect = 0; 1211 1212 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1213 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1214 protect | fua, dld); 1215 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1216 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1217 protect | fua, dld); 1218 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1219 sdp->use_10_for_rw || protect) { 1220 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1221 protect | fua); 1222 } else { 1223 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1224 protect | fua); 1225 } 1226 1227 if (unlikely(ret != BLK_STS_OK)) 1228 goto fail; 1229 1230 /* 1231 * We shouldn't disconnect in the middle of a sector, so with a dumb 1232 * host adapter, it's safe to assume that we can at least transfer 1233 * this many bytes between each connect / disconnect. 1234 */ 1235 cmd->transfersize = sdp->sector_size; 1236 cmd->underflow = nr_blocks << 9; 1237 cmd->allowed = sdkp->max_retries; 1238 cmd->sdb.length = nr_blocks * sdp->sector_size; 1239 1240 SCSI_LOG_HLQUEUE(1, 1241 scmd_printk(KERN_INFO, cmd, 1242 "%s: block=%llu, count=%d\n", __func__, 1243 (unsigned long long)blk_rq_pos(rq), 1244 blk_rq_sectors(rq))); 1245 SCSI_LOG_HLQUEUE(2, 1246 scmd_printk(KERN_INFO, cmd, 1247 "%s %d/%u 512 byte blocks.\n", 1248 write ? "writing" : "reading", nr_blocks, 1249 blk_rq_sectors(rq))); 1250 1251 /* 1252 * This indicates that the command is ready from our end to be queued. 1253 */ 1254 return BLK_STS_OK; 1255 fail: 1256 scsi_free_sgtables(cmd); 1257 return ret; 1258 } 1259 1260 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1261 { 1262 struct request *rq = scsi_cmd_to_rq(cmd); 1263 1264 switch (req_op(rq)) { 1265 case REQ_OP_DISCARD: 1266 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1267 case SD_LBP_UNMAP: 1268 return sd_setup_unmap_cmnd(cmd); 1269 case SD_LBP_WS16: 1270 return sd_setup_write_same16_cmnd(cmd, true); 1271 case SD_LBP_WS10: 1272 return sd_setup_write_same10_cmnd(cmd, true); 1273 case SD_LBP_ZERO: 1274 return sd_setup_write_same10_cmnd(cmd, false); 1275 default: 1276 return BLK_STS_TARGET; 1277 } 1278 case REQ_OP_WRITE_ZEROES: 1279 return sd_setup_write_zeroes_cmnd(cmd); 1280 case REQ_OP_FLUSH: 1281 return sd_setup_flush_cmnd(cmd); 1282 case REQ_OP_READ: 1283 case REQ_OP_WRITE: 1284 case REQ_OP_ZONE_APPEND: 1285 return sd_setup_read_write_cmnd(cmd); 1286 case REQ_OP_ZONE_RESET: 1287 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1288 false); 1289 case REQ_OP_ZONE_RESET_ALL: 1290 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1291 true); 1292 case REQ_OP_ZONE_OPEN: 1293 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1294 case REQ_OP_ZONE_CLOSE: 1295 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1296 case REQ_OP_ZONE_FINISH: 1297 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1298 default: 1299 WARN_ON_ONCE(1); 1300 return BLK_STS_NOTSUPP; 1301 } 1302 } 1303 1304 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1305 { 1306 struct request *rq = scsi_cmd_to_rq(SCpnt); 1307 1308 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1309 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1310 } 1311 1312 static bool sd_need_revalidate(struct block_device *bdev, 1313 struct scsi_disk *sdkp) 1314 { 1315 if (sdkp->device->removable || sdkp->write_prot) { 1316 if (bdev_check_media_change(bdev)) 1317 return true; 1318 } 1319 1320 /* 1321 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1322 * nothing to do with partitions, BLKRRPART is used to force a full 1323 * revalidate after things like a format for historical reasons. 1324 */ 1325 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 1326 } 1327 1328 /** 1329 * sd_open - open a scsi disk device 1330 * @bdev: Block device of the scsi disk to open 1331 * @mode: FMODE_* mask 1332 * 1333 * Returns 0 if successful. Returns a negated errno value in case 1334 * of error. 1335 * 1336 * Note: This can be called from a user context (e.g. fsck(1) ) 1337 * or from within the kernel (e.g. as a result of a mount(1) ). 1338 * In the latter case @inode and @filp carry an abridged amount 1339 * of information as noted above. 1340 * 1341 * Locking: called with bdev->bd_disk->open_mutex held. 1342 **/ 1343 static int sd_open(struct block_device *bdev, fmode_t mode) 1344 { 1345 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1346 struct scsi_device *sdev = sdkp->device; 1347 int retval; 1348 1349 if (scsi_device_get(sdev)) 1350 return -ENXIO; 1351 1352 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1353 1354 /* 1355 * If the device is in error recovery, wait until it is done. 1356 * If the device is offline, then disallow any access to it. 1357 */ 1358 retval = -ENXIO; 1359 if (!scsi_block_when_processing_errors(sdev)) 1360 goto error_out; 1361 1362 if (sd_need_revalidate(bdev, sdkp)) 1363 sd_revalidate_disk(bdev->bd_disk); 1364 1365 /* 1366 * If the drive is empty, just let the open fail. 1367 */ 1368 retval = -ENOMEDIUM; 1369 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1370 goto error_out; 1371 1372 /* 1373 * If the device has the write protect tab set, have the open fail 1374 * if the user expects to be able to write to the thing. 1375 */ 1376 retval = -EROFS; 1377 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1378 goto error_out; 1379 1380 /* 1381 * It is possible that the disk changing stuff resulted in 1382 * the device being taken offline. If this is the case, 1383 * report this to the user, and don't pretend that the 1384 * open actually succeeded. 1385 */ 1386 retval = -ENXIO; 1387 if (!scsi_device_online(sdev)) 1388 goto error_out; 1389 1390 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1391 if (scsi_block_when_processing_errors(sdev)) 1392 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1393 } 1394 1395 return 0; 1396 1397 error_out: 1398 scsi_device_put(sdev); 1399 return retval; 1400 } 1401 1402 /** 1403 * sd_release - invoked when the (last) close(2) is called on this 1404 * scsi disk. 1405 * @disk: disk to release 1406 * @mode: FMODE_* mask 1407 * 1408 * Returns 0. 1409 * 1410 * Note: may block (uninterruptible) if error recovery is underway 1411 * on this disk. 1412 * 1413 * Locking: called with bdev->bd_disk->open_mutex held. 1414 **/ 1415 static void sd_release(struct gendisk *disk, fmode_t mode) 1416 { 1417 struct scsi_disk *sdkp = scsi_disk(disk); 1418 struct scsi_device *sdev = sdkp->device; 1419 1420 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1421 1422 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1423 if (scsi_block_when_processing_errors(sdev)) 1424 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1425 } 1426 1427 scsi_device_put(sdev); 1428 } 1429 1430 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1431 { 1432 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1433 struct scsi_device *sdp = sdkp->device; 1434 struct Scsi_Host *host = sdp->host; 1435 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1436 int diskinfo[4]; 1437 1438 /* default to most commonly used values */ 1439 diskinfo[0] = 0x40; /* 1 << 6 */ 1440 diskinfo[1] = 0x20; /* 1 << 5 */ 1441 diskinfo[2] = capacity >> 11; 1442 1443 /* override with calculated, extended default, or driver values */ 1444 if (host->hostt->bios_param) 1445 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1446 else 1447 scsicam_bios_param(bdev, capacity, diskinfo); 1448 1449 geo->heads = diskinfo[0]; 1450 geo->sectors = diskinfo[1]; 1451 geo->cylinders = diskinfo[2]; 1452 return 0; 1453 } 1454 1455 /** 1456 * sd_ioctl - process an ioctl 1457 * @bdev: target block device 1458 * @mode: FMODE_* mask 1459 * @cmd: ioctl command number 1460 * @arg: this is third argument given to ioctl(2) system call. 1461 * Often contains a pointer. 1462 * 1463 * Returns 0 if successful (some ioctls return positive numbers on 1464 * success as well). Returns a negated errno value in case of error. 1465 * 1466 * Note: most ioctls are forward onto the block subsystem or further 1467 * down in the scsi subsystem. 1468 **/ 1469 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1470 unsigned int cmd, unsigned long arg) 1471 { 1472 struct gendisk *disk = bdev->bd_disk; 1473 struct scsi_disk *sdkp = scsi_disk(disk); 1474 struct scsi_device *sdp = sdkp->device; 1475 void __user *p = (void __user *)arg; 1476 int error; 1477 1478 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1479 "cmd=0x%x\n", disk->disk_name, cmd)); 1480 1481 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1482 return -ENOIOCTLCMD; 1483 1484 /* 1485 * If we are in the middle of error recovery, don't let anyone 1486 * else try and use this device. Also, if error recovery fails, it 1487 * may try and take the device offline, in which case all further 1488 * access to the device is prohibited. 1489 */ 1490 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1491 (mode & FMODE_NDELAY) != 0); 1492 if (error) 1493 return error; 1494 1495 if (is_sed_ioctl(cmd)) 1496 return sed_ioctl(sdkp->opal_dev, cmd, p); 1497 return scsi_ioctl(sdp, mode, cmd, p); 1498 } 1499 1500 static void set_media_not_present(struct scsi_disk *sdkp) 1501 { 1502 if (sdkp->media_present) 1503 sdkp->device->changed = 1; 1504 1505 if (sdkp->device->removable) { 1506 sdkp->media_present = 0; 1507 sdkp->capacity = 0; 1508 } 1509 } 1510 1511 static int media_not_present(struct scsi_disk *sdkp, 1512 struct scsi_sense_hdr *sshdr) 1513 { 1514 if (!scsi_sense_valid(sshdr)) 1515 return 0; 1516 1517 /* not invoked for commands that could return deferred errors */ 1518 switch (sshdr->sense_key) { 1519 case UNIT_ATTENTION: 1520 case NOT_READY: 1521 /* medium not present */ 1522 if (sshdr->asc == 0x3A) { 1523 set_media_not_present(sdkp); 1524 return 1; 1525 } 1526 } 1527 return 0; 1528 } 1529 1530 /** 1531 * sd_check_events - check media events 1532 * @disk: kernel device descriptor 1533 * @clearing: disk events currently being cleared 1534 * 1535 * Returns mask of DISK_EVENT_*. 1536 * 1537 * Note: this function is invoked from the block subsystem. 1538 **/ 1539 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1540 { 1541 struct scsi_disk *sdkp = disk->private_data; 1542 struct scsi_device *sdp; 1543 int retval; 1544 bool disk_changed; 1545 1546 if (!sdkp) 1547 return 0; 1548 1549 sdp = sdkp->device; 1550 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1551 1552 /* 1553 * If the device is offline, don't send any commands - just pretend as 1554 * if the command failed. If the device ever comes back online, we 1555 * can deal with it then. It is only because of unrecoverable errors 1556 * that we would ever take a device offline in the first place. 1557 */ 1558 if (!scsi_device_online(sdp)) { 1559 set_media_not_present(sdkp); 1560 goto out; 1561 } 1562 1563 /* 1564 * Using TEST_UNIT_READY enables differentiation between drive with 1565 * no cartridge loaded - NOT READY, drive with changed cartridge - 1566 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1567 * 1568 * Drives that auto spin down. eg iomega jaz 1G, will be started 1569 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1570 * sd_revalidate() is called. 1571 */ 1572 if (scsi_block_when_processing_errors(sdp)) { 1573 struct scsi_sense_hdr sshdr = { 0, }; 1574 1575 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1576 &sshdr); 1577 1578 /* failed to execute TUR, assume media not present */ 1579 if (retval < 0 || host_byte(retval)) { 1580 set_media_not_present(sdkp); 1581 goto out; 1582 } 1583 1584 if (media_not_present(sdkp, &sshdr)) 1585 goto out; 1586 } 1587 1588 /* 1589 * For removable scsi disk we have to recognise the presence 1590 * of a disk in the drive. 1591 */ 1592 if (!sdkp->media_present) 1593 sdp->changed = 1; 1594 sdkp->media_present = 1; 1595 out: 1596 /* 1597 * sdp->changed is set under the following conditions: 1598 * 1599 * Medium present state has changed in either direction. 1600 * Device has indicated UNIT_ATTENTION. 1601 */ 1602 disk_changed = sdp->changed; 1603 sdp->changed = 0; 1604 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1605 } 1606 1607 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1608 { 1609 int retries, res; 1610 struct scsi_device *sdp = sdkp->device; 1611 const int timeout = sdp->request_queue->rq_timeout 1612 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1613 struct scsi_sense_hdr my_sshdr; 1614 const struct scsi_exec_args exec_args = { 1615 .req_flags = BLK_MQ_REQ_PM, 1616 /* caller might not be interested in sense, but we need it */ 1617 .sshdr = sshdr ? : &my_sshdr, 1618 }; 1619 1620 if (!scsi_device_online(sdp)) 1621 return -ENODEV; 1622 1623 sshdr = exec_args.sshdr; 1624 1625 for (retries = 3; retries > 0; --retries) { 1626 unsigned char cmd[16] = { 0 }; 1627 1628 if (sdp->use_16_for_sync) 1629 cmd[0] = SYNCHRONIZE_CACHE_16; 1630 else 1631 cmd[0] = SYNCHRONIZE_CACHE; 1632 /* 1633 * Leave the rest of the command zero to indicate 1634 * flush everything. 1635 */ 1636 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 1637 timeout, sdkp->max_retries, &exec_args); 1638 if (res == 0) 1639 break; 1640 } 1641 1642 if (res) { 1643 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1644 1645 if (res < 0) 1646 return res; 1647 1648 if (scsi_status_is_check_condition(res) && 1649 scsi_sense_valid(sshdr)) { 1650 sd_print_sense_hdr(sdkp, sshdr); 1651 1652 /* we need to evaluate the error return */ 1653 if (sshdr->asc == 0x3a || /* medium not present */ 1654 sshdr->asc == 0x20 || /* invalid command */ 1655 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1656 /* this is no error here */ 1657 return 0; 1658 } 1659 1660 switch (host_byte(res)) { 1661 /* ignore errors due to racing a disconnection */ 1662 case DID_BAD_TARGET: 1663 case DID_NO_CONNECT: 1664 return 0; 1665 /* signal the upper layer it might try again */ 1666 case DID_BUS_BUSY: 1667 case DID_IMM_RETRY: 1668 case DID_REQUEUE: 1669 case DID_SOFT_ERROR: 1670 return -EBUSY; 1671 default: 1672 return -EIO; 1673 } 1674 } 1675 return 0; 1676 } 1677 1678 static void sd_rescan(struct device *dev) 1679 { 1680 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1681 1682 sd_revalidate_disk(sdkp->disk); 1683 } 1684 1685 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1686 enum blk_unique_id type) 1687 { 1688 struct scsi_device *sdev = scsi_disk(disk)->device; 1689 const struct scsi_vpd *vpd; 1690 const unsigned char *d; 1691 int ret = -ENXIO, len; 1692 1693 rcu_read_lock(); 1694 vpd = rcu_dereference(sdev->vpd_pg83); 1695 if (!vpd) 1696 goto out_unlock; 1697 1698 ret = -EINVAL; 1699 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1700 /* we only care about designators with LU association */ 1701 if (((d[1] >> 4) & 0x3) != 0x00) 1702 continue; 1703 if ((d[1] & 0xf) != type) 1704 continue; 1705 1706 /* 1707 * Only exit early if a 16-byte descriptor was found. Otherwise 1708 * keep looking as one with more entropy might still show up. 1709 */ 1710 len = d[3]; 1711 if (len != 8 && len != 12 && len != 16) 1712 continue; 1713 ret = len; 1714 memcpy(id, d + 4, len); 1715 if (len == 16) 1716 break; 1717 } 1718 out_unlock: 1719 rcu_read_unlock(); 1720 return ret; 1721 } 1722 1723 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result) 1724 { 1725 switch (host_byte(result)) { 1726 case DID_TRANSPORT_MARGINAL: 1727 case DID_TRANSPORT_DISRUPTED: 1728 case DID_BUS_BUSY: 1729 return PR_STS_RETRY_PATH_FAILURE; 1730 case DID_NO_CONNECT: 1731 return PR_STS_PATH_FAILED; 1732 case DID_TRANSPORT_FAILFAST: 1733 return PR_STS_PATH_FAST_FAILED; 1734 } 1735 1736 switch (status_byte(result)) { 1737 case SAM_STAT_RESERVATION_CONFLICT: 1738 return PR_STS_RESERVATION_CONFLICT; 1739 case SAM_STAT_CHECK_CONDITION: 1740 if (!scsi_sense_valid(sshdr)) 1741 return PR_STS_IOERR; 1742 1743 if (sshdr->sense_key == ILLEGAL_REQUEST && 1744 (sshdr->asc == 0x26 || sshdr->asc == 0x24)) 1745 return -EINVAL; 1746 1747 fallthrough; 1748 default: 1749 return PR_STS_IOERR; 1750 } 1751 } 1752 1753 static int sd_pr_in_command(struct block_device *bdev, u8 sa, 1754 unsigned char *data, int data_len) 1755 { 1756 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1757 struct scsi_device *sdev = sdkp->device; 1758 struct scsi_sense_hdr sshdr; 1759 u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa }; 1760 const struct scsi_exec_args exec_args = { 1761 .sshdr = &sshdr, 1762 }; 1763 int result; 1764 1765 put_unaligned_be16(data_len, &cmd[7]); 1766 1767 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len, 1768 SD_TIMEOUT, sdkp->max_retries, &exec_args); 1769 if (scsi_status_is_check_condition(result) && 1770 scsi_sense_valid(&sshdr)) { 1771 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1772 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1773 } 1774 1775 if (result <= 0) 1776 return result; 1777 1778 return sd_scsi_to_pr_err(&sshdr, result); 1779 } 1780 1781 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info) 1782 { 1783 int result, i, data_offset, num_copy_keys; 1784 u32 num_keys = keys_info->num_keys; 1785 int data_len = num_keys * 8 + 8; 1786 u8 *data; 1787 1788 data = kzalloc(data_len, GFP_KERNEL); 1789 if (!data) 1790 return -ENOMEM; 1791 1792 result = sd_pr_in_command(bdev, READ_KEYS, data, data_len); 1793 if (result) 1794 goto free_data; 1795 1796 keys_info->generation = get_unaligned_be32(&data[0]); 1797 keys_info->num_keys = get_unaligned_be32(&data[4]) / 8; 1798 1799 data_offset = 8; 1800 num_copy_keys = min(num_keys, keys_info->num_keys); 1801 1802 for (i = 0; i < num_copy_keys; i++) { 1803 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]); 1804 data_offset += 8; 1805 } 1806 1807 free_data: 1808 kfree(data); 1809 return result; 1810 } 1811 1812 static int sd_pr_read_reservation(struct block_device *bdev, 1813 struct pr_held_reservation *rsv) 1814 { 1815 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1816 struct scsi_device *sdev = sdkp->device; 1817 u8 data[24] = { }; 1818 int result, len; 1819 1820 result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data)); 1821 if (result) 1822 return result; 1823 1824 len = get_unaligned_be32(&data[4]); 1825 if (!len) 1826 return 0; 1827 1828 /* Make sure we have at least the key and type */ 1829 if (len < 14) { 1830 sdev_printk(KERN_INFO, sdev, 1831 "READ RESERVATION failed due to short return buffer of %d bytes\n", 1832 len); 1833 return -EINVAL; 1834 } 1835 1836 rsv->generation = get_unaligned_be32(&data[0]); 1837 rsv->key = get_unaligned_be64(&data[8]); 1838 rsv->type = scsi_pr_type_to_block(data[21] & 0x0f); 1839 return 0; 1840 } 1841 1842 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key, 1843 u64 sa_key, enum scsi_pr_type type, u8 flags) 1844 { 1845 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1846 struct scsi_device *sdev = sdkp->device; 1847 struct scsi_sense_hdr sshdr; 1848 const struct scsi_exec_args exec_args = { 1849 .sshdr = &sshdr, 1850 }; 1851 int result; 1852 u8 cmd[16] = { 0, }; 1853 u8 data[24] = { 0, }; 1854 1855 cmd[0] = PERSISTENT_RESERVE_OUT; 1856 cmd[1] = sa; 1857 cmd[2] = type; 1858 put_unaligned_be32(sizeof(data), &cmd[5]); 1859 1860 put_unaligned_be64(key, &data[0]); 1861 put_unaligned_be64(sa_key, &data[8]); 1862 data[20] = flags; 1863 1864 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data, 1865 sizeof(data), SD_TIMEOUT, sdkp->max_retries, 1866 &exec_args); 1867 1868 if (scsi_status_is_check_condition(result) && 1869 scsi_sense_valid(&sshdr)) { 1870 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1871 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1872 } 1873 1874 if (result <= 0) 1875 return result; 1876 1877 return sd_scsi_to_pr_err(&sshdr, result); 1878 } 1879 1880 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1881 u32 flags) 1882 { 1883 if (flags & ~PR_FL_IGNORE_KEY) 1884 return -EOPNOTSUPP; 1885 return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1886 old_key, new_key, 0, 1887 (1 << 0) /* APTPL */); 1888 } 1889 1890 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1891 u32 flags) 1892 { 1893 if (flags) 1894 return -EOPNOTSUPP; 1895 return sd_pr_out_command(bdev, 0x01, key, 0, 1896 block_pr_type_to_scsi(type), 0); 1897 } 1898 1899 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1900 { 1901 return sd_pr_out_command(bdev, 0x02, key, 0, 1902 block_pr_type_to_scsi(type), 0); 1903 } 1904 1905 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1906 enum pr_type type, bool abort) 1907 { 1908 return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1909 block_pr_type_to_scsi(type), 0); 1910 } 1911 1912 static int sd_pr_clear(struct block_device *bdev, u64 key) 1913 { 1914 return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0); 1915 } 1916 1917 static const struct pr_ops sd_pr_ops = { 1918 .pr_register = sd_pr_register, 1919 .pr_reserve = sd_pr_reserve, 1920 .pr_release = sd_pr_release, 1921 .pr_preempt = sd_pr_preempt, 1922 .pr_clear = sd_pr_clear, 1923 .pr_read_keys = sd_pr_read_keys, 1924 .pr_read_reservation = sd_pr_read_reservation, 1925 }; 1926 1927 static void scsi_disk_free_disk(struct gendisk *disk) 1928 { 1929 struct scsi_disk *sdkp = scsi_disk(disk); 1930 1931 put_device(&sdkp->disk_dev); 1932 } 1933 1934 static const struct block_device_operations sd_fops = { 1935 .owner = THIS_MODULE, 1936 .open = sd_open, 1937 .release = sd_release, 1938 .ioctl = sd_ioctl, 1939 .getgeo = sd_getgeo, 1940 .compat_ioctl = blkdev_compat_ptr_ioctl, 1941 .check_events = sd_check_events, 1942 .unlock_native_capacity = sd_unlock_native_capacity, 1943 .report_zones = sd_zbc_report_zones, 1944 .get_unique_id = sd_get_unique_id, 1945 .free_disk = scsi_disk_free_disk, 1946 .pr_ops = &sd_pr_ops, 1947 }; 1948 1949 /** 1950 * sd_eh_reset - reset error handling callback 1951 * @scmd: sd-issued command that has failed 1952 * 1953 * This function is called by the SCSI midlayer before starting 1954 * SCSI EH. When counting medium access failures we have to be 1955 * careful to register it only only once per device and SCSI EH run; 1956 * there might be several timed out commands which will cause the 1957 * 'max_medium_access_timeouts' counter to trigger after the first 1958 * SCSI EH run already and set the device to offline. 1959 * So this function resets the internal counter before starting SCSI EH. 1960 **/ 1961 static void sd_eh_reset(struct scsi_cmnd *scmd) 1962 { 1963 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1964 1965 /* New SCSI EH run, reset gate variable */ 1966 sdkp->ignore_medium_access_errors = false; 1967 } 1968 1969 /** 1970 * sd_eh_action - error handling callback 1971 * @scmd: sd-issued command that has failed 1972 * @eh_disp: The recovery disposition suggested by the midlayer 1973 * 1974 * This function is called by the SCSI midlayer upon completion of an 1975 * error test command (currently TEST UNIT READY). The result of sending 1976 * the eh command is passed in eh_disp. We're looking for devices that 1977 * fail medium access commands but are OK with non access commands like 1978 * test unit ready (so wrongly see the device as having a successful 1979 * recovery) 1980 **/ 1981 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1982 { 1983 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1984 struct scsi_device *sdev = scmd->device; 1985 1986 if (!scsi_device_online(sdev) || 1987 !scsi_medium_access_command(scmd) || 1988 host_byte(scmd->result) != DID_TIME_OUT || 1989 eh_disp != SUCCESS) 1990 return eh_disp; 1991 1992 /* 1993 * The device has timed out executing a medium access command. 1994 * However, the TEST UNIT READY command sent during error 1995 * handling completed successfully. Either the device is in the 1996 * process of recovering or has it suffered an internal failure 1997 * that prevents access to the storage medium. 1998 */ 1999 if (!sdkp->ignore_medium_access_errors) { 2000 sdkp->medium_access_timed_out++; 2001 sdkp->ignore_medium_access_errors = true; 2002 } 2003 2004 /* 2005 * If the device keeps failing read/write commands but TEST UNIT 2006 * READY always completes successfully we assume that medium 2007 * access is no longer possible and take the device offline. 2008 */ 2009 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 2010 scmd_printk(KERN_ERR, scmd, 2011 "Medium access timeout failure. Offlining disk!\n"); 2012 mutex_lock(&sdev->state_mutex); 2013 scsi_device_set_state(sdev, SDEV_OFFLINE); 2014 mutex_unlock(&sdev->state_mutex); 2015 2016 return SUCCESS; 2017 } 2018 2019 return eh_disp; 2020 } 2021 2022 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 2023 { 2024 struct request *req = scsi_cmd_to_rq(scmd); 2025 struct scsi_device *sdev = scmd->device; 2026 unsigned int transferred, good_bytes; 2027 u64 start_lba, end_lba, bad_lba; 2028 2029 /* 2030 * Some commands have a payload smaller than the device logical 2031 * block size (e.g. INQUIRY on a 4K disk). 2032 */ 2033 if (scsi_bufflen(scmd) <= sdev->sector_size) 2034 return 0; 2035 2036 /* Check if we have a 'bad_lba' information */ 2037 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 2038 SCSI_SENSE_BUFFERSIZE, 2039 &bad_lba)) 2040 return 0; 2041 2042 /* 2043 * If the bad lba was reported incorrectly, we have no idea where 2044 * the error is. 2045 */ 2046 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 2047 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 2048 if (bad_lba < start_lba || bad_lba >= end_lba) 2049 return 0; 2050 2051 /* 2052 * resid is optional but mostly filled in. When it's unused, 2053 * its value is zero, so we assume the whole buffer transferred 2054 */ 2055 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 2056 2057 /* This computation should always be done in terms of the 2058 * resolution of the device's medium. 2059 */ 2060 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2061 2062 return min(good_bytes, transferred); 2063 } 2064 2065 /** 2066 * sd_done - bottom half handler: called when the lower level 2067 * driver has completed (successfully or otherwise) a scsi command. 2068 * @SCpnt: mid-level's per command structure. 2069 * 2070 * Note: potentially run from within an ISR. Must not block. 2071 **/ 2072 static int sd_done(struct scsi_cmnd *SCpnt) 2073 { 2074 int result = SCpnt->result; 2075 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2076 unsigned int sector_size = SCpnt->device->sector_size; 2077 unsigned int resid; 2078 struct scsi_sense_hdr sshdr; 2079 struct request *req = scsi_cmd_to_rq(SCpnt); 2080 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 2081 int sense_valid = 0; 2082 int sense_deferred = 0; 2083 2084 switch (req_op(req)) { 2085 case REQ_OP_DISCARD: 2086 case REQ_OP_WRITE_ZEROES: 2087 case REQ_OP_ZONE_RESET: 2088 case REQ_OP_ZONE_RESET_ALL: 2089 case REQ_OP_ZONE_OPEN: 2090 case REQ_OP_ZONE_CLOSE: 2091 case REQ_OP_ZONE_FINISH: 2092 if (!result) { 2093 good_bytes = blk_rq_bytes(req); 2094 scsi_set_resid(SCpnt, 0); 2095 } else { 2096 good_bytes = 0; 2097 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2098 } 2099 break; 2100 default: 2101 /* 2102 * In case of bogus fw or device, we could end up having 2103 * an unaligned partial completion. Check this here and force 2104 * alignment. 2105 */ 2106 resid = scsi_get_resid(SCpnt); 2107 if (resid & (sector_size - 1)) { 2108 sd_printk(KERN_INFO, sdkp, 2109 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2110 resid, sector_size); 2111 scsi_print_command(SCpnt); 2112 resid = min(scsi_bufflen(SCpnt), 2113 round_up(resid, sector_size)); 2114 scsi_set_resid(SCpnt, resid); 2115 } 2116 } 2117 2118 if (result) { 2119 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2120 if (sense_valid) 2121 sense_deferred = scsi_sense_is_deferred(&sshdr); 2122 } 2123 sdkp->medium_access_timed_out = 0; 2124 2125 if (!scsi_status_is_check_condition(result) && 2126 (!sense_valid || sense_deferred)) 2127 goto out; 2128 2129 switch (sshdr.sense_key) { 2130 case HARDWARE_ERROR: 2131 case MEDIUM_ERROR: 2132 good_bytes = sd_completed_bytes(SCpnt); 2133 break; 2134 case RECOVERED_ERROR: 2135 good_bytes = scsi_bufflen(SCpnt); 2136 break; 2137 case NO_SENSE: 2138 /* This indicates a false check condition, so ignore it. An 2139 * unknown amount of data was transferred so treat it as an 2140 * error. 2141 */ 2142 SCpnt->result = 0; 2143 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2144 break; 2145 case ABORTED_COMMAND: 2146 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2147 good_bytes = sd_completed_bytes(SCpnt); 2148 break; 2149 case ILLEGAL_REQUEST: 2150 switch (sshdr.asc) { 2151 case 0x10: /* DIX: Host detected corruption */ 2152 good_bytes = sd_completed_bytes(SCpnt); 2153 break; 2154 case 0x20: /* INVALID COMMAND OPCODE */ 2155 case 0x24: /* INVALID FIELD IN CDB */ 2156 switch (SCpnt->cmnd[0]) { 2157 case UNMAP: 2158 sd_config_discard(sdkp, SD_LBP_DISABLE); 2159 break; 2160 case WRITE_SAME_16: 2161 case WRITE_SAME: 2162 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2163 sd_config_discard(sdkp, SD_LBP_DISABLE); 2164 } else { 2165 sdkp->device->no_write_same = 1; 2166 sd_config_write_same(sdkp); 2167 req->rq_flags |= RQF_QUIET; 2168 } 2169 break; 2170 } 2171 } 2172 break; 2173 default: 2174 break; 2175 } 2176 2177 out: 2178 if (sd_is_zoned(sdkp)) 2179 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2180 2181 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2182 "sd_done: completed %d of %d bytes\n", 2183 good_bytes, scsi_bufflen(SCpnt))); 2184 2185 return good_bytes; 2186 } 2187 2188 /* 2189 * spinup disk - called only in sd_revalidate_disk() 2190 */ 2191 static void 2192 sd_spinup_disk(struct scsi_disk *sdkp) 2193 { 2194 unsigned char cmd[10]; 2195 unsigned long spintime_expire = 0; 2196 int retries, spintime; 2197 unsigned int the_result; 2198 struct scsi_sense_hdr sshdr; 2199 const struct scsi_exec_args exec_args = { 2200 .sshdr = &sshdr, 2201 }; 2202 int sense_valid = 0; 2203 2204 spintime = 0; 2205 2206 /* Spin up drives, as required. Only do this at boot time */ 2207 /* Spinup needs to be done for module loads too. */ 2208 do { 2209 retries = 0; 2210 2211 do { 2212 bool media_was_present = sdkp->media_present; 2213 2214 cmd[0] = TEST_UNIT_READY; 2215 memset((void *) &cmd[1], 0, 9); 2216 2217 the_result = scsi_execute_cmd(sdkp->device, cmd, 2218 REQ_OP_DRV_IN, NULL, 0, 2219 SD_TIMEOUT, 2220 sdkp->max_retries, 2221 &exec_args); 2222 2223 /* 2224 * If the drive has indicated to us that it 2225 * doesn't have any media in it, don't bother 2226 * with any more polling. 2227 */ 2228 if (media_not_present(sdkp, &sshdr)) { 2229 if (media_was_present) 2230 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); 2231 return; 2232 } 2233 2234 if (the_result) 2235 sense_valid = scsi_sense_valid(&sshdr); 2236 retries++; 2237 } while (retries < 3 && 2238 (!scsi_status_is_good(the_result) || 2239 (scsi_status_is_check_condition(the_result) && 2240 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2241 2242 if (!scsi_status_is_check_condition(the_result)) { 2243 /* no sense, TUR either succeeded or failed 2244 * with a status error */ 2245 if(!spintime && !scsi_status_is_good(the_result)) { 2246 sd_print_result(sdkp, "Test Unit Ready failed", 2247 the_result); 2248 } 2249 break; 2250 } 2251 2252 /* 2253 * The device does not want the automatic start to be issued. 2254 */ 2255 if (sdkp->device->no_start_on_add) 2256 break; 2257 2258 if (sense_valid && sshdr.sense_key == NOT_READY) { 2259 if (sshdr.asc == 4 && sshdr.ascq == 3) 2260 break; /* manual intervention required */ 2261 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2262 break; /* standby */ 2263 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2264 break; /* unavailable */ 2265 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2266 break; /* sanitize in progress */ 2267 /* 2268 * Issue command to spin up drive when not ready 2269 */ 2270 if (!spintime) { 2271 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2272 cmd[0] = START_STOP; 2273 cmd[1] = 1; /* Return immediately */ 2274 memset((void *) &cmd[2], 0, 8); 2275 cmd[4] = 1; /* Start spin cycle */ 2276 if (sdkp->device->start_stop_pwr_cond) 2277 cmd[4] |= 1 << 4; 2278 scsi_execute_cmd(sdkp->device, cmd, 2279 REQ_OP_DRV_IN, NULL, 0, 2280 SD_TIMEOUT, sdkp->max_retries, 2281 &exec_args); 2282 spintime_expire = jiffies + 100 * HZ; 2283 spintime = 1; 2284 } 2285 /* Wait 1 second for next try */ 2286 msleep(1000); 2287 printk(KERN_CONT "."); 2288 2289 /* 2290 * Wait for USB flash devices with slow firmware. 2291 * Yes, this sense key/ASC combination shouldn't 2292 * occur here. It's characteristic of these devices. 2293 */ 2294 } else if (sense_valid && 2295 sshdr.sense_key == UNIT_ATTENTION && 2296 sshdr.asc == 0x28) { 2297 if (!spintime) { 2298 spintime_expire = jiffies + 5 * HZ; 2299 spintime = 1; 2300 } 2301 /* Wait 1 second for next try */ 2302 msleep(1000); 2303 } else { 2304 /* we don't understand the sense code, so it's 2305 * probably pointless to loop */ 2306 if(!spintime) { 2307 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2308 sd_print_sense_hdr(sdkp, &sshdr); 2309 } 2310 break; 2311 } 2312 2313 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2314 2315 if (spintime) { 2316 if (scsi_status_is_good(the_result)) 2317 printk(KERN_CONT "ready\n"); 2318 else 2319 printk(KERN_CONT "not responding...\n"); 2320 } 2321 } 2322 2323 /* 2324 * Determine whether disk supports Data Integrity Field. 2325 */ 2326 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2327 { 2328 struct scsi_device *sdp = sdkp->device; 2329 u8 type; 2330 2331 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2332 sdkp->protection_type = 0; 2333 return 0; 2334 } 2335 2336 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2337 2338 if (type > T10_PI_TYPE3_PROTECTION) { 2339 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2340 " protection type %u. Disabling disk!\n", 2341 type); 2342 sdkp->protection_type = 0; 2343 return -ENODEV; 2344 } 2345 2346 sdkp->protection_type = type; 2347 2348 return 0; 2349 } 2350 2351 static void sd_config_protection(struct scsi_disk *sdkp) 2352 { 2353 struct scsi_device *sdp = sdkp->device; 2354 2355 sd_dif_config_host(sdkp); 2356 2357 if (!sdkp->protection_type) 2358 return; 2359 2360 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2361 sd_first_printk(KERN_NOTICE, sdkp, 2362 "Disabling DIF Type %u protection\n", 2363 sdkp->protection_type); 2364 sdkp->protection_type = 0; 2365 } 2366 2367 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2368 sdkp->protection_type); 2369 } 2370 2371 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2372 struct scsi_sense_hdr *sshdr, int sense_valid, 2373 int the_result) 2374 { 2375 if (sense_valid) 2376 sd_print_sense_hdr(sdkp, sshdr); 2377 else 2378 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2379 2380 /* 2381 * Set dirty bit for removable devices if not ready - 2382 * sometimes drives will not report this properly. 2383 */ 2384 if (sdp->removable && 2385 sense_valid && sshdr->sense_key == NOT_READY) 2386 set_media_not_present(sdkp); 2387 2388 /* 2389 * We used to set media_present to 0 here to indicate no media 2390 * in the drive, but some drives fail read capacity even with 2391 * media present, so we can't do that. 2392 */ 2393 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2394 } 2395 2396 #define RC16_LEN 32 2397 #if RC16_LEN > SD_BUF_SIZE 2398 #error RC16_LEN must not be more than SD_BUF_SIZE 2399 #endif 2400 2401 #define READ_CAPACITY_RETRIES_ON_RESET 10 2402 2403 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2404 unsigned char *buffer) 2405 { 2406 unsigned char cmd[16]; 2407 struct scsi_sense_hdr sshdr; 2408 const struct scsi_exec_args exec_args = { 2409 .sshdr = &sshdr, 2410 }; 2411 int sense_valid = 0; 2412 int the_result; 2413 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2414 unsigned int alignment; 2415 unsigned long long lba; 2416 unsigned sector_size; 2417 2418 if (sdp->no_read_capacity_16) 2419 return -EINVAL; 2420 2421 do { 2422 memset(cmd, 0, 16); 2423 cmd[0] = SERVICE_ACTION_IN_16; 2424 cmd[1] = SAI_READ_CAPACITY_16; 2425 cmd[13] = RC16_LEN; 2426 memset(buffer, 0, RC16_LEN); 2427 2428 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, 2429 buffer, RC16_LEN, SD_TIMEOUT, 2430 sdkp->max_retries, &exec_args); 2431 2432 if (media_not_present(sdkp, &sshdr)) 2433 return -ENODEV; 2434 2435 if (the_result > 0) { 2436 sense_valid = scsi_sense_valid(&sshdr); 2437 if (sense_valid && 2438 sshdr.sense_key == ILLEGAL_REQUEST && 2439 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2440 sshdr.ascq == 0x00) 2441 /* Invalid Command Operation Code or 2442 * Invalid Field in CDB, just retry 2443 * silently with RC10 */ 2444 return -EINVAL; 2445 if (sense_valid && 2446 sshdr.sense_key == UNIT_ATTENTION && 2447 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2448 /* Device reset might occur several times, 2449 * give it one more chance */ 2450 if (--reset_retries > 0) 2451 continue; 2452 } 2453 retries--; 2454 2455 } while (the_result && retries); 2456 2457 if (the_result) { 2458 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2459 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2460 return -EINVAL; 2461 } 2462 2463 sector_size = get_unaligned_be32(&buffer[8]); 2464 lba = get_unaligned_be64(&buffer[0]); 2465 2466 if (sd_read_protection_type(sdkp, buffer) < 0) { 2467 sdkp->capacity = 0; 2468 return -ENODEV; 2469 } 2470 2471 /* Logical blocks per physical block exponent */ 2472 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2473 2474 /* RC basis */ 2475 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2476 2477 /* Lowest aligned logical block */ 2478 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2479 blk_queue_alignment_offset(sdp->request_queue, alignment); 2480 if (alignment && sdkp->first_scan) 2481 sd_printk(KERN_NOTICE, sdkp, 2482 "physical block alignment offset: %u\n", alignment); 2483 2484 if (buffer[14] & 0x80) { /* LBPME */ 2485 sdkp->lbpme = 1; 2486 2487 if (buffer[14] & 0x40) /* LBPRZ */ 2488 sdkp->lbprz = 1; 2489 2490 sd_config_discard(sdkp, SD_LBP_WS16); 2491 } 2492 2493 sdkp->capacity = lba + 1; 2494 return sector_size; 2495 } 2496 2497 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2498 unsigned char *buffer) 2499 { 2500 unsigned char cmd[16]; 2501 struct scsi_sense_hdr sshdr; 2502 const struct scsi_exec_args exec_args = { 2503 .sshdr = &sshdr, 2504 }; 2505 int sense_valid = 0; 2506 int the_result; 2507 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2508 sector_t lba; 2509 unsigned sector_size; 2510 2511 do { 2512 cmd[0] = READ_CAPACITY; 2513 memset(&cmd[1], 0, 9); 2514 memset(buffer, 0, 8); 2515 2516 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer, 2517 8, SD_TIMEOUT, sdkp->max_retries, 2518 &exec_args); 2519 2520 if (media_not_present(sdkp, &sshdr)) 2521 return -ENODEV; 2522 2523 if (the_result > 0) { 2524 sense_valid = scsi_sense_valid(&sshdr); 2525 if (sense_valid && 2526 sshdr.sense_key == UNIT_ATTENTION && 2527 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2528 /* Device reset might occur several times, 2529 * give it one more chance */ 2530 if (--reset_retries > 0) 2531 continue; 2532 } 2533 retries--; 2534 2535 } while (the_result && retries); 2536 2537 if (the_result) { 2538 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2539 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2540 return -EINVAL; 2541 } 2542 2543 sector_size = get_unaligned_be32(&buffer[4]); 2544 lba = get_unaligned_be32(&buffer[0]); 2545 2546 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2547 /* Some buggy (usb cardreader) devices return an lba of 2548 0xffffffff when the want to report a size of 0 (with 2549 which they really mean no media is present) */ 2550 sdkp->capacity = 0; 2551 sdkp->physical_block_size = sector_size; 2552 return sector_size; 2553 } 2554 2555 sdkp->capacity = lba + 1; 2556 sdkp->physical_block_size = sector_size; 2557 return sector_size; 2558 } 2559 2560 static int sd_try_rc16_first(struct scsi_device *sdp) 2561 { 2562 if (sdp->host->max_cmd_len < 16) 2563 return 0; 2564 if (sdp->try_rc_10_first) 2565 return 0; 2566 if (sdp->scsi_level > SCSI_SPC_2) 2567 return 1; 2568 if (scsi_device_protection(sdp)) 2569 return 1; 2570 return 0; 2571 } 2572 2573 /* 2574 * read disk capacity 2575 */ 2576 static void 2577 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2578 { 2579 int sector_size; 2580 struct scsi_device *sdp = sdkp->device; 2581 2582 if (sd_try_rc16_first(sdp)) { 2583 sector_size = read_capacity_16(sdkp, sdp, buffer); 2584 if (sector_size == -EOVERFLOW) 2585 goto got_data; 2586 if (sector_size == -ENODEV) 2587 return; 2588 if (sector_size < 0) 2589 sector_size = read_capacity_10(sdkp, sdp, buffer); 2590 if (sector_size < 0) 2591 return; 2592 } else { 2593 sector_size = read_capacity_10(sdkp, sdp, buffer); 2594 if (sector_size == -EOVERFLOW) 2595 goto got_data; 2596 if (sector_size < 0) 2597 return; 2598 if ((sizeof(sdkp->capacity) > 4) && 2599 (sdkp->capacity > 0xffffffffULL)) { 2600 int old_sector_size = sector_size; 2601 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2602 "Trying to use READ CAPACITY(16).\n"); 2603 sector_size = read_capacity_16(sdkp, sdp, buffer); 2604 if (sector_size < 0) { 2605 sd_printk(KERN_NOTICE, sdkp, 2606 "Using 0xffffffff as device size\n"); 2607 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2608 sector_size = old_sector_size; 2609 goto got_data; 2610 } 2611 /* Remember that READ CAPACITY(16) succeeded */ 2612 sdp->try_rc_10_first = 0; 2613 } 2614 } 2615 2616 /* Some devices are known to return the total number of blocks, 2617 * not the highest block number. Some devices have versions 2618 * which do this and others which do not. Some devices we might 2619 * suspect of doing this but we don't know for certain. 2620 * 2621 * If we know the reported capacity is wrong, decrement it. If 2622 * we can only guess, then assume the number of blocks is even 2623 * (usually true but not always) and err on the side of lowering 2624 * the capacity. 2625 */ 2626 if (sdp->fix_capacity || 2627 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2628 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2629 "from its reported value: %llu\n", 2630 (unsigned long long) sdkp->capacity); 2631 --sdkp->capacity; 2632 } 2633 2634 got_data: 2635 if (sector_size == 0) { 2636 sector_size = 512; 2637 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2638 "assuming 512.\n"); 2639 } 2640 2641 if (sector_size != 512 && 2642 sector_size != 1024 && 2643 sector_size != 2048 && 2644 sector_size != 4096) { 2645 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2646 sector_size); 2647 /* 2648 * The user might want to re-format the drive with 2649 * a supported sectorsize. Once this happens, it 2650 * would be relatively trivial to set the thing up. 2651 * For this reason, we leave the thing in the table. 2652 */ 2653 sdkp->capacity = 0; 2654 /* 2655 * set a bogus sector size so the normal read/write 2656 * logic in the block layer will eventually refuse any 2657 * request on this device without tripping over power 2658 * of two sector size assumptions 2659 */ 2660 sector_size = 512; 2661 } 2662 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2663 blk_queue_physical_block_size(sdp->request_queue, 2664 sdkp->physical_block_size); 2665 sdkp->device->sector_size = sector_size; 2666 2667 if (sdkp->capacity > 0xffffffff) 2668 sdp->use_16_for_rw = 1; 2669 2670 } 2671 2672 /* 2673 * Print disk capacity 2674 */ 2675 static void 2676 sd_print_capacity(struct scsi_disk *sdkp, 2677 sector_t old_capacity) 2678 { 2679 int sector_size = sdkp->device->sector_size; 2680 char cap_str_2[10], cap_str_10[10]; 2681 2682 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2683 return; 2684 2685 string_get_size(sdkp->capacity, sector_size, 2686 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2687 string_get_size(sdkp->capacity, sector_size, 2688 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2689 2690 sd_printk(KERN_NOTICE, sdkp, 2691 "%llu %d-byte logical blocks: (%s/%s)\n", 2692 (unsigned long long)sdkp->capacity, 2693 sector_size, cap_str_10, cap_str_2); 2694 2695 if (sdkp->physical_block_size != sector_size) 2696 sd_printk(KERN_NOTICE, sdkp, 2697 "%u-byte physical blocks\n", 2698 sdkp->physical_block_size); 2699 } 2700 2701 /* called with buffer of length 512 */ 2702 static inline int 2703 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2704 unsigned char *buffer, int len, struct scsi_mode_data *data, 2705 struct scsi_sense_hdr *sshdr) 2706 { 2707 /* 2708 * If we must use MODE SENSE(10), make sure that the buffer length 2709 * is at least 8 bytes so that the mode sense header fits. 2710 */ 2711 if (sdkp->device->use_10_for_ms && len < 8) 2712 len = 8; 2713 2714 return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len, 2715 SD_TIMEOUT, sdkp->max_retries, data, sshdr); 2716 } 2717 2718 /* 2719 * read write protect setting, if possible - called only in sd_revalidate_disk() 2720 * called with buffer of length SD_BUF_SIZE 2721 */ 2722 static void 2723 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2724 { 2725 int res; 2726 struct scsi_device *sdp = sdkp->device; 2727 struct scsi_mode_data data; 2728 int old_wp = sdkp->write_prot; 2729 2730 set_disk_ro(sdkp->disk, 0); 2731 if (sdp->skip_ms_page_3f) { 2732 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2733 return; 2734 } 2735 2736 if (sdp->use_192_bytes_for_3f) { 2737 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2738 } else { 2739 /* 2740 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2741 * We have to start carefully: some devices hang if we ask 2742 * for more than is available. 2743 */ 2744 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2745 2746 /* 2747 * Second attempt: ask for page 0 When only page 0 is 2748 * implemented, a request for page 3F may return Sense Key 2749 * 5: Illegal Request, Sense Code 24: Invalid field in 2750 * CDB. 2751 */ 2752 if (res < 0) 2753 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2754 2755 /* 2756 * Third attempt: ask 255 bytes, as we did earlier. 2757 */ 2758 if (res < 0) 2759 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2760 &data, NULL); 2761 } 2762 2763 if (res < 0) { 2764 sd_first_printk(KERN_WARNING, sdkp, 2765 "Test WP failed, assume Write Enabled\n"); 2766 } else { 2767 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2768 set_disk_ro(sdkp->disk, sdkp->write_prot); 2769 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2770 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2771 sdkp->write_prot ? "on" : "off"); 2772 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2773 } 2774 } 2775 } 2776 2777 /* 2778 * sd_read_cache_type - called only from sd_revalidate_disk() 2779 * called with buffer of length SD_BUF_SIZE 2780 */ 2781 static void 2782 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2783 { 2784 int len = 0, res; 2785 struct scsi_device *sdp = sdkp->device; 2786 2787 int dbd; 2788 int modepage; 2789 int first_len; 2790 struct scsi_mode_data data; 2791 struct scsi_sense_hdr sshdr; 2792 int old_wce = sdkp->WCE; 2793 int old_rcd = sdkp->RCD; 2794 int old_dpofua = sdkp->DPOFUA; 2795 2796 2797 if (sdkp->cache_override) 2798 return; 2799 2800 first_len = 4; 2801 if (sdp->skip_ms_page_8) { 2802 if (sdp->type == TYPE_RBC) 2803 goto defaults; 2804 else { 2805 if (sdp->skip_ms_page_3f) 2806 goto defaults; 2807 modepage = 0x3F; 2808 if (sdp->use_192_bytes_for_3f) 2809 first_len = 192; 2810 dbd = 0; 2811 } 2812 } else if (sdp->type == TYPE_RBC) { 2813 modepage = 6; 2814 dbd = 8; 2815 } else { 2816 modepage = 8; 2817 dbd = 0; 2818 } 2819 2820 /* cautiously ask */ 2821 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2822 &data, &sshdr); 2823 2824 if (res < 0) 2825 goto bad_sense; 2826 2827 if (!data.header_length) { 2828 modepage = 6; 2829 first_len = 0; 2830 sd_first_printk(KERN_ERR, sdkp, 2831 "Missing header in MODE_SENSE response\n"); 2832 } 2833 2834 /* that went OK, now ask for the proper length */ 2835 len = data.length; 2836 2837 /* 2838 * We're only interested in the first three bytes, actually. 2839 * But the data cache page is defined for the first 20. 2840 */ 2841 if (len < 3) 2842 goto bad_sense; 2843 else if (len > SD_BUF_SIZE) { 2844 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2845 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2846 len = SD_BUF_SIZE; 2847 } 2848 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2849 len = 192; 2850 2851 /* Get the data */ 2852 if (len > first_len) 2853 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2854 &data, &sshdr); 2855 2856 if (!res) { 2857 int offset = data.header_length + data.block_descriptor_length; 2858 2859 while (offset < len) { 2860 u8 page_code = buffer[offset] & 0x3F; 2861 u8 spf = buffer[offset] & 0x40; 2862 2863 if (page_code == 8 || page_code == 6) { 2864 /* We're interested only in the first 3 bytes. 2865 */ 2866 if (len - offset <= 2) { 2867 sd_first_printk(KERN_ERR, sdkp, 2868 "Incomplete mode parameter " 2869 "data\n"); 2870 goto defaults; 2871 } else { 2872 modepage = page_code; 2873 goto Page_found; 2874 } 2875 } else { 2876 /* Go to the next page */ 2877 if (spf && len - offset > 3) 2878 offset += 4 + (buffer[offset+2] << 8) + 2879 buffer[offset+3]; 2880 else if (!spf && len - offset > 1) 2881 offset += 2 + buffer[offset+1]; 2882 else { 2883 sd_first_printk(KERN_ERR, sdkp, 2884 "Incomplete mode " 2885 "parameter data\n"); 2886 goto defaults; 2887 } 2888 } 2889 } 2890 2891 sd_first_printk(KERN_WARNING, sdkp, 2892 "No Caching mode page found\n"); 2893 goto defaults; 2894 2895 Page_found: 2896 if (modepage == 8) { 2897 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2898 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2899 } else { 2900 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2901 sdkp->RCD = 0; 2902 } 2903 2904 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2905 if (sdp->broken_fua) { 2906 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2907 sdkp->DPOFUA = 0; 2908 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2909 !sdkp->device->use_16_for_rw) { 2910 sd_first_printk(KERN_NOTICE, sdkp, 2911 "Uses READ/WRITE(6), disabling FUA\n"); 2912 sdkp->DPOFUA = 0; 2913 } 2914 2915 /* No cache flush allowed for write protected devices */ 2916 if (sdkp->WCE && sdkp->write_prot) 2917 sdkp->WCE = 0; 2918 2919 if (sdkp->first_scan || old_wce != sdkp->WCE || 2920 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2921 sd_printk(KERN_NOTICE, sdkp, 2922 "Write cache: %s, read cache: %s, %s\n", 2923 sdkp->WCE ? "enabled" : "disabled", 2924 sdkp->RCD ? "disabled" : "enabled", 2925 sdkp->DPOFUA ? "supports DPO and FUA" 2926 : "doesn't support DPO or FUA"); 2927 2928 return; 2929 } 2930 2931 bad_sense: 2932 if (scsi_sense_valid(&sshdr) && 2933 sshdr.sense_key == ILLEGAL_REQUEST && 2934 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2935 /* Invalid field in CDB */ 2936 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2937 else 2938 sd_first_printk(KERN_ERR, sdkp, 2939 "Asking for cache data failed\n"); 2940 2941 defaults: 2942 if (sdp->wce_default_on) { 2943 sd_first_printk(KERN_NOTICE, sdkp, 2944 "Assuming drive cache: write back\n"); 2945 sdkp->WCE = 1; 2946 } else { 2947 sd_first_printk(KERN_WARNING, sdkp, 2948 "Assuming drive cache: write through\n"); 2949 sdkp->WCE = 0; 2950 } 2951 sdkp->RCD = 0; 2952 sdkp->DPOFUA = 0; 2953 } 2954 2955 /* 2956 * The ATO bit indicates whether the DIF application tag is available 2957 * for use by the operating system. 2958 */ 2959 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2960 { 2961 int res, offset; 2962 struct scsi_device *sdp = sdkp->device; 2963 struct scsi_mode_data data; 2964 struct scsi_sense_hdr sshdr; 2965 2966 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2967 return; 2968 2969 if (sdkp->protection_type == 0) 2970 return; 2971 2972 res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT, 2973 sdkp->max_retries, &data, &sshdr); 2974 2975 if (res < 0 || !data.header_length || 2976 data.length < 6) { 2977 sd_first_printk(KERN_WARNING, sdkp, 2978 "getting Control mode page failed, assume no ATO\n"); 2979 2980 if (scsi_sense_valid(&sshdr)) 2981 sd_print_sense_hdr(sdkp, &sshdr); 2982 2983 return; 2984 } 2985 2986 offset = data.header_length + data.block_descriptor_length; 2987 2988 if ((buffer[offset] & 0x3f) != 0x0a) { 2989 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2990 return; 2991 } 2992 2993 if ((buffer[offset + 5] & 0x80) == 0) 2994 return; 2995 2996 sdkp->ATO = 1; 2997 2998 return; 2999 } 3000 3001 /** 3002 * sd_read_block_limits - Query disk device for preferred I/O sizes. 3003 * @sdkp: disk to query 3004 */ 3005 static void sd_read_block_limits(struct scsi_disk *sdkp) 3006 { 3007 struct scsi_vpd *vpd; 3008 3009 rcu_read_lock(); 3010 3011 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 3012 if (!vpd || vpd->len < 16) 3013 goto out; 3014 3015 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 3016 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 3017 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 3018 3019 if (vpd->len >= 64) { 3020 unsigned int lba_count, desc_count; 3021 3022 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 3023 3024 if (!sdkp->lbpme) 3025 goto out; 3026 3027 lba_count = get_unaligned_be32(&vpd->data[20]); 3028 desc_count = get_unaligned_be32(&vpd->data[24]); 3029 3030 if (lba_count && desc_count) 3031 sdkp->max_unmap_blocks = lba_count; 3032 3033 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 3034 3035 if (vpd->data[32] & 0x80) 3036 sdkp->unmap_alignment = 3037 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 3038 3039 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 3040 3041 if (sdkp->max_unmap_blocks) 3042 sd_config_discard(sdkp, SD_LBP_UNMAP); 3043 else 3044 sd_config_discard(sdkp, SD_LBP_WS16); 3045 3046 } else { /* LBP VPD page tells us what to use */ 3047 if (sdkp->lbpu && sdkp->max_unmap_blocks) 3048 sd_config_discard(sdkp, SD_LBP_UNMAP); 3049 else if (sdkp->lbpws) 3050 sd_config_discard(sdkp, SD_LBP_WS16); 3051 else if (sdkp->lbpws10) 3052 sd_config_discard(sdkp, SD_LBP_WS10); 3053 else 3054 sd_config_discard(sdkp, SD_LBP_DISABLE); 3055 } 3056 } 3057 3058 out: 3059 rcu_read_unlock(); 3060 } 3061 3062 /** 3063 * sd_read_block_characteristics - Query block dev. characteristics 3064 * @sdkp: disk to query 3065 */ 3066 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 3067 { 3068 struct request_queue *q = sdkp->disk->queue; 3069 struct scsi_vpd *vpd; 3070 u16 rot; 3071 u8 zoned; 3072 3073 rcu_read_lock(); 3074 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 3075 3076 if (!vpd || vpd->len < 8) { 3077 rcu_read_unlock(); 3078 return; 3079 } 3080 3081 rot = get_unaligned_be16(&vpd->data[4]); 3082 zoned = (vpd->data[8] >> 4) & 3; 3083 rcu_read_unlock(); 3084 3085 if (rot == 1) { 3086 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 3087 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 3088 } 3089 3090 if (sdkp->device->type == TYPE_ZBC) { 3091 /* 3092 * Host-managed: Per ZBC and ZAC specifications, writes in 3093 * sequential write required zones of host-managed devices must 3094 * be aligned to the device physical block size. 3095 */ 3096 disk_set_zoned(sdkp->disk, BLK_ZONED_HM); 3097 blk_queue_zone_write_granularity(q, sdkp->physical_block_size); 3098 } else { 3099 sdkp->zoned = zoned; 3100 if (sdkp->zoned == 1) { 3101 /* Host-aware */ 3102 disk_set_zoned(sdkp->disk, BLK_ZONED_HA); 3103 } else { 3104 /* Regular disk or drive managed disk */ 3105 disk_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3106 } 3107 } 3108 3109 if (!sdkp->first_scan) 3110 return; 3111 3112 if (blk_queue_is_zoned(q)) { 3113 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3114 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3115 } else { 3116 if (sdkp->zoned == 1) 3117 sd_printk(KERN_NOTICE, sdkp, 3118 "Host-aware SMR disk used as regular disk\n"); 3119 else if (sdkp->zoned == 2) 3120 sd_printk(KERN_NOTICE, sdkp, 3121 "Drive-managed SMR disk\n"); 3122 } 3123 } 3124 3125 /** 3126 * sd_read_block_provisioning - Query provisioning VPD page 3127 * @sdkp: disk to query 3128 */ 3129 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3130 { 3131 struct scsi_vpd *vpd; 3132 3133 if (sdkp->lbpme == 0) 3134 return; 3135 3136 rcu_read_lock(); 3137 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 3138 3139 if (!vpd || vpd->len < 8) { 3140 rcu_read_unlock(); 3141 return; 3142 } 3143 3144 sdkp->lbpvpd = 1; 3145 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 3146 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 3147 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 3148 rcu_read_unlock(); 3149 } 3150 3151 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3152 { 3153 struct scsi_device *sdev = sdkp->device; 3154 3155 if (sdev->host->no_write_same) { 3156 sdev->no_write_same = 1; 3157 3158 return; 3159 } 3160 3161 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) { 3162 struct scsi_vpd *vpd; 3163 3164 sdev->no_report_opcodes = 1; 3165 3166 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3167 * CODES is unsupported and the device has an ATA 3168 * Information VPD page (SAT). 3169 */ 3170 rcu_read_lock(); 3171 vpd = rcu_dereference(sdev->vpd_pg89); 3172 if (vpd) 3173 sdev->no_write_same = 1; 3174 rcu_read_unlock(); 3175 } 3176 3177 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1) 3178 sdkp->ws16 = 1; 3179 3180 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1) 3181 sdkp->ws10 = 1; 3182 } 3183 3184 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3185 { 3186 struct scsi_device *sdev = sdkp->device; 3187 3188 if (!sdev->security_supported) 3189 return; 3190 3191 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3192 SECURITY_PROTOCOL_IN, 0) == 1 && 3193 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3194 SECURITY_PROTOCOL_OUT, 0) == 1) 3195 sdkp->security = 1; 3196 } 3197 3198 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3199 { 3200 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3201 } 3202 3203 /** 3204 * sd_read_cpr - Query concurrent positioning ranges 3205 * @sdkp: disk to query 3206 */ 3207 static void sd_read_cpr(struct scsi_disk *sdkp) 3208 { 3209 struct blk_independent_access_ranges *iars = NULL; 3210 unsigned char *buffer = NULL; 3211 unsigned int nr_cpr = 0; 3212 int i, vpd_len, buf_len = SD_BUF_SIZE; 3213 u8 *desc; 3214 3215 /* 3216 * We need to have the capacity set first for the block layer to be 3217 * able to check the ranges. 3218 */ 3219 if (sdkp->first_scan) 3220 return; 3221 3222 if (!sdkp->capacity) 3223 goto out; 3224 3225 /* 3226 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3227 * leading to a maximum page size of 64 + 256*32 bytes. 3228 */ 3229 buf_len = 64 + 256*32; 3230 buffer = kmalloc(buf_len, GFP_KERNEL); 3231 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3232 goto out; 3233 3234 /* We must have at least a 64B header and one 32B range descriptor */ 3235 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3236 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3237 sd_printk(KERN_ERR, sdkp, 3238 "Invalid Concurrent Positioning Ranges VPD page\n"); 3239 goto out; 3240 } 3241 3242 nr_cpr = (vpd_len - 64) / 32; 3243 if (nr_cpr == 1) { 3244 nr_cpr = 0; 3245 goto out; 3246 } 3247 3248 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3249 if (!iars) { 3250 nr_cpr = 0; 3251 goto out; 3252 } 3253 3254 desc = &buffer[64]; 3255 for (i = 0; i < nr_cpr; i++, desc += 32) { 3256 if (desc[0] != i) { 3257 sd_printk(KERN_ERR, sdkp, 3258 "Invalid Concurrent Positioning Range number\n"); 3259 nr_cpr = 0; 3260 break; 3261 } 3262 3263 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3264 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3265 } 3266 3267 out: 3268 disk_set_independent_access_ranges(sdkp->disk, iars); 3269 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3270 sd_printk(KERN_NOTICE, sdkp, 3271 "%u concurrent positioning ranges\n", nr_cpr); 3272 sdkp->nr_actuators = nr_cpr; 3273 } 3274 3275 kfree(buffer); 3276 } 3277 3278 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3279 { 3280 struct scsi_device *sdp = sdkp->device; 3281 unsigned int min_xfer_bytes = 3282 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3283 3284 if (sdkp->min_xfer_blocks == 0) 3285 return false; 3286 3287 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3288 sd_first_printk(KERN_WARNING, sdkp, 3289 "Preferred minimum I/O size %u bytes not a " \ 3290 "multiple of physical block size (%u bytes)\n", 3291 min_xfer_bytes, sdkp->physical_block_size); 3292 sdkp->min_xfer_blocks = 0; 3293 return false; 3294 } 3295 3296 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3297 min_xfer_bytes); 3298 return true; 3299 } 3300 3301 /* 3302 * Determine the device's preferred I/O size for reads and writes 3303 * unless the reported value is unreasonably small, large, not a 3304 * multiple of the physical block size, or simply garbage. 3305 */ 3306 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3307 unsigned int dev_max) 3308 { 3309 struct scsi_device *sdp = sdkp->device; 3310 unsigned int opt_xfer_bytes = 3311 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3312 unsigned int min_xfer_bytes = 3313 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3314 3315 if (sdkp->opt_xfer_blocks == 0) 3316 return false; 3317 3318 if (sdkp->opt_xfer_blocks > dev_max) { 3319 sd_first_printk(KERN_WARNING, sdkp, 3320 "Optimal transfer size %u logical blocks " \ 3321 "> dev_max (%u logical blocks)\n", 3322 sdkp->opt_xfer_blocks, dev_max); 3323 return false; 3324 } 3325 3326 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3327 sd_first_printk(KERN_WARNING, sdkp, 3328 "Optimal transfer size %u logical blocks " \ 3329 "> sd driver limit (%u logical blocks)\n", 3330 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3331 return false; 3332 } 3333 3334 if (opt_xfer_bytes < PAGE_SIZE) { 3335 sd_first_printk(KERN_WARNING, sdkp, 3336 "Optimal transfer size %u bytes < " \ 3337 "PAGE_SIZE (%u bytes)\n", 3338 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3339 return false; 3340 } 3341 3342 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3343 sd_first_printk(KERN_WARNING, sdkp, 3344 "Optimal transfer size %u bytes not a " \ 3345 "multiple of preferred minimum block " \ 3346 "size (%u bytes)\n", 3347 opt_xfer_bytes, min_xfer_bytes); 3348 return false; 3349 } 3350 3351 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3352 sd_first_printk(KERN_WARNING, sdkp, 3353 "Optimal transfer size %u bytes not a " \ 3354 "multiple of physical block size (%u bytes)\n", 3355 opt_xfer_bytes, sdkp->physical_block_size); 3356 return false; 3357 } 3358 3359 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3360 opt_xfer_bytes); 3361 return true; 3362 } 3363 3364 /** 3365 * sd_revalidate_disk - called the first time a new disk is seen, 3366 * performs disk spin up, read_capacity, etc. 3367 * @disk: struct gendisk we care about 3368 **/ 3369 static int sd_revalidate_disk(struct gendisk *disk) 3370 { 3371 struct scsi_disk *sdkp = scsi_disk(disk); 3372 struct scsi_device *sdp = sdkp->device; 3373 struct request_queue *q = sdkp->disk->queue; 3374 sector_t old_capacity = sdkp->capacity; 3375 unsigned char *buffer; 3376 unsigned int dev_max, rw_max; 3377 3378 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3379 "sd_revalidate_disk\n")); 3380 3381 /* 3382 * If the device is offline, don't try and read capacity or any 3383 * of the other niceties. 3384 */ 3385 if (!scsi_device_online(sdp)) 3386 goto out; 3387 3388 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3389 if (!buffer) { 3390 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3391 "allocation failure.\n"); 3392 goto out; 3393 } 3394 3395 sd_spinup_disk(sdkp); 3396 3397 /* 3398 * Without media there is no reason to ask; moreover, some devices 3399 * react badly if we do. 3400 */ 3401 if (sdkp->media_present) { 3402 sd_read_capacity(sdkp, buffer); 3403 3404 /* 3405 * set the default to rotational. All non-rotational devices 3406 * support the block characteristics VPD page, which will 3407 * cause this to be updated correctly and any device which 3408 * doesn't support it should be treated as rotational. 3409 */ 3410 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3411 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3412 3413 if (scsi_device_supports_vpd(sdp)) { 3414 sd_read_block_provisioning(sdkp); 3415 sd_read_block_limits(sdkp); 3416 sd_read_block_characteristics(sdkp); 3417 sd_zbc_read_zones(sdkp, buffer); 3418 sd_read_cpr(sdkp); 3419 } 3420 3421 sd_print_capacity(sdkp, old_capacity); 3422 3423 sd_read_write_protect_flag(sdkp, buffer); 3424 sd_read_cache_type(sdkp, buffer); 3425 sd_read_app_tag_own(sdkp, buffer); 3426 sd_read_write_same(sdkp, buffer); 3427 sd_read_security(sdkp, buffer); 3428 sd_config_protection(sdkp); 3429 } 3430 3431 /* 3432 * We now have all cache related info, determine how we deal 3433 * with flush requests. 3434 */ 3435 sd_set_flush_flag(sdkp); 3436 3437 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3438 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3439 3440 /* Some devices report a maximum block count for READ/WRITE requests. */ 3441 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3442 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3443 3444 if (sd_validate_min_xfer_size(sdkp)) 3445 blk_queue_io_min(sdkp->disk->queue, 3446 logical_to_bytes(sdp, sdkp->min_xfer_blocks)); 3447 else 3448 blk_queue_io_min(sdkp->disk->queue, 0); 3449 3450 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3451 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3452 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3453 } else { 3454 q->limits.io_opt = 0; 3455 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3456 (sector_t)BLK_DEF_MAX_SECTORS); 3457 } 3458 3459 /* 3460 * Limit default to SCSI host optimal sector limit if set. There may be 3461 * an impact on performance for when the size of a request exceeds this 3462 * host limit. 3463 */ 3464 rw_max = min_not_zero(rw_max, sdp->host->opt_sectors); 3465 3466 /* Do not exceed controller limit */ 3467 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3468 3469 /* 3470 * Only update max_sectors if previously unset or if the current value 3471 * exceeds the capabilities of the hardware. 3472 */ 3473 if (sdkp->first_scan || 3474 q->limits.max_sectors > q->limits.max_dev_sectors || 3475 q->limits.max_sectors > q->limits.max_hw_sectors) 3476 q->limits.max_sectors = rw_max; 3477 3478 sdkp->first_scan = 0; 3479 3480 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3481 sd_config_write_same(sdkp); 3482 kfree(buffer); 3483 3484 /* 3485 * For a zoned drive, revalidating the zones can be done only once 3486 * the gendisk capacity is set. So if this fails, set back the gendisk 3487 * capacity to 0. 3488 */ 3489 if (sd_zbc_revalidate_zones(sdkp)) 3490 set_capacity_and_notify(disk, 0); 3491 3492 out: 3493 return 0; 3494 } 3495 3496 /** 3497 * sd_unlock_native_capacity - unlock native capacity 3498 * @disk: struct gendisk to set capacity for 3499 * 3500 * Block layer calls this function if it detects that partitions 3501 * on @disk reach beyond the end of the device. If the SCSI host 3502 * implements ->unlock_native_capacity() method, it's invoked to 3503 * give it a chance to adjust the device capacity. 3504 * 3505 * CONTEXT: 3506 * Defined by block layer. Might sleep. 3507 */ 3508 static void sd_unlock_native_capacity(struct gendisk *disk) 3509 { 3510 struct scsi_device *sdev = scsi_disk(disk)->device; 3511 3512 if (sdev->host->hostt->unlock_native_capacity) 3513 sdev->host->hostt->unlock_native_capacity(sdev); 3514 } 3515 3516 /** 3517 * sd_format_disk_name - format disk name 3518 * @prefix: name prefix - ie. "sd" for SCSI disks 3519 * @index: index of the disk to format name for 3520 * @buf: output buffer 3521 * @buflen: length of the output buffer 3522 * 3523 * SCSI disk names starts at sda. The 26th device is sdz and the 3524 * 27th is sdaa. The last one for two lettered suffix is sdzz 3525 * which is followed by sdaaa. 3526 * 3527 * This is basically 26 base counting with one extra 'nil' entry 3528 * at the beginning from the second digit on and can be 3529 * determined using similar method as 26 base conversion with the 3530 * index shifted -1 after each digit is computed. 3531 * 3532 * CONTEXT: 3533 * Don't care. 3534 * 3535 * RETURNS: 3536 * 0 on success, -errno on failure. 3537 */ 3538 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3539 { 3540 const int base = 'z' - 'a' + 1; 3541 char *begin = buf + strlen(prefix); 3542 char *end = buf + buflen; 3543 char *p; 3544 int unit; 3545 3546 p = end - 1; 3547 *p = '\0'; 3548 unit = base; 3549 do { 3550 if (p == begin) 3551 return -EINVAL; 3552 *--p = 'a' + (index % unit); 3553 index = (index / unit) - 1; 3554 } while (index >= 0); 3555 3556 memmove(begin, p, end - p); 3557 memcpy(buf, prefix, strlen(prefix)); 3558 3559 return 0; 3560 } 3561 3562 /** 3563 * sd_probe - called during driver initialization and whenever a 3564 * new scsi device is attached to the system. It is called once 3565 * for each scsi device (not just disks) present. 3566 * @dev: pointer to device object 3567 * 3568 * Returns 0 if successful (or not interested in this scsi device 3569 * (e.g. scanner)); 1 when there is an error. 3570 * 3571 * Note: this function is invoked from the scsi mid-level. 3572 * This function sets up the mapping between a given 3573 * <host,channel,id,lun> (found in sdp) and new device name 3574 * (e.g. /dev/sda). More precisely it is the block device major 3575 * and minor number that is chosen here. 3576 * 3577 * Assume sd_probe is not re-entrant (for time being) 3578 * Also think about sd_probe() and sd_remove() running coincidentally. 3579 **/ 3580 static int sd_probe(struct device *dev) 3581 { 3582 struct scsi_device *sdp = to_scsi_device(dev); 3583 struct scsi_disk *sdkp; 3584 struct gendisk *gd; 3585 int index; 3586 int error; 3587 3588 scsi_autopm_get_device(sdp); 3589 error = -ENODEV; 3590 if (sdp->type != TYPE_DISK && 3591 sdp->type != TYPE_ZBC && 3592 sdp->type != TYPE_MOD && 3593 sdp->type != TYPE_RBC) 3594 goto out; 3595 3596 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3597 sdev_printk(KERN_WARNING, sdp, 3598 "Unsupported ZBC host-managed device.\n"); 3599 goto out; 3600 } 3601 3602 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3603 "sd_probe\n")); 3604 3605 error = -ENOMEM; 3606 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3607 if (!sdkp) 3608 goto out; 3609 3610 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue, 3611 &sd_bio_compl_lkclass); 3612 if (!gd) 3613 goto out_free; 3614 3615 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3616 if (index < 0) { 3617 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3618 goto out_put; 3619 } 3620 3621 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3622 if (error) { 3623 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3624 goto out_free_index; 3625 } 3626 3627 sdkp->device = sdp; 3628 sdkp->disk = gd; 3629 sdkp->index = index; 3630 sdkp->max_retries = SD_MAX_RETRIES; 3631 atomic_set(&sdkp->openers, 0); 3632 atomic_set(&sdkp->device->ioerr_cnt, 0); 3633 3634 if (!sdp->request_queue->rq_timeout) { 3635 if (sdp->type != TYPE_MOD) 3636 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3637 else 3638 blk_queue_rq_timeout(sdp->request_queue, 3639 SD_MOD_TIMEOUT); 3640 } 3641 3642 device_initialize(&sdkp->disk_dev); 3643 sdkp->disk_dev.parent = get_device(dev); 3644 sdkp->disk_dev.class = &sd_disk_class; 3645 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3646 3647 error = device_add(&sdkp->disk_dev); 3648 if (error) { 3649 put_device(&sdkp->disk_dev); 3650 goto out; 3651 } 3652 3653 dev_set_drvdata(dev, sdkp); 3654 3655 gd->major = sd_major((index & 0xf0) >> 4); 3656 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3657 gd->minors = SD_MINORS; 3658 3659 gd->fops = &sd_fops; 3660 gd->private_data = sdkp; 3661 3662 /* defaults, until the device tells us otherwise */ 3663 sdp->sector_size = 512; 3664 sdkp->capacity = 0; 3665 sdkp->media_present = 1; 3666 sdkp->write_prot = 0; 3667 sdkp->cache_override = 0; 3668 sdkp->WCE = 0; 3669 sdkp->RCD = 0; 3670 sdkp->ATO = 0; 3671 sdkp->first_scan = 1; 3672 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3673 3674 sd_revalidate_disk(gd); 3675 3676 if (sdp->removable) { 3677 gd->flags |= GENHD_FL_REMOVABLE; 3678 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3679 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3680 } 3681 3682 blk_pm_runtime_init(sdp->request_queue, dev); 3683 if (sdp->rpm_autosuspend) { 3684 pm_runtime_set_autosuspend_delay(dev, 3685 sdp->host->hostt->rpm_autosuspend_delay); 3686 } 3687 3688 error = device_add_disk(dev, gd, NULL); 3689 if (error) { 3690 put_device(&sdkp->disk_dev); 3691 put_disk(gd); 3692 goto out; 3693 } 3694 3695 if (sdkp->security) { 3696 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3697 if (sdkp->opal_dev) 3698 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3699 } 3700 3701 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3702 sdp->removable ? "removable " : ""); 3703 scsi_autopm_put_device(sdp); 3704 3705 return 0; 3706 3707 out_free_index: 3708 ida_free(&sd_index_ida, index); 3709 out_put: 3710 put_disk(gd); 3711 out_free: 3712 kfree(sdkp); 3713 out: 3714 scsi_autopm_put_device(sdp); 3715 return error; 3716 } 3717 3718 /** 3719 * sd_remove - called whenever a scsi disk (previously recognized by 3720 * sd_probe) is detached from the system. It is called (potentially 3721 * multiple times) during sd module unload. 3722 * @dev: pointer to device object 3723 * 3724 * Note: this function is invoked from the scsi mid-level. 3725 * This function potentially frees up a device name (e.g. /dev/sdc) 3726 * that could be re-used by a subsequent sd_probe(). 3727 * This function is not called when the built-in sd driver is "exit-ed". 3728 **/ 3729 static int sd_remove(struct device *dev) 3730 { 3731 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3732 3733 scsi_autopm_get_device(sdkp->device); 3734 3735 device_del(&sdkp->disk_dev); 3736 del_gendisk(sdkp->disk); 3737 sd_shutdown(dev); 3738 3739 put_disk(sdkp->disk); 3740 return 0; 3741 } 3742 3743 static void scsi_disk_release(struct device *dev) 3744 { 3745 struct scsi_disk *sdkp = to_scsi_disk(dev); 3746 3747 ida_free(&sd_index_ida, sdkp->index); 3748 sd_zbc_free_zone_info(sdkp); 3749 put_device(&sdkp->device->sdev_gendev); 3750 free_opal_dev(sdkp->opal_dev); 3751 3752 kfree(sdkp); 3753 } 3754 3755 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3756 { 3757 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3758 struct scsi_sense_hdr sshdr; 3759 const struct scsi_exec_args exec_args = { 3760 .sshdr = &sshdr, 3761 .req_flags = BLK_MQ_REQ_PM, 3762 }; 3763 struct scsi_device *sdp = sdkp->device; 3764 int res; 3765 3766 if (start) 3767 cmd[4] |= 1; /* START */ 3768 3769 if (sdp->start_stop_pwr_cond) 3770 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3771 3772 if (!scsi_device_online(sdp)) 3773 return -ENODEV; 3774 3775 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, 3776 sdkp->max_retries, &exec_args); 3777 if (res) { 3778 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3779 if (res > 0 && scsi_sense_valid(&sshdr)) { 3780 sd_print_sense_hdr(sdkp, &sshdr); 3781 /* 0x3a is medium not present */ 3782 if (sshdr.asc == 0x3a) 3783 res = 0; 3784 } 3785 } 3786 3787 /* SCSI error codes must not go to the generic layer */ 3788 if (res) 3789 return -EIO; 3790 3791 return 0; 3792 } 3793 3794 /* 3795 * Send a SYNCHRONIZE CACHE instruction down to the device through 3796 * the normal SCSI command structure. Wait for the command to 3797 * complete. 3798 */ 3799 static void sd_shutdown(struct device *dev) 3800 { 3801 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3802 3803 if (!sdkp) 3804 return; /* this can happen */ 3805 3806 if (pm_runtime_suspended(dev)) 3807 return; 3808 3809 if (sdkp->WCE && sdkp->media_present) { 3810 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3811 sd_sync_cache(sdkp, NULL); 3812 } 3813 3814 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3815 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3816 sd_start_stop_device(sdkp, 0); 3817 } 3818 } 3819 3820 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3821 { 3822 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3823 struct scsi_sense_hdr sshdr; 3824 int ret = 0; 3825 3826 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3827 return 0; 3828 3829 if (sdkp->WCE && sdkp->media_present) { 3830 if (!sdkp->device->silence_suspend) 3831 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3832 ret = sd_sync_cache(sdkp, &sshdr); 3833 3834 if (ret) { 3835 /* ignore OFFLINE device */ 3836 if (ret == -ENODEV) 3837 return 0; 3838 3839 if (!scsi_sense_valid(&sshdr) || 3840 sshdr.sense_key != ILLEGAL_REQUEST) 3841 return ret; 3842 3843 /* 3844 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3845 * doesn't support sync. There's not much to do and 3846 * suspend shouldn't fail. 3847 */ 3848 ret = 0; 3849 } 3850 } 3851 3852 if (sdkp->device->manage_start_stop) { 3853 if (!sdkp->device->silence_suspend) 3854 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3855 /* an error is not worth aborting a system sleep */ 3856 ret = sd_start_stop_device(sdkp, 0); 3857 if (ignore_stop_errors) 3858 ret = 0; 3859 } 3860 3861 return ret; 3862 } 3863 3864 static int sd_suspend_system(struct device *dev) 3865 { 3866 if (pm_runtime_suspended(dev)) 3867 return 0; 3868 3869 return sd_suspend_common(dev, true); 3870 } 3871 3872 static int sd_suspend_runtime(struct device *dev) 3873 { 3874 return sd_suspend_common(dev, false); 3875 } 3876 3877 static int sd_resume(struct device *dev) 3878 { 3879 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3880 int ret; 3881 3882 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3883 return 0; 3884 3885 if (!sdkp->device->manage_start_stop) 3886 return 0; 3887 3888 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3889 ret = sd_start_stop_device(sdkp, 1); 3890 if (!ret) 3891 opal_unlock_from_suspend(sdkp->opal_dev); 3892 return ret; 3893 } 3894 3895 static int sd_resume_system(struct device *dev) 3896 { 3897 if (pm_runtime_suspended(dev)) 3898 return 0; 3899 3900 return sd_resume(dev); 3901 } 3902 3903 static int sd_resume_runtime(struct device *dev) 3904 { 3905 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3906 struct scsi_device *sdp; 3907 3908 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3909 return 0; 3910 3911 sdp = sdkp->device; 3912 3913 if (sdp->ignore_media_change) { 3914 /* clear the device's sense data */ 3915 static const u8 cmd[10] = { REQUEST_SENSE }; 3916 const struct scsi_exec_args exec_args = { 3917 .req_flags = BLK_MQ_REQ_PM, 3918 }; 3919 3920 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 3921 sdp->request_queue->rq_timeout, 1, 3922 &exec_args)) 3923 sd_printk(KERN_NOTICE, sdkp, 3924 "Failed to clear sense data\n"); 3925 } 3926 3927 return sd_resume(dev); 3928 } 3929 3930 /** 3931 * init_sd - entry point for this driver (both when built in or when 3932 * a module). 3933 * 3934 * Note: this function registers this driver with the scsi mid-level. 3935 **/ 3936 static int __init init_sd(void) 3937 { 3938 int majors = 0, i, err; 3939 3940 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3941 3942 for (i = 0; i < SD_MAJORS; i++) { 3943 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3944 continue; 3945 majors++; 3946 } 3947 3948 if (!majors) 3949 return -ENODEV; 3950 3951 err = class_register(&sd_disk_class); 3952 if (err) 3953 goto err_out; 3954 3955 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3956 if (!sd_page_pool) { 3957 printk(KERN_ERR "sd: can't init discard page pool\n"); 3958 err = -ENOMEM; 3959 goto err_out_class; 3960 } 3961 3962 err = scsi_register_driver(&sd_template.gendrv); 3963 if (err) 3964 goto err_out_driver; 3965 3966 return 0; 3967 3968 err_out_driver: 3969 mempool_destroy(sd_page_pool); 3970 err_out_class: 3971 class_unregister(&sd_disk_class); 3972 err_out: 3973 for (i = 0; i < SD_MAJORS; i++) 3974 unregister_blkdev(sd_major(i), "sd"); 3975 return err; 3976 } 3977 3978 /** 3979 * exit_sd - exit point for this driver (when it is a module). 3980 * 3981 * Note: this function unregisters this driver from the scsi mid-level. 3982 **/ 3983 static void __exit exit_sd(void) 3984 { 3985 int i; 3986 3987 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3988 3989 scsi_unregister_driver(&sd_template.gendrv); 3990 mempool_destroy(sd_page_pool); 3991 3992 class_unregister(&sd_disk_class); 3993 3994 for (i = 0; i < SD_MAJORS; i++) 3995 unregister_blkdev(sd_major(i), "sd"); 3996 } 3997 3998 module_init(init_sd); 3999 module_exit(exit_sd); 4000 4001 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 4002 { 4003 scsi_print_sense_hdr(sdkp->device, 4004 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 4005 } 4006 4007 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 4008 { 4009 const char *hb_string = scsi_hostbyte_string(result); 4010 4011 if (hb_string) 4012 sd_printk(KERN_INFO, sdkp, 4013 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 4014 hb_string ? hb_string : "invalid", 4015 "DRIVER_OK"); 4016 else 4017 sd_printk(KERN_INFO, sdkp, 4018 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 4019 msg, host_byte(result), "DRIVER_OK"); 4020 } 4021