1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/genhd.h> 42 #include <linux/hdreg.h> 43 #include <linux/errno.h> 44 #include <linux/idr.h> 45 #include <linux/interrupt.h> 46 #include <linux/init.h> 47 #include <linux/blkdev.h> 48 #include <linux/blkpg.h> 49 #include <linux/blk-pm.h> 50 #include <linux/delay.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/async.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <asm/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_driver.h> 67 #include <scsi/scsi_eh.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_ioctl.h> 70 #include <scsi/scsicam.h> 71 72 #include "sd.h" 73 #include "scsi_priv.h" 74 #include "scsi_logging.h" 75 76 MODULE_AUTHOR("Eric Youngdale"); 77 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 78 MODULE_LICENSE("GPL"); 79 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 100 101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 102 #define SD_MINORS 16 103 #else 104 #define SD_MINORS 0 105 #endif 106 107 static void sd_config_discard(struct scsi_disk *, unsigned int); 108 static void sd_config_write_same(struct scsi_disk *); 109 static int sd_revalidate_disk(struct gendisk *); 110 static void sd_unlock_native_capacity(struct gendisk *disk); 111 static int sd_probe(struct device *); 112 static int sd_remove(struct device *); 113 static void sd_shutdown(struct device *); 114 static int sd_suspend_system(struct device *); 115 static int sd_suspend_runtime(struct device *); 116 static int sd_resume(struct device *); 117 static void sd_rescan(struct device *); 118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 119 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 120 static int sd_done(struct scsi_cmnd *); 121 static void sd_eh_reset(struct scsi_cmnd *); 122 static int sd_eh_action(struct scsi_cmnd *, int); 123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 124 static void scsi_disk_release(struct device *cdev); 125 126 static DEFINE_IDA(sd_index_ida); 127 128 /* This semaphore is used to mediate the 0->1 reference get in the 129 * face of object destruction (i.e. we can't allow a get on an 130 * object after last put) */ 131 static DEFINE_MUTEX(sd_ref_mutex); 132 133 static struct kmem_cache *sd_cdb_cache; 134 static mempool_t *sd_cdb_pool; 135 static mempool_t *sd_page_pool; 136 137 static const char *sd_cache_types[] = { 138 "write through", "none", "write back", 139 "write back, no read (daft)" 140 }; 141 142 static void sd_set_flush_flag(struct scsi_disk *sdkp) 143 { 144 bool wc = false, fua = false; 145 146 if (sdkp->WCE) { 147 wc = true; 148 if (sdkp->DPOFUA) 149 fua = true; 150 } 151 152 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 153 } 154 155 static ssize_t 156 cache_type_store(struct device *dev, struct device_attribute *attr, 157 const char *buf, size_t count) 158 { 159 int ct, rcd, wce, sp; 160 struct scsi_disk *sdkp = to_scsi_disk(dev); 161 struct scsi_device *sdp = sdkp->device; 162 char buffer[64]; 163 char *buffer_data; 164 struct scsi_mode_data data; 165 struct scsi_sense_hdr sshdr; 166 static const char temp[] = "temporary "; 167 int len; 168 169 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 170 /* no cache control on RBC devices; theoretically they 171 * can do it, but there's probably so many exceptions 172 * it's not worth the risk */ 173 return -EINVAL; 174 175 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 176 buf += sizeof(temp) - 1; 177 sdkp->cache_override = 1; 178 } else { 179 sdkp->cache_override = 0; 180 } 181 182 ct = sysfs_match_string(sd_cache_types, buf); 183 if (ct < 0) 184 return -EINVAL; 185 186 rcd = ct & 0x01 ? 1 : 0; 187 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 188 189 if (sdkp->cache_override) { 190 sdkp->WCE = wce; 191 sdkp->RCD = rcd; 192 sd_set_flush_flag(sdkp); 193 return count; 194 } 195 196 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 197 sdkp->max_retries, &data, NULL)) 198 return -EINVAL; 199 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 200 data.block_descriptor_length); 201 buffer_data = buffer + data.header_length + 202 data.block_descriptor_length; 203 buffer_data[2] &= ~0x05; 204 buffer_data[2] |= wce << 2 | rcd; 205 sp = buffer_data[0] & 0x80 ? 1 : 0; 206 buffer_data[0] &= ~0x80; 207 208 /* 209 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 210 * received mode parameter buffer before doing MODE SELECT. 211 */ 212 data.device_specific = 0; 213 214 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 215 sdkp->max_retries, &data, &sshdr)) { 216 if (scsi_sense_valid(&sshdr)) 217 sd_print_sense_hdr(sdkp, &sshdr); 218 return -EINVAL; 219 } 220 sd_revalidate_disk(sdkp->disk); 221 return count; 222 } 223 224 static ssize_t 225 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 226 char *buf) 227 { 228 struct scsi_disk *sdkp = to_scsi_disk(dev); 229 struct scsi_device *sdp = sdkp->device; 230 231 return sprintf(buf, "%u\n", sdp->manage_start_stop); 232 } 233 234 static ssize_t 235 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 236 const char *buf, size_t count) 237 { 238 struct scsi_disk *sdkp = to_scsi_disk(dev); 239 struct scsi_device *sdp = sdkp->device; 240 bool v; 241 242 if (!capable(CAP_SYS_ADMIN)) 243 return -EACCES; 244 245 if (kstrtobool(buf, &v)) 246 return -EINVAL; 247 248 sdp->manage_start_stop = v; 249 250 return count; 251 } 252 static DEVICE_ATTR_RW(manage_start_stop); 253 254 static ssize_t 255 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 256 { 257 struct scsi_disk *sdkp = to_scsi_disk(dev); 258 259 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 260 } 261 262 static ssize_t 263 allow_restart_store(struct device *dev, struct device_attribute *attr, 264 const char *buf, size_t count) 265 { 266 bool v; 267 struct scsi_disk *sdkp = to_scsi_disk(dev); 268 struct scsi_device *sdp = sdkp->device; 269 270 if (!capable(CAP_SYS_ADMIN)) 271 return -EACCES; 272 273 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 274 return -EINVAL; 275 276 if (kstrtobool(buf, &v)) 277 return -EINVAL; 278 279 sdp->allow_restart = v; 280 281 return count; 282 } 283 static DEVICE_ATTR_RW(allow_restart); 284 285 static ssize_t 286 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 287 { 288 struct scsi_disk *sdkp = to_scsi_disk(dev); 289 int ct = sdkp->RCD + 2*sdkp->WCE; 290 291 return sprintf(buf, "%s\n", sd_cache_types[ct]); 292 } 293 static DEVICE_ATTR_RW(cache_type); 294 295 static ssize_t 296 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 297 { 298 struct scsi_disk *sdkp = to_scsi_disk(dev); 299 300 return sprintf(buf, "%u\n", sdkp->DPOFUA); 301 } 302 static DEVICE_ATTR_RO(FUA); 303 304 static ssize_t 305 protection_type_show(struct device *dev, struct device_attribute *attr, 306 char *buf) 307 { 308 struct scsi_disk *sdkp = to_scsi_disk(dev); 309 310 return sprintf(buf, "%u\n", sdkp->protection_type); 311 } 312 313 static ssize_t 314 protection_type_store(struct device *dev, struct device_attribute *attr, 315 const char *buf, size_t count) 316 { 317 struct scsi_disk *sdkp = to_scsi_disk(dev); 318 unsigned int val; 319 int err; 320 321 if (!capable(CAP_SYS_ADMIN)) 322 return -EACCES; 323 324 err = kstrtouint(buf, 10, &val); 325 326 if (err) 327 return err; 328 329 if (val <= T10_PI_TYPE3_PROTECTION) 330 sdkp->protection_type = val; 331 332 return count; 333 } 334 static DEVICE_ATTR_RW(protection_type); 335 336 static ssize_t 337 protection_mode_show(struct device *dev, struct device_attribute *attr, 338 char *buf) 339 { 340 struct scsi_disk *sdkp = to_scsi_disk(dev); 341 struct scsi_device *sdp = sdkp->device; 342 unsigned int dif, dix; 343 344 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 345 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 346 347 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 348 dif = 0; 349 dix = 1; 350 } 351 352 if (!dif && !dix) 353 return sprintf(buf, "none\n"); 354 355 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 356 } 357 static DEVICE_ATTR_RO(protection_mode); 358 359 static ssize_t 360 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 361 { 362 struct scsi_disk *sdkp = to_scsi_disk(dev); 363 364 return sprintf(buf, "%u\n", sdkp->ATO); 365 } 366 static DEVICE_ATTR_RO(app_tag_own); 367 368 static ssize_t 369 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 370 char *buf) 371 { 372 struct scsi_disk *sdkp = to_scsi_disk(dev); 373 374 return sprintf(buf, "%u\n", sdkp->lbpme); 375 } 376 static DEVICE_ATTR_RO(thin_provisioning); 377 378 /* sysfs_match_string() requires dense arrays */ 379 static const char *lbp_mode[] = { 380 [SD_LBP_FULL] = "full", 381 [SD_LBP_UNMAP] = "unmap", 382 [SD_LBP_WS16] = "writesame_16", 383 [SD_LBP_WS10] = "writesame_10", 384 [SD_LBP_ZERO] = "writesame_zero", 385 [SD_LBP_DISABLE] = "disabled", 386 }; 387 388 static ssize_t 389 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 390 char *buf) 391 { 392 struct scsi_disk *sdkp = to_scsi_disk(dev); 393 394 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 395 } 396 397 static ssize_t 398 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 399 const char *buf, size_t count) 400 { 401 struct scsi_disk *sdkp = to_scsi_disk(dev); 402 struct scsi_device *sdp = sdkp->device; 403 int mode; 404 405 if (!capable(CAP_SYS_ADMIN)) 406 return -EACCES; 407 408 if (sd_is_zoned(sdkp)) { 409 sd_config_discard(sdkp, SD_LBP_DISABLE); 410 return count; 411 } 412 413 if (sdp->type != TYPE_DISK) 414 return -EINVAL; 415 416 mode = sysfs_match_string(lbp_mode, buf); 417 if (mode < 0) 418 return -EINVAL; 419 420 sd_config_discard(sdkp, mode); 421 422 return count; 423 } 424 static DEVICE_ATTR_RW(provisioning_mode); 425 426 /* sysfs_match_string() requires dense arrays */ 427 static const char *zeroing_mode[] = { 428 [SD_ZERO_WRITE] = "write", 429 [SD_ZERO_WS] = "writesame", 430 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 431 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 432 }; 433 434 static ssize_t 435 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 436 char *buf) 437 { 438 struct scsi_disk *sdkp = to_scsi_disk(dev); 439 440 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 441 } 442 443 static ssize_t 444 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 445 const char *buf, size_t count) 446 { 447 struct scsi_disk *sdkp = to_scsi_disk(dev); 448 int mode; 449 450 if (!capable(CAP_SYS_ADMIN)) 451 return -EACCES; 452 453 mode = sysfs_match_string(zeroing_mode, buf); 454 if (mode < 0) 455 return -EINVAL; 456 457 sdkp->zeroing_mode = mode; 458 459 return count; 460 } 461 static DEVICE_ATTR_RW(zeroing_mode); 462 463 static ssize_t 464 max_medium_access_timeouts_show(struct device *dev, 465 struct device_attribute *attr, char *buf) 466 { 467 struct scsi_disk *sdkp = to_scsi_disk(dev); 468 469 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 470 } 471 472 static ssize_t 473 max_medium_access_timeouts_store(struct device *dev, 474 struct device_attribute *attr, const char *buf, 475 size_t count) 476 { 477 struct scsi_disk *sdkp = to_scsi_disk(dev); 478 int err; 479 480 if (!capable(CAP_SYS_ADMIN)) 481 return -EACCES; 482 483 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 484 485 return err ? err : count; 486 } 487 static DEVICE_ATTR_RW(max_medium_access_timeouts); 488 489 static ssize_t 490 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 491 char *buf) 492 { 493 struct scsi_disk *sdkp = to_scsi_disk(dev); 494 495 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 496 } 497 498 static ssize_t 499 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 500 const char *buf, size_t count) 501 { 502 struct scsi_disk *sdkp = to_scsi_disk(dev); 503 struct scsi_device *sdp = sdkp->device; 504 unsigned long max; 505 int err; 506 507 if (!capable(CAP_SYS_ADMIN)) 508 return -EACCES; 509 510 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 511 return -EINVAL; 512 513 err = kstrtoul(buf, 10, &max); 514 515 if (err) 516 return err; 517 518 if (max == 0) 519 sdp->no_write_same = 1; 520 else if (max <= SD_MAX_WS16_BLOCKS) { 521 sdp->no_write_same = 0; 522 sdkp->max_ws_blocks = max; 523 } 524 525 sd_config_write_same(sdkp); 526 527 return count; 528 } 529 static DEVICE_ATTR_RW(max_write_same_blocks); 530 531 static ssize_t 532 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 533 { 534 struct scsi_disk *sdkp = to_scsi_disk(dev); 535 536 if (sdkp->device->type == TYPE_ZBC) 537 return sprintf(buf, "host-managed\n"); 538 if (sdkp->zoned == 1) 539 return sprintf(buf, "host-aware\n"); 540 if (sdkp->zoned == 2) 541 return sprintf(buf, "drive-managed\n"); 542 return sprintf(buf, "none\n"); 543 } 544 static DEVICE_ATTR_RO(zoned_cap); 545 546 static ssize_t 547 max_retries_store(struct device *dev, struct device_attribute *attr, 548 const char *buf, size_t count) 549 { 550 struct scsi_disk *sdkp = to_scsi_disk(dev); 551 struct scsi_device *sdev = sdkp->device; 552 int retries, err; 553 554 err = kstrtoint(buf, 10, &retries); 555 if (err) 556 return err; 557 558 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 559 sdkp->max_retries = retries; 560 return count; 561 } 562 563 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 564 SD_MAX_RETRIES); 565 return -EINVAL; 566 } 567 568 static ssize_t 569 max_retries_show(struct device *dev, struct device_attribute *attr, 570 char *buf) 571 { 572 struct scsi_disk *sdkp = to_scsi_disk(dev); 573 574 return sprintf(buf, "%d\n", sdkp->max_retries); 575 } 576 577 static DEVICE_ATTR_RW(max_retries); 578 579 static struct attribute *sd_disk_attrs[] = { 580 &dev_attr_cache_type.attr, 581 &dev_attr_FUA.attr, 582 &dev_attr_allow_restart.attr, 583 &dev_attr_manage_start_stop.attr, 584 &dev_attr_protection_type.attr, 585 &dev_attr_protection_mode.attr, 586 &dev_attr_app_tag_own.attr, 587 &dev_attr_thin_provisioning.attr, 588 &dev_attr_provisioning_mode.attr, 589 &dev_attr_zeroing_mode.attr, 590 &dev_attr_max_write_same_blocks.attr, 591 &dev_attr_max_medium_access_timeouts.attr, 592 &dev_attr_zoned_cap.attr, 593 &dev_attr_max_retries.attr, 594 NULL, 595 }; 596 ATTRIBUTE_GROUPS(sd_disk); 597 598 static struct class sd_disk_class = { 599 .name = "scsi_disk", 600 .owner = THIS_MODULE, 601 .dev_release = scsi_disk_release, 602 .dev_groups = sd_disk_groups, 603 }; 604 605 static const struct dev_pm_ops sd_pm_ops = { 606 .suspend = sd_suspend_system, 607 .resume = sd_resume, 608 .poweroff = sd_suspend_system, 609 .restore = sd_resume, 610 .runtime_suspend = sd_suspend_runtime, 611 .runtime_resume = sd_resume, 612 }; 613 614 static struct scsi_driver sd_template = { 615 .gendrv = { 616 .name = "sd", 617 .owner = THIS_MODULE, 618 .probe = sd_probe, 619 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 620 .remove = sd_remove, 621 .shutdown = sd_shutdown, 622 .pm = &sd_pm_ops, 623 }, 624 .rescan = sd_rescan, 625 .init_command = sd_init_command, 626 .uninit_command = sd_uninit_command, 627 .done = sd_done, 628 .eh_action = sd_eh_action, 629 .eh_reset = sd_eh_reset, 630 }; 631 632 /* 633 * Dummy kobj_map->probe function. 634 * The default ->probe function will call modprobe, which is 635 * pointless as this module is already loaded. 636 */ 637 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 638 { 639 return NULL; 640 } 641 642 /* 643 * Device no to disk mapping: 644 * 645 * major disc2 disc p1 646 * |............|.............|....|....| <- dev_t 647 * 31 20 19 8 7 4 3 0 648 * 649 * Inside a major, we have 16k disks, however mapped non- 650 * contiguously. The first 16 disks are for major0, the next 651 * ones with major1, ... Disk 256 is for major0 again, disk 272 652 * for major1, ... 653 * As we stay compatible with our numbering scheme, we can reuse 654 * the well-know SCSI majors 8, 65--71, 136--143. 655 */ 656 static int sd_major(int major_idx) 657 { 658 switch (major_idx) { 659 case 0: 660 return SCSI_DISK0_MAJOR; 661 case 1 ... 7: 662 return SCSI_DISK1_MAJOR + major_idx - 1; 663 case 8 ... 15: 664 return SCSI_DISK8_MAJOR + major_idx - 8; 665 default: 666 BUG(); 667 return 0; /* shut up gcc */ 668 } 669 } 670 671 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 672 { 673 struct scsi_disk *sdkp = NULL; 674 675 mutex_lock(&sd_ref_mutex); 676 677 if (disk->private_data) { 678 sdkp = scsi_disk(disk); 679 if (scsi_device_get(sdkp->device) == 0) 680 get_device(&sdkp->dev); 681 else 682 sdkp = NULL; 683 } 684 mutex_unlock(&sd_ref_mutex); 685 return sdkp; 686 } 687 688 static void scsi_disk_put(struct scsi_disk *sdkp) 689 { 690 struct scsi_device *sdev = sdkp->device; 691 692 mutex_lock(&sd_ref_mutex); 693 put_device(&sdkp->dev); 694 scsi_device_put(sdev); 695 mutex_unlock(&sd_ref_mutex); 696 } 697 698 #ifdef CONFIG_BLK_SED_OPAL 699 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 700 size_t len, bool send) 701 { 702 struct scsi_disk *sdkp = data; 703 struct scsi_device *sdev = sdkp->device; 704 u8 cdb[12] = { 0, }; 705 int ret; 706 707 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 708 cdb[1] = secp; 709 put_unaligned_be16(spsp, &cdb[2]); 710 put_unaligned_be32(len, &cdb[6]); 711 712 ret = scsi_execute_req(sdev, cdb, 713 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 714 buffer, len, NULL, SD_TIMEOUT, sdkp->max_retries, NULL); 715 return ret <= 0 ? ret : -EIO; 716 } 717 #endif /* CONFIG_BLK_SED_OPAL */ 718 719 /* 720 * Look up the DIX operation based on whether the command is read or 721 * write and whether dix and dif are enabled. 722 */ 723 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 724 { 725 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 726 static const unsigned int ops[] = { /* wrt dix dif */ 727 SCSI_PROT_NORMAL, /* 0 0 0 */ 728 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 729 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 730 SCSI_PROT_READ_PASS, /* 0 1 1 */ 731 SCSI_PROT_NORMAL, /* 1 0 0 */ 732 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 733 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 734 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 735 }; 736 737 return ops[write << 2 | dix << 1 | dif]; 738 } 739 740 /* 741 * Returns a mask of the protection flags that are valid for a given DIX 742 * operation. 743 */ 744 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 745 { 746 static const unsigned int flag_mask[] = { 747 [SCSI_PROT_NORMAL] = 0, 748 749 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 750 SCSI_PROT_GUARD_CHECK | 751 SCSI_PROT_REF_CHECK | 752 SCSI_PROT_REF_INCREMENT, 753 754 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 755 SCSI_PROT_IP_CHECKSUM, 756 757 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 758 SCSI_PROT_GUARD_CHECK | 759 SCSI_PROT_REF_CHECK | 760 SCSI_PROT_REF_INCREMENT | 761 SCSI_PROT_IP_CHECKSUM, 762 763 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 764 SCSI_PROT_REF_INCREMENT, 765 766 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 767 SCSI_PROT_REF_CHECK | 768 SCSI_PROT_REF_INCREMENT | 769 SCSI_PROT_IP_CHECKSUM, 770 771 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 772 SCSI_PROT_GUARD_CHECK | 773 SCSI_PROT_REF_CHECK | 774 SCSI_PROT_REF_INCREMENT | 775 SCSI_PROT_IP_CHECKSUM, 776 }; 777 778 return flag_mask[prot_op]; 779 } 780 781 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 782 unsigned int dix, unsigned int dif) 783 { 784 struct bio *bio = scmd->request->bio; 785 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 786 unsigned int protect = 0; 787 788 if (dix) { /* DIX Type 0, 1, 2, 3 */ 789 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 790 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 791 792 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 793 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 794 } 795 796 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 797 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 798 799 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 800 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 801 } 802 803 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 804 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 805 806 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 807 protect = 3 << 5; /* Disable target PI checking */ 808 else 809 protect = 1 << 5; /* Enable target PI checking */ 810 } 811 812 scsi_set_prot_op(scmd, prot_op); 813 scsi_set_prot_type(scmd, dif); 814 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 815 816 return protect; 817 } 818 819 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 820 { 821 struct request_queue *q = sdkp->disk->queue; 822 unsigned int logical_block_size = sdkp->device->sector_size; 823 unsigned int max_blocks = 0; 824 825 q->limits.discard_alignment = 826 sdkp->unmap_alignment * logical_block_size; 827 q->limits.discard_granularity = 828 max(sdkp->physical_block_size, 829 sdkp->unmap_granularity * logical_block_size); 830 sdkp->provisioning_mode = mode; 831 832 switch (mode) { 833 834 case SD_LBP_FULL: 835 case SD_LBP_DISABLE: 836 blk_queue_max_discard_sectors(q, 0); 837 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 838 return; 839 840 case SD_LBP_UNMAP: 841 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 842 (u32)SD_MAX_WS16_BLOCKS); 843 break; 844 845 case SD_LBP_WS16: 846 if (sdkp->device->unmap_limit_for_ws) 847 max_blocks = sdkp->max_unmap_blocks; 848 else 849 max_blocks = sdkp->max_ws_blocks; 850 851 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 852 break; 853 854 case SD_LBP_WS10: 855 if (sdkp->device->unmap_limit_for_ws) 856 max_blocks = sdkp->max_unmap_blocks; 857 else 858 max_blocks = sdkp->max_ws_blocks; 859 860 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 861 break; 862 863 case SD_LBP_ZERO: 864 max_blocks = min_not_zero(sdkp->max_ws_blocks, 865 (u32)SD_MAX_WS10_BLOCKS); 866 break; 867 } 868 869 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 870 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 871 } 872 873 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 874 { 875 struct scsi_device *sdp = cmd->device; 876 struct request *rq = cmd->request; 877 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 878 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 879 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 880 unsigned int data_len = 24; 881 char *buf; 882 883 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 884 if (!rq->special_vec.bv_page) 885 return BLK_STS_RESOURCE; 886 clear_highpage(rq->special_vec.bv_page); 887 rq->special_vec.bv_offset = 0; 888 rq->special_vec.bv_len = data_len; 889 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 890 891 cmd->cmd_len = 10; 892 cmd->cmnd[0] = UNMAP; 893 cmd->cmnd[8] = 24; 894 895 buf = page_address(rq->special_vec.bv_page); 896 put_unaligned_be16(6 + 16, &buf[0]); 897 put_unaligned_be16(16, &buf[2]); 898 put_unaligned_be64(lba, &buf[8]); 899 put_unaligned_be32(nr_blocks, &buf[16]); 900 901 cmd->allowed = sdkp->max_retries; 902 cmd->transfersize = data_len; 903 rq->timeout = SD_TIMEOUT; 904 905 return scsi_alloc_sgtables(cmd); 906 } 907 908 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 909 bool unmap) 910 { 911 struct scsi_device *sdp = cmd->device; 912 struct request *rq = cmd->request; 913 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 914 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 915 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 916 u32 data_len = sdp->sector_size; 917 918 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 919 if (!rq->special_vec.bv_page) 920 return BLK_STS_RESOURCE; 921 clear_highpage(rq->special_vec.bv_page); 922 rq->special_vec.bv_offset = 0; 923 rq->special_vec.bv_len = data_len; 924 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 925 926 cmd->cmd_len = 16; 927 cmd->cmnd[0] = WRITE_SAME_16; 928 if (unmap) 929 cmd->cmnd[1] = 0x8; /* UNMAP */ 930 put_unaligned_be64(lba, &cmd->cmnd[2]); 931 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 932 933 cmd->allowed = sdkp->max_retries; 934 cmd->transfersize = data_len; 935 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 936 937 return scsi_alloc_sgtables(cmd); 938 } 939 940 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 941 bool unmap) 942 { 943 struct scsi_device *sdp = cmd->device; 944 struct request *rq = cmd->request; 945 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 946 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 947 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 948 u32 data_len = sdp->sector_size; 949 950 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 951 if (!rq->special_vec.bv_page) 952 return BLK_STS_RESOURCE; 953 clear_highpage(rq->special_vec.bv_page); 954 rq->special_vec.bv_offset = 0; 955 rq->special_vec.bv_len = data_len; 956 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 957 958 cmd->cmd_len = 10; 959 cmd->cmnd[0] = WRITE_SAME; 960 if (unmap) 961 cmd->cmnd[1] = 0x8; /* UNMAP */ 962 put_unaligned_be32(lba, &cmd->cmnd[2]); 963 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 964 965 cmd->allowed = sdkp->max_retries; 966 cmd->transfersize = data_len; 967 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 968 969 return scsi_alloc_sgtables(cmd); 970 } 971 972 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 973 { 974 struct request *rq = cmd->request; 975 struct scsi_device *sdp = cmd->device; 976 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 977 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 978 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 979 980 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 981 switch (sdkp->zeroing_mode) { 982 case SD_ZERO_WS16_UNMAP: 983 return sd_setup_write_same16_cmnd(cmd, true); 984 case SD_ZERO_WS10_UNMAP: 985 return sd_setup_write_same10_cmnd(cmd, true); 986 } 987 } 988 989 if (sdp->no_write_same) 990 return BLK_STS_TARGET; 991 992 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 993 return sd_setup_write_same16_cmnd(cmd, false); 994 995 return sd_setup_write_same10_cmnd(cmd, false); 996 } 997 998 static void sd_config_write_same(struct scsi_disk *sdkp) 999 { 1000 struct request_queue *q = sdkp->disk->queue; 1001 unsigned int logical_block_size = sdkp->device->sector_size; 1002 1003 if (sdkp->device->no_write_same) { 1004 sdkp->max_ws_blocks = 0; 1005 goto out; 1006 } 1007 1008 /* Some devices can not handle block counts above 0xffff despite 1009 * supporting WRITE SAME(16). Consequently we default to 64k 1010 * blocks per I/O unless the device explicitly advertises a 1011 * bigger limit. 1012 */ 1013 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 1014 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1015 (u32)SD_MAX_WS16_BLOCKS); 1016 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 1017 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1018 (u32)SD_MAX_WS10_BLOCKS); 1019 else { 1020 sdkp->device->no_write_same = 1; 1021 sdkp->max_ws_blocks = 0; 1022 } 1023 1024 if (sdkp->lbprz && sdkp->lbpws) 1025 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 1026 else if (sdkp->lbprz && sdkp->lbpws10) 1027 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 1028 else if (sdkp->max_ws_blocks) 1029 sdkp->zeroing_mode = SD_ZERO_WS; 1030 else 1031 sdkp->zeroing_mode = SD_ZERO_WRITE; 1032 1033 if (sdkp->max_ws_blocks && 1034 sdkp->physical_block_size > logical_block_size) { 1035 /* 1036 * Reporting a maximum number of blocks that is not aligned 1037 * on the device physical size would cause a large write same 1038 * request to be split into physically unaligned chunks by 1039 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 1040 * even if the caller of these functions took care to align the 1041 * large request. So make sure the maximum reported is aligned 1042 * to the device physical block size. This is only an optional 1043 * optimization for regular disks, but this is mandatory to 1044 * avoid failure of large write same requests directed at 1045 * sequential write required zones of host-managed ZBC disks. 1046 */ 1047 sdkp->max_ws_blocks = 1048 round_down(sdkp->max_ws_blocks, 1049 bytes_to_logical(sdkp->device, 1050 sdkp->physical_block_size)); 1051 } 1052 1053 out: 1054 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 1055 (logical_block_size >> 9)); 1056 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1057 (logical_block_size >> 9)); 1058 } 1059 1060 /** 1061 * sd_setup_write_same_cmnd - write the same data to multiple blocks 1062 * @cmd: command to prepare 1063 * 1064 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 1065 * the preference indicated by the target device. 1066 **/ 1067 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 1068 { 1069 struct request *rq = cmd->request; 1070 struct scsi_device *sdp = cmd->device; 1071 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1072 struct bio *bio = rq->bio; 1073 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1074 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1075 blk_status_t ret; 1076 1077 if (sdkp->device->no_write_same) 1078 return BLK_STS_TARGET; 1079 1080 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 1081 1082 rq->timeout = SD_WRITE_SAME_TIMEOUT; 1083 1084 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) { 1085 cmd->cmd_len = 16; 1086 cmd->cmnd[0] = WRITE_SAME_16; 1087 put_unaligned_be64(lba, &cmd->cmnd[2]); 1088 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1089 } else { 1090 cmd->cmd_len = 10; 1091 cmd->cmnd[0] = WRITE_SAME; 1092 put_unaligned_be32(lba, &cmd->cmnd[2]); 1093 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1094 } 1095 1096 cmd->transfersize = sdp->sector_size; 1097 cmd->allowed = sdkp->max_retries; 1098 1099 /* 1100 * For WRITE SAME the data transferred via the DATA OUT buffer is 1101 * different from the amount of data actually written to the target. 1102 * 1103 * We set up __data_len to the amount of data transferred via the 1104 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 1105 * to transfer a single sector of data first, but then reset it to 1106 * the amount of data to be written right after so that the I/O path 1107 * knows how much to actually write. 1108 */ 1109 rq->__data_len = sdp->sector_size; 1110 ret = scsi_alloc_sgtables(cmd); 1111 rq->__data_len = blk_rq_bytes(rq); 1112 1113 return ret; 1114 } 1115 1116 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1117 { 1118 struct request *rq = cmd->request; 1119 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1120 1121 /* flush requests don't perform I/O, zero the S/G table */ 1122 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1123 1124 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1125 cmd->cmd_len = 10; 1126 cmd->transfersize = 0; 1127 cmd->allowed = sdkp->max_retries; 1128 1129 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1130 return BLK_STS_OK; 1131 } 1132 1133 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1134 sector_t lba, unsigned int nr_blocks, 1135 unsigned char flags) 1136 { 1137 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1138 if (unlikely(cmd->cmnd == NULL)) 1139 return BLK_STS_RESOURCE; 1140 1141 cmd->cmd_len = SD_EXT_CDB_SIZE; 1142 memset(cmd->cmnd, 0, cmd->cmd_len); 1143 1144 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1145 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1146 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1147 cmd->cmnd[10] = flags; 1148 put_unaligned_be64(lba, &cmd->cmnd[12]); 1149 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1150 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1151 1152 return BLK_STS_OK; 1153 } 1154 1155 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1156 sector_t lba, unsigned int nr_blocks, 1157 unsigned char flags) 1158 { 1159 cmd->cmd_len = 16; 1160 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1161 cmd->cmnd[1] = flags; 1162 cmd->cmnd[14] = 0; 1163 cmd->cmnd[15] = 0; 1164 put_unaligned_be64(lba, &cmd->cmnd[2]); 1165 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1166 1167 return BLK_STS_OK; 1168 } 1169 1170 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1171 sector_t lba, unsigned int nr_blocks, 1172 unsigned char flags) 1173 { 1174 cmd->cmd_len = 10; 1175 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1176 cmd->cmnd[1] = flags; 1177 cmd->cmnd[6] = 0; 1178 cmd->cmnd[9] = 0; 1179 put_unaligned_be32(lba, &cmd->cmnd[2]); 1180 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1181 1182 return BLK_STS_OK; 1183 } 1184 1185 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1186 sector_t lba, unsigned int nr_blocks, 1187 unsigned char flags) 1188 { 1189 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1190 if (WARN_ON_ONCE(nr_blocks == 0)) 1191 return BLK_STS_IOERR; 1192 1193 if (unlikely(flags & 0x8)) { 1194 /* 1195 * This happens only if this drive failed 10byte rw 1196 * command with ILLEGAL_REQUEST during operation and 1197 * thus turned off use_10_for_rw. 1198 */ 1199 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1200 return BLK_STS_IOERR; 1201 } 1202 1203 cmd->cmd_len = 6; 1204 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1205 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1206 cmd->cmnd[2] = (lba >> 8) & 0xff; 1207 cmd->cmnd[3] = lba & 0xff; 1208 cmd->cmnd[4] = nr_blocks; 1209 cmd->cmnd[5] = 0; 1210 1211 return BLK_STS_OK; 1212 } 1213 1214 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1215 { 1216 struct request *rq = cmd->request; 1217 struct scsi_device *sdp = cmd->device; 1218 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1219 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1220 sector_t threshold; 1221 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1222 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1223 bool write = rq_data_dir(rq) == WRITE; 1224 unsigned char protect, fua; 1225 blk_status_t ret; 1226 unsigned int dif; 1227 bool dix; 1228 1229 ret = scsi_alloc_sgtables(cmd); 1230 if (ret != BLK_STS_OK) 1231 return ret; 1232 1233 ret = BLK_STS_IOERR; 1234 if (!scsi_device_online(sdp) || sdp->changed) { 1235 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1236 goto fail; 1237 } 1238 1239 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) { 1240 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1241 goto fail; 1242 } 1243 1244 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1245 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1246 goto fail; 1247 } 1248 1249 /* 1250 * Some SD card readers can't handle accesses which touch the 1251 * last one or two logical blocks. Split accesses as needed. 1252 */ 1253 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1254 1255 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1256 if (lba < threshold) { 1257 /* Access up to the threshold but not beyond */ 1258 nr_blocks = threshold - lba; 1259 } else { 1260 /* Access only a single logical block */ 1261 nr_blocks = 1; 1262 } 1263 } 1264 1265 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1266 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1267 if (ret) 1268 goto fail; 1269 } 1270 1271 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1272 dix = scsi_prot_sg_count(cmd); 1273 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1274 1275 if (dif || dix) 1276 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1277 else 1278 protect = 0; 1279 1280 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1281 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1282 protect | fua); 1283 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1284 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1285 protect | fua); 1286 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1287 sdp->use_10_for_rw || protect) { 1288 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1289 protect | fua); 1290 } else { 1291 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1292 protect | fua); 1293 } 1294 1295 if (unlikely(ret != BLK_STS_OK)) 1296 goto fail; 1297 1298 /* 1299 * We shouldn't disconnect in the middle of a sector, so with a dumb 1300 * host adapter, it's safe to assume that we can at least transfer 1301 * this many bytes between each connect / disconnect. 1302 */ 1303 cmd->transfersize = sdp->sector_size; 1304 cmd->underflow = nr_blocks << 9; 1305 cmd->allowed = sdkp->max_retries; 1306 cmd->sdb.length = nr_blocks * sdp->sector_size; 1307 1308 SCSI_LOG_HLQUEUE(1, 1309 scmd_printk(KERN_INFO, cmd, 1310 "%s: block=%llu, count=%d\n", __func__, 1311 (unsigned long long)blk_rq_pos(rq), 1312 blk_rq_sectors(rq))); 1313 SCSI_LOG_HLQUEUE(2, 1314 scmd_printk(KERN_INFO, cmd, 1315 "%s %d/%u 512 byte blocks.\n", 1316 write ? "writing" : "reading", nr_blocks, 1317 blk_rq_sectors(rq))); 1318 1319 /* 1320 * This indicates that the command is ready from our end to be queued. 1321 */ 1322 return BLK_STS_OK; 1323 fail: 1324 scsi_free_sgtables(cmd); 1325 return ret; 1326 } 1327 1328 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1329 { 1330 struct request *rq = cmd->request; 1331 1332 switch (req_op(rq)) { 1333 case REQ_OP_DISCARD: 1334 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1335 case SD_LBP_UNMAP: 1336 return sd_setup_unmap_cmnd(cmd); 1337 case SD_LBP_WS16: 1338 return sd_setup_write_same16_cmnd(cmd, true); 1339 case SD_LBP_WS10: 1340 return sd_setup_write_same10_cmnd(cmd, true); 1341 case SD_LBP_ZERO: 1342 return sd_setup_write_same10_cmnd(cmd, false); 1343 default: 1344 return BLK_STS_TARGET; 1345 } 1346 case REQ_OP_WRITE_ZEROES: 1347 return sd_setup_write_zeroes_cmnd(cmd); 1348 case REQ_OP_WRITE_SAME: 1349 return sd_setup_write_same_cmnd(cmd); 1350 case REQ_OP_FLUSH: 1351 return sd_setup_flush_cmnd(cmd); 1352 case REQ_OP_READ: 1353 case REQ_OP_WRITE: 1354 case REQ_OP_ZONE_APPEND: 1355 return sd_setup_read_write_cmnd(cmd); 1356 case REQ_OP_ZONE_RESET: 1357 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1358 false); 1359 case REQ_OP_ZONE_RESET_ALL: 1360 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1361 true); 1362 case REQ_OP_ZONE_OPEN: 1363 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1364 case REQ_OP_ZONE_CLOSE: 1365 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1366 case REQ_OP_ZONE_FINISH: 1367 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1368 default: 1369 WARN_ON_ONCE(1); 1370 return BLK_STS_NOTSUPP; 1371 } 1372 } 1373 1374 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1375 { 1376 struct request *rq = SCpnt->request; 1377 u8 *cmnd; 1378 1379 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1380 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1381 1382 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1383 cmnd = SCpnt->cmnd; 1384 SCpnt->cmnd = NULL; 1385 SCpnt->cmd_len = 0; 1386 mempool_free(cmnd, sd_cdb_pool); 1387 } 1388 } 1389 1390 /** 1391 * sd_open - open a scsi disk device 1392 * @bdev: Block device of the scsi disk to open 1393 * @mode: FMODE_* mask 1394 * 1395 * Returns 0 if successful. Returns a negated errno value in case 1396 * of error. 1397 * 1398 * Note: This can be called from a user context (e.g. fsck(1) ) 1399 * or from within the kernel (e.g. as a result of a mount(1) ). 1400 * In the latter case @inode and @filp carry an abridged amount 1401 * of information as noted above. 1402 * 1403 * Locking: called with bdev->bd_mutex held. 1404 **/ 1405 static int sd_open(struct block_device *bdev, fmode_t mode) 1406 { 1407 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1408 struct scsi_device *sdev; 1409 int retval; 1410 1411 if (!sdkp) 1412 return -ENXIO; 1413 1414 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1415 1416 sdev = sdkp->device; 1417 1418 /* 1419 * If the device is in error recovery, wait until it is done. 1420 * If the device is offline, then disallow any access to it. 1421 */ 1422 retval = -ENXIO; 1423 if (!scsi_block_when_processing_errors(sdev)) 1424 goto error_out; 1425 1426 if (sdev->removable || sdkp->write_prot) { 1427 if (bdev_check_media_change(bdev)) 1428 sd_revalidate_disk(bdev->bd_disk); 1429 } 1430 1431 /* 1432 * If the drive is empty, just let the open fail. 1433 */ 1434 retval = -ENOMEDIUM; 1435 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1436 goto error_out; 1437 1438 /* 1439 * If the device has the write protect tab set, have the open fail 1440 * if the user expects to be able to write to the thing. 1441 */ 1442 retval = -EROFS; 1443 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1444 goto error_out; 1445 1446 /* 1447 * It is possible that the disk changing stuff resulted in 1448 * the device being taken offline. If this is the case, 1449 * report this to the user, and don't pretend that the 1450 * open actually succeeded. 1451 */ 1452 retval = -ENXIO; 1453 if (!scsi_device_online(sdev)) 1454 goto error_out; 1455 1456 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1457 if (scsi_block_when_processing_errors(sdev)) 1458 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1459 } 1460 1461 return 0; 1462 1463 error_out: 1464 scsi_disk_put(sdkp); 1465 return retval; 1466 } 1467 1468 /** 1469 * sd_release - invoked when the (last) close(2) is called on this 1470 * scsi disk. 1471 * @disk: disk to release 1472 * @mode: FMODE_* mask 1473 * 1474 * Returns 0. 1475 * 1476 * Note: may block (uninterruptible) if error recovery is underway 1477 * on this disk. 1478 * 1479 * Locking: called with bdev->bd_mutex held. 1480 **/ 1481 static void sd_release(struct gendisk *disk, fmode_t mode) 1482 { 1483 struct scsi_disk *sdkp = scsi_disk(disk); 1484 struct scsi_device *sdev = sdkp->device; 1485 1486 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1487 1488 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1489 if (scsi_block_when_processing_errors(sdev)) 1490 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1491 } 1492 1493 scsi_disk_put(sdkp); 1494 } 1495 1496 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1497 { 1498 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1499 struct scsi_device *sdp = sdkp->device; 1500 struct Scsi_Host *host = sdp->host; 1501 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1502 int diskinfo[4]; 1503 1504 /* default to most commonly used values */ 1505 diskinfo[0] = 0x40; /* 1 << 6 */ 1506 diskinfo[1] = 0x20; /* 1 << 5 */ 1507 diskinfo[2] = capacity >> 11; 1508 1509 /* override with calculated, extended default, or driver values */ 1510 if (host->hostt->bios_param) 1511 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1512 else 1513 scsicam_bios_param(bdev, capacity, diskinfo); 1514 1515 geo->heads = diskinfo[0]; 1516 geo->sectors = diskinfo[1]; 1517 geo->cylinders = diskinfo[2]; 1518 return 0; 1519 } 1520 1521 /** 1522 * sd_ioctl - process an ioctl 1523 * @bdev: target block device 1524 * @mode: FMODE_* mask 1525 * @cmd: ioctl command number 1526 * @p: this is third argument given to ioctl(2) system call. 1527 * Often contains a pointer. 1528 * 1529 * Returns 0 if successful (some ioctls return positive numbers on 1530 * success as well). Returns a negated errno value in case of error. 1531 * 1532 * Note: most ioctls are forward onto the block subsystem or further 1533 * down in the scsi subsystem. 1534 **/ 1535 static int sd_ioctl_common(struct block_device *bdev, fmode_t mode, 1536 unsigned int cmd, void __user *p) 1537 { 1538 struct gendisk *disk = bdev->bd_disk; 1539 struct scsi_disk *sdkp = scsi_disk(disk); 1540 struct scsi_device *sdp = sdkp->device; 1541 int error; 1542 1543 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1544 "cmd=0x%x\n", disk->disk_name, cmd)); 1545 1546 error = scsi_verify_blk_ioctl(bdev, cmd); 1547 if (error < 0) 1548 return error; 1549 1550 /* 1551 * If we are in the middle of error recovery, don't let anyone 1552 * else try and use this device. Also, if error recovery fails, it 1553 * may try and take the device offline, in which case all further 1554 * access to the device is prohibited. 1555 */ 1556 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1557 (mode & FMODE_NDELAY) != 0); 1558 if (error) 1559 goto out; 1560 1561 if (is_sed_ioctl(cmd)) 1562 return sed_ioctl(sdkp->opal_dev, cmd, p); 1563 1564 /* 1565 * Send SCSI addressing ioctls directly to mid level, send other 1566 * ioctls to block level and then onto mid level if they can't be 1567 * resolved. 1568 */ 1569 switch (cmd) { 1570 case SCSI_IOCTL_GET_IDLUN: 1571 case SCSI_IOCTL_GET_BUS_NUMBER: 1572 error = scsi_ioctl(sdp, cmd, p); 1573 break; 1574 default: 1575 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1576 break; 1577 } 1578 out: 1579 return error; 1580 } 1581 1582 static void set_media_not_present(struct scsi_disk *sdkp) 1583 { 1584 if (sdkp->media_present) 1585 sdkp->device->changed = 1; 1586 1587 if (sdkp->device->removable) { 1588 sdkp->media_present = 0; 1589 sdkp->capacity = 0; 1590 } 1591 } 1592 1593 static int media_not_present(struct scsi_disk *sdkp, 1594 struct scsi_sense_hdr *sshdr) 1595 { 1596 if (!scsi_sense_valid(sshdr)) 1597 return 0; 1598 1599 /* not invoked for commands that could return deferred errors */ 1600 switch (sshdr->sense_key) { 1601 case UNIT_ATTENTION: 1602 case NOT_READY: 1603 /* medium not present */ 1604 if (sshdr->asc == 0x3A) { 1605 set_media_not_present(sdkp); 1606 return 1; 1607 } 1608 } 1609 return 0; 1610 } 1611 1612 /** 1613 * sd_check_events - check media events 1614 * @disk: kernel device descriptor 1615 * @clearing: disk events currently being cleared 1616 * 1617 * Returns mask of DISK_EVENT_*. 1618 * 1619 * Note: this function is invoked from the block subsystem. 1620 **/ 1621 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1622 { 1623 struct scsi_disk *sdkp = scsi_disk_get(disk); 1624 struct scsi_device *sdp; 1625 int retval; 1626 1627 if (!sdkp) 1628 return 0; 1629 1630 sdp = sdkp->device; 1631 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1632 1633 /* 1634 * If the device is offline, don't send any commands - just pretend as 1635 * if the command failed. If the device ever comes back online, we 1636 * can deal with it then. It is only because of unrecoverable errors 1637 * that we would ever take a device offline in the first place. 1638 */ 1639 if (!scsi_device_online(sdp)) { 1640 set_media_not_present(sdkp); 1641 goto out; 1642 } 1643 1644 /* 1645 * Using TEST_UNIT_READY enables differentiation between drive with 1646 * no cartridge loaded - NOT READY, drive with changed cartridge - 1647 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1648 * 1649 * Drives that auto spin down. eg iomega jaz 1G, will be started 1650 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1651 * sd_revalidate() is called. 1652 */ 1653 if (scsi_block_when_processing_errors(sdp)) { 1654 struct scsi_sense_hdr sshdr = { 0, }; 1655 1656 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1657 &sshdr); 1658 1659 /* failed to execute TUR, assume media not present */ 1660 if (host_byte(retval)) { 1661 set_media_not_present(sdkp); 1662 goto out; 1663 } 1664 1665 if (media_not_present(sdkp, &sshdr)) 1666 goto out; 1667 } 1668 1669 /* 1670 * For removable scsi disk we have to recognise the presence 1671 * of a disk in the drive. 1672 */ 1673 if (!sdkp->media_present) 1674 sdp->changed = 1; 1675 sdkp->media_present = 1; 1676 out: 1677 /* 1678 * sdp->changed is set under the following conditions: 1679 * 1680 * Medium present state has changed in either direction. 1681 * Device has indicated UNIT_ATTENTION. 1682 */ 1683 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1684 sdp->changed = 0; 1685 scsi_disk_put(sdkp); 1686 return retval; 1687 } 1688 1689 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1690 { 1691 int retries, res; 1692 struct scsi_device *sdp = sdkp->device; 1693 const int timeout = sdp->request_queue->rq_timeout 1694 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1695 struct scsi_sense_hdr my_sshdr; 1696 1697 if (!scsi_device_online(sdp)) 1698 return -ENODEV; 1699 1700 /* caller might not be interested in sense, but we need it */ 1701 if (!sshdr) 1702 sshdr = &my_sshdr; 1703 1704 for (retries = 3; retries > 0; --retries) { 1705 unsigned char cmd[10] = { 0 }; 1706 1707 cmd[0] = SYNCHRONIZE_CACHE; 1708 /* 1709 * Leave the rest of the command zero to indicate 1710 * flush everything. 1711 */ 1712 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1713 timeout, sdkp->max_retries, 0, RQF_PM, NULL); 1714 if (res == 0) 1715 break; 1716 } 1717 1718 if (res) { 1719 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1720 1721 if (driver_byte(res) == DRIVER_SENSE) 1722 sd_print_sense_hdr(sdkp, sshdr); 1723 1724 /* we need to evaluate the error return */ 1725 if (scsi_sense_valid(sshdr) && 1726 (sshdr->asc == 0x3a || /* medium not present */ 1727 sshdr->asc == 0x20 || /* invalid command */ 1728 (sshdr->asc == 0x74 && sshdr->ascq == 0x71))) /* drive is password locked */ 1729 /* this is no error here */ 1730 return 0; 1731 1732 switch (host_byte(res)) { 1733 /* ignore errors due to racing a disconnection */ 1734 case DID_BAD_TARGET: 1735 case DID_NO_CONNECT: 1736 return 0; 1737 /* signal the upper layer it might try again */ 1738 case DID_BUS_BUSY: 1739 case DID_IMM_RETRY: 1740 case DID_REQUEUE: 1741 case DID_SOFT_ERROR: 1742 return -EBUSY; 1743 default: 1744 return -EIO; 1745 } 1746 } 1747 return 0; 1748 } 1749 1750 static void sd_rescan(struct device *dev) 1751 { 1752 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1753 int ret; 1754 1755 ret = sd_revalidate_disk(sdkp->disk); 1756 revalidate_disk_size(sdkp->disk, ret == 0); 1757 } 1758 1759 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1760 unsigned int cmd, unsigned long arg) 1761 { 1762 void __user *p = (void __user *)arg; 1763 int ret; 1764 1765 ret = sd_ioctl_common(bdev, mode, cmd, p); 1766 if (ret != -ENOTTY) 1767 return ret; 1768 1769 return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p); 1770 } 1771 1772 #ifdef CONFIG_COMPAT 1773 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1774 unsigned int cmd, unsigned long arg) 1775 { 1776 void __user *p = compat_ptr(arg); 1777 int ret; 1778 1779 ret = sd_ioctl_common(bdev, mode, cmd, p); 1780 if (ret != -ENOTTY) 1781 return ret; 1782 1783 return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p); 1784 } 1785 #endif 1786 1787 static char sd_pr_type(enum pr_type type) 1788 { 1789 switch (type) { 1790 case PR_WRITE_EXCLUSIVE: 1791 return 0x01; 1792 case PR_EXCLUSIVE_ACCESS: 1793 return 0x03; 1794 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1795 return 0x05; 1796 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1797 return 0x06; 1798 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1799 return 0x07; 1800 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1801 return 0x08; 1802 default: 1803 return 0; 1804 } 1805 }; 1806 1807 static int sd_pr_command(struct block_device *bdev, u8 sa, 1808 u64 key, u64 sa_key, u8 type, u8 flags) 1809 { 1810 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1811 struct scsi_device *sdev = sdkp->device; 1812 struct scsi_sense_hdr sshdr; 1813 int result; 1814 u8 cmd[16] = { 0, }; 1815 u8 data[24] = { 0, }; 1816 1817 cmd[0] = PERSISTENT_RESERVE_OUT; 1818 cmd[1] = sa; 1819 cmd[2] = type; 1820 put_unaligned_be32(sizeof(data), &cmd[5]); 1821 1822 put_unaligned_be64(key, &data[0]); 1823 put_unaligned_be64(sa_key, &data[8]); 1824 data[20] = flags; 1825 1826 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1827 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL); 1828 1829 if (driver_byte(result) == DRIVER_SENSE && 1830 scsi_sense_valid(&sshdr)) { 1831 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1832 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1833 } 1834 1835 return result; 1836 } 1837 1838 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1839 u32 flags) 1840 { 1841 if (flags & ~PR_FL_IGNORE_KEY) 1842 return -EOPNOTSUPP; 1843 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1844 old_key, new_key, 0, 1845 (1 << 0) /* APTPL */); 1846 } 1847 1848 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1849 u32 flags) 1850 { 1851 if (flags) 1852 return -EOPNOTSUPP; 1853 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1854 } 1855 1856 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1857 { 1858 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1859 } 1860 1861 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1862 enum pr_type type, bool abort) 1863 { 1864 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1865 sd_pr_type(type), 0); 1866 } 1867 1868 static int sd_pr_clear(struct block_device *bdev, u64 key) 1869 { 1870 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1871 } 1872 1873 static const struct pr_ops sd_pr_ops = { 1874 .pr_register = sd_pr_register, 1875 .pr_reserve = sd_pr_reserve, 1876 .pr_release = sd_pr_release, 1877 .pr_preempt = sd_pr_preempt, 1878 .pr_clear = sd_pr_clear, 1879 }; 1880 1881 static const struct block_device_operations sd_fops = { 1882 .owner = THIS_MODULE, 1883 .open = sd_open, 1884 .release = sd_release, 1885 .ioctl = sd_ioctl, 1886 .getgeo = sd_getgeo, 1887 #ifdef CONFIG_COMPAT 1888 .compat_ioctl = sd_compat_ioctl, 1889 #endif 1890 .check_events = sd_check_events, 1891 .unlock_native_capacity = sd_unlock_native_capacity, 1892 .report_zones = sd_zbc_report_zones, 1893 .pr_ops = &sd_pr_ops, 1894 }; 1895 1896 /** 1897 * sd_eh_reset - reset error handling callback 1898 * @scmd: sd-issued command that has failed 1899 * 1900 * This function is called by the SCSI midlayer before starting 1901 * SCSI EH. When counting medium access failures we have to be 1902 * careful to register it only only once per device and SCSI EH run; 1903 * there might be several timed out commands which will cause the 1904 * 'max_medium_access_timeouts' counter to trigger after the first 1905 * SCSI EH run already and set the device to offline. 1906 * So this function resets the internal counter before starting SCSI EH. 1907 **/ 1908 static void sd_eh_reset(struct scsi_cmnd *scmd) 1909 { 1910 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1911 1912 /* New SCSI EH run, reset gate variable */ 1913 sdkp->ignore_medium_access_errors = false; 1914 } 1915 1916 /** 1917 * sd_eh_action - error handling callback 1918 * @scmd: sd-issued command that has failed 1919 * @eh_disp: The recovery disposition suggested by the midlayer 1920 * 1921 * This function is called by the SCSI midlayer upon completion of an 1922 * error test command (currently TEST UNIT READY). The result of sending 1923 * the eh command is passed in eh_disp. We're looking for devices that 1924 * fail medium access commands but are OK with non access commands like 1925 * test unit ready (so wrongly see the device as having a successful 1926 * recovery) 1927 **/ 1928 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1929 { 1930 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1931 struct scsi_device *sdev = scmd->device; 1932 1933 if (!scsi_device_online(sdev) || 1934 !scsi_medium_access_command(scmd) || 1935 host_byte(scmd->result) != DID_TIME_OUT || 1936 eh_disp != SUCCESS) 1937 return eh_disp; 1938 1939 /* 1940 * The device has timed out executing a medium access command. 1941 * However, the TEST UNIT READY command sent during error 1942 * handling completed successfully. Either the device is in the 1943 * process of recovering or has it suffered an internal failure 1944 * that prevents access to the storage medium. 1945 */ 1946 if (!sdkp->ignore_medium_access_errors) { 1947 sdkp->medium_access_timed_out++; 1948 sdkp->ignore_medium_access_errors = true; 1949 } 1950 1951 /* 1952 * If the device keeps failing read/write commands but TEST UNIT 1953 * READY always completes successfully we assume that medium 1954 * access is no longer possible and take the device offline. 1955 */ 1956 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1957 scmd_printk(KERN_ERR, scmd, 1958 "Medium access timeout failure. Offlining disk!\n"); 1959 mutex_lock(&sdev->state_mutex); 1960 scsi_device_set_state(sdev, SDEV_OFFLINE); 1961 mutex_unlock(&sdev->state_mutex); 1962 1963 return SUCCESS; 1964 } 1965 1966 return eh_disp; 1967 } 1968 1969 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1970 { 1971 struct request *req = scmd->request; 1972 struct scsi_device *sdev = scmd->device; 1973 unsigned int transferred, good_bytes; 1974 u64 start_lba, end_lba, bad_lba; 1975 1976 /* 1977 * Some commands have a payload smaller than the device logical 1978 * block size (e.g. INQUIRY on a 4K disk). 1979 */ 1980 if (scsi_bufflen(scmd) <= sdev->sector_size) 1981 return 0; 1982 1983 /* Check if we have a 'bad_lba' information */ 1984 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1985 SCSI_SENSE_BUFFERSIZE, 1986 &bad_lba)) 1987 return 0; 1988 1989 /* 1990 * If the bad lba was reported incorrectly, we have no idea where 1991 * the error is. 1992 */ 1993 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1994 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1995 if (bad_lba < start_lba || bad_lba >= end_lba) 1996 return 0; 1997 1998 /* 1999 * resid is optional but mostly filled in. When it's unused, 2000 * its value is zero, so we assume the whole buffer transferred 2001 */ 2002 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 2003 2004 /* This computation should always be done in terms of the 2005 * resolution of the device's medium. 2006 */ 2007 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2008 2009 return min(good_bytes, transferred); 2010 } 2011 2012 /** 2013 * sd_done - bottom half handler: called when the lower level 2014 * driver has completed (successfully or otherwise) a scsi command. 2015 * @SCpnt: mid-level's per command structure. 2016 * 2017 * Note: potentially run from within an ISR. Must not block. 2018 **/ 2019 static int sd_done(struct scsi_cmnd *SCpnt) 2020 { 2021 int result = SCpnt->result; 2022 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2023 unsigned int sector_size = SCpnt->device->sector_size; 2024 unsigned int resid; 2025 struct scsi_sense_hdr sshdr; 2026 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 2027 struct request *req = SCpnt->request; 2028 int sense_valid = 0; 2029 int sense_deferred = 0; 2030 2031 switch (req_op(req)) { 2032 case REQ_OP_DISCARD: 2033 case REQ_OP_WRITE_ZEROES: 2034 case REQ_OP_WRITE_SAME: 2035 case REQ_OP_ZONE_RESET: 2036 case REQ_OP_ZONE_RESET_ALL: 2037 case REQ_OP_ZONE_OPEN: 2038 case REQ_OP_ZONE_CLOSE: 2039 case REQ_OP_ZONE_FINISH: 2040 if (!result) { 2041 good_bytes = blk_rq_bytes(req); 2042 scsi_set_resid(SCpnt, 0); 2043 } else { 2044 good_bytes = 0; 2045 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2046 } 2047 break; 2048 default: 2049 /* 2050 * In case of bogus fw or device, we could end up having 2051 * an unaligned partial completion. Check this here and force 2052 * alignment. 2053 */ 2054 resid = scsi_get_resid(SCpnt); 2055 if (resid & (sector_size - 1)) { 2056 sd_printk(KERN_INFO, sdkp, 2057 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2058 resid, sector_size); 2059 scsi_print_command(SCpnt); 2060 resid = min(scsi_bufflen(SCpnt), 2061 round_up(resid, sector_size)); 2062 scsi_set_resid(SCpnt, resid); 2063 } 2064 } 2065 2066 if (result) { 2067 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2068 if (sense_valid) 2069 sense_deferred = scsi_sense_is_deferred(&sshdr); 2070 } 2071 sdkp->medium_access_timed_out = 0; 2072 2073 if (driver_byte(result) != DRIVER_SENSE && 2074 (!sense_valid || sense_deferred)) 2075 goto out; 2076 2077 switch (sshdr.sense_key) { 2078 case HARDWARE_ERROR: 2079 case MEDIUM_ERROR: 2080 good_bytes = sd_completed_bytes(SCpnt); 2081 break; 2082 case RECOVERED_ERROR: 2083 good_bytes = scsi_bufflen(SCpnt); 2084 break; 2085 case NO_SENSE: 2086 /* This indicates a false check condition, so ignore it. An 2087 * unknown amount of data was transferred so treat it as an 2088 * error. 2089 */ 2090 SCpnt->result = 0; 2091 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2092 break; 2093 case ABORTED_COMMAND: 2094 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2095 good_bytes = sd_completed_bytes(SCpnt); 2096 break; 2097 case ILLEGAL_REQUEST: 2098 switch (sshdr.asc) { 2099 case 0x10: /* DIX: Host detected corruption */ 2100 good_bytes = sd_completed_bytes(SCpnt); 2101 break; 2102 case 0x20: /* INVALID COMMAND OPCODE */ 2103 case 0x24: /* INVALID FIELD IN CDB */ 2104 switch (SCpnt->cmnd[0]) { 2105 case UNMAP: 2106 sd_config_discard(sdkp, SD_LBP_DISABLE); 2107 break; 2108 case WRITE_SAME_16: 2109 case WRITE_SAME: 2110 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2111 sd_config_discard(sdkp, SD_LBP_DISABLE); 2112 } else { 2113 sdkp->device->no_write_same = 1; 2114 sd_config_write_same(sdkp); 2115 req->rq_flags |= RQF_QUIET; 2116 } 2117 break; 2118 } 2119 } 2120 break; 2121 default: 2122 break; 2123 } 2124 2125 out: 2126 if (sd_is_zoned(sdkp)) 2127 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2128 2129 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2130 "sd_done: completed %d of %d bytes\n", 2131 good_bytes, scsi_bufflen(SCpnt))); 2132 2133 return good_bytes; 2134 } 2135 2136 /* 2137 * spinup disk - called only in sd_revalidate_disk() 2138 */ 2139 static void 2140 sd_spinup_disk(struct scsi_disk *sdkp) 2141 { 2142 unsigned char cmd[10]; 2143 unsigned long spintime_expire = 0; 2144 int retries, spintime; 2145 unsigned int the_result; 2146 struct scsi_sense_hdr sshdr; 2147 int sense_valid = 0; 2148 2149 spintime = 0; 2150 2151 /* Spin up drives, as required. Only do this at boot time */ 2152 /* Spinup needs to be done for module loads too. */ 2153 do { 2154 retries = 0; 2155 2156 do { 2157 cmd[0] = TEST_UNIT_READY; 2158 memset((void *) &cmd[1], 0, 9); 2159 2160 the_result = scsi_execute_req(sdkp->device, cmd, 2161 DMA_NONE, NULL, 0, 2162 &sshdr, SD_TIMEOUT, 2163 sdkp->max_retries, NULL); 2164 2165 /* 2166 * If the drive has indicated to us that it 2167 * doesn't have any media in it, don't bother 2168 * with any more polling. 2169 */ 2170 if (media_not_present(sdkp, &sshdr)) 2171 return; 2172 2173 if (the_result) 2174 sense_valid = scsi_sense_valid(&sshdr); 2175 retries++; 2176 } while (retries < 3 && 2177 (!scsi_status_is_good(the_result) || 2178 ((driver_byte(the_result) == DRIVER_SENSE) && 2179 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2180 2181 if (driver_byte(the_result) != DRIVER_SENSE) { 2182 /* no sense, TUR either succeeded or failed 2183 * with a status error */ 2184 if(!spintime && !scsi_status_is_good(the_result)) { 2185 sd_print_result(sdkp, "Test Unit Ready failed", 2186 the_result); 2187 } 2188 break; 2189 } 2190 2191 /* 2192 * The device does not want the automatic start to be issued. 2193 */ 2194 if (sdkp->device->no_start_on_add) 2195 break; 2196 2197 if (sense_valid && sshdr.sense_key == NOT_READY) { 2198 if (sshdr.asc == 4 && sshdr.ascq == 3) 2199 break; /* manual intervention required */ 2200 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2201 break; /* standby */ 2202 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2203 break; /* unavailable */ 2204 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2205 break; /* sanitize in progress */ 2206 /* 2207 * Issue command to spin up drive when not ready 2208 */ 2209 if (!spintime) { 2210 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2211 cmd[0] = START_STOP; 2212 cmd[1] = 1; /* Return immediately */ 2213 memset((void *) &cmd[2], 0, 8); 2214 cmd[4] = 1; /* Start spin cycle */ 2215 if (sdkp->device->start_stop_pwr_cond) 2216 cmd[4] |= 1 << 4; 2217 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2218 NULL, 0, &sshdr, 2219 SD_TIMEOUT, sdkp->max_retries, 2220 NULL); 2221 spintime_expire = jiffies + 100 * HZ; 2222 spintime = 1; 2223 } 2224 /* Wait 1 second for next try */ 2225 msleep(1000); 2226 printk(KERN_CONT "."); 2227 2228 /* 2229 * Wait for USB flash devices with slow firmware. 2230 * Yes, this sense key/ASC combination shouldn't 2231 * occur here. It's characteristic of these devices. 2232 */ 2233 } else if (sense_valid && 2234 sshdr.sense_key == UNIT_ATTENTION && 2235 sshdr.asc == 0x28) { 2236 if (!spintime) { 2237 spintime_expire = jiffies + 5 * HZ; 2238 spintime = 1; 2239 } 2240 /* Wait 1 second for next try */ 2241 msleep(1000); 2242 } else { 2243 /* we don't understand the sense code, so it's 2244 * probably pointless to loop */ 2245 if(!spintime) { 2246 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2247 sd_print_sense_hdr(sdkp, &sshdr); 2248 } 2249 break; 2250 } 2251 2252 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2253 2254 if (spintime) { 2255 if (scsi_status_is_good(the_result)) 2256 printk(KERN_CONT "ready\n"); 2257 else 2258 printk(KERN_CONT "not responding...\n"); 2259 } 2260 } 2261 2262 /* 2263 * Determine whether disk supports Data Integrity Field. 2264 */ 2265 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2266 { 2267 struct scsi_device *sdp = sdkp->device; 2268 u8 type; 2269 int ret = 0; 2270 2271 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2272 sdkp->protection_type = 0; 2273 return ret; 2274 } 2275 2276 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2277 2278 if (type > T10_PI_TYPE3_PROTECTION) 2279 ret = -ENODEV; 2280 else if (scsi_host_dif_capable(sdp->host, type)) 2281 ret = 1; 2282 2283 if (sdkp->first_scan || type != sdkp->protection_type) 2284 switch (ret) { 2285 case -ENODEV: 2286 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2287 " protection type %u. Disabling disk!\n", 2288 type); 2289 break; 2290 case 1: 2291 sd_printk(KERN_NOTICE, sdkp, 2292 "Enabling DIF Type %u protection\n", type); 2293 break; 2294 case 0: 2295 sd_printk(KERN_NOTICE, sdkp, 2296 "Disabling DIF Type %u protection\n", type); 2297 break; 2298 } 2299 2300 sdkp->protection_type = type; 2301 2302 return ret; 2303 } 2304 2305 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2306 struct scsi_sense_hdr *sshdr, int sense_valid, 2307 int the_result) 2308 { 2309 if (driver_byte(the_result) == DRIVER_SENSE) 2310 sd_print_sense_hdr(sdkp, sshdr); 2311 else 2312 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2313 2314 /* 2315 * Set dirty bit for removable devices if not ready - 2316 * sometimes drives will not report this properly. 2317 */ 2318 if (sdp->removable && 2319 sense_valid && sshdr->sense_key == NOT_READY) 2320 set_media_not_present(sdkp); 2321 2322 /* 2323 * We used to set media_present to 0 here to indicate no media 2324 * in the drive, but some drives fail read capacity even with 2325 * media present, so we can't do that. 2326 */ 2327 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2328 } 2329 2330 #define RC16_LEN 32 2331 #if RC16_LEN > SD_BUF_SIZE 2332 #error RC16_LEN must not be more than SD_BUF_SIZE 2333 #endif 2334 2335 #define READ_CAPACITY_RETRIES_ON_RESET 10 2336 2337 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2338 unsigned char *buffer) 2339 { 2340 unsigned char cmd[16]; 2341 struct scsi_sense_hdr sshdr; 2342 int sense_valid = 0; 2343 int the_result; 2344 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2345 unsigned int alignment; 2346 unsigned long long lba; 2347 unsigned sector_size; 2348 2349 if (sdp->no_read_capacity_16) 2350 return -EINVAL; 2351 2352 do { 2353 memset(cmd, 0, 16); 2354 cmd[0] = SERVICE_ACTION_IN_16; 2355 cmd[1] = SAI_READ_CAPACITY_16; 2356 cmd[13] = RC16_LEN; 2357 memset(buffer, 0, RC16_LEN); 2358 2359 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2360 buffer, RC16_LEN, &sshdr, 2361 SD_TIMEOUT, sdkp->max_retries, NULL); 2362 2363 if (media_not_present(sdkp, &sshdr)) 2364 return -ENODEV; 2365 2366 if (the_result) { 2367 sense_valid = scsi_sense_valid(&sshdr); 2368 if (sense_valid && 2369 sshdr.sense_key == ILLEGAL_REQUEST && 2370 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2371 sshdr.ascq == 0x00) 2372 /* Invalid Command Operation Code or 2373 * Invalid Field in CDB, just retry 2374 * silently with RC10 */ 2375 return -EINVAL; 2376 if (sense_valid && 2377 sshdr.sense_key == UNIT_ATTENTION && 2378 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2379 /* Device reset might occur several times, 2380 * give it one more chance */ 2381 if (--reset_retries > 0) 2382 continue; 2383 } 2384 retries--; 2385 2386 } while (the_result && retries); 2387 2388 if (the_result) { 2389 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2390 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2391 return -EINVAL; 2392 } 2393 2394 sector_size = get_unaligned_be32(&buffer[8]); 2395 lba = get_unaligned_be64(&buffer[0]); 2396 2397 if (sd_read_protection_type(sdkp, buffer) < 0) { 2398 sdkp->capacity = 0; 2399 return -ENODEV; 2400 } 2401 2402 /* Logical blocks per physical block exponent */ 2403 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2404 2405 /* RC basis */ 2406 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2407 2408 /* Lowest aligned logical block */ 2409 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2410 blk_queue_alignment_offset(sdp->request_queue, alignment); 2411 if (alignment && sdkp->first_scan) 2412 sd_printk(KERN_NOTICE, sdkp, 2413 "physical block alignment offset: %u\n", alignment); 2414 2415 if (buffer[14] & 0x80) { /* LBPME */ 2416 sdkp->lbpme = 1; 2417 2418 if (buffer[14] & 0x40) /* LBPRZ */ 2419 sdkp->lbprz = 1; 2420 2421 sd_config_discard(sdkp, SD_LBP_WS16); 2422 } 2423 2424 sdkp->capacity = lba + 1; 2425 return sector_size; 2426 } 2427 2428 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2429 unsigned char *buffer) 2430 { 2431 unsigned char cmd[16]; 2432 struct scsi_sense_hdr sshdr; 2433 int sense_valid = 0; 2434 int the_result; 2435 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2436 sector_t lba; 2437 unsigned sector_size; 2438 2439 do { 2440 cmd[0] = READ_CAPACITY; 2441 memset(&cmd[1], 0, 9); 2442 memset(buffer, 0, 8); 2443 2444 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2445 buffer, 8, &sshdr, 2446 SD_TIMEOUT, sdkp->max_retries, NULL); 2447 2448 if (media_not_present(sdkp, &sshdr)) 2449 return -ENODEV; 2450 2451 if (the_result) { 2452 sense_valid = scsi_sense_valid(&sshdr); 2453 if (sense_valid && 2454 sshdr.sense_key == UNIT_ATTENTION && 2455 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2456 /* Device reset might occur several times, 2457 * give it one more chance */ 2458 if (--reset_retries > 0) 2459 continue; 2460 } 2461 retries--; 2462 2463 } while (the_result && retries); 2464 2465 if (the_result) { 2466 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2467 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2468 return -EINVAL; 2469 } 2470 2471 sector_size = get_unaligned_be32(&buffer[4]); 2472 lba = get_unaligned_be32(&buffer[0]); 2473 2474 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2475 /* Some buggy (usb cardreader) devices return an lba of 2476 0xffffffff when the want to report a size of 0 (with 2477 which they really mean no media is present) */ 2478 sdkp->capacity = 0; 2479 sdkp->physical_block_size = sector_size; 2480 return sector_size; 2481 } 2482 2483 sdkp->capacity = lba + 1; 2484 sdkp->physical_block_size = sector_size; 2485 return sector_size; 2486 } 2487 2488 static int sd_try_rc16_first(struct scsi_device *sdp) 2489 { 2490 if (sdp->host->max_cmd_len < 16) 2491 return 0; 2492 if (sdp->try_rc_10_first) 2493 return 0; 2494 if (sdp->scsi_level > SCSI_SPC_2) 2495 return 1; 2496 if (scsi_device_protection(sdp)) 2497 return 1; 2498 return 0; 2499 } 2500 2501 /* 2502 * read disk capacity 2503 */ 2504 static void 2505 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2506 { 2507 int sector_size; 2508 struct scsi_device *sdp = sdkp->device; 2509 2510 if (sd_try_rc16_first(sdp)) { 2511 sector_size = read_capacity_16(sdkp, sdp, buffer); 2512 if (sector_size == -EOVERFLOW) 2513 goto got_data; 2514 if (sector_size == -ENODEV) 2515 return; 2516 if (sector_size < 0) 2517 sector_size = read_capacity_10(sdkp, sdp, buffer); 2518 if (sector_size < 0) 2519 return; 2520 } else { 2521 sector_size = read_capacity_10(sdkp, sdp, buffer); 2522 if (sector_size == -EOVERFLOW) 2523 goto got_data; 2524 if (sector_size < 0) 2525 return; 2526 if ((sizeof(sdkp->capacity) > 4) && 2527 (sdkp->capacity > 0xffffffffULL)) { 2528 int old_sector_size = sector_size; 2529 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2530 "Trying to use READ CAPACITY(16).\n"); 2531 sector_size = read_capacity_16(sdkp, sdp, buffer); 2532 if (sector_size < 0) { 2533 sd_printk(KERN_NOTICE, sdkp, 2534 "Using 0xffffffff as device size\n"); 2535 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2536 sector_size = old_sector_size; 2537 goto got_data; 2538 } 2539 /* Remember that READ CAPACITY(16) succeeded */ 2540 sdp->try_rc_10_first = 0; 2541 } 2542 } 2543 2544 /* Some devices are known to return the total number of blocks, 2545 * not the highest block number. Some devices have versions 2546 * which do this and others which do not. Some devices we might 2547 * suspect of doing this but we don't know for certain. 2548 * 2549 * If we know the reported capacity is wrong, decrement it. If 2550 * we can only guess, then assume the number of blocks is even 2551 * (usually true but not always) and err on the side of lowering 2552 * the capacity. 2553 */ 2554 if (sdp->fix_capacity || 2555 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2556 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2557 "from its reported value: %llu\n", 2558 (unsigned long long) sdkp->capacity); 2559 --sdkp->capacity; 2560 } 2561 2562 got_data: 2563 if (sector_size == 0) { 2564 sector_size = 512; 2565 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2566 "assuming 512.\n"); 2567 } 2568 2569 if (sector_size != 512 && 2570 sector_size != 1024 && 2571 sector_size != 2048 && 2572 sector_size != 4096) { 2573 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2574 sector_size); 2575 /* 2576 * The user might want to re-format the drive with 2577 * a supported sectorsize. Once this happens, it 2578 * would be relatively trivial to set the thing up. 2579 * For this reason, we leave the thing in the table. 2580 */ 2581 sdkp->capacity = 0; 2582 /* 2583 * set a bogus sector size so the normal read/write 2584 * logic in the block layer will eventually refuse any 2585 * request on this device without tripping over power 2586 * of two sector size assumptions 2587 */ 2588 sector_size = 512; 2589 } 2590 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2591 blk_queue_physical_block_size(sdp->request_queue, 2592 sdkp->physical_block_size); 2593 sdkp->device->sector_size = sector_size; 2594 2595 if (sdkp->capacity > 0xffffffff) 2596 sdp->use_16_for_rw = 1; 2597 2598 } 2599 2600 /* 2601 * Print disk capacity 2602 */ 2603 static void 2604 sd_print_capacity(struct scsi_disk *sdkp, 2605 sector_t old_capacity) 2606 { 2607 int sector_size = sdkp->device->sector_size; 2608 char cap_str_2[10], cap_str_10[10]; 2609 2610 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2611 return; 2612 2613 string_get_size(sdkp->capacity, sector_size, 2614 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2615 string_get_size(sdkp->capacity, sector_size, 2616 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2617 2618 sd_printk(KERN_NOTICE, sdkp, 2619 "%llu %d-byte logical blocks: (%s/%s)\n", 2620 (unsigned long long)sdkp->capacity, 2621 sector_size, cap_str_10, cap_str_2); 2622 2623 if (sdkp->physical_block_size != sector_size) 2624 sd_printk(KERN_NOTICE, sdkp, 2625 "%u-byte physical blocks\n", 2626 sdkp->physical_block_size); 2627 } 2628 2629 /* called with buffer of length 512 */ 2630 static inline int 2631 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2632 unsigned char *buffer, int len, struct scsi_mode_data *data, 2633 struct scsi_sense_hdr *sshdr) 2634 { 2635 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2636 SD_TIMEOUT, sdkp->max_retries, data, 2637 sshdr); 2638 } 2639 2640 /* 2641 * read write protect setting, if possible - called only in sd_revalidate_disk() 2642 * called with buffer of length SD_BUF_SIZE 2643 */ 2644 static void 2645 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2646 { 2647 int res; 2648 struct scsi_device *sdp = sdkp->device; 2649 struct scsi_mode_data data; 2650 int old_wp = sdkp->write_prot; 2651 2652 set_disk_ro(sdkp->disk, 0); 2653 if (sdp->skip_ms_page_3f) { 2654 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2655 return; 2656 } 2657 2658 if (sdp->use_192_bytes_for_3f) { 2659 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2660 } else { 2661 /* 2662 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2663 * We have to start carefully: some devices hang if we ask 2664 * for more than is available. 2665 */ 2666 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2667 2668 /* 2669 * Second attempt: ask for page 0 When only page 0 is 2670 * implemented, a request for page 3F may return Sense Key 2671 * 5: Illegal Request, Sense Code 24: Invalid field in 2672 * CDB. 2673 */ 2674 if (!scsi_status_is_good(res)) 2675 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2676 2677 /* 2678 * Third attempt: ask 255 bytes, as we did earlier. 2679 */ 2680 if (!scsi_status_is_good(res)) 2681 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2682 &data, NULL); 2683 } 2684 2685 if (!scsi_status_is_good(res)) { 2686 sd_first_printk(KERN_WARNING, sdkp, 2687 "Test WP failed, assume Write Enabled\n"); 2688 } else { 2689 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2690 set_disk_ro(sdkp->disk, sdkp->write_prot); 2691 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2692 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2693 sdkp->write_prot ? "on" : "off"); 2694 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2695 } 2696 } 2697 } 2698 2699 /* 2700 * sd_read_cache_type - called only from sd_revalidate_disk() 2701 * called with buffer of length SD_BUF_SIZE 2702 */ 2703 static void 2704 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2705 { 2706 int len = 0, res; 2707 struct scsi_device *sdp = sdkp->device; 2708 2709 int dbd; 2710 int modepage; 2711 int first_len; 2712 struct scsi_mode_data data; 2713 struct scsi_sense_hdr sshdr; 2714 int old_wce = sdkp->WCE; 2715 int old_rcd = sdkp->RCD; 2716 int old_dpofua = sdkp->DPOFUA; 2717 2718 2719 if (sdkp->cache_override) 2720 return; 2721 2722 first_len = 4; 2723 if (sdp->skip_ms_page_8) { 2724 if (sdp->type == TYPE_RBC) 2725 goto defaults; 2726 else { 2727 if (sdp->skip_ms_page_3f) 2728 goto defaults; 2729 modepage = 0x3F; 2730 if (sdp->use_192_bytes_for_3f) 2731 first_len = 192; 2732 dbd = 0; 2733 } 2734 } else if (sdp->type == TYPE_RBC) { 2735 modepage = 6; 2736 dbd = 8; 2737 } else { 2738 modepage = 8; 2739 dbd = 0; 2740 } 2741 2742 /* cautiously ask */ 2743 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2744 &data, &sshdr); 2745 2746 if (!scsi_status_is_good(res)) 2747 goto bad_sense; 2748 2749 if (!data.header_length) { 2750 modepage = 6; 2751 first_len = 0; 2752 sd_first_printk(KERN_ERR, sdkp, 2753 "Missing header in MODE_SENSE response\n"); 2754 } 2755 2756 /* that went OK, now ask for the proper length */ 2757 len = data.length; 2758 2759 /* 2760 * We're only interested in the first three bytes, actually. 2761 * But the data cache page is defined for the first 20. 2762 */ 2763 if (len < 3) 2764 goto bad_sense; 2765 else if (len > SD_BUF_SIZE) { 2766 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2767 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2768 len = SD_BUF_SIZE; 2769 } 2770 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2771 len = 192; 2772 2773 /* Get the data */ 2774 if (len > first_len) 2775 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2776 &data, &sshdr); 2777 2778 if (scsi_status_is_good(res)) { 2779 int offset = data.header_length + data.block_descriptor_length; 2780 2781 while (offset < len) { 2782 u8 page_code = buffer[offset] & 0x3F; 2783 u8 spf = buffer[offset] & 0x40; 2784 2785 if (page_code == 8 || page_code == 6) { 2786 /* We're interested only in the first 3 bytes. 2787 */ 2788 if (len - offset <= 2) { 2789 sd_first_printk(KERN_ERR, sdkp, 2790 "Incomplete mode parameter " 2791 "data\n"); 2792 goto defaults; 2793 } else { 2794 modepage = page_code; 2795 goto Page_found; 2796 } 2797 } else { 2798 /* Go to the next page */ 2799 if (spf && len - offset > 3) 2800 offset += 4 + (buffer[offset+2] << 8) + 2801 buffer[offset+3]; 2802 else if (!spf && len - offset > 1) 2803 offset += 2 + buffer[offset+1]; 2804 else { 2805 sd_first_printk(KERN_ERR, sdkp, 2806 "Incomplete mode " 2807 "parameter data\n"); 2808 goto defaults; 2809 } 2810 } 2811 } 2812 2813 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2814 goto defaults; 2815 2816 Page_found: 2817 if (modepage == 8) { 2818 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2819 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2820 } else { 2821 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2822 sdkp->RCD = 0; 2823 } 2824 2825 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2826 if (sdp->broken_fua) { 2827 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2828 sdkp->DPOFUA = 0; 2829 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2830 !sdkp->device->use_16_for_rw) { 2831 sd_first_printk(KERN_NOTICE, sdkp, 2832 "Uses READ/WRITE(6), disabling FUA\n"); 2833 sdkp->DPOFUA = 0; 2834 } 2835 2836 /* No cache flush allowed for write protected devices */ 2837 if (sdkp->WCE && sdkp->write_prot) 2838 sdkp->WCE = 0; 2839 2840 if (sdkp->first_scan || old_wce != sdkp->WCE || 2841 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2842 sd_printk(KERN_NOTICE, sdkp, 2843 "Write cache: %s, read cache: %s, %s\n", 2844 sdkp->WCE ? "enabled" : "disabled", 2845 sdkp->RCD ? "disabled" : "enabled", 2846 sdkp->DPOFUA ? "supports DPO and FUA" 2847 : "doesn't support DPO or FUA"); 2848 2849 return; 2850 } 2851 2852 bad_sense: 2853 if (scsi_sense_valid(&sshdr) && 2854 sshdr.sense_key == ILLEGAL_REQUEST && 2855 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2856 /* Invalid field in CDB */ 2857 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2858 else 2859 sd_first_printk(KERN_ERR, sdkp, 2860 "Asking for cache data failed\n"); 2861 2862 defaults: 2863 if (sdp->wce_default_on) { 2864 sd_first_printk(KERN_NOTICE, sdkp, 2865 "Assuming drive cache: write back\n"); 2866 sdkp->WCE = 1; 2867 } else { 2868 sd_first_printk(KERN_ERR, sdkp, 2869 "Assuming drive cache: write through\n"); 2870 sdkp->WCE = 0; 2871 } 2872 sdkp->RCD = 0; 2873 sdkp->DPOFUA = 0; 2874 } 2875 2876 /* 2877 * The ATO bit indicates whether the DIF application tag is available 2878 * for use by the operating system. 2879 */ 2880 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2881 { 2882 int res, offset; 2883 struct scsi_device *sdp = sdkp->device; 2884 struct scsi_mode_data data; 2885 struct scsi_sense_hdr sshdr; 2886 2887 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2888 return; 2889 2890 if (sdkp->protection_type == 0) 2891 return; 2892 2893 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2894 sdkp->max_retries, &data, &sshdr); 2895 2896 if (!scsi_status_is_good(res) || !data.header_length || 2897 data.length < 6) { 2898 sd_first_printk(KERN_WARNING, sdkp, 2899 "getting Control mode page failed, assume no ATO\n"); 2900 2901 if (scsi_sense_valid(&sshdr)) 2902 sd_print_sense_hdr(sdkp, &sshdr); 2903 2904 return; 2905 } 2906 2907 offset = data.header_length + data.block_descriptor_length; 2908 2909 if ((buffer[offset] & 0x3f) != 0x0a) { 2910 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2911 return; 2912 } 2913 2914 if ((buffer[offset + 5] & 0x80) == 0) 2915 return; 2916 2917 sdkp->ATO = 1; 2918 2919 return; 2920 } 2921 2922 /** 2923 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2924 * @sdkp: disk to query 2925 */ 2926 static void sd_read_block_limits(struct scsi_disk *sdkp) 2927 { 2928 unsigned int sector_sz = sdkp->device->sector_size; 2929 const int vpd_len = 64; 2930 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2931 2932 if (!buffer || 2933 /* Block Limits VPD */ 2934 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2935 goto out; 2936 2937 blk_queue_io_min(sdkp->disk->queue, 2938 get_unaligned_be16(&buffer[6]) * sector_sz); 2939 2940 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2941 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2942 2943 if (buffer[3] == 0x3c) { 2944 unsigned int lba_count, desc_count; 2945 2946 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2947 2948 if (!sdkp->lbpme) 2949 goto out; 2950 2951 lba_count = get_unaligned_be32(&buffer[20]); 2952 desc_count = get_unaligned_be32(&buffer[24]); 2953 2954 if (lba_count && desc_count) 2955 sdkp->max_unmap_blocks = lba_count; 2956 2957 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2958 2959 if (buffer[32] & 0x80) 2960 sdkp->unmap_alignment = 2961 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2962 2963 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2964 2965 if (sdkp->max_unmap_blocks) 2966 sd_config_discard(sdkp, SD_LBP_UNMAP); 2967 else 2968 sd_config_discard(sdkp, SD_LBP_WS16); 2969 2970 } else { /* LBP VPD page tells us what to use */ 2971 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2972 sd_config_discard(sdkp, SD_LBP_UNMAP); 2973 else if (sdkp->lbpws) 2974 sd_config_discard(sdkp, SD_LBP_WS16); 2975 else if (sdkp->lbpws10) 2976 sd_config_discard(sdkp, SD_LBP_WS10); 2977 else 2978 sd_config_discard(sdkp, SD_LBP_DISABLE); 2979 } 2980 } 2981 2982 out: 2983 kfree(buffer); 2984 } 2985 2986 /** 2987 * sd_read_block_characteristics - Query block dev. characteristics 2988 * @sdkp: disk to query 2989 */ 2990 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2991 { 2992 struct request_queue *q = sdkp->disk->queue; 2993 unsigned char *buffer; 2994 u16 rot; 2995 const int vpd_len = 64; 2996 2997 buffer = kmalloc(vpd_len, GFP_KERNEL); 2998 2999 if (!buffer || 3000 /* Block Device Characteristics VPD */ 3001 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 3002 goto out; 3003 3004 rot = get_unaligned_be16(&buffer[4]); 3005 3006 if (rot == 1) { 3007 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 3008 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 3009 } 3010 3011 if (sdkp->device->type == TYPE_ZBC) { 3012 /* Host-managed */ 3013 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM); 3014 } else { 3015 sdkp->zoned = (buffer[8] >> 4) & 3; 3016 if (sdkp->zoned == 1) { 3017 /* Host-aware */ 3018 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA); 3019 } else { 3020 /* Regular disk or drive managed disk */ 3021 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3022 } 3023 } 3024 3025 if (!sdkp->first_scan) 3026 goto out; 3027 3028 if (blk_queue_is_zoned(q)) { 3029 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3030 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3031 } else { 3032 if (sdkp->zoned == 1) 3033 sd_printk(KERN_NOTICE, sdkp, 3034 "Host-aware SMR disk used as regular disk\n"); 3035 else if (sdkp->zoned == 2) 3036 sd_printk(KERN_NOTICE, sdkp, 3037 "Drive-managed SMR disk\n"); 3038 } 3039 3040 out: 3041 kfree(buffer); 3042 } 3043 3044 /** 3045 * sd_read_block_provisioning - Query provisioning VPD page 3046 * @sdkp: disk to query 3047 */ 3048 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3049 { 3050 unsigned char *buffer; 3051 const int vpd_len = 8; 3052 3053 if (sdkp->lbpme == 0) 3054 return; 3055 3056 buffer = kmalloc(vpd_len, GFP_KERNEL); 3057 3058 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 3059 goto out; 3060 3061 sdkp->lbpvpd = 1; 3062 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 3063 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 3064 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 3065 3066 out: 3067 kfree(buffer); 3068 } 3069 3070 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3071 { 3072 struct scsi_device *sdev = sdkp->device; 3073 3074 if (sdev->host->no_write_same) { 3075 sdev->no_write_same = 1; 3076 3077 return; 3078 } 3079 3080 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3081 /* too large values might cause issues with arcmsr */ 3082 int vpd_buf_len = 64; 3083 3084 sdev->no_report_opcodes = 1; 3085 3086 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3087 * CODES is unsupported and the device has an ATA 3088 * Information VPD page (SAT). 3089 */ 3090 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3091 sdev->no_write_same = 1; 3092 } 3093 3094 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3095 sdkp->ws16 = 1; 3096 3097 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3098 sdkp->ws10 = 1; 3099 } 3100 3101 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3102 { 3103 struct scsi_device *sdev = sdkp->device; 3104 3105 if (!sdev->security_supported) 3106 return; 3107 3108 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3109 SECURITY_PROTOCOL_IN) == 1 && 3110 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3111 SECURITY_PROTOCOL_OUT) == 1) 3112 sdkp->security = 1; 3113 } 3114 3115 /* 3116 * Determine the device's preferred I/O size for reads and writes 3117 * unless the reported value is unreasonably small, large, not a 3118 * multiple of the physical block size, or simply garbage. 3119 */ 3120 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3121 unsigned int dev_max) 3122 { 3123 struct scsi_device *sdp = sdkp->device; 3124 unsigned int opt_xfer_bytes = 3125 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3126 3127 if (sdkp->opt_xfer_blocks == 0) 3128 return false; 3129 3130 if (sdkp->opt_xfer_blocks > dev_max) { 3131 sd_first_printk(KERN_WARNING, sdkp, 3132 "Optimal transfer size %u logical blocks " \ 3133 "> dev_max (%u logical blocks)\n", 3134 sdkp->opt_xfer_blocks, dev_max); 3135 return false; 3136 } 3137 3138 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3139 sd_first_printk(KERN_WARNING, sdkp, 3140 "Optimal transfer size %u logical blocks " \ 3141 "> sd driver limit (%u logical blocks)\n", 3142 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3143 return false; 3144 } 3145 3146 if (opt_xfer_bytes < PAGE_SIZE) { 3147 sd_first_printk(KERN_WARNING, sdkp, 3148 "Optimal transfer size %u bytes < " \ 3149 "PAGE_SIZE (%u bytes)\n", 3150 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3151 return false; 3152 } 3153 3154 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3155 sd_first_printk(KERN_WARNING, sdkp, 3156 "Optimal transfer size %u bytes not a " \ 3157 "multiple of physical block size (%u bytes)\n", 3158 opt_xfer_bytes, sdkp->physical_block_size); 3159 return false; 3160 } 3161 3162 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3163 opt_xfer_bytes); 3164 return true; 3165 } 3166 3167 /** 3168 * sd_revalidate_disk - called the first time a new disk is seen, 3169 * performs disk spin up, read_capacity, etc. 3170 * @disk: struct gendisk we care about 3171 **/ 3172 static int sd_revalidate_disk(struct gendisk *disk) 3173 { 3174 struct scsi_disk *sdkp = scsi_disk(disk); 3175 struct scsi_device *sdp = sdkp->device; 3176 struct request_queue *q = sdkp->disk->queue; 3177 sector_t old_capacity = sdkp->capacity; 3178 unsigned char *buffer; 3179 unsigned int dev_max, rw_max; 3180 3181 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3182 "sd_revalidate_disk\n")); 3183 3184 /* 3185 * If the device is offline, don't try and read capacity or any 3186 * of the other niceties. 3187 */ 3188 if (!scsi_device_online(sdp)) 3189 goto out; 3190 3191 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3192 if (!buffer) { 3193 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3194 "allocation failure.\n"); 3195 goto out; 3196 } 3197 3198 sd_spinup_disk(sdkp); 3199 3200 /* 3201 * Without media there is no reason to ask; moreover, some devices 3202 * react badly if we do. 3203 */ 3204 if (sdkp->media_present) { 3205 sd_read_capacity(sdkp, buffer); 3206 3207 /* 3208 * set the default to rotational. All non-rotational devices 3209 * support the block characteristics VPD page, which will 3210 * cause this to be updated correctly and any device which 3211 * doesn't support it should be treated as rotational. 3212 */ 3213 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3214 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3215 3216 if (scsi_device_supports_vpd(sdp)) { 3217 sd_read_block_provisioning(sdkp); 3218 sd_read_block_limits(sdkp); 3219 sd_read_block_characteristics(sdkp); 3220 sd_zbc_read_zones(sdkp, buffer); 3221 } 3222 3223 sd_print_capacity(sdkp, old_capacity); 3224 3225 sd_read_write_protect_flag(sdkp, buffer); 3226 sd_read_cache_type(sdkp, buffer); 3227 sd_read_app_tag_own(sdkp, buffer); 3228 sd_read_write_same(sdkp, buffer); 3229 sd_read_security(sdkp, buffer); 3230 } 3231 3232 /* 3233 * We now have all cache related info, determine how we deal 3234 * with flush requests. 3235 */ 3236 sd_set_flush_flag(sdkp); 3237 3238 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3239 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3240 3241 /* Some devices report a maximum block count for READ/WRITE requests. */ 3242 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3243 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3244 3245 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3246 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3247 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3248 } else { 3249 q->limits.io_opt = 0; 3250 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3251 (sector_t)BLK_DEF_MAX_SECTORS); 3252 } 3253 3254 /* Do not exceed controller limit */ 3255 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3256 3257 /* 3258 * Only update max_sectors if previously unset or if the current value 3259 * exceeds the capabilities of the hardware. 3260 */ 3261 if (sdkp->first_scan || 3262 q->limits.max_sectors > q->limits.max_dev_sectors || 3263 q->limits.max_sectors > q->limits.max_hw_sectors) 3264 q->limits.max_sectors = rw_max; 3265 3266 sdkp->first_scan = 0; 3267 3268 set_capacity_revalidate_and_notify(disk, 3269 logical_to_sectors(sdp, sdkp->capacity), false); 3270 sd_config_write_same(sdkp); 3271 kfree(buffer); 3272 3273 /* 3274 * For a zoned drive, revalidating the zones can be done only once 3275 * the gendisk capacity is set. So if this fails, set back the gendisk 3276 * capacity to 0. 3277 */ 3278 if (sd_zbc_revalidate_zones(sdkp)) 3279 set_capacity_revalidate_and_notify(disk, 0, false); 3280 3281 out: 3282 return 0; 3283 } 3284 3285 /** 3286 * sd_unlock_native_capacity - unlock native capacity 3287 * @disk: struct gendisk to set capacity for 3288 * 3289 * Block layer calls this function if it detects that partitions 3290 * on @disk reach beyond the end of the device. If the SCSI host 3291 * implements ->unlock_native_capacity() method, it's invoked to 3292 * give it a chance to adjust the device capacity. 3293 * 3294 * CONTEXT: 3295 * Defined by block layer. Might sleep. 3296 */ 3297 static void sd_unlock_native_capacity(struct gendisk *disk) 3298 { 3299 struct scsi_device *sdev = scsi_disk(disk)->device; 3300 3301 if (sdev->host->hostt->unlock_native_capacity) 3302 sdev->host->hostt->unlock_native_capacity(sdev); 3303 } 3304 3305 /** 3306 * sd_format_disk_name - format disk name 3307 * @prefix: name prefix - ie. "sd" for SCSI disks 3308 * @index: index of the disk to format name for 3309 * @buf: output buffer 3310 * @buflen: length of the output buffer 3311 * 3312 * SCSI disk names starts at sda. The 26th device is sdz and the 3313 * 27th is sdaa. The last one for two lettered suffix is sdzz 3314 * which is followed by sdaaa. 3315 * 3316 * This is basically 26 base counting with one extra 'nil' entry 3317 * at the beginning from the second digit on and can be 3318 * determined using similar method as 26 base conversion with the 3319 * index shifted -1 after each digit is computed. 3320 * 3321 * CONTEXT: 3322 * Don't care. 3323 * 3324 * RETURNS: 3325 * 0 on success, -errno on failure. 3326 */ 3327 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3328 { 3329 const int base = 'z' - 'a' + 1; 3330 char *begin = buf + strlen(prefix); 3331 char *end = buf + buflen; 3332 char *p; 3333 int unit; 3334 3335 p = end - 1; 3336 *p = '\0'; 3337 unit = base; 3338 do { 3339 if (p == begin) 3340 return -EINVAL; 3341 *--p = 'a' + (index % unit); 3342 index = (index / unit) - 1; 3343 } while (index >= 0); 3344 3345 memmove(begin, p, end - p); 3346 memcpy(buf, prefix, strlen(prefix)); 3347 3348 return 0; 3349 } 3350 3351 /** 3352 * sd_probe - called during driver initialization and whenever a 3353 * new scsi device is attached to the system. It is called once 3354 * for each scsi device (not just disks) present. 3355 * @dev: pointer to device object 3356 * 3357 * Returns 0 if successful (or not interested in this scsi device 3358 * (e.g. scanner)); 1 when there is an error. 3359 * 3360 * Note: this function is invoked from the scsi mid-level. 3361 * This function sets up the mapping between a given 3362 * <host,channel,id,lun> (found in sdp) and new device name 3363 * (e.g. /dev/sda). More precisely it is the block device major 3364 * and minor number that is chosen here. 3365 * 3366 * Assume sd_probe is not re-entrant (for time being) 3367 * Also think about sd_probe() and sd_remove() running coincidentally. 3368 **/ 3369 static int sd_probe(struct device *dev) 3370 { 3371 struct scsi_device *sdp = to_scsi_device(dev); 3372 struct scsi_disk *sdkp; 3373 struct gendisk *gd; 3374 int index; 3375 int error; 3376 3377 scsi_autopm_get_device(sdp); 3378 error = -ENODEV; 3379 if (sdp->type != TYPE_DISK && 3380 sdp->type != TYPE_ZBC && 3381 sdp->type != TYPE_MOD && 3382 sdp->type != TYPE_RBC) 3383 goto out; 3384 3385 #ifndef CONFIG_BLK_DEV_ZONED 3386 if (sdp->type == TYPE_ZBC) 3387 goto out; 3388 #endif 3389 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3390 "sd_probe\n")); 3391 3392 error = -ENOMEM; 3393 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3394 if (!sdkp) 3395 goto out; 3396 3397 gd = alloc_disk(SD_MINORS); 3398 if (!gd) 3399 goto out_free; 3400 3401 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3402 if (index < 0) { 3403 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3404 goto out_put; 3405 } 3406 3407 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3408 if (error) { 3409 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3410 goto out_free_index; 3411 } 3412 3413 sdkp->device = sdp; 3414 sdkp->driver = &sd_template; 3415 sdkp->disk = gd; 3416 sdkp->index = index; 3417 sdkp->max_retries = SD_MAX_RETRIES; 3418 atomic_set(&sdkp->openers, 0); 3419 atomic_set(&sdkp->device->ioerr_cnt, 0); 3420 3421 if (!sdp->request_queue->rq_timeout) { 3422 if (sdp->type != TYPE_MOD) 3423 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3424 else 3425 blk_queue_rq_timeout(sdp->request_queue, 3426 SD_MOD_TIMEOUT); 3427 } 3428 3429 device_initialize(&sdkp->dev); 3430 sdkp->dev.parent = dev; 3431 sdkp->dev.class = &sd_disk_class; 3432 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3433 3434 error = device_add(&sdkp->dev); 3435 if (error) 3436 goto out_free_index; 3437 3438 get_device(dev); 3439 dev_set_drvdata(dev, sdkp); 3440 3441 gd->major = sd_major((index & 0xf0) >> 4); 3442 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3443 3444 gd->fops = &sd_fops; 3445 gd->private_data = &sdkp->driver; 3446 gd->queue = sdkp->device->request_queue; 3447 3448 /* defaults, until the device tells us otherwise */ 3449 sdp->sector_size = 512; 3450 sdkp->capacity = 0; 3451 sdkp->media_present = 1; 3452 sdkp->write_prot = 0; 3453 sdkp->cache_override = 0; 3454 sdkp->WCE = 0; 3455 sdkp->RCD = 0; 3456 sdkp->ATO = 0; 3457 sdkp->first_scan = 1; 3458 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3459 3460 sd_revalidate_disk(gd); 3461 3462 gd->flags = GENHD_FL_EXT_DEVT; 3463 if (sdp->removable) { 3464 gd->flags |= GENHD_FL_REMOVABLE; 3465 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3466 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3467 } 3468 3469 blk_pm_runtime_init(sdp->request_queue, dev); 3470 if (sdp->rpm_autosuspend) { 3471 pm_runtime_set_autosuspend_delay(dev, 3472 sdp->host->hostt->rpm_autosuspend_delay); 3473 } 3474 device_add_disk(dev, gd, NULL); 3475 if (sdkp->capacity) 3476 sd_dif_config_host(sdkp); 3477 3478 sd_revalidate_disk(gd); 3479 3480 if (sdkp->security) { 3481 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3482 if (sdkp->opal_dev) 3483 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3484 } 3485 3486 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3487 sdp->removable ? "removable " : ""); 3488 scsi_autopm_put_device(sdp); 3489 3490 return 0; 3491 3492 out_free_index: 3493 ida_free(&sd_index_ida, index); 3494 out_put: 3495 put_disk(gd); 3496 out_free: 3497 sd_zbc_release_disk(sdkp); 3498 kfree(sdkp); 3499 out: 3500 scsi_autopm_put_device(sdp); 3501 return error; 3502 } 3503 3504 /** 3505 * sd_remove - called whenever a scsi disk (previously recognized by 3506 * sd_probe) is detached from the system. It is called (potentially 3507 * multiple times) during sd module unload. 3508 * @dev: pointer to device object 3509 * 3510 * Note: this function is invoked from the scsi mid-level. 3511 * This function potentially frees up a device name (e.g. /dev/sdc) 3512 * that could be re-used by a subsequent sd_probe(). 3513 * This function is not called when the built-in sd driver is "exit-ed". 3514 **/ 3515 static int sd_remove(struct device *dev) 3516 { 3517 struct scsi_disk *sdkp; 3518 dev_t devt; 3519 3520 sdkp = dev_get_drvdata(dev); 3521 devt = disk_devt(sdkp->disk); 3522 scsi_autopm_get_device(sdkp->device); 3523 3524 async_synchronize_full_domain(&scsi_sd_pm_domain); 3525 device_del(&sdkp->dev); 3526 del_gendisk(sdkp->disk); 3527 sd_shutdown(dev); 3528 3529 free_opal_dev(sdkp->opal_dev); 3530 3531 blk_register_region(devt, SD_MINORS, NULL, 3532 sd_default_probe, NULL, NULL); 3533 3534 mutex_lock(&sd_ref_mutex); 3535 dev_set_drvdata(dev, NULL); 3536 put_device(&sdkp->dev); 3537 mutex_unlock(&sd_ref_mutex); 3538 3539 return 0; 3540 } 3541 3542 /** 3543 * scsi_disk_release - Called to free the scsi_disk structure 3544 * @dev: pointer to embedded class device 3545 * 3546 * sd_ref_mutex must be held entering this routine. Because it is 3547 * called on last put, you should always use the scsi_disk_get() 3548 * scsi_disk_put() helpers which manipulate the semaphore directly 3549 * and never do a direct put_device. 3550 **/ 3551 static void scsi_disk_release(struct device *dev) 3552 { 3553 struct scsi_disk *sdkp = to_scsi_disk(dev); 3554 struct gendisk *disk = sdkp->disk; 3555 struct request_queue *q = disk->queue; 3556 3557 ida_free(&sd_index_ida, sdkp->index); 3558 3559 /* 3560 * Wait until all requests that are in progress have completed. 3561 * This is necessary to avoid that e.g. scsi_end_request() crashes 3562 * due to clearing the disk->private_data pointer. Wait from inside 3563 * scsi_disk_release() instead of from sd_release() to avoid that 3564 * freezing and unfreezing the request queue affects user space I/O 3565 * in case multiple processes open a /dev/sd... node concurrently. 3566 */ 3567 blk_mq_freeze_queue(q); 3568 blk_mq_unfreeze_queue(q); 3569 3570 disk->private_data = NULL; 3571 put_disk(disk); 3572 put_device(&sdkp->device->sdev_gendev); 3573 3574 sd_zbc_release_disk(sdkp); 3575 3576 kfree(sdkp); 3577 } 3578 3579 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3580 { 3581 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3582 struct scsi_sense_hdr sshdr; 3583 struct scsi_device *sdp = sdkp->device; 3584 int res; 3585 3586 if (start) 3587 cmd[4] |= 1; /* START */ 3588 3589 if (sdp->start_stop_pwr_cond) 3590 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3591 3592 if (!scsi_device_online(sdp)) 3593 return -ENODEV; 3594 3595 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3596 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL); 3597 if (res) { 3598 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3599 if (driver_byte(res) == DRIVER_SENSE) 3600 sd_print_sense_hdr(sdkp, &sshdr); 3601 if (scsi_sense_valid(&sshdr) && 3602 /* 0x3a is medium not present */ 3603 sshdr.asc == 0x3a) 3604 res = 0; 3605 } 3606 3607 /* SCSI error codes must not go to the generic layer */ 3608 if (res) 3609 return -EIO; 3610 3611 return 0; 3612 } 3613 3614 /* 3615 * Send a SYNCHRONIZE CACHE instruction down to the device through 3616 * the normal SCSI command structure. Wait for the command to 3617 * complete. 3618 */ 3619 static void sd_shutdown(struct device *dev) 3620 { 3621 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3622 3623 if (!sdkp) 3624 return; /* this can happen */ 3625 3626 if (pm_runtime_suspended(dev)) 3627 return; 3628 3629 if (sdkp->WCE && sdkp->media_present) { 3630 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3631 sd_sync_cache(sdkp, NULL); 3632 } 3633 3634 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3635 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3636 sd_start_stop_device(sdkp, 0); 3637 } 3638 } 3639 3640 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3641 { 3642 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3643 struct scsi_sense_hdr sshdr; 3644 int ret = 0; 3645 3646 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3647 return 0; 3648 3649 if (sdkp->WCE && sdkp->media_present) { 3650 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3651 ret = sd_sync_cache(sdkp, &sshdr); 3652 3653 if (ret) { 3654 /* ignore OFFLINE device */ 3655 if (ret == -ENODEV) 3656 return 0; 3657 3658 if (!scsi_sense_valid(&sshdr) || 3659 sshdr.sense_key != ILLEGAL_REQUEST) 3660 return ret; 3661 3662 /* 3663 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3664 * doesn't support sync. There's not much to do and 3665 * suspend shouldn't fail. 3666 */ 3667 ret = 0; 3668 } 3669 } 3670 3671 if (sdkp->device->manage_start_stop) { 3672 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3673 /* an error is not worth aborting a system sleep */ 3674 ret = sd_start_stop_device(sdkp, 0); 3675 if (ignore_stop_errors) 3676 ret = 0; 3677 } 3678 3679 return ret; 3680 } 3681 3682 static int sd_suspend_system(struct device *dev) 3683 { 3684 return sd_suspend_common(dev, true); 3685 } 3686 3687 static int sd_suspend_runtime(struct device *dev) 3688 { 3689 return sd_suspend_common(dev, false); 3690 } 3691 3692 static int sd_resume(struct device *dev) 3693 { 3694 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3695 int ret; 3696 3697 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3698 return 0; 3699 3700 if (!sdkp->device->manage_start_stop) 3701 return 0; 3702 3703 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3704 ret = sd_start_stop_device(sdkp, 1); 3705 if (!ret) 3706 opal_unlock_from_suspend(sdkp->opal_dev); 3707 return ret; 3708 } 3709 3710 /** 3711 * init_sd - entry point for this driver (both when built in or when 3712 * a module). 3713 * 3714 * Note: this function registers this driver with the scsi mid-level. 3715 **/ 3716 static int __init init_sd(void) 3717 { 3718 int majors = 0, i, err; 3719 3720 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3721 3722 for (i = 0; i < SD_MAJORS; i++) { 3723 if (register_blkdev(sd_major(i), "sd") != 0) 3724 continue; 3725 majors++; 3726 blk_register_region(sd_major(i), SD_MINORS, NULL, 3727 sd_default_probe, NULL, NULL); 3728 } 3729 3730 if (!majors) 3731 return -ENODEV; 3732 3733 err = class_register(&sd_disk_class); 3734 if (err) 3735 goto err_out; 3736 3737 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3738 0, 0, NULL); 3739 if (!sd_cdb_cache) { 3740 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3741 err = -ENOMEM; 3742 goto err_out_class; 3743 } 3744 3745 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3746 if (!sd_cdb_pool) { 3747 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3748 err = -ENOMEM; 3749 goto err_out_cache; 3750 } 3751 3752 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3753 if (!sd_page_pool) { 3754 printk(KERN_ERR "sd: can't init discard page pool\n"); 3755 err = -ENOMEM; 3756 goto err_out_ppool; 3757 } 3758 3759 err = scsi_register_driver(&sd_template.gendrv); 3760 if (err) 3761 goto err_out_driver; 3762 3763 return 0; 3764 3765 err_out_driver: 3766 mempool_destroy(sd_page_pool); 3767 3768 err_out_ppool: 3769 mempool_destroy(sd_cdb_pool); 3770 3771 err_out_cache: 3772 kmem_cache_destroy(sd_cdb_cache); 3773 3774 err_out_class: 3775 class_unregister(&sd_disk_class); 3776 err_out: 3777 for (i = 0; i < SD_MAJORS; i++) 3778 unregister_blkdev(sd_major(i), "sd"); 3779 return err; 3780 } 3781 3782 /** 3783 * exit_sd - exit point for this driver (when it is a module). 3784 * 3785 * Note: this function unregisters this driver from the scsi mid-level. 3786 **/ 3787 static void __exit exit_sd(void) 3788 { 3789 int i; 3790 3791 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3792 3793 scsi_unregister_driver(&sd_template.gendrv); 3794 mempool_destroy(sd_cdb_pool); 3795 mempool_destroy(sd_page_pool); 3796 kmem_cache_destroy(sd_cdb_cache); 3797 3798 class_unregister(&sd_disk_class); 3799 3800 for (i = 0; i < SD_MAJORS; i++) { 3801 blk_unregister_region(sd_major(i), SD_MINORS); 3802 unregister_blkdev(sd_major(i), "sd"); 3803 } 3804 } 3805 3806 module_init(init_sd); 3807 module_exit(exit_sd); 3808 3809 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3810 { 3811 scsi_print_sense_hdr(sdkp->device, 3812 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3813 } 3814 3815 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3816 { 3817 const char *hb_string = scsi_hostbyte_string(result); 3818 const char *db_string = scsi_driverbyte_string(result); 3819 3820 if (hb_string || db_string) 3821 sd_printk(KERN_INFO, sdkp, 3822 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3823 hb_string ? hb_string : "invalid", 3824 db_string ? db_string : "invalid"); 3825 else 3826 sd_printk(KERN_INFO, sdkp, 3827 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3828 msg, host_byte(result), driver_byte(result)); 3829 } 3830