1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/genhd.h> 42 #include <linux/hdreg.h> 43 #include <linux/errno.h> 44 #include <linux/idr.h> 45 #include <linux/interrupt.h> 46 #include <linux/init.h> 47 #include <linux/blkdev.h> 48 #include <linux/blkpg.h> 49 #include <linux/blk-pm.h> 50 #include <linux/delay.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/async.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <asm/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_driver.h> 67 #include <scsi/scsi_eh.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_ioctl.h> 70 #include <scsi/scsicam.h> 71 72 #include "sd.h" 73 #include "scsi_priv.h" 74 #include "scsi_logging.h" 75 76 MODULE_AUTHOR("Eric Youngdale"); 77 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 78 MODULE_LICENSE("GPL"); 79 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 100 101 #define SD_MINORS 16 102 103 static void sd_config_discard(struct scsi_disk *, unsigned int); 104 static void sd_config_write_same(struct scsi_disk *); 105 static int sd_revalidate_disk(struct gendisk *); 106 static void sd_unlock_native_capacity(struct gendisk *disk); 107 static int sd_probe(struct device *); 108 static int sd_remove(struct device *); 109 static void sd_shutdown(struct device *); 110 static int sd_suspend_system(struct device *); 111 static int sd_suspend_runtime(struct device *); 112 static int sd_resume(struct device *); 113 static int sd_resume_runtime(struct device *); 114 static void sd_rescan(struct device *); 115 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 116 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 117 static int sd_done(struct scsi_cmnd *); 118 static void sd_eh_reset(struct scsi_cmnd *); 119 static int sd_eh_action(struct scsi_cmnd *, int); 120 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 121 static void scsi_disk_release(struct device *cdev); 122 123 static DEFINE_IDA(sd_index_ida); 124 125 /* This semaphore is used to mediate the 0->1 reference get in the 126 * face of object destruction (i.e. we can't allow a get on an 127 * object after last put) */ 128 static DEFINE_MUTEX(sd_ref_mutex); 129 130 static struct kmem_cache *sd_cdb_cache; 131 static mempool_t *sd_cdb_pool; 132 static mempool_t *sd_page_pool; 133 134 static const char *sd_cache_types[] = { 135 "write through", "none", "write back", 136 "write back, no read (daft)" 137 }; 138 139 static void sd_set_flush_flag(struct scsi_disk *sdkp) 140 { 141 bool wc = false, fua = false; 142 143 if (sdkp->WCE) { 144 wc = true; 145 if (sdkp->DPOFUA) 146 fua = true; 147 } 148 149 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 150 } 151 152 static ssize_t 153 cache_type_store(struct device *dev, struct device_attribute *attr, 154 const char *buf, size_t count) 155 { 156 int ct, rcd, wce, sp; 157 struct scsi_disk *sdkp = to_scsi_disk(dev); 158 struct scsi_device *sdp = sdkp->device; 159 char buffer[64]; 160 char *buffer_data; 161 struct scsi_mode_data data; 162 struct scsi_sense_hdr sshdr; 163 static const char temp[] = "temporary "; 164 int len; 165 166 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 167 /* no cache control on RBC devices; theoretically they 168 * can do it, but there's probably so many exceptions 169 * it's not worth the risk */ 170 return -EINVAL; 171 172 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 173 buf += sizeof(temp) - 1; 174 sdkp->cache_override = 1; 175 } else { 176 sdkp->cache_override = 0; 177 } 178 179 ct = sysfs_match_string(sd_cache_types, buf); 180 if (ct < 0) 181 return -EINVAL; 182 183 rcd = ct & 0x01 ? 1 : 0; 184 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 185 186 if (sdkp->cache_override) { 187 sdkp->WCE = wce; 188 sdkp->RCD = rcd; 189 sd_set_flush_flag(sdkp); 190 return count; 191 } 192 193 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 194 sdkp->max_retries, &data, NULL)) 195 return -EINVAL; 196 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 197 data.block_descriptor_length); 198 buffer_data = buffer + data.header_length + 199 data.block_descriptor_length; 200 buffer_data[2] &= ~0x05; 201 buffer_data[2] |= wce << 2 | rcd; 202 sp = buffer_data[0] & 0x80 ? 1 : 0; 203 buffer_data[0] &= ~0x80; 204 205 /* 206 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 207 * received mode parameter buffer before doing MODE SELECT. 208 */ 209 data.device_specific = 0; 210 211 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 212 sdkp->max_retries, &data, &sshdr)) { 213 if (scsi_sense_valid(&sshdr)) 214 sd_print_sense_hdr(sdkp, &sshdr); 215 return -EINVAL; 216 } 217 sd_revalidate_disk(sdkp->disk); 218 return count; 219 } 220 221 static ssize_t 222 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 223 char *buf) 224 { 225 struct scsi_disk *sdkp = to_scsi_disk(dev); 226 struct scsi_device *sdp = sdkp->device; 227 228 return sprintf(buf, "%u\n", sdp->manage_start_stop); 229 } 230 231 static ssize_t 232 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 233 const char *buf, size_t count) 234 { 235 struct scsi_disk *sdkp = to_scsi_disk(dev); 236 struct scsi_device *sdp = sdkp->device; 237 bool v; 238 239 if (!capable(CAP_SYS_ADMIN)) 240 return -EACCES; 241 242 if (kstrtobool(buf, &v)) 243 return -EINVAL; 244 245 sdp->manage_start_stop = v; 246 247 return count; 248 } 249 static DEVICE_ATTR_RW(manage_start_stop); 250 251 static ssize_t 252 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 253 { 254 struct scsi_disk *sdkp = to_scsi_disk(dev); 255 256 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 257 } 258 259 static ssize_t 260 allow_restart_store(struct device *dev, struct device_attribute *attr, 261 const char *buf, size_t count) 262 { 263 bool v; 264 struct scsi_disk *sdkp = to_scsi_disk(dev); 265 struct scsi_device *sdp = sdkp->device; 266 267 if (!capable(CAP_SYS_ADMIN)) 268 return -EACCES; 269 270 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 271 return -EINVAL; 272 273 if (kstrtobool(buf, &v)) 274 return -EINVAL; 275 276 sdp->allow_restart = v; 277 278 return count; 279 } 280 static DEVICE_ATTR_RW(allow_restart); 281 282 static ssize_t 283 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 284 { 285 struct scsi_disk *sdkp = to_scsi_disk(dev); 286 int ct = sdkp->RCD + 2*sdkp->WCE; 287 288 return sprintf(buf, "%s\n", sd_cache_types[ct]); 289 } 290 static DEVICE_ATTR_RW(cache_type); 291 292 static ssize_t 293 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 294 { 295 struct scsi_disk *sdkp = to_scsi_disk(dev); 296 297 return sprintf(buf, "%u\n", sdkp->DPOFUA); 298 } 299 static DEVICE_ATTR_RO(FUA); 300 301 static ssize_t 302 protection_type_show(struct device *dev, struct device_attribute *attr, 303 char *buf) 304 { 305 struct scsi_disk *sdkp = to_scsi_disk(dev); 306 307 return sprintf(buf, "%u\n", sdkp->protection_type); 308 } 309 310 static ssize_t 311 protection_type_store(struct device *dev, struct device_attribute *attr, 312 const char *buf, size_t count) 313 { 314 struct scsi_disk *sdkp = to_scsi_disk(dev); 315 unsigned int val; 316 int err; 317 318 if (!capable(CAP_SYS_ADMIN)) 319 return -EACCES; 320 321 err = kstrtouint(buf, 10, &val); 322 323 if (err) 324 return err; 325 326 if (val <= T10_PI_TYPE3_PROTECTION) 327 sdkp->protection_type = val; 328 329 return count; 330 } 331 static DEVICE_ATTR_RW(protection_type); 332 333 static ssize_t 334 protection_mode_show(struct device *dev, struct device_attribute *attr, 335 char *buf) 336 { 337 struct scsi_disk *sdkp = to_scsi_disk(dev); 338 struct scsi_device *sdp = sdkp->device; 339 unsigned int dif, dix; 340 341 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 342 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 343 344 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 345 dif = 0; 346 dix = 1; 347 } 348 349 if (!dif && !dix) 350 return sprintf(buf, "none\n"); 351 352 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 353 } 354 static DEVICE_ATTR_RO(protection_mode); 355 356 static ssize_t 357 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 358 { 359 struct scsi_disk *sdkp = to_scsi_disk(dev); 360 361 return sprintf(buf, "%u\n", sdkp->ATO); 362 } 363 static DEVICE_ATTR_RO(app_tag_own); 364 365 static ssize_t 366 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 367 char *buf) 368 { 369 struct scsi_disk *sdkp = to_scsi_disk(dev); 370 371 return sprintf(buf, "%u\n", sdkp->lbpme); 372 } 373 static DEVICE_ATTR_RO(thin_provisioning); 374 375 /* sysfs_match_string() requires dense arrays */ 376 static const char *lbp_mode[] = { 377 [SD_LBP_FULL] = "full", 378 [SD_LBP_UNMAP] = "unmap", 379 [SD_LBP_WS16] = "writesame_16", 380 [SD_LBP_WS10] = "writesame_10", 381 [SD_LBP_ZERO] = "writesame_zero", 382 [SD_LBP_DISABLE] = "disabled", 383 }; 384 385 static ssize_t 386 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 387 char *buf) 388 { 389 struct scsi_disk *sdkp = to_scsi_disk(dev); 390 391 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 392 } 393 394 static ssize_t 395 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 396 const char *buf, size_t count) 397 { 398 struct scsi_disk *sdkp = to_scsi_disk(dev); 399 struct scsi_device *sdp = sdkp->device; 400 int mode; 401 402 if (!capable(CAP_SYS_ADMIN)) 403 return -EACCES; 404 405 if (sd_is_zoned(sdkp)) { 406 sd_config_discard(sdkp, SD_LBP_DISABLE); 407 return count; 408 } 409 410 if (sdp->type != TYPE_DISK) 411 return -EINVAL; 412 413 mode = sysfs_match_string(lbp_mode, buf); 414 if (mode < 0) 415 return -EINVAL; 416 417 sd_config_discard(sdkp, mode); 418 419 return count; 420 } 421 static DEVICE_ATTR_RW(provisioning_mode); 422 423 /* sysfs_match_string() requires dense arrays */ 424 static const char *zeroing_mode[] = { 425 [SD_ZERO_WRITE] = "write", 426 [SD_ZERO_WS] = "writesame", 427 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 428 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 429 }; 430 431 static ssize_t 432 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 433 char *buf) 434 { 435 struct scsi_disk *sdkp = to_scsi_disk(dev); 436 437 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 438 } 439 440 static ssize_t 441 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 442 const char *buf, size_t count) 443 { 444 struct scsi_disk *sdkp = to_scsi_disk(dev); 445 int mode; 446 447 if (!capable(CAP_SYS_ADMIN)) 448 return -EACCES; 449 450 mode = sysfs_match_string(zeroing_mode, buf); 451 if (mode < 0) 452 return -EINVAL; 453 454 sdkp->zeroing_mode = mode; 455 456 return count; 457 } 458 static DEVICE_ATTR_RW(zeroing_mode); 459 460 static ssize_t 461 max_medium_access_timeouts_show(struct device *dev, 462 struct device_attribute *attr, char *buf) 463 { 464 struct scsi_disk *sdkp = to_scsi_disk(dev); 465 466 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 467 } 468 469 static ssize_t 470 max_medium_access_timeouts_store(struct device *dev, 471 struct device_attribute *attr, const char *buf, 472 size_t count) 473 { 474 struct scsi_disk *sdkp = to_scsi_disk(dev); 475 int err; 476 477 if (!capable(CAP_SYS_ADMIN)) 478 return -EACCES; 479 480 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 481 482 return err ? err : count; 483 } 484 static DEVICE_ATTR_RW(max_medium_access_timeouts); 485 486 static ssize_t 487 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 488 char *buf) 489 { 490 struct scsi_disk *sdkp = to_scsi_disk(dev); 491 492 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 493 } 494 495 static ssize_t 496 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 497 const char *buf, size_t count) 498 { 499 struct scsi_disk *sdkp = to_scsi_disk(dev); 500 struct scsi_device *sdp = sdkp->device; 501 unsigned long max; 502 int err; 503 504 if (!capable(CAP_SYS_ADMIN)) 505 return -EACCES; 506 507 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 508 return -EINVAL; 509 510 err = kstrtoul(buf, 10, &max); 511 512 if (err) 513 return err; 514 515 if (max == 0) 516 sdp->no_write_same = 1; 517 else if (max <= SD_MAX_WS16_BLOCKS) { 518 sdp->no_write_same = 0; 519 sdkp->max_ws_blocks = max; 520 } 521 522 sd_config_write_same(sdkp); 523 524 return count; 525 } 526 static DEVICE_ATTR_RW(max_write_same_blocks); 527 528 static ssize_t 529 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 530 { 531 struct scsi_disk *sdkp = to_scsi_disk(dev); 532 533 if (sdkp->device->type == TYPE_ZBC) 534 return sprintf(buf, "host-managed\n"); 535 if (sdkp->zoned == 1) 536 return sprintf(buf, "host-aware\n"); 537 if (sdkp->zoned == 2) 538 return sprintf(buf, "drive-managed\n"); 539 return sprintf(buf, "none\n"); 540 } 541 static DEVICE_ATTR_RO(zoned_cap); 542 543 static ssize_t 544 max_retries_store(struct device *dev, struct device_attribute *attr, 545 const char *buf, size_t count) 546 { 547 struct scsi_disk *sdkp = to_scsi_disk(dev); 548 struct scsi_device *sdev = sdkp->device; 549 int retries, err; 550 551 err = kstrtoint(buf, 10, &retries); 552 if (err) 553 return err; 554 555 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 556 sdkp->max_retries = retries; 557 return count; 558 } 559 560 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 561 SD_MAX_RETRIES); 562 return -EINVAL; 563 } 564 565 static ssize_t 566 max_retries_show(struct device *dev, struct device_attribute *attr, 567 char *buf) 568 { 569 struct scsi_disk *sdkp = to_scsi_disk(dev); 570 571 return sprintf(buf, "%d\n", sdkp->max_retries); 572 } 573 574 static DEVICE_ATTR_RW(max_retries); 575 576 static struct attribute *sd_disk_attrs[] = { 577 &dev_attr_cache_type.attr, 578 &dev_attr_FUA.attr, 579 &dev_attr_allow_restart.attr, 580 &dev_attr_manage_start_stop.attr, 581 &dev_attr_protection_type.attr, 582 &dev_attr_protection_mode.attr, 583 &dev_attr_app_tag_own.attr, 584 &dev_attr_thin_provisioning.attr, 585 &dev_attr_provisioning_mode.attr, 586 &dev_attr_zeroing_mode.attr, 587 &dev_attr_max_write_same_blocks.attr, 588 &dev_attr_max_medium_access_timeouts.attr, 589 &dev_attr_zoned_cap.attr, 590 &dev_attr_max_retries.attr, 591 NULL, 592 }; 593 ATTRIBUTE_GROUPS(sd_disk); 594 595 static struct class sd_disk_class = { 596 .name = "scsi_disk", 597 .owner = THIS_MODULE, 598 .dev_release = scsi_disk_release, 599 .dev_groups = sd_disk_groups, 600 }; 601 602 static const struct dev_pm_ops sd_pm_ops = { 603 .suspend = sd_suspend_system, 604 .resume = sd_resume, 605 .poweroff = sd_suspend_system, 606 .restore = sd_resume, 607 .runtime_suspend = sd_suspend_runtime, 608 .runtime_resume = sd_resume_runtime, 609 }; 610 611 static struct scsi_driver sd_template = { 612 .gendrv = { 613 .name = "sd", 614 .owner = THIS_MODULE, 615 .probe = sd_probe, 616 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 617 .remove = sd_remove, 618 .shutdown = sd_shutdown, 619 .pm = &sd_pm_ops, 620 }, 621 .rescan = sd_rescan, 622 .init_command = sd_init_command, 623 .uninit_command = sd_uninit_command, 624 .done = sd_done, 625 .eh_action = sd_eh_action, 626 .eh_reset = sd_eh_reset, 627 }; 628 629 /* 630 * Don't request a new module, as that could deadlock in multipath 631 * environment. 632 */ 633 static void sd_default_probe(dev_t devt) 634 { 635 } 636 637 /* 638 * Device no to disk mapping: 639 * 640 * major disc2 disc p1 641 * |............|.............|....|....| <- dev_t 642 * 31 20 19 8 7 4 3 0 643 * 644 * Inside a major, we have 16k disks, however mapped non- 645 * contiguously. The first 16 disks are for major0, the next 646 * ones with major1, ... Disk 256 is for major0 again, disk 272 647 * for major1, ... 648 * As we stay compatible with our numbering scheme, we can reuse 649 * the well-know SCSI majors 8, 65--71, 136--143. 650 */ 651 static int sd_major(int major_idx) 652 { 653 switch (major_idx) { 654 case 0: 655 return SCSI_DISK0_MAJOR; 656 case 1 ... 7: 657 return SCSI_DISK1_MAJOR + major_idx - 1; 658 case 8 ... 15: 659 return SCSI_DISK8_MAJOR + major_idx - 8; 660 default: 661 BUG(); 662 return 0; /* shut up gcc */ 663 } 664 } 665 666 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 667 { 668 struct scsi_disk *sdkp = NULL; 669 670 mutex_lock(&sd_ref_mutex); 671 672 if (disk->private_data) { 673 sdkp = scsi_disk(disk); 674 if (scsi_device_get(sdkp->device) == 0) 675 get_device(&sdkp->dev); 676 else 677 sdkp = NULL; 678 } 679 mutex_unlock(&sd_ref_mutex); 680 return sdkp; 681 } 682 683 static void scsi_disk_put(struct scsi_disk *sdkp) 684 { 685 struct scsi_device *sdev = sdkp->device; 686 687 mutex_lock(&sd_ref_mutex); 688 put_device(&sdkp->dev); 689 scsi_device_put(sdev); 690 mutex_unlock(&sd_ref_mutex); 691 } 692 693 #ifdef CONFIG_BLK_SED_OPAL 694 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 695 size_t len, bool send) 696 { 697 struct scsi_disk *sdkp = data; 698 struct scsi_device *sdev = sdkp->device; 699 u8 cdb[12] = { 0, }; 700 int ret; 701 702 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 703 cdb[1] = secp; 704 put_unaligned_be16(spsp, &cdb[2]); 705 put_unaligned_be32(len, &cdb[6]); 706 707 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 708 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0, 709 RQF_PM, NULL); 710 return ret <= 0 ? ret : -EIO; 711 } 712 #endif /* CONFIG_BLK_SED_OPAL */ 713 714 /* 715 * Look up the DIX operation based on whether the command is read or 716 * write and whether dix and dif are enabled. 717 */ 718 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 719 { 720 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 721 static const unsigned int ops[] = { /* wrt dix dif */ 722 SCSI_PROT_NORMAL, /* 0 0 0 */ 723 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 724 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 725 SCSI_PROT_READ_PASS, /* 0 1 1 */ 726 SCSI_PROT_NORMAL, /* 1 0 0 */ 727 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 728 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 729 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 730 }; 731 732 return ops[write << 2 | dix << 1 | dif]; 733 } 734 735 /* 736 * Returns a mask of the protection flags that are valid for a given DIX 737 * operation. 738 */ 739 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 740 { 741 static const unsigned int flag_mask[] = { 742 [SCSI_PROT_NORMAL] = 0, 743 744 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 745 SCSI_PROT_GUARD_CHECK | 746 SCSI_PROT_REF_CHECK | 747 SCSI_PROT_REF_INCREMENT, 748 749 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 750 SCSI_PROT_IP_CHECKSUM, 751 752 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 753 SCSI_PROT_GUARD_CHECK | 754 SCSI_PROT_REF_CHECK | 755 SCSI_PROT_REF_INCREMENT | 756 SCSI_PROT_IP_CHECKSUM, 757 758 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 759 SCSI_PROT_REF_INCREMENT, 760 761 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 762 SCSI_PROT_REF_CHECK | 763 SCSI_PROT_REF_INCREMENT | 764 SCSI_PROT_IP_CHECKSUM, 765 766 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 767 SCSI_PROT_GUARD_CHECK | 768 SCSI_PROT_REF_CHECK | 769 SCSI_PROT_REF_INCREMENT | 770 SCSI_PROT_IP_CHECKSUM, 771 }; 772 773 return flag_mask[prot_op]; 774 } 775 776 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 777 unsigned int dix, unsigned int dif) 778 { 779 struct request *rq = scsi_cmd_to_rq(scmd); 780 struct bio *bio = rq->bio; 781 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 782 unsigned int protect = 0; 783 784 if (dix) { /* DIX Type 0, 1, 2, 3 */ 785 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 786 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 787 788 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 789 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 790 } 791 792 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 793 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 794 795 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 796 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 797 } 798 799 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 800 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 801 802 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 803 protect = 3 << 5; /* Disable target PI checking */ 804 else 805 protect = 1 << 5; /* Enable target PI checking */ 806 } 807 808 scsi_set_prot_op(scmd, prot_op); 809 scsi_set_prot_type(scmd, dif); 810 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 811 812 return protect; 813 } 814 815 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 816 { 817 struct request_queue *q = sdkp->disk->queue; 818 unsigned int logical_block_size = sdkp->device->sector_size; 819 unsigned int max_blocks = 0; 820 821 q->limits.discard_alignment = 822 sdkp->unmap_alignment * logical_block_size; 823 q->limits.discard_granularity = 824 max(sdkp->physical_block_size, 825 sdkp->unmap_granularity * logical_block_size); 826 sdkp->provisioning_mode = mode; 827 828 switch (mode) { 829 830 case SD_LBP_FULL: 831 case SD_LBP_DISABLE: 832 blk_queue_max_discard_sectors(q, 0); 833 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 834 return; 835 836 case SD_LBP_UNMAP: 837 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 838 (u32)SD_MAX_WS16_BLOCKS); 839 break; 840 841 case SD_LBP_WS16: 842 if (sdkp->device->unmap_limit_for_ws) 843 max_blocks = sdkp->max_unmap_blocks; 844 else 845 max_blocks = sdkp->max_ws_blocks; 846 847 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 848 break; 849 850 case SD_LBP_WS10: 851 if (sdkp->device->unmap_limit_for_ws) 852 max_blocks = sdkp->max_unmap_blocks; 853 else 854 max_blocks = sdkp->max_ws_blocks; 855 856 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 857 break; 858 859 case SD_LBP_ZERO: 860 max_blocks = min_not_zero(sdkp->max_ws_blocks, 861 (u32)SD_MAX_WS10_BLOCKS); 862 break; 863 } 864 865 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 866 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 867 } 868 869 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 870 { 871 struct scsi_device *sdp = cmd->device; 872 struct request *rq = scsi_cmd_to_rq(cmd); 873 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 874 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 875 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 876 unsigned int data_len = 24; 877 char *buf; 878 879 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 880 if (!rq->special_vec.bv_page) 881 return BLK_STS_RESOURCE; 882 clear_highpage(rq->special_vec.bv_page); 883 rq->special_vec.bv_offset = 0; 884 rq->special_vec.bv_len = data_len; 885 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 886 887 cmd->cmd_len = 10; 888 cmd->cmnd[0] = UNMAP; 889 cmd->cmnd[8] = 24; 890 891 buf = page_address(rq->special_vec.bv_page); 892 put_unaligned_be16(6 + 16, &buf[0]); 893 put_unaligned_be16(16, &buf[2]); 894 put_unaligned_be64(lba, &buf[8]); 895 put_unaligned_be32(nr_blocks, &buf[16]); 896 897 cmd->allowed = sdkp->max_retries; 898 cmd->transfersize = data_len; 899 rq->timeout = SD_TIMEOUT; 900 901 return scsi_alloc_sgtables(cmd); 902 } 903 904 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 905 bool unmap) 906 { 907 struct scsi_device *sdp = cmd->device; 908 struct request *rq = scsi_cmd_to_rq(cmd); 909 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 910 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 911 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 912 u32 data_len = sdp->sector_size; 913 914 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 915 if (!rq->special_vec.bv_page) 916 return BLK_STS_RESOURCE; 917 clear_highpage(rq->special_vec.bv_page); 918 rq->special_vec.bv_offset = 0; 919 rq->special_vec.bv_len = data_len; 920 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 921 922 cmd->cmd_len = 16; 923 cmd->cmnd[0] = WRITE_SAME_16; 924 if (unmap) 925 cmd->cmnd[1] = 0x8; /* UNMAP */ 926 put_unaligned_be64(lba, &cmd->cmnd[2]); 927 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 928 929 cmd->allowed = sdkp->max_retries; 930 cmd->transfersize = data_len; 931 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 932 933 return scsi_alloc_sgtables(cmd); 934 } 935 936 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 937 bool unmap) 938 { 939 struct scsi_device *sdp = cmd->device; 940 struct request *rq = scsi_cmd_to_rq(cmd); 941 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 942 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 943 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 944 u32 data_len = sdp->sector_size; 945 946 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 947 if (!rq->special_vec.bv_page) 948 return BLK_STS_RESOURCE; 949 clear_highpage(rq->special_vec.bv_page); 950 rq->special_vec.bv_offset = 0; 951 rq->special_vec.bv_len = data_len; 952 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 953 954 cmd->cmd_len = 10; 955 cmd->cmnd[0] = WRITE_SAME; 956 if (unmap) 957 cmd->cmnd[1] = 0x8; /* UNMAP */ 958 put_unaligned_be32(lba, &cmd->cmnd[2]); 959 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 960 961 cmd->allowed = sdkp->max_retries; 962 cmd->transfersize = data_len; 963 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 964 965 return scsi_alloc_sgtables(cmd); 966 } 967 968 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 969 { 970 struct request *rq = scsi_cmd_to_rq(cmd); 971 struct scsi_device *sdp = cmd->device; 972 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 973 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 974 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 975 976 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 977 switch (sdkp->zeroing_mode) { 978 case SD_ZERO_WS16_UNMAP: 979 return sd_setup_write_same16_cmnd(cmd, true); 980 case SD_ZERO_WS10_UNMAP: 981 return sd_setup_write_same10_cmnd(cmd, true); 982 } 983 } 984 985 if (sdp->no_write_same) { 986 rq->rq_flags |= RQF_QUIET; 987 return BLK_STS_TARGET; 988 } 989 990 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 991 return sd_setup_write_same16_cmnd(cmd, false); 992 993 return sd_setup_write_same10_cmnd(cmd, false); 994 } 995 996 static void sd_config_write_same(struct scsi_disk *sdkp) 997 { 998 struct request_queue *q = sdkp->disk->queue; 999 unsigned int logical_block_size = sdkp->device->sector_size; 1000 1001 if (sdkp->device->no_write_same) { 1002 sdkp->max_ws_blocks = 0; 1003 goto out; 1004 } 1005 1006 /* Some devices can not handle block counts above 0xffff despite 1007 * supporting WRITE SAME(16). Consequently we default to 64k 1008 * blocks per I/O unless the device explicitly advertises a 1009 * bigger limit. 1010 */ 1011 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 1012 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1013 (u32)SD_MAX_WS16_BLOCKS); 1014 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 1015 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1016 (u32)SD_MAX_WS10_BLOCKS); 1017 else { 1018 sdkp->device->no_write_same = 1; 1019 sdkp->max_ws_blocks = 0; 1020 } 1021 1022 if (sdkp->lbprz && sdkp->lbpws) 1023 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 1024 else if (sdkp->lbprz && sdkp->lbpws10) 1025 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 1026 else if (sdkp->max_ws_blocks) 1027 sdkp->zeroing_mode = SD_ZERO_WS; 1028 else 1029 sdkp->zeroing_mode = SD_ZERO_WRITE; 1030 1031 if (sdkp->max_ws_blocks && 1032 sdkp->physical_block_size > logical_block_size) { 1033 /* 1034 * Reporting a maximum number of blocks that is not aligned 1035 * on the device physical size would cause a large write same 1036 * request to be split into physically unaligned chunks by 1037 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 1038 * even if the caller of these functions took care to align the 1039 * large request. So make sure the maximum reported is aligned 1040 * to the device physical block size. This is only an optional 1041 * optimization for regular disks, but this is mandatory to 1042 * avoid failure of large write same requests directed at 1043 * sequential write required zones of host-managed ZBC disks. 1044 */ 1045 sdkp->max_ws_blocks = 1046 round_down(sdkp->max_ws_blocks, 1047 bytes_to_logical(sdkp->device, 1048 sdkp->physical_block_size)); 1049 } 1050 1051 out: 1052 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 1053 (logical_block_size >> 9)); 1054 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1055 (logical_block_size >> 9)); 1056 } 1057 1058 /** 1059 * sd_setup_write_same_cmnd - write the same data to multiple blocks 1060 * @cmd: command to prepare 1061 * 1062 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 1063 * the preference indicated by the target device. 1064 **/ 1065 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 1066 { 1067 struct request *rq = scsi_cmd_to_rq(cmd); 1068 struct scsi_device *sdp = cmd->device; 1069 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1070 struct bio *bio = rq->bio; 1071 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1072 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1073 blk_status_t ret; 1074 1075 if (sdkp->device->no_write_same) 1076 return BLK_STS_TARGET; 1077 1078 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 1079 1080 rq->timeout = SD_WRITE_SAME_TIMEOUT; 1081 1082 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) { 1083 cmd->cmd_len = 16; 1084 cmd->cmnd[0] = WRITE_SAME_16; 1085 put_unaligned_be64(lba, &cmd->cmnd[2]); 1086 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1087 } else { 1088 cmd->cmd_len = 10; 1089 cmd->cmnd[0] = WRITE_SAME; 1090 put_unaligned_be32(lba, &cmd->cmnd[2]); 1091 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1092 } 1093 1094 cmd->transfersize = sdp->sector_size; 1095 cmd->allowed = sdkp->max_retries; 1096 1097 /* 1098 * For WRITE SAME the data transferred via the DATA OUT buffer is 1099 * different from the amount of data actually written to the target. 1100 * 1101 * We set up __data_len to the amount of data transferred via the 1102 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 1103 * to transfer a single sector of data first, but then reset it to 1104 * the amount of data to be written right after so that the I/O path 1105 * knows how much to actually write. 1106 */ 1107 rq->__data_len = sdp->sector_size; 1108 ret = scsi_alloc_sgtables(cmd); 1109 rq->__data_len = blk_rq_bytes(rq); 1110 1111 return ret; 1112 } 1113 1114 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1115 { 1116 struct request *rq = scsi_cmd_to_rq(cmd); 1117 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1118 1119 /* flush requests don't perform I/O, zero the S/G table */ 1120 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1121 1122 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1123 cmd->cmd_len = 10; 1124 cmd->transfersize = 0; 1125 cmd->allowed = sdkp->max_retries; 1126 1127 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1128 return BLK_STS_OK; 1129 } 1130 1131 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1132 sector_t lba, unsigned int nr_blocks, 1133 unsigned char flags) 1134 { 1135 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1136 if (unlikely(cmd->cmnd == NULL)) 1137 return BLK_STS_RESOURCE; 1138 1139 cmd->cmd_len = SD_EXT_CDB_SIZE; 1140 memset(cmd->cmnd, 0, cmd->cmd_len); 1141 1142 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1143 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1144 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1145 cmd->cmnd[10] = flags; 1146 put_unaligned_be64(lba, &cmd->cmnd[12]); 1147 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1148 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1149 1150 return BLK_STS_OK; 1151 } 1152 1153 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1154 sector_t lba, unsigned int nr_blocks, 1155 unsigned char flags) 1156 { 1157 cmd->cmd_len = 16; 1158 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1159 cmd->cmnd[1] = flags; 1160 cmd->cmnd[14] = 0; 1161 cmd->cmnd[15] = 0; 1162 put_unaligned_be64(lba, &cmd->cmnd[2]); 1163 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1164 1165 return BLK_STS_OK; 1166 } 1167 1168 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1169 sector_t lba, unsigned int nr_blocks, 1170 unsigned char flags) 1171 { 1172 cmd->cmd_len = 10; 1173 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1174 cmd->cmnd[1] = flags; 1175 cmd->cmnd[6] = 0; 1176 cmd->cmnd[9] = 0; 1177 put_unaligned_be32(lba, &cmd->cmnd[2]); 1178 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1179 1180 return BLK_STS_OK; 1181 } 1182 1183 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1184 sector_t lba, unsigned int nr_blocks, 1185 unsigned char flags) 1186 { 1187 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1188 if (WARN_ON_ONCE(nr_blocks == 0)) 1189 return BLK_STS_IOERR; 1190 1191 if (unlikely(flags & 0x8)) { 1192 /* 1193 * This happens only if this drive failed 10byte rw 1194 * command with ILLEGAL_REQUEST during operation and 1195 * thus turned off use_10_for_rw. 1196 */ 1197 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1198 return BLK_STS_IOERR; 1199 } 1200 1201 cmd->cmd_len = 6; 1202 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1203 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1204 cmd->cmnd[2] = (lba >> 8) & 0xff; 1205 cmd->cmnd[3] = lba & 0xff; 1206 cmd->cmnd[4] = nr_blocks; 1207 cmd->cmnd[5] = 0; 1208 1209 return BLK_STS_OK; 1210 } 1211 1212 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1213 { 1214 struct request *rq = scsi_cmd_to_rq(cmd); 1215 struct scsi_device *sdp = cmd->device; 1216 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1217 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1218 sector_t threshold; 1219 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1220 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1221 bool write = rq_data_dir(rq) == WRITE; 1222 unsigned char protect, fua; 1223 blk_status_t ret; 1224 unsigned int dif; 1225 bool dix; 1226 1227 ret = scsi_alloc_sgtables(cmd); 1228 if (ret != BLK_STS_OK) 1229 return ret; 1230 1231 ret = BLK_STS_IOERR; 1232 if (!scsi_device_online(sdp) || sdp->changed) { 1233 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1234 goto fail; 1235 } 1236 1237 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) { 1238 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1239 goto fail; 1240 } 1241 1242 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1243 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1244 goto fail; 1245 } 1246 1247 /* 1248 * Some SD card readers can't handle accesses which touch the 1249 * last one or two logical blocks. Split accesses as needed. 1250 */ 1251 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1252 1253 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1254 if (lba < threshold) { 1255 /* Access up to the threshold but not beyond */ 1256 nr_blocks = threshold - lba; 1257 } else { 1258 /* Access only a single logical block */ 1259 nr_blocks = 1; 1260 } 1261 } 1262 1263 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1264 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1265 if (ret) 1266 goto fail; 1267 } 1268 1269 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1270 dix = scsi_prot_sg_count(cmd); 1271 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1272 1273 if (dif || dix) 1274 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1275 else 1276 protect = 0; 1277 1278 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1279 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1280 protect | fua); 1281 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1282 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1283 protect | fua); 1284 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1285 sdp->use_10_for_rw || protect) { 1286 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1287 protect | fua); 1288 } else { 1289 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1290 protect | fua); 1291 } 1292 1293 if (unlikely(ret != BLK_STS_OK)) 1294 goto fail; 1295 1296 /* 1297 * We shouldn't disconnect in the middle of a sector, so with a dumb 1298 * host adapter, it's safe to assume that we can at least transfer 1299 * this many bytes between each connect / disconnect. 1300 */ 1301 cmd->transfersize = sdp->sector_size; 1302 cmd->underflow = nr_blocks << 9; 1303 cmd->allowed = sdkp->max_retries; 1304 cmd->sdb.length = nr_blocks * sdp->sector_size; 1305 1306 SCSI_LOG_HLQUEUE(1, 1307 scmd_printk(KERN_INFO, cmd, 1308 "%s: block=%llu, count=%d\n", __func__, 1309 (unsigned long long)blk_rq_pos(rq), 1310 blk_rq_sectors(rq))); 1311 SCSI_LOG_HLQUEUE(2, 1312 scmd_printk(KERN_INFO, cmd, 1313 "%s %d/%u 512 byte blocks.\n", 1314 write ? "writing" : "reading", nr_blocks, 1315 blk_rq_sectors(rq))); 1316 1317 /* 1318 * This indicates that the command is ready from our end to be queued. 1319 */ 1320 return BLK_STS_OK; 1321 fail: 1322 scsi_free_sgtables(cmd); 1323 return ret; 1324 } 1325 1326 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1327 { 1328 struct request *rq = scsi_cmd_to_rq(cmd); 1329 1330 switch (req_op(rq)) { 1331 case REQ_OP_DISCARD: 1332 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1333 case SD_LBP_UNMAP: 1334 return sd_setup_unmap_cmnd(cmd); 1335 case SD_LBP_WS16: 1336 return sd_setup_write_same16_cmnd(cmd, true); 1337 case SD_LBP_WS10: 1338 return sd_setup_write_same10_cmnd(cmd, true); 1339 case SD_LBP_ZERO: 1340 return sd_setup_write_same10_cmnd(cmd, false); 1341 default: 1342 return BLK_STS_TARGET; 1343 } 1344 case REQ_OP_WRITE_ZEROES: 1345 return sd_setup_write_zeroes_cmnd(cmd); 1346 case REQ_OP_WRITE_SAME: 1347 return sd_setup_write_same_cmnd(cmd); 1348 case REQ_OP_FLUSH: 1349 return sd_setup_flush_cmnd(cmd); 1350 case REQ_OP_READ: 1351 case REQ_OP_WRITE: 1352 case REQ_OP_ZONE_APPEND: 1353 return sd_setup_read_write_cmnd(cmd); 1354 case REQ_OP_ZONE_RESET: 1355 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1356 false); 1357 case REQ_OP_ZONE_RESET_ALL: 1358 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1359 true); 1360 case REQ_OP_ZONE_OPEN: 1361 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1362 case REQ_OP_ZONE_CLOSE: 1363 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1364 case REQ_OP_ZONE_FINISH: 1365 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1366 default: 1367 WARN_ON_ONCE(1); 1368 return BLK_STS_NOTSUPP; 1369 } 1370 } 1371 1372 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1373 { 1374 struct request *rq = scsi_cmd_to_rq(SCpnt); 1375 u8 *cmnd; 1376 1377 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1378 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1379 1380 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1381 cmnd = SCpnt->cmnd; 1382 SCpnt->cmnd = NULL; 1383 SCpnt->cmd_len = 0; 1384 mempool_free(cmnd, sd_cdb_pool); 1385 } 1386 } 1387 1388 static bool sd_need_revalidate(struct block_device *bdev, 1389 struct scsi_disk *sdkp) 1390 { 1391 if (sdkp->device->removable || sdkp->write_prot) { 1392 if (bdev_check_media_change(bdev)) 1393 return true; 1394 } 1395 1396 /* 1397 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1398 * nothing to do with partitions, BLKRRPART is used to force a full 1399 * revalidate after things like a format for historical reasons. 1400 */ 1401 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 1402 } 1403 1404 /** 1405 * sd_open - open a scsi disk device 1406 * @bdev: Block device of the scsi disk to open 1407 * @mode: FMODE_* mask 1408 * 1409 * Returns 0 if successful. Returns a negated errno value in case 1410 * of error. 1411 * 1412 * Note: This can be called from a user context (e.g. fsck(1) ) 1413 * or from within the kernel (e.g. as a result of a mount(1) ). 1414 * In the latter case @inode and @filp carry an abridged amount 1415 * of information as noted above. 1416 * 1417 * Locking: called with bdev->bd_disk->open_mutex held. 1418 **/ 1419 static int sd_open(struct block_device *bdev, fmode_t mode) 1420 { 1421 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1422 struct scsi_device *sdev; 1423 int retval; 1424 1425 if (!sdkp) 1426 return -ENXIO; 1427 1428 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1429 1430 sdev = sdkp->device; 1431 1432 /* 1433 * If the device is in error recovery, wait until it is done. 1434 * If the device is offline, then disallow any access to it. 1435 */ 1436 retval = -ENXIO; 1437 if (!scsi_block_when_processing_errors(sdev)) 1438 goto error_out; 1439 1440 if (sd_need_revalidate(bdev, sdkp)) 1441 sd_revalidate_disk(bdev->bd_disk); 1442 1443 /* 1444 * If the drive is empty, just let the open fail. 1445 */ 1446 retval = -ENOMEDIUM; 1447 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1448 goto error_out; 1449 1450 /* 1451 * If the device has the write protect tab set, have the open fail 1452 * if the user expects to be able to write to the thing. 1453 */ 1454 retval = -EROFS; 1455 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1456 goto error_out; 1457 1458 /* 1459 * It is possible that the disk changing stuff resulted in 1460 * the device being taken offline. If this is the case, 1461 * report this to the user, and don't pretend that the 1462 * open actually succeeded. 1463 */ 1464 retval = -ENXIO; 1465 if (!scsi_device_online(sdev)) 1466 goto error_out; 1467 1468 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1469 if (scsi_block_when_processing_errors(sdev)) 1470 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1471 } 1472 1473 return 0; 1474 1475 error_out: 1476 scsi_disk_put(sdkp); 1477 return retval; 1478 } 1479 1480 /** 1481 * sd_release - invoked when the (last) close(2) is called on this 1482 * scsi disk. 1483 * @disk: disk to release 1484 * @mode: FMODE_* mask 1485 * 1486 * Returns 0. 1487 * 1488 * Note: may block (uninterruptible) if error recovery is underway 1489 * on this disk. 1490 * 1491 * Locking: called with bdev->bd_disk->open_mutex held. 1492 **/ 1493 static void sd_release(struct gendisk *disk, fmode_t mode) 1494 { 1495 struct scsi_disk *sdkp = scsi_disk(disk); 1496 struct scsi_device *sdev = sdkp->device; 1497 1498 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1499 1500 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1501 if (scsi_block_when_processing_errors(sdev)) 1502 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1503 } 1504 1505 scsi_disk_put(sdkp); 1506 } 1507 1508 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1509 { 1510 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1511 struct scsi_device *sdp = sdkp->device; 1512 struct Scsi_Host *host = sdp->host; 1513 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1514 int diskinfo[4]; 1515 1516 /* default to most commonly used values */ 1517 diskinfo[0] = 0x40; /* 1 << 6 */ 1518 diskinfo[1] = 0x20; /* 1 << 5 */ 1519 diskinfo[2] = capacity >> 11; 1520 1521 /* override with calculated, extended default, or driver values */ 1522 if (host->hostt->bios_param) 1523 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1524 else 1525 scsicam_bios_param(bdev, capacity, diskinfo); 1526 1527 geo->heads = diskinfo[0]; 1528 geo->sectors = diskinfo[1]; 1529 geo->cylinders = diskinfo[2]; 1530 return 0; 1531 } 1532 1533 /** 1534 * sd_ioctl - process an ioctl 1535 * @bdev: target block device 1536 * @mode: FMODE_* mask 1537 * @cmd: ioctl command number 1538 * @arg: this is third argument given to ioctl(2) system call. 1539 * Often contains a pointer. 1540 * 1541 * Returns 0 if successful (some ioctls return positive numbers on 1542 * success as well). Returns a negated errno value in case of error. 1543 * 1544 * Note: most ioctls are forward onto the block subsystem or further 1545 * down in the scsi subsystem. 1546 **/ 1547 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1548 unsigned int cmd, unsigned long arg) 1549 { 1550 struct gendisk *disk = bdev->bd_disk; 1551 struct scsi_disk *sdkp = scsi_disk(disk); 1552 struct scsi_device *sdp = sdkp->device; 1553 void __user *p = (void __user *)arg; 1554 int error; 1555 1556 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1557 "cmd=0x%x\n", disk->disk_name, cmd)); 1558 1559 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1560 return -ENOIOCTLCMD; 1561 1562 /* 1563 * If we are in the middle of error recovery, don't let anyone 1564 * else try and use this device. Also, if error recovery fails, it 1565 * may try and take the device offline, in which case all further 1566 * access to the device is prohibited. 1567 */ 1568 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1569 (mode & FMODE_NDELAY) != 0); 1570 if (error) 1571 return error; 1572 1573 if (is_sed_ioctl(cmd)) 1574 return sed_ioctl(sdkp->opal_dev, cmd, p); 1575 return scsi_ioctl(sdp, disk, mode, cmd, p); 1576 } 1577 1578 static void set_media_not_present(struct scsi_disk *sdkp) 1579 { 1580 if (sdkp->media_present) 1581 sdkp->device->changed = 1; 1582 1583 if (sdkp->device->removable) { 1584 sdkp->media_present = 0; 1585 sdkp->capacity = 0; 1586 } 1587 } 1588 1589 static int media_not_present(struct scsi_disk *sdkp, 1590 struct scsi_sense_hdr *sshdr) 1591 { 1592 if (!scsi_sense_valid(sshdr)) 1593 return 0; 1594 1595 /* not invoked for commands that could return deferred errors */ 1596 switch (sshdr->sense_key) { 1597 case UNIT_ATTENTION: 1598 case NOT_READY: 1599 /* medium not present */ 1600 if (sshdr->asc == 0x3A) { 1601 set_media_not_present(sdkp); 1602 return 1; 1603 } 1604 } 1605 return 0; 1606 } 1607 1608 /** 1609 * sd_check_events - check media events 1610 * @disk: kernel device descriptor 1611 * @clearing: disk events currently being cleared 1612 * 1613 * Returns mask of DISK_EVENT_*. 1614 * 1615 * Note: this function is invoked from the block subsystem. 1616 **/ 1617 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1618 { 1619 struct scsi_disk *sdkp = scsi_disk_get(disk); 1620 struct scsi_device *sdp; 1621 int retval; 1622 bool disk_changed; 1623 1624 if (!sdkp) 1625 return 0; 1626 1627 sdp = sdkp->device; 1628 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1629 1630 /* 1631 * If the device is offline, don't send any commands - just pretend as 1632 * if the command failed. If the device ever comes back online, we 1633 * can deal with it then. It is only because of unrecoverable errors 1634 * that we would ever take a device offline in the first place. 1635 */ 1636 if (!scsi_device_online(sdp)) { 1637 set_media_not_present(sdkp); 1638 goto out; 1639 } 1640 1641 /* 1642 * Using TEST_UNIT_READY enables differentiation between drive with 1643 * no cartridge loaded - NOT READY, drive with changed cartridge - 1644 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1645 * 1646 * Drives that auto spin down. eg iomega jaz 1G, will be started 1647 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1648 * sd_revalidate() is called. 1649 */ 1650 if (scsi_block_when_processing_errors(sdp)) { 1651 struct scsi_sense_hdr sshdr = { 0, }; 1652 1653 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1654 &sshdr); 1655 1656 /* failed to execute TUR, assume media not present */ 1657 if (retval < 0 || host_byte(retval)) { 1658 set_media_not_present(sdkp); 1659 goto out; 1660 } 1661 1662 if (media_not_present(sdkp, &sshdr)) 1663 goto out; 1664 } 1665 1666 /* 1667 * For removable scsi disk we have to recognise the presence 1668 * of a disk in the drive. 1669 */ 1670 if (!sdkp->media_present) 1671 sdp->changed = 1; 1672 sdkp->media_present = 1; 1673 out: 1674 /* 1675 * sdp->changed is set under the following conditions: 1676 * 1677 * Medium present state has changed in either direction. 1678 * Device has indicated UNIT_ATTENTION. 1679 */ 1680 disk_changed = sdp->changed; 1681 sdp->changed = 0; 1682 scsi_disk_put(sdkp); 1683 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1684 } 1685 1686 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1687 { 1688 int retries, res; 1689 struct scsi_device *sdp = sdkp->device; 1690 const int timeout = sdp->request_queue->rq_timeout 1691 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1692 struct scsi_sense_hdr my_sshdr; 1693 1694 if (!scsi_device_online(sdp)) 1695 return -ENODEV; 1696 1697 /* caller might not be interested in sense, but we need it */ 1698 if (!sshdr) 1699 sshdr = &my_sshdr; 1700 1701 for (retries = 3; retries > 0; --retries) { 1702 unsigned char cmd[10] = { 0 }; 1703 1704 cmd[0] = SYNCHRONIZE_CACHE; 1705 /* 1706 * Leave the rest of the command zero to indicate 1707 * flush everything. 1708 */ 1709 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1710 timeout, sdkp->max_retries, 0, RQF_PM, NULL); 1711 if (res == 0) 1712 break; 1713 } 1714 1715 if (res) { 1716 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1717 1718 if (res < 0) 1719 return res; 1720 1721 if (scsi_status_is_check_condition(res) && 1722 scsi_sense_valid(sshdr)) { 1723 sd_print_sense_hdr(sdkp, sshdr); 1724 1725 /* we need to evaluate the error return */ 1726 if (sshdr->asc == 0x3a || /* medium not present */ 1727 sshdr->asc == 0x20 || /* invalid command */ 1728 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1729 /* this is no error here */ 1730 return 0; 1731 } 1732 1733 switch (host_byte(res)) { 1734 /* ignore errors due to racing a disconnection */ 1735 case DID_BAD_TARGET: 1736 case DID_NO_CONNECT: 1737 return 0; 1738 /* signal the upper layer it might try again */ 1739 case DID_BUS_BUSY: 1740 case DID_IMM_RETRY: 1741 case DID_REQUEUE: 1742 case DID_SOFT_ERROR: 1743 return -EBUSY; 1744 default: 1745 return -EIO; 1746 } 1747 } 1748 return 0; 1749 } 1750 1751 static void sd_rescan(struct device *dev) 1752 { 1753 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1754 1755 sd_revalidate_disk(sdkp->disk); 1756 } 1757 1758 static char sd_pr_type(enum pr_type type) 1759 { 1760 switch (type) { 1761 case PR_WRITE_EXCLUSIVE: 1762 return 0x01; 1763 case PR_EXCLUSIVE_ACCESS: 1764 return 0x03; 1765 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1766 return 0x05; 1767 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1768 return 0x06; 1769 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1770 return 0x07; 1771 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1772 return 0x08; 1773 default: 1774 return 0; 1775 } 1776 }; 1777 1778 static int sd_pr_command(struct block_device *bdev, u8 sa, 1779 u64 key, u64 sa_key, u8 type, u8 flags) 1780 { 1781 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1782 struct scsi_device *sdev = sdkp->device; 1783 struct scsi_sense_hdr sshdr; 1784 int result; 1785 u8 cmd[16] = { 0, }; 1786 u8 data[24] = { 0, }; 1787 1788 cmd[0] = PERSISTENT_RESERVE_OUT; 1789 cmd[1] = sa; 1790 cmd[2] = type; 1791 put_unaligned_be32(sizeof(data), &cmd[5]); 1792 1793 put_unaligned_be64(key, &data[0]); 1794 put_unaligned_be64(sa_key, &data[8]); 1795 data[20] = flags; 1796 1797 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1798 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL); 1799 1800 if (scsi_status_is_check_condition(result) && 1801 scsi_sense_valid(&sshdr)) { 1802 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1803 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1804 } 1805 1806 return result; 1807 } 1808 1809 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1810 u32 flags) 1811 { 1812 if (flags & ~PR_FL_IGNORE_KEY) 1813 return -EOPNOTSUPP; 1814 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1815 old_key, new_key, 0, 1816 (1 << 0) /* APTPL */); 1817 } 1818 1819 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1820 u32 flags) 1821 { 1822 if (flags) 1823 return -EOPNOTSUPP; 1824 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1825 } 1826 1827 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1828 { 1829 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1830 } 1831 1832 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1833 enum pr_type type, bool abort) 1834 { 1835 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1836 sd_pr_type(type), 0); 1837 } 1838 1839 static int sd_pr_clear(struct block_device *bdev, u64 key) 1840 { 1841 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1842 } 1843 1844 static const struct pr_ops sd_pr_ops = { 1845 .pr_register = sd_pr_register, 1846 .pr_reserve = sd_pr_reserve, 1847 .pr_release = sd_pr_release, 1848 .pr_preempt = sd_pr_preempt, 1849 .pr_clear = sd_pr_clear, 1850 }; 1851 1852 static const struct block_device_operations sd_fops = { 1853 .owner = THIS_MODULE, 1854 .open = sd_open, 1855 .release = sd_release, 1856 .ioctl = sd_ioctl, 1857 .getgeo = sd_getgeo, 1858 .compat_ioctl = blkdev_compat_ptr_ioctl, 1859 .check_events = sd_check_events, 1860 .unlock_native_capacity = sd_unlock_native_capacity, 1861 .report_zones = sd_zbc_report_zones, 1862 .pr_ops = &sd_pr_ops, 1863 }; 1864 1865 /** 1866 * sd_eh_reset - reset error handling callback 1867 * @scmd: sd-issued command that has failed 1868 * 1869 * This function is called by the SCSI midlayer before starting 1870 * SCSI EH. When counting medium access failures we have to be 1871 * careful to register it only only once per device and SCSI EH run; 1872 * there might be several timed out commands which will cause the 1873 * 'max_medium_access_timeouts' counter to trigger after the first 1874 * SCSI EH run already and set the device to offline. 1875 * So this function resets the internal counter before starting SCSI EH. 1876 **/ 1877 static void sd_eh_reset(struct scsi_cmnd *scmd) 1878 { 1879 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->rq_disk); 1880 1881 /* New SCSI EH run, reset gate variable */ 1882 sdkp->ignore_medium_access_errors = false; 1883 } 1884 1885 /** 1886 * sd_eh_action - error handling callback 1887 * @scmd: sd-issued command that has failed 1888 * @eh_disp: The recovery disposition suggested by the midlayer 1889 * 1890 * This function is called by the SCSI midlayer upon completion of an 1891 * error test command (currently TEST UNIT READY). The result of sending 1892 * the eh command is passed in eh_disp. We're looking for devices that 1893 * fail medium access commands but are OK with non access commands like 1894 * test unit ready (so wrongly see the device as having a successful 1895 * recovery) 1896 **/ 1897 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1898 { 1899 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->rq_disk); 1900 struct scsi_device *sdev = scmd->device; 1901 1902 if (!scsi_device_online(sdev) || 1903 !scsi_medium_access_command(scmd) || 1904 host_byte(scmd->result) != DID_TIME_OUT || 1905 eh_disp != SUCCESS) 1906 return eh_disp; 1907 1908 /* 1909 * The device has timed out executing a medium access command. 1910 * However, the TEST UNIT READY command sent during error 1911 * handling completed successfully. Either the device is in the 1912 * process of recovering or has it suffered an internal failure 1913 * that prevents access to the storage medium. 1914 */ 1915 if (!sdkp->ignore_medium_access_errors) { 1916 sdkp->medium_access_timed_out++; 1917 sdkp->ignore_medium_access_errors = true; 1918 } 1919 1920 /* 1921 * If the device keeps failing read/write commands but TEST UNIT 1922 * READY always completes successfully we assume that medium 1923 * access is no longer possible and take the device offline. 1924 */ 1925 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1926 scmd_printk(KERN_ERR, scmd, 1927 "Medium access timeout failure. Offlining disk!\n"); 1928 mutex_lock(&sdev->state_mutex); 1929 scsi_device_set_state(sdev, SDEV_OFFLINE); 1930 mutex_unlock(&sdev->state_mutex); 1931 1932 return SUCCESS; 1933 } 1934 1935 return eh_disp; 1936 } 1937 1938 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1939 { 1940 struct request *req = scsi_cmd_to_rq(scmd); 1941 struct scsi_device *sdev = scmd->device; 1942 unsigned int transferred, good_bytes; 1943 u64 start_lba, end_lba, bad_lba; 1944 1945 /* 1946 * Some commands have a payload smaller than the device logical 1947 * block size (e.g. INQUIRY on a 4K disk). 1948 */ 1949 if (scsi_bufflen(scmd) <= sdev->sector_size) 1950 return 0; 1951 1952 /* Check if we have a 'bad_lba' information */ 1953 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1954 SCSI_SENSE_BUFFERSIZE, 1955 &bad_lba)) 1956 return 0; 1957 1958 /* 1959 * If the bad lba was reported incorrectly, we have no idea where 1960 * the error is. 1961 */ 1962 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1963 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1964 if (bad_lba < start_lba || bad_lba >= end_lba) 1965 return 0; 1966 1967 /* 1968 * resid is optional but mostly filled in. When it's unused, 1969 * its value is zero, so we assume the whole buffer transferred 1970 */ 1971 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1972 1973 /* This computation should always be done in terms of the 1974 * resolution of the device's medium. 1975 */ 1976 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1977 1978 return min(good_bytes, transferred); 1979 } 1980 1981 /** 1982 * sd_done - bottom half handler: called when the lower level 1983 * driver has completed (successfully or otherwise) a scsi command. 1984 * @SCpnt: mid-level's per command structure. 1985 * 1986 * Note: potentially run from within an ISR. Must not block. 1987 **/ 1988 static int sd_done(struct scsi_cmnd *SCpnt) 1989 { 1990 int result = SCpnt->result; 1991 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1992 unsigned int sector_size = SCpnt->device->sector_size; 1993 unsigned int resid; 1994 struct scsi_sense_hdr sshdr; 1995 struct request *req = scsi_cmd_to_rq(SCpnt); 1996 struct scsi_disk *sdkp = scsi_disk(req->rq_disk); 1997 int sense_valid = 0; 1998 int sense_deferred = 0; 1999 2000 switch (req_op(req)) { 2001 case REQ_OP_DISCARD: 2002 case REQ_OP_WRITE_ZEROES: 2003 case REQ_OP_WRITE_SAME: 2004 case REQ_OP_ZONE_RESET: 2005 case REQ_OP_ZONE_RESET_ALL: 2006 case REQ_OP_ZONE_OPEN: 2007 case REQ_OP_ZONE_CLOSE: 2008 case REQ_OP_ZONE_FINISH: 2009 if (!result) { 2010 good_bytes = blk_rq_bytes(req); 2011 scsi_set_resid(SCpnt, 0); 2012 } else { 2013 good_bytes = 0; 2014 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2015 } 2016 break; 2017 default: 2018 /* 2019 * In case of bogus fw or device, we could end up having 2020 * an unaligned partial completion. Check this here and force 2021 * alignment. 2022 */ 2023 resid = scsi_get_resid(SCpnt); 2024 if (resid & (sector_size - 1)) { 2025 sd_printk(KERN_INFO, sdkp, 2026 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2027 resid, sector_size); 2028 scsi_print_command(SCpnt); 2029 resid = min(scsi_bufflen(SCpnt), 2030 round_up(resid, sector_size)); 2031 scsi_set_resid(SCpnt, resid); 2032 } 2033 } 2034 2035 if (result) { 2036 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2037 if (sense_valid) 2038 sense_deferred = scsi_sense_is_deferred(&sshdr); 2039 } 2040 sdkp->medium_access_timed_out = 0; 2041 2042 if (!scsi_status_is_check_condition(result) && 2043 (!sense_valid || sense_deferred)) 2044 goto out; 2045 2046 switch (sshdr.sense_key) { 2047 case HARDWARE_ERROR: 2048 case MEDIUM_ERROR: 2049 good_bytes = sd_completed_bytes(SCpnt); 2050 break; 2051 case RECOVERED_ERROR: 2052 good_bytes = scsi_bufflen(SCpnt); 2053 break; 2054 case NO_SENSE: 2055 /* This indicates a false check condition, so ignore it. An 2056 * unknown amount of data was transferred so treat it as an 2057 * error. 2058 */ 2059 SCpnt->result = 0; 2060 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2061 break; 2062 case ABORTED_COMMAND: 2063 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2064 good_bytes = sd_completed_bytes(SCpnt); 2065 break; 2066 case ILLEGAL_REQUEST: 2067 switch (sshdr.asc) { 2068 case 0x10: /* DIX: Host detected corruption */ 2069 good_bytes = sd_completed_bytes(SCpnt); 2070 break; 2071 case 0x20: /* INVALID COMMAND OPCODE */ 2072 case 0x24: /* INVALID FIELD IN CDB */ 2073 switch (SCpnt->cmnd[0]) { 2074 case UNMAP: 2075 sd_config_discard(sdkp, SD_LBP_DISABLE); 2076 break; 2077 case WRITE_SAME_16: 2078 case WRITE_SAME: 2079 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2080 sd_config_discard(sdkp, SD_LBP_DISABLE); 2081 } else { 2082 sdkp->device->no_write_same = 1; 2083 sd_config_write_same(sdkp); 2084 req->rq_flags |= RQF_QUIET; 2085 } 2086 break; 2087 } 2088 } 2089 break; 2090 default: 2091 break; 2092 } 2093 2094 out: 2095 if (sd_is_zoned(sdkp)) 2096 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2097 2098 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2099 "sd_done: completed %d of %d bytes\n", 2100 good_bytes, scsi_bufflen(SCpnt))); 2101 2102 return good_bytes; 2103 } 2104 2105 /* 2106 * spinup disk - called only in sd_revalidate_disk() 2107 */ 2108 static void 2109 sd_spinup_disk(struct scsi_disk *sdkp) 2110 { 2111 unsigned char cmd[10]; 2112 unsigned long spintime_expire = 0; 2113 int retries, spintime; 2114 unsigned int the_result; 2115 struct scsi_sense_hdr sshdr; 2116 int sense_valid = 0; 2117 2118 spintime = 0; 2119 2120 /* Spin up drives, as required. Only do this at boot time */ 2121 /* Spinup needs to be done for module loads too. */ 2122 do { 2123 retries = 0; 2124 2125 do { 2126 cmd[0] = TEST_UNIT_READY; 2127 memset((void *) &cmd[1], 0, 9); 2128 2129 the_result = scsi_execute_req(sdkp->device, cmd, 2130 DMA_NONE, NULL, 0, 2131 &sshdr, SD_TIMEOUT, 2132 sdkp->max_retries, NULL); 2133 2134 /* 2135 * If the drive has indicated to us that it 2136 * doesn't have any media in it, don't bother 2137 * with any more polling. 2138 */ 2139 if (media_not_present(sdkp, &sshdr)) { 2140 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); 2141 return; 2142 } 2143 2144 if (the_result) 2145 sense_valid = scsi_sense_valid(&sshdr); 2146 retries++; 2147 } while (retries < 3 && 2148 (!scsi_status_is_good(the_result) || 2149 (scsi_status_is_check_condition(the_result) && 2150 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2151 2152 if (!scsi_status_is_check_condition(the_result)) { 2153 /* no sense, TUR either succeeded or failed 2154 * with a status error */ 2155 if(!spintime && !scsi_status_is_good(the_result)) { 2156 sd_print_result(sdkp, "Test Unit Ready failed", 2157 the_result); 2158 } 2159 break; 2160 } 2161 2162 /* 2163 * The device does not want the automatic start to be issued. 2164 */ 2165 if (sdkp->device->no_start_on_add) 2166 break; 2167 2168 if (sense_valid && sshdr.sense_key == NOT_READY) { 2169 if (sshdr.asc == 4 && sshdr.ascq == 3) 2170 break; /* manual intervention required */ 2171 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2172 break; /* standby */ 2173 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2174 break; /* unavailable */ 2175 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2176 break; /* sanitize in progress */ 2177 /* 2178 * Issue command to spin up drive when not ready 2179 */ 2180 if (!spintime) { 2181 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2182 cmd[0] = START_STOP; 2183 cmd[1] = 1; /* Return immediately */ 2184 memset((void *) &cmd[2], 0, 8); 2185 cmd[4] = 1; /* Start spin cycle */ 2186 if (sdkp->device->start_stop_pwr_cond) 2187 cmd[4] |= 1 << 4; 2188 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2189 NULL, 0, &sshdr, 2190 SD_TIMEOUT, sdkp->max_retries, 2191 NULL); 2192 spintime_expire = jiffies + 100 * HZ; 2193 spintime = 1; 2194 } 2195 /* Wait 1 second for next try */ 2196 msleep(1000); 2197 printk(KERN_CONT "."); 2198 2199 /* 2200 * Wait for USB flash devices with slow firmware. 2201 * Yes, this sense key/ASC combination shouldn't 2202 * occur here. It's characteristic of these devices. 2203 */ 2204 } else if (sense_valid && 2205 sshdr.sense_key == UNIT_ATTENTION && 2206 sshdr.asc == 0x28) { 2207 if (!spintime) { 2208 spintime_expire = jiffies + 5 * HZ; 2209 spintime = 1; 2210 } 2211 /* Wait 1 second for next try */ 2212 msleep(1000); 2213 } else { 2214 /* we don't understand the sense code, so it's 2215 * probably pointless to loop */ 2216 if(!spintime) { 2217 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2218 sd_print_sense_hdr(sdkp, &sshdr); 2219 } 2220 break; 2221 } 2222 2223 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2224 2225 if (spintime) { 2226 if (scsi_status_is_good(the_result)) 2227 printk(KERN_CONT "ready\n"); 2228 else 2229 printk(KERN_CONT "not responding...\n"); 2230 } 2231 } 2232 2233 /* 2234 * Determine whether disk supports Data Integrity Field. 2235 */ 2236 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2237 { 2238 struct scsi_device *sdp = sdkp->device; 2239 u8 type; 2240 int ret = 0; 2241 2242 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2243 sdkp->protection_type = 0; 2244 return ret; 2245 } 2246 2247 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2248 2249 if (type > T10_PI_TYPE3_PROTECTION) 2250 ret = -ENODEV; 2251 else if (scsi_host_dif_capable(sdp->host, type)) 2252 ret = 1; 2253 2254 if (sdkp->first_scan || type != sdkp->protection_type) 2255 switch (ret) { 2256 case -ENODEV: 2257 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2258 " protection type %u. Disabling disk!\n", 2259 type); 2260 break; 2261 case 1: 2262 sd_printk(KERN_NOTICE, sdkp, 2263 "Enabling DIF Type %u protection\n", type); 2264 break; 2265 case 0: 2266 sd_printk(KERN_NOTICE, sdkp, 2267 "Disabling DIF Type %u protection\n", type); 2268 break; 2269 } 2270 2271 sdkp->protection_type = type; 2272 2273 return ret; 2274 } 2275 2276 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2277 struct scsi_sense_hdr *sshdr, int sense_valid, 2278 int the_result) 2279 { 2280 if (sense_valid) 2281 sd_print_sense_hdr(sdkp, sshdr); 2282 else 2283 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2284 2285 /* 2286 * Set dirty bit for removable devices if not ready - 2287 * sometimes drives will not report this properly. 2288 */ 2289 if (sdp->removable && 2290 sense_valid && sshdr->sense_key == NOT_READY) 2291 set_media_not_present(sdkp); 2292 2293 /* 2294 * We used to set media_present to 0 here to indicate no media 2295 * in the drive, but some drives fail read capacity even with 2296 * media present, so we can't do that. 2297 */ 2298 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2299 } 2300 2301 #define RC16_LEN 32 2302 #if RC16_LEN > SD_BUF_SIZE 2303 #error RC16_LEN must not be more than SD_BUF_SIZE 2304 #endif 2305 2306 #define READ_CAPACITY_RETRIES_ON_RESET 10 2307 2308 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2309 unsigned char *buffer) 2310 { 2311 unsigned char cmd[16]; 2312 struct scsi_sense_hdr sshdr; 2313 int sense_valid = 0; 2314 int the_result; 2315 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2316 unsigned int alignment; 2317 unsigned long long lba; 2318 unsigned sector_size; 2319 2320 if (sdp->no_read_capacity_16) 2321 return -EINVAL; 2322 2323 do { 2324 memset(cmd, 0, 16); 2325 cmd[0] = SERVICE_ACTION_IN_16; 2326 cmd[1] = SAI_READ_CAPACITY_16; 2327 cmd[13] = RC16_LEN; 2328 memset(buffer, 0, RC16_LEN); 2329 2330 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2331 buffer, RC16_LEN, &sshdr, 2332 SD_TIMEOUT, sdkp->max_retries, NULL); 2333 2334 if (media_not_present(sdkp, &sshdr)) 2335 return -ENODEV; 2336 2337 if (the_result > 0) { 2338 sense_valid = scsi_sense_valid(&sshdr); 2339 if (sense_valid && 2340 sshdr.sense_key == ILLEGAL_REQUEST && 2341 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2342 sshdr.ascq == 0x00) 2343 /* Invalid Command Operation Code or 2344 * Invalid Field in CDB, just retry 2345 * silently with RC10 */ 2346 return -EINVAL; 2347 if (sense_valid && 2348 sshdr.sense_key == UNIT_ATTENTION && 2349 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2350 /* Device reset might occur several times, 2351 * give it one more chance */ 2352 if (--reset_retries > 0) 2353 continue; 2354 } 2355 retries--; 2356 2357 } while (the_result && retries); 2358 2359 if (the_result) { 2360 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2361 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2362 return -EINVAL; 2363 } 2364 2365 sector_size = get_unaligned_be32(&buffer[8]); 2366 lba = get_unaligned_be64(&buffer[0]); 2367 2368 if (sd_read_protection_type(sdkp, buffer) < 0) { 2369 sdkp->capacity = 0; 2370 return -ENODEV; 2371 } 2372 2373 /* Logical blocks per physical block exponent */ 2374 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2375 2376 /* RC basis */ 2377 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2378 2379 /* Lowest aligned logical block */ 2380 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2381 blk_queue_alignment_offset(sdp->request_queue, alignment); 2382 if (alignment && sdkp->first_scan) 2383 sd_printk(KERN_NOTICE, sdkp, 2384 "physical block alignment offset: %u\n", alignment); 2385 2386 if (buffer[14] & 0x80) { /* LBPME */ 2387 sdkp->lbpme = 1; 2388 2389 if (buffer[14] & 0x40) /* LBPRZ */ 2390 sdkp->lbprz = 1; 2391 2392 sd_config_discard(sdkp, SD_LBP_WS16); 2393 } 2394 2395 sdkp->capacity = lba + 1; 2396 return sector_size; 2397 } 2398 2399 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2400 unsigned char *buffer) 2401 { 2402 unsigned char cmd[16]; 2403 struct scsi_sense_hdr sshdr; 2404 int sense_valid = 0; 2405 int the_result; 2406 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2407 sector_t lba; 2408 unsigned sector_size; 2409 2410 do { 2411 cmd[0] = READ_CAPACITY; 2412 memset(&cmd[1], 0, 9); 2413 memset(buffer, 0, 8); 2414 2415 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2416 buffer, 8, &sshdr, 2417 SD_TIMEOUT, sdkp->max_retries, NULL); 2418 2419 if (media_not_present(sdkp, &sshdr)) 2420 return -ENODEV; 2421 2422 if (the_result > 0) { 2423 sense_valid = scsi_sense_valid(&sshdr); 2424 if (sense_valid && 2425 sshdr.sense_key == UNIT_ATTENTION && 2426 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2427 /* Device reset might occur several times, 2428 * give it one more chance */ 2429 if (--reset_retries > 0) 2430 continue; 2431 } 2432 retries--; 2433 2434 } while (the_result && retries); 2435 2436 if (the_result) { 2437 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2438 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2439 return -EINVAL; 2440 } 2441 2442 sector_size = get_unaligned_be32(&buffer[4]); 2443 lba = get_unaligned_be32(&buffer[0]); 2444 2445 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2446 /* Some buggy (usb cardreader) devices return an lba of 2447 0xffffffff when the want to report a size of 0 (with 2448 which they really mean no media is present) */ 2449 sdkp->capacity = 0; 2450 sdkp->physical_block_size = sector_size; 2451 return sector_size; 2452 } 2453 2454 sdkp->capacity = lba + 1; 2455 sdkp->physical_block_size = sector_size; 2456 return sector_size; 2457 } 2458 2459 static int sd_try_rc16_first(struct scsi_device *sdp) 2460 { 2461 if (sdp->host->max_cmd_len < 16) 2462 return 0; 2463 if (sdp->try_rc_10_first) 2464 return 0; 2465 if (sdp->scsi_level > SCSI_SPC_2) 2466 return 1; 2467 if (scsi_device_protection(sdp)) 2468 return 1; 2469 return 0; 2470 } 2471 2472 /* 2473 * read disk capacity 2474 */ 2475 static void 2476 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2477 { 2478 int sector_size; 2479 struct scsi_device *sdp = sdkp->device; 2480 2481 if (sd_try_rc16_first(sdp)) { 2482 sector_size = read_capacity_16(sdkp, sdp, buffer); 2483 if (sector_size == -EOVERFLOW) 2484 goto got_data; 2485 if (sector_size == -ENODEV) 2486 return; 2487 if (sector_size < 0) 2488 sector_size = read_capacity_10(sdkp, sdp, buffer); 2489 if (sector_size < 0) 2490 return; 2491 } else { 2492 sector_size = read_capacity_10(sdkp, sdp, buffer); 2493 if (sector_size == -EOVERFLOW) 2494 goto got_data; 2495 if (sector_size < 0) 2496 return; 2497 if ((sizeof(sdkp->capacity) > 4) && 2498 (sdkp->capacity > 0xffffffffULL)) { 2499 int old_sector_size = sector_size; 2500 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2501 "Trying to use READ CAPACITY(16).\n"); 2502 sector_size = read_capacity_16(sdkp, sdp, buffer); 2503 if (sector_size < 0) { 2504 sd_printk(KERN_NOTICE, sdkp, 2505 "Using 0xffffffff as device size\n"); 2506 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2507 sector_size = old_sector_size; 2508 goto got_data; 2509 } 2510 /* Remember that READ CAPACITY(16) succeeded */ 2511 sdp->try_rc_10_first = 0; 2512 } 2513 } 2514 2515 /* Some devices are known to return the total number of blocks, 2516 * not the highest block number. Some devices have versions 2517 * which do this and others which do not. Some devices we might 2518 * suspect of doing this but we don't know for certain. 2519 * 2520 * If we know the reported capacity is wrong, decrement it. If 2521 * we can only guess, then assume the number of blocks is even 2522 * (usually true but not always) and err on the side of lowering 2523 * the capacity. 2524 */ 2525 if (sdp->fix_capacity || 2526 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2527 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2528 "from its reported value: %llu\n", 2529 (unsigned long long) sdkp->capacity); 2530 --sdkp->capacity; 2531 } 2532 2533 got_data: 2534 if (sector_size == 0) { 2535 sector_size = 512; 2536 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2537 "assuming 512.\n"); 2538 } 2539 2540 if (sector_size != 512 && 2541 sector_size != 1024 && 2542 sector_size != 2048 && 2543 sector_size != 4096) { 2544 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2545 sector_size); 2546 /* 2547 * The user might want to re-format the drive with 2548 * a supported sectorsize. Once this happens, it 2549 * would be relatively trivial to set the thing up. 2550 * For this reason, we leave the thing in the table. 2551 */ 2552 sdkp->capacity = 0; 2553 /* 2554 * set a bogus sector size so the normal read/write 2555 * logic in the block layer will eventually refuse any 2556 * request on this device without tripping over power 2557 * of two sector size assumptions 2558 */ 2559 sector_size = 512; 2560 } 2561 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2562 blk_queue_physical_block_size(sdp->request_queue, 2563 sdkp->physical_block_size); 2564 sdkp->device->sector_size = sector_size; 2565 2566 if (sdkp->capacity > 0xffffffff) 2567 sdp->use_16_for_rw = 1; 2568 2569 } 2570 2571 /* 2572 * Print disk capacity 2573 */ 2574 static void 2575 sd_print_capacity(struct scsi_disk *sdkp, 2576 sector_t old_capacity) 2577 { 2578 int sector_size = sdkp->device->sector_size; 2579 char cap_str_2[10], cap_str_10[10]; 2580 2581 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2582 return; 2583 2584 string_get_size(sdkp->capacity, sector_size, 2585 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2586 string_get_size(sdkp->capacity, sector_size, 2587 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2588 2589 sd_printk(KERN_NOTICE, sdkp, 2590 "%llu %d-byte logical blocks: (%s/%s)\n", 2591 (unsigned long long)sdkp->capacity, 2592 sector_size, cap_str_10, cap_str_2); 2593 2594 if (sdkp->physical_block_size != sector_size) 2595 sd_printk(KERN_NOTICE, sdkp, 2596 "%u-byte physical blocks\n", 2597 sdkp->physical_block_size); 2598 } 2599 2600 /* called with buffer of length 512 */ 2601 static inline int 2602 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2603 unsigned char *buffer, int len, struct scsi_mode_data *data, 2604 struct scsi_sense_hdr *sshdr) 2605 { 2606 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2607 SD_TIMEOUT, sdkp->max_retries, data, 2608 sshdr); 2609 } 2610 2611 /* 2612 * read write protect setting, if possible - called only in sd_revalidate_disk() 2613 * called with buffer of length SD_BUF_SIZE 2614 */ 2615 static void 2616 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2617 { 2618 int res; 2619 struct scsi_device *sdp = sdkp->device; 2620 struct scsi_mode_data data; 2621 int old_wp = sdkp->write_prot; 2622 2623 set_disk_ro(sdkp->disk, 0); 2624 if (sdp->skip_ms_page_3f) { 2625 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2626 return; 2627 } 2628 2629 if (sdp->use_192_bytes_for_3f) { 2630 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2631 } else { 2632 /* 2633 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2634 * We have to start carefully: some devices hang if we ask 2635 * for more than is available. 2636 */ 2637 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2638 2639 /* 2640 * Second attempt: ask for page 0 When only page 0 is 2641 * implemented, a request for page 3F may return Sense Key 2642 * 5: Illegal Request, Sense Code 24: Invalid field in 2643 * CDB. 2644 */ 2645 if (res < 0) 2646 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2647 2648 /* 2649 * Third attempt: ask 255 bytes, as we did earlier. 2650 */ 2651 if (res < 0) 2652 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2653 &data, NULL); 2654 } 2655 2656 if (res < 0) { 2657 sd_first_printk(KERN_WARNING, sdkp, 2658 "Test WP failed, assume Write Enabled\n"); 2659 } else { 2660 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2661 set_disk_ro(sdkp->disk, sdkp->write_prot); 2662 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2663 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2664 sdkp->write_prot ? "on" : "off"); 2665 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2666 } 2667 } 2668 } 2669 2670 /* 2671 * sd_read_cache_type - called only from sd_revalidate_disk() 2672 * called with buffer of length SD_BUF_SIZE 2673 */ 2674 static void 2675 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2676 { 2677 int len = 0, res; 2678 struct scsi_device *sdp = sdkp->device; 2679 2680 int dbd; 2681 int modepage; 2682 int first_len; 2683 struct scsi_mode_data data; 2684 struct scsi_sense_hdr sshdr; 2685 int old_wce = sdkp->WCE; 2686 int old_rcd = sdkp->RCD; 2687 int old_dpofua = sdkp->DPOFUA; 2688 2689 2690 if (sdkp->cache_override) 2691 return; 2692 2693 first_len = 4; 2694 if (sdp->skip_ms_page_8) { 2695 if (sdp->type == TYPE_RBC) 2696 goto defaults; 2697 else { 2698 if (sdp->skip_ms_page_3f) 2699 goto defaults; 2700 modepage = 0x3F; 2701 if (sdp->use_192_bytes_for_3f) 2702 first_len = 192; 2703 dbd = 0; 2704 } 2705 } else if (sdp->type == TYPE_RBC) { 2706 modepage = 6; 2707 dbd = 8; 2708 } else { 2709 modepage = 8; 2710 dbd = 0; 2711 } 2712 2713 /* cautiously ask */ 2714 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2715 &data, &sshdr); 2716 2717 if (res < 0) 2718 goto bad_sense; 2719 2720 if (!data.header_length) { 2721 modepage = 6; 2722 first_len = 0; 2723 sd_first_printk(KERN_ERR, sdkp, 2724 "Missing header in MODE_SENSE response\n"); 2725 } 2726 2727 /* that went OK, now ask for the proper length */ 2728 len = data.length; 2729 2730 /* 2731 * We're only interested in the first three bytes, actually. 2732 * But the data cache page is defined for the first 20. 2733 */ 2734 if (len < 3) 2735 goto bad_sense; 2736 else if (len > SD_BUF_SIZE) { 2737 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2738 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2739 len = SD_BUF_SIZE; 2740 } 2741 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2742 len = 192; 2743 2744 /* Get the data */ 2745 if (len > first_len) 2746 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2747 &data, &sshdr); 2748 2749 if (!res) { 2750 int offset = data.header_length + data.block_descriptor_length; 2751 2752 while (offset < len) { 2753 u8 page_code = buffer[offset] & 0x3F; 2754 u8 spf = buffer[offset] & 0x40; 2755 2756 if (page_code == 8 || page_code == 6) { 2757 /* We're interested only in the first 3 bytes. 2758 */ 2759 if (len - offset <= 2) { 2760 sd_first_printk(KERN_ERR, sdkp, 2761 "Incomplete mode parameter " 2762 "data\n"); 2763 goto defaults; 2764 } else { 2765 modepage = page_code; 2766 goto Page_found; 2767 } 2768 } else { 2769 /* Go to the next page */ 2770 if (spf && len - offset > 3) 2771 offset += 4 + (buffer[offset+2] << 8) + 2772 buffer[offset+3]; 2773 else if (!spf && len - offset > 1) 2774 offset += 2 + buffer[offset+1]; 2775 else { 2776 sd_first_printk(KERN_ERR, sdkp, 2777 "Incomplete mode " 2778 "parameter data\n"); 2779 goto defaults; 2780 } 2781 } 2782 } 2783 2784 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2785 goto defaults; 2786 2787 Page_found: 2788 if (modepage == 8) { 2789 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2790 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2791 } else { 2792 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2793 sdkp->RCD = 0; 2794 } 2795 2796 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2797 if (sdp->broken_fua) { 2798 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2799 sdkp->DPOFUA = 0; 2800 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2801 !sdkp->device->use_16_for_rw) { 2802 sd_first_printk(KERN_NOTICE, sdkp, 2803 "Uses READ/WRITE(6), disabling FUA\n"); 2804 sdkp->DPOFUA = 0; 2805 } 2806 2807 /* No cache flush allowed for write protected devices */ 2808 if (sdkp->WCE && sdkp->write_prot) 2809 sdkp->WCE = 0; 2810 2811 if (sdkp->first_scan || old_wce != sdkp->WCE || 2812 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2813 sd_printk(KERN_NOTICE, sdkp, 2814 "Write cache: %s, read cache: %s, %s\n", 2815 sdkp->WCE ? "enabled" : "disabled", 2816 sdkp->RCD ? "disabled" : "enabled", 2817 sdkp->DPOFUA ? "supports DPO and FUA" 2818 : "doesn't support DPO or FUA"); 2819 2820 return; 2821 } 2822 2823 bad_sense: 2824 if (scsi_sense_valid(&sshdr) && 2825 sshdr.sense_key == ILLEGAL_REQUEST && 2826 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2827 /* Invalid field in CDB */ 2828 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2829 else 2830 sd_first_printk(KERN_ERR, sdkp, 2831 "Asking for cache data failed\n"); 2832 2833 defaults: 2834 if (sdp->wce_default_on) { 2835 sd_first_printk(KERN_NOTICE, sdkp, 2836 "Assuming drive cache: write back\n"); 2837 sdkp->WCE = 1; 2838 } else { 2839 sd_first_printk(KERN_ERR, sdkp, 2840 "Assuming drive cache: write through\n"); 2841 sdkp->WCE = 0; 2842 } 2843 sdkp->RCD = 0; 2844 sdkp->DPOFUA = 0; 2845 } 2846 2847 /* 2848 * The ATO bit indicates whether the DIF application tag is available 2849 * for use by the operating system. 2850 */ 2851 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2852 { 2853 int res, offset; 2854 struct scsi_device *sdp = sdkp->device; 2855 struct scsi_mode_data data; 2856 struct scsi_sense_hdr sshdr; 2857 2858 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2859 return; 2860 2861 if (sdkp->protection_type == 0) 2862 return; 2863 2864 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2865 sdkp->max_retries, &data, &sshdr); 2866 2867 if (res < 0 || !data.header_length || 2868 data.length < 6) { 2869 sd_first_printk(KERN_WARNING, sdkp, 2870 "getting Control mode page failed, assume no ATO\n"); 2871 2872 if (scsi_sense_valid(&sshdr)) 2873 sd_print_sense_hdr(sdkp, &sshdr); 2874 2875 return; 2876 } 2877 2878 offset = data.header_length + data.block_descriptor_length; 2879 2880 if ((buffer[offset] & 0x3f) != 0x0a) { 2881 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2882 return; 2883 } 2884 2885 if ((buffer[offset + 5] & 0x80) == 0) 2886 return; 2887 2888 sdkp->ATO = 1; 2889 2890 return; 2891 } 2892 2893 /** 2894 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2895 * @sdkp: disk to query 2896 */ 2897 static void sd_read_block_limits(struct scsi_disk *sdkp) 2898 { 2899 unsigned int sector_sz = sdkp->device->sector_size; 2900 const int vpd_len = 64; 2901 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2902 2903 if (!buffer || 2904 /* Block Limits VPD */ 2905 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2906 goto out; 2907 2908 blk_queue_io_min(sdkp->disk->queue, 2909 get_unaligned_be16(&buffer[6]) * sector_sz); 2910 2911 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2912 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2913 2914 if (buffer[3] == 0x3c) { 2915 unsigned int lba_count, desc_count; 2916 2917 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2918 2919 if (!sdkp->lbpme) 2920 goto out; 2921 2922 lba_count = get_unaligned_be32(&buffer[20]); 2923 desc_count = get_unaligned_be32(&buffer[24]); 2924 2925 if (lba_count && desc_count) 2926 sdkp->max_unmap_blocks = lba_count; 2927 2928 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2929 2930 if (buffer[32] & 0x80) 2931 sdkp->unmap_alignment = 2932 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2933 2934 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2935 2936 if (sdkp->max_unmap_blocks) 2937 sd_config_discard(sdkp, SD_LBP_UNMAP); 2938 else 2939 sd_config_discard(sdkp, SD_LBP_WS16); 2940 2941 } else { /* LBP VPD page tells us what to use */ 2942 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2943 sd_config_discard(sdkp, SD_LBP_UNMAP); 2944 else if (sdkp->lbpws) 2945 sd_config_discard(sdkp, SD_LBP_WS16); 2946 else if (sdkp->lbpws10) 2947 sd_config_discard(sdkp, SD_LBP_WS10); 2948 else 2949 sd_config_discard(sdkp, SD_LBP_DISABLE); 2950 } 2951 } 2952 2953 out: 2954 kfree(buffer); 2955 } 2956 2957 /** 2958 * sd_read_block_characteristics - Query block dev. characteristics 2959 * @sdkp: disk to query 2960 */ 2961 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2962 { 2963 struct request_queue *q = sdkp->disk->queue; 2964 unsigned char *buffer; 2965 u16 rot; 2966 const int vpd_len = 64; 2967 2968 buffer = kmalloc(vpd_len, GFP_KERNEL); 2969 2970 if (!buffer || 2971 /* Block Device Characteristics VPD */ 2972 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2973 goto out; 2974 2975 rot = get_unaligned_be16(&buffer[4]); 2976 2977 if (rot == 1) { 2978 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2979 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2980 } 2981 2982 if (sdkp->device->type == TYPE_ZBC) { 2983 /* Host-managed */ 2984 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM); 2985 } else { 2986 sdkp->zoned = (buffer[8] >> 4) & 3; 2987 if (sdkp->zoned == 1) { 2988 /* Host-aware */ 2989 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA); 2990 } else { 2991 /* Regular disk or drive managed disk */ 2992 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE); 2993 } 2994 } 2995 2996 if (!sdkp->first_scan) 2997 goto out; 2998 2999 if (blk_queue_is_zoned(q)) { 3000 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3001 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3002 } else { 3003 if (sdkp->zoned == 1) 3004 sd_printk(KERN_NOTICE, sdkp, 3005 "Host-aware SMR disk used as regular disk\n"); 3006 else if (sdkp->zoned == 2) 3007 sd_printk(KERN_NOTICE, sdkp, 3008 "Drive-managed SMR disk\n"); 3009 } 3010 3011 out: 3012 kfree(buffer); 3013 } 3014 3015 /** 3016 * sd_read_block_provisioning - Query provisioning VPD page 3017 * @sdkp: disk to query 3018 */ 3019 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3020 { 3021 unsigned char *buffer; 3022 const int vpd_len = 8; 3023 3024 if (sdkp->lbpme == 0) 3025 return; 3026 3027 buffer = kmalloc(vpd_len, GFP_KERNEL); 3028 3029 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 3030 goto out; 3031 3032 sdkp->lbpvpd = 1; 3033 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 3034 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 3035 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 3036 3037 out: 3038 kfree(buffer); 3039 } 3040 3041 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3042 { 3043 struct scsi_device *sdev = sdkp->device; 3044 3045 if (sdev->host->no_write_same) { 3046 sdev->no_write_same = 1; 3047 3048 return; 3049 } 3050 3051 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3052 /* too large values might cause issues with arcmsr */ 3053 int vpd_buf_len = 64; 3054 3055 sdev->no_report_opcodes = 1; 3056 3057 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3058 * CODES is unsupported and the device has an ATA 3059 * Information VPD page (SAT). 3060 */ 3061 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3062 sdev->no_write_same = 1; 3063 } 3064 3065 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3066 sdkp->ws16 = 1; 3067 3068 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3069 sdkp->ws10 = 1; 3070 } 3071 3072 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3073 { 3074 struct scsi_device *sdev = sdkp->device; 3075 3076 if (!sdev->security_supported) 3077 return; 3078 3079 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3080 SECURITY_PROTOCOL_IN) == 1 && 3081 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3082 SECURITY_PROTOCOL_OUT) == 1) 3083 sdkp->security = 1; 3084 } 3085 3086 /* 3087 * Determine the device's preferred I/O size for reads and writes 3088 * unless the reported value is unreasonably small, large, not a 3089 * multiple of the physical block size, or simply garbage. 3090 */ 3091 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3092 unsigned int dev_max) 3093 { 3094 struct scsi_device *sdp = sdkp->device; 3095 unsigned int opt_xfer_bytes = 3096 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3097 3098 if (sdkp->opt_xfer_blocks == 0) 3099 return false; 3100 3101 if (sdkp->opt_xfer_blocks > dev_max) { 3102 sd_first_printk(KERN_WARNING, sdkp, 3103 "Optimal transfer size %u logical blocks " \ 3104 "> dev_max (%u logical blocks)\n", 3105 sdkp->opt_xfer_blocks, dev_max); 3106 return false; 3107 } 3108 3109 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3110 sd_first_printk(KERN_WARNING, sdkp, 3111 "Optimal transfer size %u logical blocks " \ 3112 "> sd driver limit (%u logical blocks)\n", 3113 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3114 return false; 3115 } 3116 3117 if (opt_xfer_bytes < PAGE_SIZE) { 3118 sd_first_printk(KERN_WARNING, sdkp, 3119 "Optimal transfer size %u bytes < " \ 3120 "PAGE_SIZE (%u bytes)\n", 3121 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3122 return false; 3123 } 3124 3125 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3126 sd_first_printk(KERN_WARNING, sdkp, 3127 "Optimal transfer size %u bytes not a " \ 3128 "multiple of physical block size (%u bytes)\n", 3129 opt_xfer_bytes, sdkp->physical_block_size); 3130 return false; 3131 } 3132 3133 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3134 opt_xfer_bytes); 3135 return true; 3136 } 3137 3138 /** 3139 * sd_revalidate_disk - called the first time a new disk is seen, 3140 * performs disk spin up, read_capacity, etc. 3141 * @disk: struct gendisk we care about 3142 **/ 3143 static int sd_revalidate_disk(struct gendisk *disk) 3144 { 3145 struct scsi_disk *sdkp = scsi_disk(disk); 3146 struct scsi_device *sdp = sdkp->device; 3147 struct request_queue *q = sdkp->disk->queue; 3148 sector_t old_capacity = sdkp->capacity; 3149 unsigned char *buffer; 3150 unsigned int dev_max, rw_max; 3151 3152 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3153 "sd_revalidate_disk\n")); 3154 3155 /* 3156 * If the device is offline, don't try and read capacity or any 3157 * of the other niceties. 3158 */ 3159 if (!scsi_device_online(sdp)) 3160 goto out; 3161 3162 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3163 if (!buffer) { 3164 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3165 "allocation failure.\n"); 3166 goto out; 3167 } 3168 3169 sd_spinup_disk(sdkp); 3170 3171 /* 3172 * Without media there is no reason to ask; moreover, some devices 3173 * react badly if we do. 3174 */ 3175 if (sdkp->media_present) { 3176 sd_read_capacity(sdkp, buffer); 3177 3178 /* 3179 * set the default to rotational. All non-rotational devices 3180 * support the block characteristics VPD page, which will 3181 * cause this to be updated correctly and any device which 3182 * doesn't support it should be treated as rotational. 3183 */ 3184 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3185 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3186 3187 if (scsi_device_supports_vpd(sdp)) { 3188 sd_read_block_provisioning(sdkp); 3189 sd_read_block_limits(sdkp); 3190 sd_read_block_characteristics(sdkp); 3191 sd_zbc_read_zones(sdkp, buffer); 3192 } 3193 3194 sd_print_capacity(sdkp, old_capacity); 3195 3196 sd_read_write_protect_flag(sdkp, buffer); 3197 sd_read_cache_type(sdkp, buffer); 3198 sd_read_app_tag_own(sdkp, buffer); 3199 sd_read_write_same(sdkp, buffer); 3200 sd_read_security(sdkp, buffer); 3201 } 3202 3203 /* 3204 * We now have all cache related info, determine how we deal 3205 * with flush requests. 3206 */ 3207 sd_set_flush_flag(sdkp); 3208 3209 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3210 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3211 3212 /* Some devices report a maximum block count for READ/WRITE requests. */ 3213 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3214 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3215 3216 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3217 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3218 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3219 } else { 3220 q->limits.io_opt = 0; 3221 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3222 (sector_t)BLK_DEF_MAX_SECTORS); 3223 } 3224 3225 /* Do not exceed controller limit */ 3226 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3227 3228 /* 3229 * Only update max_sectors if previously unset or if the current value 3230 * exceeds the capabilities of the hardware. 3231 */ 3232 if (sdkp->first_scan || 3233 q->limits.max_sectors > q->limits.max_dev_sectors || 3234 q->limits.max_sectors > q->limits.max_hw_sectors) 3235 q->limits.max_sectors = rw_max; 3236 3237 sdkp->first_scan = 0; 3238 3239 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3240 sd_config_write_same(sdkp); 3241 kfree(buffer); 3242 3243 /* 3244 * For a zoned drive, revalidating the zones can be done only once 3245 * the gendisk capacity is set. So if this fails, set back the gendisk 3246 * capacity to 0. 3247 */ 3248 if (sd_zbc_revalidate_zones(sdkp)) 3249 set_capacity_and_notify(disk, 0); 3250 3251 out: 3252 return 0; 3253 } 3254 3255 /** 3256 * sd_unlock_native_capacity - unlock native capacity 3257 * @disk: struct gendisk to set capacity for 3258 * 3259 * Block layer calls this function if it detects that partitions 3260 * on @disk reach beyond the end of the device. If the SCSI host 3261 * implements ->unlock_native_capacity() method, it's invoked to 3262 * give it a chance to adjust the device capacity. 3263 * 3264 * CONTEXT: 3265 * Defined by block layer. Might sleep. 3266 */ 3267 static void sd_unlock_native_capacity(struct gendisk *disk) 3268 { 3269 struct scsi_device *sdev = scsi_disk(disk)->device; 3270 3271 if (sdev->host->hostt->unlock_native_capacity) 3272 sdev->host->hostt->unlock_native_capacity(sdev); 3273 } 3274 3275 /** 3276 * sd_format_disk_name - format disk name 3277 * @prefix: name prefix - ie. "sd" for SCSI disks 3278 * @index: index of the disk to format name for 3279 * @buf: output buffer 3280 * @buflen: length of the output buffer 3281 * 3282 * SCSI disk names starts at sda. The 26th device is sdz and the 3283 * 27th is sdaa. The last one for two lettered suffix is sdzz 3284 * which is followed by sdaaa. 3285 * 3286 * This is basically 26 base counting with one extra 'nil' entry 3287 * at the beginning from the second digit on and can be 3288 * determined using similar method as 26 base conversion with the 3289 * index shifted -1 after each digit is computed. 3290 * 3291 * CONTEXT: 3292 * Don't care. 3293 * 3294 * RETURNS: 3295 * 0 on success, -errno on failure. 3296 */ 3297 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3298 { 3299 const int base = 'z' - 'a' + 1; 3300 char *begin = buf + strlen(prefix); 3301 char *end = buf + buflen; 3302 char *p; 3303 int unit; 3304 3305 p = end - 1; 3306 *p = '\0'; 3307 unit = base; 3308 do { 3309 if (p == begin) 3310 return -EINVAL; 3311 *--p = 'a' + (index % unit); 3312 index = (index / unit) - 1; 3313 } while (index >= 0); 3314 3315 memmove(begin, p, end - p); 3316 memcpy(buf, prefix, strlen(prefix)); 3317 3318 return 0; 3319 } 3320 3321 /** 3322 * sd_probe - called during driver initialization and whenever a 3323 * new scsi device is attached to the system. It is called once 3324 * for each scsi device (not just disks) present. 3325 * @dev: pointer to device object 3326 * 3327 * Returns 0 if successful (or not interested in this scsi device 3328 * (e.g. scanner)); 1 when there is an error. 3329 * 3330 * Note: this function is invoked from the scsi mid-level. 3331 * This function sets up the mapping between a given 3332 * <host,channel,id,lun> (found in sdp) and new device name 3333 * (e.g. /dev/sda). More precisely it is the block device major 3334 * and minor number that is chosen here. 3335 * 3336 * Assume sd_probe is not re-entrant (for time being) 3337 * Also think about sd_probe() and sd_remove() running coincidentally. 3338 **/ 3339 static int sd_probe(struct device *dev) 3340 { 3341 struct scsi_device *sdp = to_scsi_device(dev); 3342 struct scsi_disk *sdkp; 3343 struct gendisk *gd; 3344 int index; 3345 int error; 3346 3347 scsi_autopm_get_device(sdp); 3348 error = -ENODEV; 3349 if (sdp->type != TYPE_DISK && 3350 sdp->type != TYPE_ZBC && 3351 sdp->type != TYPE_MOD && 3352 sdp->type != TYPE_RBC) 3353 goto out; 3354 3355 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3356 sdev_printk(KERN_WARNING, sdp, 3357 "Unsupported ZBC host-managed device.\n"); 3358 goto out; 3359 } 3360 3361 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3362 "sd_probe\n")); 3363 3364 error = -ENOMEM; 3365 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3366 if (!sdkp) 3367 goto out; 3368 3369 gd = alloc_disk(SD_MINORS); 3370 if (!gd) 3371 goto out_free; 3372 3373 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3374 if (index < 0) { 3375 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3376 goto out_put; 3377 } 3378 3379 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3380 if (error) { 3381 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3382 goto out_free_index; 3383 } 3384 3385 sdkp->device = sdp; 3386 sdkp->driver = &sd_template; 3387 sdkp->disk = gd; 3388 sdkp->index = index; 3389 sdkp->max_retries = SD_MAX_RETRIES; 3390 atomic_set(&sdkp->openers, 0); 3391 atomic_set(&sdkp->device->ioerr_cnt, 0); 3392 3393 if (!sdp->request_queue->rq_timeout) { 3394 if (sdp->type != TYPE_MOD) 3395 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3396 else 3397 blk_queue_rq_timeout(sdp->request_queue, 3398 SD_MOD_TIMEOUT); 3399 } 3400 3401 device_initialize(&sdkp->dev); 3402 sdkp->dev.parent = dev; 3403 sdkp->dev.class = &sd_disk_class; 3404 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3405 3406 error = device_add(&sdkp->dev); 3407 if (error) 3408 goto out_free_index; 3409 3410 get_device(dev); 3411 dev_set_drvdata(dev, sdkp); 3412 3413 gd->major = sd_major((index & 0xf0) >> 4); 3414 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3415 3416 gd->fops = &sd_fops; 3417 gd->private_data = &sdkp->driver; 3418 gd->queue = sdkp->device->request_queue; 3419 3420 /* defaults, until the device tells us otherwise */ 3421 sdp->sector_size = 512; 3422 sdkp->capacity = 0; 3423 sdkp->media_present = 1; 3424 sdkp->write_prot = 0; 3425 sdkp->cache_override = 0; 3426 sdkp->WCE = 0; 3427 sdkp->RCD = 0; 3428 sdkp->ATO = 0; 3429 sdkp->first_scan = 1; 3430 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3431 3432 sd_revalidate_disk(gd); 3433 3434 gd->flags = GENHD_FL_EXT_DEVT; 3435 if (sdp->removable) { 3436 gd->flags |= GENHD_FL_REMOVABLE; 3437 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3438 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3439 } 3440 3441 blk_pm_runtime_init(sdp->request_queue, dev); 3442 if (sdp->rpm_autosuspend) { 3443 pm_runtime_set_autosuspend_delay(dev, 3444 sdp->host->hostt->rpm_autosuspend_delay); 3445 } 3446 device_add_disk(dev, gd, NULL); 3447 if (sdkp->capacity) 3448 sd_dif_config_host(sdkp); 3449 3450 sd_revalidate_disk(gd); 3451 3452 if (sdkp->security) { 3453 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3454 if (sdkp->opal_dev) 3455 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3456 } 3457 3458 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3459 sdp->removable ? "removable " : ""); 3460 scsi_autopm_put_device(sdp); 3461 3462 return 0; 3463 3464 out_free_index: 3465 ida_free(&sd_index_ida, index); 3466 out_put: 3467 put_disk(gd); 3468 out_free: 3469 sd_zbc_release_disk(sdkp); 3470 kfree(sdkp); 3471 out: 3472 scsi_autopm_put_device(sdp); 3473 return error; 3474 } 3475 3476 /** 3477 * sd_remove - called whenever a scsi disk (previously recognized by 3478 * sd_probe) is detached from the system. It is called (potentially 3479 * multiple times) during sd module unload. 3480 * @dev: pointer to device object 3481 * 3482 * Note: this function is invoked from the scsi mid-level. 3483 * This function potentially frees up a device name (e.g. /dev/sdc) 3484 * that could be re-used by a subsequent sd_probe(). 3485 * This function is not called when the built-in sd driver is "exit-ed". 3486 **/ 3487 static int sd_remove(struct device *dev) 3488 { 3489 struct scsi_disk *sdkp; 3490 3491 sdkp = dev_get_drvdata(dev); 3492 scsi_autopm_get_device(sdkp->device); 3493 3494 async_synchronize_full_domain(&scsi_sd_pm_domain); 3495 device_del(&sdkp->dev); 3496 del_gendisk(sdkp->disk); 3497 sd_shutdown(dev); 3498 3499 free_opal_dev(sdkp->opal_dev); 3500 3501 mutex_lock(&sd_ref_mutex); 3502 dev_set_drvdata(dev, NULL); 3503 put_device(&sdkp->dev); 3504 mutex_unlock(&sd_ref_mutex); 3505 3506 return 0; 3507 } 3508 3509 /** 3510 * scsi_disk_release - Called to free the scsi_disk structure 3511 * @dev: pointer to embedded class device 3512 * 3513 * sd_ref_mutex must be held entering this routine. Because it is 3514 * called on last put, you should always use the scsi_disk_get() 3515 * scsi_disk_put() helpers which manipulate the semaphore directly 3516 * and never do a direct put_device. 3517 **/ 3518 static void scsi_disk_release(struct device *dev) 3519 { 3520 struct scsi_disk *sdkp = to_scsi_disk(dev); 3521 struct gendisk *disk = sdkp->disk; 3522 struct request_queue *q = disk->queue; 3523 3524 ida_free(&sd_index_ida, sdkp->index); 3525 3526 /* 3527 * Wait until all requests that are in progress have completed. 3528 * This is necessary to avoid that e.g. scsi_end_request() crashes 3529 * due to clearing the disk->private_data pointer. Wait from inside 3530 * scsi_disk_release() instead of from sd_release() to avoid that 3531 * freezing and unfreezing the request queue affects user space I/O 3532 * in case multiple processes open a /dev/sd... node concurrently. 3533 */ 3534 blk_mq_freeze_queue(q); 3535 blk_mq_unfreeze_queue(q); 3536 3537 disk->private_data = NULL; 3538 put_disk(disk); 3539 put_device(&sdkp->device->sdev_gendev); 3540 3541 sd_zbc_release_disk(sdkp); 3542 3543 kfree(sdkp); 3544 } 3545 3546 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3547 { 3548 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3549 struct scsi_sense_hdr sshdr; 3550 struct scsi_device *sdp = sdkp->device; 3551 int res; 3552 3553 if (start) 3554 cmd[4] |= 1; /* START */ 3555 3556 if (sdp->start_stop_pwr_cond) 3557 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3558 3559 if (!scsi_device_online(sdp)) 3560 return -ENODEV; 3561 3562 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3563 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL); 3564 if (res) { 3565 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3566 if (res > 0 && scsi_sense_valid(&sshdr)) { 3567 sd_print_sense_hdr(sdkp, &sshdr); 3568 /* 0x3a is medium not present */ 3569 if (sshdr.asc == 0x3a) 3570 res = 0; 3571 } 3572 } 3573 3574 /* SCSI error codes must not go to the generic layer */ 3575 if (res) 3576 return -EIO; 3577 3578 return 0; 3579 } 3580 3581 /* 3582 * Send a SYNCHRONIZE CACHE instruction down to the device through 3583 * the normal SCSI command structure. Wait for the command to 3584 * complete. 3585 */ 3586 static void sd_shutdown(struct device *dev) 3587 { 3588 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3589 3590 if (!sdkp) 3591 return; /* this can happen */ 3592 3593 if (pm_runtime_suspended(dev)) 3594 return; 3595 3596 if (sdkp->WCE && sdkp->media_present) { 3597 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3598 sd_sync_cache(sdkp, NULL); 3599 } 3600 3601 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3602 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3603 sd_start_stop_device(sdkp, 0); 3604 } 3605 } 3606 3607 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3608 { 3609 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3610 struct scsi_sense_hdr sshdr; 3611 int ret = 0; 3612 3613 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3614 return 0; 3615 3616 if (sdkp->WCE && sdkp->media_present) { 3617 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3618 ret = sd_sync_cache(sdkp, &sshdr); 3619 3620 if (ret) { 3621 /* ignore OFFLINE device */ 3622 if (ret == -ENODEV) 3623 return 0; 3624 3625 if (!scsi_sense_valid(&sshdr) || 3626 sshdr.sense_key != ILLEGAL_REQUEST) 3627 return ret; 3628 3629 /* 3630 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3631 * doesn't support sync. There's not much to do and 3632 * suspend shouldn't fail. 3633 */ 3634 ret = 0; 3635 } 3636 } 3637 3638 if (sdkp->device->manage_start_stop) { 3639 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3640 /* an error is not worth aborting a system sleep */ 3641 ret = sd_start_stop_device(sdkp, 0); 3642 if (ignore_stop_errors) 3643 ret = 0; 3644 } 3645 3646 return ret; 3647 } 3648 3649 static int sd_suspend_system(struct device *dev) 3650 { 3651 return sd_suspend_common(dev, true); 3652 } 3653 3654 static int sd_suspend_runtime(struct device *dev) 3655 { 3656 return sd_suspend_common(dev, false); 3657 } 3658 3659 static int sd_resume(struct device *dev) 3660 { 3661 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3662 int ret; 3663 3664 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3665 return 0; 3666 3667 if (!sdkp->device->manage_start_stop) 3668 return 0; 3669 3670 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3671 ret = sd_start_stop_device(sdkp, 1); 3672 if (!ret) 3673 opal_unlock_from_suspend(sdkp->opal_dev); 3674 return ret; 3675 } 3676 3677 static int sd_resume_runtime(struct device *dev) 3678 { 3679 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3680 struct scsi_device *sdp = sdkp->device; 3681 3682 if (sdp->ignore_media_change) { 3683 /* clear the device's sense data */ 3684 static const u8 cmd[10] = { REQUEST_SENSE }; 3685 3686 if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, 3687 NULL, sdp->request_queue->rq_timeout, 1, 0, 3688 RQF_PM, NULL)) 3689 sd_printk(KERN_NOTICE, sdkp, 3690 "Failed to clear sense data\n"); 3691 } 3692 3693 return sd_resume(dev); 3694 } 3695 3696 /** 3697 * init_sd - entry point for this driver (both when built in or when 3698 * a module). 3699 * 3700 * Note: this function registers this driver with the scsi mid-level. 3701 **/ 3702 static int __init init_sd(void) 3703 { 3704 int majors = 0, i, err; 3705 3706 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3707 3708 for (i = 0; i < SD_MAJORS; i++) { 3709 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3710 continue; 3711 majors++; 3712 } 3713 3714 if (!majors) 3715 return -ENODEV; 3716 3717 err = class_register(&sd_disk_class); 3718 if (err) 3719 goto err_out; 3720 3721 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3722 0, 0, NULL); 3723 if (!sd_cdb_cache) { 3724 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3725 err = -ENOMEM; 3726 goto err_out_class; 3727 } 3728 3729 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3730 if (!sd_cdb_pool) { 3731 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3732 err = -ENOMEM; 3733 goto err_out_cache; 3734 } 3735 3736 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3737 if (!sd_page_pool) { 3738 printk(KERN_ERR "sd: can't init discard page pool\n"); 3739 err = -ENOMEM; 3740 goto err_out_ppool; 3741 } 3742 3743 err = scsi_register_driver(&sd_template.gendrv); 3744 if (err) 3745 goto err_out_driver; 3746 3747 return 0; 3748 3749 err_out_driver: 3750 mempool_destroy(sd_page_pool); 3751 3752 err_out_ppool: 3753 mempool_destroy(sd_cdb_pool); 3754 3755 err_out_cache: 3756 kmem_cache_destroy(sd_cdb_cache); 3757 3758 err_out_class: 3759 class_unregister(&sd_disk_class); 3760 err_out: 3761 for (i = 0; i < SD_MAJORS; i++) 3762 unregister_blkdev(sd_major(i), "sd"); 3763 return err; 3764 } 3765 3766 /** 3767 * exit_sd - exit point for this driver (when it is a module). 3768 * 3769 * Note: this function unregisters this driver from the scsi mid-level. 3770 **/ 3771 static void __exit exit_sd(void) 3772 { 3773 int i; 3774 3775 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3776 3777 scsi_unregister_driver(&sd_template.gendrv); 3778 mempool_destroy(sd_cdb_pool); 3779 mempool_destroy(sd_page_pool); 3780 kmem_cache_destroy(sd_cdb_cache); 3781 3782 class_unregister(&sd_disk_class); 3783 3784 for (i = 0; i < SD_MAJORS; i++) 3785 unregister_blkdev(sd_major(i), "sd"); 3786 } 3787 3788 module_init(init_sd); 3789 module_exit(exit_sd); 3790 3791 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3792 { 3793 scsi_print_sense_hdr(sdkp->device, 3794 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3795 } 3796 3797 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3798 { 3799 const char *hb_string = scsi_hostbyte_string(result); 3800 3801 if (hb_string) 3802 sd_printk(KERN_INFO, sdkp, 3803 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3804 hb_string ? hb_string : "invalid", 3805 "DRIVER_OK"); 3806 else 3807 sd_printk(KERN_INFO, sdkp, 3808 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 3809 msg, host_byte(result), "DRIVER_OK"); 3810 } 3811