1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/major.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 71 #include "sd.h" 72 #include "scsi_priv.h" 73 #include "scsi_logging.h" 74 75 MODULE_AUTHOR("Eric Youngdale"); 76 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 77 MODULE_LICENSE("GPL"); 78 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 99 100 #define SD_MINORS 16 101 102 static void sd_config_discard(struct scsi_disk *, unsigned int); 103 static void sd_config_write_same(struct scsi_disk *); 104 static int sd_revalidate_disk(struct gendisk *); 105 static void sd_unlock_native_capacity(struct gendisk *disk); 106 static int sd_probe(struct device *); 107 static int sd_remove(struct device *); 108 static void sd_shutdown(struct device *); 109 static int sd_suspend_system(struct device *); 110 static int sd_suspend_runtime(struct device *); 111 static int sd_resume_system(struct device *); 112 static int sd_resume_runtime(struct device *); 113 static void sd_rescan(struct device *); 114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 115 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 116 static int sd_done(struct scsi_cmnd *); 117 static void sd_eh_reset(struct scsi_cmnd *); 118 static int sd_eh_action(struct scsi_cmnd *, int); 119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 120 static void scsi_disk_release(struct device *cdev); 121 122 static DEFINE_IDA(sd_index_ida); 123 124 static mempool_t *sd_page_pool; 125 static struct lock_class_key sd_bio_compl_lkclass; 126 127 static const char *sd_cache_types[] = { 128 "write through", "none", "write back", 129 "write back, no read (daft)" 130 }; 131 132 static void sd_set_flush_flag(struct scsi_disk *sdkp) 133 { 134 bool wc = false, fua = false; 135 136 if (sdkp->WCE) { 137 wc = true; 138 if (sdkp->DPOFUA) 139 fua = true; 140 } 141 142 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 143 } 144 145 static ssize_t 146 cache_type_store(struct device *dev, struct device_attribute *attr, 147 const char *buf, size_t count) 148 { 149 int ct, rcd, wce, sp; 150 struct scsi_disk *sdkp = to_scsi_disk(dev); 151 struct scsi_device *sdp = sdkp->device; 152 char buffer[64]; 153 char *buffer_data; 154 struct scsi_mode_data data; 155 struct scsi_sense_hdr sshdr; 156 static const char temp[] = "temporary "; 157 int len; 158 159 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 160 /* no cache control on RBC devices; theoretically they 161 * can do it, but there's probably so many exceptions 162 * it's not worth the risk */ 163 return -EINVAL; 164 165 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 166 buf += sizeof(temp) - 1; 167 sdkp->cache_override = 1; 168 } else { 169 sdkp->cache_override = 0; 170 } 171 172 ct = sysfs_match_string(sd_cache_types, buf); 173 if (ct < 0) 174 return -EINVAL; 175 176 rcd = ct & 0x01 ? 1 : 0; 177 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 178 179 if (sdkp->cache_override) { 180 sdkp->WCE = wce; 181 sdkp->RCD = rcd; 182 sd_set_flush_flag(sdkp); 183 return count; 184 } 185 186 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 187 sdkp->max_retries, &data, NULL)) 188 return -EINVAL; 189 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 190 data.block_descriptor_length); 191 buffer_data = buffer + data.header_length + 192 data.block_descriptor_length; 193 buffer_data[2] &= ~0x05; 194 buffer_data[2] |= wce << 2 | rcd; 195 sp = buffer_data[0] & 0x80 ? 1 : 0; 196 buffer_data[0] &= ~0x80; 197 198 /* 199 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 200 * received mode parameter buffer before doing MODE SELECT. 201 */ 202 data.device_specific = 0; 203 204 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 205 sdkp->max_retries, &data, &sshdr)) { 206 if (scsi_sense_valid(&sshdr)) 207 sd_print_sense_hdr(sdkp, &sshdr); 208 return -EINVAL; 209 } 210 sd_revalidate_disk(sdkp->disk); 211 return count; 212 } 213 214 static ssize_t 215 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 216 char *buf) 217 { 218 struct scsi_disk *sdkp = to_scsi_disk(dev); 219 struct scsi_device *sdp = sdkp->device; 220 221 return sprintf(buf, "%u\n", sdp->manage_start_stop); 222 } 223 224 static ssize_t 225 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 226 const char *buf, size_t count) 227 { 228 struct scsi_disk *sdkp = to_scsi_disk(dev); 229 struct scsi_device *sdp = sdkp->device; 230 bool v; 231 232 if (!capable(CAP_SYS_ADMIN)) 233 return -EACCES; 234 235 if (kstrtobool(buf, &v)) 236 return -EINVAL; 237 238 sdp->manage_start_stop = v; 239 240 return count; 241 } 242 static DEVICE_ATTR_RW(manage_start_stop); 243 244 static ssize_t 245 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 246 { 247 struct scsi_disk *sdkp = to_scsi_disk(dev); 248 249 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 250 } 251 252 static ssize_t 253 allow_restart_store(struct device *dev, struct device_attribute *attr, 254 const char *buf, size_t count) 255 { 256 bool v; 257 struct scsi_disk *sdkp = to_scsi_disk(dev); 258 struct scsi_device *sdp = sdkp->device; 259 260 if (!capable(CAP_SYS_ADMIN)) 261 return -EACCES; 262 263 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 264 return -EINVAL; 265 266 if (kstrtobool(buf, &v)) 267 return -EINVAL; 268 269 sdp->allow_restart = v; 270 271 return count; 272 } 273 static DEVICE_ATTR_RW(allow_restart); 274 275 static ssize_t 276 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 277 { 278 struct scsi_disk *sdkp = to_scsi_disk(dev); 279 int ct = sdkp->RCD + 2*sdkp->WCE; 280 281 return sprintf(buf, "%s\n", sd_cache_types[ct]); 282 } 283 static DEVICE_ATTR_RW(cache_type); 284 285 static ssize_t 286 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 287 { 288 struct scsi_disk *sdkp = to_scsi_disk(dev); 289 290 return sprintf(buf, "%u\n", sdkp->DPOFUA); 291 } 292 static DEVICE_ATTR_RO(FUA); 293 294 static ssize_t 295 protection_type_show(struct device *dev, struct device_attribute *attr, 296 char *buf) 297 { 298 struct scsi_disk *sdkp = to_scsi_disk(dev); 299 300 return sprintf(buf, "%u\n", sdkp->protection_type); 301 } 302 303 static ssize_t 304 protection_type_store(struct device *dev, struct device_attribute *attr, 305 const char *buf, size_t count) 306 { 307 struct scsi_disk *sdkp = to_scsi_disk(dev); 308 unsigned int val; 309 int err; 310 311 if (!capable(CAP_SYS_ADMIN)) 312 return -EACCES; 313 314 err = kstrtouint(buf, 10, &val); 315 316 if (err) 317 return err; 318 319 if (val <= T10_PI_TYPE3_PROTECTION) 320 sdkp->protection_type = val; 321 322 return count; 323 } 324 static DEVICE_ATTR_RW(protection_type); 325 326 static ssize_t 327 protection_mode_show(struct device *dev, struct device_attribute *attr, 328 char *buf) 329 { 330 struct scsi_disk *sdkp = to_scsi_disk(dev); 331 struct scsi_device *sdp = sdkp->device; 332 unsigned int dif, dix; 333 334 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 335 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 336 337 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 338 dif = 0; 339 dix = 1; 340 } 341 342 if (!dif && !dix) 343 return sprintf(buf, "none\n"); 344 345 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 346 } 347 static DEVICE_ATTR_RO(protection_mode); 348 349 static ssize_t 350 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 351 { 352 struct scsi_disk *sdkp = to_scsi_disk(dev); 353 354 return sprintf(buf, "%u\n", sdkp->ATO); 355 } 356 static DEVICE_ATTR_RO(app_tag_own); 357 358 static ssize_t 359 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 360 char *buf) 361 { 362 struct scsi_disk *sdkp = to_scsi_disk(dev); 363 364 return sprintf(buf, "%u\n", sdkp->lbpme); 365 } 366 static DEVICE_ATTR_RO(thin_provisioning); 367 368 /* sysfs_match_string() requires dense arrays */ 369 static const char *lbp_mode[] = { 370 [SD_LBP_FULL] = "full", 371 [SD_LBP_UNMAP] = "unmap", 372 [SD_LBP_WS16] = "writesame_16", 373 [SD_LBP_WS10] = "writesame_10", 374 [SD_LBP_ZERO] = "writesame_zero", 375 [SD_LBP_DISABLE] = "disabled", 376 }; 377 378 static ssize_t 379 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 380 char *buf) 381 { 382 struct scsi_disk *sdkp = to_scsi_disk(dev); 383 384 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 385 } 386 387 static ssize_t 388 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 389 const char *buf, size_t count) 390 { 391 struct scsi_disk *sdkp = to_scsi_disk(dev); 392 struct scsi_device *sdp = sdkp->device; 393 int mode; 394 395 if (!capable(CAP_SYS_ADMIN)) 396 return -EACCES; 397 398 if (sd_is_zoned(sdkp)) { 399 sd_config_discard(sdkp, SD_LBP_DISABLE); 400 return count; 401 } 402 403 if (sdp->type != TYPE_DISK) 404 return -EINVAL; 405 406 mode = sysfs_match_string(lbp_mode, buf); 407 if (mode < 0) 408 return -EINVAL; 409 410 sd_config_discard(sdkp, mode); 411 412 return count; 413 } 414 static DEVICE_ATTR_RW(provisioning_mode); 415 416 /* sysfs_match_string() requires dense arrays */ 417 static const char *zeroing_mode[] = { 418 [SD_ZERO_WRITE] = "write", 419 [SD_ZERO_WS] = "writesame", 420 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 421 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 422 }; 423 424 static ssize_t 425 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 426 char *buf) 427 { 428 struct scsi_disk *sdkp = to_scsi_disk(dev); 429 430 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 431 } 432 433 static ssize_t 434 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 435 const char *buf, size_t count) 436 { 437 struct scsi_disk *sdkp = to_scsi_disk(dev); 438 int mode; 439 440 if (!capable(CAP_SYS_ADMIN)) 441 return -EACCES; 442 443 mode = sysfs_match_string(zeroing_mode, buf); 444 if (mode < 0) 445 return -EINVAL; 446 447 sdkp->zeroing_mode = mode; 448 449 return count; 450 } 451 static DEVICE_ATTR_RW(zeroing_mode); 452 453 static ssize_t 454 max_medium_access_timeouts_show(struct device *dev, 455 struct device_attribute *attr, char *buf) 456 { 457 struct scsi_disk *sdkp = to_scsi_disk(dev); 458 459 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 460 } 461 462 static ssize_t 463 max_medium_access_timeouts_store(struct device *dev, 464 struct device_attribute *attr, const char *buf, 465 size_t count) 466 { 467 struct scsi_disk *sdkp = to_scsi_disk(dev); 468 int err; 469 470 if (!capable(CAP_SYS_ADMIN)) 471 return -EACCES; 472 473 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 474 475 return err ? err : count; 476 } 477 static DEVICE_ATTR_RW(max_medium_access_timeouts); 478 479 static ssize_t 480 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 481 char *buf) 482 { 483 struct scsi_disk *sdkp = to_scsi_disk(dev); 484 485 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 486 } 487 488 static ssize_t 489 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 490 const char *buf, size_t count) 491 { 492 struct scsi_disk *sdkp = to_scsi_disk(dev); 493 struct scsi_device *sdp = sdkp->device; 494 unsigned long max; 495 int err; 496 497 if (!capable(CAP_SYS_ADMIN)) 498 return -EACCES; 499 500 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 501 return -EINVAL; 502 503 err = kstrtoul(buf, 10, &max); 504 505 if (err) 506 return err; 507 508 if (max == 0) 509 sdp->no_write_same = 1; 510 else if (max <= SD_MAX_WS16_BLOCKS) { 511 sdp->no_write_same = 0; 512 sdkp->max_ws_blocks = max; 513 } 514 515 sd_config_write_same(sdkp); 516 517 return count; 518 } 519 static DEVICE_ATTR_RW(max_write_same_blocks); 520 521 static ssize_t 522 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 523 { 524 struct scsi_disk *sdkp = to_scsi_disk(dev); 525 526 if (sdkp->device->type == TYPE_ZBC) 527 return sprintf(buf, "host-managed\n"); 528 if (sdkp->zoned == 1) 529 return sprintf(buf, "host-aware\n"); 530 if (sdkp->zoned == 2) 531 return sprintf(buf, "drive-managed\n"); 532 return sprintf(buf, "none\n"); 533 } 534 static DEVICE_ATTR_RO(zoned_cap); 535 536 static ssize_t 537 max_retries_store(struct device *dev, struct device_attribute *attr, 538 const char *buf, size_t count) 539 { 540 struct scsi_disk *sdkp = to_scsi_disk(dev); 541 struct scsi_device *sdev = sdkp->device; 542 int retries, err; 543 544 err = kstrtoint(buf, 10, &retries); 545 if (err) 546 return err; 547 548 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 549 sdkp->max_retries = retries; 550 return count; 551 } 552 553 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 554 SD_MAX_RETRIES); 555 return -EINVAL; 556 } 557 558 static ssize_t 559 max_retries_show(struct device *dev, struct device_attribute *attr, 560 char *buf) 561 { 562 struct scsi_disk *sdkp = to_scsi_disk(dev); 563 564 return sprintf(buf, "%d\n", sdkp->max_retries); 565 } 566 567 static DEVICE_ATTR_RW(max_retries); 568 569 static struct attribute *sd_disk_attrs[] = { 570 &dev_attr_cache_type.attr, 571 &dev_attr_FUA.attr, 572 &dev_attr_allow_restart.attr, 573 &dev_attr_manage_start_stop.attr, 574 &dev_attr_protection_type.attr, 575 &dev_attr_protection_mode.attr, 576 &dev_attr_app_tag_own.attr, 577 &dev_attr_thin_provisioning.attr, 578 &dev_attr_provisioning_mode.attr, 579 &dev_attr_zeroing_mode.attr, 580 &dev_attr_max_write_same_blocks.attr, 581 &dev_attr_max_medium_access_timeouts.attr, 582 &dev_attr_zoned_cap.attr, 583 &dev_attr_max_retries.attr, 584 NULL, 585 }; 586 ATTRIBUTE_GROUPS(sd_disk); 587 588 static struct class sd_disk_class = { 589 .name = "scsi_disk", 590 .dev_release = scsi_disk_release, 591 .dev_groups = sd_disk_groups, 592 }; 593 594 static const struct dev_pm_ops sd_pm_ops = { 595 .suspend = sd_suspend_system, 596 .resume = sd_resume_system, 597 .poweroff = sd_suspend_system, 598 .restore = sd_resume_system, 599 .runtime_suspend = sd_suspend_runtime, 600 .runtime_resume = sd_resume_runtime, 601 }; 602 603 static struct scsi_driver sd_template = { 604 .gendrv = { 605 .name = "sd", 606 .owner = THIS_MODULE, 607 .probe = sd_probe, 608 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 609 .remove = sd_remove, 610 .shutdown = sd_shutdown, 611 .pm = &sd_pm_ops, 612 }, 613 .rescan = sd_rescan, 614 .init_command = sd_init_command, 615 .uninit_command = sd_uninit_command, 616 .done = sd_done, 617 .eh_action = sd_eh_action, 618 .eh_reset = sd_eh_reset, 619 }; 620 621 /* 622 * Don't request a new module, as that could deadlock in multipath 623 * environment. 624 */ 625 static void sd_default_probe(dev_t devt) 626 { 627 } 628 629 /* 630 * Device no to disk mapping: 631 * 632 * major disc2 disc p1 633 * |............|.............|....|....| <- dev_t 634 * 31 20 19 8 7 4 3 0 635 * 636 * Inside a major, we have 16k disks, however mapped non- 637 * contiguously. The first 16 disks are for major0, the next 638 * ones with major1, ... Disk 256 is for major0 again, disk 272 639 * for major1, ... 640 * As we stay compatible with our numbering scheme, we can reuse 641 * the well-know SCSI majors 8, 65--71, 136--143. 642 */ 643 static int sd_major(int major_idx) 644 { 645 switch (major_idx) { 646 case 0: 647 return SCSI_DISK0_MAJOR; 648 case 1 ... 7: 649 return SCSI_DISK1_MAJOR + major_idx - 1; 650 case 8 ... 15: 651 return SCSI_DISK8_MAJOR + major_idx - 8; 652 default: 653 BUG(); 654 return 0; /* shut up gcc */ 655 } 656 } 657 658 #ifdef CONFIG_BLK_SED_OPAL 659 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 660 size_t len, bool send) 661 { 662 struct scsi_disk *sdkp = data; 663 struct scsi_device *sdev = sdkp->device; 664 u8 cdb[12] = { 0, }; 665 const struct scsi_exec_args exec_args = { 666 .req_flags = BLK_MQ_REQ_PM, 667 }; 668 int ret; 669 670 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 671 cdb[1] = secp; 672 put_unaligned_be16(spsp, &cdb[2]); 673 put_unaligned_be32(len, &cdb[6]); 674 675 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 676 buffer, len, SD_TIMEOUT, sdkp->max_retries, 677 &exec_args); 678 return ret <= 0 ? ret : -EIO; 679 } 680 #endif /* CONFIG_BLK_SED_OPAL */ 681 682 /* 683 * Look up the DIX operation based on whether the command is read or 684 * write and whether dix and dif are enabled. 685 */ 686 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 687 { 688 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 689 static const unsigned int ops[] = { /* wrt dix dif */ 690 SCSI_PROT_NORMAL, /* 0 0 0 */ 691 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 692 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 693 SCSI_PROT_READ_PASS, /* 0 1 1 */ 694 SCSI_PROT_NORMAL, /* 1 0 0 */ 695 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 696 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 697 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 698 }; 699 700 return ops[write << 2 | dix << 1 | dif]; 701 } 702 703 /* 704 * Returns a mask of the protection flags that are valid for a given DIX 705 * operation. 706 */ 707 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 708 { 709 static const unsigned int flag_mask[] = { 710 [SCSI_PROT_NORMAL] = 0, 711 712 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 713 SCSI_PROT_GUARD_CHECK | 714 SCSI_PROT_REF_CHECK | 715 SCSI_PROT_REF_INCREMENT, 716 717 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 718 SCSI_PROT_IP_CHECKSUM, 719 720 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 721 SCSI_PROT_GUARD_CHECK | 722 SCSI_PROT_REF_CHECK | 723 SCSI_PROT_REF_INCREMENT | 724 SCSI_PROT_IP_CHECKSUM, 725 726 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 727 SCSI_PROT_REF_INCREMENT, 728 729 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 730 SCSI_PROT_REF_CHECK | 731 SCSI_PROT_REF_INCREMENT | 732 SCSI_PROT_IP_CHECKSUM, 733 734 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 735 SCSI_PROT_GUARD_CHECK | 736 SCSI_PROT_REF_CHECK | 737 SCSI_PROT_REF_INCREMENT | 738 SCSI_PROT_IP_CHECKSUM, 739 }; 740 741 return flag_mask[prot_op]; 742 } 743 744 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 745 unsigned int dix, unsigned int dif) 746 { 747 struct request *rq = scsi_cmd_to_rq(scmd); 748 struct bio *bio = rq->bio; 749 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 750 unsigned int protect = 0; 751 752 if (dix) { /* DIX Type 0, 1, 2, 3 */ 753 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 754 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 755 756 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 757 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 758 } 759 760 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 761 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 762 763 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 764 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 765 } 766 767 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 768 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 769 770 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 771 protect = 3 << 5; /* Disable target PI checking */ 772 else 773 protect = 1 << 5; /* Enable target PI checking */ 774 } 775 776 scsi_set_prot_op(scmd, prot_op); 777 scsi_set_prot_type(scmd, dif); 778 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 779 780 return protect; 781 } 782 783 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 784 { 785 struct request_queue *q = sdkp->disk->queue; 786 unsigned int logical_block_size = sdkp->device->sector_size; 787 unsigned int max_blocks = 0; 788 789 q->limits.discard_alignment = 790 sdkp->unmap_alignment * logical_block_size; 791 q->limits.discard_granularity = 792 max(sdkp->physical_block_size, 793 sdkp->unmap_granularity * logical_block_size); 794 sdkp->provisioning_mode = mode; 795 796 switch (mode) { 797 798 case SD_LBP_FULL: 799 case SD_LBP_DISABLE: 800 blk_queue_max_discard_sectors(q, 0); 801 return; 802 803 case SD_LBP_UNMAP: 804 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 805 (u32)SD_MAX_WS16_BLOCKS); 806 break; 807 808 case SD_LBP_WS16: 809 if (sdkp->device->unmap_limit_for_ws) 810 max_blocks = sdkp->max_unmap_blocks; 811 else 812 max_blocks = sdkp->max_ws_blocks; 813 814 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 815 break; 816 817 case SD_LBP_WS10: 818 if (sdkp->device->unmap_limit_for_ws) 819 max_blocks = sdkp->max_unmap_blocks; 820 else 821 max_blocks = sdkp->max_ws_blocks; 822 823 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 824 break; 825 826 case SD_LBP_ZERO: 827 max_blocks = min_not_zero(sdkp->max_ws_blocks, 828 (u32)SD_MAX_WS10_BLOCKS); 829 break; 830 } 831 832 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 833 } 834 835 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len) 836 { 837 struct page *page; 838 839 page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 840 if (!page) 841 return NULL; 842 clear_highpage(page); 843 bvec_set_page(&rq->special_vec, page, data_len, 0); 844 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 845 return bvec_virt(&rq->special_vec); 846 } 847 848 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 849 { 850 struct scsi_device *sdp = cmd->device; 851 struct request *rq = scsi_cmd_to_rq(cmd); 852 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 853 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 854 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 855 unsigned int data_len = 24; 856 char *buf; 857 858 buf = sd_set_special_bvec(rq, data_len); 859 if (!buf) 860 return BLK_STS_RESOURCE; 861 862 cmd->cmd_len = 10; 863 cmd->cmnd[0] = UNMAP; 864 cmd->cmnd[8] = 24; 865 866 put_unaligned_be16(6 + 16, &buf[0]); 867 put_unaligned_be16(16, &buf[2]); 868 put_unaligned_be64(lba, &buf[8]); 869 put_unaligned_be32(nr_blocks, &buf[16]); 870 871 cmd->allowed = sdkp->max_retries; 872 cmd->transfersize = data_len; 873 rq->timeout = SD_TIMEOUT; 874 875 return scsi_alloc_sgtables(cmd); 876 } 877 878 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 879 bool unmap) 880 { 881 struct scsi_device *sdp = cmd->device; 882 struct request *rq = scsi_cmd_to_rq(cmd); 883 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 884 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 885 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 886 u32 data_len = sdp->sector_size; 887 888 if (!sd_set_special_bvec(rq, data_len)) 889 return BLK_STS_RESOURCE; 890 891 cmd->cmd_len = 16; 892 cmd->cmnd[0] = WRITE_SAME_16; 893 if (unmap) 894 cmd->cmnd[1] = 0x8; /* UNMAP */ 895 put_unaligned_be64(lba, &cmd->cmnd[2]); 896 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 897 898 cmd->allowed = sdkp->max_retries; 899 cmd->transfersize = data_len; 900 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 901 902 return scsi_alloc_sgtables(cmd); 903 } 904 905 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 906 bool unmap) 907 { 908 struct scsi_device *sdp = cmd->device; 909 struct request *rq = scsi_cmd_to_rq(cmd); 910 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 911 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 912 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 913 u32 data_len = sdp->sector_size; 914 915 if (!sd_set_special_bvec(rq, data_len)) 916 return BLK_STS_RESOURCE; 917 918 cmd->cmd_len = 10; 919 cmd->cmnd[0] = WRITE_SAME; 920 if (unmap) 921 cmd->cmnd[1] = 0x8; /* UNMAP */ 922 put_unaligned_be32(lba, &cmd->cmnd[2]); 923 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 924 925 cmd->allowed = sdkp->max_retries; 926 cmd->transfersize = data_len; 927 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 928 929 return scsi_alloc_sgtables(cmd); 930 } 931 932 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 933 { 934 struct request *rq = scsi_cmd_to_rq(cmd); 935 struct scsi_device *sdp = cmd->device; 936 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 937 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 938 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 939 940 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 941 switch (sdkp->zeroing_mode) { 942 case SD_ZERO_WS16_UNMAP: 943 return sd_setup_write_same16_cmnd(cmd, true); 944 case SD_ZERO_WS10_UNMAP: 945 return sd_setup_write_same10_cmnd(cmd, true); 946 } 947 } 948 949 if (sdp->no_write_same) { 950 rq->rq_flags |= RQF_QUIET; 951 return BLK_STS_TARGET; 952 } 953 954 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 955 return sd_setup_write_same16_cmnd(cmd, false); 956 957 return sd_setup_write_same10_cmnd(cmd, false); 958 } 959 960 static void sd_config_write_same(struct scsi_disk *sdkp) 961 { 962 struct request_queue *q = sdkp->disk->queue; 963 unsigned int logical_block_size = sdkp->device->sector_size; 964 965 if (sdkp->device->no_write_same) { 966 sdkp->max_ws_blocks = 0; 967 goto out; 968 } 969 970 /* Some devices can not handle block counts above 0xffff despite 971 * supporting WRITE SAME(16). Consequently we default to 64k 972 * blocks per I/O unless the device explicitly advertises a 973 * bigger limit. 974 */ 975 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 976 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 977 (u32)SD_MAX_WS16_BLOCKS); 978 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 979 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 980 (u32)SD_MAX_WS10_BLOCKS); 981 else { 982 sdkp->device->no_write_same = 1; 983 sdkp->max_ws_blocks = 0; 984 } 985 986 if (sdkp->lbprz && sdkp->lbpws) 987 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 988 else if (sdkp->lbprz && sdkp->lbpws10) 989 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 990 else if (sdkp->max_ws_blocks) 991 sdkp->zeroing_mode = SD_ZERO_WS; 992 else 993 sdkp->zeroing_mode = SD_ZERO_WRITE; 994 995 if (sdkp->max_ws_blocks && 996 sdkp->physical_block_size > logical_block_size) { 997 /* 998 * Reporting a maximum number of blocks that is not aligned 999 * on the device physical size would cause a large write same 1000 * request to be split into physically unaligned chunks by 1001 * __blkdev_issue_write_zeroes() even if the caller of this 1002 * functions took care to align the large request. So make sure 1003 * the maximum reported is aligned to the device physical block 1004 * size. This is only an optional optimization for regular 1005 * disks, but this is mandatory to avoid failure of large write 1006 * same requests directed at sequential write required zones of 1007 * host-managed ZBC disks. 1008 */ 1009 sdkp->max_ws_blocks = 1010 round_down(sdkp->max_ws_blocks, 1011 bytes_to_logical(sdkp->device, 1012 sdkp->physical_block_size)); 1013 } 1014 1015 out: 1016 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1017 (logical_block_size >> 9)); 1018 } 1019 1020 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1021 { 1022 struct request *rq = scsi_cmd_to_rq(cmd); 1023 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1024 1025 /* flush requests don't perform I/O, zero the S/G table */ 1026 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1027 1028 if (cmd->device->use_16_for_sync) { 1029 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16; 1030 cmd->cmd_len = 16; 1031 } else { 1032 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1033 cmd->cmd_len = 10; 1034 } 1035 cmd->transfersize = 0; 1036 cmd->allowed = sdkp->max_retries; 1037 1038 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1039 return BLK_STS_OK; 1040 } 1041 1042 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1043 sector_t lba, unsigned int nr_blocks, 1044 unsigned char flags) 1045 { 1046 cmd->cmd_len = SD_EXT_CDB_SIZE; 1047 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1048 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1049 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1050 cmd->cmnd[10] = flags; 1051 put_unaligned_be64(lba, &cmd->cmnd[12]); 1052 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1053 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1054 1055 return BLK_STS_OK; 1056 } 1057 1058 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1059 sector_t lba, unsigned int nr_blocks, 1060 unsigned char flags) 1061 { 1062 cmd->cmd_len = 16; 1063 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1064 cmd->cmnd[1] = flags; 1065 cmd->cmnd[14] = 0; 1066 cmd->cmnd[15] = 0; 1067 put_unaligned_be64(lba, &cmd->cmnd[2]); 1068 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1069 1070 return BLK_STS_OK; 1071 } 1072 1073 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1074 sector_t lba, unsigned int nr_blocks, 1075 unsigned char flags) 1076 { 1077 cmd->cmd_len = 10; 1078 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1079 cmd->cmnd[1] = flags; 1080 cmd->cmnd[6] = 0; 1081 cmd->cmnd[9] = 0; 1082 put_unaligned_be32(lba, &cmd->cmnd[2]); 1083 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1084 1085 return BLK_STS_OK; 1086 } 1087 1088 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1089 sector_t lba, unsigned int nr_blocks, 1090 unsigned char flags) 1091 { 1092 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1093 if (WARN_ON_ONCE(nr_blocks == 0)) 1094 return BLK_STS_IOERR; 1095 1096 if (unlikely(flags & 0x8)) { 1097 /* 1098 * This happens only if this drive failed 10byte rw 1099 * command with ILLEGAL_REQUEST during operation and 1100 * thus turned off use_10_for_rw. 1101 */ 1102 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1103 return BLK_STS_IOERR; 1104 } 1105 1106 cmd->cmd_len = 6; 1107 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1108 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1109 cmd->cmnd[2] = (lba >> 8) & 0xff; 1110 cmd->cmnd[3] = lba & 0xff; 1111 cmd->cmnd[4] = nr_blocks; 1112 cmd->cmnd[5] = 0; 1113 1114 return BLK_STS_OK; 1115 } 1116 1117 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1118 { 1119 struct request *rq = scsi_cmd_to_rq(cmd); 1120 struct scsi_device *sdp = cmd->device; 1121 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1122 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1123 sector_t threshold; 1124 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1125 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1126 bool write = rq_data_dir(rq) == WRITE; 1127 unsigned char protect, fua; 1128 blk_status_t ret; 1129 unsigned int dif; 1130 bool dix; 1131 1132 ret = scsi_alloc_sgtables(cmd); 1133 if (ret != BLK_STS_OK) 1134 return ret; 1135 1136 ret = BLK_STS_IOERR; 1137 if (!scsi_device_online(sdp) || sdp->changed) { 1138 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1139 goto fail; 1140 } 1141 1142 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1143 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1144 goto fail; 1145 } 1146 1147 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1148 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1149 goto fail; 1150 } 1151 1152 /* 1153 * Some SD card readers can't handle accesses which touch the 1154 * last one or two logical blocks. Split accesses as needed. 1155 */ 1156 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1157 1158 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1159 if (lba < threshold) { 1160 /* Access up to the threshold but not beyond */ 1161 nr_blocks = threshold - lba; 1162 } else { 1163 /* Access only a single logical block */ 1164 nr_blocks = 1; 1165 } 1166 } 1167 1168 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1169 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1170 if (ret) 1171 goto fail; 1172 } 1173 1174 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1175 dix = scsi_prot_sg_count(cmd); 1176 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1177 1178 if (dif || dix) 1179 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1180 else 1181 protect = 0; 1182 1183 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1184 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1185 protect | fua); 1186 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1187 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1188 protect | fua); 1189 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1190 sdp->use_10_for_rw || protect) { 1191 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1192 protect | fua); 1193 } else { 1194 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1195 protect | fua); 1196 } 1197 1198 if (unlikely(ret != BLK_STS_OK)) 1199 goto fail; 1200 1201 /* 1202 * We shouldn't disconnect in the middle of a sector, so with a dumb 1203 * host adapter, it's safe to assume that we can at least transfer 1204 * this many bytes between each connect / disconnect. 1205 */ 1206 cmd->transfersize = sdp->sector_size; 1207 cmd->underflow = nr_blocks << 9; 1208 cmd->allowed = sdkp->max_retries; 1209 cmd->sdb.length = nr_blocks * sdp->sector_size; 1210 1211 SCSI_LOG_HLQUEUE(1, 1212 scmd_printk(KERN_INFO, cmd, 1213 "%s: block=%llu, count=%d\n", __func__, 1214 (unsigned long long)blk_rq_pos(rq), 1215 blk_rq_sectors(rq))); 1216 SCSI_LOG_HLQUEUE(2, 1217 scmd_printk(KERN_INFO, cmd, 1218 "%s %d/%u 512 byte blocks.\n", 1219 write ? "writing" : "reading", nr_blocks, 1220 blk_rq_sectors(rq))); 1221 1222 /* 1223 * This indicates that the command is ready from our end to be queued. 1224 */ 1225 return BLK_STS_OK; 1226 fail: 1227 scsi_free_sgtables(cmd); 1228 return ret; 1229 } 1230 1231 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1232 { 1233 struct request *rq = scsi_cmd_to_rq(cmd); 1234 1235 switch (req_op(rq)) { 1236 case REQ_OP_DISCARD: 1237 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1238 case SD_LBP_UNMAP: 1239 return sd_setup_unmap_cmnd(cmd); 1240 case SD_LBP_WS16: 1241 return sd_setup_write_same16_cmnd(cmd, true); 1242 case SD_LBP_WS10: 1243 return sd_setup_write_same10_cmnd(cmd, true); 1244 case SD_LBP_ZERO: 1245 return sd_setup_write_same10_cmnd(cmd, false); 1246 default: 1247 return BLK_STS_TARGET; 1248 } 1249 case REQ_OP_WRITE_ZEROES: 1250 return sd_setup_write_zeroes_cmnd(cmd); 1251 case REQ_OP_FLUSH: 1252 return sd_setup_flush_cmnd(cmd); 1253 case REQ_OP_READ: 1254 case REQ_OP_WRITE: 1255 case REQ_OP_ZONE_APPEND: 1256 return sd_setup_read_write_cmnd(cmd); 1257 case REQ_OP_ZONE_RESET: 1258 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1259 false); 1260 case REQ_OP_ZONE_RESET_ALL: 1261 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1262 true); 1263 case REQ_OP_ZONE_OPEN: 1264 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1265 case REQ_OP_ZONE_CLOSE: 1266 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1267 case REQ_OP_ZONE_FINISH: 1268 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1269 default: 1270 WARN_ON_ONCE(1); 1271 return BLK_STS_NOTSUPP; 1272 } 1273 } 1274 1275 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1276 { 1277 struct request *rq = scsi_cmd_to_rq(SCpnt); 1278 1279 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1280 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1281 } 1282 1283 static bool sd_need_revalidate(struct block_device *bdev, 1284 struct scsi_disk *sdkp) 1285 { 1286 if (sdkp->device->removable || sdkp->write_prot) { 1287 if (bdev_check_media_change(bdev)) 1288 return true; 1289 } 1290 1291 /* 1292 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1293 * nothing to do with partitions, BLKRRPART is used to force a full 1294 * revalidate after things like a format for historical reasons. 1295 */ 1296 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 1297 } 1298 1299 /** 1300 * sd_open - open a scsi disk device 1301 * @bdev: Block device of the scsi disk to open 1302 * @mode: FMODE_* mask 1303 * 1304 * Returns 0 if successful. Returns a negated errno value in case 1305 * of error. 1306 * 1307 * Note: This can be called from a user context (e.g. fsck(1) ) 1308 * or from within the kernel (e.g. as a result of a mount(1) ). 1309 * In the latter case @inode and @filp carry an abridged amount 1310 * of information as noted above. 1311 * 1312 * Locking: called with bdev->bd_disk->open_mutex held. 1313 **/ 1314 static int sd_open(struct block_device *bdev, fmode_t mode) 1315 { 1316 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1317 struct scsi_device *sdev = sdkp->device; 1318 int retval; 1319 1320 if (scsi_device_get(sdev)) 1321 return -ENXIO; 1322 1323 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1324 1325 /* 1326 * If the device is in error recovery, wait until it is done. 1327 * If the device is offline, then disallow any access to it. 1328 */ 1329 retval = -ENXIO; 1330 if (!scsi_block_when_processing_errors(sdev)) 1331 goto error_out; 1332 1333 if (sd_need_revalidate(bdev, sdkp)) 1334 sd_revalidate_disk(bdev->bd_disk); 1335 1336 /* 1337 * If the drive is empty, just let the open fail. 1338 */ 1339 retval = -ENOMEDIUM; 1340 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1341 goto error_out; 1342 1343 /* 1344 * If the device has the write protect tab set, have the open fail 1345 * if the user expects to be able to write to the thing. 1346 */ 1347 retval = -EROFS; 1348 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1349 goto error_out; 1350 1351 /* 1352 * It is possible that the disk changing stuff resulted in 1353 * the device being taken offline. If this is the case, 1354 * report this to the user, and don't pretend that the 1355 * open actually succeeded. 1356 */ 1357 retval = -ENXIO; 1358 if (!scsi_device_online(sdev)) 1359 goto error_out; 1360 1361 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1362 if (scsi_block_when_processing_errors(sdev)) 1363 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1364 } 1365 1366 return 0; 1367 1368 error_out: 1369 scsi_device_put(sdev); 1370 return retval; 1371 } 1372 1373 /** 1374 * sd_release - invoked when the (last) close(2) is called on this 1375 * scsi disk. 1376 * @disk: disk to release 1377 * @mode: FMODE_* mask 1378 * 1379 * Returns 0. 1380 * 1381 * Note: may block (uninterruptible) if error recovery is underway 1382 * on this disk. 1383 * 1384 * Locking: called with bdev->bd_disk->open_mutex held. 1385 **/ 1386 static void sd_release(struct gendisk *disk, fmode_t mode) 1387 { 1388 struct scsi_disk *sdkp = scsi_disk(disk); 1389 struct scsi_device *sdev = sdkp->device; 1390 1391 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1392 1393 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1394 if (scsi_block_when_processing_errors(sdev)) 1395 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1396 } 1397 1398 scsi_device_put(sdev); 1399 } 1400 1401 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1402 { 1403 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1404 struct scsi_device *sdp = sdkp->device; 1405 struct Scsi_Host *host = sdp->host; 1406 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1407 int diskinfo[4]; 1408 1409 /* default to most commonly used values */ 1410 diskinfo[0] = 0x40; /* 1 << 6 */ 1411 diskinfo[1] = 0x20; /* 1 << 5 */ 1412 diskinfo[2] = capacity >> 11; 1413 1414 /* override with calculated, extended default, or driver values */ 1415 if (host->hostt->bios_param) 1416 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1417 else 1418 scsicam_bios_param(bdev, capacity, diskinfo); 1419 1420 geo->heads = diskinfo[0]; 1421 geo->sectors = diskinfo[1]; 1422 geo->cylinders = diskinfo[2]; 1423 return 0; 1424 } 1425 1426 /** 1427 * sd_ioctl - process an ioctl 1428 * @bdev: target block device 1429 * @mode: FMODE_* mask 1430 * @cmd: ioctl command number 1431 * @arg: this is third argument given to ioctl(2) system call. 1432 * Often contains a pointer. 1433 * 1434 * Returns 0 if successful (some ioctls return positive numbers on 1435 * success as well). Returns a negated errno value in case of error. 1436 * 1437 * Note: most ioctls are forward onto the block subsystem or further 1438 * down in the scsi subsystem. 1439 **/ 1440 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1441 unsigned int cmd, unsigned long arg) 1442 { 1443 struct gendisk *disk = bdev->bd_disk; 1444 struct scsi_disk *sdkp = scsi_disk(disk); 1445 struct scsi_device *sdp = sdkp->device; 1446 void __user *p = (void __user *)arg; 1447 int error; 1448 1449 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1450 "cmd=0x%x\n", disk->disk_name, cmd)); 1451 1452 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1453 return -ENOIOCTLCMD; 1454 1455 /* 1456 * If we are in the middle of error recovery, don't let anyone 1457 * else try and use this device. Also, if error recovery fails, it 1458 * may try and take the device offline, in which case all further 1459 * access to the device is prohibited. 1460 */ 1461 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1462 (mode & FMODE_NDELAY) != 0); 1463 if (error) 1464 return error; 1465 1466 if (is_sed_ioctl(cmd)) 1467 return sed_ioctl(sdkp->opal_dev, cmd, p); 1468 return scsi_ioctl(sdp, mode, cmd, p); 1469 } 1470 1471 static void set_media_not_present(struct scsi_disk *sdkp) 1472 { 1473 if (sdkp->media_present) 1474 sdkp->device->changed = 1; 1475 1476 if (sdkp->device->removable) { 1477 sdkp->media_present = 0; 1478 sdkp->capacity = 0; 1479 } 1480 } 1481 1482 static int media_not_present(struct scsi_disk *sdkp, 1483 struct scsi_sense_hdr *sshdr) 1484 { 1485 if (!scsi_sense_valid(sshdr)) 1486 return 0; 1487 1488 /* not invoked for commands that could return deferred errors */ 1489 switch (sshdr->sense_key) { 1490 case UNIT_ATTENTION: 1491 case NOT_READY: 1492 /* medium not present */ 1493 if (sshdr->asc == 0x3A) { 1494 set_media_not_present(sdkp); 1495 return 1; 1496 } 1497 } 1498 return 0; 1499 } 1500 1501 /** 1502 * sd_check_events - check media events 1503 * @disk: kernel device descriptor 1504 * @clearing: disk events currently being cleared 1505 * 1506 * Returns mask of DISK_EVENT_*. 1507 * 1508 * Note: this function is invoked from the block subsystem. 1509 **/ 1510 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1511 { 1512 struct scsi_disk *sdkp = disk->private_data; 1513 struct scsi_device *sdp; 1514 int retval; 1515 bool disk_changed; 1516 1517 if (!sdkp) 1518 return 0; 1519 1520 sdp = sdkp->device; 1521 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1522 1523 /* 1524 * If the device is offline, don't send any commands - just pretend as 1525 * if the command failed. If the device ever comes back online, we 1526 * can deal with it then. It is only because of unrecoverable errors 1527 * that we would ever take a device offline in the first place. 1528 */ 1529 if (!scsi_device_online(sdp)) { 1530 set_media_not_present(sdkp); 1531 goto out; 1532 } 1533 1534 /* 1535 * Using TEST_UNIT_READY enables differentiation between drive with 1536 * no cartridge loaded - NOT READY, drive with changed cartridge - 1537 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1538 * 1539 * Drives that auto spin down. eg iomega jaz 1G, will be started 1540 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1541 * sd_revalidate() is called. 1542 */ 1543 if (scsi_block_when_processing_errors(sdp)) { 1544 struct scsi_sense_hdr sshdr = { 0, }; 1545 1546 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1547 &sshdr); 1548 1549 /* failed to execute TUR, assume media not present */ 1550 if (retval < 0 || host_byte(retval)) { 1551 set_media_not_present(sdkp); 1552 goto out; 1553 } 1554 1555 if (media_not_present(sdkp, &sshdr)) 1556 goto out; 1557 } 1558 1559 /* 1560 * For removable scsi disk we have to recognise the presence 1561 * of a disk in the drive. 1562 */ 1563 if (!sdkp->media_present) 1564 sdp->changed = 1; 1565 sdkp->media_present = 1; 1566 out: 1567 /* 1568 * sdp->changed is set under the following conditions: 1569 * 1570 * Medium present state has changed in either direction. 1571 * Device has indicated UNIT_ATTENTION. 1572 */ 1573 disk_changed = sdp->changed; 1574 sdp->changed = 0; 1575 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1576 } 1577 1578 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1579 { 1580 int retries, res; 1581 struct scsi_device *sdp = sdkp->device; 1582 const int timeout = sdp->request_queue->rq_timeout 1583 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1584 struct scsi_sense_hdr my_sshdr; 1585 const struct scsi_exec_args exec_args = { 1586 .req_flags = BLK_MQ_REQ_PM, 1587 /* caller might not be interested in sense, but we need it */ 1588 .sshdr = sshdr ? : &my_sshdr, 1589 }; 1590 1591 if (!scsi_device_online(sdp)) 1592 return -ENODEV; 1593 1594 sshdr = exec_args.sshdr; 1595 1596 for (retries = 3; retries > 0; --retries) { 1597 unsigned char cmd[16] = { 0 }; 1598 1599 if (sdp->use_16_for_sync) 1600 cmd[0] = SYNCHRONIZE_CACHE_16; 1601 else 1602 cmd[0] = SYNCHRONIZE_CACHE; 1603 /* 1604 * Leave the rest of the command zero to indicate 1605 * flush everything. 1606 */ 1607 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 1608 timeout, sdkp->max_retries, &exec_args); 1609 if (res == 0) 1610 break; 1611 } 1612 1613 if (res) { 1614 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1615 1616 if (res < 0) 1617 return res; 1618 1619 if (scsi_status_is_check_condition(res) && 1620 scsi_sense_valid(sshdr)) { 1621 sd_print_sense_hdr(sdkp, sshdr); 1622 1623 /* we need to evaluate the error return */ 1624 if (sshdr->asc == 0x3a || /* medium not present */ 1625 sshdr->asc == 0x20 || /* invalid command */ 1626 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1627 /* this is no error here */ 1628 return 0; 1629 } 1630 1631 switch (host_byte(res)) { 1632 /* ignore errors due to racing a disconnection */ 1633 case DID_BAD_TARGET: 1634 case DID_NO_CONNECT: 1635 return 0; 1636 /* signal the upper layer it might try again */ 1637 case DID_BUS_BUSY: 1638 case DID_IMM_RETRY: 1639 case DID_REQUEUE: 1640 case DID_SOFT_ERROR: 1641 return -EBUSY; 1642 default: 1643 return -EIO; 1644 } 1645 } 1646 return 0; 1647 } 1648 1649 static void sd_rescan(struct device *dev) 1650 { 1651 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1652 1653 sd_revalidate_disk(sdkp->disk); 1654 } 1655 1656 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1657 enum blk_unique_id type) 1658 { 1659 struct scsi_device *sdev = scsi_disk(disk)->device; 1660 const struct scsi_vpd *vpd; 1661 const unsigned char *d; 1662 int ret = -ENXIO, len; 1663 1664 rcu_read_lock(); 1665 vpd = rcu_dereference(sdev->vpd_pg83); 1666 if (!vpd) 1667 goto out_unlock; 1668 1669 ret = -EINVAL; 1670 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1671 /* we only care about designators with LU association */ 1672 if (((d[1] >> 4) & 0x3) != 0x00) 1673 continue; 1674 if ((d[1] & 0xf) != type) 1675 continue; 1676 1677 /* 1678 * Only exit early if a 16-byte descriptor was found. Otherwise 1679 * keep looking as one with more entropy might still show up. 1680 */ 1681 len = d[3]; 1682 if (len != 8 && len != 12 && len != 16) 1683 continue; 1684 ret = len; 1685 memcpy(id, d + 4, len); 1686 if (len == 16) 1687 break; 1688 } 1689 out_unlock: 1690 rcu_read_unlock(); 1691 return ret; 1692 } 1693 1694 static char sd_pr_type(enum pr_type type) 1695 { 1696 switch (type) { 1697 case PR_WRITE_EXCLUSIVE: 1698 return 0x01; 1699 case PR_EXCLUSIVE_ACCESS: 1700 return 0x03; 1701 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1702 return 0x05; 1703 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1704 return 0x06; 1705 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1706 return 0x07; 1707 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1708 return 0x08; 1709 default: 1710 return 0; 1711 } 1712 }; 1713 1714 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result) 1715 { 1716 switch (host_byte(result)) { 1717 case DID_TRANSPORT_MARGINAL: 1718 case DID_TRANSPORT_DISRUPTED: 1719 case DID_BUS_BUSY: 1720 return PR_STS_RETRY_PATH_FAILURE; 1721 case DID_NO_CONNECT: 1722 return PR_STS_PATH_FAILED; 1723 case DID_TRANSPORT_FAILFAST: 1724 return PR_STS_PATH_FAST_FAILED; 1725 } 1726 1727 switch (status_byte(result)) { 1728 case SAM_STAT_RESERVATION_CONFLICT: 1729 return PR_STS_RESERVATION_CONFLICT; 1730 case SAM_STAT_CHECK_CONDITION: 1731 if (!scsi_sense_valid(sshdr)) 1732 return PR_STS_IOERR; 1733 1734 if (sshdr->sense_key == ILLEGAL_REQUEST && 1735 (sshdr->asc == 0x26 || sshdr->asc == 0x24)) 1736 return -EINVAL; 1737 1738 fallthrough; 1739 default: 1740 return PR_STS_IOERR; 1741 } 1742 } 1743 1744 static int sd_pr_command(struct block_device *bdev, u8 sa, 1745 u64 key, u64 sa_key, u8 type, u8 flags) 1746 { 1747 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1748 struct scsi_device *sdev = sdkp->device; 1749 struct scsi_sense_hdr sshdr; 1750 const struct scsi_exec_args exec_args = { 1751 .sshdr = &sshdr, 1752 }; 1753 int result; 1754 u8 cmd[16] = { 0, }; 1755 u8 data[24] = { 0, }; 1756 1757 cmd[0] = PERSISTENT_RESERVE_OUT; 1758 cmd[1] = sa; 1759 cmd[2] = type; 1760 put_unaligned_be32(sizeof(data), &cmd[5]); 1761 1762 put_unaligned_be64(key, &data[0]); 1763 put_unaligned_be64(sa_key, &data[8]); 1764 data[20] = flags; 1765 1766 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data, 1767 sizeof(data), SD_TIMEOUT, sdkp->max_retries, 1768 &exec_args); 1769 1770 if (scsi_status_is_check_condition(result) && 1771 scsi_sense_valid(&sshdr)) { 1772 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1773 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1774 } 1775 1776 if (result <= 0) 1777 return result; 1778 1779 return sd_scsi_to_pr_err(&sshdr, result); 1780 } 1781 1782 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1783 u32 flags) 1784 { 1785 if (flags & ~PR_FL_IGNORE_KEY) 1786 return -EOPNOTSUPP; 1787 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1788 old_key, new_key, 0, 1789 (1 << 0) /* APTPL */); 1790 } 1791 1792 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1793 u32 flags) 1794 { 1795 if (flags) 1796 return -EOPNOTSUPP; 1797 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1798 } 1799 1800 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1801 { 1802 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1803 } 1804 1805 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1806 enum pr_type type, bool abort) 1807 { 1808 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1809 sd_pr_type(type), 0); 1810 } 1811 1812 static int sd_pr_clear(struct block_device *bdev, u64 key) 1813 { 1814 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1815 } 1816 1817 static const struct pr_ops sd_pr_ops = { 1818 .pr_register = sd_pr_register, 1819 .pr_reserve = sd_pr_reserve, 1820 .pr_release = sd_pr_release, 1821 .pr_preempt = sd_pr_preempt, 1822 .pr_clear = sd_pr_clear, 1823 }; 1824 1825 static void scsi_disk_free_disk(struct gendisk *disk) 1826 { 1827 struct scsi_disk *sdkp = scsi_disk(disk); 1828 1829 put_device(&sdkp->disk_dev); 1830 } 1831 1832 static const struct block_device_operations sd_fops = { 1833 .owner = THIS_MODULE, 1834 .open = sd_open, 1835 .release = sd_release, 1836 .ioctl = sd_ioctl, 1837 .getgeo = sd_getgeo, 1838 .compat_ioctl = blkdev_compat_ptr_ioctl, 1839 .check_events = sd_check_events, 1840 .unlock_native_capacity = sd_unlock_native_capacity, 1841 .report_zones = sd_zbc_report_zones, 1842 .get_unique_id = sd_get_unique_id, 1843 .free_disk = scsi_disk_free_disk, 1844 .pr_ops = &sd_pr_ops, 1845 }; 1846 1847 /** 1848 * sd_eh_reset - reset error handling callback 1849 * @scmd: sd-issued command that has failed 1850 * 1851 * This function is called by the SCSI midlayer before starting 1852 * SCSI EH. When counting medium access failures we have to be 1853 * careful to register it only only once per device and SCSI EH run; 1854 * there might be several timed out commands which will cause the 1855 * 'max_medium_access_timeouts' counter to trigger after the first 1856 * SCSI EH run already and set the device to offline. 1857 * So this function resets the internal counter before starting SCSI EH. 1858 **/ 1859 static void sd_eh_reset(struct scsi_cmnd *scmd) 1860 { 1861 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1862 1863 /* New SCSI EH run, reset gate variable */ 1864 sdkp->ignore_medium_access_errors = false; 1865 } 1866 1867 /** 1868 * sd_eh_action - error handling callback 1869 * @scmd: sd-issued command that has failed 1870 * @eh_disp: The recovery disposition suggested by the midlayer 1871 * 1872 * This function is called by the SCSI midlayer upon completion of an 1873 * error test command (currently TEST UNIT READY). The result of sending 1874 * the eh command is passed in eh_disp. We're looking for devices that 1875 * fail medium access commands but are OK with non access commands like 1876 * test unit ready (so wrongly see the device as having a successful 1877 * recovery) 1878 **/ 1879 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1880 { 1881 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1882 struct scsi_device *sdev = scmd->device; 1883 1884 if (!scsi_device_online(sdev) || 1885 !scsi_medium_access_command(scmd) || 1886 host_byte(scmd->result) != DID_TIME_OUT || 1887 eh_disp != SUCCESS) 1888 return eh_disp; 1889 1890 /* 1891 * The device has timed out executing a medium access command. 1892 * However, the TEST UNIT READY command sent during error 1893 * handling completed successfully. Either the device is in the 1894 * process of recovering or has it suffered an internal failure 1895 * that prevents access to the storage medium. 1896 */ 1897 if (!sdkp->ignore_medium_access_errors) { 1898 sdkp->medium_access_timed_out++; 1899 sdkp->ignore_medium_access_errors = true; 1900 } 1901 1902 /* 1903 * If the device keeps failing read/write commands but TEST UNIT 1904 * READY always completes successfully we assume that medium 1905 * access is no longer possible and take the device offline. 1906 */ 1907 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1908 scmd_printk(KERN_ERR, scmd, 1909 "Medium access timeout failure. Offlining disk!\n"); 1910 mutex_lock(&sdev->state_mutex); 1911 scsi_device_set_state(sdev, SDEV_OFFLINE); 1912 mutex_unlock(&sdev->state_mutex); 1913 1914 return SUCCESS; 1915 } 1916 1917 return eh_disp; 1918 } 1919 1920 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1921 { 1922 struct request *req = scsi_cmd_to_rq(scmd); 1923 struct scsi_device *sdev = scmd->device; 1924 unsigned int transferred, good_bytes; 1925 u64 start_lba, end_lba, bad_lba; 1926 1927 /* 1928 * Some commands have a payload smaller than the device logical 1929 * block size (e.g. INQUIRY on a 4K disk). 1930 */ 1931 if (scsi_bufflen(scmd) <= sdev->sector_size) 1932 return 0; 1933 1934 /* Check if we have a 'bad_lba' information */ 1935 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1936 SCSI_SENSE_BUFFERSIZE, 1937 &bad_lba)) 1938 return 0; 1939 1940 /* 1941 * If the bad lba was reported incorrectly, we have no idea where 1942 * the error is. 1943 */ 1944 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1945 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1946 if (bad_lba < start_lba || bad_lba >= end_lba) 1947 return 0; 1948 1949 /* 1950 * resid is optional but mostly filled in. When it's unused, 1951 * its value is zero, so we assume the whole buffer transferred 1952 */ 1953 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1954 1955 /* This computation should always be done in terms of the 1956 * resolution of the device's medium. 1957 */ 1958 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1959 1960 return min(good_bytes, transferred); 1961 } 1962 1963 /** 1964 * sd_done - bottom half handler: called when the lower level 1965 * driver has completed (successfully or otherwise) a scsi command. 1966 * @SCpnt: mid-level's per command structure. 1967 * 1968 * Note: potentially run from within an ISR. Must not block. 1969 **/ 1970 static int sd_done(struct scsi_cmnd *SCpnt) 1971 { 1972 int result = SCpnt->result; 1973 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1974 unsigned int sector_size = SCpnt->device->sector_size; 1975 unsigned int resid; 1976 struct scsi_sense_hdr sshdr; 1977 struct request *req = scsi_cmd_to_rq(SCpnt); 1978 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 1979 int sense_valid = 0; 1980 int sense_deferred = 0; 1981 1982 switch (req_op(req)) { 1983 case REQ_OP_DISCARD: 1984 case REQ_OP_WRITE_ZEROES: 1985 case REQ_OP_ZONE_RESET: 1986 case REQ_OP_ZONE_RESET_ALL: 1987 case REQ_OP_ZONE_OPEN: 1988 case REQ_OP_ZONE_CLOSE: 1989 case REQ_OP_ZONE_FINISH: 1990 if (!result) { 1991 good_bytes = blk_rq_bytes(req); 1992 scsi_set_resid(SCpnt, 0); 1993 } else { 1994 good_bytes = 0; 1995 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1996 } 1997 break; 1998 default: 1999 /* 2000 * In case of bogus fw or device, we could end up having 2001 * an unaligned partial completion. Check this here and force 2002 * alignment. 2003 */ 2004 resid = scsi_get_resid(SCpnt); 2005 if (resid & (sector_size - 1)) { 2006 sd_printk(KERN_INFO, sdkp, 2007 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2008 resid, sector_size); 2009 scsi_print_command(SCpnt); 2010 resid = min(scsi_bufflen(SCpnt), 2011 round_up(resid, sector_size)); 2012 scsi_set_resid(SCpnt, resid); 2013 } 2014 } 2015 2016 if (result) { 2017 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2018 if (sense_valid) 2019 sense_deferred = scsi_sense_is_deferred(&sshdr); 2020 } 2021 sdkp->medium_access_timed_out = 0; 2022 2023 if (!scsi_status_is_check_condition(result) && 2024 (!sense_valid || sense_deferred)) 2025 goto out; 2026 2027 switch (sshdr.sense_key) { 2028 case HARDWARE_ERROR: 2029 case MEDIUM_ERROR: 2030 good_bytes = sd_completed_bytes(SCpnt); 2031 break; 2032 case RECOVERED_ERROR: 2033 good_bytes = scsi_bufflen(SCpnt); 2034 break; 2035 case NO_SENSE: 2036 /* This indicates a false check condition, so ignore it. An 2037 * unknown amount of data was transferred so treat it as an 2038 * error. 2039 */ 2040 SCpnt->result = 0; 2041 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2042 break; 2043 case ABORTED_COMMAND: 2044 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2045 good_bytes = sd_completed_bytes(SCpnt); 2046 break; 2047 case ILLEGAL_REQUEST: 2048 switch (sshdr.asc) { 2049 case 0x10: /* DIX: Host detected corruption */ 2050 good_bytes = sd_completed_bytes(SCpnt); 2051 break; 2052 case 0x20: /* INVALID COMMAND OPCODE */ 2053 case 0x24: /* INVALID FIELD IN CDB */ 2054 switch (SCpnt->cmnd[0]) { 2055 case UNMAP: 2056 sd_config_discard(sdkp, SD_LBP_DISABLE); 2057 break; 2058 case WRITE_SAME_16: 2059 case WRITE_SAME: 2060 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2061 sd_config_discard(sdkp, SD_LBP_DISABLE); 2062 } else { 2063 sdkp->device->no_write_same = 1; 2064 sd_config_write_same(sdkp); 2065 req->rq_flags |= RQF_QUIET; 2066 } 2067 break; 2068 } 2069 } 2070 break; 2071 default: 2072 break; 2073 } 2074 2075 out: 2076 if (sd_is_zoned(sdkp)) 2077 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2078 2079 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2080 "sd_done: completed %d of %d bytes\n", 2081 good_bytes, scsi_bufflen(SCpnt))); 2082 2083 return good_bytes; 2084 } 2085 2086 /* 2087 * spinup disk - called only in sd_revalidate_disk() 2088 */ 2089 static void 2090 sd_spinup_disk(struct scsi_disk *sdkp) 2091 { 2092 unsigned char cmd[10]; 2093 unsigned long spintime_expire = 0; 2094 int retries, spintime; 2095 unsigned int the_result; 2096 struct scsi_sense_hdr sshdr; 2097 const struct scsi_exec_args exec_args = { 2098 .sshdr = &sshdr, 2099 }; 2100 int sense_valid = 0; 2101 2102 spintime = 0; 2103 2104 /* Spin up drives, as required. Only do this at boot time */ 2105 /* Spinup needs to be done for module loads too. */ 2106 do { 2107 retries = 0; 2108 2109 do { 2110 bool media_was_present = sdkp->media_present; 2111 2112 cmd[0] = TEST_UNIT_READY; 2113 memset((void *) &cmd[1], 0, 9); 2114 2115 the_result = scsi_execute_cmd(sdkp->device, cmd, 2116 REQ_OP_DRV_IN, NULL, 0, 2117 SD_TIMEOUT, 2118 sdkp->max_retries, 2119 &exec_args); 2120 2121 /* 2122 * If the drive has indicated to us that it 2123 * doesn't have any media in it, don't bother 2124 * with any more polling. 2125 */ 2126 if (media_not_present(sdkp, &sshdr)) { 2127 if (media_was_present) 2128 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); 2129 return; 2130 } 2131 2132 if (the_result) 2133 sense_valid = scsi_sense_valid(&sshdr); 2134 retries++; 2135 } while (retries < 3 && 2136 (!scsi_status_is_good(the_result) || 2137 (scsi_status_is_check_condition(the_result) && 2138 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2139 2140 if (!scsi_status_is_check_condition(the_result)) { 2141 /* no sense, TUR either succeeded or failed 2142 * with a status error */ 2143 if(!spintime && !scsi_status_is_good(the_result)) { 2144 sd_print_result(sdkp, "Test Unit Ready failed", 2145 the_result); 2146 } 2147 break; 2148 } 2149 2150 /* 2151 * The device does not want the automatic start to be issued. 2152 */ 2153 if (sdkp->device->no_start_on_add) 2154 break; 2155 2156 if (sense_valid && sshdr.sense_key == NOT_READY) { 2157 if (sshdr.asc == 4 && sshdr.ascq == 3) 2158 break; /* manual intervention required */ 2159 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2160 break; /* standby */ 2161 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2162 break; /* unavailable */ 2163 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2164 break; /* sanitize in progress */ 2165 /* 2166 * Issue command to spin up drive when not ready 2167 */ 2168 if (!spintime) { 2169 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2170 cmd[0] = START_STOP; 2171 cmd[1] = 1; /* Return immediately */ 2172 memset((void *) &cmd[2], 0, 8); 2173 cmd[4] = 1; /* Start spin cycle */ 2174 if (sdkp->device->start_stop_pwr_cond) 2175 cmd[4] |= 1 << 4; 2176 scsi_execute_cmd(sdkp->device, cmd, 2177 REQ_OP_DRV_IN, NULL, 0, 2178 SD_TIMEOUT, sdkp->max_retries, 2179 &exec_args); 2180 spintime_expire = jiffies + 100 * HZ; 2181 spintime = 1; 2182 } 2183 /* Wait 1 second for next try */ 2184 msleep(1000); 2185 printk(KERN_CONT "."); 2186 2187 /* 2188 * Wait for USB flash devices with slow firmware. 2189 * Yes, this sense key/ASC combination shouldn't 2190 * occur here. It's characteristic of these devices. 2191 */ 2192 } else if (sense_valid && 2193 sshdr.sense_key == UNIT_ATTENTION && 2194 sshdr.asc == 0x28) { 2195 if (!spintime) { 2196 spintime_expire = jiffies + 5 * HZ; 2197 spintime = 1; 2198 } 2199 /* Wait 1 second for next try */ 2200 msleep(1000); 2201 } else { 2202 /* we don't understand the sense code, so it's 2203 * probably pointless to loop */ 2204 if(!spintime) { 2205 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2206 sd_print_sense_hdr(sdkp, &sshdr); 2207 } 2208 break; 2209 } 2210 2211 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2212 2213 if (spintime) { 2214 if (scsi_status_is_good(the_result)) 2215 printk(KERN_CONT "ready\n"); 2216 else 2217 printk(KERN_CONT "not responding...\n"); 2218 } 2219 } 2220 2221 /* 2222 * Determine whether disk supports Data Integrity Field. 2223 */ 2224 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2225 { 2226 struct scsi_device *sdp = sdkp->device; 2227 u8 type; 2228 2229 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2230 sdkp->protection_type = 0; 2231 return 0; 2232 } 2233 2234 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2235 2236 if (type > T10_PI_TYPE3_PROTECTION) { 2237 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2238 " protection type %u. Disabling disk!\n", 2239 type); 2240 sdkp->protection_type = 0; 2241 return -ENODEV; 2242 } 2243 2244 sdkp->protection_type = type; 2245 2246 return 0; 2247 } 2248 2249 static void sd_config_protection(struct scsi_disk *sdkp) 2250 { 2251 struct scsi_device *sdp = sdkp->device; 2252 2253 sd_dif_config_host(sdkp); 2254 2255 if (!sdkp->protection_type) 2256 return; 2257 2258 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2259 sd_first_printk(KERN_NOTICE, sdkp, 2260 "Disabling DIF Type %u protection\n", 2261 sdkp->protection_type); 2262 sdkp->protection_type = 0; 2263 } 2264 2265 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2266 sdkp->protection_type); 2267 } 2268 2269 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2270 struct scsi_sense_hdr *sshdr, int sense_valid, 2271 int the_result) 2272 { 2273 if (sense_valid) 2274 sd_print_sense_hdr(sdkp, sshdr); 2275 else 2276 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2277 2278 /* 2279 * Set dirty bit for removable devices if not ready - 2280 * sometimes drives will not report this properly. 2281 */ 2282 if (sdp->removable && 2283 sense_valid && sshdr->sense_key == NOT_READY) 2284 set_media_not_present(sdkp); 2285 2286 /* 2287 * We used to set media_present to 0 here to indicate no media 2288 * in the drive, but some drives fail read capacity even with 2289 * media present, so we can't do that. 2290 */ 2291 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2292 } 2293 2294 #define RC16_LEN 32 2295 #if RC16_LEN > SD_BUF_SIZE 2296 #error RC16_LEN must not be more than SD_BUF_SIZE 2297 #endif 2298 2299 #define READ_CAPACITY_RETRIES_ON_RESET 10 2300 2301 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2302 unsigned char *buffer) 2303 { 2304 unsigned char cmd[16]; 2305 struct scsi_sense_hdr sshdr; 2306 const struct scsi_exec_args exec_args = { 2307 .sshdr = &sshdr, 2308 }; 2309 int sense_valid = 0; 2310 int the_result; 2311 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2312 unsigned int alignment; 2313 unsigned long long lba; 2314 unsigned sector_size; 2315 2316 if (sdp->no_read_capacity_16) 2317 return -EINVAL; 2318 2319 do { 2320 memset(cmd, 0, 16); 2321 cmd[0] = SERVICE_ACTION_IN_16; 2322 cmd[1] = SAI_READ_CAPACITY_16; 2323 cmd[13] = RC16_LEN; 2324 memset(buffer, 0, RC16_LEN); 2325 2326 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, 2327 buffer, RC16_LEN, SD_TIMEOUT, 2328 sdkp->max_retries, &exec_args); 2329 2330 if (media_not_present(sdkp, &sshdr)) 2331 return -ENODEV; 2332 2333 if (the_result > 0) { 2334 sense_valid = scsi_sense_valid(&sshdr); 2335 if (sense_valid && 2336 sshdr.sense_key == ILLEGAL_REQUEST && 2337 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2338 sshdr.ascq == 0x00) 2339 /* Invalid Command Operation Code or 2340 * Invalid Field in CDB, just retry 2341 * silently with RC10 */ 2342 return -EINVAL; 2343 if (sense_valid && 2344 sshdr.sense_key == UNIT_ATTENTION && 2345 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2346 /* Device reset might occur several times, 2347 * give it one more chance */ 2348 if (--reset_retries > 0) 2349 continue; 2350 } 2351 retries--; 2352 2353 } while (the_result && retries); 2354 2355 if (the_result) { 2356 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2357 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2358 return -EINVAL; 2359 } 2360 2361 sector_size = get_unaligned_be32(&buffer[8]); 2362 lba = get_unaligned_be64(&buffer[0]); 2363 2364 if (sd_read_protection_type(sdkp, buffer) < 0) { 2365 sdkp->capacity = 0; 2366 return -ENODEV; 2367 } 2368 2369 /* Logical blocks per physical block exponent */ 2370 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2371 2372 /* RC basis */ 2373 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2374 2375 /* Lowest aligned logical block */ 2376 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2377 blk_queue_alignment_offset(sdp->request_queue, alignment); 2378 if (alignment && sdkp->first_scan) 2379 sd_printk(KERN_NOTICE, sdkp, 2380 "physical block alignment offset: %u\n", alignment); 2381 2382 if (buffer[14] & 0x80) { /* LBPME */ 2383 sdkp->lbpme = 1; 2384 2385 if (buffer[14] & 0x40) /* LBPRZ */ 2386 sdkp->lbprz = 1; 2387 2388 sd_config_discard(sdkp, SD_LBP_WS16); 2389 } 2390 2391 sdkp->capacity = lba + 1; 2392 return sector_size; 2393 } 2394 2395 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2396 unsigned char *buffer) 2397 { 2398 unsigned char cmd[16]; 2399 struct scsi_sense_hdr sshdr; 2400 const struct scsi_exec_args exec_args = { 2401 .sshdr = &sshdr, 2402 }; 2403 int sense_valid = 0; 2404 int the_result; 2405 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2406 sector_t lba; 2407 unsigned sector_size; 2408 2409 do { 2410 cmd[0] = READ_CAPACITY; 2411 memset(&cmd[1], 0, 9); 2412 memset(buffer, 0, 8); 2413 2414 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer, 2415 8, SD_TIMEOUT, sdkp->max_retries, 2416 &exec_args); 2417 2418 if (media_not_present(sdkp, &sshdr)) 2419 return -ENODEV; 2420 2421 if (the_result > 0) { 2422 sense_valid = scsi_sense_valid(&sshdr); 2423 if (sense_valid && 2424 sshdr.sense_key == UNIT_ATTENTION && 2425 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2426 /* Device reset might occur several times, 2427 * give it one more chance */ 2428 if (--reset_retries > 0) 2429 continue; 2430 } 2431 retries--; 2432 2433 } while (the_result && retries); 2434 2435 if (the_result) { 2436 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2437 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2438 return -EINVAL; 2439 } 2440 2441 sector_size = get_unaligned_be32(&buffer[4]); 2442 lba = get_unaligned_be32(&buffer[0]); 2443 2444 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2445 /* Some buggy (usb cardreader) devices return an lba of 2446 0xffffffff when the want to report a size of 0 (with 2447 which they really mean no media is present) */ 2448 sdkp->capacity = 0; 2449 sdkp->physical_block_size = sector_size; 2450 return sector_size; 2451 } 2452 2453 sdkp->capacity = lba + 1; 2454 sdkp->physical_block_size = sector_size; 2455 return sector_size; 2456 } 2457 2458 static int sd_try_rc16_first(struct scsi_device *sdp) 2459 { 2460 if (sdp->host->max_cmd_len < 16) 2461 return 0; 2462 if (sdp->try_rc_10_first) 2463 return 0; 2464 if (sdp->scsi_level > SCSI_SPC_2) 2465 return 1; 2466 if (scsi_device_protection(sdp)) 2467 return 1; 2468 return 0; 2469 } 2470 2471 /* 2472 * read disk capacity 2473 */ 2474 static void 2475 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2476 { 2477 int sector_size; 2478 struct scsi_device *sdp = sdkp->device; 2479 2480 if (sd_try_rc16_first(sdp)) { 2481 sector_size = read_capacity_16(sdkp, sdp, buffer); 2482 if (sector_size == -EOVERFLOW) 2483 goto got_data; 2484 if (sector_size == -ENODEV) 2485 return; 2486 if (sector_size < 0) 2487 sector_size = read_capacity_10(sdkp, sdp, buffer); 2488 if (sector_size < 0) 2489 return; 2490 } else { 2491 sector_size = read_capacity_10(sdkp, sdp, buffer); 2492 if (sector_size == -EOVERFLOW) 2493 goto got_data; 2494 if (sector_size < 0) 2495 return; 2496 if ((sizeof(sdkp->capacity) > 4) && 2497 (sdkp->capacity > 0xffffffffULL)) { 2498 int old_sector_size = sector_size; 2499 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2500 "Trying to use READ CAPACITY(16).\n"); 2501 sector_size = read_capacity_16(sdkp, sdp, buffer); 2502 if (sector_size < 0) { 2503 sd_printk(KERN_NOTICE, sdkp, 2504 "Using 0xffffffff as device size\n"); 2505 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2506 sector_size = old_sector_size; 2507 goto got_data; 2508 } 2509 /* Remember that READ CAPACITY(16) succeeded */ 2510 sdp->try_rc_10_first = 0; 2511 } 2512 } 2513 2514 /* Some devices are known to return the total number of blocks, 2515 * not the highest block number. Some devices have versions 2516 * which do this and others which do not. Some devices we might 2517 * suspect of doing this but we don't know for certain. 2518 * 2519 * If we know the reported capacity is wrong, decrement it. If 2520 * we can only guess, then assume the number of blocks is even 2521 * (usually true but not always) and err on the side of lowering 2522 * the capacity. 2523 */ 2524 if (sdp->fix_capacity || 2525 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2526 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2527 "from its reported value: %llu\n", 2528 (unsigned long long) sdkp->capacity); 2529 --sdkp->capacity; 2530 } 2531 2532 got_data: 2533 if (sector_size == 0) { 2534 sector_size = 512; 2535 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2536 "assuming 512.\n"); 2537 } 2538 2539 if (sector_size != 512 && 2540 sector_size != 1024 && 2541 sector_size != 2048 && 2542 sector_size != 4096) { 2543 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2544 sector_size); 2545 /* 2546 * The user might want to re-format the drive with 2547 * a supported sectorsize. Once this happens, it 2548 * would be relatively trivial to set the thing up. 2549 * For this reason, we leave the thing in the table. 2550 */ 2551 sdkp->capacity = 0; 2552 /* 2553 * set a bogus sector size so the normal read/write 2554 * logic in the block layer will eventually refuse any 2555 * request on this device without tripping over power 2556 * of two sector size assumptions 2557 */ 2558 sector_size = 512; 2559 } 2560 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2561 blk_queue_physical_block_size(sdp->request_queue, 2562 sdkp->physical_block_size); 2563 sdkp->device->sector_size = sector_size; 2564 2565 if (sdkp->capacity > 0xffffffff) 2566 sdp->use_16_for_rw = 1; 2567 2568 } 2569 2570 /* 2571 * Print disk capacity 2572 */ 2573 static void 2574 sd_print_capacity(struct scsi_disk *sdkp, 2575 sector_t old_capacity) 2576 { 2577 int sector_size = sdkp->device->sector_size; 2578 char cap_str_2[10], cap_str_10[10]; 2579 2580 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2581 return; 2582 2583 string_get_size(sdkp->capacity, sector_size, 2584 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2585 string_get_size(sdkp->capacity, sector_size, 2586 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2587 2588 sd_printk(KERN_NOTICE, sdkp, 2589 "%llu %d-byte logical blocks: (%s/%s)\n", 2590 (unsigned long long)sdkp->capacity, 2591 sector_size, cap_str_10, cap_str_2); 2592 2593 if (sdkp->physical_block_size != sector_size) 2594 sd_printk(KERN_NOTICE, sdkp, 2595 "%u-byte physical blocks\n", 2596 sdkp->physical_block_size); 2597 } 2598 2599 /* called with buffer of length 512 */ 2600 static inline int 2601 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2602 unsigned char *buffer, int len, struct scsi_mode_data *data, 2603 struct scsi_sense_hdr *sshdr) 2604 { 2605 /* 2606 * If we must use MODE SENSE(10), make sure that the buffer length 2607 * is at least 8 bytes so that the mode sense header fits. 2608 */ 2609 if (sdkp->device->use_10_for_ms && len < 8) 2610 len = 8; 2611 2612 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2613 SD_TIMEOUT, sdkp->max_retries, data, 2614 sshdr); 2615 } 2616 2617 /* 2618 * read write protect setting, if possible - called only in sd_revalidate_disk() 2619 * called with buffer of length SD_BUF_SIZE 2620 */ 2621 static void 2622 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2623 { 2624 int res; 2625 struct scsi_device *sdp = sdkp->device; 2626 struct scsi_mode_data data; 2627 int old_wp = sdkp->write_prot; 2628 2629 set_disk_ro(sdkp->disk, 0); 2630 if (sdp->skip_ms_page_3f) { 2631 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2632 return; 2633 } 2634 2635 if (sdp->use_192_bytes_for_3f) { 2636 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2637 } else { 2638 /* 2639 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2640 * We have to start carefully: some devices hang if we ask 2641 * for more than is available. 2642 */ 2643 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2644 2645 /* 2646 * Second attempt: ask for page 0 When only page 0 is 2647 * implemented, a request for page 3F may return Sense Key 2648 * 5: Illegal Request, Sense Code 24: Invalid field in 2649 * CDB. 2650 */ 2651 if (res < 0) 2652 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2653 2654 /* 2655 * Third attempt: ask 255 bytes, as we did earlier. 2656 */ 2657 if (res < 0) 2658 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2659 &data, NULL); 2660 } 2661 2662 if (res < 0) { 2663 sd_first_printk(KERN_WARNING, sdkp, 2664 "Test WP failed, assume Write Enabled\n"); 2665 } else { 2666 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2667 set_disk_ro(sdkp->disk, sdkp->write_prot); 2668 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2669 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2670 sdkp->write_prot ? "on" : "off"); 2671 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2672 } 2673 } 2674 } 2675 2676 /* 2677 * sd_read_cache_type - called only from sd_revalidate_disk() 2678 * called with buffer of length SD_BUF_SIZE 2679 */ 2680 static void 2681 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2682 { 2683 int len = 0, res; 2684 struct scsi_device *sdp = sdkp->device; 2685 2686 int dbd; 2687 int modepage; 2688 int first_len; 2689 struct scsi_mode_data data; 2690 struct scsi_sense_hdr sshdr; 2691 int old_wce = sdkp->WCE; 2692 int old_rcd = sdkp->RCD; 2693 int old_dpofua = sdkp->DPOFUA; 2694 2695 2696 if (sdkp->cache_override) 2697 return; 2698 2699 first_len = 4; 2700 if (sdp->skip_ms_page_8) { 2701 if (sdp->type == TYPE_RBC) 2702 goto defaults; 2703 else { 2704 if (sdp->skip_ms_page_3f) 2705 goto defaults; 2706 modepage = 0x3F; 2707 if (sdp->use_192_bytes_for_3f) 2708 first_len = 192; 2709 dbd = 0; 2710 } 2711 } else if (sdp->type == TYPE_RBC) { 2712 modepage = 6; 2713 dbd = 8; 2714 } else { 2715 modepage = 8; 2716 dbd = 0; 2717 } 2718 2719 /* cautiously ask */ 2720 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2721 &data, &sshdr); 2722 2723 if (res < 0) 2724 goto bad_sense; 2725 2726 if (!data.header_length) { 2727 modepage = 6; 2728 first_len = 0; 2729 sd_first_printk(KERN_ERR, sdkp, 2730 "Missing header in MODE_SENSE response\n"); 2731 } 2732 2733 /* that went OK, now ask for the proper length */ 2734 len = data.length; 2735 2736 /* 2737 * We're only interested in the first three bytes, actually. 2738 * But the data cache page is defined for the first 20. 2739 */ 2740 if (len < 3) 2741 goto bad_sense; 2742 else if (len > SD_BUF_SIZE) { 2743 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2744 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2745 len = SD_BUF_SIZE; 2746 } 2747 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2748 len = 192; 2749 2750 /* Get the data */ 2751 if (len > first_len) 2752 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2753 &data, &sshdr); 2754 2755 if (!res) { 2756 int offset = data.header_length + data.block_descriptor_length; 2757 2758 while (offset < len) { 2759 u8 page_code = buffer[offset] & 0x3F; 2760 u8 spf = buffer[offset] & 0x40; 2761 2762 if (page_code == 8 || page_code == 6) { 2763 /* We're interested only in the first 3 bytes. 2764 */ 2765 if (len - offset <= 2) { 2766 sd_first_printk(KERN_ERR, sdkp, 2767 "Incomplete mode parameter " 2768 "data\n"); 2769 goto defaults; 2770 } else { 2771 modepage = page_code; 2772 goto Page_found; 2773 } 2774 } else { 2775 /* Go to the next page */ 2776 if (spf && len - offset > 3) 2777 offset += 4 + (buffer[offset+2] << 8) + 2778 buffer[offset+3]; 2779 else if (!spf && len - offset > 1) 2780 offset += 2 + buffer[offset+1]; 2781 else { 2782 sd_first_printk(KERN_ERR, sdkp, 2783 "Incomplete mode " 2784 "parameter data\n"); 2785 goto defaults; 2786 } 2787 } 2788 } 2789 2790 sd_first_printk(KERN_WARNING, sdkp, 2791 "No Caching mode page found\n"); 2792 goto defaults; 2793 2794 Page_found: 2795 if (modepage == 8) { 2796 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2797 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2798 } else { 2799 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2800 sdkp->RCD = 0; 2801 } 2802 2803 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2804 if (sdp->broken_fua) { 2805 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2806 sdkp->DPOFUA = 0; 2807 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2808 !sdkp->device->use_16_for_rw) { 2809 sd_first_printk(KERN_NOTICE, sdkp, 2810 "Uses READ/WRITE(6), disabling FUA\n"); 2811 sdkp->DPOFUA = 0; 2812 } 2813 2814 /* No cache flush allowed for write protected devices */ 2815 if (sdkp->WCE && sdkp->write_prot) 2816 sdkp->WCE = 0; 2817 2818 if (sdkp->first_scan || old_wce != sdkp->WCE || 2819 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2820 sd_printk(KERN_NOTICE, sdkp, 2821 "Write cache: %s, read cache: %s, %s\n", 2822 sdkp->WCE ? "enabled" : "disabled", 2823 sdkp->RCD ? "disabled" : "enabled", 2824 sdkp->DPOFUA ? "supports DPO and FUA" 2825 : "doesn't support DPO or FUA"); 2826 2827 return; 2828 } 2829 2830 bad_sense: 2831 if (scsi_sense_valid(&sshdr) && 2832 sshdr.sense_key == ILLEGAL_REQUEST && 2833 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2834 /* Invalid field in CDB */ 2835 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2836 else 2837 sd_first_printk(KERN_ERR, sdkp, 2838 "Asking for cache data failed\n"); 2839 2840 defaults: 2841 if (sdp->wce_default_on) { 2842 sd_first_printk(KERN_NOTICE, sdkp, 2843 "Assuming drive cache: write back\n"); 2844 sdkp->WCE = 1; 2845 } else { 2846 sd_first_printk(KERN_WARNING, sdkp, 2847 "Assuming drive cache: write through\n"); 2848 sdkp->WCE = 0; 2849 } 2850 sdkp->RCD = 0; 2851 sdkp->DPOFUA = 0; 2852 } 2853 2854 /* 2855 * The ATO bit indicates whether the DIF application tag is available 2856 * for use by the operating system. 2857 */ 2858 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2859 { 2860 int res, offset; 2861 struct scsi_device *sdp = sdkp->device; 2862 struct scsi_mode_data data; 2863 struct scsi_sense_hdr sshdr; 2864 2865 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2866 return; 2867 2868 if (sdkp->protection_type == 0) 2869 return; 2870 2871 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2872 sdkp->max_retries, &data, &sshdr); 2873 2874 if (res < 0 || !data.header_length || 2875 data.length < 6) { 2876 sd_first_printk(KERN_WARNING, sdkp, 2877 "getting Control mode page failed, assume no ATO\n"); 2878 2879 if (scsi_sense_valid(&sshdr)) 2880 sd_print_sense_hdr(sdkp, &sshdr); 2881 2882 return; 2883 } 2884 2885 offset = data.header_length + data.block_descriptor_length; 2886 2887 if ((buffer[offset] & 0x3f) != 0x0a) { 2888 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2889 return; 2890 } 2891 2892 if ((buffer[offset + 5] & 0x80) == 0) 2893 return; 2894 2895 sdkp->ATO = 1; 2896 2897 return; 2898 } 2899 2900 /** 2901 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2902 * @sdkp: disk to query 2903 */ 2904 static void sd_read_block_limits(struct scsi_disk *sdkp) 2905 { 2906 struct scsi_vpd *vpd; 2907 2908 rcu_read_lock(); 2909 2910 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 2911 if (!vpd || vpd->len < 16) 2912 goto out; 2913 2914 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 2915 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 2916 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 2917 2918 if (vpd->len >= 64) { 2919 unsigned int lba_count, desc_count; 2920 2921 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 2922 2923 if (!sdkp->lbpme) 2924 goto out; 2925 2926 lba_count = get_unaligned_be32(&vpd->data[20]); 2927 desc_count = get_unaligned_be32(&vpd->data[24]); 2928 2929 if (lba_count && desc_count) 2930 sdkp->max_unmap_blocks = lba_count; 2931 2932 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 2933 2934 if (vpd->data[32] & 0x80) 2935 sdkp->unmap_alignment = 2936 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 2937 2938 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2939 2940 if (sdkp->max_unmap_blocks) 2941 sd_config_discard(sdkp, SD_LBP_UNMAP); 2942 else 2943 sd_config_discard(sdkp, SD_LBP_WS16); 2944 2945 } else { /* LBP VPD page tells us what to use */ 2946 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2947 sd_config_discard(sdkp, SD_LBP_UNMAP); 2948 else if (sdkp->lbpws) 2949 sd_config_discard(sdkp, SD_LBP_WS16); 2950 else if (sdkp->lbpws10) 2951 sd_config_discard(sdkp, SD_LBP_WS10); 2952 else 2953 sd_config_discard(sdkp, SD_LBP_DISABLE); 2954 } 2955 } 2956 2957 out: 2958 rcu_read_unlock(); 2959 } 2960 2961 /** 2962 * sd_read_block_characteristics - Query block dev. characteristics 2963 * @sdkp: disk to query 2964 */ 2965 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2966 { 2967 struct request_queue *q = sdkp->disk->queue; 2968 struct scsi_vpd *vpd; 2969 u16 rot; 2970 u8 zoned; 2971 2972 rcu_read_lock(); 2973 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 2974 2975 if (!vpd || vpd->len < 8) { 2976 rcu_read_unlock(); 2977 return; 2978 } 2979 2980 rot = get_unaligned_be16(&vpd->data[4]); 2981 zoned = (vpd->data[8] >> 4) & 3; 2982 rcu_read_unlock(); 2983 2984 if (rot == 1) { 2985 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2986 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2987 } 2988 2989 if (sdkp->device->type == TYPE_ZBC) { 2990 /* 2991 * Host-managed: Per ZBC and ZAC specifications, writes in 2992 * sequential write required zones of host-managed devices must 2993 * be aligned to the device physical block size. 2994 */ 2995 disk_set_zoned(sdkp->disk, BLK_ZONED_HM); 2996 blk_queue_zone_write_granularity(q, sdkp->physical_block_size); 2997 } else { 2998 sdkp->zoned = zoned; 2999 if (sdkp->zoned == 1) { 3000 /* Host-aware */ 3001 disk_set_zoned(sdkp->disk, BLK_ZONED_HA); 3002 } else { 3003 /* Regular disk or drive managed disk */ 3004 disk_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3005 } 3006 } 3007 3008 if (!sdkp->first_scan) 3009 return; 3010 3011 if (blk_queue_is_zoned(q)) { 3012 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3013 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3014 } else { 3015 if (sdkp->zoned == 1) 3016 sd_printk(KERN_NOTICE, sdkp, 3017 "Host-aware SMR disk used as regular disk\n"); 3018 else if (sdkp->zoned == 2) 3019 sd_printk(KERN_NOTICE, sdkp, 3020 "Drive-managed SMR disk\n"); 3021 } 3022 } 3023 3024 /** 3025 * sd_read_block_provisioning - Query provisioning VPD page 3026 * @sdkp: disk to query 3027 */ 3028 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3029 { 3030 struct scsi_vpd *vpd; 3031 3032 if (sdkp->lbpme == 0) 3033 return; 3034 3035 rcu_read_lock(); 3036 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 3037 3038 if (!vpd || vpd->len < 8) { 3039 rcu_read_unlock(); 3040 return; 3041 } 3042 3043 sdkp->lbpvpd = 1; 3044 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 3045 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 3046 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 3047 rcu_read_unlock(); 3048 } 3049 3050 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3051 { 3052 struct scsi_device *sdev = sdkp->device; 3053 3054 if (sdev->host->no_write_same) { 3055 sdev->no_write_same = 1; 3056 3057 return; 3058 } 3059 3060 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3061 struct scsi_vpd *vpd; 3062 3063 sdev->no_report_opcodes = 1; 3064 3065 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3066 * CODES is unsupported and the device has an ATA 3067 * Information VPD page (SAT). 3068 */ 3069 rcu_read_lock(); 3070 vpd = rcu_dereference(sdev->vpd_pg89); 3071 if (vpd) 3072 sdev->no_write_same = 1; 3073 rcu_read_unlock(); 3074 } 3075 3076 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3077 sdkp->ws16 = 1; 3078 3079 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3080 sdkp->ws10 = 1; 3081 } 3082 3083 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3084 { 3085 struct scsi_device *sdev = sdkp->device; 3086 3087 if (!sdev->security_supported) 3088 return; 3089 3090 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3091 SECURITY_PROTOCOL_IN) == 1 && 3092 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3093 SECURITY_PROTOCOL_OUT) == 1) 3094 sdkp->security = 1; 3095 } 3096 3097 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3098 { 3099 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3100 } 3101 3102 /** 3103 * sd_read_cpr - Query concurrent positioning ranges 3104 * @sdkp: disk to query 3105 */ 3106 static void sd_read_cpr(struct scsi_disk *sdkp) 3107 { 3108 struct blk_independent_access_ranges *iars = NULL; 3109 unsigned char *buffer = NULL; 3110 unsigned int nr_cpr = 0; 3111 int i, vpd_len, buf_len = SD_BUF_SIZE; 3112 u8 *desc; 3113 3114 /* 3115 * We need to have the capacity set first for the block layer to be 3116 * able to check the ranges. 3117 */ 3118 if (sdkp->first_scan) 3119 return; 3120 3121 if (!sdkp->capacity) 3122 goto out; 3123 3124 /* 3125 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3126 * leading to a maximum page size of 64 + 256*32 bytes. 3127 */ 3128 buf_len = 64 + 256*32; 3129 buffer = kmalloc(buf_len, GFP_KERNEL); 3130 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3131 goto out; 3132 3133 /* We must have at least a 64B header and one 32B range descriptor */ 3134 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3135 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3136 sd_printk(KERN_ERR, sdkp, 3137 "Invalid Concurrent Positioning Ranges VPD page\n"); 3138 goto out; 3139 } 3140 3141 nr_cpr = (vpd_len - 64) / 32; 3142 if (nr_cpr == 1) { 3143 nr_cpr = 0; 3144 goto out; 3145 } 3146 3147 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3148 if (!iars) { 3149 nr_cpr = 0; 3150 goto out; 3151 } 3152 3153 desc = &buffer[64]; 3154 for (i = 0; i < nr_cpr; i++, desc += 32) { 3155 if (desc[0] != i) { 3156 sd_printk(KERN_ERR, sdkp, 3157 "Invalid Concurrent Positioning Range number\n"); 3158 nr_cpr = 0; 3159 break; 3160 } 3161 3162 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3163 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3164 } 3165 3166 out: 3167 disk_set_independent_access_ranges(sdkp->disk, iars); 3168 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3169 sd_printk(KERN_NOTICE, sdkp, 3170 "%u concurrent positioning ranges\n", nr_cpr); 3171 sdkp->nr_actuators = nr_cpr; 3172 } 3173 3174 kfree(buffer); 3175 } 3176 3177 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3178 { 3179 struct scsi_device *sdp = sdkp->device; 3180 unsigned int min_xfer_bytes = 3181 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3182 3183 if (sdkp->min_xfer_blocks == 0) 3184 return false; 3185 3186 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3187 sd_first_printk(KERN_WARNING, sdkp, 3188 "Preferred minimum I/O size %u bytes not a " \ 3189 "multiple of physical block size (%u bytes)\n", 3190 min_xfer_bytes, sdkp->physical_block_size); 3191 sdkp->min_xfer_blocks = 0; 3192 return false; 3193 } 3194 3195 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3196 min_xfer_bytes); 3197 return true; 3198 } 3199 3200 /* 3201 * Determine the device's preferred I/O size for reads and writes 3202 * unless the reported value is unreasonably small, large, not a 3203 * multiple of the physical block size, or simply garbage. 3204 */ 3205 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3206 unsigned int dev_max) 3207 { 3208 struct scsi_device *sdp = sdkp->device; 3209 unsigned int opt_xfer_bytes = 3210 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3211 unsigned int min_xfer_bytes = 3212 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3213 3214 if (sdkp->opt_xfer_blocks == 0) 3215 return false; 3216 3217 if (sdkp->opt_xfer_blocks > dev_max) { 3218 sd_first_printk(KERN_WARNING, sdkp, 3219 "Optimal transfer size %u logical blocks " \ 3220 "> dev_max (%u logical blocks)\n", 3221 sdkp->opt_xfer_blocks, dev_max); 3222 return false; 3223 } 3224 3225 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3226 sd_first_printk(KERN_WARNING, sdkp, 3227 "Optimal transfer size %u logical blocks " \ 3228 "> sd driver limit (%u logical blocks)\n", 3229 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3230 return false; 3231 } 3232 3233 if (opt_xfer_bytes < PAGE_SIZE) { 3234 sd_first_printk(KERN_WARNING, sdkp, 3235 "Optimal transfer size %u bytes < " \ 3236 "PAGE_SIZE (%u bytes)\n", 3237 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3238 return false; 3239 } 3240 3241 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3242 sd_first_printk(KERN_WARNING, sdkp, 3243 "Optimal transfer size %u bytes not a " \ 3244 "multiple of preferred minimum block " \ 3245 "size (%u bytes)\n", 3246 opt_xfer_bytes, min_xfer_bytes); 3247 return false; 3248 } 3249 3250 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3251 sd_first_printk(KERN_WARNING, sdkp, 3252 "Optimal transfer size %u bytes not a " \ 3253 "multiple of physical block size (%u bytes)\n", 3254 opt_xfer_bytes, sdkp->physical_block_size); 3255 return false; 3256 } 3257 3258 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3259 opt_xfer_bytes); 3260 return true; 3261 } 3262 3263 /** 3264 * sd_revalidate_disk - called the first time a new disk is seen, 3265 * performs disk spin up, read_capacity, etc. 3266 * @disk: struct gendisk we care about 3267 **/ 3268 static int sd_revalidate_disk(struct gendisk *disk) 3269 { 3270 struct scsi_disk *sdkp = scsi_disk(disk); 3271 struct scsi_device *sdp = sdkp->device; 3272 struct request_queue *q = sdkp->disk->queue; 3273 sector_t old_capacity = sdkp->capacity; 3274 unsigned char *buffer; 3275 unsigned int dev_max, rw_max; 3276 3277 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3278 "sd_revalidate_disk\n")); 3279 3280 /* 3281 * If the device is offline, don't try and read capacity or any 3282 * of the other niceties. 3283 */ 3284 if (!scsi_device_online(sdp)) 3285 goto out; 3286 3287 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3288 if (!buffer) { 3289 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3290 "allocation failure.\n"); 3291 goto out; 3292 } 3293 3294 sd_spinup_disk(sdkp); 3295 3296 /* 3297 * Without media there is no reason to ask; moreover, some devices 3298 * react badly if we do. 3299 */ 3300 if (sdkp->media_present) { 3301 sd_read_capacity(sdkp, buffer); 3302 3303 /* 3304 * set the default to rotational. All non-rotational devices 3305 * support the block characteristics VPD page, which will 3306 * cause this to be updated correctly and any device which 3307 * doesn't support it should be treated as rotational. 3308 */ 3309 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3310 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3311 3312 if (scsi_device_supports_vpd(sdp)) { 3313 sd_read_block_provisioning(sdkp); 3314 sd_read_block_limits(sdkp); 3315 sd_read_block_characteristics(sdkp); 3316 sd_zbc_read_zones(sdkp, buffer); 3317 sd_read_cpr(sdkp); 3318 } 3319 3320 sd_print_capacity(sdkp, old_capacity); 3321 3322 sd_read_write_protect_flag(sdkp, buffer); 3323 sd_read_cache_type(sdkp, buffer); 3324 sd_read_app_tag_own(sdkp, buffer); 3325 sd_read_write_same(sdkp, buffer); 3326 sd_read_security(sdkp, buffer); 3327 sd_config_protection(sdkp); 3328 } 3329 3330 /* 3331 * We now have all cache related info, determine how we deal 3332 * with flush requests. 3333 */ 3334 sd_set_flush_flag(sdkp); 3335 3336 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3337 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3338 3339 /* Some devices report a maximum block count for READ/WRITE requests. */ 3340 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3341 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3342 3343 if (sd_validate_min_xfer_size(sdkp)) 3344 blk_queue_io_min(sdkp->disk->queue, 3345 logical_to_bytes(sdp, sdkp->min_xfer_blocks)); 3346 else 3347 blk_queue_io_min(sdkp->disk->queue, 0); 3348 3349 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3350 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3351 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3352 } else { 3353 q->limits.io_opt = 0; 3354 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3355 (sector_t)BLK_DEF_MAX_SECTORS); 3356 } 3357 3358 /* 3359 * Limit default to SCSI host optimal sector limit if set. There may be 3360 * an impact on performance for when the size of a request exceeds this 3361 * host limit. 3362 */ 3363 rw_max = min_not_zero(rw_max, sdp->host->opt_sectors); 3364 3365 /* Do not exceed controller limit */ 3366 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3367 3368 /* 3369 * Only update max_sectors if previously unset or if the current value 3370 * exceeds the capabilities of the hardware. 3371 */ 3372 if (sdkp->first_scan || 3373 q->limits.max_sectors > q->limits.max_dev_sectors || 3374 q->limits.max_sectors > q->limits.max_hw_sectors) 3375 q->limits.max_sectors = rw_max; 3376 3377 sdkp->first_scan = 0; 3378 3379 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3380 sd_config_write_same(sdkp); 3381 kfree(buffer); 3382 3383 /* 3384 * For a zoned drive, revalidating the zones can be done only once 3385 * the gendisk capacity is set. So if this fails, set back the gendisk 3386 * capacity to 0. 3387 */ 3388 if (sd_zbc_revalidate_zones(sdkp)) 3389 set_capacity_and_notify(disk, 0); 3390 3391 out: 3392 return 0; 3393 } 3394 3395 /** 3396 * sd_unlock_native_capacity - unlock native capacity 3397 * @disk: struct gendisk to set capacity for 3398 * 3399 * Block layer calls this function if it detects that partitions 3400 * on @disk reach beyond the end of the device. If the SCSI host 3401 * implements ->unlock_native_capacity() method, it's invoked to 3402 * give it a chance to adjust the device capacity. 3403 * 3404 * CONTEXT: 3405 * Defined by block layer. Might sleep. 3406 */ 3407 static void sd_unlock_native_capacity(struct gendisk *disk) 3408 { 3409 struct scsi_device *sdev = scsi_disk(disk)->device; 3410 3411 if (sdev->host->hostt->unlock_native_capacity) 3412 sdev->host->hostt->unlock_native_capacity(sdev); 3413 } 3414 3415 /** 3416 * sd_format_disk_name - format disk name 3417 * @prefix: name prefix - ie. "sd" for SCSI disks 3418 * @index: index of the disk to format name for 3419 * @buf: output buffer 3420 * @buflen: length of the output buffer 3421 * 3422 * SCSI disk names starts at sda. The 26th device is sdz and the 3423 * 27th is sdaa. The last one for two lettered suffix is sdzz 3424 * which is followed by sdaaa. 3425 * 3426 * This is basically 26 base counting with one extra 'nil' entry 3427 * at the beginning from the second digit on and can be 3428 * determined using similar method as 26 base conversion with the 3429 * index shifted -1 after each digit is computed. 3430 * 3431 * CONTEXT: 3432 * Don't care. 3433 * 3434 * RETURNS: 3435 * 0 on success, -errno on failure. 3436 */ 3437 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3438 { 3439 const int base = 'z' - 'a' + 1; 3440 char *begin = buf + strlen(prefix); 3441 char *end = buf + buflen; 3442 char *p; 3443 int unit; 3444 3445 p = end - 1; 3446 *p = '\0'; 3447 unit = base; 3448 do { 3449 if (p == begin) 3450 return -EINVAL; 3451 *--p = 'a' + (index % unit); 3452 index = (index / unit) - 1; 3453 } while (index >= 0); 3454 3455 memmove(begin, p, end - p); 3456 memcpy(buf, prefix, strlen(prefix)); 3457 3458 return 0; 3459 } 3460 3461 /** 3462 * sd_probe - called during driver initialization and whenever a 3463 * new scsi device is attached to the system. It is called once 3464 * for each scsi device (not just disks) present. 3465 * @dev: pointer to device object 3466 * 3467 * Returns 0 if successful (or not interested in this scsi device 3468 * (e.g. scanner)); 1 when there is an error. 3469 * 3470 * Note: this function is invoked from the scsi mid-level. 3471 * This function sets up the mapping between a given 3472 * <host,channel,id,lun> (found in sdp) and new device name 3473 * (e.g. /dev/sda). More precisely it is the block device major 3474 * and minor number that is chosen here. 3475 * 3476 * Assume sd_probe is not re-entrant (for time being) 3477 * Also think about sd_probe() and sd_remove() running coincidentally. 3478 **/ 3479 static int sd_probe(struct device *dev) 3480 { 3481 struct scsi_device *sdp = to_scsi_device(dev); 3482 struct scsi_disk *sdkp; 3483 struct gendisk *gd; 3484 int index; 3485 int error; 3486 3487 scsi_autopm_get_device(sdp); 3488 error = -ENODEV; 3489 if (sdp->type != TYPE_DISK && 3490 sdp->type != TYPE_ZBC && 3491 sdp->type != TYPE_MOD && 3492 sdp->type != TYPE_RBC) 3493 goto out; 3494 3495 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3496 sdev_printk(KERN_WARNING, sdp, 3497 "Unsupported ZBC host-managed device.\n"); 3498 goto out; 3499 } 3500 3501 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3502 "sd_probe\n")); 3503 3504 error = -ENOMEM; 3505 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3506 if (!sdkp) 3507 goto out; 3508 3509 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue, 3510 &sd_bio_compl_lkclass); 3511 if (!gd) 3512 goto out_free; 3513 3514 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3515 if (index < 0) { 3516 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3517 goto out_put; 3518 } 3519 3520 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3521 if (error) { 3522 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3523 goto out_free_index; 3524 } 3525 3526 sdkp->device = sdp; 3527 sdkp->disk = gd; 3528 sdkp->index = index; 3529 sdkp->max_retries = SD_MAX_RETRIES; 3530 atomic_set(&sdkp->openers, 0); 3531 atomic_set(&sdkp->device->ioerr_cnt, 0); 3532 3533 if (!sdp->request_queue->rq_timeout) { 3534 if (sdp->type != TYPE_MOD) 3535 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3536 else 3537 blk_queue_rq_timeout(sdp->request_queue, 3538 SD_MOD_TIMEOUT); 3539 } 3540 3541 device_initialize(&sdkp->disk_dev); 3542 sdkp->disk_dev.parent = get_device(dev); 3543 sdkp->disk_dev.class = &sd_disk_class; 3544 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3545 3546 error = device_add(&sdkp->disk_dev); 3547 if (error) { 3548 put_device(&sdkp->disk_dev); 3549 goto out; 3550 } 3551 3552 dev_set_drvdata(dev, sdkp); 3553 3554 gd->major = sd_major((index & 0xf0) >> 4); 3555 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3556 gd->minors = SD_MINORS; 3557 3558 gd->fops = &sd_fops; 3559 gd->private_data = sdkp; 3560 3561 /* defaults, until the device tells us otherwise */ 3562 sdp->sector_size = 512; 3563 sdkp->capacity = 0; 3564 sdkp->media_present = 1; 3565 sdkp->write_prot = 0; 3566 sdkp->cache_override = 0; 3567 sdkp->WCE = 0; 3568 sdkp->RCD = 0; 3569 sdkp->ATO = 0; 3570 sdkp->first_scan = 1; 3571 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3572 3573 sd_revalidate_disk(gd); 3574 3575 if (sdp->removable) { 3576 gd->flags |= GENHD_FL_REMOVABLE; 3577 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3578 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3579 } 3580 3581 blk_pm_runtime_init(sdp->request_queue, dev); 3582 if (sdp->rpm_autosuspend) { 3583 pm_runtime_set_autosuspend_delay(dev, 3584 sdp->host->hostt->rpm_autosuspend_delay); 3585 } 3586 3587 error = device_add_disk(dev, gd, NULL); 3588 if (error) { 3589 put_device(&sdkp->disk_dev); 3590 put_disk(gd); 3591 goto out; 3592 } 3593 3594 if (sdkp->security) { 3595 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3596 if (sdkp->opal_dev) 3597 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3598 } 3599 3600 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3601 sdp->removable ? "removable " : ""); 3602 scsi_autopm_put_device(sdp); 3603 3604 return 0; 3605 3606 out_free_index: 3607 ida_free(&sd_index_ida, index); 3608 out_put: 3609 put_disk(gd); 3610 out_free: 3611 kfree(sdkp); 3612 out: 3613 scsi_autopm_put_device(sdp); 3614 return error; 3615 } 3616 3617 /** 3618 * sd_remove - called whenever a scsi disk (previously recognized by 3619 * sd_probe) is detached from the system. It is called (potentially 3620 * multiple times) during sd module unload. 3621 * @dev: pointer to device object 3622 * 3623 * Note: this function is invoked from the scsi mid-level. 3624 * This function potentially frees up a device name (e.g. /dev/sdc) 3625 * that could be re-used by a subsequent sd_probe(). 3626 * This function is not called when the built-in sd driver is "exit-ed". 3627 **/ 3628 static int sd_remove(struct device *dev) 3629 { 3630 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3631 3632 scsi_autopm_get_device(sdkp->device); 3633 3634 device_del(&sdkp->disk_dev); 3635 del_gendisk(sdkp->disk); 3636 sd_shutdown(dev); 3637 3638 put_disk(sdkp->disk); 3639 return 0; 3640 } 3641 3642 static void scsi_disk_release(struct device *dev) 3643 { 3644 struct scsi_disk *sdkp = to_scsi_disk(dev); 3645 3646 ida_free(&sd_index_ida, sdkp->index); 3647 sd_zbc_free_zone_info(sdkp); 3648 put_device(&sdkp->device->sdev_gendev); 3649 free_opal_dev(sdkp->opal_dev); 3650 3651 kfree(sdkp); 3652 } 3653 3654 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3655 { 3656 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3657 struct scsi_sense_hdr sshdr; 3658 const struct scsi_exec_args exec_args = { 3659 .sshdr = &sshdr, 3660 .req_flags = BLK_MQ_REQ_PM, 3661 }; 3662 struct scsi_device *sdp = sdkp->device; 3663 int res; 3664 3665 if (start) 3666 cmd[4] |= 1; /* START */ 3667 3668 if (sdp->start_stop_pwr_cond) 3669 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3670 3671 if (!scsi_device_online(sdp)) 3672 return -ENODEV; 3673 3674 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, 3675 sdkp->max_retries, &exec_args); 3676 if (res) { 3677 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3678 if (res > 0 && scsi_sense_valid(&sshdr)) { 3679 sd_print_sense_hdr(sdkp, &sshdr); 3680 /* 0x3a is medium not present */ 3681 if (sshdr.asc == 0x3a) 3682 res = 0; 3683 } 3684 } 3685 3686 /* SCSI error codes must not go to the generic layer */ 3687 if (res) 3688 return -EIO; 3689 3690 return 0; 3691 } 3692 3693 /* 3694 * Send a SYNCHRONIZE CACHE instruction down to the device through 3695 * the normal SCSI command structure. Wait for the command to 3696 * complete. 3697 */ 3698 static void sd_shutdown(struct device *dev) 3699 { 3700 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3701 3702 if (!sdkp) 3703 return; /* this can happen */ 3704 3705 if (pm_runtime_suspended(dev)) 3706 return; 3707 3708 if (sdkp->WCE && sdkp->media_present) { 3709 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3710 sd_sync_cache(sdkp, NULL); 3711 } 3712 3713 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3714 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3715 sd_start_stop_device(sdkp, 0); 3716 } 3717 } 3718 3719 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3720 { 3721 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3722 struct scsi_sense_hdr sshdr; 3723 int ret = 0; 3724 3725 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3726 return 0; 3727 3728 if (sdkp->WCE && sdkp->media_present) { 3729 if (!sdkp->device->silence_suspend) 3730 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3731 ret = sd_sync_cache(sdkp, &sshdr); 3732 3733 if (ret) { 3734 /* ignore OFFLINE device */ 3735 if (ret == -ENODEV) 3736 return 0; 3737 3738 if (!scsi_sense_valid(&sshdr) || 3739 sshdr.sense_key != ILLEGAL_REQUEST) 3740 return ret; 3741 3742 /* 3743 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3744 * doesn't support sync. There's not much to do and 3745 * suspend shouldn't fail. 3746 */ 3747 ret = 0; 3748 } 3749 } 3750 3751 if (sdkp->device->manage_start_stop) { 3752 if (!sdkp->device->silence_suspend) 3753 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3754 /* an error is not worth aborting a system sleep */ 3755 ret = sd_start_stop_device(sdkp, 0); 3756 if (ignore_stop_errors) 3757 ret = 0; 3758 } 3759 3760 return ret; 3761 } 3762 3763 static int sd_suspend_system(struct device *dev) 3764 { 3765 if (pm_runtime_suspended(dev)) 3766 return 0; 3767 3768 return sd_suspend_common(dev, true); 3769 } 3770 3771 static int sd_suspend_runtime(struct device *dev) 3772 { 3773 return sd_suspend_common(dev, false); 3774 } 3775 3776 static int sd_resume(struct device *dev) 3777 { 3778 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3779 int ret; 3780 3781 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3782 return 0; 3783 3784 if (!sdkp->device->manage_start_stop) 3785 return 0; 3786 3787 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3788 ret = sd_start_stop_device(sdkp, 1); 3789 if (!ret) 3790 opal_unlock_from_suspend(sdkp->opal_dev); 3791 return ret; 3792 } 3793 3794 static int sd_resume_system(struct device *dev) 3795 { 3796 if (pm_runtime_suspended(dev)) 3797 return 0; 3798 3799 return sd_resume(dev); 3800 } 3801 3802 static int sd_resume_runtime(struct device *dev) 3803 { 3804 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3805 struct scsi_device *sdp; 3806 3807 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3808 return 0; 3809 3810 sdp = sdkp->device; 3811 3812 if (sdp->ignore_media_change) { 3813 /* clear the device's sense data */ 3814 static const u8 cmd[10] = { REQUEST_SENSE }; 3815 const struct scsi_exec_args exec_args = { 3816 .req_flags = BLK_MQ_REQ_PM, 3817 }; 3818 3819 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 3820 sdp->request_queue->rq_timeout, 1, 3821 &exec_args)) 3822 sd_printk(KERN_NOTICE, sdkp, 3823 "Failed to clear sense data\n"); 3824 } 3825 3826 return sd_resume(dev); 3827 } 3828 3829 /** 3830 * init_sd - entry point for this driver (both when built in or when 3831 * a module). 3832 * 3833 * Note: this function registers this driver with the scsi mid-level. 3834 **/ 3835 static int __init init_sd(void) 3836 { 3837 int majors = 0, i, err; 3838 3839 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3840 3841 for (i = 0; i < SD_MAJORS; i++) { 3842 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3843 continue; 3844 majors++; 3845 } 3846 3847 if (!majors) 3848 return -ENODEV; 3849 3850 err = class_register(&sd_disk_class); 3851 if (err) 3852 goto err_out; 3853 3854 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3855 if (!sd_page_pool) { 3856 printk(KERN_ERR "sd: can't init discard page pool\n"); 3857 err = -ENOMEM; 3858 goto err_out_class; 3859 } 3860 3861 err = scsi_register_driver(&sd_template.gendrv); 3862 if (err) 3863 goto err_out_driver; 3864 3865 return 0; 3866 3867 err_out_driver: 3868 mempool_destroy(sd_page_pool); 3869 err_out_class: 3870 class_unregister(&sd_disk_class); 3871 err_out: 3872 for (i = 0; i < SD_MAJORS; i++) 3873 unregister_blkdev(sd_major(i), "sd"); 3874 return err; 3875 } 3876 3877 /** 3878 * exit_sd - exit point for this driver (when it is a module). 3879 * 3880 * Note: this function unregisters this driver from the scsi mid-level. 3881 **/ 3882 static void __exit exit_sd(void) 3883 { 3884 int i; 3885 3886 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3887 3888 scsi_unregister_driver(&sd_template.gendrv); 3889 mempool_destroy(sd_page_pool); 3890 3891 class_unregister(&sd_disk_class); 3892 3893 for (i = 0; i < SD_MAJORS; i++) 3894 unregister_blkdev(sd_major(i), "sd"); 3895 } 3896 3897 module_init(init_sd); 3898 module_exit(exit_sd); 3899 3900 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3901 { 3902 scsi_print_sense_hdr(sdkp->device, 3903 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3904 } 3905 3906 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3907 { 3908 const char *hb_string = scsi_hostbyte_string(result); 3909 3910 if (hb_string) 3911 sd_printk(KERN_INFO, sdkp, 3912 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3913 hb_string ? hb_string : "invalid", 3914 "DRIVER_OK"); 3915 else 3916 sd_printk(KERN_INFO, sdkp, 3917 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 3918 msg, host_byte(result), "DRIVER_OK"); 3919 } 3920