1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/major.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 #include <scsi/scsi_common.h> 71 72 #include "sd.h" 73 #include "scsi_priv.h" 74 #include "scsi_logging.h" 75 76 MODULE_AUTHOR("Eric Youngdale"); 77 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 78 MODULE_LICENSE("GPL"); 79 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 100 101 #define SD_MINORS 16 102 103 static void sd_config_discard(struct scsi_disk *, unsigned int); 104 static void sd_config_write_same(struct scsi_disk *); 105 static int sd_revalidate_disk(struct gendisk *); 106 static void sd_unlock_native_capacity(struct gendisk *disk); 107 static void sd_shutdown(struct device *); 108 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 109 static void scsi_disk_release(struct device *cdev); 110 111 static DEFINE_IDA(sd_index_ida); 112 113 static mempool_t *sd_page_pool; 114 static struct lock_class_key sd_bio_compl_lkclass; 115 116 static const char *sd_cache_types[] = { 117 "write through", "none", "write back", 118 "write back, no read (daft)" 119 }; 120 121 static void sd_set_flush_flag(struct scsi_disk *sdkp) 122 { 123 bool wc = false, fua = false; 124 125 if (sdkp->WCE) { 126 wc = true; 127 if (sdkp->DPOFUA) 128 fua = true; 129 } 130 131 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 132 } 133 134 static ssize_t 135 cache_type_store(struct device *dev, struct device_attribute *attr, 136 const char *buf, size_t count) 137 { 138 int ct, rcd, wce, sp; 139 struct scsi_disk *sdkp = to_scsi_disk(dev); 140 struct scsi_device *sdp = sdkp->device; 141 char buffer[64]; 142 char *buffer_data; 143 struct scsi_mode_data data; 144 struct scsi_sense_hdr sshdr; 145 static const char temp[] = "temporary "; 146 int len; 147 148 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 149 /* no cache control on RBC devices; theoretically they 150 * can do it, but there's probably so many exceptions 151 * it's not worth the risk */ 152 return -EINVAL; 153 154 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 155 buf += sizeof(temp) - 1; 156 sdkp->cache_override = 1; 157 } else { 158 sdkp->cache_override = 0; 159 } 160 161 ct = sysfs_match_string(sd_cache_types, buf); 162 if (ct < 0) 163 return -EINVAL; 164 165 rcd = ct & 0x01 ? 1 : 0; 166 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 167 168 if (sdkp->cache_override) { 169 sdkp->WCE = wce; 170 sdkp->RCD = rcd; 171 sd_set_flush_flag(sdkp); 172 return count; 173 } 174 175 if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT, 176 sdkp->max_retries, &data, NULL)) 177 return -EINVAL; 178 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 179 data.block_descriptor_length); 180 buffer_data = buffer + data.header_length + 181 data.block_descriptor_length; 182 buffer_data[2] &= ~0x05; 183 buffer_data[2] |= wce << 2 | rcd; 184 sp = buffer_data[0] & 0x80 ? 1 : 0; 185 buffer_data[0] &= ~0x80; 186 187 /* 188 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 189 * received mode parameter buffer before doing MODE SELECT. 190 */ 191 data.device_specific = 0; 192 193 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 194 sdkp->max_retries, &data, &sshdr)) { 195 if (scsi_sense_valid(&sshdr)) 196 sd_print_sense_hdr(sdkp, &sshdr); 197 return -EINVAL; 198 } 199 sd_revalidate_disk(sdkp->disk); 200 return count; 201 } 202 203 static ssize_t 204 manage_start_stop_show(struct device *dev, 205 struct device_attribute *attr, char *buf) 206 { 207 struct scsi_disk *sdkp = to_scsi_disk(dev); 208 struct scsi_device *sdp = sdkp->device; 209 210 return sysfs_emit(buf, "%u\n", 211 sdp->manage_system_start_stop && 212 sdp->manage_runtime_start_stop && 213 sdp->manage_shutdown); 214 } 215 static DEVICE_ATTR_RO(manage_start_stop); 216 217 static ssize_t 218 manage_system_start_stop_show(struct device *dev, 219 struct device_attribute *attr, char *buf) 220 { 221 struct scsi_disk *sdkp = to_scsi_disk(dev); 222 struct scsi_device *sdp = sdkp->device; 223 224 return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop); 225 } 226 227 static ssize_t 228 manage_system_start_stop_store(struct device *dev, 229 struct device_attribute *attr, 230 const char *buf, size_t count) 231 { 232 struct scsi_disk *sdkp = to_scsi_disk(dev); 233 struct scsi_device *sdp = sdkp->device; 234 bool v; 235 236 if (!capable(CAP_SYS_ADMIN)) 237 return -EACCES; 238 239 if (kstrtobool(buf, &v)) 240 return -EINVAL; 241 242 sdp->manage_system_start_stop = v; 243 244 return count; 245 } 246 static DEVICE_ATTR_RW(manage_system_start_stop); 247 248 static ssize_t 249 manage_runtime_start_stop_show(struct device *dev, 250 struct device_attribute *attr, char *buf) 251 { 252 struct scsi_disk *sdkp = to_scsi_disk(dev); 253 struct scsi_device *sdp = sdkp->device; 254 255 return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop); 256 } 257 258 static ssize_t 259 manage_runtime_start_stop_store(struct device *dev, 260 struct device_attribute *attr, 261 const char *buf, size_t count) 262 { 263 struct scsi_disk *sdkp = to_scsi_disk(dev); 264 struct scsi_device *sdp = sdkp->device; 265 bool v; 266 267 if (!capable(CAP_SYS_ADMIN)) 268 return -EACCES; 269 270 if (kstrtobool(buf, &v)) 271 return -EINVAL; 272 273 sdp->manage_runtime_start_stop = v; 274 275 return count; 276 } 277 static DEVICE_ATTR_RW(manage_runtime_start_stop); 278 279 static ssize_t manage_shutdown_show(struct device *dev, 280 struct device_attribute *attr, char *buf) 281 { 282 struct scsi_disk *sdkp = to_scsi_disk(dev); 283 struct scsi_device *sdp = sdkp->device; 284 285 return sysfs_emit(buf, "%u\n", sdp->manage_shutdown); 286 } 287 288 static ssize_t manage_shutdown_store(struct device *dev, 289 struct device_attribute *attr, 290 const char *buf, size_t count) 291 { 292 struct scsi_disk *sdkp = to_scsi_disk(dev); 293 struct scsi_device *sdp = sdkp->device; 294 bool v; 295 296 if (!capable(CAP_SYS_ADMIN)) 297 return -EACCES; 298 299 if (kstrtobool(buf, &v)) 300 return -EINVAL; 301 302 sdp->manage_shutdown = v; 303 304 return count; 305 } 306 static DEVICE_ATTR_RW(manage_shutdown); 307 308 static ssize_t 309 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 310 { 311 struct scsi_disk *sdkp = to_scsi_disk(dev); 312 313 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 314 } 315 316 static ssize_t 317 allow_restart_store(struct device *dev, struct device_attribute *attr, 318 const char *buf, size_t count) 319 { 320 bool v; 321 struct scsi_disk *sdkp = to_scsi_disk(dev); 322 struct scsi_device *sdp = sdkp->device; 323 324 if (!capable(CAP_SYS_ADMIN)) 325 return -EACCES; 326 327 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 328 return -EINVAL; 329 330 if (kstrtobool(buf, &v)) 331 return -EINVAL; 332 333 sdp->allow_restart = v; 334 335 return count; 336 } 337 static DEVICE_ATTR_RW(allow_restart); 338 339 static ssize_t 340 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 341 { 342 struct scsi_disk *sdkp = to_scsi_disk(dev); 343 int ct = sdkp->RCD + 2*sdkp->WCE; 344 345 return sprintf(buf, "%s\n", sd_cache_types[ct]); 346 } 347 static DEVICE_ATTR_RW(cache_type); 348 349 static ssize_t 350 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 351 { 352 struct scsi_disk *sdkp = to_scsi_disk(dev); 353 354 return sprintf(buf, "%u\n", sdkp->DPOFUA); 355 } 356 static DEVICE_ATTR_RO(FUA); 357 358 static ssize_t 359 protection_type_show(struct device *dev, struct device_attribute *attr, 360 char *buf) 361 { 362 struct scsi_disk *sdkp = to_scsi_disk(dev); 363 364 return sprintf(buf, "%u\n", sdkp->protection_type); 365 } 366 367 static ssize_t 368 protection_type_store(struct device *dev, struct device_attribute *attr, 369 const char *buf, size_t count) 370 { 371 struct scsi_disk *sdkp = to_scsi_disk(dev); 372 unsigned int val; 373 int err; 374 375 if (!capable(CAP_SYS_ADMIN)) 376 return -EACCES; 377 378 err = kstrtouint(buf, 10, &val); 379 380 if (err) 381 return err; 382 383 if (val <= T10_PI_TYPE3_PROTECTION) 384 sdkp->protection_type = val; 385 386 return count; 387 } 388 static DEVICE_ATTR_RW(protection_type); 389 390 static ssize_t 391 protection_mode_show(struct device *dev, struct device_attribute *attr, 392 char *buf) 393 { 394 struct scsi_disk *sdkp = to_scsi_disk(dev); 395 struct scsi_device *sdp = sdkp->device; 396 unsigned int dif, dix; 397 398 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 399 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 400 401 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 402 dif = 0; 403 dix = 1; 404 } 405 406 if (!dif && !dix) 407 return sprintf(buf, "none\n"); 408 409 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 410 } 411 static DEVICE_ATTR_RO(protection_mode); 412 413 static ssize_t 414 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 415 { 416 struct scsi_disk *sdkp = to_scsi_disk(dev); 417 418 return sprintf(buf, "%u\n", sdkp->ATO); 419 } 420 static DEVICE_ATTR_RO(app_tag_own); 421 422 static ssize_t 423 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 424 char *buf) 425 { 426 struct scsi_disk *sdkp = to_scsi_disk(dev); 427 428 return sprintf(buf, "%u\n", sdkp->lbpme); 429 } 430 static DEVICE_ATTR_RO(thin_provisioning); 431 432 /* sysfs_match_string() requires dense arrays */ 433 static const char *lbp_mode[] = { 434 [SD_LBP_FULL] = "full", 435 [SD_LBP_UNMAP] = "unmap", 436 [SD_LBP_WS16] = "writesame_16", 437 [SD_LBP_WS10] = "writesame_10", 438 [SD_LBP_ZERO] = "writesame_zero", 439 [SD_LBP_DISABLE] = "disabled", 440 }; 441 442 static ssize_t 443 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 444 char *buf) 445 { 446 struct scsi_disk *sdkp = to_scsi_disk(dev); 447 448 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 449 } 450 451 static ssize_t 452 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 453 const char *buf, size_t count) 454 { 455 struct scsi_disk *sdkp = to_scsi_disk(dev); 456 struct scsi_device *sdp = sdkp->device; 457 int mode; 458 459 if (!capable(CAP_SYS_ADMIN)) 460 return -EACCES; 461 462 if (sd_is_zoned(sdkp)) { 463 sd_config_discard(sdkp, SD_LBP_DISABLE); 464 return count; 465 } 466 467 if (sdp->type != TYPE_DISK) 468 return -EINVAL; 469 470 mode = sysfs_match_string(lbp_mode, buf); 471 if (mode < 0) 472 return -EINVAL; 473 474 sd_config_discard(sdkp, mode); 475 476 return count; 477 } 478 static DEVICE_ATTR_RW(provisioning_mode); 479 480 /* sysfs_match_string() requires dense arrays */ 481 static const char *zeroing_mode[] = { 482 [SD_ZERO_WRITE] = "write", 483 [SD_ZERO_WS] = "writesame", 484 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 485 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 486 }; 487 488 static ssize_t 489 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 490 char *buf) 491 { 492 struct scsi_disk *sdkp = to_scsi_disk(dev); 493 494 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 495 } 496 497 static ssize_t 498 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 499 const char *buf, size_t count) 500 { 501 struct scsi_disk *sdkp = to_scsi_disk(dev); 502 int mode; 503 504 if (!capable(CAP_SYS_ADMIN)) 505 return -EACCES; 506 507 mode = sysfs_match_string(zeroing_mode, buf); 508 if (mode < 0) 509 return -EINVAL; 510 511 sdkp->zeroing_mode = mode; 512 513 return count; 514 } 515 static DEVICE_ATTR_RW(zeroing_mode); 516 517 static ssize_t 518 max_medium_access_timeouts_show(struct device *dev, 519 struct device_attribute *attr, char *buf) 520 { 521 struct scsi_disk *sdkp = to_scsi_disk(dev); 522 523 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 524 } 525 526 static ssize_t 527 max_medium_access_timeouts_store(struct device *dev, 528 struct device_attribute *attr, const char *buf, 529 size_t count) 530 { 531 struct scsi_disk *sdkp = to_scsi_disk(dev); 532 int err; 533 534 if (!capable(CAP_SYS_ADMIN)) 535 return -EACCES; 536 537 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 538 539 return err ? err : count; 540 } 541 static DEVICE_ATTR_RW(max_medium_access_timeouts); 542 543 static ssize_t 544 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 545 char *buf) 546 { 547 struct scsi_disk *sdkp = to_scsi_disk(dev); 548 549 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 550 } 551 552 static ssize_t 553 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 554 const char *buf, size_t count) 555 { 556 struct scsi_disk *sdkp = to_scsi_disk(dev); 557 struct scsi_device *sdp = sdkp->device; 558 unsigned long max; 559 int err; 560 561 if (!capable(CAP_SYS_ADMIN)) 562 return -EACCES; 563 564 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 565 return -EINVAL; 566 567 err = kstrtoul(buf, 10, &max); 568 569 if (err) 570 return err; 571 572 if (max == 0) 573 sdp->no_write_same = 1; 574 else if (max <= SD_MAX_WS16_BLOCKS) { 575 sdp->no_write_same = 0; 576 sdkp->max_ws_blocks = max; 577 } 578 579 sd_config_write_same(sdkp); 580 581 return count; 582 } 583 static DEVICE_ATTR_RW(max_write_same_blocks); 584 585 static ssize_t 586 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 587 { 588 struct scsi_disk *sdkp = to_scsi_disk(dev); 589 590 if (sdkp->device->type == TYPE_ZBC) 591 return sprintf(buf, "host-managed\n"); 592 if (sdkp->zoned == 1) 593 return sprintf(buf, "host-aware\n"); 594 if (sdkp->zoned == 2) 595 return sprintf(buf, "drive-managed\n"); 596 return sprintf(buf, "none\n"); 597 } 598 static DEVICE_ATTR_RO(zoned_cap); 599 600 static ssize_t 601 max_retries_store(struct device *dev, struct device_attribute *attr, 602 const char *buf, size_t count) 603 { 604 struct scsi_disk *sdkp = to_scsi_disk(dev); 605 struct scsi_device *sdev = sdkp->device; 606 int retries, err; 607 608 err = kstrtoint(buf, 10, &retries); 609 if (err) 610 return err; 611 612 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 613 sdkp->max_retries = retries; 614 return count; 615 } 616 617 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 618 SD_MAX_RETRIES); 619 return -EINVAL; 620 } 621 622 static ssize_t 623 max_retries_show(struct device *dev, struct device_attribute *attr, 624 char *buf) 625 { 626 struct scsi_disk *sdkp = to_scsi_disk(dev); 627 628 return sprintf(buf, "%d\n", sdkp->max_retries); 629 } 630 631 static DEVICE_ATTR_RW(max_retries); 632 633 static struct attribute *sd_disk_attrs[] = { 634 &dev_attr_cache_type.attr, 635 &dev_attr_FUA.attr, 636 &dev_attr_allow_restart.attr, 637 &dev_attr_manage_start_stop.attr, 638 &dev_attr_manage_system_start_stop.attr, 639 &dev_attr_manage_runtime_start_stop.attr, 640 &dev_attr_manage_shutdown.attr, 641 &dev_attr_protection_type.attr, 642 &dev_attr_protection_mode.attr, 643 &dev_attr_app_tag_own.attr, 644 &dev_attr_thin_provisioning.attr, 645 &dev_attr_provisioning_mode.attr, 646 &dev_attr_zeroing_mode.attr, 647 &dev_attr_max_write_same_blocks.attr, 648 &dev_attr_max_medium_access_timeouts.attr, 649 &dev_attr_zoned_cap.attr, 650 &dev_attr_max_retries.attr, 651 NULL, 652 }; 653 ATTRIBUTE_GROUPS(sd_disk); 654 655 static struct class sd_disk_class = { 656 .name = "scsi_disk", 657 .dev_release = scsi_disk_release, 658 .dev_groups = sd_disk_groups, 659 }; 660 661 /* 662 * Don't request a new module, as that could deadlock in multipath 663 * environment. 664 */ 665 static void sd_default_probe(dev_t devt) 666 { 667 } 668 669 /* 670 * Device no to disk mapping: 671 * 672 * major disc2 disc p1 673 * |............|.............|....|....| <- dev_t 674 * 31 20 19 8 7 4 3 0 675 * 676 * Inside a major, we have 16k disks, however mapped non- 677 * contiguously. The first 16 disks are for major0, the next 678 * ones with major1, ... Disk 256 is for major0 again, disk 272 679 * for major1, ... 680 * As we stay compatible with our numbering scheme, we can reuse 681 * the well-know SCSI majors 8, 65--71, 136--143. 682 */ 683 static int sd_major(int major_idx) 684 { 685 switch (major_idx) { 686 case 0: 687 return SCSI_DISK0_MAJOR; 688 case 1 ... 7: 689 return SCSI_DISK1_MAJOR + major_idx - 1; 690 case 8 ... 15: 691 return SCSI_DISK8_MAJOR + major_idx - 8; 692 default: 693 BUG(); 694 return 0; /* shut up gcc */ 695 } 696 } 697 698 #ifdef CONFIG_BLK_SED_OPAL 699 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 700 size_t len, bool send) 701 { 702 struct scsi_disk *sdkp = data; 703 struct scsi_device *sdev = sdkp->device; 704 u8 cdb[12] = { 0, }; 705 const struct scsi_exec_args exec_args = { 706 .req_flags = BLK_MQ_REQ_PM, 707 }; 708 int ret; 709 710 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 711 cdb[1] = secp; 712 put_unaligned_be16(spsp, &cdb[2]); 713 put_unaligned_be32(len, &cdb[6]); 714 715 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 716 buffer, len, SD_TIMEOUT, sdkp->max_retries, 717 &exec_args); 718 return ret <= 0 ? ret : -EIO; 719 } 720 #endif /* CONFIG_BLK_SED_OPAL */ 721 722 /* 723 * Look up the DIX operation based on whether the command is read or 724 * write and whether dix and dif are enabled. 725 */ 726 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 727 { 728 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 729 static const unsigned int ops[] = { /* wrt dix dif */ 730 SCSI_PROT_NORMAL, /* 0 0 0 */ 731 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 732 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 733 SCSI_PROT_READ_PASS, /* 0 1 1 */ 734 SCSI_PROT_NORMAL, /* 1 0 0 */ 735 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 736 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 737 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 738 }; 739 740 return ops[write << 2 | dix << 1 | dif]; 741 } 742 743 /* 744 * Returns a mask of the protection flags that are valid for a given DIX 745 * operation. 746 */ 747 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 748 { 749 static const unsigned int flag_mask[] = { 750 [SCSI_PROT_NORMAL] = 0, 751 752 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 753 SCSI_PROT_GUARD_CHECK | 754 SCSI_PROT_REF_CHECK | 755 SCSI_PROT_REF_INCREMENT, 756 757 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 758 SCSI_PROT_IP_CHECKSUM, 759 760 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 761 SCSI_PROT_GUARD_CHECK | 762 SCSI_PROT_REF_CHECK | 763 SCSI_PROT_REF_INCREMENT | 764 SCSI_PROT_IP_CHECKSUM, 765 766 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 767 SCSI_PROT_REF_INCREMENT, 768 769 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 770 SCSI_PROT_REF_CHECK | 771 SCSI_PROT_REF_INCREMENT | 772 SCSI_PROT_IP_CHECKSUM, 773 774 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 775 SCSI_PROT_GUARD_CHECK | 776 SCSI_PROT_REF_CHECK | 777 SCSI_PROT_REF_INCREMENT | 778 SCSI_PROT_IP_CHECKSUM, 779 }; 780 781 return flag_mask[prot_op]; 782 } 783 784 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 785 unsigned int dix, unsigned int dif) 786 { 787 struct request *rq = scsi_cmd_to_rq(scmd); 788 struct bio *bio = rq->bio; 789 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 790 unsigned int protect = 0; 791 792 if (dix) { /* DIX Type 0, 1, 2, 3 */ 793 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 794 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 795 796 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 797 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 798 } 799 800 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 801 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 802 803 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 804 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 805 } 806 807 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 808 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 809 810 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 811 protect = 3 << 5; /* Disable target PI checking */ 812 else 813 protect = 1 << 5; /* Enable target PI checking */ 814 } 815 816 scsi_set_prot_op(scmd, prot_op); 817 scsi_set_prot_type(scmd, dif); 818 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 819 820 return protect; 821 } 822 823 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 824 { 825 struct request_queue *q = sdkp->disk->queue; 826 unsigned int logical_block_size = sdkp->device->sector_size; 827 unsigned int max_blocks = 0; 828 829 q->limits.discard_alignment = 830 sdkp->unmap_alignment * logical_block_size; 831 q->limits.discard_granularity = 832 max(sdkp->physical_block_size, 833 sdkp->unmap_granularity * logical_block_size); 834 sdkp->provisioning_mode = mode; 835 836 switch (mode) { 837 838 case SD_LBP_FULL: 839 case SD_LBP_DISABLE: 840 blk_queue_max_discard_sectors(q, 0); 841 return; 842 843 case SD_LBP_UNMAP: 844 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 845 (u32)SD_MAX_WS16_BLOCKS); 846 break; 847 848 case SD_LBP_WS16: 849 if (sdkp->device->unmap_limit_for_ws) 850 max_blocks = sdkp->max_unmap_blocks; 851 else 852 max_blocks = sdkp->max_ws_blocks; 853 854 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 855 break; 856 857 case SD_LBP_WS10: 858 if (sdkp->device->unmap_limit_for_ws) 859 max_blocks = sdkp->max_unmap_blocks; 860 else 861 max_blocks = sdkp->max_ws_blocks; 862 863 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 864 break; 865 866 case SD_LBP_ZERO: 867 max_blocks = min_not_zero(sdkp->max_ws_blocks, 868 (u32)SD_MAX_WS10_BLOCKS); 869 break; 870 } 871 872 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 873 } 874 875 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len) 876 { 877 struct page *page; 878 879 page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 880 if (!page) 881 return NULL; 882 clear_highpage(page); 883 bvec_set_page(&rq->special_vec, page, data_len, 0); 884 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 885 return bvec_virt(&rq->special_vec); 886 } 887 888 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 889 { 890 struct scsi_device *sdp = cmd->device; 891 struct request *rq = scsi_cmd_to_rq(cmd); 892 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 893 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 894 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 895 unsigned int data_len = 24; 896 char *buf; 897 898 buf = sd_set_special_bvec(rq, data_len); 899 if (!buf) 900 return BLK_STS_RESOURCE; 901 902 cmd->cmd_len = 10; 903 cmd->cmnd[0] = UNMAP; 904 cmd->cmnd[8] = 24; 905 906 put_unaligned_be16(6 + 16, &buf[0]); 907 put_unaligned_be16(16, &buf[2]); 908 put_unaligned_be64(lba, &buf[8]); 909 put_unaligned_be32(nr_blocks, &buf[16]); 910 911 cmd->allowed = sdkp->max_retries; 912 cmd->transfersize = data_len; 913 rq->timeout = SD_TIMEOUT; 914 915 return scsi_alloc_sgtables(cmd); 916 } 917 918 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 919 bool unmap) 920 { 921 struct scsi_device *sdp = cmd->device; 922 struct request *rq = scsi_cmd_to_rq(cmd); 923 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 924 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 925 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 926 u32 data_len = sdp->sector_size; 927 928 if (!sd_set_special_bvec(rq, data_len)) 929 return BLK_STS_RESOURCE; 930 931 cmd->cmd_len = 16; 932 cmd->cmnd[0] = WRITE_SAME_16; 933 if (unmap) 934 cmd->cmnd[1] = 0x8; /* UNMAP */ 935 put_unaligned_be64(lba, &cmd->cmnd[2]); 936 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 937 938 cmd->allowed = sdkp->max_retries; 939 cmd->transfersize = data_len; 940 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 941 942 return scsi_alloc_sgtables(cmd); 943 } 944 945 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 946 bool unmap) 947 { 948 struct scsi_device *sdp = cmd->device; 949 struct request *rq = scsi_cmd_to_rq(cmd); 950 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 951 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 952 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 953 u32 data_len = sdp->sector_size; 954 955 if (!sd_set_special_bvec(rq, data_len)) 956 return BLK_STS_RESOURCE; 957 958 cmd->cmd_len = 10; 959 cmd->cmnd[0] = WRITE_SAME; 960 if (unmap) 961 cmd->cmnd[1] = 0x8; /* UNMAP */ 962 put_unaligned_be32(lba, &cmd->cmnd[2]); 963 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 964 965 cmd->allowed = sdkp->max_retries; 966 cmd->transfersize = data_len; 967 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 968 969 return scsi_alloc_sgtables(cmd); 970 } 971 972 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 973 { 974 struct request *rq = scsi_cmd_to_rq(cmd); 975 struct scsi_device *sdp = cmd->device; 976 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 977 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 978 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 979 980 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 981 switch (sdkp->zeroing_mode) { 982 case SD_ZERO_WS16_UNMAP: 983 return sd_setup_write_same16_cmnd(cmd, true); 984 case SD_ZERO_WS10_UNMAP: 985 return sd_setup_write_same10_cmnd(cmd, true); 986 } 987 } 988 989 if (sdp->no_write_same) { 990 rq->rq_flags |= RQF_QUIET; 991 return BLK_STS_TARGET; 992 } 993 994 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 995 return sd_setup_write_same16_cmnd(cmd, false); 996 997 return sd_setup_write_same10_cmnd(cmd, false); 998 } 999 1000 static void sd_config_write_same(struct scsi_disk *sdkp) 1001 { 1002 struct request_queue *q = sdkp->disk->queue; 1003 unsigned int logical_block_size = sdkp->device->sector_size; 1004 1005 if (sdkp->device->no_write_same) { 1006 sdkp->max_ws_blocks = 0; 1007 goto out; 1008 } 1009 1010 /* Some devices can not handle block counts above 0xffff despite 1011 * supporting WRITE SAME(16). Consequently we default to 64k 1012 * blocks per I/O unless the device explicitly advertises a 1013 * bigger limit. 1014 */ 1015 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 1016 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1017 (u32)SD_MAX_WS16_BLOCKS); 1018 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 1019 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1020 (u32)SD_MAX_WS10_BLOCKS); 1021 else { 1022 sdkp->device->no_write_same = 1; 1023 sdkp->max_ws_blocks = 0; 1024 } 1025 1026 if (sdkp->lbprz && sdkp->lbpws) 1027 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 1028 else if (sdkp->lbprz && sdkp->lbpws10) 1029 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 1030 else if (sdkp->max_ws_blocks) 1031 sdkp->zeroing_mode = SD_ZERO_WS; 1032 else 1033 sdkp->zeroing_mode = SD_ZERO_WRITE; 1034 1035 if (sdkp->max_ws_blocks && 1036 sdkp->physical_block_size > logical_block_size) { 1037 /* 1038 * Reporting a maximum number of blocks that is not aligned 1039 * on the device physical size would cause a large write same 1040 * request to be split into physically unaligned chunks by 1041 * __blkdev_issue_write_zeroes() even if the caller of this 1042 * functions took care to align the large request. So make sure 1043 * the maximum reported is aligned to the device physical block 1044 * size. This is only an optional optimization for regular 1045 * disks, but this is mandatory to avoid failure of large write 1046 * same requests directed at sequential write required zones of 1047 * host-managed ZBC disks. 1048 */ 1049 sdkp->max_ws_blocks = 1050 round_down(sdkp->max_ws_blocks, 1051 bytes_to_logical(sdkp->device, 1052 sdkp->physical_block_size)); 1053 } 1054 1055 out: 1056 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1057 (logical_block_size >> 9)); 1058 } 1059 1060 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1061 { 1062 struct request *rq = scsi_cmd_to_rq(cmd); 1063 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1064 1065 /* flush requests don't perform I/O, zero the S/G table */ 1066 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1067 1068 if (cmd->device->use_16_for_sync) { 1069 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16; 1070 cmd->cmd_len = 16; 1071 } else { 1072 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1073 cmd->cmd_len = 10; 1074 } 1075 cmd->transfersize = 0; 1076 cmd->allowed = sdkp->max_retries; 1077 1078 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1079 return BLK_STS_OK; 1080 } 1081 1082 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1083 sector_t lba, unsigned int nr_blocks, 1084 unsigned char flags, unsigned int dld) 1085 { 1086 cmd->cmd_len = SD_EXT_CDB_SIZE; 1087 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1088 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1089 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1090 cmd->cmnd[10] = flags; 1091 cmd->cmnd[11] = dld & 0x07; 1092 put_unaligned_be64(lba, &cmd->cmnd[12]); 1093 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1094 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1095 1096 return BLK_STS_OK; 1097 } 1098 1099 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1100 sector_t lba, unsigned int nr_blocks, 1101 unsigned char flags, unsigned int dld) 1102 { 1103 cmd->cmd_len = 16; 1104 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1105 cmd->cmnd[1] = flags | ((dld >> 2) & 0x01); 1106 cmd->cmnd[14] = (dld & 0x03) << 6; 1107 cmd->cmnd[15] = 0; 1108 put_unaligned_be64(lba, &cmd->cmnd[2]); 1109 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1110 1111 return BLK_STS_OK; 1112 } 1113 1114 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1115 sector_t lba, unsigned int nr_blocks, 1116 unsigned char flags) 1117 { 1118 cmd->cmd_len = 10; 1119 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1120 cmd->cmnd[1] = flags; 1121 cmd->cmnd[6] = 0; 1122 cmd->cmnd[9] = 0; 1123 put_unaligned_be32(lba, &cmd->cmnd[2]); 1124 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1125 1126 return BLK_STS_OK; 1127 } 1128 1129 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1130 sector_t lba, unsigned int nr_blocks, 1131 unsigned char flags) 1132 { 1133 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1134 if (WARN_ON_ONCE(nr_blocks == 0)) 1135 return BLK_STS_IOERR; 1136 1137 if (unlikely(flags & 0x8)) { 1138 /* 1139 * This happens only if this drive failed 10byte rw 1140 * command with ILLEGAL_REQUEST during operation and 1141 * thus turned off use_10_for_rw. 1142 */ 1143 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1144 return BLK_STS_IOERR; 1145 } 1146 1147 cmd->cmd_len = 6; 1148 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1149 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1150 cmd->cmnd[2] = (lba >> 8) & 0xff; 1151 cmd->cmnd[3] = lba & 0xff; 1152 cmd->cmnd[4] = nr_blocks; 1153 cmd->cmnd[5] = 0; 1154 1155 return BLK_STS_OK; 1156 } 1157 1158 /* 1159 * Check if a command has a duration limit set. If it does, and the target 1160 * device supports CDL and the feature is enabled, return the limit 1161 * descriptor index to use. Return 0 (no limit) otherwise. 1162 */ 1163 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd) 1164 { 1165 struct scsi_device *sdp = sdkp->device; 1166 int hint; 1167 1168 if (!sdp->cdl_supported || !sdp->cdl_enable) 1169 return 0; 1170 1171 /* 1172 * Use "no limit" if the request ioprio does not specify a duration 1173 * limit hint. 1174 */ 1175 hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd))); 1176 if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 || 1177 hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7) 1178 return 0; 1179 1180 return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1; 1181 } 1182 1183 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1184 { 1185 struct request *rq = scsi_cmd_to_rq(cmd); 1186 struct scsi_device *sdp = cmd->device; 1187 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1188 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1189 sector_t threshold; 1190 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1191 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1192 bool write = rq_data_dir(rq) == WRITE; 1193 unsigned char protect, fua; 1194 unsigned int dld; 1195 blk_status_t ret; 1196 unsigned int dif; 1197 bool dix; 1198 1199 ret = scsi_alloc_sgtables(cmd); 1200 if (ret != BLK_STS_OK) 1201 return ret; 1202 1203 ret = BLK_STS_IOERR; 1204 if (!scsi_device_online(sdp) || sdp->changed) { 1205 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1206 goto fail; 1207 } 1208 1209 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1210 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1211 goto fail; 1212 } 1213 1214 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1215 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1216 goto fail; 1217 } 1218 1219 /* 1220 * Some SD card readers can't handle accesses which touch the 1221 * last one or two logical blocks. Split accesses as needed. 1222 */ 1223 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1224 1225 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1226 if (lba < threshold) { 1227 /* Access up to the threshold but not beyond */ 1228 nr_blocks = threshold - lba; 1229 } else { 1230 /* Access only a single logical block */ 1231 nr_blocks = 1; 1232 } 1233 } 1234 1235 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1236 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1237 if (ret) 1238 goto fail; 1239 } 1240 1241 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1242 dix = scsi_prot_sg_count(cmd); 1243 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1244 dld = sd_cdl_dld(sdkp, cmd); 1245 1246 if (dif || dix) 1247 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1248 else 1249 protect = 0; 1250 1251 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1252 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1253 protect | fua, dld); 1254 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1255 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1256 protect | fua, dld); 1257 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1258 sdp->use_10_for_rw || protect) { 1259 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1260 protect | fua); 1261 } else { 1262 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1263 protect | fua); 1264 } 1265 1266 if (unlikely(ret != BLK_STS_OK)) 1267 goto fail; 1268 1269 /* 1270 * We shouldn't disconnect in the middle of a sector, so with a dumb 1271 * host adapter, it's safe to assume that we can at least transfer 1272 * this many bytes between each connect / disconnect. 1273 */ 1274 cmd->transfersize = sdp->sector_size; 1275 cmd->underflow = nr_blocks << 9; 1276 cmd->allowed = sdkp->max_retries; 1277 cmd->sdb.length = nr_blocks * sdp->sector_size; 1278 1279 SCSI_LOG_HLQUEUE(1, 1280 scmd_printk(KERN_INFO, cmd, 1281 "%s: block=%llu, count=%d\n", __func__, 1282 (unsigned long long)blk_rq_pos(rq), 1283 blk_rq_sectors(rq))); 1284 SCSI_LOG_HLQUEUE(2, 1285 scmd_printk(KERN_INFO, cmd, 1286 "%s %d/%u 512 byte blocks.\n", 1287 write ? "writing" : "reading", nr_blocks, 1288 blk_rq_sectors(rq))); 1289 1290 /* 1291 * This indicates that the command is ready from our end to be queued. 1292 */ 1293 return BLK_STS_OK; 1294 fail: 1295 scsi_free_sgtables(cmd); 1296 return ret; 1297 } 1298 1299 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1300 { 1301 struct request *rq = scsi_cmd_to_rq(cmd); 1302 1303 switch (req_op(rq)) { 1304 case REQ_OP_DISCARD: 1305 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1306 case SD_LBP_UNMAP: 1307 return sd_setup_unmap_cmnd(cmd); 1308 case SD_LBP_WS16: 1309 return sd_setup_write_same16_cmnd(cmd, true); 1310 case SD_LBP_WS10: 1311 return sd_setup_write_same10_cmnd(cmd, true); 1312 case SD_LBP_ZERO: 1313 return sd_setup_write_same10_cmnd(cmd, false); 1314 default: 1315 return BLK_STS_TARGET; 1316 } 1317 case REQ_OP_WRITE_ZEROES: 1318 return sd_setup_write_zeroes_cmnd(cmd); 1319 case REQ_OP_FLUSH: 1320 return sd_setup_flush_cmnd(cmd); 1321 case REQ_OP_READ: 1322 case REQ_OP_WRITE: 1323 case REQ_OP_ZONE_APPEND: 1324 return sd_setup_read_write_cmnd(cmd); 1325 case REQ_OP_ZONE_RESET: 1326 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1327 false); 1328 case REQ_OP_ZONE_RESET_ALL: 1329 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1330 true); 1331 case REQ_OP_ZONE_OPEN: 1332 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1333 case REQ_OP_ZONE_CLOSE: 1334 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1335 case REQ_OP_ZONE_FINISH: 1336 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1337 default: 1338 WARN_ON_ONCE(1); 1339 return BLK_STS_NOTSUPP; 1340 } 1341 } 1342 1343 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1344 { 1345 struct request *rq = scsi_cmd_to_rq(SCpnt); 1346 1347 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1348 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1349 } 1350 1351 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp) 1352 { 1353 if (sdkp->device->removable || sdkp->write_prot) { 1354 if (disk_check_media_change(disk)) 1355 return true; 1356 } 1357 1358 /* 1359 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1360 * nothing to do with partitions, BLKRRPART is used to force a full 1361 * revalidate after things like a format for historical reasons. 1362 */ 1363 return test_bit(GD_NEED_PART_SCAN, &disk->state); 1364 } 1365 1366 /** 1367 * sd_open - open a scsi disk device 1368 * @disk: disk to open 1369 * @mode: open mode 1370 * 1371 * Returns 0 if successful. Returns a negated errno value in case 1372 * of error. 1373 * 1374 * Note: This can be called from a user context (e.g. fsck(1) ) 1375 * or from within the kernel (e.g. as a result of a mount(1) ). 1376 * In the latter case @inode and @filp carry an abridged amount 1377 * of information as noted above. 1378 * 1379 * Locking: called with disk->open_mutex held. 1380 **/ 1381 static int sd_open(struct gendisk *disk, blk_mode_t mode) 1382 { 1383 struct scsi_disk *sdkp = scsi_disk(disk); 1384 struct scsi_device *sdev = sdkp->device; 1385 int retval; 1386 1387 if (scsi_device_get(sdev)) 1388 return -ENXIO; 1389 1390 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1391 1392 /* 1393 * If the device is in error recovery, wait until it is done. 1394 * If the device is offline, then disallow any access to it. 1395 */ 1396 retval = -ENXIO; 1397 if (!scsi_block_when_processing_errors(sdev)) 1398 goto error_out; 1399 1400 if (sd_need_revalidate(disk, sdkp)) 1401 sd_revalidate_disk(disk); 1402 1403 /* 1404 * If the drive is empty, just let the open fail. 1405 */ 1406 retval = -ENOMEDIUM; 1407 if (sdev->removable && !sdkp->media_present && 1408 !(mode & BLK_OPEN_NDELAY)) 1409 goto error_out; 1410 1411 /* 1412 * If the device has the write protect tab set, have the open fail 1413 * if the user expects to be able to write to the thing. 1414 */ 1415 retval = -EROFS; 1416 if (sdkp->write_prot && (mode & BLK_OPEN_WRITE)) 1417 goto error_out; 1418 1419 /* 1420 * It is possible that the disk changing stuff resulted in 1421 * the device being taken offline. If this is the case, 1422 * report this to the user, and don't pretend that the 1423 * open actually succeeded. 1424 */ 1425 retval = -ENXIO; 1426 if (!scsi_device_online(sdev)) 1427 goto error_out; 1428 1429 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1430 if (scsi_block_when_processing_errors(sdev)) 1431 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1432 } 1433 1434 return 0; 1435 1436 error_out: 1437 scsi_device_put(sdev); 1438 return retval; 1439 } 1440 1441 /** 1442 * sd_release - invoked when the (last) close(2) is called on this 1443 * scsi disk. 1444 * @disk: disk to release 1445 * 1446 * Returns 0. 1447 * 1448 * Note: may block (uninterruptible) if error recovery is underway 1449 * on this disk. 1450 * 1451 * Locking: called with disk->open_mutex held. 1452 **/ 1453 static void sd_release(struct gendisk *disk) 1454 { 1455 struct scsi_disk *sdkp = scsi_disk(disk); 1456 struct scsi_device *sdev = sdkp->device; 1457 1458 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1459 1460 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1461 if (scsi_block_when_processing_errors(sdev)) 1462 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1463 } 1464 1465 scsi_device_put(sdev); 1466 } 1467 1468 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1469 { 1470 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1471 struct scsi_device *sdp = sdkp->device; 1472 struct Scsi_Host *host = sdp->host; 1473 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1474 int diskinfo[4]; 1475 1476 /* default to most commonly used values */ 1477 diskinfo[0] = 0x40; /* 1 << 6 */ 1478 diskinfo[1] = 0x20; /* 1 << 5 */ 1479 diskinfo[2] = capacity >> 11; 1480 1481 /* override with calculated, extended default, or driver values */ 1482 if (host->hostt->bios_param) 1483 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1484 else 1485 scsicam_bios_param(bdev, capacity, diskinfo); 1486 1487 geo->heads = diskinfo[0]; 1488 geo->sectors = diskinfo[1]; 1489 geo->cylinders = diskinfo[2]; 1490 return 0; 1491 } 1492 1493 /** 1494 * sd_ioctl - process an ioctl 1495 * @bdev: target block device 1496 * @mode: open mode 1497 * @cmd: ioctl command number 1498 * @arg: this is third argument given to ioctl(2) system call. 1499 * Often contains a pointer. 1500 * 1501 * Returns 0 if successful (some ioctls return positive numbers on 1502 * success as well). Returns a negated errno value in case of error. 1503 * 1504 * Note: most ioctls are forward onto the block subsystem or further 1505 * down in the scsi subsystem. 1506 **/ 1507 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode, 1508 unsigned int cmd, unsigned long arg) 1509 { 1510 struct gendisk *disk = bdev->bd_disk; 1511 struct scsi_disk *sdkp = scsi_disk(disk); 1512 struct scsi_device *sdp = sdkp->device; 1513 void __user *p = (void __user *)arg; 1514 int error; 1515 1516 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1517 "cmd=0x%x\n", disk->disk_name, cmd)); 1518 1519 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1520 return -ENOIOCTLCMD; 1521 1522 /* 1523 * If we are in the middle of error recovery, don't let anyone 1524 * else try and use this device. Also, if error recovery fails, it 1525 * may try and take the device offline, in which case all further 1526 * access to the device is prohibited. 1527 */ 1528 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1529 (mode & BLK_OPEN_NDELAY)); 1530 if (error) 1531 return error; 1532 1533 if (is_sed_ioctl(cmd)) 1534 return sed_ioctl(sdkp->opal_dev, cmd, p); 1535 return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p); 1536 } 1537 1538 static void set_media_not_present(struct scsi_disk *sdkp) 1539 { 1540 if (sdkp->media_present) 1541 sdkp->device->changed = 1; 1542 1543 if (sdkp->device->removable) { 1544 sdkp->media_present = 0; 1545 sdkp->capacity = 0; 1546 } 1547 } 1548 1549 static int media_not_present(struct scsi_disk *sdkp, 1550 struct scsi_sense_hdr *sshdr) 1551 { 1552 if (!scsi_sense_valid(sshdr)) 1553 return 0; 1554 1555 /* not invoked for commands that could return deferred errors */ 1556 switch (sshdr->sense_key) { 1557 case UNIT_ATTENTION: 1558 case NOT_READY: 1559 /* medium not present */ 1560 if (sshdr->asc == 0x3A) { 1561 set_media_not_present(sdkp); 1562 return 1; 1563 } 1564 } 1565 return 0; 1566 } 1567 1568 /** 1569 * sd_check_events - check media events 1570 * @disk: kernel device descriptor 1571 * @clearing: disk events currently being cleared 1572 * 1573 * Returns mask of DISK_EVENT_*. 1574 * 1575 * Note: this function is invoked from the block subsystem. 1576 **/ 1577 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1578 { 1579 struct scsi_disk *sdkp = disk->private_data; 1580 struct scsi_device *sdp; 1581 int retval; 1582 bool disk_changed; 1583 1584 if (!sdkp) 1585 return 0; 1586 1587 sdp = sdkp->device; 1588 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1589 1590 /* 1591 * If the device is offline, don't send any commands - just pretend as 1592 * if the command failed. If the device ever comes back online, we 1593 * can deal with it then. It is only because of unrecoverable errors 1594 * that we would ever take a device offline in the first place. 1595 */ 1596 if (!scsi_device_online(sdp)) { 1597 set_media_not_present(sdkp); 1598 goto out; 1599 } 1600 1601 /* 1602 * Using TEST_UNIT_READY enables differentiation between drive with 1603 * no cartridge loaded - NOT READY, drive with changed cartridge - 1604 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1605 * 1606 * Drives that auto spin down. eg iomega jaz 1G, will be started 1607 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1608 * sd_revalidate() is called. 1609 */ 1610 if (scsi_block_when_processing_errors(sdp)) { 1611 struct scsi_sense_hdr sshdr = { 0, }; 1612 1613 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1614 &sshdr); 1615 1616 /* failed to execute TUR, assume media not present */ 1617 if (retval < 0 || host_byte(retval)) { 1618 set_media_not_present(sdkp); 1619 goto out; 1620 } 1621 1622 if (media_not_present(sdkp, &sshdr)) 1623 goto out; 1624 } 1625 1626 /* 1627 * For removable scsi disk we have to recognise the presence 1628 * of a disk in the drive. 1629 */ 1630 if (!sdkp->media_present) 1631 sdp->changed = 1; 1632 sdkp->media_present = 1; 1633 out: 1634 /* 1635 * sdp->changed is set under the following conditions: 1636 * 1637 * Medium present state has changed in either direction. 1638 * Device has indicated UNIT_ATTENTION. 1639 */ 1640 disk_changed = sdp->changed; 1641 sdp->changed = 0; 1642 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1643 } 1644 1645 static int sd_sync_cache(struct scsi_disk *sdkp) 1646 { 1647 int retries, res; 1648 struct scsi_device *sdp = sdkp->device; 1649 const int timeout = sdp->request_queue->rq_timeout 1650 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1651 struct scsi_sense_hdr sshdr; 1652 const struct scsi_exec_args exec_args = { 1653 .req_flags = BLK_MQ_REQ_PM, 1654 .sshdr = &sshdr, 1655 }; 1656 1657 if (!scsi_device_online(sdp)) 1658 return -ENODEV; 1659 1660 for (retries = 3; retries > 0; --retries) { 1661 unsigned char cmd[16] = { 0 }; 1662 1663 if (sdp->use_16_for_sync) 1664 cmd[0] = SYNCHRONIZE_CACHE_16; 1665 else 1666 cmd[0] = SYNCHRONIZE_CACHE; 1667 /* 1668 * Leave the rest of the command zero to indicate 1669 * flush everything. 1670 */ 1671 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 1672 timeout, sdkp->max_retries, &exec_args); 1673 if (res == 0) 1674 break; 1675 } 1676 1677 if (res) { 1678 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1679 1680 if (res < 0) 1681 return res; 1682 1683 if (scsi_status_is_check_condition(res) && 1684 scsi_sense_valid(&sshdr)) { 1685 sd_print_sense_hdr(sdkp, &sshdr); 1686 1687 /* we need to evaluate the error return */ 1688 if (sshdr.asc == 0x3a || /* medium not present */ 1689 sshdr.asc == 0x20 || /* invalid command */ 1690 (sshdr.asc == 0x74 && sshdr.ascq == 0x71)) /* drive is password locked */ 1691 /* this is no error here */ 1692 return 0; 1693 1694 /* 1695 * If a format is in progress or if the drive does not 1696 * support sync, there is not much we can do because 1697 * this is called during shutdown or suspend so just 1698 * return success so those operations can proceed. 1699 */ 1700 if ((sshdr.asc == 0x04 && sshdr.ascq == 0x04) || 1701 sshdr.sense_key == ILLEGAL_REQUEST) 1702 return 0; 1703 } 1704 1705 switch (host_byte(res)) { 1706 /* ignore errors due to racing a disconnection */ 1707 case DID_BAD_TARGET: 1708 case DID_NO_CONNECT: 1709 return 0; 1710 /* signal the upper layer it might try again */ 1711 case DID_BUS_BUSY: 1712 case DID_IMM_RETRY: 1713 case DID_REQUEUE: 1714 case DID_SOFT_ERROR: 1715 return -EBUSY; 1716 default: 1717 return -EIO; 1718 } 1719 } 1720 return 0; 1721 } 1722 1723 static void sd_rescan(struct device *dev) 1724 { 1725 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1726 1727 sd_revalidate_disk(sdkp->disk); 1728 } 1729 1730 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1731 enum blk_unique_id type) 1732 { 1733 struct scsi_device *sdev = scsi_disk(disk)->device; 1734 const struct scsi_vpd *vpd; 1735 const unsigned char *d; 1736 int ret = -ENXIO, len; 1737 1738 rcu_read_lock(); 1739 vpd = rcu_dereference(sdev->vpd_pg83); 1740 if (!vpd) 1741 goto out_unlock; 1742 1743 ret = -EINVAL; 1744 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1745 /* we only care about designators with LU association */ 1746 if (((d[1] >> 4) & 0x3) != 0x00) 1747 continue; 1748 if ((d[1] & 0xf) != type) 1749 continue; 1750 1751 /* 1752 * Only exit early if a 16-byte descriptor was found. Otherwise 1753 * keep looking as one with more entropy might still show up. 1754 */ 1755 len = d[3]; 1756 if (len != 8 && len != 12 && len != 16) 1757 continue; 1758 ret = len; 1759 memcpy(id, d + 4, len); 1760 if (len == 16) 1761 break; 1762 } 1763 out_unlock: 1764 rcu_read_unlock(); 1765 return ret; 1766 } 1767 1768 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result) 1769 { 1770 switch (host_byte(result)) { 1771 case DID_TRANSPORT_MARGINAL: 1772 case DID_TRANSPORT_DISRUPTED: 1773 case DID_BUS_BUSY: 1774 return PR_STS_RETRY_PATH_FAILURE; 1775 case DID_NO_CONNECT: 1776 return PR_STS_PATH_FAILED; 1777 case DID_TRANSPORT_FAILFAST: 1778 return PR_STS_PATH_FAST_FAILED; 1779 } 1780 1781 switch (status_byte(result)) { 1782 case SAM_STAT_RESERVATION_CONFLICT: 1783 return PR_STS_RESERVATION_CONFLICT; 1784 case SAM_STAT_CHECK_CONDITION: 1785 if (!scsi_sense_valid(sshdr)) 1786 return PR_STS_IOERR; 1787 1788 if (sshdr->sense_key == ILLEGAL_REQUEST && 1789 (sshdr->asc == 0x26 || sshdr->asc == 0x24)) 1790 return -EINVAL; 1791 1792 fallthrough; 1793 default: 1794 return PR_STS_IOERR; 1795 } 1796 } 1797 1798 static int sd_pr_in_command(struct block_device *bdev, u8 sa, 1799 unsigned char *data, int data_len) 1800 { 1801 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1802 struct scsi_device *sdev = sdkp->device; 1803 struct scsi_sense_hdr sshdr; 1804 u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa }; 1805 const struct scsi_exec_args exec_args = { 1806 .sshdr = &sshdr, 1807 }; 1808 int result; 1809 1810 put_unaligned_be16(data_len, &cmd[7]); 1811 1812 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len, 1813 SD_TIMEOUT, sdkp->max_retries, &exec_args); 1814 if (scsi_status_is_check_condition(result) && 1815 scsi_sense_valid(&sshdr)) { 1816 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1817 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1818 } 1819 1820 if (result <= 0) 1821 return result; 1822 1823 return sd_scsi_to_pr_err(&sshdr, result); 1824 } 1825 1826 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info) 1827 { 1828 int result, i, data_offset, num_copy_keys; 1829 u32 num_keys = keys_info->num_keys; 1830 int data_len = num_keys * 8 + 8; 1831 u8 *data; 1832 1833 data = kzalloc(data_len, GFP_KERNEL); 1834 if (!data) 1835 return -ENOMEM; 1836 1837 result = sd_pr_in_command(bdev, READ_KEYS, data, data_len); 1838 if (result) 1839 goto free_data; 1840 1841 keys_info->generation = get_unaligned_be32(&data[0]); 1842 keys_info->num_keys = get_unaligned_be32(&data[4]) / 8; 1843 1844 data_offset = 8; 1845 num_copy_keys = min(num_keys, keys_info->num_keys); 1846 1847 for (i = 0; i < num_copy_keys; i++) { 1848 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]); 1849 data_offset += 8; 1850 } 1851 1852 free_data: 1853 kfree(data); 1854 return result; 1855 } 1856 1857 static int sd_pr_read_reservation(struct block_device *bdev, 1858 struct pr_held_reservation *rsv) 1859 { 1860 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1861 struct scsi_device *sdev = sdkp->device; 1862 u8 data[24] = { }; 1863 int result, len; 1864 1865 result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data)); 1866 if (result) 1867 return result; 1868 1869 len = get_unaligned_be32(&data[4]); 1870 if (!len) 1871 return 0; 1872 1873 /* Make sure we have at least the key and type */ 1874 if (len < 14) { 1875 sdev_printk(KERN_INFO, sdev, 1876 "READ RESERVATION failed due to short return buffer of %d bytes\n", 1877 len); 1878 return -EINVAL; 1879 } 1880 1881 rsv->generation = get_unaligned_be32(&data[0]); 1882 rsv->key = get_unaligned_be64(&data[8]); 1883 rsv->type = scsi_pr_type_to_block(data[21] & 0x0f); 1884 return 0; 1885 } 1886 1887 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key, 1888 u64 sa_key, enum scsi_pr_type type, u8 flags) 1889 { 1890 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1891 struct scsi_device *sdev = sdkp->device; 1892 struct scsi_sense_hdr sshdr; 1893 const struct scsi_exec_args exec_args = { 1894 .sshdr = &sshdr, 1895 }; 1896 int result; 1897 u8 cmd[16] = { 0, }; 1898 u8 data[24] = { 0, }; 1899 1900 cmd[0] = PERSISTENT_RESERVE_OUT; 1901 cmd[1] = sa; 1902 cmd[2] = type; 1903 put_unaligned_be32(sizeof(data), &cmd[5]); 1904 1905 put_unaligned_be64(key, &data[0]); 1906 put_unaligned_be64(sa_key, &data[8]); 1907 data[20] = flags; 1908 1909 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data, 1910 sizeof(data), SD_TIMEOUT, sdkp->max_retries, 1911 &exec_args); 1912 1913 if (scsi_status_is_check_condition(result) && 1914 scsi_sense_valid(&sshdr)) { 1915 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1916 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1917 } 1918 1919 if (result <= 0) 1920 return result; 1921 1922 return sd_scsi_to_pr_err(&sshdr, result); 1923 } 1924 1925 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1926 u32 flags) 1927 { 1928 if (flags & ~PR_FL_IGNORE_KEY) 1929 return -EOPNOTSUPP; 1930 return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1931 old_key, new_key, 0, 1932 (1 << 0) /* APTPL */); 1933 } 1934 1935 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1936 u32 flags) 1937 { 1938 if (flags) 1939 return -EOPNOTSUPP; 1940 return sd_pr_out_command(bdev, 0x01, key, 0, 1941 block_pr_type_to_scsi(type), 0); 1942 } 1943 1944 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1945 { 1946 return sd_pr_out_command(bdev, 0x02, key, 0, 1947 block_pr_type_to_scsi(type), 0); 1948 } 1949 1950 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1951 enum pr_type type, bool abort) 1952 { 1953 return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1954 block_pr_type_to_scsi(type), 0); 1955 } 1956 1957 static int sd_pr_clear(struct block_device *bdev, u64 key) 1958 { 1959 return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0); 1960 } 1961 1962 static const struct pr_ops sd_pr_ops = { 1963 .pr_register = sd_pr_register, 1964 .pr_reserve = sd_pr_reserve, 1965 .pr_release = sd_pr_release, 1966 .pr_preempt = sd_pr_preempt, 1967 .pr_clear = sd_pr_clear, 1968 .pr_read_keys = sd_pr_read_keys, 1969 .pr_read_reservation = sd_pr_read_reservation, 1970 }; 1971 1972 static void scsi_disk_free_disk(struct gendisk *disk) 1973 { 1974 struct scsi_disk *sdkp = scsi_disk(disk); 1975 1976 put_device(&sdkp->disk_dev); 1977 } 1978 1979 static const struct block_device_operations sd_fops = { 1980 .owner = THIS_MODULE, 1981 .open = sd_open, 1982 .release = sd_release, 1983 .ioctl = sd_ioctl, 1984 .getgeo = sd_getgeo, 1985 .compat_ioctl = blkdev_compat_ptr_ioctl, 1986 .check_events = sd_check_events, 1987 .unlock_native_capacity = sd_unlock_native_capacity, 1988 .report_zones = sd_zbc_report_zones, 1989 .get_unique_id = sd_get_unique_id, 1990 .free_disk = scsi_disk_free_disk, 1991 .pr_ops = &sd_pr_ops, 1992 }; 1993 1994 /** 1995 * sd_eh_reset - reset error handling callback 1996 * @scmd: sd-issued command that has failed 1997 * 1998 * This function is called by the SCSI midlayer before starting 1999 * SCSI EH. When counting medium access failures we have to be 2000 * careful to register it only only once per device and SCSI EH run; 2001 * there might be several timed out commands which will cause the 2002 * 'max_medium_access_timeouts' counter to trigger after the first 2003 * SCSI EH run already and set the device to offline. 2004 * So this function resets the internal counter before starting SCSI EH. 2005 **/ 2006 static void sd_eh_reset(struct scsi_cmnd *scmd) 2007 { 2008 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 2009 2010 /* New SCSI EH run, reset gate variable */ 2011 sdkp->ignore_medium_access_errors = false; 2012 } 2013 2014 /** 2015 * sd_eh_action - error handling callback 2016 * @scmd: sd-issued command that has failed 2017 * @eh_disp: The recovery disposition suggested by the midlayer 2018 * 2019 * This function is called by the SCSI midlayer upon completion of an 2020 * error test command (currently TEST UNIT READY). The result of sending 2021 * the eh command is passed in eh_disp. We're looking for devices that 2022 * fail medium access commands but are OK with non access commands like 2023 * test unit ready (so wrongly see the device as having a successful 2024 * recovery) 2025 **/ 2026 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 2027 { 2028 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 2029 struct scsi_device *sdev = scmd->device; 2030 2031 if (!scsi_device_online(sdev) || 2032 !scsi_medium_access_command(scmd) || 2033 host_byte(scmd->result) != DID_TIME_OUT || 2034 eh_disp != SUCCESS) 2035 return eh_disp; 2036 2037 /* 2038 * The device has timed out executing a medium access command. 2039 * However, the TEST UNIT READY command sent during error 2040 * handling completed successfully. Either the device is in the 2041 * process of recovering or has it suffered an internal failure 2042 * that prevents access to the storage medium. 2043 */ 2044 if (!sdkp->ignore_medium_access_errors) { 2045 sdkp->medium_access_timed_out++; 2046 sdkp->ignore_medium_access_errors = true; 2047 } 2048 2049 /* 2050 * If the device keeps failing read/write commands but TEST UNIT 2051 * READY always completes successfully we assume that medium 2052 * access is no longer possible and take the device offline. 2053 */ 2054 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 2055 scmd_printk(KERN_ERR, scmd, 2056 "Medium access timeout failure. Offlining disk!\n"); 2057 mutex_lock(&sdev->state_mutex); 2058 scsi_device_set_state(sdev, SDEV_OFFLINE); 2059 mutex_unlock(&sdev->state_mutex); 2060 2061 return SUCCESS; 2062 } 2063 2064 return eh_disp; 2065 } 2066 2067 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 2068 { 2069 struct request *req = scsi_cmd_to_rq(scmd); 2070 struct scsi_device *sdev = scmd->device; 2071 unsigned int transferred, good_bytes; 2072 u64 start_lba, end_lba, bad_lba; 2073 2074 /* 2075 * Some commands have a payload smaller than the device logical 2076 * block size (e.g. INQUIRY on a 4K disk). 2077 */ 2078 if (scsi_bufflen(scmd) <= sdev->sector_size) 2079 return 0; 2080 2081 /* Check if we have a 'bad_lba' information */ 2082 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 2083 SCSI_SENSE_BUFFERSIZE, 2084 &bad_lba)) 2085 return 0; 2086 2087 /* 2088 * If the bad lba was reported incorrectly, we have no idea where 2089 * the error is. 2090 */ 2091 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 2092 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 2093 if (bad_lba < start_lba || bad_lba >= end_lba) 2094 return 0; 2095 2096 /* 2097 * resid is optional but mostly filled in. When it's unused, 2098 * its value is zero, so we assume the whole buffer transferred 2099 */ 2100 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 2101 2102 /* This computation should always be done in terms of the 2103 * resolution of the device's medium. 2104 */ 2105 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2106 2107 return min(good_bytes, transferred); 2108 } 2109 2110 /** 2111 * sd_done - bottom half handler: called when the lower level 2112 * driver has completed (successfully or otherwise) a scsi command. 2113 * @SCpnt: mid-level's per command structure. 2114 * 2115 * Note: potentially run from within an ISR. Must not block. 2116 **/ 2117 static int sd_done(struct scsi_cmnd *SCpnt) 2118 { 2119 int result = SCpnt->result; 2120 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2121 unsigned int sector_size = SCpnt->device->sector_size; 2122 unsigned int resid; 2123 struct scsi_sense_hdr sshdr; 2124 struct request *req = scsi_cmd_to_rq(SCpnt); 2125 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 2126 int sense_valid = 0; 2127 int sense_deferred = 0; 2128 2129 switch (req_op(req)) { 2130 case REQ_OP_DISCARD: 2131 case REQ_OP_WRITE_ZEROES: 2132 case REQ_OP_ZONE_RESET: 2133 case REQ_OP_ZONE_RESET_ALL: 2134 case REQ_OP_ZONE_OPEN: 2135 case REQ_OP_ZONE_CLOSE: 2136 case REQ_OP_ZONE_FINISH: 2137 if (!result) { 2138 good_bytes = blk_rq_bytes(req); 2139 scsi_set_resid(SCpnt, 0); 2140 } else { 2141 good_bytes = 0; 2142 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2143 } 2144 break; 2145 default: 2146 /* 2147 * In case of bogus fw or device, we could end up having 2148 * an unaligned partial completion. Check this here and force 2149 * alignment. 2150 */ 2151 resid = scsi_get_resid(SCpnt); 2152 if (resid & (sector_size - 1)) { 2153 sd_printk(KERN_INFO, sdkp, 2154 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2155 resid, sector_size); 2156 scsi_print_command(SCpnt); 2157 resid = min(scsi_bufflen(SCpnt), 2158 round_up(resid, sector_size)); 2159 scsi_set_resid(SCpnt, resid); 2160 } 2161 } 2162 2163 if (result) { 2164 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2165 if (sense_valid) 2166 sense_deferred = scsi_sense_is_deferred(&sshdr); 2167 } 2168 sdkp->medium_access_timed_out = 0; 2169 2170 if (!scsi_status_is_check_condition(result) && 2171 (!sense_valid || sense_deferred)) 2172 goto out; 2173 2174 switch (sshdr.sense_key) { 2175 case HARDWARE_ERROR: 2176 case MEDIUM_ERROR: 2177 good_bytes = sd_completed_bytes(SCpnt); 2178 break; 2179 case RECOVERED_ERROR: 2180 good_bytes = scsi_bufflen(SCpnt); 2181 break; 2182 case NO_SENSE: 2183 /* This indicates a false check condition, so ignore it. An 2184 * unknown amount of data was transferred so treat it as an 2185 * error. 2186 */ 2187 SCpnt->result = 0; 2188 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2189 break; 2190 case ABORTED_COMMAND: 2191 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2192 good_bytes = sd_completed_bytes(SCpnt); 2193 break; 2194 case ILLEGAL_REQUEST: 2195 switch (sshdr.asc) { 2196 case 0x10: /* DIX: Host detected corruption */ 2197 good_bytes = sd_completed_bytes(SCpnt); 2198 break; 2199 case 0x20: /* INVALID COMMAND OPCODE */ 2200 case 0x24: /* INVALID FIELD IN CDB */ 2201 switch (SCpnt->cmnd[0]) { 2202 case UNMAP: 2203 sd_config_discard(sdkp, SD_LBP_DISABLE); 2204 break; 2205 case WRITE_SAME_16: 2206 case WRITE_SAME: 2207 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2208 sd_config_discard(sdkp, SD_LBP_DISABLE); 2209 } else { 2210 sdkp->device->no_write_same = 1; 2211 sd_config_write_same(sdkp); 2212 req->rq_flags |= RQF_QUIET; 2213 } 2214 break; 2215 } 2216 } 2217 break; 2218 default: 2219 break; 2220 } 2221 2222 out: 2223 if (sd_is_zoned(sdkp)) 2224 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2225 2226 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2227 "sd_done: completed %d of %d bytes\n", 2228 good_bytes, scsi_bufflen(SCpnt))); 2229 2230 return good_bytes; 2231 } 2232 2233 /* 2234 * spinup disk - called only in sd_revalidate_disk() 2235 */ 2236 static void 2237 sd_spinup_disk(struct scsi_disk *sdkp) 2238 { 2239 unsigned char cmd[10]; 2240 unsigned long spintime_expire = 0; 2241 int retries, spintime; 2242 unsigned int the_result; 2243 struct scsi_sense_hdr sshdr; 2244 const struct scsi_exec_args exec_args = { 2245 .sshdr = &sshdr, 2246 }; 2247 int sense_valid = 0; 2248 2249 spintime = 0; 2250 2251 /* Spin up drives, as required. Only do this at boot time */ 2252 /* Spinup needs to be done for module loads too. */ 2253 do { 2254 retries = 0; 2255 2256 do { 2257 bool media_was_present = sdkp->media_present; 2258 2259 cmd[0] = TEST_UNIT_READY; 2260 memset((void *) &cmd[1], 0, 9); 2261 2262 the_result = scsi_execute_cmd(sdkp->device, cmd, 2263 REQ_OP_DRV_IN, NULL, 0, 2264 SD_TIMEOUT, 2265 sdkp->max_retries, 2266 &exec_args); 2267 2268 /* 2269 * If the drive has indicated to us that it 2270 * doesn't have any media in it, don't bother 2271 * with any more polling. 2272 */ 2273 if (media_not_present(sdkp, &sshdr)) { 2274 if (media_was_present) 2275 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); 2276 return; 2277 } 2278 2279 if (the_result) 2280 sense_valid = scsi_sense_valid(&sshdr); 2281 retries++; 2282 } while (retries < 3 && 2283 (!scsi_status_is_good(the_result) || 2284 (scsi_status_is_check_condition(the_result) && 2285 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2286 2287 if (!scsi_status_is_check_condition(the_result)) { 2288 /* no sense, TUR either succeeded or failed 2289 * with a status error */ 2290 if(!spintime && !scsi_status_is_good(the_result)) { 2291 sd_print_result(sdkp, "Test Unit Ready failed", 2292 the_result); 2293 } 2294 break; 2295 } 2296 2297 /* 2298 * The device does not want the automatic start to be issued. 2299 */ 2300 if (sdkp->device->no_start_on_add) 2301 break; 2302 2303 if (sense_valid && sshdr.sense_key == NOT_READY) { 2304 if (sshdr.asc == 4 && sshdr.ascq == 3) 2305 break; /* manual intervention required */ 2306 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2307 break; /* standby */ 2308 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2309 break; /* unavailable */ 2310 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2311 break; /* sanitize in progress */ 2312 /* 2313 * Issue command to spin up drive when not ready 2314 */ 2315 if (!spintime) { 2316 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2317 cmd[0] = START_STOP; 2318 cmd[1] = 1; /* Return immediately */ 2319 memset((void *) &cmd[2], 0, 8); 2320 cmd[4] = 1; /* Start spin cycle */ 2321 if (sdkp->device->start_stop_pwr_cond) 2322 cmd[4] |= 1 << 4; 2323 scsi_execute_cmd(sdkp->device, cmd, 2324 REQ_OP_DRV_IN, NULL, 0, 2325 SD_TIMEOUT, sdkp->max_retries, 2326 &exec_args); 2327 spintime_expire = jiffies + 100 * HZ; 2328 spintime = 1; 2329 } 2330 /* Wait 1 second for next try */ 2331 msleep(1000); 2332 printk(KERN_CONT "."); 2333 2334 /* 2335 * Wait for USB flash devices with slow firmware. 2336 * Yes, this sense key/ASC combination shouldn't 2337 * occur here. It's characteristic of these devices. 2338 */ 2339 } else if (sense_valid && 2340 sshdr.sense_key == UNIT_ATTENTION && 2341 sshdr.asc == 0x28) { 2342 if (!spintime) { 2343 spintime_expire = jiffies + 5 * HZ; 2344 spintime = 1; 2345 } 2346 /* Wait 1 second for next try */ 2347 msleep(1000); 2348 } else { 2349 /* we don't understand the sense code, so it's 2350 * probably pointless to loop */ 2351 if(!spintime) { 2352 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2353 sd_print_sense_hdr(sdkp, &sshdr); 2354 } 2355 break; 2356 } 2357 2358 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2359 2360 if (spintime) { 2361 if (scsi_status_is_good(the_result)) 2362 printk(KERN_CONT "ready\n"); 2363 else 2364 printk(KERN_CONT "not responding...\n"); 2365 } 2366 } 2367 2368 /* 2369 * Determine whether disk supports Data Integrity Field. 2370 */ 2371 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2372 { 2373 struct scsi_device *sdp = sdkp->device; 2374 u8 type; 2375 2376 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2377 sdkp->protection_type = 0; 2378 return 0; 2379 } 2380 2381 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2382 2383 if (type > T10_PI_TYPE3_PROTECTION) { 2384 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2385 " protection type %u. Disabling disk!\n", 2386 type); 2387 sdkp->protection_type = 0; 2388 return -ENODEV; 2389 } 2390 2391 sdkp->protection_type = type; 2392 2393 return 0; 2394 } 2395 2396 static void sd_config_protection(struct scsi_disk *sdkp) 2397 { 2398 struct scsi_device *sdp = sdkp->device; 2399 2400 sd_dif_config_host(sdkp); 2401 2402 if (!sdkp->protection_type) 2403 return; 2404 2405 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2406 sd_first_printk(KERN_NOTICE, sdkp, 2407 "Disabling DIF Type %u protection\n", 2408 sdkp->protection_type); 2409 sdkp->protection_type = 0; 2410 } 2411 2412 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2413 sdkp->protection_type); 2414 } 2415 2416 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2417 struct scsi_sense_hdr *sshdr, int sense_valid, 2418 int the_result) 2419 { 2420 if (sense_valid) 2421 sd_print_sense_hdr(sdkp, sshdr); 2422 else 2423 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2424 2425 /* 2426 * Set dirty bit for removable devices if not ready - 2427 * sometimes drives will not report this properly. 2428 */ 2429 if (sdp->removable && 2430 sense_valid && sshdr->sense_key == NOT_READY) 2431 set_media_not_present(sdkp); 2432 2433 /* 2434 * We used to set media_present to 0 here to indicate no media 2435 * in the drive, but some drives fail read capacity even with 2436 * media present, so we can't do that. 2437 */ 2438 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2439 } 2440 2441 #define RC16_LEN 32 2442 #if RC16_LEN > SD_BUF_SIZE 2443 #error RC16_LEN must not be more than SD_BUF_SIZE 2444 #endif 2445 2446 #define READ_CAPACITY_RETRIES_ON_RESET 10 2447 2448 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2449 unsigned char *buffer) 2450 { 2451 unsigned char cmd[16]; 2452 struct scsi_sense_hdr sshdr; 2453 const struct scsi_exec_args exec_args = { 2454 .sshdr = &sshdr, 2455 }; 2456 int sense_valid = 0; 2457 int the_result; 2458 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2459 unsigned int alignment; 2460 unsigned long long lba; 2461 unsigned sector_size; 2462 2463 if (sdp->no_read_capacity_16) 2464 return -EINVAL; 2465 2466 do { 2467 memset(cmd, 0, 16); 2468 cmd[0] = SERVICE_ACTION_IN_16; 2469 cmd[1] = SAI_READ_CAPACITY_16; 2470 cmd[13] = RC16_LEN; 2471 memset(buffer, 0, RC16_LEN); 2472 2473 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, 2474 buffer, RC16_LEN, SD_TIMEOUT, 2475 sdkp->max_retries, &exec_args); 2476 2477 if (media_not_present(sdkp, &sshdr)) 2478 return -ENODEV; 2479 2480 if (the_result > 0) { 2481 sense_valid = scsi_sense_valid(&sshdr); 2482 if (sense_valid && 2483 sshdr.sense_key == ILLEGAL_REQUEST && 2484 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2485 sshdr.ascq == 0x00) 2486 /* Invalid Command Operation Code or 2487 * Invalid Field in CDB, just retry 2488 * silently with RC10 */ 2489 return -EINVAL; 2490 if (sense_valid && 2491 sshdr.sense_key == UNIT_ATTENTION && 2492 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2493 /* Device reset might occur several times, 2494 * give it one more chance */ 2495 if (--reset_retries > 0) 2496 continue; 2497 } 2498 retries--; 2499 2500 } while (the_result && retries); 2501 2502 if (the_result) { 2503 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2504 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2505 return -EINVAL; 2506 } 2507 2508 sector_size = get_unaligned_be32(&buffer[8]); 2509 lba = get_unaligned_be64(&buffer[0]); 2510 2511 if (sd_read_protection_type(sdkp, buffer) < 0) { 2512 sdkp->capacity = 0; 2513 return -ENODEV; 2514 } 2515 2516 /* Logical blocks per physical block exponent */ 2517 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2518 2519 /* RC basis */ 2520 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2521 2522 /* Lowest aligned logical block */ 2523 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2524 blk_queue_alignment_offset(sdp->request_queue, alignment); 2525 if (alignment && sdkp->first_scan) 2526 sd_printk(KERN_NOTICE, sdkp, 2527 "physical block alignment offset: %u\n", alignment); 2528 2529 if (buffer[14] & 0x80) { /* LBPME */ 2530 sdkp->lbpme = 1; 2531 2532 if (buffer[14] & 0x40) /* LBPRZ */ 2533 sdkp->lbprz = 1; 2534 2535 sd_config_discard(sdkp, SD_LBP_WS16); 2536 } 2537 2538 sdkp->capacity = lba + 1; 2539 return sector_size; 2540 } 2541 2542 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2543 unsigned char *buffer) 2544 { 2545 unsigned char cmd[16]; 2546 struct scsi_sense_hdr sshdr; 2547 const struct scsi_exec_args exec_args = { 2548 .sshdr = &sshdr, 2549 }; 2550 int sense_valid = 0; 2551 int the_result; 2552 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2553 sector_t lba; 2554 unsigned sector_size; 2555 2556 do { 2557 cmd[0] = READ_CAPACITY; 2558 memset(&cmd[1], 0, 9); 2559 memset(buffer, 0, 8); 2560 2561 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer, 2562 8, SD_TIMEOUT, sdkp->max_retries, 2563 &exec_args); 2564 2565 if (media_not_present(sdkp, &sshdr)) 2566 return -ENODEV; 2567 2568 if (the_result > 0) { 2569 sense_valid = scsi_sense_valid(&sshdr); 2570 if (sense_valid && 2571 sshdr.sense_key == UNIT_ATTENTION && 2572 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2573 /* Device reset might occur several times, 2574 * give it one more chance */ 2575 if (--reset_retries > 0) 2576 continue; 2577 } 2578 retries--; 2579 2580 } while (the_result && retries); 2581 2582 if (the_result) { 2583 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2584 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2585 return -EINVAL; 2586 } 2587 2588 sector_size = get_unaligned_be32(&buffer[4]); 2589 lba = get_unaligned_be32(&buffer[0]); 2590 2591 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2592 /* Some buggy (usb cardreader) devices return an lba of 2593 0xffffffff when the want to report a size of 0 (with 2594 which they really mean no media is present) */ 2595 sdkp->capacity = 0; 2596 sdkp->physical_block_size = sector_size; 2597 return sector_size; 2598 } 2599 2600 sdkp->capacity = lba + 1; 2601 sdkp->physical_block_size = sector_size; 2602 return sector_size; 2603 } 2604 2605 static int sd_try_rc16_first(struct scsi_device *sdp) 2606 { 2607 if (sdp->host->max_cmd_len < 16) 2608 return 0; 2609 if (sdp->try_rc_10_first) 2610 return 0; 2611 if (sdp->scsi_level > SCSI_SPC_2) 2612 return 1; 2613 if (scsi_device_protection(sdp)) 2614 return 1; 2615 return 0; 2616 } 2617 2618 /* 2619 * read disk capacity 2620 */ 2621 static void 2622 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2623 { 2624 int sector_size; 2625 struct scsi_device *sdp = sdkp->device; 2626 2627 if (sd_try_rc16_first(sdp)) { 2628 sector_size = read_capacity_16(sdkp, sdp, buffer); 2629 if (sector_size == -EOVERFLOW) 2630 goto got_data; 2631 if (sector_size == -ENODEV) 2632 return; 2633 if (sector_size < 0) 2634 sector_size = read_capacity_10(sdkp, sdp, buffer); 2635 if (sector_size < 0) 2636 return; 2637 } else { 2638 sector_size = read_capacity_10(sdkp, sdp, buffer); 2639 if (sector_size == -EOVERFLOW) 2640 goto got_data; 2641 if (sector_size < 0) 2642 return; 2643 if ((sizeof(sdkp->capacity) > 4) && 2644 (sdkp->capacity > 0xffffffffULL)) { 2645 int old_sector_size = sector_size; 2646 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2647 "Trying to use READ CAPACITY(16).\n"); 2648 sector_size = read_capacity_16(sdkp, sdp, buffer); 2649 if (sector_size < 0) { 2650 sd_printk(KERN_NOTICE, sdkp, 2651 "Using 0xffffffff as device size\n"); 2652 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2653 sector_size = old_sector_size; 2654 goto got_data; 2655 } 2656 /* Remember that READ CAPACITY(16) succeeded */ 2657 sdp->try_rc_10_first = 0; 2658 } 2659 } 2660 2661 /* Some devices are known to return the total number of blocks, 2662 * not the highest block number. Some devices have versions 2663 * which do this and others which do not. Some devices we might 2664 * suspect of doing this but we don't know for certain. 2665 * 2666 * If we know the reported capacity is wrong, decrement it. If 2667 * we can only guess, then assume the number of blocks is even 2668 * (usually true but not always) and err on the side of lowering 2669 * the capacity. 2670 */ 2671 if (sdp->fix_capacity || 2672 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2673 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2674 "from its reported value: %llu\n", 2675 (unsigned long long) sdkp->capacity); 2676 --sdkp->capacity; 2677 } 2678 2679 got_data: 2680 if (sector_size == 0) { 2681 sector_size = 512; 2682 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2683 "assuming 512.\n"); 2684 } 2685 2686 if (sector_size != 512 && 2687 sector_size != 1024 && 2688 sector_size != 2048 && 2689 sector_size != 4096) { 2690 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2691 sector_size); 2692 /* 2693 * The user might want to re-format the drive with 2694 * a supported sectorsize. Once this happens, it 2695 * would be relatively trivial to set the thing up. 2696 * For this reason, we leave the thing in the table. 2697 */ 2698 sdkp->capacity = 0; 2699 /* 2700 * set a bogus sector size so the normal read/write 2701 * logic in the block layer will eventually refuse any 2702 * request on this device without tripping over power 2703 * of two sector size assumptions 2704 */ 2705 sector_size = 512; 2706 } 2707 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2708 blk_queue_physical_block_size(sdp->request_queue, 2709 sdkp->physical_block_size); 2710 sdkp->device->sector_size = sector_size; 2711 2712 if (sdkp->capacity > 0xffffffff) 2713 sdp->use_16_for_rw = 1; 2714 2715 } 2716 2717 /* 2718 * Print disk capacity 2719 */ 2720 static void 2721 sd_print_capacity(struct scsi_disk *sdkp, 2722 sector_t old_capacity) 2723 { 2724 int sector_size = sdkp->device->sector_size; 2725 char cap_str_2[10], cap_str_10[10]; 2726 2727 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2728 return; 2729 2730 string_get_size(sdkp->capacity, sector_size, 2731 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2732 string_get_size(sdkp->capacity, sector_size, 2733 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2734 2735 sd_printk(KERN_NOTICE, sdkp, 2736 "%llu %d-byte logical blocks: (%s/%s)\n", 2737 (unsigned long long)sdkp->capacity, 2738 sector_size, cap_str_10, cap_str_2); 2739 2740 if (sdkp->physical_block_size != sector_size) 2741 sd_printk(KERN_NOTICE, sdkp, 2742 "%u-byte physical blocks\n", 2743 sdkp->physical_block_size); 2744 } 2745 2746 /* called with buffer of length 512 */ 2747 static inline int 2748 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2749 unsigned char *buffer, int len, struct scsi_mode_data *data, 2750 struct scsi_sense_hdr *sshdr) 2751 { 2752 /* 2753 * If we must use MODE SENSE(10), make sure that the buffer length 2754 * is at least 8 bytes so that the mode sense header fits. 2755 */ 2756 if (sdkp->device->use_10_for_ms && len < 8) 2757 len = 8; 2758 2759 return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len, 2760 SD_TIMEOUT, sdkp->max_retries, data, sshdr); 2761 } 2762 2763 /* 2764 * read write protect setting, if possible - called only in sd_revalidate_disk() 2765 * called with buffer of length SD_BUF_SIZE 2766 */ 2767 static void 2768 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2769 { 2770 int res; 2771 struct scsi_device *sdp = sdkp->device; 2772 struct scsi_mode_data data; 2773 int old_wp = sdkp->write_prot; 2774 2775 set_disk_ro(sdkp->disk, 0); 2776 if (sdp->skip_ms_page_3f) { 2777 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2778 return; 2779 } 2780 2781 if (sdp->use_192_bytes_for_3f) { 2782 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2783 } else { 2784 /* 2785 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2786 * We have to start carefully: some devices hang if we ask 2787 * for more than is available. 2788 */ 2789 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2790 2791 /* 2792 * Second attempt: ask for page 0 When only page 0 is 2793 * implemented, a request for page 3F may return Sense Key 2794 * 5: Illegal Request, Sense Code 24: Invalid field in 2795 * CDB. 2796 */ 2797 if (res < 0) 2798 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2799 2800 /* 2801 * Third attempt: ask 255 bytes, as we did earlier. 2802 */ 2803 if (res < 0) 2804 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2805 &data, NULL); 2806 } 2807 2808 if (res < 0) { 2809 sd_first_printk(KERN_WARNING, sdkp, 2810 "Test WP failed, assume Write Enabled\n"); 2811 } else { 2812 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2813 set_disk_ro(sdkp->disk, sdkp->write_prot); 2814 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2815 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2816 sdkp->write_prot ? "on" : "off"); 2817 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2818 } 2819 } 2820 } 2821 2822 /* 2823 * sd_read_cache_type - called only from sd_revalidate_disk() 2824 * called with buffer of length SD_BUF_SIZE 2825 */ 2826 static void 2827 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2828 { 2829 int len = 0, res; 2830 struct scsi_device *sdp = sdkp->device; 2831 2832 int dbd; 2833 int modepage; 2834 int first_len; 2835 struct scsi_mode_data data; 2836 struct scsi_sense_hdr sshdr; 2837 int old_wce = sdkp->WCE; 2838 int old_rcd = sdkp->RCD; 2839 int old_dpofua = sdkp->DPOFUA; 2840 2841 2842 if (sdkp->cache_override) 2843 return; 2844 2845 first_len = 4; 2846 if (sdp->skip_ms_page_8) { 2847 if (sdp->type == TYPE_RBC) 2848 goto defaults; 2849 else { 2850 if (sdp->skip_ms_page_3f) 2851 goto defaults; 2852 modepage = 0x3F; 2853 if (sdp->use_192_bytes_for_3f) 2854 first_len = 192; 2855 dbd = 0; 2856 } 2857 } else if (sdp->type == TYPE_RBC) { 2858 modepage = 6; 2859 dbd = 8; 2860 } else { 2861 modepage = 8; 2862 dbd = 0; 2863 } 2864 2865 /* cautiously ask */ 2866 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2867 &data, &sshdr); 2868 2869 if (res < 0) 2870 goto bad_sense; 2871 2872 if (!data.header_length) { 2873 modepage = 6; 2874 first_len = 0; 2875 sd_first_printk(KERN_ERR, sdkp, 2876 "Missing header in MODE_SENSE response\n"); 2877 } 2878 2879 /* that went OK, now ask for the proper length */ 2880 len = data.length; 2881 2882 /* 2883 * We're only interested in the first three bytes, actually. 2884 * But the data cache page is defined for the first 20. 2885 */ 2886 if (len < 3) 2887 goto bad_sense; 2888 else if (len > SD_BUF_SIZE) { 2889 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2890 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2891 len = SD_BUF_SIZE; 2892 } 2893 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2894 len = 192; 2895 2896 /* Get the data */ 2897 if (len > first_len) 2898 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2899 &data, &sshdr); 2900 2901 if (!res) { 2902 int offset = data.header_length + data.block_descriptor_length; 2903 2904 while (offset < len) { 2905 u8 page_code = buffer[offset] & 0x3F; 2906 u8 spf = buffer[offset] & 0x40; 2907 2908 if (page_code == 8 || page_code == 6) { 2909 /* We're interested only in the first 3 bytes. 2910 */ 2911 if (len - offset <= 2) { 2912 sd_first_printk(KERN_ERR, sdkp, 2913 "Incomplete mode parameter " 2914 "data\n"); 2915 goto defaults; 2916 } else { 2917 modepage = page_code; 2918 goto Page_found; 2919 } 2920 } else { 2921 /* Go to the next page */ 2922 if (spf && len - offset > 3) 2923 offset += 4 + (buffer[offset+2] << 8) + 2924 buffer[offset+3]; 2925 else if (!spf && len - offset > 1) 2926 offset += 2 + buffer[offset+1]; 2927 else { 2928 sd_first_printk(KERN_ERR, sdkp, 2929 "Incomplete mode " 2930 "parameter data\n"); 2931 goto defaults; 2932 } 2933 } 2934 } 2935 2936 sd_first_printk(KERN_WARNING, sdkp, 2937 "No Caching mode page found\n"); 2938 goto defaults; 2939 2940 Page_found: 2941 if (modepage == 8) { 2942 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2943 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2944 } else { 2945 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2946 sdkp->RCD = 0; 2947 } 2948 2949 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2950 if (sdp->broken_fua) { 2951 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2952 sdkp->DPOFUA = 0; 2953 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2954 !sdkp->device->use_16_for_rw) { 2955 sd_first_printk(KERN_NOTICE, sdkp, 2956 "Uses READ/WRITE(6), disabling FUA\n"); 2957 sdkp->DPOFUA = 0; 2958 } 2959 2960 /* No cache flush allowed for write protected devices */ 2961 if (sdkp->WCE && sdkp->write_prot) 2962 sdkp->WCE = 0; 2963 2964 if (sdkp->first_scan || old_wce != sdkp->WCE || 2965 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2966 sd_printk(KERN_NOTICE, sdkp, 2967 "Write cache: %s, read cache: %s, %s\n", 2968 sdkp->WCE ? "enabled" : "disabled", 2969 sdkp->RCD ? "disabled" : "enabled", 2970 sdkp->DPOFUA ? "supports DPO and FUA" 2971 : "doesn't support DPO or FUA"); 2972 2973 return; 2974 } 2975 2976 bad_sense: 2977 if (scsi_sense_valid(&sshdr) && 2978 sshdr.sense_key == ILLEGAL_REQUEST && 2979 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2980 /* Invalid field in CDB */ 2981 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2982 else 2983 sd_first_printk(KERN_ERR, sdkp, 2984 "Asking for cache data failed\n"); 2985 2986 defaults: 2987 if (sdp->wce_default_on) { 2988 sd_first_printk(KERN_NOTICE, sdkp, 2989 "Assuming drive cache: write back\n"); 2990 sdkp->WCE = 1; 2991 } else { 2992 sd_first_printk(KERN_WARNING, sdkp, 2993 "Assuming drive cache: write through\n"); 2994 sdkp->WCE = 0; 2995 } 2996 sdkp->RCD = 0; 2997 sdkp->DPOFUA = 0; 2998 } 2999 3000 /* 3001 * The ATO bit indicates whether the DIF application tag is available 3002 * for use by the operating system. 3003 */ 3004 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 3005 { 3006 int res, offset; 3007 struct scsi_device *sdp = sdkp->device; 3008 struct scsi_mode_data data; 3009 struct scsi_sense_hdr sshdr; 3010 3011 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 3012 return; 3013 3014 if (sdkp->protection_type == 0) 3015 return; 3016 3017 res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT, 3018 sdkp->max_retries, &data, &sshdr); 3019 3020 if (res < 0 || !data.header_length || 3021 data.length < 6) { 3022 sd_first_printk(KERN_WARNING, sdkp, 3023 "getting Control mode page failed, assume no ATO\n"); 3024 3025 if (scsi_sense_valid(&sshdr)) 3026 sd_print_sense_hdr(sdkp, &sshdr); 3027 3028 return; 3029 } 3030 3031 offset = data.header_length + data.block_descriptor_length; 3032 3033 if ((buffer[offset] & 0x3f) != 0x0a) { 3034 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 3035 return; 3036 } 3037 3038 if ((buffer[offset + 5] & 0x80) == 0) 3039 return; 3040 3041 sdkp->ATO = 1; 3042 3043 return; 3044 } 3045 3046 /** 3047 * sd_read_block_limits - Query disk device for preferred I/O sizes. 3048 * @sdkp: disk to query 3049 */ 3050 static void sd_read_block_limits(struct scsi_disk *sdkp) 3051 { 3052 struct scsi_vpd *vpd; 3053 3054 rcu_read_lock(); 3055 3056 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 3057 if (!vpd || vpd->len < 16) 3058 goto out; 3059 3060 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 3061 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 3062 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 3063 3064 if (vpd->len >= 64) { 3065 unsigned int lba_count, desc_count; 3066 3067 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 3068 3069 if (!sdkp->lbpme) 3070 goto out; 3071 3072 lba_count = get_unaligned_be32(&vpd->data[20]); 3073 desc_count = get_unaligned_be32(&vpd->data[24]); 3074 3075 if (lba_count && desc_count) 3076 sdkp->max_unmap_blocks = lba_count; 3077 3078 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 3079 3080 if (vpd->data[32] & 0x80) 3081 sdkp->unmap_alignment = 3082 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 3083 3084 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 3085 3086 if (sdkp->max_unmap_blocks) 3087 sd_config_discard(sdkp, SD_LBP_UNMAP); 3088 else 3089 sd_config_discard(sdkp, SD_LBP_WS16); 3090 3091 } else { /* LBP VPD page tells us what to use */ 3092 if (sdkp->lbpu && sdkp->max_unmap_blocks) 3093 sd_config_discard(sdkp, SD_LBP_UNMAP); 3094 else if (sdkp->lbpws) 3095 sd_config_discard(sdkp, SD_LBP_WS16); 3096 else if (sdkp->lbpws10) 3097 sd_config_discard(sdkp, SD_LBP_WS10); 3098 else 3099 sd_config_discard(sdkp, SD_LBP_DISABLE); 3100 } 3101 } 3102 3103 out: 3104 rcu_read_unlock(); 3105 } 3106 3107 /** 3108 * sd_read_block_characteristics - Query block dev. characteristics 3109 * @sdkp: disk to query 3110 */ 3111 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 3112 { 3113 struct request_queue *q = sdkp->disk->queue; 3114 struct scsi_vpd *vpd; 3115 u16 rot; 3116 u8 zoned; 3117 3118 rcu_read_lock(); 3119 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 3120 3121 if (!vpd || vpd->len <= 8) { 3122 rcu_read_unlock(); 3123 return; 3124 } 3125 3126 rot = get_unaligned_be16(&vpd->data[4]); 3127 zoned = (vpd->data[8] >> 4) & 3; 3128 rcu_read_unlock(); 3129 3130 if (rot == 1) { 3131 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 3132 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 3133 } 3134 3135 if (sdkp->device->type == TYPE_ZBC) { 3136 /* 3137 * Host-managed: Per ZBC and ZAC specifications, writes in 3138 * sequential write required zones of host-managed devices must 3139 * be aligned to the device physical block size. 3140 */ 3141 disk_set_zoned(sdkp->disk, BLK_ZONED_HM); 3142 blk_queue_zone_write_granularity(q, sdkp->physical_block_size); 3143 } else { 3144 sdkp->zoned = zoned; 3145 if (sdkp->zoned == 1) { 3146 /* Host-aware */ 3147 disk_set_zoned(sdkp->disk, BLK_ZONED_HA); 3148 } else { 3149 /* Regular disk or drive managed disk */ 3150 disk_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3151 } 3152 } 3153 3154 if (!sdkp->first_scan) 3155 return; 3156 3157 if (blk_queue_is_zoned(q)) { 3158 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3159 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3160 } else { 3161 if (sdkp->zoned == 1) 3162 sd_printk(KERN_NOTICE, sdkp, 3163 "Host-aware SMR disk used as regular disk\n"); 3164 else if (sdkp->zoned == 2) 3165 sd_printk(KERN_NOTICE, sdkp, 3166 "Drive-managed SMR disk\n"); 3167 } 3168 } 3169 3170 /** 3171 * sd_read_block_provisioning - Query provisioning VPD page 3172 * @sdkp: disk to query 3173 */ 3174 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3175 { 3176 struct scsi_vpd *vpd; 3177 3178 if (sdkp->lbpme == 0) 3179 return; 3180 3181 rcu_read_lock(); 3182 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 3183 3184 if (!vpd || vpd->len < 8) { 3185 rcu_read_unlock(); 3186 return; 3187 } 3188 3189 sdkp->lbpvpd = 1; 3190 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 3191 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 3192 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 3193 rcu_read_unlock(); 3194 } 3195 3196 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3197 { 3198 struct scsi_device *sdev = sdkp->device; 3199 3200 if (sdev->host->no_write_same) { 3201 sdev->no_write_same = 1; 3202 3203 return; 3204 } 3205 3206 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) { 3207 struct scsi_vpd *vpd; 3208 3209 sdev->no_report_opcodes = 1; 3210 3211 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3212 * CODES is unsupported and the device has an ATA 3213 * Information VPD page (SAT). 3214 */ 3215 rcu_read_lock(); 3216 vpd = rcu_dereference(sdev->vpd_pg89); 3217 if (vpd) 3218 sdev->no_write_same = 1; 3219 rcu_read_unlock(); 3220 } 3221 3222 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1) 3223 sdkp->ws16 = 1; 3224 3225 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1) 3226 sdkp->ws10 = 1; 3227 } 3228 3229 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3230 { 3231 struct scsi_device *sdev = sdkp->device; 3232 3233 if (!sdev->security_supported) 3234 return; 3235 3236 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3237 SECURITY_PROTOCOL_IN, 0) == 1 && 3238 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3239 SECURITY_PROTOCOL_OUT, 0) == 1) 3240 sdkp->security = 1; 3241 } 3242 3243 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3244 { 3245 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3246 } 3247 3248 /** 3249 * sd_read_cpr - Query concurrent positioning ranges 3250 * @sdkp: disk to query 3251 */ 3252 static void sd_read_cpr(struct scsi_disk *sdkp) 3253 { 3254 struct blk_independent_access_ranges *iars = NULL; 3255 unsigned char *buffer = NULL; 3256 unsigned int nr_cpr = 0; 3257 int i, vpd_len, buf_len = SD_BUF_SIZE; 3258 u8 *desc; 3259 3260 /* 3261 * We need to have the capacity set first for the block layer to be 3262 * able to check the ranges. 3263 */ 3264 if (sdkp->first_scan) 3265 return; 3266 3267 if (!sdkp->capacity) 3268 goto out; 3269 3270 /* 3271 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3272 * leading to a maximum page size of 64 + 256*32 bytes. 3273 */ 3274 buf_len = 64 + 256*32; 3275 buffer = kmalloc(buf_len, GFP_KERNEL); 3276 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3277 goto out; 3278 3279 /* We must have at least a 64B header and one 32B range descriptor */ 3280 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3281 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3282 sd_printk(KERN_ERR, sdkp, 3283 "Invalid Concurrent Positioning Ranges VPD page\n"); 3284 goto out; 3285 } 3286 3287 nr_cpr = (vpd_len - 64) / 32; 3288 if (nr_cpr == 1) { 3289 nr_cpr = 0; 3290 goto out; 3291 } 3292 3293 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3294 if (!iars) { 3295 nr_cpr = 0; 3296 goto out; 3297 } 3298 3299 desc = &buffer[64]; 3300 for (i = 0; i < nr_cpr; i++, desc += 32) { 3301 if (desc[0] != i) { 3302 sd_printk(KERN_ERR, sdkp, 3303 "Invalid Concurrent Positioning Range number\n"); 3304 nr_cpr = 0; 3305 break; 3306 } 3307 3308 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3309 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3310 } 3311 3312 out: 3313 disk_set_independent_access_ranges(sdkp->disk, iars); 3314 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3315 sd_printk(KERN_NOTICE, sdkp, 3316 "%u concurrent positioning ranges\n", nr_cpr); 3317 sdkp->nr_actuators = nr_cpr; 3318 } 3319 3320 kfree(buffer); 3321 } 3322 3323 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3324 { 3325 struct scsi_device *sdp = sdkp->device; 3326 unsigned int min_xfer_bytes = 3327 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3328 3329 if (sdkp->min_xfer_blocks == 0) 3330 return false; 3331 3332 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3333 sd_first_printk(KERN_WARNING, sdkp, 3334 "Preferred minimum I/O size %u bytes not a " \ 3335 "multiple of physical block size (%u bytes)\n", 3336 min_xfer_bytes, sdkp->physical_block_size); 3337 sdkp->min_xfer_blocks = 0; 3338 return false; 3339 } 3340 3341 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3342 min_xfer_bytes); 3343 return true; 3344 } 3345 3346 /* 3347 * Determine the device's preferred I/O size for reads and writes 3348 * unless the reported value is unreasonably small, large, not a 3349 * multiple of the physical block size, or simply garbage. 3350 */ 3351 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3352 unsigned int dev_max) 3353 { 3354 struct scsi_device *sdp = sdkp->device; 3355 unsigned int opt_xfer_bytes = 3356 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3357 unsigned int min_xfer_bytes = 3358 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3359 3360 if (sdkp->opt_xfer_blocks == 0) 3361 return false; 3362 3363 if (sdkp->opt_xfer_blocks > dev_max) { 3364 sd_first_printk(KERN_WARNING, sdkp, 3365 "Optimal transfer size %u logical blocks " \ 3366 "> dev_max (%u logical blocks)\n", 3367 sdkp->opt_xfer_blocks, dev_max); 3368 return false; 3369 } 3370 3371 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3372 sd_first_printk(KERN_WARNING, sdkp, 3373 "Optimal transfer size %u logical blocks " \ 3374 "> sd driver limit (%u logical blocks)\n", 3375 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3376 return false; 3377 } 3378 3379 if (opt_xfer_bytes < PAGE_SIZE) { 3380 sd_first_printk(KERN_WARNING, sdkp, 3381 "Optimal transfer size %u bytes < " \ 3382 "PAGE_SIZE (%u bytes)\n", 3383 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3384 return false; 3385 } 3386 3387 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3388 sd_first_printk(KERN_WARNING, sdkp, 3389 "Optimal transfer size %u bytes not a " \ 3390 "multiple of preferred minimum block " \ 3391 "size (%u bytes)\n", 3392 opt_xfer_bytes, min_xfer_bytes); 3393 return false; 3394 } 3395 3396 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3397 sd_first_printk(KERN_WARNING, sdkp, 3398 "Optimal transfer size %u bytes not a " \ 3399 "multiple of physical block size (%u bytes)\n", 3400 opt_xfer_bytes, sdkp->physical_block_size); 3401 return false; 3402 } 3403 3404 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3405 opt_xfer_bytes); 3406 return true; 3407 } 3408 3409 static void sd_read_block_zero(struct scsi_disk *sdkp) 3410 { 3411 struct scsi_device *sdev = sdkp->device; 3412 unsigned int buf_len = sdev->sector_size; 3413 u8 *buffer, cmd[16] = { }; 3414 3415 buffer = kmalloc(buf_len, GFP_KERNEL); 3416 if (!buffer) 3417 return; 3418 3419 if (sdev->use_16_for_rw) { 3420 cmd[0] = READ_16; 3421 put_unaligned_be64(0, &cmd[2]); /* Logical block address 0 */ 3422 put_unaligned_be32(1, &cmd[10]);/* Transfer 1 logical block */ 3423 } else { 3424 cmd[0] = READ_10; 3425 put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */ 3426 put_unaligned_be16(1, &cmd[7]); /* Transfer 1 logical block */ 3427 } 3428 3429 scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len, 3430 SD_TIMEOUT, sdkp->max_retries, NULL); 3431 kfree(buffer); 3432 } 3433 3434 /** 3435 * sd_revalidate_disk - called the first time a new disk is seen, 3436 * performs disk spin up, read_capacity, etc. 3437 * @disk: struct gendisk we care about 3438 **/ 3439 static int sd_revalidate_disk(struct gendisk *disk) 3440 { 3441 struct scsi_disk *sdkp = scsi_disk(disk); 3442 struct scsi_device *sdp = sdkp->device; 3443 struct request_queue *q = sdkp->disk->queue; 3444 sector_t old_capacity = sdkp->capacity; 3445 unsigned char *buffer; 3446 unsigned int dev_max, rw_max; 3447 3448 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3449 "sd_revalidate_disk\n")); 3450 3451 /* 3452 * If the device is offline, don't try and read capacity or any 3453 * of the other niceties. 3454 */ 3455 if (!scsi_device_online(sdp)) 3456 goto out; 3457 3458 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3459 if (!buffer) { 3460 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3461 "allocation failure.\n"); 3462 goto out; 3463 } 3464 3465 sd_spinup_disk(sdkp); 3466 3467 /* 3468 * Without media there is no reason to ask; moreover, some devices 3469 * react badly if we do. 3470 */ 3471 if (sdkp->media_present) { 3472 sd_read_capacity(sdkp, buffer); 3473 /* 3474 * Some USB/UAS devices return generic values for mode pages 3475 * until the media has been accessed. Trigger a READ operation 3476 * to force the device to populate mode pages. 3477 */ 3478 if (sdp->read_before_ms) 3479 sd_read_block_zero(sdkp); 3480 /* 3481 * set the default to rotational. All non-rotational devices 3482 * support the block characteristics VPD page, which will 3483 * cause this to be updated correctly and any device which 3484 * doesn't support it should be treated as rotational. 3485 */ 3486 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3487 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3488 3489 if (scsi_device_supports_vpd(sdp)) { 3490 sd_read_block_provisioning(sdkp); 3491 sd_read_block_limits(sdkp); 3492 sd_read_block_characteristics(sdkp); 3493 sd_zbc_read_zones(sdkp, buffer); 3494 sd_read_cpr(sdkp); 3495 } 3496 3497 sd_print_capacity(sdkp, old_capacity); 3498 3499 sd_read_write_protect_flag(sdkp, buffer); 3500 sd_read_cache_type(sdkp, buffer); 3501 sd_read_app_tag_own(sdkp, buffer); 3502 sd_read_write_same(sdkp, buffer); 3503 sd_read_security(sdkp, buffer); 3504 sd_config_protection(sdkp); 3505 } 3506 3507 /* 3508 * We now have all cache related info, determine how we deal 3509 * with flush requests. 3510 */ 3511 sd_set_flush_flag(sdkp); 3512 3513 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3514 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3515 3516 /* Some devices report a maximum block count for READ/WRITE requests. */ 3517 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3518 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3519 3520 if (sd_validate_min_xfer_size(sdkp)) 3521 blk_queue_io_min(sdkp->disk->queue, 3522 logical_to_bytes(sdp, sdkp->min_xfer_blocks)); 3523 else 3524 blk_queue_io_min(sdkp->disk->queue, 0); 3525 3526 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3527 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3528 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3529 } else { 3530 q->limits.io_opt = 0; 3531 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3532 (sector_t)BLK_DEF_MAX_SECTORS); 3533 } 3534 3535 /* 3536 * Limit default to SCSI host optimal sector limit if set. There may be 3537 * an impact on performance for when the size of a request exceeds this 3538 * host limit. 3539 */ 3540 rw_max = min_not_zero(rw_max, sdp->host->opt_sectors); 3541 3542 /* Do not exceed controller limit */ 3543 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3544 3545 /* 3546 * Only update max_sectors if previously unset or if the current value 3547 * exceeds the capabilities of the hardware. 3548 */ 3549 if (sdkp->first_scan || 3550 q->limits.max_sectors > q->limits.max_dev_sectors || 3551 q->limits.max_sectors > q->limits.max_hw_sectors) 3552 q->limits.max_sectors = rw_max; 3553 3554 sdkp->first_scan = 0; 3555 3556 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3557 sd_config_write_same(sdkp); 3558 kfree(buffer); 3559 3560 /* 3561 * For a zoned drive, revalidating the zones can be done only once 3562 * the gendisk capacity is set. So if this fails, set back the gendisk 3563 * capacity to 0. 3564 */ 3565 if (sd_zbc_revalidate_zones(sdkp)) 3566 set_capacity_and_notify(disk, 0); 3567 3568 out: 3569 return 0; 3570 } 3571 3572 /** 3573 * sd_unlock_native_capacity - unlock native capacity 3574 * @disk: struct gendisk to set capacity for 3575 * 3576 * Block layer calls this function if it detects that partitions 3577 * on @disk reach beyond the end of the device. If the SCSI host 3578 * implements ->unlock_native_capacity() method, it's invoked to 3579 * give it a chance to adjust the device capacity. 3580 * 3581 * CONTEXT: 3582 * Defined by block layer. Might sleep. 3583 */ 3584 static void sd_unlock_native_capacity(struct gendisk *disk) 3585 { 3586 struct scsi_device *sdev = scsi_disk(disk)->device; 3587 3588 if (sdev->host->hostt->unlock_native_capacity) 3589 sdev->host->hostt->unlock_native_capacity(sdev); 3590 } 3591 3592 /** 3593 * sd_format_disk_name - format disk name 3594 * @prefix: name prefix - ie. "sd" for SCSI disks 3595 * @index: index of the disk to format name for 3596 * @buf: output buffer 3597 * @buflen: length of the output buffer 3598 * 3599 * SCSI disk names starts at sda. The 26th device is sdz and the 3600 * 27th is sdaa. The last one for two lettered suffix is sdzz 3601 * which is followed by sdaaa. 3602 * 3603 * This is basically 26 base counting with one extra 'nil' entry 3604 * at the beginning from the second digit on and can be 3605 * determined using similar method as 26 base conversion with the 3606 * index shifted -1 after each digit is computed. 3607 * 3608 * CONTEXT: 3609 * Don't care. 3610 * 3611 * RETURNS: 3612 * 0 on success, -errno on failure. 3613 */ 3614 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3615 { 3616 const int base = 'z' - 'a' + 1; 3617 char *begin = buf + strlen(prefix); 3618 char *end = buf + buflen; 3619 char *p; 3620 int unit; 3621 3622 p = end - 1; 3623 *p = '\0'; 3624 unit = base; 3625 do { 3626 if (p == begin) 3627 return -EINVAL; 3628 *--p = 'a' + (index % unit); 3629 index = (index / unit) - 1; 3630 } while (index >= 0); 3631 3632 memmove(begin, p, end - p); 3633 memcpy(buf, prefix, strlen(prefix)); 3634 3635 return 0; 3636 } 3637 3638 /** 3639 * sd_probe - called during driver initialization and whenever a 3640 * new scsi device is attached to the system. It is called once 3641 * for each scsi device (not just disks) present. 3642 * @dev: pointer to device object 3643 * 3644 * Returns 0 if successful (or not interested in this scsi device 3645 * (e.g. scanner)); 1 when there is an error. 3646 * 3647 * Note: this function is invoked from the scsi mid-level. 3648 * This function sets up the mapping between a given 3649 * <host,channel,id,lun> (found in sdp) and new device name 3650 * (e.g. /dev/sda). More precisely it is the block device major 3651 * and minor number that is chosen here. 3652 * 3653 * Assume sd_probe is not re-entrant (for time being) 3654 * Also think about sd_probe() and sd_remove() running coincidentally. 3655 **/ 3656 static int sd_probe(struct device *dev) 3657 { 3658 struct scsi_device *sdp = to_scsi_device(dev); 3659 struct scsi_disk *sdkp; 3660 struct gendisk *gd; 3661 int index; 3662 int error; 3663 3664 scsi_autopm_get_device(sdp); 3665 error = -ENODEV; 3666 if (sdp->type != TYPE_DISK && 3667 sdp->type != TYPE_ZBC && 3668 sdp->type != TYPE_MOD && 3669 sdp->type != TYPE_RBC) 3670 goto out; 3671 3672 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3673 sdev_printk(KERN_WARNING, sdp, 3674 "Unsupported ZBC host-managed device.\n"); 3675 goto out; 3676 } 3677 3678 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3679 "sd_probe\n")); 3680 3681 error = -ENOMEM; 3682 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3683 if (!sdkp) 3684 goto out; 3685 3686 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue, 3687 &sd_bio_compl_lkclass); 3688 if (!gd) 3689 goto out_free; 3690 3691 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3692 if (index < 0) { 3693 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3694 goto out_put; 3695 } 3696 3697 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3698 if (error) { 3699 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3700 goto out_free_index; 3701 } 3702 3703 sdkp->device = sdp; 3704 sdkp->disk = gd; 3705 sdkp->index = index; 3706 sdkp->max_retries = SD_MAX_RETRIES; 3707 atomic_set(&sdkp->openers, 0); 3708 atomic_set(&sdkp->device->ioerr_cnt, 0); 3709 3710 if (!sdp->request_queue->rq_timeout) { 3711 if (sdp->type != TYPE_MOD) 3712 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3713 else 3714 blk_queue_rq_timeout(sdp->request_queue, 3715 SD_MOD_TIMEOUT); 3716 } 3717 3718 device_initialize(&sdkp->disk_dev); 3719 sdkp->disk_dev.parent = get_device(dev); 3720 sdkp->disk_dev.class = &sd_disk_class; 3721 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3722 3723 error = device_add(&sdkp->disk_dev); 3724 if (error) { 3725 put_device(&sdkp->disk_dev); 3726 goto out; 3727 } 3728 3729 dev_set_drvdata(dev, sdkp); 3730 3731 gd->major = sd_major((index & 0xf0) >> 4); 3732 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3733 gd->minors = SD_MINORS; 3734 3735 gd->fops = &sd_fops; 3736 gd->private_data = sdkp; 3737 3738 /* defaults, until the device tells us otherwise */ 3739 sdp->sector_size = 512; 3740 sdkp->capacity = 0; 3741 sdkp->media_present = 1; 3742 sdkp->write_prot = 0; 3743 sdkp->cache_override = 0; 3744 sdkp->WCE = 0; 3745 sdkp->RCD = 0; 3746 sdkp->ATO = 0; 3747 sdkp->first_scan = 1; 3748 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3749 3750 sd_revalidate_disk(gd); 3751 3752 if (sdp->removable) { 3753 gd->flags |= GENHD_FL_REMOVABLE; 3754 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3755 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3756 } 3757 3758 blk_pm_runtime_init(sdp->request_queue, dev); 3759 if (sdp->rpm_autosuspend) { 3760 pm_runtime_set_autosuspend_delay(dev, 3761 sdp->host->hostt->rpm_autosuspend_delay); 3762 } 3763 3764 error = device_add_disk(dev, gd, NULL); 3765 if (error) { 3766 device_unregister(&sdkp->disk_dev); 3767 put_disk(gd); 3768 goto out; 3769 } 3770 3771 if (sdkp->security) { 3772 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3773 if (sdkp->opal_dev) 3774 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3775 } 3776 3777 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3778 sdp->removable ? "removable " : ""); 3779 scsi_autopm_put_device(sdp); 3780 3781 return 0; 3782 3783 out_free_index: 3784 ida_free(&sd_index_ida, index); 3785 out_put: 3786 put_disk(gd); 3787 out_free: 3788 kfree(sdkp); 3789 out: 3790 scsi_autopm_put_device(sdp); 3791 return error; 3792 } 3793 3794 /** 3795 * sd_remove - called whenever a scsi disk (previously recognized by 3796 * sd_probe) is detached from the system. It is called (potentially 3797 * multiple times) during sd module unload. 3798 * @dev: pointer to device object 3799 * 3800 * Note: this function is invoked from the scsi mid-level. 3801 * This function potentially frees up a device name (e.g. /dev/sdc) 3802 * that could be re-used by a subsequent sd_probe(). 3803 * This function is not called when the built-in sd driver is "exit-ed". 3804 **/ 3805 static int sd_remove(struct device *dev) 3806 { 3807 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3808 3809 scsi_autopm_get_device(sdkp->device); 3810 3811 device_del(&sdkp->disk_dev); 3812 del_gendisk(sdkp->disk); 3813 if (!sdkp->suspended) 3814 sd_shutdown(dev); 3815 3816 put_disk(sdkp->disk); 3817 return 0; 3818 } 3819 3820 static void scsi_disk_release(struct device *dev) 3821 { 3822 struct scsi_disk *sdkp = to_scsi_disk(dev); 3823 3824 ida_free(&sd_index_ida, sdkp->index); 3825 sd_zbc_free_zone_info(sdkp); 3826 put_device(&sdkp->device->sdev_gendev); 3827 free_opal_dev(sdkp->opal_dev); 3828 3829 kfree(sdkp); 3830 } 3831 3832 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3833 { 3834 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3835 struct scsi_sense_hdr sshdr; 3836 const struct scsi_exec_args exec_args = { 3837 .sshdr = &sshdr, 3838 .req_flags = BLK_MQ_REQ_PM, 3839 }; 3840 struct scsi_device *sdp = sdkp->device; 3841 int res; 3842 3843 if (start) 3844 cmd[4] |= 1; /* START */ 3845 3846 if (sdp->start_stop_pwr_cond) 3847 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3848 3849 if (!scsi_device_online(sdp)) 3850 return -ENODEV; 3851 3852 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, 3853 sdkp->max_retries, &exec_args); 3854 if (res) { 3855 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3856 if (res > 0 && scsi_sense_valid(&sshdr)) { 3857 sd_print_sense_hdr(sdkp, &sshdr); 3858 /* 0x3a is medium not present */ 3859 if (sshdr.asc == 0x3a) 3860 res = 0; 3861 } 3862 } 3863 3864 /* SCSI error codes must not go to the generic layer */ 3865 if (res) 3866 return -EIO; 3867 3868 return 0; 3869 } 3870 3871 /* 3872 * Send a SYNCHRONIZE CACHE instruction down to the device through 3873 * the normal SCSI command structure. Wait for the command to 3874 * complete. 3875 */ 3876 static void sd_shutdown(struct device *dev) 3877 { 3878 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3879 3880 if (!sdkp) 3881 return; /* this can happen */ 3882 3883 if (pm_runtime_suspended(dev)) 3884 return; 3885 3886 if (sdkp->WCE && sdkp->media_present) { 3887 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3888 sd_sync_cache(sdkp); 3889 } 3890 3891 if ((system_state != SYSTEM_RESTART && 3892 sdkp->device->manage_system_start_stop) || 3893 (system_state == SYSTEM_POWER_OFF && 3894 sdkp->device->manage_shutdown)) { 3895 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3896 sd_start_stop_device(sdkp, 0); 3897 } 3898 } 3899 3900 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime) 3901 { 3902 return (sdev->manage_system_start_stop && !runtime) || 3903 (sdev->manage_runtime_start_stop && runtime); 3904 } 3905 3906 static int sd_suspend_common(struct device *dev, bool runtime) 3907 { 3908 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3909 int ret = 0; 3910 3911 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3912 return 0; 3913 3914 if (sdkp->WCE && sdkp->media_present) { 3915 if (!sdkp->device->silence_suspend) 3916 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3917 ret = sd_sync_cache(sdkp); 3918 /* ignore OFFLINE device */ 3919 if (ret == -ENODEV) 3920 return 0; 3921 3922 if (ret) 3923 return ret; 3924 } 3925 3926 if (sd_do_start_stop(sdkp->device, runtime)) { 3927 if (!sdkp->device->silence_suspend) 3928 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3929 /* an error is not worth aborting a system sleep */ 3930 ret = sd_start_stop_device(sdkp, 0); 3931 if (!runtime) 3932 ret = 0; 3933 } 3934 3935 if (!ret) 3936 sdkp->suspended = true; 3937 3938 return ret; 3939 } 3940 3941 static int sd_suspend_system(struct device *dev) 3942 { 3943 if (pm_runtime_suspended(dev)) 3944 return 0; 3945 3946 return sd_suspend_common(dev, false); 3947 } 3948 3949 static int sd_suspend_runtime(struct device *dev) 3950 { 3951 return sd_suspend_common(dev, true); 3952 } 3953 3954 static int sd_resume(struct device *dev) 3955 { 3956 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3957 3958 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3959 3960 if (opal_unlock_from_suspend(sdkp->opal_dev)) { 3961 sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n"); 3962 return -EIO; 3963 } 3964 3965 return 0; 3966 } 3967 3968 static int sd_resume_common(struct device *dev, bool runtime) 3969 { 3970 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3971 int ret = 0; 3972 3973 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3974 return 0; 3975 3976 if (!sd_do_start_stop(sdkp->device, runtime)) { 3977 sdkp->suspended = false; 3978 return 0; 3979 } 3980 3981 if (!sdkp->device->no_start_on_resume) { 3982 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3983 ret = sd_start_stop_device(sdkp, 1); 3984 } 3985 3986 if (!ret) { 3987 sd_resume(dev); 3988 sdkp->suspended = false; 3989 } 3990 3991 return ret; 3992 } 3993 3994 static int sd_resume_system(struct device *dev) 3995 { 3996 if (pm_runtime_suspended(dev)) { 3997 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3998 struct scsi_device *sdp = sdkp ? sdkp->device : NULL; 3999 4000 if (sdp && sdp->force_runtime_start_on_system_start) 4001 pm_request_resume(dev); 4002 4003 return 0; 4004 } 4005 4006 return sd_resume_common(dev, false); 4007 } 4008 4009 static int sd_resume_runtime(struct device *dev) 4010 { 4011 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4012 struct scsi_device *sdp; 4013 4014 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 4015 return 0; 4016 4017 sdp = sdkp->device; 4018 4019 if (sdp->ignore_media_change) { 4020 /* clear the device's sense data */ 4021 static const u8 cmd[10] = { REQUEST_SENSE }; 4022 const struct scsi_exec_args exec_args = { 4023 .req_flags = BLK_MQ_REQ_PM, 4024 }; 4025 4026 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 4027 sdp->request_queue->rq_timeout, 1, 4028 &exec_args)) 4029 sd_printk(KERN_NOTICE, sdkp, 4030 "Failed to clear sense data\n"); 4031 } 4032 4033 return sd_resume_common(dev, true); 4034 } 4035 4036 static const struct dev_pm_ops sd_pm_ops = { 4037 .suspend = sd_suspend_system, 4038 .resume = sd_resume_system, 4039 .poweroff = sd_suspend_system, 4040 .restore = sd_resume_system, 4041 .runtime_suspend = sd_suspend_runtime, 4042 .runtime_resume = sd_resume_runtime, 4043 }; 4044 4045 static struct scsi_driver sd_template = { 4046 .gendrv = { 4047 .name = "sd", 4048 .owner = THIS_MODULE, 4049 .probe = sd_probe, 4050 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 4051 .remove = sd_remove, 4052 .shutdown = sd_shutdown, 4053 .pm = &sd_pm_ops, 4054 }, 4055 .rescan = sd_rescan, 4056 .resume = sd_resume, 4057 .init_command = sd_init_command, 4058 .uninit_command = sd_uninit_command, 4059 .done = sd_done, 4060 .eh_action = sd_eh_action, 4061 .eh_reset = sd_eh_reset, 4062 }; 4063 4064 /** 4065 * init_sd - entry point for this driver (both when built in or when 4066 * a module). 4067 * 4068 * Note: this function registers this driver with the scsi mid-level. 4069 **/ 4070 static int __init init_sd(void) 4071 { 4072 int majors = 0, i, err; 4073 4074 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 4075 4076 for (i = 0; i < SD_MAJORS; i++) { 4077 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 4078 continue; 4079 majors++; 4080 } 4081 4082 if (!majors) 4083 return -ENODEV; 4084 4085 err = class_register(&sd_disk_class); 4086 if (err) 4087 goto err_out; 4088 4089 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 4090 if (!sd_page_pool) { 4091 printk(KERN_ERR "sd: can't init discard page pool\n"); 4092 err = -ENOMEM; 4093 goto err_out_class; 4094 } 4095 4096 err = scsi_register_driver(&sd_template.gendrv); 4097 if (err) 4098 goto err_out_driver; 4099 4100 return 0; 4101 4102 err_out_driver: 4103 mempool_destroy(sd_page_pool); 4104 err_out_class: 4105 class_unregister(&sd_disk_class); 4106 err_out: 4107 for (i = 0; i < SD_MAJORS; i++) 4108 unregister_blkdev(sd_major(i), "sd"); 4109 return err; 4110 } 4111 4112 /** 4113 * exit_sd - exit point for this driver (when it is a module). 4114 * 4115 * Note: this function unregisters this driver from the scsi mid-level. 4116 **/ 4117 static void __exit exit_sd(void) 4118 { 4119 int i; 4120 4121 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 4122 4123 scsi_unregister_driver(&sd_template.gendrv); 4124 mempool_destroy(sd_page_pool); 4125 4126 class_unregister(&sd_disk_class); 4127 4128 for (i = 0; i < SD_MAJORS; i++) 4129 unregister_blkdev(sd_major(i), "sd"); 4130 } 4131 4132 module_init(init_sd); 4133 module_exit(exit_sd); 4134 4135 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 4136 { 4137 scsi_print_sense_hdr(sdkp->device, 4138 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 4139 } 4140 4141 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 4142 { 4143 const char *hb_string = scsi_hostbyte_string(result); 4144 4145 if (hb_string) 4146 sd_printk(KERN_INFO, sdkp, 4147 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 4148 hb_string ? hb_string : "invalid", 4149 "DRIVER_OK"); 4150 else 4151 sd_printk(KERN_INFO, sdkp, 4152 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 4153 msg, host_byte(result), "DRIVER_OK"); 4154 } 4155