1 /* 2 * Parallel SCSI (SPI) transport specific attributes exported to sysfs. 3 * 4 * Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved. 5 * Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 #include <linux/ctype.h> 22 #include <linux/init.h> 23 #include <linux/module.h> 24 #include <linux/workqueue.h> 25 #include <linux/blkdev.h> 26 #include <linux/mutex.h> 27 #include <linux/sysfs.h> 28 #include <linux/slab.h> 29 #include <linux/suspend.h> 30 #include <scsi/scsi.h> 31 #include "scsi_priv.h" 32 #include <scsi/scsi_device.h> 33 #include <scsi/scsi_host.h> 34 #include <scsi/scsi_cmnd.h> 35 #include <scsi/scsi_eh.h> 36 #include <scsi/scsi_tcq.h> 37 #include <scsi/scsi_transport.h> 38 #include <scsi/scsi_transport_spi.h> 39 40 #define SPI_NUM_ATTRS 14 /* increase this if you add attributes */ 41 #define SPI_OTHER_ATTRS 1 /* Increase this if you add "always 42 * on" attributes */ 43 #define SPI_HOST_ATTRS 1 44 45 #define SPI_MAX_ECHO_BUFFER_SIZE 4096 46 47 #define DV_LOOPS 3 48 #define DV_TIMEOUT (10*HZ) 49 #define DV_RETRIES 3 /* should only need at most 50 * two cc/ua clears */ 51 52 /* Our blacklist flags */ 53 enum { 54 SPI_BLIST_NOIUS = (__force blist_flags_t)0x1, 55 }; 56 57 /* blacklist table, modelled on scsi_devinfo.c */ 58 static struct { 59 char *vendor; 60 char *model; 61 blist_flags_t flags; 62 } spi_static_device_list[] __initdata = { 63 {"HP", "Ultrium 3-SCSI", SPI_BLIST_NOIUS }, 64 {"IBM", "ULTRIUM-TD3", SPI_BLIST_NOIUS }, 65 {NULL, NULL, 0} 66 }; 67 68 /* Private data accessors (keep these out of the header file) */ 69 #define spi_dv_in_progress(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_in_progress) 70 #define spi_dv_mutex(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_mutex) 71 72 struct spi_internal { 73 struct scsi_transport_template t; 74 struct spi_function_template *f; 75 }; 76 77 #define to_spi_internal(tmpl) container_of(tmpl, struct spi_internal, t) 78 79 static const int ppr_to_ps[] = { 80 /* The PPR values 0-6 are reserved, fill them in when 81 * the committee defines them */ 82 -1, /* 0x00 */ 83 -1, /* 0x01 */ 84 -1, /* 0x02 */ 85 -1, /* 0x03 */ 86 -1, /* 0x04 */ 87 -1, /* 0x05 */ 88 -1, /* 0x06 */ 89 3125, /* 0x07 */ 90 6250, /* 0x08 */ 91 12500, /* 0x09 */ 92 25000, /* 0x0a */ 93 30300, /* 0x0b */ 94 50000, /* 0x0c */ 95 }; 96 /* The PPR values at which you calculate the period in ns by multiplying 97 * by 4 */ 98 #define SPI_STATIC_PPR 0x0c 99 100 static int sprint_frac(char *dest, int value, int denom) 101 { 102 int frac = value % denom; 103 int result = sprintf(dest, "%d", value / denom); 104 105 if (frac == 0) 106 return result; 107 dest[result++] = '.'; 108 109 do { 110 denom /= 10; 111 sprintf(dest + result, "%d", frac / denom); 112 result++; 113 frac %= denom; 114 } while (frac); 115 116 dest[result++] = '\0'; 117 return result; 118 } 119 120 static int spi_execute(struct scsi_device *sdev, const void *cmd, 121 enum dma_data_direction dir, 122 void *buffer, unsigned bufflen, 123 struct scsi_sense_hdr *sshdr) 124 { 125 int i, result; 126 unsigned char sense[SCSI_SENSE_BUFFERSIZE]; 127 struct scsi_sense_hdr sshdr_tmp; 128 129 if (!sshdr) 130 sshdr = &sshdr_tmp; 131 132 for(i = 0; i < DV_RETRIES; i++) { 133 result = scsi_execute(sdev, cmd, dir, buffer, bufflen, sense, 134 sshdr, DV_TIMEOUT, /* retries */ 1, 135 REQ_FAILFAST_DEV | 136 REQ_FAILFAST_TRANSPORT | 137 REQ_FAILFAST_DRIVER, 138 0, NULL); 139 if (!(driver_byte(result) & DRIVER_SENSE) || 140 sshdr->sense_key != UNIT_ATTENTION) 141 break; 142 } 143 return result; 144 } 145 146 static struct { 147 enum spi_signal_type value; 148 char *name; 149 } signal_types[] = { 150 { SPI_SIGNAL_UNKNOWN, "unknown" }, 151 { SPI_SIGNAL_SE, "SE" }, 152 { SPI_SIGNAL_LVD, "LVD" }, 153 { SPI_SIGNAL_HVD, "HVD" }, 154 }; 155 156 static inline const char *spi_signal_to_string(enum spi_signal_type type) 157 { 158 int i; 159 160 for (i = 0; i < ARRAY_SIZE(signal_types); i++) { 161 if (type == signal_types[i].value) 162 return signal_types[i].name; 163 } 164 return NULL; 165 } 166 static inline enum spi_signal_type spi_signal_to_value(const char *name) 167 { 168 int i, len; 169 170 for (i = 0; i < ARRAY_SIZE(signal_types); i++) { 171 len = strlen(signal_types[i].name); 172 if (strncmp(name, signal_types[i].name, len) == 0 && 173 (name[len] == '\n' || name[len] == '\0')) 174 return signal_types[i].value; 175 } 176 return SPI_SIGNAL_UNKNOWN; 177 } 178 179 static int spi_host_setup(struct transport_container *tc, struct device *dev, 180 struct device *cdev) 181 { 182 struct Scsi_Host *shost = dev_to_shost(dev); 183 184 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN; 185 186 return 0; 187 } 188 189 static int spi_host_configure(struct transport_container *tc, 190 struct device *dev, 191 struct device *cdev); 192 193 static DECLARE_TRANSPORT_CLASS(spi_host_class, 194 "spi_host", 195 spi_host_setup, 196 NULL, 197 spi_host_configure); 198 199 static int spi_host_match(struct attribute_container *cont, 200 struct device *dev) 201 { 202 struct Scsi_Host *shost; 203 204 if (!scsi_is_host_device(dev)) 205 return 0; 206 207 shost = dev_to_shost(dev); 208 if (!shost->transportt || shost->transportt->host_attrs.ac.class 209 != &spi_host_class.class) 210 return 0; 211 212 return &shost->transportt->host_attrs.ac == cont; 213 } 214 215 static int spi_target_configure(struct transport_container *tc, 216 struct device *dev, 217 struct device *cdev); 218 219 static int spi_device_configure(struct transport_container *tc, 220 struct device *dev, 221 struct device *cdev) 222 { 223 struct scsi_device *sdev = to_scsi_device(dev); 224 struct scsi_target *starget = sdev->sdev_target; 225 blist_flags_t bflags; 226 227 bflags = scsi_get_device_flags_keyed(sdev, &sdev->inquiry[8], 228 &sdev->inquiry[16], 229 SCSI_DEVINFO_SPI); 230 231 /* Populate the target capability fields with the values 232 * gleaned from the device inquiry */ 233 234 spi_support_sync(starget) = scsi_device_sync(sdev); 235 spi_support_wide(starget) = scsi_device_wide(sdev); 236 spi_support_dt(starget) = scsi_device_dt(sdev); 237 spi_support_dt_only(starget) = scsi_device_dt_only(sdev); 238 spi_support_ius(starget) = scsi_device_ius(sdev); 239 if (bflags & SPI_BLIST_NOIUS) { 240 dev_info(dev, "Information Units disabled by blacklist\n"); 241 spi_support_ius(starget) = 0; 242 } 243 spi_support_qas(starget) = scsi_device_qas(sdev); 244 245 return 0; 246 } 247 248 static int spi_setup_transport_attrs(struct transport_container *tc, 249 struct device *dev, 250 struct device *cdev) 251 { 252 struct scsi_target *starget = to_scsi_target(dev); 253 254 spi_period(starget) = -1; /* illegal value */ 255 spi_min_period(starget) = 0; 256 spi_offset(starget) = 0; /* async */ 257 spi_max_offset(starget) = 255; 258 spi_width(starget) = 0; /* narrow */ 259 spi_max_width(starget) = 1; 260 spi_iu(starget) = 0; /* no IU */ 261 spi_max_iu(starget) = 1; 262 spi_dt(starget) = 0; /* ST */ 263 spi_qas(starget) = 0; 264 spi_max_qas(starget) = 1; 265 spi_wr_flow(starget) = 0; 266 spi_rd_strm(starget) = 0; 267 spi_rti(starget) = 0; 268 spi_pcomp_en(starget) = 0; 269 spi_hold_mcs(starget) = 0; 270 spi_dv_pending(starget) = 0; 271 spi_dv_in_progress(starget) = 0; 272 spi_initial_dv(starget) = 0; 273 mutex_init(&spi_dv_mutex(starget)); 274 275 return 0; 276 } 277 278 #define spi_transport_show_simple(field, format_string) \ 279 \ 280 static ssize_t \ 281 show_spi_transport_##field(struct device *dev, \ 282 struct device_attribute *attr, char *buf) \ 283 { \ 284 struct scsi_target *starget = transport_class_to_starget(dev); \ 285 struct spi_transport_attrs *tp; \ 286 \ 287 tp = (struct spi_transport_attrs *)&starget->starget_data; \ 288 return snprintf(buf, 20, format_string, tp->field); \ 289 } 290 291 #define spi_transport_store_simple(field, format_string) \ 292 \ 293 static ssize_t \ 294 store_spi_transport_##field(struct device *dev, \ 295 struct device_attribute *attr, \ 296 const char *buf, size_t count) \ 297 { \ 298 int val; \ 299 struct scsi_target *starget = transport_class_to_starget(dev); \ 300 struct spi_transport_attrs *tp; \ 301 \ 302 tp = (struct spi_transport_attrs *)&starget->starget_data; \ 303 val = simple_strtoul(buf, NULL, 0); \ 304 tp->field = val; \ 305 return count; \ 306 } 307 308 #define spi_transport_show_function(field, format_string) \ 309 \ 310 static ssize_t \ 311 show_spi_transport_##field(struct device *dev, \ 312 struct device_attribute *attr, char *buf) \ 313 { \ 314 struct scsi_target *starget = transport_class_to_starget(dev); \ 315 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 316 struct spi_transport_attrs *tp; \ 317 struct spi_internal *i = to_spi_internal(shost->transportt); \ 318 tp = (struct spi_transport_attrs *)&starget->starget_data; \ 319 if (i->f->get_##field) \ 320 i->f->get_##field(starget); \ 321 return snprintf(buf, 20, format_string, tp->field); \ 322 } 323 324 #define spi_transport_store_function(field, format_string) \ 325 static ssize_t \ 326 store_spi_transport_##field(struct device *dev, \ 327 struct device_attribute *attr, \ 328 const char *buf, size_t count) \ 329 { \ 330 int val; \ 331 struct scsi_target *starget = transport_class_to_starget(dev); \ 332 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 333 struct spi_internal *i = to_spi_internal(shost->transportt); \ 334 \ 335 if (!i->f->set_##field) \ 336 return -EINVAL; \ 337 val = simple_strtoul(buf, NULL, 0); \ 338 i->f->set_##field(starget, val); \ 339 return count; \ 340 } 341 342 #define spi_transport_store_max(field, format_string) \ 343 static ssize_t \ 344 store_spi_transport_##field(struct device *dev, \ 345 struct device_attribute *attr, \ 346 const char *buf, size_t count) \ 347 { \ 348 int val; \ 349 struct scsi_target *starget = transport_class_to_starget(dev); \ 350 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 351 struct spi_internal *i = to_spi_internal(shost->transportt); \ 352 struct spi_transport_attrs *tp \ 353 = (struct spi_transport_attrs *)&starget->starget_data; \ 354 \ 355 if (i->f->set_##field) \ 356 return -EINVAL; \ 357 val = simple_strtoul(buf, NULL, 0); \ 358 if (val > tp->max_##field) \ 359 val = tp->max_##field; \ 360 i->f->set_##field(starget, val); \ 361 return count; \ 362 } 363 364 #define spi_transport_rd_attr(field, format_string) \ 365 spi_transport_show_function(field, format_string) \ 366 spi_transport_store_function(field, format_string) \ 367 static DEVICE_ATTR(field, S_IRUGO, \ 368 show_spi_transport_##field, \ 369 store_spi_transport_##field); 370 371 #define spi_transport_simple_attr(field, format_string) \ 372 spi_transport_show_simple(field, format_string) \ 373 spi_transport_store_simple(field, format_string) \ 374 static DEVICE_ATTR(field, S_IRUGO, \ 375 show_spi_transport_##field, \ 376 store_spi_transport_##field); 377 378 #define spi_transport_max_attr(field, format_string) \ 379 spi_transport_show_function(field, format_string) \ 380 spi_transport_store_max(field, format_string) \ 381 spi_transport_simple_attr(max_##field, format_string) \ 382 static DEVICE_ATTR(field, S_IRUGO, \ 383 show_spi_transport_##field, \ 384 store_spi_transport_##field); 385 386 /* The Parallel SCSI Tranport Attributes: */ 387 spi_transport_max_attr(offset, "%d\n"); 388 spi_transport_max_attr(width, "%d\n"); 389 spi_transport_max_attr(iu, "%d\n"); 390 spi_transport_rd_attr(dt, "%d\n"); 391 spi_transport_max_attr(qas, "%d\n"); 392 spi_transport_rd_attr(wr_flow, "%d\n"); 393 spi_transport_rd_attr(rd_strm, "%d\n"); 394 spi_transport_rd_attr(rti, "%d\n"); 395 spi_transport_rd_attr(pcomp_en, "%d\n"); 396 spi_transport_rd_attr(hold_mcs, "%d\n"); 397 398 /* we only care about the first child device that's a real SCSI device 399 * so we return 1 to terminate the iteration when we find it */ 400 static int child_iter(struct device *dev, void *data) 401 { 402 if (!scsi_is_sdev_device(dev)) 403 return 0; 404 405 spi_dv_device(to_scsi_device(dev)); 406 return 1; 407 } 408 409 static ssize_t 410 store_spi_revalidate(struct device *dev, struct device_attribute *attr, 411 const char *buf, size_t count) 412 { 413 struct scsi_target *starget = transport_class_to_starget(dev); 414 415 device_for_each_child(&starget->dev, NULL, child_iter); 416 return count; 417 } 418 static DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate); 419 420 /* Translate the period into ns according to the current spec 421 * for SDTR/PPR messages */ 422 static int period_to_str(char *buf, int period) 423 { 424 int len, picosec; 425 426 if (period < 0 || period > 0xff) { 427 picosec = -1; 428 } else if (period <= SPI_STATIC_PPR) { 429 picosec = ppr_to_ps[period]; 430 } else { 431 picosec = period * 4000; 432 } 433 434 if (picosec == -1) { 435 len = sprintf(buf, "reserved"); 436 } else { 437 len = sprint_frac(buf, picosec, 1000); 438 } 439 440 return len; 441 } 442 443 static ssize_t 444 show_spi_transport_period_helper(char *buf, int period) 445 { 446 int len = period_to_str(buf, period); 447 buf[len++] = '\n'; 448 buf[len] = '\0'; 449 return len; 450 } 451 452 static ssize_t 453 store_spi_transport_period_helper(struct device *dev, const char *buf, 454 size_t count, int *periodp) 455 { 456 int j, picosec, period = -1; 457 char *endp; 458 459 picosec = simple_strtoul(buf, &endp, 10) * 1000; 460 if (*endp == '.') { 461 int mult = 100; 462 do { 463 endp++; 464 if (!isdigit(*endp)) 465 break; 466 picosec += (*endp - '0') * mult; 467 mult /= 10; 468 } while (mult > 0); 469 } 470 471 for (j = 0; j <= SPI_STATIC_PPR; j++) { 472 if (ppr_to_ps[j] < picosec) 473 continue; 474 period = j; 475 break; 476 } 477 478 if (period == -1) 479 period = picosec / 4000; 480 481 if (period > 0xff) 482 period = 0xff; 483 484 *periodp = period; 485 486 return count; 487 } 488 489 static ssize_t 490 show_spi_transport_period(struct device *dev, 491 struct device_attribute *attr, char *buf) 492 { 493 struct scsi_target *starget = transport_class_to_starget(dev); 494 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 495 struct spi_internal *i = to_spi_internal(shost->transportt); 496 struct spi_transport_attrs *tp = 497 (struct spi_transport_attrs *)&starget->starget_data; 498 499 if (i->f->get_period) 500 i->f->get_period(starget); 501 502 return show_spi_transport_period_helper(buf, tp->period); 503 } 504 505 static ssize_t 506 store_spi_transport_period(struct device *cdev, struct device_attribute *attr, 507 const char *buf, size_t count) 508 { 509 struct scsi_target *starget = transport_class_to_starget(cdev); 510 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 511 struct spi_internal *i = to_spi_internal(shost->transportt); 512 struct spi_transport_attrs *tp = 513 (struct spi_transport_attrs *)&starget->starget_data; 514 int period, retval; 515 516 if (!i->f->set_period) 517 return -EINVAL; 518 519 retval = store_spi_transport_period_helper(cdev, buf, count, &period); 520 521 if (period < tp->min_period) 522 period = tp->min_period; 523 524 i->f->set_period(starget, period); 525 526 return retval; 527 } 528 529 static DEVICE_ATTR(period, S_IRUGO, 530 show_spi_transport_period, 531 store_spi_transport_period); 532 533 static ssize_t 534 show_spi_transport_min_period(struct device *cdev, 535 struct device_attribute *attr, char *buf) 536 { 537 struct scsi_target *starget = transport_class_to_starget(cdev); 538 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 539 struct spi_internal *i = to_spi_internal(shost->transportt); 540 struct spi_transport_attrs *tp = 541 (struct spi_transport_attrs *)&starget->starget_data; 542 543 if (!i->f->set_period) 544 return -EINVAL; 545 546 return show_spi_transport_period_helper(buf, tp->min_period); 547 } 548 549 static ssize_t 550 store_spi_transport_min_period(struct device *cdev, 551 struct device_attribute *attr, 552 const char *buf, size_t count) 553 { 554 struct scsi_target *starget = transport_class_to_starget(cdev); 555 struct spi_transport_attrs *tp = 556 (struct spi_transport_attrs *)&starget->starget_data; 557 558 return store_spi_transport_period_helper(cdev, buf, count, 559 &tp->min_period); 560 } 561 562 563 static DEVICE_ATTR(min_period, S_IRUGO, 564 show_spi_transport_min_period, 565 store_spi_transport_min_period); 566 567 568 static ssize_t show_spi_host_signalling(struct device *cdev, 569 struct device_attribute *attr, 570 char *buf) 571 { 572 struct Scsi_Host *shost = transport_class_to_shost(cdev); 573 struct spi_internal *i = to_spi_internal(shost->transportt); 574 575 if (i->f->get_signalling) 576 i->f->get_signalling(shost); 577 578 return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost))); 579 } 580 static ssize_t store_spi_host_signalling(struct device *dev, 581 struct device_attribute *attr, 582 const char *buf, size_t count) 583 { 584 struct Scsi_Host *shost = transport_class_to_shost(dev); 585 struct spi_internal *i = to_spi_internal(shost->transportt); 586 enum spi_signal_type type = spi_signal_to_value(buf); 587 588 if (!i->f->set_signalling) 589 return -EINVAL; 590 591 if (type != SPI_SIGNAL_UNKNOWN) 592 i->f->set_signalling(shost, type); 593 594 return count; 595 } 596 static DEVICE_ATTR(signalling, S_IRUGO, 597 show_spi_host_signalling, 598 store_spi_host_signalling); 599 600 static ssize_t show_spi_host_width(struct device *cdev, 601 struct device_attribute *attr, 602 char *buf) 603 { 604 struct Scsi_Host *shost = transport_class_to_shost(cdev); 605 606 return sprintf(buf, "%s\n", shost->max_id == 16 ? "wide" : "narrow"); 607 } 608 static DEVICE_ATTR(host_width, S_IRUGO, 609 show_spi_host_width, NULL); 610 611 static ssize_t show_spi_host_hba_id(struct device *cdev, 612 struct device_attribute *attr, 613 char *buf) 614 { 615 struct Scsi_Host *shost = transport_class_to_shost(cdev); 616 617 return sprintf(buf, "%d\n", shost->this_id); 618 } 619 static DEVICE_ATTR(hba_id, S_IRUGO, 620 show_spi_host_hba_id, NULL); 621 622 #define DV_SET(x, y) \ 623 if(i->f->set_##x) \ 624 i->f->set_##x(sdev->sdev_target, y) 625 626 enum spi_compare_returns { 627 SPI_COMPARE_SUCCESS, 628 SPI_COMPARE_FAILURE, 629 SPI_COMPARE_SKIP_TEST, 630 }; 631 632 633 /* This is for read/write Domain Validation: If the device supports 634 * an echo buffer, we do read/write tests to it */ 635 static enum spi_compare_returns 636 spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer, 637 u8 *ptr, const int retries) 638 { 639 int len = ptr - buffer; 640 int j, k, r, result; 641 unsigned int pattern = 0x0000ffff; 642 struct scsi_sense_hdr sshdr; 643 644 const char spi_write_buffer[] = { 645 WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0 646 }; 647 const char spi_read_buffer[] = { 648 READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0 649 }; 650 651 /* set up the pattern buffer. Doesn't matter if we spill 652 * slightly beyond since that's where the read buffer is */ 653 for (j = 0; j < len; ) { 654 655 /* fill the buffer with counting (test a) */ 656 for ( ; j < min(len, 32); j++) 657 buffer[j] = j; 658 k = j; 659 /* fill the buffer with alternating words of 0x0 and 660 * 0xffff (test b) */ 661 for ( ; j < min(len, k + 32); j += 2) { 662 u16 *word = (u16 *)&buffer[j]; 663 664 *word = (j & 0x02) ? 0x0000 : 0xffff; 665 } 666 k = j; 667 /* fill with crosstalk (alternating 0x5555 0xaaa) 668 * (test c) */ 669 for ( ; j < min(len, k + 32); j += 2) { 670 u16 *word = (u16 *)&buffer[j]; 671 672 *word = (j & 0x02) ? 0x5555 : 0xaaaa; 673 } 674 k = j; 675 /* fill with shifting bits (test d) */ 676 for ( ; j < min(len, k + 32); j += 4) { 677 u32 *word = (unsigned int *)&buffer[j]; 678 u32 roll = (pattern & 0x80000000) ? 1 : 0; 679 680 *word = pattern; 681 pattern = (pattern << 1) | roll; 682 } 683 /* don't bother with random data (test e) */ 684 } 685 686 for (r = 0; r < retries; r++) { 687 result = spi_execute(sdev, spi_write_buffer, DMA_TO_DEVICE, 688 buffer, len, &sshdr); 689 if(result || !scsi_device_online(sdev)) { 690 691 scsi_device_set_state(sdev, SDEV_QUIESCE); 692 if (scsi_sense_valid(&sshdr) 693 && sshdr.sense_key == ILLEGAL_REQUEST 694 /* INVALID FIELD IN CDB */ 695 && sshdr.asc == 0x24 && sshdr.ascq == 0x00) 696 /* This would mean that the drive lied 697 * to us about supporting an echo 698 * buffer (unfortunately some Western 699 * Digital drives do precisely this) 700 */ 701 return SPI_COMPARE_SKIP_TEST; 702 703 704 sdev_printk(KERN_ERR, sdev, "Write Buffer failure %x\n", result); 705 return SPI_COMPARE_FAILURE; 706 } 707 708 memset(ptr, 0, len); 709 spi_execute(sdev, spi_read_buffer, DMA_FROM_DEVICE, 710 ptr, len, NULL); 711 scsi_device_set_state(sdev, SDEV_QUIESCE); 712 713 if (memcmp(buffer, ptr, len) != 0) 714 return SPI_COMPARE_FAILURE; 715 } 716 return SPI_COMPARE_SUCCESS; 717 } 718 719 /* This is for the simplest form of Domain Validation: a read test 720 * on the inquiry data from the device */ 721 static enum spi_compare_returns 722 spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer, 723 u8 *ptr, const int retries) 724 { 725 int r, result; 726 const int len = sdev->inquiry_len; 727 const char spi_inquiry[] = { 728 INQUIRY, 0, 0, 0, len, 0 729 }; 730 731 for (r = 0; r < retries; r++) { 732 memset(ptr, 0, len); 733 734 result = spi_execute(sdev, spi_inquiry, DMA_FROM_DEVICE, 735 ptr, len, NULL); 736 737 if(result || !scsi_device_online(sdev)) { 738 scsi_device_set_state(sdev, SDEV_QUIESCE); 739 return SPI_COMPARE_FAILURE; 740 } 741 742 /* If we don't have the inquiry data already, the 743 * first read gets it */ 744 if (ptr == buffer) { 745 ptr += len; 746 --r; 747 continue; 748 } 749 750 if (memcmp(buffer, ptr, len) != 0) 751 /* failure */ 752 return SPI_COMPARE_FAILURE; 753 } 754 return SPI_COMPARE_SUCCESS; 755 } 756 757 static enum spi_compare_returns 758 spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr, 759 enum spi_compare_returns 760 (*compare_fn)(struct scsi_device *, u8 *, u8 *, int)) 761 { 762 struct spi_internal *i = to_spi_internal(sdev->host->transportt); 763 struct scsi_target *starget = sdev->sdev_target; 764 int period = 0, prevperiod = 0; 765 enum spi_compare_returns retval; 766 767 768 for (;;) { 769 int newperiod; 770 retval = compare_fn(sdev, buffer, ptr, DV_LOOPS); 771 772 if (retval == SPI_COMPARE_SUCCESS 773 || retval == SPI_COMPARE_SKIP_TEST) 774 break; 775 776 /* OK, retrain, fallback */ 777 if (i->f->get_iu) 778 i->f->get_iu(starget); 779 if (i->f->get_qas) 780 i->f->get_qas(starget); 781 if (i->f->get_period) 782 i->f->get_period(sdev->sdev_target); 783 784 /* Here's the fallback sequence; first try turning off 785 * IU, then QAS (if we can control them), then finally 786 * fall down the periods */ 787 if (i->f->set_iu && spi_iu(starget)) { 788 starget_printk(KERN_ERR, starget, "Domain Validation Disabling Information Units\n"); 789 DV_SET(iu, 0); 790 } else if (i->f->set_qas && spi_qas(starget)) { 791 starget_printk(KERN_ERR, starget, "Domain Validation Disabling Quick Arbitration and Selection\n"); 792 DV_SET(qas, 0); 793 } else { 794 newperiod = spi_period(starget); 795 period = newperiod > period ? newperiod : period; 796 if (period < 0x0d) 797 period++; 798 else 799 period += period >> 1; 800 801 if (unlikely(period > 0xff || period == prevperiod)) { 802 /* Total failure; set to async and return */ 803 starget_printk(KERN_ERR, starget, "Domain Validation Failure, dropping back to Asynchronous\n"); 804 DV_SET(offset, 0); 805 return SPI_COMPARE_FAILURE; 806 } 807 starget_printk(KERN_ERR, starget, "Domain Validation detected failure, dropping back\n"); 808 DV_SET(period, period); 809 prevperiod = period; 810 } 811 } 812 return retval; 813 } 814 815 static int 816 spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer) 817 { 818 int l, result; 819 820 /* first off do a test unit ready. This can error out 821 * because of reservations or some other reason. If it 822 * fails, the device won't let us write to the echo buffer 823 * so just return failure */ 824 825 const char spi_test_unit_ready[] = { 826 TEST_UNIT_READY, 0, 0, 0, 0, 0 827 }; 828 829 const char spi_read_buffer_descriptor[] = { 830 READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0 831 }; 832 833 834 /* We send a set of three TURs to clear any outstanding 835 * unit attention conditions if they exist (Otherwise the 836 * buffer tests won't be happy). If the TUR still fails 837 * (reservation conflict, device not ready, etc) just 838 * skip the write tests */ 839 for (l = 0; ; l++) { 840 result = spi_execute(sdev, spi_test_unit_ready, DMA_NONE, 841 NULL, 0, NULL); 842 843 if(result) { 844 if(l >= 3) 845 return 0; 846 } else { 847 /* TUR succeeded */ 848 break; 849 } 850 } 851 852 result = spi_execute(sdev, spi_read_buffer_descriptor, 853 DMA_FROM_DEVICE, buffer, 4, NULL); 854 855 if (result) 856 /* Device has no echo buffer */ 857 return 0; 858 859 return buffer[3] + ((buffer[2] & 0x1f) << 8); 860 } 861 862 static void 863 spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer) 864 { 865 struct spi_internal *i = to_spi_internal(sdev->host->transportt); 866 struct scsi_target *starget = sdev->sdev_target; 867 struct Scsi_Host *shost = sdev->host; 868 int len = sdev->inquiry_len; 869 int min_period = spi_min_period(starget); 870 int max_width = spi_max_width(starget); 871 /* first set us up for narrow async */ 872 DV_SET(offset, 0); 873 DV_SET(width, 0); 874 875 if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS) 876 != SPI_COMPARE_SUCCESS) { 877 starget_printk(KERN_ERR, starget, "Domain Validation Initial Inquiry Failed\n"); 878 /* FIXME: should probably offline the device here? */ 879 return; 880 } 881 882 if (!spi_support_wide(starget)) { 883 spi_max_width(starget) = 0; 884 max_width = 0; 885 } 886 887 /* test width */ 888 if (i->f->set_width && max_width) { 889 i->f->set_width(starget, 1); 890 891 if (spi_dv_device_compare_inquiry(sdev, buffer, 892 buffer + len, 893 DV_LOOPS) 894 != SPI_COMPARE_SUCCESS) { 895 starget_printk(KERN_ERR, starget, "Wide Transfers Fail\n"); 896 i->f->set_width(starget, 0); 897 /* Make sure we don't force wide back on by asking 898 * for a transfer period that requires it */ 899 max_width = 0; 900 if (min_period < 10) 901 min_period = 10; 902 } 903 } 904 905 if (!i->f->set_period) 906 return; 907 908 /* device can't handle synchronous */ 909 if (!spi_support_sync(starget) && !spi_support_dt(starget)) 910 return; 911 912 /* len == -1 is the signal that we need to ascertain the 913 * presence of an echo buffer before trying to use it. len == 914 * 0 means we don't have an echo buffer */ 915 len = -1; 916 917 retry: 918 919 /* now set up to the maximum */ 920 DV_SET(offset, spi_max_offset(starget)); 921 DV_SET(period, min_period); 922 923 /* try QAS requests; this should be harmless to set if the 924 * target supports it */ 925 if (spi_support_qas(starget) && spi_max_qas(starget)) { 926 DV_SET(qas, 1); 927 } else { 928 DV_SET(qas, 0); 929 } 930 931 if (spi_support_ius(starget) && spi_max_iu(starget) && 932 min_period < 9) { 933 /* This u320 (or u640). Set IU transfers */ 934 DV_SET(iu, 1); 935 /* Then set the optional parameters */ 936 DV_SET(rd_strm, 1); 937 DV_SET(wr_flow, 1); 938 DV_SET(rti, 1); 939 if (min_period == 8) 940 DV_SET(pcomp_en, 1); 941 } else { 942 DV_SET(iu, 0); 943 } 944 945 /* now that we've done all this, actually check the bus 946 * signal type (if known). Some devices are stupid on 947 * a SE bus and still claim they can try LVD only settings */ 948 if (i->f->get_signalling) 949 i->f->get_signalling(shost); 950 if (spi_signalling(shost) == SPI_SIGNAL_SE || 951 spi_signalling(shost) == SPI_SIGNAL_HVD || 952 !spi_support_dt(starget)) { 953 DV_SET(dt, 0); 954 } else { 955 DV_SET(dt, 1); 956 } 957 /* set width last because it will pull all the other 958 * parameters down to required values */ 959 DV_SET(width, max_width); 960 961 /* Do the read only INQUIRY tests */ 962 spi_dv_retrain(sdev, buffer, buffer + sdev->inquiry_len, 963 spi_dv_device_compare_inquiry); 964 /* See if we actually managed to negotiate and sustain DT */ 965 if (i->f->get_dt) 966 i->f->get_dt(starget); 967 968 /* see if the device has an echo buffer. If it does we can do 969 * the SPI pattern write tests. Because of some broken 970 * devices, we *only* try this on a device that has actually 971 * negotiated DT */ 972 973 if (len == -1 && spi_dt(starget)) 974 len = spi_dv_device_get_echo_buffer(sdev, buffer); 975 976 if (len <= 0) { 977 starget_printk(KERN_INFO, starget, "Domain Validation skipping write tests\n"); 978 return; 979 } 980 981 if (len > SPI_MAX_ECHO_BUFFER_SIZE) { 982 starget_printk(KERN_WARNING, starget, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE); 983 len = SPI_MAX_ECHO_BUFFER_SIZE; 984 } 985 986 if (spi_dv_retrain(sdev, buffer, buffer + len, 987 spi_dv_device_echo_buffer) 988 == SPI_COMPARE_SKIP_TEST) { 989 /* OK, the stupid drive can't do a write echo buffer 990 * test after all, fall back to the read tests */ 991 len = 0; 992 goto retry; 993 } 994 } 995 996 997 /** spi_dv_device - Do Domain Validation on the device 998 * @sdev: scsi device to validate 999 * 1000 * Performs the domain validation on the given device in the 1001 * current execution thread. Since DV operations may sleep, 1002 * the current thread must have user context. Also no SCSI 1003 * related locks that would deadlock I/O issued by the DV may 1004 * be held. 1005 */ 1006 void 1007 spi_dv_device(struct scsi_device *sdev) 1008 { 1009 struct scsi_target *starget = sdev->sdev_target; 1010 u8 *buffer; 1011 const int len = SPI_MAX_ECHO_BUFFER_SIZE*2; 1012 1013 /* 1014 * Because this function and the power management code both call 1015 * scsi_device_quiesce(), it is not safe to perform domain validation 1016 * while suspend or resume is in progress. Hence the 1017 * lock/unlock_system_sleep() calls. 1018 */ 1019 lock_system_sleep(); 1020 1021 if (unlikely(spi_dv_in_progress(starget))) 1022 goto unlock; 1023 1024 if (unlikely(scsi_device_get(sdev))) 1025 goto unlock; 1026 1027 spi_dv_in_progress(starget) = 1; 1028 1029 buffer = kzalloc(len, GFP_KERNEL); 1030 1031 if (unlikely(!buffer)) 1032 goto out_put; 1033 1034 /* We need to verify that the actual device will quiesce; the 1035 * later target quiesce is just a nice to have */ 1036 if (unlikely(scsi_device_quiesce(sdev))) 1037 goto out_free; 1038 1039 scsi_target_quiesce(starget); 1040 1041 spi_dv_pending(starget) = 1; 1042 mutex_lock(&spi_dv_mutex(starget)); 1043 1044 starget_printk(KERN_INFO, starget, "Beginning Domain Validation\n"); 1045 1046 spi_dv_device_internal(sdev, buffer); 1047 1048 starget_printk(KERN_INFO, starget, "Ending Domain Validation\n"); 1049 1050 mutex_unlock(&spi_dv_mutex(starget)); 1051 spi_dv_pending(starget) = 0; 1052 1053 scsi_target_resume(starget); 1054 1055 spi_initial_dv(starget) = 1; 1056 1057 out_free: 1058 kfree(buffer); 1059 out_put: 1060 spi_dv_in_progress(starget) = 0; 1061 scsi_device_put(sdev); 1062 unlock: 1063 unlock_system_sleep(); 1064 } 1065 EXPORT_SYMBOL(spi_dv_device); 1066 1067 struct work_queue_wrapper { 1068 struct work_struct work; 1069 struct scsi_device *sdev; 1070 }; 1071 1072 static void 1073 spi_dv_device_work_wrapper(struct work_struct *work) 1074 { 1075 struct work_queue_wrapper *wqw = 1076 container_of(work, struct work_queue_wrapper, work); 1077 struct scsi_device *sdev = wqw->sdev; 1078 1079 kfree(wqw); 1080 spi_dv_device(sdev); 1081 spi_dv_pending(sdev->sdev_target) = 0; 1082 scsi_device_put(sdev); 1083 } 1084 1085 1086 /** 1087 * spi_schedule_dv_device - schedule domain validation to occur on the device 1088 * @sdev: The device to validate 1089 * 1090 * Identical to spi_dv_device() above, except that the DV will be 1091 * scheduled to occur in a workqueue later. All memory allocations 1092 * are atomic, so may be called from any context including those holding 1093 * SCSI locks. 1094 */ 1095 void 1096 spi_schedule_dv_device(struct scsi_device *sdev) 1097 { 1098 struct work_queue_wrapper *wqw = 1099 kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC); 1100 1101 if (unlikely(!wqw)) 1102 return; 1103 1104 if (unlikely(spi_dv_pending(sdev->sdev_target))) { 1105 kfree(wqw); 1106 return; 1107 } 1108 /* Set pending early (dv_device doesn't check it, only sets it) */ 1109 spi_dv_pending(sdev->sdev_target) = 1; 1110 if (unlikely(scsi_device_get(sdev))) { 1111 kfree(wqw); 1112 spi_dv_pending(sdev->sdev_target) = 0; 1113 return; 1114 } 1115 1116 INIT_WORK(&wqw->work, spi_dv_device_work_wrapper); 1117 wqw->sdev = sdev; 1118 1119 schedule_work(&wqw->work); 1120 } 1121 EXPORT_SYMBOL(spi_schedule_dv_device); 1122 1123 /** 1124 * spi_display_xfer_agreement - Print the current target transfer agreement 1125 * @starget: The target for which to display the agreement 1126 * 1127 * Each SPI port is required to maintain a transfer agreement for each 1128 * other port on the bus. This function prints a one-line summary of 1129 * the current agreement; more detailed information is available in sysfs. 1130 */ 1131 void spi_display_xfer_agreement(struct scsi_target *starget) 1132 { 1133 struct spi_transport_attrs *tp; 1134 tp = (struct spi_transport_attrs *)&starget->starget_data; 1135 1136 if (tp->offset > 0 && tp->period > 0) { 1137 unsigned int picosec, kb100; 1138 char *scsi = "FAST-?"; 1139 char tmp[8]; 1140 1141 if (tp->period <= SPI_STATIC_PPR) { 1142 picosec = ppr_to_ps[tp->period]; 1143 switch (tp->period) { 1144 case 7: scsi = "FAST-320"; break; 1145 case 8: scsi = "FAST-160"; break; 1146 case 9: scsi = "FAST-80"; break; 1147 case 10: 1148 case 11: scsi = "FAST-40"; break; 1149 case 12: scsi = "FAST-20"; break; 1150 } 1151 } else { 1152 picosec = tp->period * 4000; 1153 if (tp->period < 25) 1154 scsi = "FAST-20"; 1155 else if (tp->period < 50) 1156 scsi = "FAST-10"; 1157 else 1158 scsi = "FAST-5"; 1159 } 1160 1161 kb100 = (10000000 + picosec / 2) / picosec; 1162 if (tp->width) 1163 kb100 *= 2; 1164 sprint_frac(tmp, picosec, 1000); 1165 1166 dev_info(&starget->dev, 1167 "%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n", 1168 scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10, 1169 tp->dt ? "DT" : "ST", 1170 tp->iu ? " IU" : "", 1171 tp->qas ? " QAS" : "", 1172 tp->rd_strm ? " RDSTRM" : "", 1173 tp->rti ? " RTI" : "", 1174 tp->wr_flow ? " WRFLOW" : "", 1175 tp->pcomp_en ? " PCOMP" : "", 1176 tp->hold_mcs ? " HMCS" : "", 1177 tmp, tp->offset); 1178 } else { 1179 dev_info(&starget->dev, "%sasynchronous\n", 1180 tp->width ? "wide " : ""); 1181 } 1182 } 1183 EXPORT_SYMBOL(spi_display_xfer_agreement); 1184 1185 int spi_populate_width_msg(unsigned char *msg, int width) 1186 { 1187 msg[0] = EXTENDED_MESSAGE; 1188 msg[1] = 2; 1189 msg[2] = EXTENDED_WDTR; 1190 msg[3] = width; 1191 return 4; 1192 } 1193 EXPORT_SYMBOL_GPL(spi_populate_width_msg); 1194 1195 int spi_populate_sync_msg(unsigned char *msg, int period, int offset) 1196 { 1197 msg[0] = EXTENDED_MESSAGE; 1198 msg[1] = 3; 1199 msg[2] = EXTENDED_SDTR; 1200 msg[3] = period; 1201 msg[4] = offset; 1202 return 5; 1203 } 1204 EXPORT_SYMBOL_GPL(spi_populate_sync_msg); 1205 1206 int spi_populate_ppr_msg(unsigned char *msg, int period, int offset, 1207 int width, int options) 1208 { 1209 msg[0] = EXTENDED_MESSAGE; 1210 msg[1] = 6; 1211 msg[2] = EXTENDED_PPR; 1212 msg[3] = period; 1213 msg[4] = 0; 1214 msg[5] = offset; 1215 msg[6] = width; 1216 msg[7] = options; 1217 return 8; 1218 } 1219 EXPORT_SYMBOL_GPL(spi_populate_ppr_msg); 1220 1221 /** 1222 * spi_populate_tag_msg - place a tag message in a buffer 1223 * @msg: pointer to the area to place the tag 1224 * @cmd: pointer to the scsi command for the tag 1225 * 1226 * Notes: 1227 * designed to create the correct type of tag message for the 1228 * particular request. Returns the size of the tag message. 1229 * May return 0 if TCQ is disabled for this device. 1230 **/ 1231 int spi_populate_tag_msg(unsigned char *msg, struct scsi_cmnd *cmd) 1232 { 1233 if (cmd->flags & SCMD_TAGGED) { 1234 *msg++ = SIMPLE_QUEUE_TAG; 1235 *msg++ = cmd->request->tag; 1236 return 2; 1237 } 1238 1239 return 0; 1240 } 1241 EXPORT_SYMBOL_GPL(spi_populate_tag_msg); 1242 1243 #ifdef CONFIG_SCSI_CONSTANTS 1244 static const char * const one_byte_msgs[] = { 1245 /* 0x00 */ "Task Complete", NULL /* Extended Message */, "Save Pointers", 1246 /* 0x03 */ "Restore Pointers", "Disconnect", "Initiator Error", 1247 /* 0x06 */ "Abort Task Set", "Message Reject", "Nop", "Message Parity Error", 1248 /* 0x0a */ "Linked Command Complete", "Linked Command Complete w/flag", 1249 /* 0x0c */ "Target Reset", "Abort Task", "Clear Task Set", 1250 /* 0x0f */ "Initiate Recovery", "Release Recovery", 1251 /* 0x11 */ "Terminate Process", "Continue Task", "Target Transfer Disable", 1252 /* 0x14 */ NULL, NULL, "Clear ACA", "LUN Reset" 1253 }; 1254 1255 static const char * const two_byte_msgs[] = { 1256 /* 0x20 */ "Simple Queue Tag", "Head of Queue Tag", "Ordered Queue Tag", 1257 /* 0x23 */ "Ignore Wide Residue", "ACA" 1258 }; 1259 1260 static const char * const extended_msgs[] = { 1261 /* 0x00 */ "Modify Data Pointer", "Synchronous Data Transfer Request", 1262 /* 0x02 */ "SCSI-I Extended Identify", "Wide Data Transfer Request", 1263 /* 0x04 */ "Parallel Protocol Request", "Modify Bidirectional Data Pointer" 1264 }; 1265 1266 static void print_nego(const unsigned char *msg, int per, int off, int width) 1267 { 1268 if (per) { 1269 char buf[20]; 1270 period_to_str(buf, msg[per]); 1271 printk("period = %s ns ", buf); 1272 } 1273 1274 if (off) 1275 printk("offset = %d ", msg[off]); 1276 if (width) 1277 printk("width = %d ", 8 << msg[width]); 1278 } 1279 1280 static void print_ptr(const unsigned char *msg, int msb, const char *desc) 1281 { 1282 int ptr = (msg[msb] << 24) | (msg[msb+1] << 16) | (msg[msb+2] << 8) | 1283 msg[msb+3]; 1284 printk("%s = %d ", desc, ptr); 1285 } 1286 1287 int spi_print_msg(const unsigned char *msg) 1288 { 1289 int len = 1, i; 1290 if (msg[0] == EXTENDED_MESSAGE) { 1291 len = 2 + msg[1]; 1292 if (len == 2) 1293 len += 256; 1294 if (msg[2] < ARRAY_SIZE(extended_msgs)) 1295 printk ("%s ", extended_msgs[msg[2]]); 1296 else 1297 printk ("Extended Message, reserved code (0x%02x) ", 1298 (int) msg[2]); 1299 switch (msg[2]) { 1300 case EXTENDED_MODIFY_DATA_POINTER: 1301 print_ptr(msg, 3, "pointer"); 1302 break; 1303 case EXTENDED_SDTR: 1304 print_nego(msg, 3, 4, 0); 1305 break; 1306 case EXTENDED_WDTR: 1307 print_nego(msg, 0, 0, 3); 1308 break; 1309 case EXTENDED_PPR: 1310 print_nego(msg, 3, 5, 6); 1311 break; 1312 case EXTENDED_MODIFY_BIDI_DATA_PTR: 1313 print_ptr(msg, 3, "out"); 1314 print_ptr(msg, 7, "in"); 1315 break; 1316 default: 1317 for (i = 2; i < len; ++i) 1318 printk("%02x ", msg[i]); 1319 } 1320 /* Identify */ 1321 } else if (msg[0] & 0x80) { 1322 printk("Identify disconnect %sallowed %s %d ", 1323 (msg[0] & 0x40) ? "" : "not ", 1324 (msg[0] & 0x20) ? "target routine" : "lun", 1325 msg[0] & 0x7); 1326 /* Normal One byte */ 1327 } else if (msg[0] < 0x1f) { 1328 if (msg[0] < ARRAY_SIZE(one_byte_msgs) && one_byte_msgs[msg[0]]) 1329 printk("%s ", one_byte_msgs[msg[0]]); 1330 else 1331 printk("reserved (%02x) ", msg[0]); 1332 } else if (msg[0] == 0x55) { 1333 printk("QAS Request "); 1334 /* Two byte */ 1335 } else if (msg[0] <= 0x2f) { 1336 if ((msg[0] - 0x20) < ARRAY_SIZE(two_byte_msgs)) 1337 printk("%s %02x ", two_byte_msgs[msg[0] - 0x20], 1338 msg[1]); 1339 else 1340 printk("reserved two byte (%02x %02x) ", 1341 msg[0], msg[1]); 1342 len = 2; 1343 } else 1344 printk("reserved "); 1345 return len; 1346 } 1347 EXPORT_SYMBOL(spi_print_msg); 1348 1349 #else /* ifndef CONFIG_SCSI_CONSTANTS */ 1350 1351 int spi_print_msg(const unsigned char *msg) 1352 { 1353 int len = 1, i; 1354 1355 if (msg[0] == EXTENDED_MESSAGE) { 1356 len = 2 + msg[1]; 1357 if (len == 2) 1358 len += 256; 1359 for (i = 0; i < len; ++i) 1360 printk("%02x ", msg[i]); 1361 /* Identify */ 1362 } else if (msg[0] & 0x80) { 1363 printk("%02x ", msg[0]); 1364 /* Normal One byte */ 1365 } else if ((msg[0] < 0x1f) || (msg[0] == 0x55)) { 1366 printk("%02x ", msg[0]); 1367 /* Two byte */ 1368 } else if (msg[0] <= 0x2f) { 1369 printk("%02x %02x", msg[0], msg[1]); 1370 len = 2; 1371 } else 1372 printk("%02x ", msg[0]); 1373 return len; 1374 } 1375 EXPORT_SYMBOL(spi_print_msg); 1376 #endif /* ! CONFIG_SCSI_CONSTANTS */ 1377 1378 static int spi_device_match(struct attribute_container *cont, 1379 struct device *dev) 1380 { 1381 struct scsi_device *sdev; 1382 struct Scsi_Host *shost; 1383 struct spi_internal *i; 1384 1385 if (!scsi_is_sdev_device(dev)) 1386 return 0; 1387 1388 sdev = to_scsi_device(dev); 1389 shost = sdev->host; 1390 if (!shost->transportt || shost->transportt->host_attrs.ac.class 1391 != &spi_host_class.class) 1392 return 0; 1393 /* Note: this class has no device attributes, so it has 1394 * no per-HBA allocation and thus we don't need to distinguish 1395 * the attribute containers for the device */ 1396 i = to_spi_internal(shost->transportt); 1397 if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target)) 1398 return 0; 1399 return 1; 1400 } 1401 1402 static int spi_target_match(struct attribute_container *cont, 1403 struct device *dev) 1404 { 1405 struct Scsi_Host *shost; 1406 struct scsi_target *starget; 1407 struct spi_internal *i; 1408 1409 if (!scsi_is_target_device(dev)) 1410 return 0; 1411 1412 shost = dev_to_shost(dev->parent); 1413 if (!shost->transportt || shost->transportt->host_attrs.ac.class 1414 != &spi_host_class.class) 1415 return 0; 1416 1417 i = to_spi_internal(shost->transportt); 1418 starget = to_scsi_target(dev); 1419 1420 if (i->f->deny_binding && i->f->deny_binding(starget)) 1421 return 0; 1422 1423 return &i->t.target_attrs.ac == cont; 1424 } 1425 1426 static DECLARE_TRANSPORT_CLASS(spi_transport_class, 1427 "spi_transport", 1428 spi_setup_transport_attrs, 1429 NULL, 1430 spi_target_configure); 1431 1432 static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class, 1433 spi_device_match, 1434 spi_device_configure); 1435 1436 static struct attribute *host_attributes[] = { 1437 &dev_attr_signalling.attr, 1438 &dev_attr_host_width.attr, 1439 &dev_attr_hba_id.attr, 1440 NULL 1441 }; 1442 1443 static struct attribute_group host_attribute_group = { 1444 .attrs = host_attributes, 1445 }; 1446 1447 static int spi_host_configure(struct transport_container *tc, 1448 struct device *dev, 1449 struct device *cdev) 1450 { 1451 struct kobject *kobj = &cdev->kobj; 1452 struct Scsi_Host *shost = transport_class_to_shost(cdev); 1453 struct spi_internal *si = to_spi_internal(shost->transportt); 1454 struct attribute *attr = &dev_attr_signalling.attr; 1455 int rc = 0; 1456 1457 if (si->f->set_signalling) 1458 rc = sysfs_chmod_file(kobj, attr, attr->mode | S_IWUSR); 1459 1460 return rc; 1461 } 1462 1463 /* returns true if we should be showing the variable. Also 1464 * overloads the return by setting 1<<1 if the attribute should 1465 * be writeable */ 1466 #define TARGET_ATTRIBUTE_HELPER(name) \ 1467 (si->f->show_##name ? S_IRUGO : 0) | \ 1468 (si->f->set_##name ? S_IWUSR : 0) 1469 1470 static umode_t target_attribute_is_visible(struct kobject *kobj, 1471 struct attribute *attr, int i) 1472 { 1473 struct device *cdev = container_of(kobj, struct device, kobj); 1474 struct scsi_target *starget = transport_class_to_starget(cdev); 1475 struct Scsi_Host *shost = transport_class_to_shost(cdev); 1476 struct spi_internal *si = to_spi_internal(shost->transportt); 1477 1478 if (attr == &dev_attr_period.attr && 1479 spi_support_sync(starget)) 1480 return TARGET_ATTRIBUTE_HELPER(period); 1481 else if (attr == &dev_attr_min_period.attr && 1482 spi_support_sync(starget)) 1483 return TARGET_ATTRIBUTE_HELPER(period); 1484 else if (attr == &dev_attr_offset.attr && 1485 spi_support_sync(starget)) 1486 return TARGET_ATTRIBUTE_HELPER(offset); 1487 else if (attr == &dev_attr_max_offset.attr && 1488 spi_support_sync(starget)) 1489 return TARGET_ATTRIBUTE_HELPER(offset); 1490 else if (attr == &dev_attr_width.attr && 1491 spi_support_wide(starget)) 1492 return TARGET_ATTRIBUTE_HELPER(width); 1493 else if (attr == &dev_attr_max_width.attr && 1494 spi_support_wide(starget)) 1495 return TARGET_ATTRIBUTE_HELPER(width); 1496 else if (attr == &dev_attr_iu.attr && 1497 spi_support_ius(starget)) 1498 return TARGET_ATTRIBUTE_HELPER(iu); 1499 else if (attr == &dev_attr_max_iu.attr && 1500 spi_support_ius(starget)) 1501 return TARGET_ATTRIBUTE_HELPER(iu); 1502 else if (attr == &dev_attr_dt.attr && 1503 spi_support_dt(starget)) 1504 return TARGET_ATTRIBUTE_HELPER(dt); 1505 else if (attr == &dev_attr_qas.attr && 1506 spi_support_qas(starget)) 1507 return TARGET_ATTRIBUTE_HELPER(qas); 1508 else if (attr == &dev_attr_max_qas.attr && 1509 spi_support_qas(starget)) 1510 return TARGET_ATTRIBUTE_HELPER(qas); 1511 else if (attr == &dev_attr_wr_flow.attr && 1512 spi_support_ius(starget)) 1513 return TARGET_ATTRIBUTE_HELPER(wr_flow); 1514 else if (attr == &dev_attr_rd_strm.attr && 1515 spi_support_ius(starget)) 1516 return TARGET_ATTRIBUTE_HELPER(rd_strm); 1517 else if (attr == &dev_attr_rti.attr && 1518 spi_support_ius(starget)) 1519 return TARGET_ATTRIBUTE_HELPER(rti); 1520 else if (attr == &dev_attr_pcomp_en.attr && 1521 spi_support_ius(starget)) 1522 return TARGET_ATTRIBUTE_HELPER(pcomp_en); 1523 else if (attr == &dev_attr_hold_mcs.attr && 1524 spi_support_ius(starget)) 1525 return TARGET_ATTRIBUTE_HELPER(hold_mcs); 1526 else if (attr == &dev_attr_revalidate.attr) 1527 return S_IWUSR; 1528 1529 return 0; 1530 } 1531 1532 static struct attribute *target_attributes[] = { 1533 &dev_attr_period.attr, 1534 &dev_attr_min_period.attr, 1535 &dev_attr_offset.attr, 1536 &dev_attr_max_offset.attr, 1537 &dev_attr_width.attr, 1538 &dev_attr_max_width.attr, 1539 &dev_attr_iu.attr, 1540 &dev_attr_max_iu.attr, 1541 &dev_attr_dt.attr, 1542 &dev_attr_qas.attr, 1543 &dev_attr_max_qas.attr, 1544 &dev_attr_wr_flow.attr, 1545 &dev_attr_rd_strm.attr, 1546 &dev_attr_rti.attr, 1547 &dev_attr_pcomp_en.attr, 1548 &dev_attr_hold_mcs.attr, 1549 &dev_attr_revalidate.attr, 1550 NULL 1551 }; 1552 1553 static struct attribute_group target_attribute_group = { 1554 .attrs = target_attributes, 1555 .is_visible = target_attribute_is_visible, 1556 }; 1557 1558 static int spi_target_configure(struct transport_container *tc, 1559 struct device *dev, 1560 struct device *cdev) 1561 { 1562 struct kobject *kobj = &cdev->kobj; 1563 1564 /* force an update based on parameters read from the device */ 1565 sysfs_update_group(kobj, &target_attribute_group); 1566 1567 return 0; 1568 } 1569 1570 struct scsi_transport_template * 1571 spi_attach_transport(struct spi_function_template *ft) 1572 { 1573 struct spi_internal *i = kzalloc(sizeof(struct spi_internal), 1574 GFP_KERNEL); 1575 1576 if (unlikely(!i)) 1577 return NULL; 1578 1579 i->t.target_attrs.ac.class = &spi_transport_class.class; 1580 i->t.target_attrs.ac.grp = &target_attribute_group; 1581 i->t.target_attrs.ac.match = spi_target_match; 1582 transport_container_register(&i->t.target_attrs); 1583 i->t.target_size = sizeof(struct spi_transport_attrs); 1584 i->t.host_attrs.ac.class = &spi_host_class.class; 1585 i->t.host_attrs.ac.grp = &host_attribute_group; 1586 i->t.host_attrs.ac.match = spi_host_match; 1587 transport_container_register(&i->t.host_attrs); 1588 i->t.host_size = sizeof(struct spi_host_attrs); 1589 i->f = ft; 1590 1591 return &i->t; 1592 } 1593 EXPORT_SYMBOL(spi_attach_transport); 1594 1595 void spi_release_transport(struct scsi_transport_template *t) 1596 { 1597 struct spi_internal *i = to_spi_internal(t); 1598 1599 transport_container_unregister(&i->t.target_attrs); 1600 transport_container_unregister(&i->t.host_attrs); 1601 1602 kfree(i); 1603 } 1604 EXPORT_SYMBOL(spi_release_transport); 1605 1606 static __init int spi_transport_init(void) 1607 { 1608 int error = scsi_dev_info_add_list(SCSI_DEVINFO_SPI, 1609 "SCSI Parallel Transport Class"); 1610 if (!error) { 1611 int i; 1612 1613 for (i = 0; spi_static_device_list[i].vendor; i++) 1614 scsi_dev_info_list_add_keyed(1, /* compatible */ 1615 spi_static_device_list[i].vendor, 1616 spi_static_device_list[i].model, 1617 NULL, 1618 spi_static_device_list[i].flags, 1619 SCSI_DEVINFO_SPI); 1620 } 1621 1622 error = transport_class_register(&spi_transport_class); 1623 if (error) 1624 return error; 1625 error = anon_transport_class_register(&spi_device_class); 1626 return transport_class_register(&spi_host_class); 1627 } 1628 1629 static void __exit spi_transport_exit(void) 1630 { 1631 transport_class_unregister(&spi_transport_class); 1632 anon_transport_class_unregister(&spi_device_class); 1633 transport_class_unregister(&spi_host_class); 1634 scsi_dev_info_remove_list(SCSI_DEVINFO_SPI); 1635 } 1636 1637 MODULE_AUTHOR("Martin Hicks"); 1638 MODULE_DESCRIPTION("SPI Transport Attributes"); 1639 MODULE_LICENSE("GPL"); 1640 1641 module_init(spi_transport_init); 1642 module_exit(spi_transport_exit); 1643