1 /*
2  *  Parallel SCSI (SPI) transport specific attributes exported to sysfs.
3  *
4  *  Copyright (c) 2003 Silicon Graphics, Inc.  All rights reserved.
5  *  Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com>
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 #include <linux/ctype.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/workqueue.h>
25 #include <linux/blkdev.h>
26 #include <linux/mutex.h>
27 #include <linux/sysfs.h>
28 #include <scsi/scsi.h>
29 #include "scsi_priv.h"
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_host.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_transport.h>
35 #include <scsi/scsi_transport_spi.h>
36 
37 #define SPI_NUM_ATTRS 14	/* increase this if you add attributes */
38 #define SPI_OTHER_ATTRS 1	/* Increase this if you add "always
39 				 * on" attributes */
40 #define SPI_HOST_ATTRS	1
41 
42 #define SPI_MAX_ECHO_BUFFER_SIZE	4096
43 
44 #define DV_LOOPS	3
45 #define DV_TIMEOUT	(10*HZ)
46 #define DV_RETRIES	3	/* should only need at most
47 				 * two cc/ua clears */
48 
49 /* Our blacklist flags */
50 enum {
51 	SPI_BLIST_NOIUS = 0x1,
52 };
53 
54 /* blacklist table, modelled on scsi_devinfo.c */
55 static struct {
56 	char *vendor;
57 	char *model;
58 	unsigned flags;
59 } spi_static_device_list[] __initdata = {
60 	{"HP", "Ultrium 3-SCSI", SPI_BLIST_NOIUS },
61 	{"IBM", "ULTRIUM-TD3", SPI_BLIST_NOIUS },
62 	{NULL, NULL, 0}
63 };
64 
65 /* Private data accessors (keep these out of the header file) */
66 #define spi_dv_in_progress(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_in_progress)
67 #define spi_dv_mutex(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_mutex)
68 
69 struct spi_internal {
70 	struct scsi_transport_template t;
71 	struct spi_function_template *f;
72 };
73 
74 #define to_spi_internal(tmpl)	container_of(tmpl, struct spi_internal, t)
75 
76 static const int ppr_to_ps[] = {
77 	/* The PPR values 0-6 are reserved, fill them in when
78 	 * the committee defines them */
79 	-1,			/* 0x00 */
80 	-1,			/* 0x01 */
81 	-1,			/* 0x02 */
82 	-1,			/* 0x03 */
83 	-1,			/* 0x04 */
84 	-1,			/* 0x05 */
85 	-1,			/* 0x06 */
86 	 3125,			/* 0x07 */
87 	 6250,			/* 0x08 */
88 	12500,			/* 0x09 */
89 	25000,			/* 0x0a */
90 	30300,			/* 0x0b */
91 	50000,			/* 0x0c */
92 };
93 /* The PPR values at which you calculate the period in ns by multiplying
94  * by 4 */
95 #define SPI_STATIC_PPR	0x0c
96 
97 static int sprint_frac(char *dest, int value, int denom)
98 {
99 	int frac = value % denom;
100 	int result = sprintf(dest, "%d", value / denom);
101 
102 	if (frac == 0)
103 		return result;
104 	dest[result++] = '.';
105 
106 	do {
107 		denom /= 10;
108 		sprintf(dest + result, "%d", frac / denom);
109 		result++;
110 		frac %= denom;
111 	} while (frac);
112 
113 	dest[result++] = '\0';
114 	return result;
115 }
116 
117 static int spi_execute(struct scsi_device *sdev, const void *cmd,
118 		       enum dma_data_direction dir,
119 		       void *buffer, unsigned bufflen,
120 		       struct scsi_sense_hdr *sshdr)
121 {
122 	int i, result;
123 	unsigned char sense[SCSI_SENSE_BUFFERSIZE];
124 
125 	for(i = 0; i < DV_RETRIES; i++) {
126 		result = scsi_execute(sdev, cmd, dir, buffer, bufflen,
127 				      sense, DV_TIMEOUT, /* retries */ 1,
128 				      REQ_FAILFAST_DEV |
129 				      REQ_FAILFAST_TRANSPORT |
130 				      REQ_FAILFAST_DRIVER,
131 				      NULL);
132 		if (driver_byte(result) & DRIVER_SENSE) {
133 			struct scsi_sense_hdr sshdr_tmp;
134 			if (!sshdr)
135 				sshdr = &sshdr_tmp;
136 
137 			if (scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE,
138 						 sshdr)
139 			    && sshdr->sense_key == UNIT_ATTENTION)
140 				continue;
141 		}
142 		break;
143 	}
144 	return result;
145 }
146 
147 static struct {
148 	enum spi_signal_type	value;
149 	char			*name;
150 } signal_types[] = {
151 	{ SPI_SIGNAL_UNKNOWN, "unknown" },
152 	{ SPI_SIGNAL_SE, "SE" },
153 	{ SPI_SIGNAL_LVD, "LVD" },
154 	{ SPI_SIGNAL_HVD, "HVD" },
155 };
156 
157 static inline const char *spi_signal_to_string(enum spi_signal_type type)
158 {
159 	int i;
160 
161 	for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
162 		if (type == signal_types[i].value)
163 			return signal_types[i].name;
164 	}
165 	return NULL;
166 }
167 static inline enum spi_signal_type spi_signal_to_value(const char *name)
168 {
169 	int i, len;
170 
171 	for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
172 		len =  strlen(signal_types[i].name);
173 		if (strncmp(name, signal_types[i].name, len) == 0 &&
174 		    (name[len] == '\n' || name[len] == '\0'))
175 			return signal_types[i].value;
176 	}
177 	return SPI_SIGNAL_UNKNOWN;
178 }
179 
180 static int spi_host_setup(struct transport_container *tc, struct device *dev,
181 			  struct device *cdev)
182 {
183 	struct Scsi_Host *shost = dev_to_shost(dev);
184 
185 	spi_signalling(shost) = SPI_SIGNAL_UNKNOWN;
186 
187 	return 0;
188 }
189 
190 static int spi_host_configure(struct transport_container *tc,
191 			      struct device *dev,
192 			      struct device *cdev);
193 
194 static DECLARE_TRANSPORT_CLASS(spi_host_class,
195 			       "spi_host",
196 			       spi_host_setup,
197 			       NULL,
198 			       spi_host_configure);
199 
200 static int spi_host_match(struct attribute_container *cont,
201 			  struct device *dev)
202 {
203 	struct Scsi_Host *shost;
204 
205 	if (!scsi_is_host_device(dev))
206 		return 0;
207 
208 	shost = dev_to_shost(dev);
209 	if (!shost->transportt  || shost->transportt->host_attrs.ac.class
210 	    != &spi_host_class.class)
211 		return 0;
212 
213 	return &shost->transportt->host_attrs.ac == cont;
214 }
215 
216 static int spi_target_configure(struct transport_container *tc,
217 				struct device *dev,
218 				struct device *cdev);
219 
220 static int spi_device_configure(struct transport_container *tc,
221 				struct device *dev,
222 				struct device *cdev)
223 {
224 	struct scsi_device *sdev = to_scsi_device(dev);
225 	struct scsi_target *starget = sdev->sdev_target;
226 	unsigned bflags = scsi_get_device_flags_keyed(sdev, &sdev->inquiry[8],
227 						      &sdev->inquiry[16],
228 						      SCSI_DEVINFO_SPI);
229 
230 	/* Populate the target capability fields with the values
231 	 * gleaned from the device inquiry */
232 
233 	spi_support_sync(starget) = scsi_device_sync(sdev);
234 	spi_support_wide(starget) = scsi_device_wide(sdev);
235 	spi_support_dt(starget) = scsi_device_dt(sdev);
236 	spi_support_dt_only(starget) = scsi_device_dt_only(sdev);
237 	spi_support_ius(starget) = scsi_device_ius(sdev);
238 	if (bflags & SPI_BLIST_NOIUS) {
239 		dev_info(dev, "Information Units disabled by blacklist\n");
240 		spi_support_ius(starget) = 0;
241 	}
242 	spi_support_qas(starget) = scsi_device_qas(sdev);
243 
244 	return 0;
245 }
246 
247 static int spi_setup_transport_attrs(struct transport_container *tc,
248 				     struct device *dev,
249 				     struct device *cdev)
250 {
251 	struct scsi_target *starget = to_scsi_target(dev);
252 
253 	spi_period(starget) = -1;	/* illegal value */
254 	spi_min_period(starget) = 0;
255 	spi_offset(starget) = 0;	/* async */
256 	spi_max_offset(starget) = 255;
257 	spi_width(starget) = 0;	/* narrow */
258 	spi_max_width(starget) = 1;
259 	spi_iu(starget) = 0;	/* no IU */
260 	spi_max_iu(starget) = 1;
261 	spi_dt(starget) = 0;	/* ST */
262 	spi_qas(starget) = 0;
263 	spi_max_qas(starget) = 1;
264 	spi_wr_flow(starget) = 0;
265 	spi_rd_strm(starget) = 0;
266 	spi_rti(starget) = 0;
267 	spi_pcomp_en(starget) = 0;
268 	spi_hold_mcs(starget) = 0;
269 	spi_dv_pending(starget) = 0;
270 	spi_dv_in_progress(starget) = 0;
271 	spi_initial_dv(starget) = 0;
272 	mutex_init(&spi_dv_mutex(starget));
273 
274 	return 0;
275 }
276 
277 #define spi_transport_show_simple(field, format_string)			\
278 									\
279 static ssize_t								\
280 show_spi_transport_##field(struct device *dev, 			\
281 			   struct device_attribute *attr, char *buf)	\
282 {									\
283 	struct scsi_target *starget = transport_class_to_starget(dev);	\
284 	struct spi_transport_attrs *tp;					\
285 									\
286 	tp = (struct spi_transport_attrs *)&starget->starget_data;	\
287 	return snprintf(buf, 20, format_string, tp->field);		\
288 }
289 
290 #define spi_transport_store_simple(field, format_string)		\
291 									\
292 static ssize_t								\
293 store_spi_transport_##field(struct device *dev, 			\
294 			    struct device_attribute *attr, 		\
295 			    const char *buf, size_t count)		\
296 {									\
297 	int val;							\
298 	struct scsi_target *starget = transport_class_to_starget(dev);	\
299 	struct spi_transport_attrs *tp;					\
300 									\
301 	tp = (struct spi_transport_attrs *)&starget->starget_data;	\
302 	val = simple_strtoul(buf, NULL, 0);				\
303 	tp->field = val;						\
304 	return count;							\
305 }
306 
307 #define spi_transport_show_function(field, format_string)		\
308 									\
309 static ssize_t								\
310 show_spi_transport_##field(struct device *dev, 			\
311 			   struct device_attribute *attr, char *buf)	\
312 {									\
313 	struct scsi_target *starget = transport_class_to_starget(dev);	\
314 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);	\
315 	struct spi_transport_attrs *tp;					\
316 	struct spi_internal *i = to_spi_internal(shost->transportt);	\
317 	tp = (struct spi_transport_attrs *)&starget->starget_data;	\
318 	if (i->f->get_##field)						\
319 		i->f->get_##field(starget);				\
320 	return snprintf(buf, 20, format_string, tp->field);		\
321 }
322 
323 #define spi_transport_store_function(field, format_string)		\
324 static ssize_t								\
325 store_spi_transport_##field(struct device *dev, 			\
326 			    struct device_attribute *attr,		\
327 			    const char *buf, size_t count)		\
328 {									\
329 	int val;							\
330 	struct scsi_target *starget = transport_class_to_starget(dev);	\
331 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);	\
332 	struct spi_internal *i = to_spi_internal(shost->transportt);	\
333 									\
334 	if (!i->f->set_##field)						\
335 		return -EINVAL;						\
336 	val = simple_strtoul(buf, NULL, 0);				\
337 	i->f->set_##field(starget, val);				\
338 	return count;							\
339 }
340 
341 #define spi_transport_store_max(field, format_string)			\
342 static ssize_t								\
343 store_spi_transport_##field(struct device *dev, 			\
344 			    struct device_attribute *attr,		\
345 			    const char *buf, size_t count)		\
346 {									\
347 	int val;							\
348 	struct scsi_target *starget = transport_class_to_starget(dev);	\
349 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);	\
350 	struct spi_internal *i = to_spi_internal(shost->transportt);	\
351 	struct spi_transport_attrs *tp					\
352 		= (struct spi_transport_attrs *)&starget->starget_data;	\
353 									\
354 	if (i->f->set_##field)						\
355 		return -EINVAL;						\
356 	val = simple_strtoul(buf, NULL, 0);				\
357 	if (val > tp->max_##field)					\
358 		val = tp->max_##field;					\
359 	i->f->set_##field(starget, val);				\
360 	return count;							\
361 }
362 
363 #define spi_transport_rd_attr(field, format_string)			\
364 	spi_transport_show_function(field, format_string)		\
365 	spi_transport_store_function(field, format_string)		\
366 static DEVICE_ATTR(field, S_IRUGO,				\
367 		   show_spi_transport_##field,			\
368 		   store_spi_transport_##field);
369 
370 #define spi_transport_simple_attr(field, format_string)			\
371 	spi_transport_show_simple(field, format_string)			\
372 	spi_transport_store_simple(field, format_string)		\
373 static DEVICE_ATTR(field, S_IRUGO,				\
374 		   show_spi_transport_##field,			\
375 		   store_spi_transport_##field);
376 
377 #define spi_transport_max_attr(field, format_string)			\
378 	spi_transport_show_function(field, format_string)		\
379 	spi_transport_store_max(field, format_string)			\
380 	spi_transport_simple_attr(max_##field, format_string)		\
381 static DEVICE_ATTR(field, S_IRUGO,				\
382 		   show_spi_transport_##field,			\
383 		   store_spi_transport_##field);
384 
385 /* The Parallel SCSI Tranport Attributes: */
386 spi_transport_max_attr(offset, "%d\n");
387 spi_transport_max_attr(width, "%d\n");
388 spi_transport_max_attr(iu, "%d\n");
389 spi_transport_rd_attr(dt, "%d\n");
390 spi_transport_max_attr(qas, "%d\n");
391 spi_transport_rd_attr(wr_flow, "%d\n");
392 spi_transport_rd_attr(rd_strm, "%d\n");
393 spi_transport_rd_attr(rti, "%d\n");
394 spi_transport_rd_attr(pcomp_en, "%d\n");
395 spi_transport_rd_attr(hold_mcs, "%d\n");
396 
397 /* we only care about the first child device that's a real SCSI device
398  * so we return 1 to terminate the iteration when we find it */
399 static int child_iter(struct device *dev, void *data)
400 {
401 	if (!scsi_is_sdev_device(dev))
402 		return 0;
403 
404 	spi_dv_device(to_scsi_device(dev));
405 	return 1;
406 }
407 
408 static ssize_t
409 store_spi_revalidate(struct device *dev, struct device_attribute *attr,
410 		     const char *buf, size_t count)
411 {
412 	struct scsi_target *starget = transport_class_to_starget(dev);
413 
414 	device_for_each_child(&starget->dev, NULL, child_iter);
415 	return count;
416 }
417 static DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate);
418 
419 /* Translate the period into ns according to the current spec
420  * for SDTR/PPR messages */
421 static int period_to_str(char *buf, int period)
422 {
423 	int len, picosec;
424 
425 	if (period < 0 || period > 0xff) {
426 		picosec = -1;
427 	} else if (period <= SPI_STATIC_PPR) {
428 		picosec = ppr_to_ps[period];
429 	} else {
430 		picosec = period * 4000;
431 	}
432 
433 	if (picosec == -1) {
434 		len = sprintf(buf, "reserved");
435 	} else {
436 		len = sprint_frac(buf, picosec, 1000);
437 	}
438 
439 	return len;
440 }
441 
442 static ssize_t
443 show_spi_transport_period_helper(char *buf, int period)
444 {
445 	int len = period_to_str(buf, period);
446 	buf[len++] = '\n';
447 	buf[len] = '\0';
448 	return len;
449 }
450 
451 static ssize_t
452 store_spi_transport_period_helper(struct device *dev, const char *buf,
453 				  size_t count, int *periodp)
454 {
455 	int j, picosec, period = -1;
456 	char *endp;
457 
458 	picosec = simple_strtoul(buf, &endp, 10) * 1000;
459 	if (*endp == '.') {
460 		int mult = 100;
461 		do {
462 			endp++;
463 			if (!isdigit(*endp))
464 				break;
465 			picosec += (*endp - '0') * mult;
466 			mult /= 10;
467 		} while (mult > 0);
468 	}
469 
470 	for (j = 0; j <= SPI_STATIC_PPR; j++) {
471 		if (ppr_to_ps[j] < picosec)
472 			continue;
473 		period = j;
474 		break;
475 	}
476 
477 	if (period == -1)
478 		period = picosec / 4000;
479 
480 	if (period > 0xff)
481 		period = 0xff;
482 
483 	*periodp = period;
484 
485 	return count;
486 }
487 
488 static ssize_t
489 show_spi_transport_period(struct device *dev,
490 			  struct device_attribute *attr, char *buf)
491 {
492 	struct scsi_target *starget = transport_class_to_starget(dev);
493 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
494 	struct spi_internal *i = to_spi_internal(shost->transportt);
495 	struct spi_transport_attrs *tp =
496 		(struct spi_transport_attrs *)&starget->starget_data;
497 
498 	if (i->f->get_period)
499 		i->f->get_period(starget);
500 
501 	return show_spi_transport_period_helper(buf, tp->period);
502 }
503 
504 static ssize_t
505 store_spi_transport_period(struct device *cdev, struct device_attribute *attr,
506 			   const char *buf, size_t count)
507 {
508 	struct scsi_target *starget = transport_class_to_starget(cdev);
509 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
510 	struct spi_internal *i = to_spi_internal(shost->transportt);
511 	struct spi_transport_attrs *tp =
512 		(struct spi_transport_attrs *)&starget->starget_data;
513 	int period, retval;
514 
515 	if (!i->f->set_period)
516 		return -EINVAL;
517 
518 	retval = store_spi_transport_period_helper(cdev, buf, count, &period);
519 
520 	if (period < tp->min_period)
521 		period = tp->min_period;
522 
523 	i->f->set_period(starget, period);
524 
525 	return retval;
526 }
527 
528 static DEVICE_ATTR(period, S_IRUGO,
529 		   show_spi_transport_period,
530 		   store_spi_transport_period);
531 
532 static ssize_t
533 show_spi_transport_min_period(struct device *cdev,
534 			      struct device_attribute *attr, char *buf)
535 {
536 	struct scsi_target *starget = transport_class_to_starget(cdev);
537 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
538 	struct spi_internal *i = to_spi_internal(shost->transportt);
539 	struct spi_transport_attrs *tp =
540 		(struct spi_transport_attrs *)&starget->starget_data;
541 
542 	if (!i->f->set_period)
543 		return -EINVAL;
544 
545 	return show_spi_transport_period_helper(buf, tp->min_period);
546 }
547 
548 static ssize_t
549 store_spi_transport_min_period(struct device *cdev,
550 			       struct device_attribute *attr,
551 			       const char *buf, size_t count)
552 {
553 	struct scsi_target *starget = transport_class_to_starget(cdev);
554 	struct spi_transport_attrs *tp =
555 		(struct spi_transport_attrs *)&starget->starget_data;
556 
557 	return store_spi_transport_period_helper(cdev, buf, count,
558 						 &tp->min_period);
559 }
560 
561 
562 static DEVICE_ATTR(min_period, S_IRUGO,
563 		   show_spi_transport_min_period,
564 		   store_spi_transport_min_period);
565 
566 
567 static ssize_t show_spi_host_signalling(struct device *cdev,
568 					struct device_attribute *attr,
569 					char *buf)
570 {
571 	struct Scsi_Host *shost = transport_class_to_shost(cdev);
572 	struct spi_internal *i = to_spi_internal(shost->transportt);
573 
574 	if (i->f->get_signalling)
575 		i->f->get_signalling(shost);
576 
577 	return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost)));
578 }
579 static ssize_t store_spi_host_signalling(struct device *dev,
580 					 struct device_attribute *attr,
581 					 const char *buf, size_t count)
582 {
583 	struct Scsi_Host *shost = transport_class_to_shost(dev);
584 	struct spi_internal *i = to_spi_internal(shost->transportt);
585 	enum spi_signal_type type = spi_signal_to_value(buf);
586 
587 	if (!i->f->set_signalling)
588 		return -EINVAL;
589 
590 	if (type != SPI_SIGNAL_UNKNOWN)
591 		i->f->set_signalling(shost, type);
592 
593 	return count;
594 }
595 static DEVICE_ATTR(signalling, S_IRUGO,
596 		   show_spi_host_signalling,
597 		   store_spi_host_signalling);
598 
599 #define DV_SET(x, y)			\
600 	if(i->f->set_##x)		\
601 		i->f->set_##x(sdev->sdev_target, y)
602 
603 enum spi_compare_returns {
604 	SPI_COMPARE_SUCCESS,
605 	SPI_COMPARE_FAILURE,
606 	SPI_COMPARE_SKIP_TEST,
607 };
608 
609 
610 /* This is for read/write Domain Validation:  If the device supports
611  * an echo buffer, we do read/write tests to it */
612 static enum spi_compare_returns
613 spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer,
614 			  u8 *ptr, const int retries)
615 {
616 	int len = ptr - buffer;
617 	int j, k, r, result;
618 	unsigned int pattern = 0x0000ffff;
619 	struct scsi_sense_hdr sshdr;
620 
621 	const char spi_write_buffer[] = {
622 		WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
623 	};
624 	const char spi_read_buffer[] = {
625 		READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
626 	};
627 
628 	/* set up the pattern buffer.  Doesn't matter if we spill
629 	 * slightly beyond since that's where the read buffer is */
630 	for (j = 0; j < len; ) {
631 
632 		/* fill the buffer with counting (test a) */
633 		for ( ; j < min(len, 32); j++)
634 			buffer[j] = j;
635 		k = j;
636 		/* fill the buffer with alternating words of 0x0 and
637 		 * 0xffff (test b) */
638 		for ( ; j < min(len, k + 32); j += 2) {
639 			u16 *word = (u16 *)&buffer[j];
640 
641 			*word = (j & 0x02) ? 0x0000 : 0xffff;
642 		}
643 		k = j;
644 		/* fill with crosstalk (alternating 0x5555 0xaaa)
645                  * (test c) */
646 		for ( ; j < min(len, k + 32); j += 2) {
647 			u16 *word = (u16 *)&buffer[j];
648 
649 			*word = (j & 0x02) ? 0x5555 : 0xaaaa;
650 		}
651 		k = j;
652 		/* fill with shifting bits (test d) */
653 		for ( ; j < min(len, k + 32); j += 4) {
654 			u32 *word = (unsigned int *)&buffer[j];
655 			u32 roll = (pattern & 0x80000000) ? 1 : 0;
656 
657 			*word = pattern;
658 			pattern = (pattern << 1) | roll;
659 		}
660 		/* don't bother with random data (test e) */
661 	}
662 
663 	for (r = 0; r < retries; r++) {
664 		result = spi_execute(sdev, spi_write_buffer, DMA_TO_DEVICE,
665 				     buffer, len, &sshdr);
666 		if(result || !scsi_device_online(sdev)) {
667 
668 			scsi_device_set_state(sdev, SDEV_QUIESCE);
669 			if (scsi_sense_valid(&sshdr)
670 			    && sshdr.sense_key == ILLEGAL_REQUEST
671 			    /* INVALID FIELD IN CDB */
672 			    && sshdr.asc == 0x24 && sshdr.ascq == 0x00)
673 				/* This would mean that the drive lied
674 				 * to us about supporting an echo
675 				 * buffer (unfortunately some Western
676 				 * Digital drives do precisely this)
677 				 */
678 				return SPI_COMPARE_SKIP_TEST;
679 
680 
681 			sdev_printk(KERN_ERR, sdev, "Write Buffer failure %x\n", result);
682 			return SPI_COMPARE_FAILURE;
683 		}
684 
685 		memset(ptr, 0, len);
686 		spi_execute(sdev, spi_read_buffer, DMA_FROM_DEVICE,
687 			    ptr, len, NULL);
688 		scsi_device_set_state(sdev, SDEV_QUIESCE);
689 
690 		if (memcmp(buffer, ptr, len) != 0)
691 			return SPI_COMPARE_FAILURE;
692 	}
693 	return SPI_COMPARE_SUCCESS;
694 }
695 
696 /* This is for the simplest form of Domain Validation: a read test
697  * on the inquiry data from the device */
698 static enum spi_compare_returns
699 spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer,
700 			      u8 *ptr, const int retries)
701 {
702 	int r, result;
703 	const int len = sdev->inquiry_len;
704 	const char spi_inquiry[] = {
705 		INQUIRY, 0, 0, 0, len, 0
706 	};
707 
708 	for (r = 0; r < retries; r++) {
709 		memset(ptr, 0, len);
710 
711 		result = spi_execute(sdev, spi_inquiry, DMA_FROM_DEVICE,
712 				     ptr, len, NULL);
713 
714 		if(result || !scsi_device_online(sdev)) {
715 			scsi_device_set_state(sdev, SDEV_QUIESCE);
716 			return SPI_COMPARE_FAILURE;
717 		}
718 
719 		/* If we don't have the inquiry data already, the
720 		 * first read gets it */
721 		if (ptr == buffer) {
722 			ptr += len;
723 			--r;
724 			continue;
725 		}
726 
727 		if (memcmp(buffer, ptr, len) != 0)
728 			/* failure */
729 			return SPI_COMPARE_FAILURE;
730 	}
731 	return SPI_COMPARE_SUCCESS;
732 }
733 
734 static enum spi_compare_returns
735 spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr,
736 	       enum spi_compare_returns
737 	       (*compare_fn)(struct scsi_device *, u8 *, u8 *, int))
738 {
739 	struct spi_internal *i = to_spi_internal(sdev->host->transportt);
740 	struct scsi_target *starget = sdev->sdev_target;
741 	int period = 0, prevperiod = 0;
742 	enum spi_compare_returns retval;
743 
744 
745 	for (;;) {
746 		int newperiod;
747 		retval = compare_fn(sdev, buffer, ptr, DV_LOOPS);
748 
749 		if (retval == SPI_COMPARE_SUCCESS
750 		    || retval == SPI_COMPARE_SKIP_TEST)
751 			break;
752 
753 		/* OK, retrain, fallback */
754 		if (i->f->get_iu)
755 			i->f->get_iu(starget);
756 		if (i->f->get_qas)
757 			i->f->get_qas(starget);
758 		if (i->f->get_period)
759 			i->f->get_period(sdev->sdev_target);
760 
761 		/* Here's the fallback sequence; first try turning off
762 		 * IU, then QAS (if we can control them), then finally
763 		 * fall down the periods */
764 		if (i->f->set_iu && spi_iu(starget)) {
765 			starget_printk(KERN_ERR, starget, "Domain Validation Disabing Information Units\n");
766 			DV_SET(iu, 0);
767 		} else if (i->f->set_qas && spi_qas(starget)) {
768 			starget_printk(KERN_ERR, starget, "Domain Validation Disabing Quick Arbitration and Selection\n");
769 			DV_SET(qas, 0);
770 		} else {
771 			newperiod = spi_period(starget);
772 			period = newperiod > period ? newperiod : period;
773 			if (period < 0x0d)
774 				period++;
775 			else
776 				period += period >> 1;
777 
778 			if (unlikely(period > 0xff || period == prevperiod)) {
779 				/* Total failure; set to async and return */
780 				starget_printk(KERN_ERR, starget, "Domain Validation Failure, dropping back to Asynchronous\n");
781 				DV_SET(offset, 0);
782 				return SPI_COMPARE_FAILURE;
783 			}
784 			starget_printk(KERN_ERR, starget, "Domain Validation detected failure, dropping back\n");
785 			DV_SET(period, period);
786 			prevperiod = period;
787 		}
788 	}
789 	return retval;
790 }
791 
792 static int
793 spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer)
794 {
795 	int l, result;
796 
797 	/* first off do a test unit ready.  This can error out
798 	 * because of reservations or some other reason.  If it
799 	 * fails, the device won't let us write to the echo buffer
800 	 * so just return failure */
801 
802 	const char spi_test_unit_ready[] = {
803 		TEST_UNIT_READY, 0, 0, 0, 0, 0
804 	};
805 
806 	const char spi_read_buffer_descriptor[] = {
807 		READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0
808 	};
809 
810 
811 	/* We send a set of three TURs to clear any outstanding
812 	 * unit attention conditions if they exist (Otherwise the
813 	 * buffer tests won't be happy).  If the TUR still fails
814 	 * (reservation conflict, device not ready, etc) just
815 	 * skip the write tests */
816 	for (l = 0; ; l++) {
817 		result = spi_execute(sdev, spi_test_unit_ready, DMA_NONE,
818 				     NULL, 0, NULL);
819 
820 		if(result) {
821 			if(l >= 3)
822 				return 0;
823 		} else {
824 			/* TUR succeeded */
825 			break;
826 		}
827 	}
828 
829 	result = spi_execute(sdev, spi_read_buffer_descriptor,
830 			     DMA_FROM_DEVICE, buffer, 4, NULL);
831 
832 	if (result)
833 		/* Device has no echo buffer */
834 		return 0;
835 
836 	return buffer[3] + ((buffer[2] & 0x1f) << 8);
837 }
838 
839 static void
840 spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer)
841 {
842 	struct spi_internal *i = to_spi_internal(sdev->host->transportt);
843 	struct scsi_target *starget = sdev->sdev_target;
844 	struct Scsi_Host *shost = sdev->host;
845 	int len = sdev->inquiry_len;
846 	int min_period = spi_min_period(starget);
847 	int max_width = spi_max_width(starget);
848 	/* first set us up for narrow async */
849 	DV_SET(offset, 0);
850 	DV_SET(width, 0);
851 
852 	if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS)
853 	    != SPI_COMPARE_SUCCESS) {
854 		starget_printk(KERN_ERR, starget, "Domain Validation Initial Inquiry Failed\n");
855 		/* FIXME: should probably offline the device here? */
856 		return;
857 	}
858 
859 	if (!spi_support_wide(starget)) {
860 		spi_max_width(starget) = 0;
861 		max_width = 0;
862 	}
863 
864 	/* test width */
865 	if (i->f->set_width && max_width) {
866 		i->f->set_width(starget, 1);
867 
868 		if (spi_dv_device_compare_inquiry(sdev, buffer,
869 						   buffer + len,
870 						   DV_LOOPS)
871 		    != SPI_COMPARE_SUCCESS) {
872 			starget_printk(KERN_ERR, starget, "Wide Transfers Fail\n");
873 			i->f->set_width(starget, 0);
874 			/* Make sure we don't force wide back on by asking
875 			 * for a transfer period that requires it */
876 			max_width = 0;
877 			if (min_period < 10)
878 				min_period = 10;
879 		}
880 	}
881 
882 	if (!i->f->set_period)
883 		return;
884 
885 	/* device can't handle synchronous */
886 	if (!spi_support_sync(starget) && !spi_support_dt(starget))
887 		return;
888 
889 	/* len == -1 is the signal that we need to ascertain the
890 	 * presence of an echo buffer before trying to use it.  len ==
891 	 * 0 means we don't have an echo buffer */
892 	len = -1;
893 
894  retry:
895 
896 	/* now set up to the maximum */
897 	DV_SET(offset, spi_max_offset(starget));
898 	DV_SET(period, min_period);
899 
900 	/* try QAS requests; this should be harmless to set if the
901 	 * target supports it */
902 	if (spi_support_qas(starget) && spi_max_qas(starget)) {
903 		DV_SET(qas, 1);
904 	} else {
905 		DV_SET(qas, 0);
906 	}
907 
908 	if (spi_support_ius(starget) && spi_max_iu(starget) &&
909 	    min_period < 9) {
910 		/* This u320 (or u640). Set IU transfers */
911 		DV_SET(iu, 1);
912 		/* Then set the optional parameters */
913 		DV_SET(rd_strm, 1);
914 		DV_SET(wr_flow, 1);
915 		DV_SET(rti, 1);
916 		if (min_period == 8)
917 			DV_SET(pcomp_en, 1);
918 	} else {
919 		DV_SET(iu, 0);
920 	}
921 
922 	/* now that we've done all this, actually check the bus
923 	 * signal type (if known).  Some devices are stupid on
924 	 * a SE bus and still claim they can try LVD only settings */
925 	if (i->f->get_signalling)
926 		i->f->get_signalling(shost);
927 	if (spi_signalling(shost) == SPI_SIGNAL_SE ||
928 	    spi_signalling(shost) == SPI_SIGNAL_HVD ||
929 	    !spi_support_dt(starget)) {
930 		DV_SET(dt, 0);
931 	} else {
932 		DV_SET(dt, 1);
933 	}
934 	/* set width last because it will pull all the other
935 	 * parameters down to required values */
936 	DV_SET(width, max_width);
937 
938 	/* Do the read only INQUIRY tests */
939 	spi_dv_retrain(sdev, buffer, buffer + sdev->inquiry_len,
940 		       spi_dv_device_compare_inquiry);
941 	/* See if we actually managed to negotiate and sustain DT */
942 	if (i->f->get_dt)
943 		i->f->get_dt(starget);
944 
945 	/* see if the device has an echo buffer.  If it does we can do
946 	 * the SPI pattern write tests.  Because of some broken
947 	 * devices, we *only* try this on a device that has actually
948 	 * negotiated DT */
949 
950 	if (len == -1 && spi_dt(starget))
951 		len = spi_dv_device_get_echo_buffer(sdev, buffer);
952 
953 	if (len <= 0) {
954 		starget_printk(KERN_INFO, starget, "Domain Validation skipping write tests\n");
955 		return;
956 	}
957 
958 	if (len > SPI_MAX_ECHO_BUFFER_SIZE) {
959 		starget_printk(KERN_WARNING, starget, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE);
960 		len = SPI_MAX_ECHO_BUFFER_SIZE;
961 	}
962 
963 	if (spi_dv_retrain(sdev, buffer, buffer + len,
964 			   spi_dv_device_echo_buffer)
965 	    == SPI_COMPARE_SKIP_TEST) {
966 		/* OK, the stupid drive can't do a write echo buffer
967 		 * test after all, fall back to the read tests */
968 		len = 0;
969 		goto retry;
970 	}
971 }
972 
973 
974 /**	spi_dv_device - Do Domain Validation on the device
975  *	@sdev:		scsi device to validate
976  *
977  *	Performs the domain validation on the given device in the
978  *	current execution thread.  Since DV operations may sleep,
979  *	the current thread must have user context.  Also no SCSI
980  *	related locks that would deadlock I/O issued by the DV may
981  *	be held.
982  */
983 void
984 spi_dv_device(struct scsi_device *sdev)
985 {
986 	struct scsi_target *starget = sdev->sdev_target;
987 	u8 *buffer;
988 	const int len = SPI_MAX_ECHO_BUFFER_SIZE*2;
989 
990 	if (unlikely(scsi_device_get(sdev)))
991 		return;
992 
993 	if (unlikely(spi_dv_in_progress(starget)))
994 		return;
995 	spi_dv_in_progress(starget) = 1;
996 
997 	buffer = kzalloc(len, GFP_KERNEL);
998 
999 	if (unlikely(!buffer))
1000 		goto out_put;
1001 
1002 	/* We need to verify that the actual device will quiesce; the
1003 	 * later target quiesce is just a nice to have */
1004 	if (unlikely(scsi_device_quiesce(sdev)))
1005 		goto out_free;
1006 
1007 	scsi_target_quiesce(starget);
1008 
1009 	spi_dv_pending(starget) = 1;
1010 	mutex_lock(&spi_dv_mutex(starget));
1011 
1012 	starget_printk(KERN_INFO, starget, "Beginning Domain Validation\n");
1013 
1014 	spi_dv_device_internal(sdev, buffer);
1015 
1016 	starget_printk(KERN_INFO, starget, "Ending Domain Validation\n");
1017 
1018 	mutex_unlock(&spi_dv_mutex(starget));
1019 	spi_dv_pending(starget) = 0;
1020 
1021 	scsi_target_resume(starget);
1022 
1023 	spi_initial_dv(starget) = 1;
1024 
1025  out_free:
1026 	kfree(buffer);
1027  out_put:
1028 	spi_dv_in_progress(starget) = 0;
1029 	scsi_device_put(sdev);
1030 }
1031 EXPORT_SYMBOL(spi_dv_device);
1032 
1033 struct work_queue_wrapper {
1034 	struct work_struct	work;
1035 	struct scsi_device	*sdev;
1036 };
1037 
1038 static void
1039 spi_dv_device_work_wrapper(struct work_struct *work)
1040 {
1041 	struct work_queue_wrapper *wqw =
1042 		container_of(work, struct work_queue_wrapper, work);
1043 	struct scsi_device *sdev = wqw->sdev;
1044 
1045 	kfree(wqw);
1046 	spi_dv_device(sdev);
1047 	spi_dv_pending(sdev->sdev_target) = 0;
1048 	scsi_device_put(sdev);
1049 }
1050 
1051 
1052 /**
1053  *	spi_schedule_dv_device - schedule domain validation to occur on the device
1054  *	@sdev:	The device to validate
1055  *
1056  *	Identical to spi_dv_device() above, except that the DV will be
1057  *	scheduled to occur in a workqueue later.  All memory allocations
1058  *	are atomic, so may be called from any context including those holding
1059  *	SCSI locks.
1060  */
1061 void
1062 spi_schedule_dv_device(struct scsi_device *sdev)
1063 {
1064 	struct work_queue_wrapper *wqw =
1065 		kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC);
1066 
1067 	if (unlikely(!wqw))
1068 		return;
1069 
1070 	if (unlikely(spi_dv_pending(sdev->sdev_target))) {
1071 		kfree(wqw);
1072 		return;
1073 	}
1074 	/* Set pending early (dv_device doesn't check it, only sets it) */
1075 	spi_dv_pending(sdev->sdev_target) = 1;
1076 	if (unlikely(scsi_device_get(sdev))) {
1077 		kfree(wqw);
1078 		spi_dv_pending(sdev->sdev_target) = 0;
1079 		return;
1080 	}
1081 
1082 	INIT_WORK(&wqw->work, spi_dv_device_work_wrapper);
1083 	wqw->sdev = sdev;
1084 
1085 	schedule_work(&wqw->work);
1086 }
1087 EXPORT_SYMBOL(spi_schedule_dv_device);
1088 
1089 /**
1090  * spi_display_xfer_agreement - Print the current target transfer agreement
1091  * @starget: The target for which to display the agreement
1092  *
1093  * Each SPI port is required to maintain a transfer agreement for each
1094  * other port on the bus.  This function prints a one-line summary of
1095  * the current agreement; more detailed information is available in sysfs.
1096  */
1097 void spi_display_xfer_agreement(struct scsi_target *starget)
1098 {
1099 	struct spi_transport_attrs *tp;
1100 	tp = (struct spi_transport_attrs *)&starget->starget_data;
1101 
1102 	if (tp->offset > 0 && tp->period > 0) {
1103 		unsigned int picosec, kb100;
1104 		char *scsi = "FAST-?";
1105 		char tmp[8];
1106 
1107 		if (tp->period <= SPI_STATIC_PPR) {
1108 			picosec = ppr_to_ps[tp->period];
1109 			switch (tp->period) {
1110 				case  7: scsi = "FAST-320"; break;
1111 				case  8: scsi = "FAST-160"; break;
1112 				case  9: scsi = "FAST-80"; break;
1113 				case 10:
1114 				case 11: scsi = "FAST-40"; break;
1115 				case 12: scsi = "FAST-20"; break;
1116 			}
1117 		} else {
1118 			picosec = tp->period * 4000;
1119 			if (tp->period < 25)
1120 				scsi = "FAST-20";
1121 			else if (tp->period < 50)
1122 				scsi = "FAST-10";
1123 			else
1124 				scsi = "FAST-5";
1125 		}
1126 
1127 		kb100 = (10000000 + picosec / 2) / picosec;
1128 		if (tp->width)
1129 			kb100 *= 2;
1130 		sprint_frac(tmp, picosec, 1000);
1131 
1132 		dev_info(&starget->dev,
1133 			 "%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n",
1134 			 scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10,
1135 			 tp->dt ? "DT" : "ST",
1136 			 tp->iu ? " IU" : "",
1137 			 tp->qas  ? " QAS" : "",
1138 			 tp->rd_strm ? " RDSTRM" : "",
1139 			 tp->rti ? " RTI" : "",
1140 			 tp->wr_flow ? " WRFLOW" : "",
1141 			 tp->pcomp_en ? " PCOMP" : "",
1142 			 tp->hold_mcs ? " HMCS" : "",
1143 			 tmp, tp->offset);
1144 	} else {
1145 		dev_info(&starget->dev, "%sasynchronous\n",
1146 				tp->width ? "wide " : "");
1147 	}
1148 }
1149 EXPORT_SYMBOL(spi_display_xfer_agreement);
1150 
1151 int spi_populate_width_msg(unsigned char *msg, int width)
1152 {
1153 	msg[0] = EXTENDED_MESSAGE;
1154 	msg[1] = 2;
1155 	msg[2] = EXTENDED_WDTR;
1156 	msg[3] = width;
1157 	return 4;
1158 }
1159 EXPORT_SYMBOL_GPL(spi_populate_width_msg);
1160 
1161 int spi_populate_sync_msg(unsigned char *msg, int period, int offset)
1162 {
1163 	msg[0] = EXTENDED_MESSAGE;
1164 	msg[1] = 3;
1165 	msg[2] = EXTENDED_SDTR;
1166 	msg[3] = period;
1167 	msg[4] = offset;
1168 	return 5;
1169 }
1170 EXPORT_SYMBOL_GPL(spi_populate_sync_msg);
1171 
1172 int spi_populate_ppr_msg(unsigned char *msg, int period, int offset,
1173 		int width, int options)
1174 {
1175 	msg[0] = EXTENDED_MESSAGE;
1176 	msg[1] = 6;
1177 	msg[2] = EXTENDED_PPR;
1178 	msg[3] = period;
1179 	msg[4] = 0;
1180 	msg[5] = offset;
1181 	msg[6] = width;
1182 	msg[7] = options;
1183 	return 8;
1184 }
1185 EXPORT_SYMBOL_GPL(spi_populate_ppr_msg);
1186 
1187 #ifdef CONFIG_SCSI_CONSTANTS
1188 static const char * const one_byte_msgs[] = {
1189 /* 0x00 */ "Task Complete", NULL /* Extended Message */, "Save Pointers",
1190 /* 0x03 */ "Restore Pointers", "Disconnect", "Initiator Error",
1191 /* 0x06 */ "Abort Task Set", "Message Reject", "Nop", "Message Parity Error",
1192 /* 0x0a */ "Linked Command Complete", "Linked Command Complete w/flag",
1193 /* 0x0c */ "Target Reset", "Abort Task", "Clear Task Set",
1194 /* 0x0f */ "Initiate Recovery", "Release Recovery",
1195 /* 0x11 */ "Terminate Process", "Continue Task", "Target Transfer Disable",
1196 /* 0x14 */ NULL, NULL, "Clear ACA", "LUN Reset"
1197 };
1198 
1199 static const char * const two_byte_msgs[] = {
1200 /* 0x20 */ "Simple Queue Tag", "Head of Queue Tag", "Ordered Queue Tag",
1201 /* 0x23 */ "Ignore Wide Residue", "ACA"
1202 };
1203 
1204 static const char * const extended_msgs[] = {
1205 /* 0x00 */ "Modify Data Pointer", "Synchronous Data Transfer Request",
1206 /* 0x02 */ "SCSI-I Extended Identify", "Wide Data Transfer Request",
1207 /* 0x04 */ "Parallel Protocol Request", "Modify Bidirectional Data Pointer"
1208 };
1209 
1210 static void print_nego(const unsigned char *msg, int per, int off, int width)
1211 {
1212 	if (per) {
1213 		char buf[20];
1214 		period_to_str(buf, msg[per]);
1215 		printk("period = %s ns ", buf);
1216 	}
1217 
1218 	if (off)
1219 		printk("offset = %d ", msg[off]);
1220 	if (width)
1221 		printk("width = %d ", 8 << msg[width]);
1222 }
1223 
1224 static void print_ptr(const unsigned char *msg, int msb, const char *desc)
1225 {
1226 	int ptr = (msg[msb] << 24) | (msg[msb+1] << 16) | (msg[msb+2] << 8) |
1227 			msg[msb+3];
1228 	printk("%s = %d ", desc, ptr);
1229 }
1230 
1231 int spi_print_msg(const unsigned char *msg)
1232 {
1233 	int len = 1, i;
1234 	if (msg[0] == EXTENDED_MESSAGE) {
1235 		len = 2 + msg[1];
1236 		if (len == 2)
1237 			len += 256;
1238 		if (msg[2] < ARRAY_SIZE(extended_msgs))
1239 			printk ("%s ", extended_msgs[msg[2]]);
1240 		else
1241 			printk ("Extended Message, reserved code (0x%02x) ",
1242 				(int) msg[2]);
1243 		switch (msg[2]) {
1244 		case EXTENDED_MODIFY_DATA_POINTER:
1245 			print_ptr(msg, 3, "pointer");
1246 			break;
1247 		case EXTENDED_SDTR:
1248 			print_nego(msg, 3, 4, 0);
1249 			break;
1250 		case EXTENDED_WDTR:
1251 			print_nego(msg, 0, 0, 3);
1252 			break;
1253 		case EXTENDED_PPR:
1254 			print_nego(msg, 3, 5, 6);
1255 			break;
1256 		case EXTENDED_MODIFY_BIDI_DATA_PTR:
1257 			print_ptr(msg, 3, "out");
1258 			print_ptr(msg, 7, "in");
1259 			break;
1260 		default:
1261 		for (i = 2; i < len; ++i)
1262 			printk("%02x ", msg[i]);
1263 		}
1264 	/* Identify */
1265 	} else if (msg[0] & 0x80) {
1266 		printk("Identify disconnect %sallowed %s %d ",
1267 			(msg[0] & 0x40) ? "" : "not ",
1268 			(msg[0] & 0x20) ? "target routine" : "lun",
1269 			msg[0] & 0x7);
1270 	/* Normal One byte */
1271 	} else if (msg[0] < 0x1f) {
1272 		if (msg[0] < ARRAY_SIZE(one_byte_msgs) && one_byte_msgs[msg[0]])
1273 			printk("%s ", one_byte_msgs[msg[0]]);
1274 		else
1275 			printk("reserved (%02x) ", msg[0]);
1276 	} else if (msg[0] == 0x55) {
1277 		printk("QAS Request ");
1278 	/* Two byte */
1279 	} else if (msg[0] <= 0x2f) {
1280 		if ((msg[0] - 0x20) < ARRAY_SIZE(two_byte_msgs))
1281 			printk("%s %02x ", two_byte_msgs[msg[0] - 0x20],
1282 				msg[1]);
1283 		else
1284 			printk("reserved two byte (%02x %02x) ",
1285 				msg[0], msg[1]);
1286 		len = 2;
1287 	} else
1288 		printk("reserved ");
1289 	return len;
1290 }
1291 EXPORT_SYMBOL(spi_print_msg);
1292 
1293 #else  /* ifndef CONFIG_SCSI_CONSTANTS */
1294 
1295 int spi_print_msg(const unsigned char *msg)
1296 {
1297 	int len = 1, i;
1298 
1299 	if (msg[0] == EXTENDED_MESSAGE) {
1300 		len = 2 + msg[1];
1301 		if (len == 2)
1302 			len += 256;
1303 		for (i = 0; i < len; ++i)
1304 			printk("%02x ", msg[i]);
1305 	/* Identify */
1306 	} else if (msg[0] & 0x80) {
1307 		printk("%02x ", msg[0]);
1308 	/* Normal One byte */
1309 	} else if ((msg[0] < 0x1f) || (msg[0] == 0x55)) {
1310 		printk("%02x ", msg[0]);
1311 	/* Two byte */
1312 	} else if (msg[0] <= 0x2f) {
1313 		printk("%02x %02x", msg[0], msg[1]);
1314 		len = 2;
1315 	} else
1316 		printk("%02x ", msg[0]);
1317 	return len;
1318 }
1319 EXPORT_SYMBOL(spi_print_msg);
1320 #endif /* ! CONFIG_SCSI_CONSTANTS */
1321 
1322 static int spi_device_match(struct attribute_container *cont,
1323 			    struct device *dev)
1324 {
1325 	struct scsi_device *sdev;
1326 	struct Scsi_Host *shost;
1327 	struct spi_internal *i;
1328 
1329 	if (!scsi_is_sdev_device(dev))
1330 		return 0;
1331 
1332 	sdev = to_scsi_device(dev);
1333 	shost = sdev->host;
1334 	if (!shost->transportt  || shost->transportt->host_attrs.ac.class
1335 	    != &spi_host_class.class)
1336 		return 0;
1337 	/* Note: this class has no device attributes, so it has
1338 	 * no per-HBA allocation and thus we don't need to distinguish
1339 	 * the attribute containers for the device */
1340 	i = to_spi_internal(shost->transportt);
1341 	if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target))
1342 		return 0;
1343 	return 1;
1344 }
1345 
1346 static int spi_target_match(struct attribute_container *cont,
1347 			    struct device *dev)
1348 {
1349 	struct Scsi_Host *shost;
1350 	struct scsi_target *starget;
1351 	struct spi_internal *i;
1352 
1353 	if (!scsi_is_target_device(dev))
1354 		return 0;
1355 
1356 	shost = dev_to_shost(dev->parent);
1357 	if (!shost->transportt  || shost->transportt->host_attrs.ac.class
1358 	    != &spi_host_class.class)
1359 		return 0;
1360 
1361 	i = to_spi_internal(shost->transportt);
1362 	starget = to_scsi_target(dev);
1363 
1364 	if (i->f->deny_binding && i->f->deny_binding(starget))
1365 		return 0;
1366 
1367 	return &i->t.target_attrs.ac == cont;
1368 }
1369 
1370 static DECLARE_TRANSPORT_CLASS(spi_transport_class,
1371 			       "spi_transport",
1372 			       spi_setup_transport_attrs,
1373 			       NULL,
1374 			       spi_target_configure);
1375 
1376 static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class,
1377 				    spi_device_match,
1378 				    spi_device_configure);
1379 
1380 static struct attribute *host_attributes[] = {
1381 	&dev_attr_signalling.attr,
1382 	NULL
1383 };
1384 
1385 static struct attribute_group host_attribute_group = {
1386 	.attrs = host_attributes,
1387 };
1388 
1389 static int spi_host_configure(struct transport_container *tc,
1390 			      struct device *dev,
1391 			      struct device *cdev)
1392 {
1393 	struct kobject *kobj = &cdev->kobj;
1394 	struct Scsi_Host *shost = transport_class_to_shost(cdev);
1395 	struct spi_internal *si = to_spi_internal(shost->transportt);
1396 	struct attribute *attr = &dev_attr_signalling.attr;
1397 	int rc = 0;
1398 
1399 	if (si->f->set_signalling)
1400 		rc = sysfs_chmod_file(kobj, attr, attr->mode | S_IWUSR);
1401 
1402 	return rc;
1403 }
1404 
1405 /* returns true if we should be showing the variable.  Also
1406  * overloads the return by setting 1<<1 if the attribute should
1407  * be writeable */
1408 #define TARGET_ATTRIBUTE_HELPER(name) \
1409 	(si->f->show_##name ? S_IRUGO : 0) | \
1410 	(si->f->set_##name ? S_IWUSR : 0)
1411 
1412 static mode_t target_attribute_is_visible(struct kobject *kobj,
1413 					  struct attribute *attr, int i)
1414 {
1415 	struct device *cdev = container_of(kobj, struct device, kobj);
1416 	struct scsi_target *starget = transport_class_to_starget(cdev);
1417 	struct Scsi_Host *shost = transport_class_to_shost(cdev);
1418 	struct spi_internal *si = to_spi_internal(shost->transportt);
1419 
1420 	if (attr == &dev_attr_period.attr &&
1421 	    spi_support_sync(starget))
1422 		return TARGET_ATTRIBUTE_HELPER(period);
1423 	else if (attr == &dev_attr_min_period.attr &&
1424 		 spi_support_sync(starget))
1425 		return TARGET_ATTRIBUTE_HELPER(period);
1426 	else if (attr == &dev_attr_offset.attr &&
1427 		 spi_support_sync(starget))
1428 		return TARGET_ATTRIBUTE_HELPER(offset);
1429 	else if (attr == &dev_attr_max_offset.attr &&
1430 		 spi_support_sync(starget))
1431 		return TARGET_ATTRIBUTE_HELPER(offset);
1432 	else if (attr == &dev_attr_width.attr &&
1433 		 spi_support_wide(starget))
1434 		return TARGET_ATTRIBUTE_HELPER(width);
1435 	else if (attr == &dev_attr_max_width.attr &&
1436 		 spi_support_wide(starget))
1437 		return TARGET_ATTRIBUTE_HELPER(width);
1438 	else if (attr == &dev_attr_iu.attr &&
1439 		 spi_support_ius(starget))
1440 		return TARGET_ATTRIBUTE_HELPER(iu);
1441 	else if (attr == &dev_attr_max_iu.attr &&
1442 		 spi_support_ius(starget))
1443 		return TARGET_ATTRIBUTE_HELPER(iu);
1444 	else if (attr == &dev_attr_dt.attr &&
1445 		 spi_support_dt(starget))
1446 		return TARGET_ATTRIBUTE_HELPER(dt);
1447 	else if (attr == &dev_attr_qas.attr &&
1448 		 spi_support_qas(starget))
1449 		return TARGET_ATTRIBUTE_HELPER(qas);
1450 	else if (attr == &dev_attr_max_qas.attr &&
1451 		 spi_support_qas(starget))
1452 		return TARGET_ATTRIBUTE_HELPER(qas);
1453 	else if (attr == &dev_attr_wr_flow.attr &&
1454 		 spi_support_ius(starget))
1455 		return TARGET_ATTRIBUTE_HELPER(wr_flow);
1456 	else if (attr == &dev_attr_rd_strm.attr &&
1457 		 spi_support_ius(starget))
1458 		return TARGET_ATTRIBUTE_HELPER(rd_strm);
1459 	else if (attr == &dev_attr_rti.attr &&
1460 		 spi_support_ius(starget))
1461 		return TARGET_ATTRIBUTE_HELPER(rti);
1462 	else if (attr == &dev_attr_pcomp_en.attr &&
1463 		 spi_support_ius(starget))
1464 		return TARGET_ATTRIBUTE_HELPER(pcomp_en);
1465 	else if (attr == &dev_attr_hold_mcs.attr &&
1466 		 spi_support_ius(starget))
1467 		return TARGET_ATTRIBUTE_HELPER(hold_mcs);
1468 	else if (attr == &dev_attr_revalidate.attr)
1469 		return S_IWUSR;
1470 
1471 	return 0;
1472 }
1473 
1474 static struct attribute *target_attributes[] = {
1475 	&dev_attr_period.attr,
1476 	&dev_attr_min_period.attr,
1477 	&dev_attr_offset.attr,
1478 	&dev_attr_max_offset.attr,
1479 	&dev_attr_width.attr,
1480 	&dev_attr_max_width.attr,
1481 	&dev_attr_iu.attr,
1482 	&dev_attr_max_iu.attr,
1483 	&dev_attr_dt.attr,
1484 	&dev_attr_qas.attr,
1485 	&dev_attr_max_qas.attr,
1486 	&dev_attr_wr_flow.attr,
1487 	&dev_attr_rd_strm.attr,
1488 	&dev_attr_rti.attr,
1489 	&dev_attr_pcomp_en.attr,
1490 	&dev_attr_hold_mcs.attr,
1491 	&dev_attr_revalidate.attr,
1492 	NULL
1493 };
1494 
1495 static struct attribute_group target_attribute_group = {
1496 	.attrs = target_attributes,
1497 	.is_visible = target_attribute_is_visible,
1498 };
1499 
1500 static int spi_target_configure(struct transport_container *tc,
1501 				struct device *dev,
1502 				struct device *cdev)
1503 {
1504 	struct kobject *kobj = &cdev->kobj;
1505 
1506 	/* force an update based on parameters read from the device */
1507 	sysfs_update_group(kobj, &target_attribute_group);
1508 
1509 	return 0;
1510 }
1511 
1512 struct scsi_transport_template *
1513 spi_attach_transport(struct spi_function_template *ft)
1514 {
1515 	struct spi_internal *i = kzalloc(sizeof(struct spi_internal),
1516 					 GFP_KERNEL);
1517 
1518 	if (unlikely(!i))
1519 		return NULL;
1520 
1521 	i->t.target_attrs.ac.class = &spi_transport_class.class;
1522 	i->t.target_attrs.ac.grp = &target_attribute_group;
1523 	i->t.target_attrs.ac.match = spi_target_match;
1524 	transport_container_register(&i->t.target_attrs);
1525 	i->t.target_size = sizeof(struct spi_transport_attrs);
1526 	i->t.host_attrs.ac.class = &spi_host_class.class;
1527 	i->t.host_attrs.ac.grp = &host_attribute_group;
1528 	i->t.host_attrs.ac.match = spi_host_match;
1529 	transport_container_register(&i->t.host_attrs);
1530 	i->t.host_size = sizeof(struct spi_host_attrs);
1531 	i->f = ft;
1532 
1533 	return &i->t;
1534 }
1535 EXPORT_SYMBOL(spi_attach_transport);
1536 
1537 void spi_release_transport(struct scsi_transport_template *t)
1538 {
1539 	struct spi_internal *i = to_spi_internal(t);
1540 
1541 	transport_container_unregister(&i->t.target_attrs);
1542 	transport_container_unregister(&i->t.host_attrs);
1543 
1544 	kfree(i);
1545 }
1546 EXPORT_SYMBOL(spi_release_transport);
1547 
1548 static __init int spi_transport_init(void)
1549 {
1550 	int error = scsi_dev_info_add_list(SCSI_DEVINFO_SPI,
1551 					   "SCSI Parallel Transport Class");
1552 	if (!error) {
1553 		int i;
1554 
1555 		for (i = 0; spi_static_device_list[i].vendor; i++)
1556 			scsi_dev_info_list_add_keyed(1,	/* compatible */
1557 						     spi_static_device_list[i].vendor,
1558 						     spi_static_device_list[i].model,
1559 						     NULL,
1560 						     spi_static_device_list[i].flags,
1561 						     SCSI_DEVINFO_SPI);
1562 	}
1563 
1564 	error = transport_class_register(&spi_transport_class);
1565 	if (error)
1566 		return error;
1567 	error = anon_transport_class_register(&spi_device_class);
1568 	return transport_class_register(&spi_host_class);
1569 }
1570 
1571 static void __exit spi_transport_exit(void)
1572 {
1573 	transport_class_unregister(&spi_transport_class);
1574 	anon_transport_class_unregister(&spi_device_class);
1575 	transport_class_unregister(&spi_host_class);
1576 	scsi_dev_info_remove_list(SCSI_DEVINFO_SPI);
1577 }
1578 
1579 MODULE_AUTHOR("Martin Hicks");
1580 MODULE_DESCRIPTION("SPI Transport Attributes");
1581 MODULE_LICENSE("GPL");
1582 
1583 module_init(spi_transport_init);
1584 module_exit(spi_transport_exit);
1585