1 /* 2 * Parallel SCSI (SPI) transport specific attributes exported to sysfs. 3 * 4 * Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved. 5 * Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 #include <linux/ctype.h> 22 #include <linux/init.h> 23 #include <linux/module.h> 24 #include <linux/workqueue.h> 25 #include <linux/blkdev.h> 26 #include <linux/mutex.h> 27 #include <linux/sysfs.h> 28 #include <scsi/scsi.h> 29 #include "scsi_priv.h" 30 #include <scsi/scsi_device.h> 31 #include <scsi/scsi_host.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_transport.h> 35 #include <scsi/scsi_transport_spi.h> 36 37 #define SPI_NUM_ATTRS 14 /* increase this if you add attributes */ 38 #define SPI_OTHER_ATTRS 1 /* Increase this if you add "always 39 * on" attributes */ 40 #define SPI_HOST_ATTRS 1 41 42 #define SPI_MAX_ECHO_BUFFER_SIZE 4096 43 44 #define DV_LOOPS 3 45 #define DV_TIMEOUT (10*HZ) 46 #define DV_RETRIES 3 /* should only need at most 47 * two cc/ua clears */ 48 49 /* Private data accessors (keep these out of the header file) */ 50 #define spi_dv_in_progress(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_in_progress) 51 #define spi_dv_mutex(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_mutex) 52 53 struct spi_internal { 54 struct scsi_transport_template t; 55 struct spi_function_template *f; 56 }; 57 58 #define to_spi_internal(tmpl) container_of(tmpl, struct spi_internal, t) 59 60 static const int ppr_to_ps[] = { 61 /* The PPR values 0-6 are reserved, fill them in when 62 * the committee defines them */ 63 -1, /* 0x00 */ 64 -1, /* 0x01 */ 65 -1, /* 0x02 */ 66 -1, /* 0x03 */ 67 -1, /* 0x04 */ 68 -1, /* 0x05 */ 69 -1, /* 0x06 */ 70 3125, /* 0x07 */ 71 6250, /* 0x08 */ 72 12500, /* 0x09 */ 73 25000, /* 0x0a */ 74 30300, /* 0x0b */ 75 50000, /* 0x0c */ 76 }; 77 /* The PPR values at which you calculate the period in ns by multiplying 78 * by 4 */ 79 #define SPI_STATIC_PPR 0x0c 80 81 static int sprint_frac(char *dest, int value, int denom) 82 { 83 int frac = value % denom; 84 int result = sprintf(dest, "%d", value / denom); 85 86 if (frac == 0) 87 return result; 88 dest[result++] = '.'; 89 90 do { 91 denom /= 10; 92 sprintf(dest + result, "%d", frac / denom); 93 result++; 94 frac %= denom; 95 } while (frac); 96 97 dest[result++] = '\0'; 98 return result; 99 } 100 101 static int spi_execute(struct scsi_device *sdev, const void *cmd, 102 enum dma_data_direction dir, 103 void *buffer, unsigned bufflen, 104 struct scsi_sense_hdr *sshdr) 105 { 106 int i, result; 107 unsigned char sense[SCSI_SENSE_BUFFERSIZE]; 108 109 for(i = 0; i < DV_RETRIES; i++) { 110 result = scsi_execute(sdev, cmd, dir, buffer, bufflen, 111 sense, DV_TIMEOUT, /* retries */ 1, 112 REQ_FAILFAST_DEV | 113 REQ_FAILFAST_TRANSPORT | 114 REQ_FAILFAST_DRIVER, 115 NULL); 116 if (driver_byte(result) & DRIVER_SENSE) { 117 struct scsi_sense_hdr sshdr_tmp; 118 if (!sshdr) 119 sshdr = &sshdr_tmp; 120 121 if (scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, 122 sshdr) 123 && sshdr->sense_key == UNIT_ATTENTION) 124 continue; 125 } 126 break; 127 } 128 return result; 129 } 130 131 static struct { 132 enum spi_signal_type value; 133 char *name; 134 } signal_types[] = { 135 { SPI_SIGNAL_UNKNOWN, "unknown" }, 136 { SPI_SIGNAL_SE, "SE" }, 137 { SPI_SIGNAL_LVD, "LVD" }, 138 { SPI_SIGNAL_HVD, "HVD" }, 139 }; 140 141 static inline const char *spi_signal_to_string(enum spi_signal_type type) 142 { 143 int i; 144 145 for (i = 0; i < ARRAY_SIZE(signal_types); i++) { 146 if (type == signal_types[i].value) 147 return signal_types[i].name; 148 } 149 return NULL; 150 } 151 static inline enum spi_signal_type spi_signal_to_value(const char *name) 152 { 153 int i, len; 154 155 for (i = 0; i < ARRAY_SIZE(signal_types); i++) { 156 len = strlen(signal_types[i].name); 157 if (strncmp(name, signal_types[i].name, len) == 0 && 158 (name[len] == '\n' || name[len] == '\0')) 159 return signal_types[i].value; 160 } 161 return SPI_SIGNAL_UNKNOWN; 162 } 163 164 static int spi_host_setup(struct transport_container *tc, struct device *dev, 165 struct device *cdev) 166 { 167 struct Scsi_Host *shost = dev_to_shost(dev); 168 169 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN; 170 171 return 0; 172 } 173 174 static int spi_host_configure(struct transport_container *tc, 175 struct device *dev, 176 struct device *cdev); 177 178 static DECLARE_TRANSPORT_CLASS(spi_host_class, 179 "spi_host", 180 spi_host_setup, 181 NULL, 182 spi_host_configure); 183 184 static int spi_host_match(struct attribute_container *cont, 185 struct device *dev) 186 { 187 struct Scsi_Host *shost; 188 189 if (!scsi_is_host_device(dev)) 190 return 0; 191 192 shost = dev_to_shost(dev); 193 if (!shost->transportt || shost->transportt->host_attrs.ac.class 194 != &spi_host_class.class) 195 return 0; 196 197 return &shost->transportt->host_attrs.ac == cont; 198 } 199 200 static int spi_target_configure(struct transport_container *tc, 201 struct device *dev, 202 struct device *cdev); 203 204 static int spi_device_configure(struct transport_container *tc, 205 struct device *dev, 206 struct device *cdev) 207 { 208 struct scsi_device *sdev = to_scsi_device(dev); 209 struct scsi_target *starget = sdev->sdev_target; 210 211 /* Populate the target capability fields with the values 212 * gleaned from the device inquiry */ 213 214 spi_support_sync(starget) = scsi_device_sync(sdev); 215 spi_support_wide(starget) = scsi_device_wide(sdev); 216 spi_support_dt(starget) = scsi_device_dt(sdev); 217 spi_support_dt_only(starget) = scsi_device_dt_only(sdev); 218 spi_support_ius(starget) = scsi_device_ius(sdev); 219 spi_support_qas(starget) = scsi_device_qas(sdev); 220 221 return 0; 222 } 223 224 static int spi_setup_transport_attrs(struct transport_container *tc, 225 struct device *dev, 226 struct device *cdev) 227 { 228 struct scsi_target *starget = to_scsi_target(dev); 229 230 spi_period(starget) = -1; /* illegal value */ 231 spi_min_period(starget) = 0; 232 spi_offset(starget) = 0; /* async */ 233 spi_max_offset(starget) = 255; 234 spi_width(starget) = 0; /* narrow */ 235 spi_max_width(starget) = 1; 236 spi_iu(starget) = 0; /* no IU */ 237 spi_dt(starget) = 0; /* ST */ 238 spi_qas(starget) = 0; 239 spi_wr_flow(starget) = 0; 240 spi_rd_strm(starget) = 0; 241 spi_rti(starget) = 0; 242 spi_pcomp_en(starget) = 0; 243 spi_hold_mcs(starget) = 0; 244 spi_dv_pending(starget) = 0; 245 spi_dv_in_progress(starget) = 0; 246 spi_initial_dv(starget) = 0; 247 mutex_init(&spi_dv_mutex(starget)); 248 249 return 0; 250 } 251 252 #define spi_transport_show_simple(field, format_string) \ 253 \ 254 static ssize_t \ 255 show_spi_transport_##field(struct device *dev, \ 256 struct device_attribute *attr, char *buf) \ 257 { \ 258 struct scsi_target *starget = transport_class_to_starget(dev); \ 259 struct spi_transport_attrs *tp; \ 260 \ 261 tp = (struct spi_transport_attrs *)&starget->starget_data; \ 262 return snprintf(buf, 20, format_string, tp->field); \ 263 } 264 265 #define spi_transport_store_simple(field, format_string) \ 266 \ 267 static ssize_t \ 268 store_spi_transport_##field(struct device *dev, \ 269 struct device_attribute *attr, \ 270 const char *buf, size_t count) \ 271 { \ 272 int val; \ 273 struct scsi_target *starget = transport_class_to_starget(dev); \ 274 struct spi_transport_attrs *tp; \ 275 \ 276 tp = (struct spi_transport_attrs *)&starget->starget_data; \ 277 val = simple_strtoul(buf, NULL, 0); \ 278 tp->field = val; \ 279 return count; \ 280 } 281 282 #define spi_transport_show_function(field, format_string) \ 283 \ 284 static ssize_t \ 285 show_spi_transport_##field(struct device *dev, \ 286 struct device_attribute *attr, char *buf) \ 287 { \ 288 struct scsi_target *starget = transport_class_to_starget(dev); \ 289 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 290 struct spi_transport_attrs *tp; \ 291 struct spi_internal *i = to_spi_internal(shost->transportt); \ 292 tp = (struct spi_transport_attrs *)&starget->starget_data; \ 293 if (i->f->get_##field) \ 294 i->f->get_##field(starget); \ 295 return snprintf(buf, 20, format_string, tp->field); \ 296 } 297 298 #define spi_transport_store_function(field, format_string) \ 299 static ssize_t \ 300 store_spi_transport_##field(struct device *dev, \ 301 struct device_attribute *attr, \ 302 const char *buf, size_t count) \ 303 { \ 304 int val; \ 305 struct scsi_target *starget = transport_class_to_starget(dev); \ 306 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 307 struct spi_internal *i = to_spi_internal(shost->transportt); \ 308 \ 309 if (!i->f->set_##field) \ 310 return -EINVAL; \ 311 val = simple_strtoul(buf, NULL, 0); \ 312 i->f->set_##field(starget, val); \ 313 return count; \ 314 } 315 316 #define spi_transport_store_max(field, format_string) \ 317 static ssize_t \ 318 store_spi_transport_##field(struct device *dev, \ 319 struct device_attribute *attr, \ 320 const char *buf, size_t count) \ 321 { \ 322 int val; \ 323 struct scsi_target *starget = transport_class_to_starget(dev); \ 324 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 325 struct spi_internal *i = to_spi_internal(shost->transportt); \ 326 struct spi_transport_attrs *tp \ 327 = (struct spi_transport_attrs *)&starget->starget_data; \ 328 \ 329 if (i->f->set_##field) \ 330 return -EINVAL; \ 331 val = simple_strtoul(buf, NULL, 0); \ 332 if (val > tp->max_##field) \ 333 val = tp->max_##field; \ 334 i->f->set_##field(starget, val); \ 335 return count; \ 336 } 337 338 #define spi_transport_rd_attr(field, format_string) \ 339 spi_transport_show_function(field, format_string) \ 340 spi_transport_store_function(field, format_string) \ 341 static DEVICE_ATTR(field, S_IRUGO, \ 342 show_spi_transport_##field, \ 343 store_spi_transport_##field); 344 345 #define spi_transport_simple_attr(field, format_string) \ 346 spi_transport_show_simple(field, format_string) \ 347 spi_transport_store_simple(field, format_string) \ 348 static DEVICE_ATTR(field, S_IRUGO, \ 349 show_spi_transport_##field, \ 350 store_spi_transport_##field); 351 352 #define spi_transport_max_attr(field, format_string) \ 353 spi_transport_show_function(field, format_string) \ 354 spi_transport_store_max(field, format_string) \ 355 spi_transport_simple_attr(max_##field, format_string) \ 356 static DEVICE_ATTR(field, S_IRUGO, \ 357 show_spi_transport_##field, \ 358 store_spi_transport_##field); 359 360 /* The Parallel SCSI Tranport Attributes: */ 361 spi_transport_max_attr(offset, "%d\n"); 362 spi_transport_max_attr(width, "%d\n"); 363 spi_transport_rd_attr(iu, "%d\n"); 364 spi_transport_rd_attr(dt, "%d\n"); 365 spi_transport_rd_attr(qas, "%d\n"); 366 spi_transport_rd_attr(wr_flow, "%d\n"); 367 spi_transport_rd_attr(rd_strm, "%d\n"); 368 spi_transport_rd_attr(rti, "%d\n"); 369 spi_transport_rd_attr(pcomp_en, "%d\n"); 370 spi_transport_rd_attr(hold_mcs, "%d\n"); 371 372 /* we only care about the first child device that's a real SCSI device 373 * so we return 1 to terminate the iteration when we find it */ 374 static int child_iter(struct device *dev, void *data) 375 { 376 if (!scsi_is_sdev_device(dev)) 377 return 0; 378 379 spi_dv_device(to_scsi_device(dev)); 380 return 1; 381 } 382 383 static ssize_t 384 store_spi_revalidate(struct device *dev, struct device_attribute *attr, 385 const char *buf, size_t count) 386 { 387 struct scsi_target *starget = transport_class_to_starget(dev); 388 389 device_for_each_child(&starget->dev, NULL, child_iter); 390 return count; 391 } 392 static DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate); 393 394 /* Translate the period into ns according to the current spec 395 * for SDTR/PPR messages */ 396 static int period_to_str(char *buf, int period) 397 { 398 int len, picosec; 399 400 if (period < 0 || period > 0xff) { 401 picosec = -1; 402 } else if (period <= SPI_STATIC_PPR) { 403 picosec = ppr_to_ps[period]; 404 } else { 405 picosec = period * 4000; 406 } 407 408 if (picosec == -1) { 409 len = sprintf(buf, "reserved"); 410 } else { 411 len = sprint_frac(buf, picosec, 1000); 412 } 413 414 return len; 415 } 416 417 static ssize_t 418 show_spi_transport_period_helper(char *buf, int period) 419 { 420 int len = period_to_str(buf, period); 421 buf[len++] = '\n'; 422 buf[len] = '\0'; 423 return len; 424 } 425 426 static ssize_t 427 store_spi_transport_period_helper(struct device *dev, const char *buf, 428 size_t count, int *periodp) 429 { 430 int j, picosec, period = -1; 431 char *endp; 432 433 picosec = simple_strtoul(buf, &endp, 10) * 1000; 434 if (*endp == '.') { 435 int mult = 100; 436 do { 437 endp++; 438 if (!isdigit(*endp)) 439 break; 440 picosec += (*endp - '0') * mult; 441 mult /= 10; 442 } while (mult > 0); 443 } 444 445 for (j = 0; j <= SPI_STATIC_PPR; j++) { 446 if (ppr_to_ps[j] < picosec) 447 continue; 448 period = j; 449 break; 450 } 451 452 if (period == -1) 453 period = picosec / 4000; 454 455 if (period > 0xff) 456 period = 0xff; 457 458 *periodp = period; 459 460 return count; 461 } 462 463 static ssize_t 464 show_spi_transport_period(struct device *dev, 465 struct device_attribute *attr, char *buf) 466 { 467 struct scsi_target *starget = transport_class_to_starget(dev); 468 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 469 struct spi_internal *i = to_spi_internal(shost->transportt); 470 struct spi_transport_attrs *tp = 471 (struct spi_transport_attrs *)&starget->starget_data; 472 473 if (i->f->get_period) 474 i->f->get_period(starget); 475 476 return show_spi_transport_period_helper(buf, tp->period); 477 } 478 479 static ssize_t 480 store_spi_transport_period(struct device *cdev, struct device_attribute *attr, 481 const char *buf, size_t count) 482 { 483 struct scsi_target *starget = transport_class_to_starget(cdev); 484 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 485 struct spi_internal *i = to_spi_internal(shost->transportt); 486 struct spi_transport_attrs *tp = 487 (struct spi_transport_attrs *)&starget->starget_data; 488 int period, retval; 489 490 if (!i->f->set_period) 491 return -EINVAL; 492 493 retval = store_spi_transport_period_helper(cdev, buf, count, &period); 494 495 if (period < tp->min_period) 496 period = tp->min_period; 497 498 i->f->set_period(starget, period); 499 500 return retval; 501 } 502 503 static DEVICE_ATTR(period, S_IRUGO, 504 show_spi_transport_period, 505 store_spi_transport_period); 506 507 static ssize_t 508 show_spi_transport_min_period(struct device *cdev, 509 struct device_attribute *attr, char *buf) 510 { 511 struct scsi_target *starget = transport_class_to_starget(cdev); 512 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 513 struct spi_internal *i = to_spi_internal(shost->transportt); 514 struct spi_transport_attrs *tp = 515 (struct spi_transport_attrs *)&starget->starget_data; 516 517 if (!i->f->set_period) 518 return -EINVAL; 519 520 return show_spi_transport_period_helper(buf, tp->min_period); 521 } 522 523 static ssize_t 524 store_spi_transport_min_period(struct device *cdev, 525 struct device_attribute *attr, 526 const char *buf, size_t count) 527 { 528 struct scsi_target *starget = transport_class_to_starget(cdev); 529 struct spi_transport_attrs *tp = 530 (struct spi_transport_attrs *)&starget->starget_data; 531 532 return store_spi_transport_period_helper(cdev, buf, count, 533 &tp->min_period); 534 } 535 536 537 static DEVICE_ATTR(min_period, S_IRUGO, 538 show_spi_transport_min_period, 539 store_spi_transport_min_period); 540 541 542 static ssize_t show_spi_host_signalling(struct device *cdev, 543 struct device_attribute *attr, 544 char *buf) 545 { 546 struct Scsi_Host *shost = transport_class_to_shost(cdev); 547 struct spi_internal *i = to_spi_internal(shost->transportt); 548 549 if (i->f->get_signalling) 550 i->f->get_signalling(shost); 551 552 return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost))); 553 } 554 static ssize_t store_spi_host_signalling(struct device *dev, 555 struct device_attribute *attr, 556 const char *buf, size_t count) 557 { 558 struct Scsi_Host *shost = transport_class_to_shost(dev); 559 struct spi_internal *i = to_spi_internal(shost->transportt); 560 enum spi_signal_type type = spi_signal_to_value(buf); 561 562 if (!i->f->set_signalling) 563 return -EINVAL; 564 565 if (type != SPI_SIGNAL_UNKNOWN) 566 i->f->set_signalling(shost, type); 567 568 return count; 569 } 570 static DEVICE_ATTR(signalling, S_IRUGO, 571 show_spi_host_signalling, 572 store_spi_host_signalling); 573 574 #define DV_SET(x, y) \ 575 if(i->f->set_##x) \ 576 i->f->set_##x(sdev->sdev_target, y) 577 578 enum spi_compare_returns { 579 SPI_COMPARE_SUCCESS, 580 SPI_COMPARE_FAILURE, 581 SPI_COMPARE_SKIP_TEST, 582 }; 583 584 585 /* This is for read/write Domain Validation: If the device supports 586 * an echo buffer, we do read/write tests to it */ 587 static enum spi_compare_returns 588 spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer, 589 u8 *ptr, const int retries) 590 { 591 int len = ptr - buffer; 592 int j, k, r, result; 593 unsigned int pattern = 0x0000ffff; 594 struct scsi_sense_hdr sshdr; 595 596 const char spi_write_buffer[] = { 597 WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0 598 }; 599 const char spi_read_buffer[] = { 600 READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0 601 }; 602 603 /* set up the pattern buffer. Doesn't matter if we spill 604 * slightly beyond since that's where the read buffer is */ 605 for (j = 0; j < len; ) { 606 607 /* fill the buffer with counting (test a) */ 608 for ( ; j < min(len, 32); j++) 609 buffer[j] = j; 610 k = j; 611 /* fill the buffer with alternating words of 0x0 and 612 * 0xffff (test b) */ 613 for ( ; j < min(len, k + 32); j += 2) { 614 u16 *word = (u16 *)&buffer[j]; 615 616 *word = (j & 0x02) ? 0x0000 : 0xffff; 617 } 618 k = j; 619 /* fill with crosstalk (alternating 0x5555 0xaaa) 620 * (test c) */ 621 for ( ; j < min(len, k + 32); j += 2) { 622 u16 *word = (u16 *)&buffer[j]; 623 624 *word = (j & 0x02) ? 0x5555 : 0xaaaa; 625 } 626 k = j; 627 /* fill with shifting bits (test d) */ 628 for ( ; j < min(len, k + 32); j += 4) { 629 u32 *word = (unsigned int *)&buffer[j]; 630 u32 roll = (pattern & 0x80000000) ? 1 : 0; 631 632 *word = pattern; 633 pattern = (pattern << 1) | roll; 634 } 635 /* don't bother with random data (test e) */ 636 } 637 638 for (r = 0; r < retries; r++) { 639 result = spi_execute(sdev, spi_write_buffer, DMA_TO_DEVICE, 640 buffer, len, &sshdr); 641 if(result || !scsi_device_online(sdev)) { 642 643 scsi_device_set_state(sdev, SDEV_QUIESCE); 644 if (scsi_sense_valid(&sshdr) 645 && sshdr.sense_key == ILLEGAL_REQUEST 646 /* INVALID FIELD IN CDB */ 647 && sshdr.asc == 0x24 && sshdr.ascq == 0x00) 648 /* This would mean that the drive lied 649 * to us about supporting an echo 650 * buffer (unfortunately some Western 651 * Digital drives do precisely this) 652 */ 653 return SPI_COMPARE_SKIP_TEST; 654 655 656 sdev_printk(KERN_ERR, sdev, "Write Buffer failure %x\n", result); 657 return SPI_COMPARE_FAILURE; 658 } 659 660 memset(ptr, 0, len); 661 spi_execute(sdev, spi_read_buffer, DMA_FROM_DEVICE, 662 ptr, len, NULL); 663 scsi_device_set_state(sdev, SDEV_QUIESCE); 664 665 if (memcmp(buffer, ptr, len) != 0) 666 return SPI_COMPARE_FAILURE; 667 } 668 return SPI_COMPARE_SUCCESS; 669 } 670 671 /* This is for the simplest form of Domain Validation: a read test 672 * on the inquiry data from the device */ 673 static enum spi_compare_returns 674 spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer, 675 u8 *ptr, const int retries) 676 { 677 int r, result; 678 const int len = sdev->inquiry_len; 679 const char spi_inquiry[] = { 680 INQUIRY, 0, 0, 0, len, 0 681 }; 682 683 for (r = 0; r < retries; r++) { 684 memset(ptr, 0, len); 685 686 result = spi_execute(sdev, spi_inquiry, DMA_FROM_DEVICE, 687 ptr, len, NULL); 688 689 if(result || !scsi_device_online(sdev)) { 690 scsi_device_set_state(sdev, SDEV_QUIESCE); 691 return SPI_COMPARE_FAILURE; 692 } 693 694 /* If we don't have the inquiry data already, the 695 * first read gets it */ 696 if (ptr == buffer) { 697 ptr += len; 698 --r; 699 continue; 700 } 701 702 if (memcmp(buffer, ptr, len) != 0) 703 /* failure */ 704 return SPI_COMPARE_FAILURE; 705 } 706 return SPI_COMPARE_SUCCESS; 707 } 708 709 static enum spi_compare_returns 710 spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr, 711 enum spi_compare_returns 712 (*compare_fn)(struct scsi_device *, u8 *, u8 *, int)) 713 { 714 struct spi_internal *i = to_spi_internal(sdev->host->transportt); 715 struct scsi_target *starget = sdev->sdev_target; 716 int period = 0, prevperiod = 0; 717 enum spi_compare_returns retval; 718 719 720 for (;;) { 721 int newperiod; 722 retval = compare_fn(sdev, buffer, ptr, DV_LOOPS); 723 724 if (retval == SPI_COMPARE_SUCCESS 725 || retval == SPI_COMPARE_SKIP_TEST) 726 break; 727 728 /* OK, retrain, fallback */ 729 if (i->f->get_iu) 730 i->f->get_iu(starget); 731 if (i->f->get_qas) 732 i->f->get_qas(starget); 733 if (i->f->get_period) 734 i->f->get_period(sdev->sdev_target); 735 736 /* Here's the fallback sequence; first try turning off 737 * IU, then QAS (if we can control them), then finally 738 * fall down the periods */ 739 if (i->f->set_iu && spi_iu(starget)) { 740 starget_printk(KERN_ERR, starget, "Domain Validation Disabing Information Units\n"); 741 DV_SET(iu, 0); 742 } else if (i->f->set_qas && spi_qas(starget)) { 743 starget_printk(KERN_ERR, starget, "Domain Validation Disabing Quick Arbitration and Selection\n"); 744 DV_SET(qas, 0); 745 } else { 746 newperiod = spi_period(starget); 747 period = newperiod > period ? newperiod : period; 748 if (period < 0x0d) 749 period++; 750 else 751 period += period >> 1; 752 753 if (unlikely(period > 0xff || period == prevperiod)) { 754 /* Total failure; set to async and return */ 755 starget_printk(KERN_ERR, starget, "Domain Validation Failure, dropping back to Asynchronous\n"); 756 DV_SET(offset, 0); 757 return SPI_COMPARE_FAILURE; 758 } 759 starget_printk(KERN_ERR, starget, "Domain Validation detected failure, dropping back\n"); 760 DV_SET(period, period); 761 prevperiod = period; 762 } 763 } 764 return retval; 765 } 766 767 static int 768 spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer) 769 { 770 int l, result; 771 772 /* first off do a test unit ready. This can error out 773 * because of reservations or some other reason. If it 774 * fails, the device won't let us write to the echo buffer 775 * so just return failure */ 776 777 const char spi_test_unit_ready[] = { 778 TEST_UNIT_READY, 0, 0, 0, 0, 0 779 }; 780 781 const char spi_read_buffer_descriptor[] = { 782 READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0 783 }; 784 785 786 /* We send a set of three TURs to clear any outstanding 787 * unit attention conditions if they exist (Otherwise the 788 * buffer tests won't be happy). If the TUR still fails 789 * (reservation conflict, device not ready, etc) just 790 * skip the write tests */ 791 for (l = 0; ; l++) { 792 result = spi_execute(sdev, spi_test_unit_ready, DMA_NONE, 793 NULL, 0, NULL); 794 795 if(result) { 796 if(l >= 3) 797 return 0; 798 } else { 799 /* TUR succeeded */ 800 break; 801 } 802 } 803 804 result = spi_execute(sdev, spi_read_buffer_descriptor, 805 DMA_FROM_DEVICE, buffer, 4, NULL); 806 807 if (result) 808 /* Device has no echo buffer */ 809 return 0; 810 811 return buffer[3] + ((buffer[2] & 0x1f) << 8); 812 } 813 814 static void 815 spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer) 816 { 817 struct spi_internal *i = to_spi_internal(sdev->host->transportt); 818 struct scsi_target *starget = sdev->sdev_target; 819 struct Scsi_Host *shost = sdev->host; 820 int len = sdev->inquiry_len; 821 int min_period = spi_min_period(starget); 822 int max_width = spi_max_width(starget); 823 /* first set us up for narrow async */ 824 DV_SET(offset, 0); 825 DV_SET(width, 0); 826 827 if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS) 828 != SPI_COMPARE_SUCCESS) { 829 starget_printk(KERN_ERR, starget, "Domain Validation Initial Inquiry Failed\n"); 830 /* FIXME: should probably offline the device here? */ 831 return; 832 } 833 834 if (!scsi_device_wide(sdev)) { 835 spi_max_width(starget) = 0; 836 max_width = 0; 837 } 838 839 /* test width */ 840 if (i->f->set_width && max_width) { 841 i->f->set_width(starget, 1); 842 843 if (spi_dv_device_compare_inquiry(sdev, buffer, 844 buffer + len, 845 DV_LOOPS) 846 != SPI_COMPARE_SUCCESS) { 847 starget_printk(KERN_ERR, starget, "Wide Transfers Fail\n"); 848 i->f->set_width(starget, 0); 849 /* Make sure we don't force wide back on by asking 850 * for a transfer period that requires it */ 851 max_width = 0; 852 if (min_period < 10) 853 min_period = 10; 854 } 855 } 856 857 if (!i->f->set_period) 858 return; 859 860 /* device can't handle synchronous */ 861 if (!scsi_device_sync(sdev) && !scsi_device_dt(sdev)) 862 return; 863 864 /* len == -1 is the signal that we need to ascertain the 865 * presence of an echo buffer before trying to use it. len == 866 * 0 means we don't have an echo buffer */ 867 len = -1; 868 869 retry: 870 871 /* now set up to the maximum */ 872 DV_SET(offset, spi_max_offset(starget)); 873 DV_SET(period, min_period); 874 875 /* try QAS requests; this should be harmless to set if the 876 * target supports it */ 877 if (scsi_device_qas(sdev)) { 878 DV_SET(qas, 1); 879 } else { 880 DV_SET(qas, 0); 881 } 882 883 if (scsi_device_ius(sdev) && min_period < 9) { 884 /* This u320 (or u640). Set IU transfers */ 885 DV_SET(iu, 1); 886 /* Then set the optional parameters */ 887 DV_SET(rd_strm, 1); 888 DV_SET(wr_flow, 1); 889 DV_SET(rti, 1); 890 if (min_period == 8) 891 DV_SET(pcomp_en, 1); 892 } else { 893 DV_SET(iu, 0); 894 } 895 896 /* now that we've done all this, actually check the bus 897 * signal type (if known). Some devices are stupid on 898 * a SE bus and still claim they can try LVD only settings */ 899 if (i->f->get_signalling) 900 i->f->get_signalling(shost); 901 if (spi_signalling(shost) == SPI_SIGNAL_SE || 902 spi_signalling(shost) == SPI_SIGNAL_HVD || 903 !scsi_device_dt(sdev)) { 904 DV_SET(dt, 0); 905 } else { 906 DV_SET(dt, 1); 907 } 908 /* set width last because it will pull all the other 909 * parameters down to required values */ 910 DV_SET(width, max_width); 911 912 /* Do the read only INQUIRY tests */ 913 spi_dv_retrain(sdev, buffer, buffer + sdev->inquiry_len, 914 spi_dv_device_compare_inquiry); 915 /* See if we actually managed to negotiate and sustain DT */ 916 if (i->f->get_dt) 917 i->f->get_dt(starget); 918 919 /* see if the device has an echo buffer. If it does we can do 920 * the SPI pattern write tests. Because of some broken 921 * devices, we *only* try this on a device that has actually 922 * negotiated DT */ 923 924 if (len == -1 && spi_dt(starget)) 925 len = spi_dv_device_get_echo_buffer(sdev, buffer); 926 927 if (len <= 0) { 928 starget_printk(KERN_INFO, starget, "Domain Validation skipping write tests\n"); 929 return; 930 } 931 932 if (len > SPI_MAX_ECHO_BUFFER_SIZE) { 933 starget_printk(KERN_WARNING, starget, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE); 934 len = SPI_MAX_ECHO_BUFFER_SIZE; 935 } 936 937 if (spi_dv_retrain(sdev, buffer, buffer + len, 938 spi_dv_device_echo_buffer) 939 == SPI_COMPARE_SKIP_TEST) { 940 /* OK, the stupid drive can't do a write echo buffer 941 * test after all, fall back to the read tests */ 942 len = 0; 943 goto retry; 944 } 945 } 946 947 948 /** spi_dv_device - Do Domain Validation on the device 949 * @sdev: scsi device to validate 950 * 951 * Performs the domain validation on the given device in the 952 * current execution thread. Since DV operations may sleep, 953 * the current thread must have user context. Also no SCSI 954 * related locks that would deadlock I/O issued by the DV may 955 * be held. 956 */ 957 void 958 spi_dv_device(struct scsi_device *sdev) 959 { 960 struct scsi_target *starget = sdev->sdev_target; 961 u8 *buffer; 962 const int len = SPI_MAX_ECHO_BUFFER_SIZE*2; 963 964 if (unlikely(scsi_device_get(sdev))) 965 return; 966 967 if (unlikely(spi_dv_in_progress(starget))) 968 return; 969 spi_dv_in_progress(starget) = 1; 970 971 buffer = kzalloc(len, GFP_KERNEL); 972 973 if (unlikely(!buffer)) 974 goto out_put; 975 976 /* We need to verify that the actual device will quiesce; the 977 * later target quiesce is just a nice to have */ 978 if (unlikely(scsi_device_quiesce(sdev))) 979 goto out_free; 980 981 scsi_target_quiesce(starget); 982 983 spi_dv_pending(starget) = 1; 984 mutex_lock(&spi_dv_mutex(starget)); 985 986 starget_printk(KERN_INFO, starget, "Beginning Domain Validation\n"); 987 988 spi_dv_device_internal(sdev, buffer); 989 990 starget_printk(KERN_INFO, starget, "Ending Domain Validation\n"); 991 992 mutex_unlock(&spi_dv_mutex(starget)); 993 spi_dv_pending(starget) = 0; 994 995 scsi_target_resume(starget); 996 997 spi_initial_dv(starget) = 1; 998 999 out_free: 1000 kfree(buffer); 1001 out_put: 1002 spi_dv_in_progress(starget) = 0; 1003 scsi_device_put(sdev); 1004 } 1005 EXPORT_SYMBOL(spi_dv_device); 1006 1007 struct work_queue_wrapper { 1008 struct work_struct work; 1009 struct scsi_device *sdev; 1010 }; 1011 1012 static void 1013 spi_dv_device_work_wrapper(struct work_struct *work) 1014 { 1015 struct work_queue_wrapper *wqw = 1016 container_of(work, struct work_queue_wrapper, work); 1017 struct scsi_device *sdev = wqw->sdev; 1018 1019 kfree(wqw); 1020 spi_dv_device(sdev); 1021 spi_dv_pending(sdev->sdev_target) = 0; 1022 scsi_device_put(sdev); 1023 } 1024 1025 1026 /** 1027 * spi_schedule_dv_device - schedule domain validation to occur on the device 1028 * @sdev: The device to validate 1029 * 1030 * Identical to spi_dv_device() above, except that the DV will be 1031 * scheduled to occur in a workqueue later. All memory allocations 1032 * are atomic, so may be called from any context including those holding 1033 * SCSI locks. 1034 */ 1035 void 1036 spi_schedule_dv_device(struct scsi_device *sdev) 1037 { 1038 struct work_queue_wrapper *wqw = 1039 kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC); 1040 1041 if (unlikely(!wqw)) 1042 return; 1043 1044 if (unlikely(spi_dv_pending(sdev->sdev_target))) { 1045 kfree(wqw); 1046 return; 1047 } 1048 /* Set pending early (dv_device doesn't check it, only sets it) */ 1049 spi_dv_pending(sdev->sdev_target) = 1; 1050 if (unlikely(scsi_device_get(sdev))) { 1051 kfree(wqw); 1052 spi_dv_pending(sdev->sdev_target) = 0; 1053 return; 1054 } 1055 1056 INIT_WORK(&wqw->work, spi_dv_device_work_wrapper); 1057 wqw->sdev = sdev; 1058 1059 schedule_work(&wqw->work); 1060 } 1061 EXPORT_SYMBOL(spi_schedule_dv_device); 1062 1063 /** 1064 * spi_display_xfer_agreement - Print the current target transfer agreement 1065 * @starget: The target for which to display the agreement 1066 * 1067 * Each SPI port is required to maintain a transfer agreement for each 1068 * other port on the bus. This function prints a one-line summary of 1069 * the current agreement; more detailed information is available in sysfs. 1070 */ 1071 void spi_display_xfer_agreement(struct scsi_target *starget) 1072 { 1073 struct spi_transport_attrs *tp; 1074 tp = (struct spi_transport_attrs *)&starget->starget_data; 1075 1076 if (tp->offset > 0 && tp->period > 0) { 1077 unsigned int picosec, kb100; 1078 char *scsi = "FAST-?"; 1079 char tmp[8]; 1080 1081 if (tp->period <= SPI_STATIC_PPR) { 1082 picosec = ppr_to_ps[tp->period]; 1083 switch (tp->period) { 1084 case 7: scsi = "FAST-320"; break; 1085 case 8: scsi = "FAST-160"; break; 1086 case 9: scsi = "FAST-80"; break; 1087 case 10: 1088 case 11: scsi = "FAST-40"; break; 1089 case 12: scsi = "FAST-20"; break; 1090 } 1091 } else { 1092 picosec = tp->period * 4000; 1093 if (tp->period < 25) 1094 scsi = "FAST-20"; 1095 else if (tp->period < 50) 1096 scsi = "FAST-10"; 1097 else 1098 scsi = "FAST-5"; 1099 } 1100 1101 kb100 = (10000000 + picosec / 2) / picosec; 1102 if (tp->width) 1103 kb100 *= 2; 1104 sprint_frac(tmp, picosec, 1000); 1105 1106 dev_info(&starget->dev, 1107 "%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n", 1108 scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10, 1109 tp->dt ? "DT" : "ST", 1110 tp->iu ? " IU" : "", 1111 tp->qas ? " QAS" : "", 1112 tp->rd_strm ? " RDSTRM" : "", 1113 tp->rti ? " RTI" : "", 1114 tp->wr_flow ? " WRFLOW" : "", 1115 tp->pcomp_en ? " PCOMP" : "", 1116 tp->hold_mcs ? " HMCS" : "", 1117 tmp, tp->offset); 1118 } else { 1119 dev_info(&starget->dev, "%sasynchronous\n", 1120 tp->width ? "wide " : ""); 1121 } 1122 } 1123 EXPORT_SYMBOL(spi_display_xfer_agreement); 1124 1125 int spi_populate_width_msg(unsigned char *msg, int width) 1126 { 1127 msg[0] = EXTENDED_MESSAGE; 1128 msg[1] = 2; 1129 msg[2] = EXTENDED_WDTR; 1130 msg[3] = width; 1131 return 4; 1132 } 1133 EXPORT_SYMBOL_GPL(spi_populate_width_msg); 1134 1135 int spi_populate_sync_msg(unsigned char *msg, int period, int offset) 1136 { 1137 msg[0] = EXTENDED_MESSAGE; 1138 msg[1] = 3; 1139 msg[2] = EXTENDED_SDTR; 1140 msg[3] = period; 1141 msg[4] = offset; 1142 return 5; 1143 } 1144 EXPORT_SYMBOL_GPL(spi_populate_sync_msg); 1145 1146 int spi_populate_ppr_msg(unsigned char *msg, int period, int offset, 1147 int width, int options) 1148 { 1149 msg[0] = EXTENDED_MESSAGE; 1150 msg[1] = 6; 1151 msg[2] = EXTENDED_PPR; 1152 msg[3] = period; 1153 msg[4] = 0; 1154 msg[5] = offset; 1155 msg[6] = width; 1156 msg[7] = options; 1157 return 8; 1158 } 1159 EXPORT_SYMBOL_GPL(spi_populate_ppr_msg); 1160 1161 #ifdef CONFIG_SCSI_CONSTANTS 1162 static const char * const one_byte_msgs[] = { 1163 /* 0x00 */ "Task Complete", NULL /* Extended Message */, "Save Pointers", 1164 /* 0x03 */ "Restore Pointers", "Disconnect", "Initiator Error", 1165 /* 0x06 */ "Abort Task Set", "Message Reject", "Nop", "Message Parity Error", 1166 /* 0x0a */ "Linked Command Complete", "Linked Command Complete w/flag", 1167 /* 0x0c */ "Target Reset", "Abort Task", "Clear Task Set", 1168 /* 0x0f */ "Initiate Recovery", "Release Recovery", 1169 /* 0x11 */ "Terminate Process", "Continue Task", "Target Transfer Disable", 1170 /* 0x14 */ NULL, NULL, "Clear ACA", "LUN Reset" 1171 }; 1172 1173 static const char * const two_byte_msgs[] = { 1174 /* 0x20 */ "Simple Queue Tag", "Head of Queue Tag", "Ordered Queue Tag", 1175 /* 0x23 */ "Ignore Wide Residue", "ACA" 1176 }; 1177 1178 static const char * const extended_msgs[] = { 1179 /* 0x00 */ "Modify Data Pointer", "Synchronous Data Transfer Request", 1180 /* 0x02 */ "SCSI-I Extended Identify", "Wide Data Transfer Request", 1181 /* 0x04 */ "Parallel Protocol Request", "Modify Bidirectional Data Pointer" 1182 }; 1183 1184 static void print_nego(const unsigned char *msg, int per, int off, int width) 1185 { 1186 if (per) { 1187 char buf[20]; 1188 period_to_str(buf, msg[per]); 1189 printk("period = %s ns ", buf); 1190 } 1191 1192 if (off) 1193 printk("offset = %d ", msg[off]); 1194 if (width) 1195 printk("width = %d ", 8 << msg[width]); 1196 } 1197 1198 static void print_ptr(const unsigned char *msg, int msb, const char *desc) 1199 { 1200 int ptr = (msg[msb] << 24) | (msg[msb+1] << 16) | (msg[msb+2] << 8) | 1201 msg[msb+3]; 1202 printk("%s = %d ", desc, ptr); 1203 } 1204 1205 int spi_print_msg(const unsigned char *msg) 1206 { 1207 int len = 1, i; 1208 if (msg[0] == EXTENDED_MESSAGE) { 1209 len = 2 + msg[1]; 1210 if (len == 2) 1211 len += 256; 1212 if (msg[2] < ARRAY_SIZE(extended_msgs)) 1213 printk ("%s ", extended_msgs[msg[2]]); 1214 else 1215 printk ("Extended Message, reserved code (0x%02x) ", 1216 (int) msg[2]); 1217 switch (msg[2]) { 1218 case EXTENDED_MODIFY_DATA_POINTER: 1219 print_ptr(msg, 3, "pointer"); 1220 break; 1221 case EXTENDED_SDTR: 1222 print_nego(msg, 3, 4, 0); 1223 break; 1224 case EXTENDED_WDTR: 1225 print_nego(msg, 0, 0, 3); 1226 break; 1227 case EXTENDED_PPR: 1228 print_nego(msg, 3, 5, 6); 1229 break; 1230 case EXTENDED_MODIFY_BIDI_DATA_PTR: 1231 print_ptr(msg, 3, "out"); 1232 print_ptr(msg, 7, "in"); 1233 break; 1234 default: 1235 for (i = 2; i < len; ++i) 1236 printk("%02x ", msg[i]); 1237 } 1238 /* Identify */ 1239 } else if (msg[0] & 0x80) { 1240 printk("Identify disconnect %sallowed %s %d ", 1241 (msg[0] & 0x40) ? "" : "not ", 1242 (msg[0] & 0x20) ? "target routine" : "lun", 1243 msg[0] & 0x7); 1244 /* Normal One byte */ 1245 } else if (msg[0] < 0x1f) { 1246 if (msg[0] < ARRAY_SIZE(one_byte_msgs) && one_byte_msgs[msg[0]]) 1247 printk("%s ", one_byte_msgs[msg[0]]); 1248 else 1249 printk("reserved (%02x) ", msg[0]); 1250 } else if (msg[0] == 0x55) { 1251 printk("QAS Request "); 1252 /* Two byte */ 1253 } else if (msg[0] <= 0x2f) { 1254 if ((msg[0] - 0x20) < ARRAY_SIZE(two_byte_msgs)) 1255 printk("%s %02x ", two_byte_msgs[msg[0] - 0x20], 1256 msg[1]); 1257 else 1258 printk("reserved two byte (%02x %02x) ", 1259 msg[0], msg[1]); 1260 len = 2; 1261 } else 1262 printk("reserved "); 1263 return len; 1264 } 1265 EXPORT_SYMBOL(spi_print_msg); 1266 1267 #else /* ifndef CONFIG_SCSI_CONSTANTS */ 1268 1269 int spi_print_msg(const unsigned char *msg) 1270 { 1271 int len = 1, i; 1272 1273 if (msg[0] == EXTENDED_MESSAGE) { 1274 len = 2 + msg[1]; 1275 if (len == 2) 1276 len += 256; 1277 for (i = 0; i < len; ++i) 1278 printk("%02x ", msg[i]); 1279 /* Identify */ 1280 } else if (msg[0] & 0x80) { 1281 printk("%02x ", msg[0]); 1282 /* Normal One byte */ 1283 } else if ((msg[0] < 0x1f) || (msg[0] == 0x55)) { 1284 printk("%02x ", msg[0]); 1285 /* Two byte */ 1286 } else if (msg[0] <= 0x2f) { 1287 printk("%02x %02x", msg[0], msg[1]); 1288 len = 2; 1289 } else 1290 printk("%02x ", msg[0]); 1291 return len; 1292 } 1293 EXPORT_SYMBOL(spi_print_msg); 1294 #endif /* ! CONFIG_SCSI_CONSTANTS */ 1295 1296 static int spi_device_match(struct attribute_container *cont, 1297 struct device *dev) 1298 { 1299 struct scsi_device *sdev; 1300 struct Scsi_Host *shost; 1301 struct spi_internal *i; 1302 1303 if (!scsi_is_sdev_device(dev)) 1304 return 0; 1305 1306 sdev = to_scsi_device(dev); 1307 shost = sdev->host; 1308 if (!shost->transportt || shost->transportt->host_attrs.ac.class 1309 != &spi_host_class.class) 1310 return 0; 1311 /* Note: this class has no device attributes, so it has 1312 * no per-HBA allocation and thus we don't need to distinguish 1313 * the attribute containers for the device */ 1314 i = to_spi_internal(shost->transportt); 1315 if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target)) 1316 return 0; 1317 return 1; 1318 } 1319 1320 static int spi_target_match(struct attribute_container *cont, 1321 struct device *dev) 1322 { 1323 struct Scsi_Host *shost; 1324 struct scsi_target *starget; 1325 struct spi_internal *i; 1326 1327 if (!scsi_is_target_device(dev)) 1328 return 0; 1329 1330 shost = dev_to_shost(dev->parent); 1331 if (!shost->transportt || shost->transportt->host_attrs.ac.class 1332 != &spi_host_class.class) 1333 return 0; 1334 1335 i = to_spi_internal(shost->transportt); 1336 starget = to_scsi_target(dev); 1337 1338 if (i->f->deny_binding && i->f->deny_binding(starget)) 1339 return 0; 1340 1341 return &i->t.target_attrs.ac == cont; 1342 } 1343 1344 static DECLARE_TRANSPORT_CLASS(spi_transport_class, 1345 "spi_transport", 1346 spi_setup_transport_attrs, 1347 NULL, 1348 spi_target_configure); 1349 1350 static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class, 1351 spi_device_match, 1352 spi_device_configure); 1353 1354 static struct attribute *host_attributes[] = { 1355 &dev_attr_signalling.attr, 1356 NULL 1357 }; 1358 1359 static struct attribute_group host_attribute_group = { 1360 .attrs = host_attributes, 1361 }; 1362 1363 static int spi_host_configure(struct transport_container *tc, 1364 struct device *dev, 1365 struct device *cdev) 1366 { 1367 struct kobject *kobj = &cdev->kobj; 1368 struct Scsi_Host *shost = transport_class_to_shost(cdev); 1369 struct spi_internal *si = to_spi_internal(shost->transportt); 1370 struct attribute *attr = &dev_attr_signalling.attr; 1371 int rc = 0; 1372 1373 if (si->f->set_signalling) 1374 rc = sysfs_chmod_file(kobj, attr, attr->mode | S_IWUSR); 1375 1376 return rc; 1377 } 1378 1379 /* returns true if we should be showing the variable. Also 1380 * overloads the return by setting 1<<1 if the attribute should 1381 * be writeable */ 1382 #define TARGET_ATTRIBUTE_HELPER(name) \ 1383 (si->f->show_##name ? S_IRUGO : 0) | \ 1384 (si->f->set_##name ? S_IWUSR : 0) 1385 1386 static mode_t target_attribute_is_visible(struct kobject *kobj, 1387 struct attribute *attr, int i) 1388 { 1389 struct device *cdev = container_of(kobj, struct device, kobj); 1390 struct scsi_target *starget = transport_class_to_starget(cdev); 1391 struct Scsi_Host *shost = transport_class_to_shost(cdev); 1392 struct spi_internal *si = to_spi_internal(shost->transportt); 1393 1394 if (attr == &dev_attr_period.attr && 1395 spi_support_sync(starget)) 1396 return TARGET_ATTRIBUTE_HELPER(period); 1397 else if (attr == &dev_attr_min_period.attr && 1398 spi_support_sync(starget)) 1399 return TARGET_ATTRIBUTE_HELPER(period); 1400 else if (attr == &dev_attr_offset.attr && 1401 spi_support_sync(starget)) 1402 return TARGET_ATTRIBUTE_HELPER(offset); 1403 else if (attr == &dev_attr_max_offset.attr && 1404 spi_support_sync(starget)) 1405 return TARGET_ATTRIBUTE_HELPER(offset); 1406 else if (attr == &dev_attr_width.attr && 1407 spi_support_wide(starget)) 1408 return TARGET_ATTRIBUTE_HELPER(width); 1409 else if (attr == &dev_attr_max_width.attr && 1410 spi_support_wide(starget)) 1411 return TARGET_ATTRIBUTE_HELPER(width); 1412 else if (attr == &dev_attr_iu.attr && 1413 spi_support_ius(starget)) 1414 return TARGET_ATTRIBUTE_HELPER(iu); 1415 else if (attr == &dev_attr_dt.attr && 1416 spi_support_dt(starget)) 1417 return TARGET_ATTRIBUTE_HELPER(dt); 1418 else if (attr == &dev_attr_qas.attr && 1419 spi_support_qas(starget)) 1420 return TARGET_ATTRIBUTE_HELPER(qas); 1421 else if (attr == &dev_attr_wr_flow.attr && 1422 spi_support_ius(starget)) 1423 return TARGET_ATTRIBUTE_HELPER(wr_flow); 1424 else if (attr == &dev_attr_rd_strm.attr && 1425 spi_support_ius(starget)) 1426 return TARGET_ATTRIBUTE_HELPER(rd_strm); 1427 else if (attr == &dev_attr_rti.attr && 1428 spi_support_ius(starget)) 1429 return TARGET_ATTRIBUTE_HELPER(rti); 1430 else if (attr == &dev_attr_pcomp_en.attr && 1431 spi_support_ius(starget)) 1432 return TARGET_ATTRIBUTE_HELPER(pcomp_en); 1433 else if (attr == &dev_attr_hold_mcs.attr && 1434 spi_support_ius(starget)) 1435 return TARGET_ATTRIBUTE_HELPER(hold_mcs); 1436 else if (attr == &dev_attr_revalidate.attr) 1437 return S_IWUSR; 1438 1439 return 0; 1440 } 1441 1442 static struct attribute *target_attributes[] = { 1443 &dev_attr_period.attr, 1444 &dev_attr_min_period.attr, 1445 &dev_attr_offset.attr, 1446 &dev_attr_max_offset.attr, 1447 &dev_attr_width.attr, 1448 &dev_attr_max_width.attr, 1449 &dev_attr_iu.attr, 1450 &dev_attr_dt.attr, 1451 &dev_attr_qas.attr, 1452 &dev_attr_wr_flow.attr, 1453 &dev_attr_rd_strm.attr, 1454 &dev_attr_rti.attr, 1455 &dev_attr_pcomp_en.attr, 1456 &dev_attr_hold_mcs.attr, 1457 &dev_attr_revalidate.attr, 1458 NULL 1459 }; 1460 1461 static struct attribute_group target_attribute_group = { 1462 .attrs = target_attributes, 1463 .is_visible = target_attribute_is_visible, 1464 }; 1465 1466 static int spi_target_configure(struct transport_container *tc, 1467 struct device *dev, 1468 struct device *cdev) 1469 { 1470 struct kobject *kobj = &cdev->kobj; 1471 1472 /* force an update based on parameters read from the device */ 1473 sysfs_update_group(kobj, &target_attribute_group); 1474 1475 return 0; 1476 } 1477 1478 struct scsi_transport_template * 1479 spi_attach_transport(struct spi_function_template *ft) 1480 { 1481 struct spi_internal *i = kzalloc(sizeof(struct spi_internal), 1482 GFP_KERNEL); 1483 1484 if (unlikely(!i)) 1485 return NULL; 1486 1487 i->t.target_attrs.ac.class = &spi_transport_class.class; 1488 i->t.target_attrs.ac.grp = &target_attribute_group; 1489 i->t.target_attrs.ac.match = spi_target_match; 1490 transport_container_register(&i->t.target_attrs); 1491 i->t.target_size = sizeof(struct spi_transport_attrs); 1492 i->t.host_attrs.ac.class = &spi_host_class.class; 1493 i->t.host_attrs.ac.grp = &host_attribute_group; 1494 i->t.host_attrs.ac.match = spi_host_match; 1495 transport_container_register(&i->t.host_attrs); 1496 i->t.host_size = sizeof(struct spi_host_attrs); 1497 i->f = ft; 1498 1499 return &i->t; 1500 } 1501 EXPORT_SYMBOL(spi_attach_transport); 1502 1503 void spi_release_transport(struct scsi_transport_template *t) 1504 { 1505 struct spi_internal *i = to_spi_internal(t); 1506 1507 transport_container_unregister(&i->t.target_attrs); 1508 transport_container_unregister(&i->t.host_attrs); 1509 1510 kfree(i); 1511 } 1512 EXPORT_SYMBOL(spi_release_transport); 1513 1514 static __init int spi_transport_init(void) 1515 { 1516 int error = transport_class_register(&spi_transport_class); 1517 if (error) 1518 return error; 1519 error = anon_transport_class_register(&spi_device_class); 1520 return transport_class_register(&spi_host_class); 1521 } 1522 1523 static void __exit spi_transport_exit(void) 1524 { 1525 transport_class_unregister(&spi_transport_class); 1526 anon_transport_class_unregister(&spi_device_class); 1527 transport_class_unregister(&spi_host_class); 1528 } 1529 1530 MODULE_AUTHOR("Martin Hicks"); 1531 MODULE_DESCRIPTION("SPI Transport Attributes"); 1532 MODULE_LICENSE("GPL"); 1533 1534 module_init(spi_transport_init); 1535 module_exit(spi_transport_exit); 1536