1 /*
2  *  Parallel SCSI (SPI) transport specific attributes exported to sysfs.
3  *
4  *  Copyright (c) 2003 Silicon Graphics, Inc.  All rights reserved.
5  *  Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com>
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 #include <linux/ctype.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/workqueue.h>
25 #include <linux/blkdev.h>
26 #include <linux/mutex.h>
27 #include <linux/sysfs.h>
28 #include <scsi/scsi.h>
29 #include "scsi_priv.h"
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_host.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_transport.h>
35 #include <scsi/scsi_transport_spi.h>
36 
37 #define SPI_NUM_ATTRS 14	/* increase this if you add attributes */
38 #define SPI_OTHER_ATTRS 1	/* Increase this if you add "always
39 				 * on" attributes */
40 #define SPI_HOST_ATTRS	1
41 
42 #define SPI_MAX_ECHO_BUFFER_SIZE	4096
43 
44 #define DV_LOOPS	3
45 #define DV_TIMEOUT	(10*HZ)
46 #define DV_RETRIES	3	/* should only need at most
47 				 * two cc/ua clears */
48 
49 /* Private data accessors (keep these out of the header file) */
50 #define spi_dv_in_progress(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_in_progress)
51 #define spi_dv_mutex(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_mutex)
52 
53 struct spi_internal {
54 	struct scsi_transport_template t;
55 	struct spi_function_template *f;
56 };
57 
58 #define to_spi_internal(tmpl)	container_of(tmpl, struct spi_internal, t)
59 
60 static const int ppr_to_ps[] = {
61 	/* The PPR values 0-6 are reserved, fill them in when
62 	 * the committee defines them */
63 	-1,			/* 0x00 */
64 	-1,			/* 0x01 */
65 	-1,			/* 0x02 */
66 	-1,			/* 0x03 */
67 	-1,			/* 0x04 */
68 	-1,			/* 0x05 */
69 	-1,			/* 0x06 */
70 	 3125,			/* 0x07 */
71 	 6250,			/* 0x08 */
72 	12500,			/* 0x09 */
73 	25000,			/* 0x0a */
74 	30300,			/* 0x0b */
75 	50000,			/* 0x0c */
76 };
77 /* The PPR values at which you calculate the period in ns by multiplying
78  * by 4 */
79 #define SPI_STATIC_PPR	0x0c
80 
81 static int sprint_frac(char *dest, int value, int denom)
82 {
83 	int frac = value % denom;
84 	int result = sprintf(dest, "%d", value / denom);
85 
86 	if (frac == 0)
87 		return result;
88 	dest[result++] = '.';
89 
90 	do {
91 		denom /= 10;
92 		sprintf(dest + result, "%d", frac / denom);
93 		result++;
94 		frac %= denom;
95 	} while (frac);
96 
97 	dest[result++] = '\0';
98 	return result;
99 }
100 
101 static int spi_execute(struct scsi_device *sdev, const void *cmd,
102 		       enum dma_data_direction dir,
103 		       void *buffer, unsigned bufflen,
104 		       struct scsi_sense_hdr *sshdr)
105 {
106 	int i, result;
107 	unsigned char sense[SCSI_SENSE_BUFFERSIZE];
108 
109 	for(i = 0; i < DV_RETRIES; i++) {
110 		result = scsi_execute(sdev, cmd, dir, buffer, bufflen,
111 				      sense, DV_TIMEOUT, /* retries */ 1,
112 				      REQ_FAILFAST_DEV |
113 				      REQ_FAILFAST_TRANSPORT |
114 				      REQ_FAILFAST_DRIVER);
115 		if (result & DRIVER_SENSE) {
116 			struct scsi_sense_hdr sshdr_tmp;
117 			if (!sshdr)
118 				sshdr = &sshdr_tmp;
119 
120 			if (scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE,
121 						 sshdr)
122 			    && sshdr->sense_key == UNIT_ATTENTION)
123 				continue;
124 		}
125 		break;
126 	}
127 	return result;
128 }
129 
130 static struct {
131 	enum spi_signal_type	value;
132 	char			*name;
133 } signal_types[] = {
134 	{ SPI_SIGNAL_UNKNOWN, "unknown" },
135 	{ SPI_SIGNAL_SE, "SE" },
136 	{ SPI_SIGNAL_LVD, "LVD" },
137 	{ SPI_SIGNAL_HVD, "HVD" },
138 };
139 
140 static inline const char *spi_signal_to_string(enum spi_signal_type type)
141 {
142 	int i;
143 
144 	for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
145 		if (type == signal_types[i].value)
146 			return signal_types[i].name;
147 	}
148 	return NULL;
149 }
150 static inline enum spi_signal_type spi_signal_to_value(const char *name)
151 {
152 	int i, len;
153 
154 	for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
155 		len =  strlen(signal_types[i].name);
156 		if (strncmp(name, signal_types[i].name, len) == 0 &&
157 		    (name[len] == '\n' || name[len] == '\0'))
158 			return signal_types[i].value;
159 	}
160 	return SPI_SIGNAL_UNKNOWN;
161 }
162 
163 static int spi_host_setup(struct transport_container *tc, struct device *dev,
164 			  struct device *cdev)
165 {
166 	struct Scsi_Host *shost = dev_to_shost(dev);
167 
168 	spi_signalling(shost) = SPI_SIGNAL_UNKNOWN;
169 
170 	return 0;
171 }
172 
173 static int spi_host_configure(struct transport_container *tc,
174 			      struct device *dev,
175 			      struct device *cdev);
176 
177 static DECLARE_TRANSPORT_CLASS(spi_host_class,
178 			       "spi_host",
179 			       spi_host_setup,
180 			       NULL,
181 			       spi_host_configure);
182 
183 static int spi_host_match(struct attribute_container *cont,
184 			  struct device *dev)
185 {
186 	struct Scsi_Host *shost;
187 
188 	if (!scsi_is_host_device(dev))
189 		return 0;
190 
191 	shost = dev_to_shost(dev);
192 	if (!shost->transportt  || shost->transportt->host_attrs.ac.class
193 	    != &spi_host_class.class)
194 		return 0;
195 
196 	return &shost->transportt->host_attrs.ac == cont;
197 }
198 
199 static int spi_target_configure(struct transport_container *tc,
200 				struct device *dev,
201 				struct device *cdev);
202 
203 static int spi_device_configure(struct transport_container *tc,
204 				struct device *dev,
205 				struct device *cdev)
206 {
207 	struct scsi_device *sdev = to_scsi_device(dev);
208 	struct scsi_target *starget = sdev->sdev_target;
209 
210 	/* Populate the target capability fields with the values
211 	 * gleaned from the device inquiry */
212 
213 	spi_support_sync(starget) = scsi_device_sync(sdev);
214 	spi_support_wide(starget) = scsi_device_wide(sdev);
215 	spi_support_dt(starget) = scsi_device_dt(sdev);
216 	spi_support_dt_only(starget) = scsi_device_dt_only(sdev);
217 	spi_support_ius(starget) = scsi_device_ius(sdev);
218 	spi_support_qas(starget) = scsi_device_qas(sdev);
219 
220 	return 0;
221 }
222 
223 static int spi_setup_transport_attrs(struct transport_container *tc,
224 				     struct device *dev,
225 				     struct device *cdev)
226 {
227 	struct scsi_target *starget = to_scsi_target(dev);
228 
229 	spi_period(starget) = -1;	/* illegal value */
230 	spi_min_period(starget) = 0;
231 	spi_offset(starget) = 0;	/* async */
232 	spi_max_offset(starget) = 255;
233 	spi_width(starget) = 0;	/* narrow */
234 	spi_max_width(starget) = 1;
235 	spi_iu(starget) = 0;	/* no IU */
236 	spi_dt(starget) = 0;	/* ST */
237 	spi_qas(starget) = 0;
238 	spi_wr_flow(starget) = 0;
239 	spi_rd_strm(starget) = 0;
240 	spi_rti(starget) = 0;
241 	spi_pcomp_en(starget) = 0;
242 	spi_hold_mcs(starget) = 0;
243 	spi_dv_pending(starget) = 0;
244 	spi_dv_in_progress(starget) = 0;
245 	spi_initial_dv(starget) = 0;
246 	mutex_init(&spi_dv_mutex(starget));
247 
248 	return 0;
249 }
250 
251 #define spi_transport_show_simple(field, format_string)			\
252 									\
253 static ssize_t								\
254 show_spi_transport_##field(struct device *dev, 			\
255 			   struct device_attribute *attr, char *buf)	\
256 {									\
257 	struct scsi_target *starget = transport_class_to_starget(dev);	\
258 	struct spi_transport_attrs *tp;					\
259 									\
260 	tp = (struct spi_transport_attrs *)&starget->starget_data;	\
261 	return snprintf(buf, 20, format_string, tp->field);		\
262 }
263 
264 #define spi_transport_store_simple(field, format_string)		\
265 									\
266 static ssize_t								\
267 store_spi_transport_##field(struct device *dev, 			\
268 			    struct device_attribute *attr, 		\
269 			    const char *buf, size_t count)		\
270 {									\
271 	int val;							\
272 	struct scsi_target *starget = transport_class_to_starget(dev);	\
273 	struct spi_transport_attrs *tp;					\
274 									\
275 	tp = (struct spi_transport_attrs *)&starget->starget_data;	\
276 	val = simple_strtoul(buf, NULL, 0);				\
277 	tp->field = val;						\
278 	return count;							\
279 }
280 
281 #define spi_transport_show_function(field, format_string)		\
282 									\
283 static ssize_t								\
284 show_spi_transport_##field(struct device *dev, 			\
285 			   struct device_attribute *attr, char *buf)	\
286 {									\
287 	struct scsi_target *starget = transport_class_to_starget(dev);	\
288 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);	\
289 	struct spi_transport_attrs *tp;					\
290 	struct spi_internal *i = to_spi_internal(shost->transportt);	\
291 	tp = (struct spi_transport_attrs *)&starget->starget_data;	\
292 	if (i->f->get_##field)						\
293 		i->f->get_##field(starget);				\
294 	return snprintf(buf, 20, format_string, tp->field);		\
295 }
296 
297 #define spi_transport_store_function(field, format_string)		\
298 static ssize_t								\
299 store_spi_transport_##field(struct device *dev, 			\
300 			    struct device_attribute *attr,		\
301 			    const char *buf, size_t count)		\
302 {									\
303 	int val;							\
304 	struct scsi_target *starget = transport_class_to_starget(dev);	\
305 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);	\
306 	struct spi_internal *i = to_spi_internal(shost->transportt);	\
307 									\
308 	if (!i->f->set_##field)						\
309 		return -EINVAL;						\
310 	val = simple_strtoul(buf, NULL, 0);				\
311 	i->f->set_##field(starget, val);				\
312 	return count;							\
313 }
314 
315 #define spi_transport_store_max(field, format_string)			\
316 static ssize_t								\
317 store_spi_transport_##field(struct device *dev, 			\
318 			    struct device_attribute *attr,		\
319 			    const char *buf, size_t count)		\
320 {									\
321 	int val;							\
322 	struct scsi_target *starget = transport_class_to_starget(dev);	\
323 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);	\
324 	struct spi_internal *i = to_spi_internal(shost->transportt);	\
325 	struct spi_transport_attrs *tp					\
326 		= (struct spi_transport_attrs *)&starget->starget_data;	\
327 									\
328 	if (i->f->set_##field)						\
329 		return -EINVAL;						\
330 	val = simple_strtoul(buf, NULL, 0);				\
331 	if (val > tp->max_##field)					\
332 		val = tp->max_##field;					\
333 	i->f->set_##field(starget, val);				\
334 	return count;							\
335 }
336 
337 #define spi_transport_rd_attr(field, format_string)			\
338 	spi_transport_show_function(field, format_string)		\
339 	spi_transport_store_function(field, format_string)		\
340 static DEVICE_ATTR(field, S_IRUGO,				\
341 		   show_spi_transport_##field,			\
342 		   store_spi_transport_##field);
343 
344 #define spi_transport_simple_attr(field, format_string)			\
345 	spi_transport_show_simple(field, format_string)			\
346 	spi_transport_store_simple(field, format_string)		\
347 static DEVICE_ATTR(field, S_IRUGO,				\
348 		   show_spi_transport_##field,			\
349 		   store_spi_transport_##field);
350 
351 #define spi_transport_max_attr(field, format_string)			\
352 	spi_transport_show_function(field, format_string)		\
353 	spi_transport_store_max(field, format_string)			\
354 	spi_transport_simple_attr(max_##field, format_string)		\
355 static DEVICE_ATTR(field, S_IRUGO,				\
356 		   show_spi_transport_##field,			\
357 		   store_spi_transport_##field);
358 
359 /* The Parallel SCSI Tranport Attributes: */
360 spi_transport_max_attr(offset, "%d\n");
361 spi_transport_max_attr(width, "%d\n");
362 spi_transport_rd_attr(iu, "%d\n");
363 spi_transport_rd_attr(dt, "%d\n");
364 spi_transport_rd_attr(qas, "%d\n");
365 spi_transport_rd_attr(wr_flow, "%d\n");
366 spi_transport_rd_attr(rd_strm, "%d\n");
367 spi_transport_rd_attr(rti, "%d\n");
368 spi_transport_rd_attr(pcomp_en, "%d\n");
369 spi_transport_rd_attr(hold_mcs, "%d\n");
370 
371 /* we only care about the first child device that's a real SCSI device
372  * so we return 1 to terminate the iteration when we find it */
373 static int child_iter(struct device *dev, void *data)
374 {
375 	if (!scsi_is_sdev_device(dev))
376 		return 0;
377 
378 	spi_dv_device(to_scsi_device(dev));
379 	return 1;
380 }
381 
382 static ssize_t
383 store_spi_revalidate(struct device *dev, struct device_attribute *attr,
384 		     const char *buf, size_t count)
385 {
386 	struct scsi_target *starget = transport_class_to_starget(dev);
387 
388 	device_for_each_child(&starget->dev, NULL, child_iter);
389 	return count;
390 }
391 static DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate);
392 
393 /* Translate the period into ns according to the current spec
394  * for SDTR/PPR messages */
395 static int period_to_str(char *buf, int period)
396 {
397 	int len, picosec;
398 
399 	if (period < 0 || period > 0xff) {
400 		picosec = -1;
401 	} else if (period <= SPI_STATIC_PPR) {
402 		picosec = ppr_to_ps[period];
403 	} else {
404 		picosec = period * 4000;
405 	}
406 
407 	if (picosec == -1) {
408 		len = sprintf(buf, "reserved");
409 	} else {
410 		len = sprint_frac(buf, picosec, 1000);
411 	}
412 
413 	return len;
414 }
415 
416 static ssize_t
417 show_spi_transport_period_helper(char *buf, int period)
418 {
419 	int len = period_to_str(buf, period);
420 	buf[len++] = '\n';
421 	buf[len] = '\0';
422 	return len;
423 }
424 
425 static ssize_t
426 store_spi_transport_period_helper(struct device *dev, const char *buf,
427 				  size_t count, int *periodp)
428 {
429 	int j, picosec, period = -1;
430 	char *endp;
431 
432 	picosec = simple_strtoul(buf, &endp, 10) * 1000;
433 	if (*endp == '.') {
434 		int mult = 100;
435 		do {
436 			endp++;
437 			if (!isdigit(*endp))
438 				break;
439 			picosec += (*endp - '0') * mult;
440 			mult /= 10;
441 		} while (mult > 0);
442 	}
443 
444 	for (j = 0; j <= SPI_STATIC_PPR; j++) {
445 		if (ppr_to_ps[j] < picosec)
446 			continue;
447 		period = j;
448 		break;
449 	}
450 
451 	if (period == -1)
452 		period = picosec / 4000;
453 
454 	if (period > 0xff)
455 		period = 0xff;
456 
457 	*periodp = period;
458 
459 	return count;
460 }
461 
462 static ssize_t
463 show_spi_transport_period(struct device *dev,
464 			  struct device_attribute *attr, char *buf)
465 {
466 	struct scsi_target *starget = transport_class_to_starget(dev);
467 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
468 	struct spi_internal *i = to_spi_internal(shost->transportt);
469 	struct spi_transport_attrs *tp =
470 		(struct spi_transport_attrs *)&starget->starget_data;
471 
472 	if (i->f->get_period)
473 		i->f->get_period(starget);
474 
475 	return show_spi_transport_period_helper(buf, tp->period);
476 }
477 
478 static ssize_t
479 store_spi_transport_period(struct device *cdev, struct device_attribute *attr,
480 			   const char *buf, size_t count)
481 {
482 	struct scsi_target *starget = transport_class_to_starget(cdev);
483 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
484 	struct spi_internal *i = to_spi_internal(shost->transportt);
485 	struct spi_transport_attrs *tp =
486 		(struct spi_transport_attrs *)&starget->starget_data;
487 	int period, retval;
488 
489 	if (!i->f->set_period)
490 		return -EINVAL;
491 
492 	retval = store_spi_transport_period_helper(cdev, buf, count, &period);
493 
494 	if (period < tp->min_period)
495 		period = tp->min_period;
496 
497 	i->f->set_period(starget, period);
498 
499 	return retval;
500 }
501 
502 static DEVICE_ATTR(period, S_IRUGO,
503 		   show_spi_transport_period,
504 		   store_spi_transport_period);
505 
506 static ssize_t
507 show_spi_transport_min_period(struct device *cdev,
508 			      struct device_attribute *attr, char *buf)
509 {
510 	struct scsi_target *starget = transport_class_to_starget(cdev);
511 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
512 	struct spi_internal *i = to_spi_internal(shost->transportt);
513 	struct spi_transport_attrs *tp =
514 		(struct spi_transport_attrs *)&starget->starget_data;
515 
516 	if (!i->f->set_period)
517 		return -EINVAL;
518 
519 	return show_spi_transport_period_helper(buf, tp->min_period);
520 }
521 
522 static ssize_t
523 store_spi_transport_min_period(struct device *cdev,
524 			       struct device_attribute *attr,
525 			       const char *buf, size_t count)
526 {
527 	struct scsi_target *starget = transport_class_to_starget(cdev);
528 	struct spi_transport_attrs *tp =
529 		(struct spi_transport_attrs *)&starget->starget_data;
530 
531 	return store_spi_transport_period_helper(cdev, buf, count,
532 						 &tp->min_period);
533 }
534 
535 
536 static DEVICE_ATTR(min_period, S_IRUGO,
537 		   show_spi_transport_min_period,
538 		   store_spi_transport_min_period);
539 
540 
541 static ssize_t show_spi_host_signalling(struct device *cdev,
542 					struct device_attribute *attr,
543 					char *buf)
544 {
545 	struct Scsi_Host *shost = transport_class_to_shost(cdev);
546 	struct spi_internal *i = to_spi_internal(shost->transportt);
547 
548 	if (i->f->get_signalling)
549 		i->f->get_signalling(shost);
550 
551 	return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost)));
552 }
553 static ssize_t store_spi_host_signalling(struct device *dev,
554 					 struct device_attribute *attr,
555 					 const char *buf, size_t count)
556 {
557 	struct Scsi_Host *shost = transport_class_to_shost(dev);
558 	struct spi_internal *i = to_spi_internal(shost->transportt);
559 	enum spi_signal_type type = spi_signal_to_value(buf);
560 
561 	if (!i->f->set_signalling)
562 		return -EINVAL;
563 
564 	if (type != SPI_SIGNAL_UNKNOWN)
565 		i->f->set_signalling(shost, type);
566 
567 	return count;
568 }
569 static DEVICE_ATTR(signalling, S_IRUGO,
570 		   show_spi_host_signalling,
571 		   store_spi_host_signalling);
572 
573 #define DV_SET(x, y)			\
574 	if(i->f->set_##x)		\
575 		i->f->set_##x(sdev->sdev_target, y)
576 
577 enum spi_compare_returns {
578 	SPI_COMPARE_SUCCESS,
579 	SPI_COMPARE_FAILURE,
580 	SPI_COMPARE_SKIP_TEST,
581 };
582 
583 
584 /* This is for read/write Domain Validation:  If the device supports
585  * an echo buffer, we do read/write tests to it */
586 static enum spi_compare_returns
587 spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer,
588 			  u8 *ptr, const int retries)
589 {
590 	int len = ptr - buffer;
591 	int j, k, r, result;
592 	unsigned int pattern = 0x0000ffff;
593 	struct scsi_sense_hdr sshdr;
594 
595 	const char spi_write_buffer[] = {
596 		WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
597 	};
598 	const char spi_read_buffer[] = {
599 		READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
600 	};
601 
602 	/* set up the pattern buffer.  Doesn't matter if we spill
603 	 * slightly beyond since that's where the read buffer is */
604 	for (j = 0; j < len; ) {
605 
606 		/* fill the buffer with counting (test a) */
607 		for ( ; j < min(len, 32); j++)
608 			buffer[j] = j;
609 		k = j;
610 		/* fill the buffer with alternating words of 0x0 and
611 		 * 0xffff (test b) */
612 		for ( ; j < min(len, k + 32); j += 2) {
613 			u16 *word = (u16 *)&buffer[j];
614 
615 			*word = (j & 0x02) ? 0x0000 : 0xffff;
616 		}
617 		k = j;
618 		/* fill with crosstalk (alternating 0x5555 0xaaa)
619                  * (test c) */
620 		for ( ; j < min(len, k + 32); j += 2) {
621 			u16 *word = (u16 *)&buffer[j];
622 
623 			*word = (j & 0x02) ? 0x5555 : 0xaaaa;
624 		}
625 		k = j;
626 		/* fill with shifting bits (test d) */
627 		for ( ; j < min(len, k + 32); j += 4) {
628 			u32 *word = (unsigned int *)&buffer[j];
629 			u32 roll = (pattern & 0x80000000) ? 1 : 0;
630 
631 			*word = pattern;
632 			pattern = (pattern << 1) | roll;
633 		}
634 		/* don't bother with random data (test e) */
635 	}
636 
637 	for (r = 0; r < retries; r++) {
638 		result = spi_execute(sdev, spi_write_buffer, DMA_TO_DEVICE,
639 				     buffer, len, &sshdr);
640 		if(result || !scsi_device_online(sdev)) {
641 
642 			scsi_device_set_state(sdev, SDEV_QUIESCE);
643 			if (scsi_sense_valid(&sshdr)
644 			    && sshdr.sense_key == ILLEGAL_REQUEST
645 			    /* INVALID FIELD IN CDB */
646 			    && sshdr.asc == 0x24 && sshdr.ascq == 0x00)
647 				/* This would mean that the drive lied
648 				 * to us about supporting an echo
649 				 * buffer (unfortunately some Western
650 				 * Digital drives do precisely this)
651 				 */
652 				return SPI_COMPARE_SKIP_TEST;
653 
654 
655 			sdev_printk(KERN_ERR, sdev, "Write Buffer failure %x\n", result);
656 			return SPI_COMPARE_FAILURE;
657 		}
658 
659 		memset(ptr, 0, len);
660 		spi_execute(sdev, spi_read_buffer, DMA_FROM_DEVICE,
661 			    ptr, len, NULL);
662 		scsi_device_set_state(sdev, SDEV_QUIESCE);
663 
664 		if (memcmp(buffer, ptr, len) != 0)
665 			return SPI_COMPARE_FAILURE;
666 	}
667 	return SPI_COMPARE_SUCCESS;
668 }
669 
670 /* This is for the simplest form of Domain Validation: a read test
671  * on the inquiry data from the device */
672 static enum spi_compare_returns
673 spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer,
674 			      u8 *ptr, const int retries)
675 {
676 	int r, result;
677 	const int len = sdev->inquiry_len;
678 	const char spi_inquiry[] = {
679 		INQUIRY, 0, 0, 0, len, 0
680 	};
681 
682 	for (r = 0; r < retries; r++) {
683 		memset(ptr, 0, len);
684 
685 		result = spi_execute(sdev, spi_inquiry, DMA_FROM_DEVICE,
686 				     ptr, len, NULL);
687 
688 		if(result || !scsi_device_online(sdev)) {
689 			scsi_device_set_state(sdev, SDEV_QUIESCE);
690 			return SPI_COMPARE_FAILURE;
691 		}
692 
693 		/* If we don't have the inquiry data already, the
694 		 * first read gets it */
695 		if (ptr == buffer) {
696 			ptr += len;
697 			--r;
698 			continue;
699 		}
700 
701 		if (memcmp(buffer, ptr, len) != 0)
702 			/* failure */
703 			return SPI_COMPARE_FAILURE;
704 	}
705 	return SPI_COMPARE_SUCCESS;
706 }
707 
708 static enum spi_compare_returns
709 spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr,
710 	       enum spi_compare_returns
711 	       (*compare_fn)(struct scsi_device *, u8 *, u8 *, int))
712 {
713 	struct spi_internal *i = to_spi_internal(sdev->host->transportt);
714 	struct scsi_target *starget = sdev->sdev_target;
715 	int period = 0, prevperiod = 0;
716 	enum spi_compare_returns retval;
717 
718 
719 	for (;;) {
720 		int newperiod;
721 		retval = compare_fn(sdev, buffer, ptr, DV_LOOPS);
722 
723 		if (retval == SPI_COMPARE_SUCCESS
724 		    || retval == SPI_COMPARE_SKIP_TEST)
725 			break;
726 
727 		/* OK, retrain, fallback */
728 		if (i->f->get_iu)
729 			i->f->get_iu(starget);
730 		if (i->f->get_qas)
731 			i->f->get_qas(starget);
732 		if (i->f->get_period)
733 			i->f->get_period(sdev->sdev_target);
734 
735 		/* Here's the fallback sequence; first try turning off
736 		 * IU, then QAS (if we can control them), then finally
737 		 * fall down the periods */
738 		if (i->f->set_iu && spi_iu(starget)) {
739 			starget_printk(KERN_ERR, starget, "Domain Validation Disabing Information Units\n");
740 			DV_SET(iu, 0);
741 		} else if (i->f->set_qas && spi_qas(starget)) {
742 			starget_printk(KERN_ERR, starget, "Domain Validation Disabing Quick Arbitration and Selection\n");
743 			DV_SET(qas, 0);
744 		} else {
745 			newperiod = spi_period(starget);
746 			period = newperiod > period ? newperiod : period;
747 			if (period < 0x0d)
748 				period++;
749 			else
750 				period += period >> 1;
751 
752 			if (unlikely(period > 0xff || period == prevperiod)) {
753 				/* Total failure; set to async and return */
754 				starget_printk(KERN_ERR, starget, "Domain Validation Failure, dropping back to Asynchronous\n");
755 				DV_SET(offset, 0);
756 				return SPI_COMPARE_FAILURE;
757 			}
758 			starget_printk(KERN_ERR, starget, "Domain Validation detected failure, dropping back\n");
759 			DV_SET(period, period);
760 			prevperiod = period;
761 		}
762 	}
763 	return retval;
764 }
765 
766 static int
767 spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer)
768 {
769 	int l, result;
770 
771 	/* first off do a test unit ready.  This can error out
772 	 * because of reservations or some other reason.  If it
773 	 * fails, the device won't let us write to the echo buffer
774 	 * so just return failure */
775 
776 	const char spi_test_unit_ready[] = {
777 		TEST_UNIT_READY, 0, 0, 0, 0, 0
778 	};
779 
780 	const char spi_read_buffer_descriptor[] = {
781 		READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0
782 	};
783 
784 
785 	/* We send a set of three TURs to clear any outstanding
786 	 * unit attention conditions if they exist (Otherwise the
787 	 * buffer tests won't be happy).  If the TUR still fails
788 	 * (reservation conflict, device not ready, etc) just
789 	 * skip the write tests */
790 	for (l = 0; ; l++) {
791 		result = spi_execute(sdev, spi_test_unit_ready, DMA_NONE,
792 				     NULL, 0, NULL);
793 
794 		if(result) {
795 			if(l >= 3)
796 				return 0;
797 		} else {
798 			/* TUR succeeded */
799 			break;
800 		}
801 	}
802 
803 	result = spi_execute(sdev, spi_read_buffer_descriptor,
804 			     DMA_FROM_DEVICE, buffer, 4, NULL);
805 
806 	if (result)
807 		/* Device has no echo buffer */
808 		return 0;
809 
810 	return buffer[3] + ((buffer[2] & 0x1f) << 8);
811 }
812 
813 static void
814 spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer)
815 {
816 	struct spi_internal *i = to_spi_internal(sdev->host->transportt);
817 	struct scsi_target *starget = sdev->sdev_target;
818 	struct Scsi_Host *shost = sdev->host;
819 	int len = sdev->inquiry_len;
820 	int min_period = spi_min_period(starget);
821 	int max_width = spi_max_width(starget);
822 	/* first set us up for narrow async */
823 	DV_SET(offset, 0);
824 	DV_SET(width, 0);
825 
826 	if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS)
827 	    != SPI_COMPARE_SUCCESS) {
828 		starget_printk(KERN_ERR, starget, "Domain Validation Initial Inquiry Failed\n");
829 		/* FIXME: should probably offline the device here? */
830 		return;
831 	}
832 
833 	if (!scsi_device_wide(sdev)) {
834 		spi_max_width(starget) = 0;
835 		max_width = 0;
836 	}
837 
838 	/* test width */
839 	if (i->f->set_width && max_width) {
840 		i->f->set_width(starget, 1);
841 
842 		if (spi_dv_device_compare_inquiry(sdev, buffer,
843 						   buffer + len,
844 						   DV_LOOPS)
845 		    != SPI_COMPARE_SUCCESS) {
846 			starget_printk(KERN_ERR, starget, "Wide Transfers Fail\n");
847 			i->f->set_width(starget, 0);
848 			/* Make sure we don't force wide back on by asking
849 			 * for a transfer period that requires it */
850 			max_width = 0;
851 			if (min_period < 10)
852 				min_period = 10;
853 		}
854 	}
855 
856 	if (!i->f->set_period)
857 		return;
858 
859 	/* device can't handle synchronous */
860 	if (!scsi_device_sync(sdev) && !scsi_device_dt(sdev))
861 		return;
862 
863 	/* len == -1 is the signal that we need to ascertain the
864 	 * presence of an echo buffer before trying to use it.  len ==
865 	 * 0 means we don't have an echo buffer */
866 	len = -1;
867 
868  retry:
869 
870 	/* now set up to the maximum */
871 	DV_SET(offset, spi_max_offset(starget));
872 	DV_SET(period, min_period);
873 
874 	/* try QAS requests; this should be harmless to set if the
875 	 * target supports it */
876 	if (scsi_device_qas(sdev)) {
877 		DV_SET(qas, 1);
878 	} else {
879 		DV_SET(qas, 0);
880 	}
881 
882 	if (scsi_device_ius(sdev) && min_period < 9) {
883 		/* This u320 (or u640). Set IU transfers */
884 		DV_SET(iu, 1);
885 		/* Then set the optional parameters */
886 		DV_SET(rd_strm, 1);
887 		DV_SET(wr_flow, 1);
888 		DV_SET(rti, 1);
889 		if (min_period == 8)
890 			DV_SET(pcomp_en, 1);
891 	} else {
892 		DV_SET(iu, 0);
893 	}
894 
895 	/* now that we've done all this, actually check the bus
896 	 * signal type (if known).  Some devices are stupid on
897 	 * a SE bus and still claim they can try LVD only settings */
898 	if (i->f->get_signalling)
899 		i->f->get_signalling(shost);
900 	if (spi_signalling(shost) == SPI_SIGNAL_SE ||
901 	    spi_signalling(shost) == SPI_SIGNAL_HVD ||
902 	    !scsi_device_dt(sdev)) {
903 		DV_SET(dt, 0);
904 	} else {
905 		DV_SET(dt, 1);
906 	}
907 	/* set width last because it will pull all the other
908 	 * parameters down to required values */
909 	DV_SET(width, max_width);
910 
911 	/* Do the read only INQUIRY tests */
912 	spi_dv_retrain(sdev, buffer, buffer + sdev->inquiry_len,
913 		       spi_dv_device_compare_inquiry);
914 	/* See if we actually managed to negotiate and sustain DT */
915 	if (i->f->get_dt)
916 		i->f->get_dt(starget);
917 
918 	/* see if the device has an echo buffer.  If it does we can do
919 	 * the SPI pattern write tests.  Because of some broken
920 	 * devices, we *only* try this on a device that has actually
921 	 * negotiated DT */
922 
923 	if (len == -1 && spi_dt(starget))
924 		len = spi_dv_device_get_echo_buffer(sdev, buffer);
925 
926 	if (len <= 0) {
927 		starget_printk(KERN_INFO, starget, "Domain Validation skipping write tests\n");
928 		return;
929 	}
930 
931 	if (len > SPI_MAX_ECHO_BUFFER_SIZE) {
932 		starget_printk(KERN_WARNING, starget, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE);
933 		len = SPI_MAX_ECHO_BUFFER_SIZE;
934 	}
935 
936 	if (spi_dv_retrain(sdev, buffer, buffer + len,
937 			   spi_dv_device_echo_buffer)
938 	    == SPI_COMPARE_SKIP_TEST) {
939 		/* OK, the stupid drive can't do a write echo buffer
940 		 * test after all, fall back to the read tests */
941 		len = 0;
942 		goto retry;
943 	}
944 }
945 
946 
947 /**	spi_dv_device - Do Domain Validation on the device
948  *	@sdev:		scsi device to validate
949  *
950  *	Performs the domain validation on the given device in the
951  *	current execution thread.  Since DV operations may sleep,
952  *	the current thread must have user context.  Also no SCSI
953  *	related locks that would deadlock I/O issued by the DV may
954  *	be held.
955  */
956 void
957 spi_dv_device(struct scsi_device *sdev)
958 {
959 	struct scsi_target *starget = sdev->sdev_target;
960 	u8 *buffer;
961 	const int len = SPI_MAX_ECHO_BUFFER_SIZE*2;
962 
963 	if (unlikely(scsi_device_get(sdev)))
964 		return;
965 
966 	if (unlikely(spi_dv_in_progress(starget)))
967 		return;
968 	spi_dv_in_progress(starget) = 1;
969 
970 	buffer = kzalloc(len, GFP_KERNEL);
971 
972 	if (unlikely(!buffer))
973 		goto out_put;
974 
975 	/* We need to verify that the actual device will quiesce; the
976 	 * later target quiesce is just a nice to have */
977 	if (unlikely(scsi_device_quiesce(sdev)))
978 		goto out_free;
979 
980 	scsi_target_quiesce(starget);
981 
982 	spi_dv_pending(starget) = 1;
983 	mutex_lock(&spi_dv_mutex(starget));
984 
985 	starget_printk(KERN_INFO, starget, "Beginning Domain Validation\n");
986 
987 	spi_dv_device_internal(sdev, buffer);
988 
989 	starget_printk(KERN_INFO, starget, "Ending Domain Validation\n");
990 
991 	mutex_unlock(&spi_dv_mutex(starget));
992 	spi_dv_pending(starget) = 0;
993 
994 	scsi_target_resume(starget);
995 
996 	spi_initial_dv(starget) = 1;
997 
998  out_free:
999 	kfree(buffer);
1000  out_put:
1001 	spi_dv_in_progress(starget) = 0;
1002 	scsi_device_put(sdev);
1003 }
1004 EXPORT_SYMBOL(spi_dv_device);
1005 
1006 struct work_queue_wrapper {
1007 	struct work_struct	work;
1008 	struct scsi_device	*sdev;
1009 };
1010 
1011 static void
1012 spi_dv_device_work_wrapper(struct work_struct *work)
1013 {
1014 	struct work_queue_wrapper *wqw =
1015 		container_of(work, struct work_queue_wrapper, work);
1016 	struct scsi_device *sdev = wqw->sdev;
1017 
1018 	kfree(wqw);
1019 	spi_dv_device(sdev);
1020 	spi_dv_pending(sdev->sdev_target) = 0;
1021 	scsi_device_put(sdev);
1022 }
1023 
1024 
1025 /**
1026  *	spi_schedule_dv_device - schedule domain validation to occur on the device
1027  *	@sdev:	The device to validate
1028  *
1029  *	Identical to spi_dv_device() above, except that the DV will be
1030  *	scheduled to occur in a workqueue later.  All memory allocations
1031  *	are atomic, so may be called from any context including those holding
1032  *	SCSI locks.
1033  */
1034 void
1035 spi_schedule_dv_device(struct scsi_device *sdev)
1036 {
1037 	struct work_queue_wrapper *wqw =
1038 		kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC);
1039 
1040 	if (unlikely(!wqw))
1041 		return;
1042 
1043 	if (unlikely(spi_dv_pending(sdev->sdev_target))) {
1044 		kfree(wqw);
1045 		return;
1046 	}
1047 	/* Set pending early (dv_device doesn't check it, only sets it) */
1048 	spi_dv_pending(sdev->sdev_target) = 1;
1049 	if (unlikely(scsi_device_get(sdev))) {
1050 		kfree(wqw);
1051 		spi_dv_pending(sdev->sdev_target) = 0;
1052 		return;
1053 	}
1054 
1055 	INIT_WORK(&wqw->work, spi_dv_device_work_wrapper);
1056 	wqw->sdev = sdev;
1057 
1058 	schedule_work(&wqw->work);
1059 }
1060 EXPORT_SYMBOL(spi_schedule_dv_device);
1061 
1062 /**
1063  * spi_display_xfer_agreement - Print the current target transfer agreement
1064  * @starget: The target for which to display the agreement
1065  *
1066  * Each SPI port is required to maintain a transfer agreement for each
1067  * other port on the bus.  This function prints a one-line summary of
1068  * the current agreement; more detailed information is available in sysfs.
1069  */
1070 void spi_display_xfer_agreement(struct scsi_target *starget)
1071 {
1072 	struct spi_transport_attrs *tp;
1073 	tp = (struct spi_transport_attrs *)&starget->starget_data;
1074 
1075 	if (tp->offset > 0 && tp->period > 0) {
1076 		unsigned int picosec, kb100;
1077 		char *scsi = "FAST-?";
1078 		char tmp[8];
1079 
1080 		if (tp->period <= SPI_STATIC_PPR) {
1081 			picosec = ppr_to_ps[tp->period];
1082 			switch (tp->period) {
1083 				case  7: scsi = "FAST-320"; break;
1084 				case  8: scsi = "FAST-160"; break;
1085 				case  9: scsi = "FAST-80"; break;
1086 				case 10:
1087 				case 11: scsi = "FAST-40"; break;
1088 				case 12: scsi = "FAST-20"; break;
1089 			}
1090 		} else {
1091 			picosec = tp->period * 4000;
1092 			if (tp->period < 25)
1093 				scsi = "FAST-20";
1094 			else if (tp->period < 50)
1095 				scsi = "FAST-10";
1096 			else
1097 				scsi = "FAST-5";
1098 		}
1099 
1100 		kb100 = (10000000 + picosec / 2) / picosec;
1101 		if (tp->width)
1102 			kb100 *= 2;
1103 		sprint_frac(tmp, picosec, 1000);
1104 
1105 		dev_info(&starget->dev,
1106 			 "%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n",
1107 			 scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10,
1108 			 tp->dt ? "DT" : "ST",
1109 			 tp->iu ? " IU" : "",
1110 			 tp->qas  ? " QAS" : "",
1111 			 tp->rd_strm ? " RDSTRM" : "",
1112 			 tp->rti ? " RTI" : "",
1113 			 tp->wr_flow ? " WRFLOW" : "",
1114 			 tp->pcomp_en ? " PCOMP" : "",
1115 			 tp->hold_mcs ? " HMCS" : "",
1116 			 tmp, tp->offset);
1117 	} else {
1118 		dev_info(&starget->dev, "%sasynchronous\n",
1119 				tp->width ? "wide " : "");
1120 	}
1121 }
1122 EXPORT_SYMBOL(spi_display_xfer_agreement);
1123 
1124 int spi_populate_width_msg(unsigned char *msg, int width)
1125 {
1126 	msg[0] = EXTENDED_MESSAGE;
1127 	msg[1] = 2;
1128 	msg[2] = EXTENDED_WDTR;
1129 	msg[3] = width;
1130 	return 4;
1131 }
1132 EXPORT_SYMBOL_GPL(spi_populate_width_msg);
1133 
1134 int spi_populate_sync_msg(unsigned char *msg, int period, int offset)
1135 {
1136 	msg[0] = EXTENDED_MESSAGE;
1137 	msg[1] = 3;
1138 	msg[2] = EXTENDED_SDTR;
1139 	msg[3] = period;
1140 	msg[4] = offset;
1141 	return 5;
1142 }
1143 EXPORT_SYMBOL_GPL(spi_populate_sync_msg);
1144 
1145 int spi_populate_ppr_msg(unsigned char *msg, int period, int offset,
1146 		int width, int options)
1147 {
1148 	msg[0] = EXTENDED_MESSAGE;
1149 	msg[1] = 6;
1150 	msg[2] = EXTENDED_PPR;
1151 	msg[3] = period;
1152 	msg[4] = 0;
1153 	msg[5] = offset;
1154 	msg[6] = width;
1155 	msg[7] = options;
1156 	return 8;
1157 }
1158 EXPORT_SYMBOL_GPL(spi_populate_ppr_msg);
1159 
1160 #ifdef CONFIG_SCSI_CONSTANTS
1161 static const char * const one_byte_msgs[] = {
1162 /* 0x00 */ "Task Complete", NULL /* Extended Message */, "Save Pointers",
1163 /* 0x03 */ "Restore Pointers", "Disconnect", "Initiator Error",
1164 /* 0x06 */ "Abort Task Set", "Message Reject", "Nop", "Message Parity Error",
1165 /* 0x0a */ "Linked Command Complete", "Linked Command Complete w/flag",
1166 /* 0x0c */ "Target Reset", "Abort Task", "Clear Task Set",
1167 /* 0x0f */ "Initiate Recovery", "Release Recovery",
1168 /* 0x11 */ "Terminate Process", "Continue Task", "Target Transfer Disable",
1169 /* 0x14 */ NULL, NULL, "Clear ACA", "LUN Reset"
1170 };
1171 
1172 static const char * const two_byte_msgs[] = {
1173 /* 0x20 */ "Simple Queue Tag", "Head of Queue Tag", "Ordered Queue Tag",
1174 /* 0x23 */ "Ignore Wide Residue", "ACA"
1175 };
1176 
1177 static const char * const extended_msgs[] = {
1178 /* 0x00 */ "Modify Data Pointer", "Synchronous Data Transfer Request",
1179 /* 0x02 */ "SCSI-I Extended Identify", "Wide Data Transfer Request",
1180 /* 0x04 */ "Parallel Protocol Request", "Modify Bidirectional Data Pointer"
1181 };
1182 
1183 static void print_nego(const unsigned char *msg, int per, int off, int width)
1184 {
1185 	if (per) {
1186 		char buf[20];
1187 		period_to_str(buf, msg[per]);
1188 		printk("period = %s ns ", buf);
1189 	}
1190 
1191 	if (off)
1192 		printk("offset = %d ", msg[off]);
1193 	if (width)
1194 		printk("width = %d ", 8 << msg[width]);
1195 }
1196 
1197 static void print_ptr(const unsigned char *msg, int msb, const char *desc)
1198 {
1199 	int ptr = (msg[msb] << 24) | (msg[msb+1] << 16) | (msg[msb+2] << 8) |
1200 			msg[msb+3];
1201 	printk("%s = %d ", desc, ptr);
1202 }
1203 
1204 int spi_print_msg(const unsigned char *msg)
1205 {
1206 	int len = 1, i;
1207 	if (msg[0] == EXTENDED_MESSAGE) {
1208 		len = 2 + msg[1];
1209 		if (len == 2)
1210 			len += 256;
1211 		if (msg[2] < ARRAY_SIZE(extended_msgs))
1212 			printk ("%s ", extended_msgs[msg[2]]);
1213 		else
1214 			printk ("Extended Message, reserved code (0x%02x) ",
1215 				(int) msg[2]);
1216 		switch (msg[2]) {
1217 		case EXTENDED_MODIFY_DATA_POINTER:
1218 			print_ptr(msg, 3, "pointer");
1219 			break;
1220 		case EXTENDED_SDTR:
1221 			print_nego(msg, 3, 4, 0);
1222 			break;
1223 		case EXTENDED_WDTR:
1224 			print_nego(msg, 0, 0, 3);
1225 			break;
1226 		case EXTENDED_PPR:
1227 			print_nego(msg, 3, 5, 6);
1228 			break;
1229 		case EXTENDED_MODIFY_BIDI_DATA_PTR:
1230 			print_ptr(msg, 3, "out");
1231 			print_ptr(msg, 7, "in");
1232 			break;
1233 		default:
1234 		for (i = 2; i < len; ++i)
1235 			printk("%02x ", msg[i]);
1236 		}
1237 	/* Identify */
1238 	} else if (msg[0] & 0x80) {
1239 		printk("Identify disconnect %sallowed %s %d ",
1240 			(msg[0] & 0x40) ? "" : "not ",
1241 			(msg[0] & 0x20) ? "target routine" : "lun",
1242 			msg[0] & 0x7);
1243 	/* Normal One byte */
1244 	} else if (msg[0] < 0x1f) {
1245 		if (msg[0] < ARRAY_SIZE(one_byte_msgs) && one_byte_msgs[msg[0]])
1246 			printk("%s ", one_byte_msgs[msg[0]]);
1247 		else
1248 			printk("reserved (%02x) ", msg[0]);
1249 	} else if (msg[0] == 0x55) {
1250 		printk("QAS Request ");
1251 	/* Two byte */
1252 	} else if (msg[0] <= 0x2f) {
1253 		if ((msg[0] - 0x20) < ARRAY_SIZE(two_byte_msgs))
1254 			printk("%s %02x ", two_byte_msgs[msg[0] - 0x20],
1255 				msg[1]);
1256 		else
1257 			printk("reserved two byte (%02x %02x) ",
1258 				msg[0], msg[1]);
1259 		len = 2;
1260 	} else
1261 		printk("reserved ");
1262 	return len;
1263 }
1264 EXPORT_SYMBOL(spi_print_msg);
1265 
1266 #else  /* ifndef CONFIG_SCSI_CONSTANTS */
1267 
1268 int spi_print_msg(const unsigned char *msg)
1269 {
1270 	int len = 1, i;
1271 
1272 	if (msg[0] == EXTENDED_MESSAGE) {
1273 		len = 2 + msg[1];
1274 		if (len == 2)
1275 			len += 256;
1276 		for (i = 0; i < len; ++i)
1277 			printk("%02x ", msg[i]);
1278 	/* Identify */
1279 	} else if (msg[0] & 0x80) {
1280 		printk("%02x ", msg[0]);
1281 	/* Normal One byte */
1282 	} else if ((msg[0] < 0x1f) || (msg[0] == 0x55)) {
1283 		printk("%02x ", msg[0]);
1284 	/* Two byte */
1285 	} else if (msg[0] <= 0x2f) {
1286 		printk("%02x %02x", msg[0], msg[1]);
1287 		len = 2;
1288 	} else
1289 		printk("%02x ", msg[0]);
1290 	return len;
1291 }
1292 EXPORT_SYMBOL(spi_print_msg);
1293 #endif /* ! CONFIG_SCSI_CONSTANTS */
1294 
1295 static int spi_device_match(struct attribute_container *cont,
1296 			    struct device *dev)
1297 {
1298 	struct scsi_device *sdev;
1299 	struct Scsi_Host *shost;
1300 	struct spi_internal *i;
1301 
1302 	if (!scsi_is_sdev_device(dev))
1303 		return 0;
1304 
1305 	sdev = to_scsi_device(dev);
1306 	shost = sdev->host;
1307 	if (!shost->transportt  || shost->transportt->host_attrs.ac.class
1308 	    != &spi_host_class.class)
1309 		return 0;
1310 	/* Note: this class has no device attributes, so it has
1311 	 * no per-HBA allocation and thus we don't need to distinguish
1312 	 * the attribute containers for the device */
1313 	i = to_spi_internal(shost->transportt);
1314 	if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target))
1315 		return 0;
1316 	return 1;
1317 }
1318 
1319 static int spi_target_match(struct attribute_container *cont,
1320 			    struct device *dev)
1321 {
1322 	struct Scsi_Host *shost;
1323 	struct scsi_target *starget;
1324 	struct spi_internal *i;
1325 
1326 	if (!scsi_is_target_device(dev))
1327 		return 0;
1328 
1329 	shost = dev_to_shost(dev->parent);
1330 	if (!shost->transportt  || shost->transportt->host_attrs.ac.class
1331 	    != &spi_host_class.class)
1332 		return 0;
1333 
1334 	i = to_spi_internal(shost->transportt);
1335 	starget = to_scsi_target(dev);
1336 
1337 	if (i->f->deny_binding && i->f->deny_binding(starget))
1338 		return 0;
1339 
1340 	return &i->t.target_attrs.ac == cont;
1341 }
1342 
1343 static DECLARE_TRANSPORT_CLASS(spi_transport_class,
1344 			       "spi_transport",
1345 			       spi_setup_transport_attrs,
1346 			       NULL,
1347 			       spi_target_configure);
1348 
1349 static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class,
1350 				    spi_device_match,
1351 				    spi_device_configure);
1352 
1353 static struct attribute *host_attributes[] = {
1354 	&dev_attr_signalling.attr,
1355 	NULL
1356 };
1357 
1358 static struct attribute_group host_attribute_group = {
1359 	.attrs = host_attributes,
1360 };
1361 
1362 static int spi_host_configure(struct transport_container *tc,
1363 			      struct device *dev,
1364 			      struct device *cdev)
1365 {
1366 	struct kobject *kobj = &cdev->kobj;
1367 	struct Scsi_Host *shost = transport_class_to_shost(cdev);
1368 	struct spi_internal *si = to_spi_internal(shost->transportt);
1369 	struct attribute *attr = &dev_attr_signalling.attr;
1370 	int rc = 0;
1371 
1372 	if (si->f->set_signalling)
1373 		rc = sysfs_chmod_file(kobj, attr, attr->mode | S_IWUSR);
1374 
1375 	return rc;
1376 }
1377 
1378 /* returns true if we should be showing the variable.  Also
1379  * overloads the return by setting 1<<1 if the attribute should
1380  * be writeable */
1381 #define TARGET_ATTRIBUTE_HELPER(name) \
1382 	(si->f->show_##name ? S_IRUGO : 0) | \
1383 	(si->f->set_##name ? S_IWUSR : 0)
1384 
1385 static mode_t target_attribute_is_visible(struct kobject *kobj,
1386 					  struct attribute *attr, int i)
1387 {
1388 	struct device *cdev = container_of(kobj, struct device, kobj);
1389 	struct scsi_target *starget = transport_class_to_starget(cdev);
1390 	struct Scsi_Host *shost = transport_class_to_shost(cdev);
1391 	struct spi_internal *si = to_spi_internal(shost->transportt);
1392 
1393 	if (attr == &dev_attr_period.attr &&
1394 	    spi_support_sync(starget))
1395 		return TARGET_ATTRIBUTE_HELPER(period);
1396 	else if (attr == &dev_attr_min_period.attr &&
1397 		 spi_support_sync(starget))
1398 		return TARGET_ATTRIBUTE_HELPER(period);
1399 	else if (attr == &dev_attr_offset.attr &&
1400 		 spi_support_sync(starget))
1401 		return TARGET_ATTRIBUTE_HELPER(offset);
1402 	else if (attr == &dev_attr_max_offset.attr &&
1403 		 spi_support_sync(starget))
1404 		return TARGET_ATTRIBUTE_HELPER(offset);
1405 	else if (attr == &dev_attr_width.attr &&
1406 		 spi_support_wide(starget))
1407 		return TARGET_ATTRIBUTE_HELPER(width);
1408 	else if (attr == &dev_attr_max_width.attr &&
1409 		 spi_support_wide(starget))
1410 		return TARGET_ATTRIBUTE_HELPER(width);
1411 	else if (attr == &dev_attr_iu.attr &&
1412 		 spi_support_ius(starget))
1413 		return TARGET_ATTRIBUTE_HELPER(iu);
1414 	else if (attr == &dev_attr_dt.attr &&
1415 		 spi_support_dt(starget))
1416 		return TARGET_ATTRIBUTE_HELPER(dt);
1417 	else if (attr == &dev_attr_qas.attr &&
1418 		 spi_support_qas(starget))
1419 		return TARGET_ATTRIBUTE_HELPER(qas);
1420 	else if (attr == &dev_attr_wr_flow.attr &&
1421 		 spi_support_ius(starget))
1422 		return TARGET_ATTRIBUTE_HELPER(wr_flow);
1423 	else if (attr == &dev_attr_rd_strm.attr &&
1424 		 spi_support_ius(starget))
1425 		return TARGET_ATTRIBUTE_HELPER(rd_strm);
1426 	else if (attr == &dev_attr_rti.attr &&
1427 		 spi_support_ius(starget))
1428 		return TARGET_ATTRIBUTE_HELPER(rti);
1429 	else if (attr == &dev_attr_pcomp_en.attr &&
1430 		 spi_support_ius(starget))
1431 		return TARGET_ATTRIBUTE_HELPER(pcomp_en);
1432 	else if (attr == &dev_attr_hold_mcs.attr &&
1433 		 spi_support_ius(starget))
1434 		return TARGET_ATTRIBUTE_HELPER(hold_mcs);
1435 	else if (attr == &dev_attr_revalidate.attr)
1436 		return S_IWUSR;
1437 
1438 	return 0;
1439 }
1440 
1441 static struct attribute *target_attributes[] = {
1442 	&dev_attr_period.attr,
1443 	&dev_attr_min_period.attr,
1444 	&dev_attr_offset.attr,
1445 	&dev_attr_max_offset.attr,
1446 	&dev_attr_width.attr,
1447 	&dev_attr_max_width.attr,
1448 	&dev_attr_iu.attr,
1449 	&dev_attr_dt.attr,
1450 	&dev_attr_qas.attr,
1451 	&dev_attr_wr_flow.attr,
1452 	&dev_attr_rd_strm.attr,
1453 	&dev_attr_rti.attr,
1454 	&dev_attr_pcomp_en.attr,
1455 	&dev_attr_hold_mcs.attr,
1456 	&dev_attr_revalidate.attr,
1457 	NULL
1458 };
1459 
1460 static struct attribute_group target_attribute_group = {
1461 	.attrs = target_attributes,
1462 	.is_visible = target_attribute_is_visible,
1463 };
1464 
1465 static int spi_target_configure(struct transport_container *tc,
1466 				struct device *dev,
1467 				struct device *cdev)
1468 {
1469 	struct kobject *kobj = &cdev->kobj;
1470 
1471 	/* force an update based on parameters read from the device */
1472 	sysfs_update_group(kobj, &target_attribute_group);
1473 
1474 	return 0;
1475 }
1476 
1477 struct scsi_transport_template *
1478 spi_attach_transport(struct spi_function_template *ft)
1479 {
1480 	struct spi_internal *i = kzalloc(sizeof(struct spi_internal),
1481 					 GFP_KERNEL);
1482 
1483 	if (unlikely(!i))
1484 		return NULL;
1485 
1486 	i->t.target_attrs.ac.class = &spi_transport_class.class;
1487 	i->t.target_attrs.ac.grp = &target_attribute_group;
1488 	i->t.target_attrs.ac.match = spi_target_match;
1489 	transport_container_register(&i->t.target_attrs);
1490 	i->t.target_size = sizeof(struct spi_transport_attrs);
1491 	i->t.host_attrs.ac.class = &spi_host_class.class;
1492 	i->t.host_attrs.ac.grp = &host_attribute_group;
1493 	i->t.host_attrs.ac.match = spi_host_match;
1494 	transport_container_register(&i->t.host_attrs);
1495 	i->t.host_size = sizeof(struct spi_host_attrs);
1496 	i->f = ft;
1497 
1498 	return &i->t;
1499 }
1500 EXPORT_SYMBOL(spi_attach_transport);
1501 
1502 void spi_release_transport(struct scsi_transport_template *t)
1503 {
1504 	struct spi_internal *i = to_spi_internal(t);
1505 
1506 	transport_container_unregister(&i->t.target_attrs);
1507 	transport_container_unregister(&i->t.host_attrs);
1508 
1509 	kfree(i);
1510 }
1511 EXPORT_SYMBOL(spi_release_transport);
1512 
1513 static __init int spi_transport_init(void)
1514 {
1515 	int error = transport_class_register(&spi_transport_class);
1516 	if (error)
1517 		return error;
1518 	error = anon_transport_class_register(&spi_device_class);
1519 	return transport_class_register(&spi_host_class);
1520 }
1521 
1522 static void __exit spi_transport_exit(void)
1523 {
1524 	transport_class_unregister(&spi_transport_class);
1525 	anon_transport_class_unregister(&spi_device_class);
1526 	transport_class_unregister(&spi_host_class);
1527 }
1528 
1529 MODULE_AUTHOR("Martin Hicks");
1530 MODULE_DESCRIPTION("SPI Transport Attributes");
1531 MODULE_LICENSE("GPL");
1532 
1533 module_init(spi_transport_init);
1534 module_exit(spi_transport_exit);
1535