1 /*
2  *  Parallel SCSI (SPI) transport specific attributes exported to sysfs.
3  *
4  *  Copyright (c) 2003 Silicon Graphics, Inc.  All rights reserved.
5  *  Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com>
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 #include <linux/ctype.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/workqueue.h>
25 #include <linux/blkdev.h>
26 #include <linux/mutex.h>
27 #include <linux/sysfs.h>
28 #include <scsi/scsi.h>
29 #include "scsi_priv.h"
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_host.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_transport.h>
35 #include <scsi/scsi_transport_spi.h>
36 
37 #define SPI_NUM_ATTRS 14	/* increase this if you add attributes */
38 #define SPI_OTHER_ATTRS 1	/* Increase this if you add "always
39 				 * on" attributes */
40 #define SPI_HOST_ATTRS	1
41 
42 #define SPI_MAX_ECHO_BUFFER_SIZE	4096
43 
44 #define DV_LOOPS	3
45 #define DV_TIMEOUT	(10*HZ)
46 #define DV_RETRIES	3	/* should only need at most
47 				 * two cc/ua clears */
48 
49 /* Private data accessors (keep these out of the header file) */
50 #define spi_dv_in_progress(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_in_progress)
51 #define spi_dv_mutex(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_mutex)
52 
53 struct spi_internal {
54 	struct scsi_transport_template t;
55 	struct spi_function_template *f;
56 };
57 
58 #define to_spi_internal(tmpl)	container_of(tmpl, struct spi_internal, t)
59 
60 static const int ppr_to_ps[] = {
61 	/* The PPR values 0-6 are reserved, fill them in when
62 	 * the committee defines them */
63 	-1,			/* 0x00 */
64 	-1,			/* 0x01 */
65 	-1,			/* 0x02 */
66 	-1,			/* 0x03 */
67 	-1,			/* 0x04 */
68 	-1,			/* 0x05 */
69 	-1,			/* 0x06 */
70 	 3125,			/* 0x07 */
71 	 6250,			/* 0x08 */
72 	12500,			/* 0x09 */
73 	25000,			/* 0x0a */
74 	30300,			/* 0x0b */
75 	50000,			/* 0x0c */
76 };
77 /* The PPR values at which you calculate the period in ns by multiplying
78  * by 4 */
79 #define SPI_STATIC_PPR	0x0c
80 
81 static int sprint_frac(char *dest, int value, int denom)
82 {
83 	int frac = value % denom;
84 	int result = sprintf(dest, "%d", value / denom);
85 
86 	if (frac == 0)
87 		return result;
88 	dest[result++] = '.';
89 
90 	do {
91 		denom /= 10;
92 		sprintf(dest + result, "%d", frac / denom);
93 		result++;
94 		frac %= denom;
95 	} while (frac);
96 
97 	dest[result++] = '\0';
98 	return result;
99 }
100 
101 static int spi_execute(struct scsi_device *sdev, const void *cmd,
102 		       enum dma_data_direction dir,
103 		       void *buffer, unsigned bufflen,
104 		       struct scsi_sense_hdr *sshdr)
105 {
106 	int i, result;
107 	unsigned char sense[SCSI_SENSE_BUFFERSIZE];
108 
109 	for(i = 0; i < DV_RETRIES; i++) {
110 		result = scsi_execute(sdev, cmd, dir, buffer, bufflen,
111 				      sense, DV_TIMEOUT, /* retries */ 1,
112 				      REQ_FAILFAST);
113 		if (result & DRIVER_SENSE) {
114 			struct scsi_sense_hdr sshdr_tmp;
115 			if (!sshdr)
116 				sshdr = &sshdr_tmp;
117 
118 			if (scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE,
119 						 sshdr)
120 			    && sshdr->sense_key == UNIT_ATTENTION)
121 				continue;
122 		}
123 		break;
124 	}
125 	return result;
126 }
127 
128 static struct {
129 	enum spi_signal_type	value;
130 	char			*name;
131 } signal_types[] = {
132 	{ SPI_SIGNAL_UNKNOWN, "unknown" },
133 	{ SPI_SIGNAL_SE, "SE" },
134 	{ SPI_SIGNAL_LVD, "LVD" },
135 	{ SPI_SIGNAL_HVD, "HVD" },
136 };
137 
138 static inline const char *spi_signal_to_string(enum spi_signal_type type)
139 {
140 	int i;
141 
142 	for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
143 		if (type == signal_types[i].value)
144 			return signal_types[i].name;
145 	}
146 	return NULL;
147 }
148 static inline enum spi_signal_type spi_signal_to_value(const char *name)
149 {
150 	int i, len;
151 
152 	for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
153 		len =  strlen(signal_types[i].name);
154 		if (strncmp(name, signal_types[i].name, len) == 0 &&
155 		    (name[len] == '\n' || name[len] == '\0'))
156 			return signal_types[i].value;
157 	}
158 	return SPI_SIGNAL_UNKNOWN;
159 }
160 
161 static int spi_host_setup(struct transport_container *tc, struct device *dev,
162 			  struct device *cdev)
163 {
164 	struct Scsi_Host *shost = dev_to_shost(dev);
165 
166 	spi_signalling(shost) = SPI_SIGNAL_UNKNOWN;
167 
168 	return 0;
169 }
170 
171 static int spi_host_configure(struct transport_container *tc,
172 			      struct device *dev,
173 			      struct device *cdev);
174 
175 static DECLARE_TRANSPORT_CLASS(spi_host_class,
176 			       "spi_host",
177 			       spi_host_setup,
178 			       NULL,
179 			       spi_host_configure);
180 
181 static int spi_host_match(struct attribute_container *cont,
182 			  struct device *dev)
183 {
184 	struct Scsi_Host *shost;
185 
186 	if (!scsi_is_host_device(dev))
187 		return 0;
188 
189 	shost = dev_to_shost(dev);
190 	if (!shost->transportt  || shost->transportt->host_attrs.ac.class
191 	    != &spi_host_class.class)
192 		return 0;
193 
194 	return &shost->transportt->host_attrs.ac == cont;
195 }
196 
197 static int spi_target_configure(struct transport_container *tc,
198 				struct device *dev,
199 				struct device *cdev);
200 
201 static int spi_device_configure(struct transport_container *tc,
202 				struct device *dev,
203 				struct device *cdev)
204 {
205 	struct scsi_device *sdev = to_scsi_device(dev);
206 	struct scsi_target *starget = sdev->sdev_target;
207 
208 	/* Populate the target capability fields with the values
209 	 * gleaned from the device inquiry */
210 
211 	spi_support_sync(starget) = scsi_device_sync(sdev);
212 	spi_support_wide(starget) = scsi_device_wide(sdev);
213 	spi_support_dt(starget) = scsi_device_dt(sdev);
214 	spi_support_dt_only(starget) = scsi_device_dt_only(sdev);
215 	spi_support_ius(starget) = scsi_device_ius(sdev);
216 	spi_support_qas(starget) = scsi_device_qas(sdev);
217 
218 	return 0;
219 }
220 
221 static int spi_setup_transport_attrs(struct transport_container *tc,
222 				     struct device *dev,
223 				     struct device *cdev)
224 {
225 	struct scsi_target *starget = to_scsi_target(dev);
226 
227 	spi_period(starget) = -1;	/* illegal value */
228 	spi_min_period(starget) = 0;
229 	spi_offset(starget) = 0;	/* async */
230 	spi_max_offset(starget) = 255;
231 	spi_width(starget) = 0;	/* narrow */
232 	spi_max_width(starget) = 1;
233 	spi_iu(starget) = 0;	/* no IU */
234 	spi_dt(starget) = 0;	/* ST */
235 	spi_qas(starget) = 0;
236 	spi_wr_flow(starget) = 0;
237 	spi_rd_strm(starget) = 0;
238 	spi_rti(starget) = 0;
239 	spi_pcomp_en(starget) = 0;
240 	spi_hold_mcs(starget) = 0;
241 	spi_dv_pending(starget) = 0;
242 	spi_dv_in_progress(starget) = 0;
243 	spi_initial_dv(starget) = 0;
244 	mutex_init(&spi_dv_mutex(starget));
245 
246 	return 0;
247 }
248 
249 #define spi_transport_show_simple(field, format_string)			\
250 									\
251 static ssize_t								\
252 show_spi_transport_##field(struct device *dev, 			\
253 			   struct device_attribute *attr, char *buf)	\
254 {									\
255 	struct scsi_target *starget = transport_class_to_starget(dev);	\
256 	struct spi_transport_attrs *tp;					\
257 									\
258 	tp = (struct spi_transport_attrs *)&starget->starget_data;	\
259 	return snprintf(buf, 20, format_string, tp->field);		\
260 }
261 
262 #define spi_transport_store_simple(field, format_string)		\
263 									\
264 static ssize_t								\
265 store_spi_transport_##field(struct device *dev, 			\
266 			    struct device_attribute *attr, 		\
267 			    const char *buf, size_t count)		\
268 {									\
269 	int val;							\
270 	struct scsi_target *starget = transport_class_to_starget(dev);	\
271 	struct spi_transport_attrs *tp;					\
272 									\
273 	tp = (struct spi_transport_attrs *)&starget->starget_data;	\
274 	val = simple_strtoul(buf, NULL, 0);				\
275 	tp->field = val;						\
276 	return count;							\
277 }
278 
279 #define spi_transport_show_function(field, format_string)		\
280 									\
281 static ssize_t								\
282 show_spi_transport_##field(struct device *dev, 			\
283 			   struct device_attribute *attr, char *buf)	\
284 {									\
285 	struct scsi_target *starget = transport_class_to_starget(dev);	\
286 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);	\
287 	struct spi_transport_attrs *tp;					\
288 	struct spi_internal *i = to_spi_internal(shost->transportt);	\
289 	tp = (struct spi_transport_attrs *)&starget->starget_data;	\
290 	if (i->f->get_##field)						\
291 		i->f->get_##field(starget);				\
292 	return snprintf(buf, 20, format_string, tp->field);		\
293 }
294 
295 #define spi_transport_store_function(field, format_string)		\
296 static ssize_t								\
297 store_spi_transport_##field(struct device *dev, 			\
298 			    struct device_attribute *attr,		\
299 			    const char *buf, size_t count)		\
300 {									\
301 	int val;							\
302 	struct scsi_target *starget = transport_class_to_starget(dev);	\
303 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);	\
304 	struct spi_internal *i = to_spi_internal(shost->transportt);	\
305 									\
306 	if (!i->f->set_##field)						\
307 		return -EINVAL;						\
308 	val = simple_strtoul(buf, NULL, 0);				\
309 	i->f->set_##field(starget, val);				\
310 	return count;							\
311 }
312 
313 #define spi_transport_store_max(field, format_string)			\
314 static ssize_t								\
315 store_spi_transport_##field(struct device *dev, 			\
316 			    struct device_attribute *attr,		\
317 			    const char *buf, size_t count)		\
318 {									\
319 	int val;							\
320 	struct scsi_target *starget = transport_class_to_starget(dev);	\
321 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);	\
322 	struct spi_internal *i = to_spi_internal(shost->transportt);	\
323 	struct spi_transport_attrs *tp					\
324 		= (struct spi_transport_attrs *)&starget->starget_data;	\
325 									\
326 	if (i->f->set_##field)						\
327 		return -EINVAL;						\
328 	val = simple_strtoul(buf, NULL, 0);				\
329 	if (val > tp->max_##field)					\
330 		val = tp->max_##field;					\
331 	i->f->set_##field(starget, val);				\
332 	return count;							\
333 }
334 
335 #define spi_transport_rd_attr(field, format_string)			\
336 	spi_transport_show_function(field, format_string)		\
337 	spi_transport_store_function(field, format_string)		\
338 static DEVICE_ATTR(field, S_IRUGO,				\
339 		   show_spi_transport_##field,			\
340 		   store_spi_transport_##field);
341 
342 #define spi_transport_simple_attr(field, format_string)			\
343 	spi_transport_show_simple(field, format_string)			\
344 	spi_transport_store_simple(field, format_string)		\
345 static DEVICE_ATTR(field, S_IRUGO,				\
346 		   show_spi_transport_##field,			\
347 		   store_spi_transport_##field);
348 
349 #define spi_transport_max_attr(field, format_string)			\
350 	spi_transport_show_function(field, format_string)		\
351 	spi_transport_store_max(field, format_string)			\
352 	spi_transport_simple_attr(max_##field, format_string)		\
353 static DEVICE_ATTR(field, S_IRUGO,				\
354 		   show_spi_transport_##field,			\
355 		   store_spi_transport_##field);
356 
357 /* The Parallel SCSI Tranport Attributes: */
358 spi_transport_max_attr(offset, "%d\n");
359 spi_transport_max_attr(width, "%d\n");
360 spi_transport_rd_attr(iu, "%d\n");
361 spi_transport_rd_attr(dt, "%d\n");
362 spi_transport_rd_attr(qas, "%d\n");
363 spi_transport_rd_attr(wr_flow, "%d\n");
364 spi_transport_rd_attr(rd_strm, "%d\n");
365 spi_transport_rd_attr(rti, "%d\n");
366 spi_transport_rd_attr(pcomp_en, "%d\n");
367 spi_transport_rd_attr(hold_mcs, "%d\n");
368 
369 /* we only care about the first child device that's a real SCSI device
370  * so we return 1 to terminate the iteration when we find it */
371 static int child_iter(struct device *dev, void *data)
372 {
373 	if (!scsi_is_sdev_device(dev))
374 		return 0;
375 
376 	spi_dv_device(to_scsi_device(dev));
377 	return 1;
378 }
379 
380 static ssize_t
381 store_spi_revalidate(struct device *dev, struct device_attribute *attr,
382 		     const char *buf, size_t count)
383 {
384 	struct scsi_target *starget = transport_class_to_starget(dev);
385 
386 	device_for_each_child(&starget->dev, NULL, child_iter);
387 	return count;
388 }
389 static DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate);
390 
391 /* Translate the period into ns according to the current spec
392  * for SDTR/PPR messages */
393 static int period_to_str(char *buf, int period)
394 {
395 	int len, picosec;
396 
397 	if (period < 0 || period > 0xff) {
398 		picosec = -1;
399 	} else if (period <= SPI_STATIC_PPR) {
400 		picosec = ppr_to_ps[period];
401 	} else {
402 		picosec = period * 4000;
403 	}
404 
405 	if (picosec == -1) {
406 		len = sprintf(buf, "reserved");
407 	} else {
408 		len = sprint_frac(buf, picosec, 1000);
409 	}
410 
411 	return len;
412 }
413 
414 static ssize_t
415 show_spi_transport_period_helper(char *buf, int period)
416 {
417 	int len = period_to_str(buf, period);
418 	buf[len++] = '\n';
419 	buf[len] = '\0';
420 	return len;
421 }
422 
423 static ssize_t
424 store_spi_transport_period_helper(struct device *dev, const char *buf,
425 				  size_t count, int *periodp)
426 {
427 	int j, picosec, period = -1;
428 	char *endp;
429 
430 	picosec = simple_strtoul(buf, &endp, 10) * 1000;
431 	if (*endp == '.') {
432 		int mult = 100;
433 		do {
434 			endp++;
435 			if (!isdigit(*endp))
436 				break;
437 			picosec += (*endp - '0') * mult;
438 			mult /= 10;
439 		} while (mult > 0);
440 	}
441 
442 	for (j = 0; j <= SPI_STATIC_PPR; j++) {
443 		if (ppr_to_ps[j] < picosec)
444 			continue;
445 		period = j;
446 		break;
447 	}
448 
449 	if (period == -1)
450 		period = picosec / 4000;
451 
452 	if (period > 0xff)
453 		period = 0xff;
454 
455 	*periodp = period;
456 
457 	return count;
458 }
459 
460 static ssize_t
461 show_spi_transport_period(struct device *dev,
462 			  struct device_attribute *attr, char *buf)
463 {
464 	struct scsi_target *starget = transport_class_to_starget(dev);
465 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
466 	struct spi_internal *i = to_spi_internal(shost->transportt);
467 	struct spi_transport_attrs *tp =
468 		(struct spi_transport_attrs *)&starget->starget_data;
469 
470 	if (i->f->get_period)
471 		i->f->get_period(starget);
472 
473 	return show_spi_transport_period_helper(buf, tp->period);
474 }
475 
476 static ssize_t
477 store_spi_transport_period(struct device *cdev, struct device_attribute *attr,
478 			   const char *buf, size_t count)
479 {
480 	struct scsi_target *starget = transport_class_to_starget(cdev);
481 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
482 	struct spi_internal *i = to_spi_internal(shost->transportt);
483 	struct spi_transport_attrs *tp =
484 		(struct spi_transport_attrs *)&starget->starget_data;
485 	int period, retval;
486 
487 	if (!i->f->set_period)
488 		return -EINVAL;
489 
490 	retval = store_spi_transport_period_helper(cdev, buf, count, &period);
491 
492 	if (period < tp->min_period)
493 		period = tp->min_period;
494 
495 	i->f->set_period(starget, period);
496 
497 	return retval;
498 }
499 
500 static DEVICE_ATTR(period, S_IRUGO,
501 		   show_spi_transport_period,
502 		   store_spi_transport_period);
503 
504 static ssize_t
505 show_spi_transport_min_period(struct device *cdev,
506 			      struct device_attribute *attr, char *buf)
507 {
508 	struct scsi_target *starget = transport_class_to_starget(cdev);
509 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
510 	struct spi_internal *i = to_spi_internal(shost->transportt);
511 	struct spi_transport_attrs *tp =
512 		(struct spi_transport_attrs *)&starget->starget_data;
513 
514 	if (!i->f->set_period)
515 		return -EINVAL;
516 
517 	return show_spi_transport_period_helper(buf, tp->min_period);
518 }
519 
520 static ssize_t
521 store_spi_transport_min_period(struct device *cdev,
522 			       struct device_attribute *attr,
523 			       const char *buf, size_t count)
524 {
525 	struct scsi_target *starget = transport_class_to_starget(cdev);
526 	struct spi_transport_attrs *tp =
527 		(struct spi_transport_attrs *)&starget->starget_data;
528 
529 	return store_spi_transport_period_helper(cdev, buf, count,
530 						 &tp->min_period);
531 }
532 
533 
534 static DEVICE_ATTR(min_period, S_IRUGO,
535 		   show_spi_transport_min_period,
536 		   store_spi_transport_min_period);
537 
538 
539 static ssize_t show_spi_host_signalling(struct device *cdev,
540 					struct device_attribute *attr,
541 					char *buf)
542 {
543 	struct Scsi_Host *shost = transport_class_to_shost(cdev);
544 	struct spi_internal *i = to_spi_internal(shost->transportt);
545 
546 	if (i->f->get_signalling)
547 		i->f->get_signalling(shost);
548 
549 	return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost)));
550 }
551 static ssize_t store_spi_host_signalling(struct device *dev,
552 					 struct device_attribute *attr,
553 					 const char *buf, size_t count)
554 {
555 	struct Scsi_Host *shost = transport_class_to_shost(dev);
556 	struct spi_internal *i = to_spi_internal(shost->transportt);
557 	enum spi_signal_type type = spi_signal_to_value(buf);
558 
559 	if (!i->f->set_signalling)
560 		return -EINVAL;
561 
562 	if (type != SPI_SIGNAL_UNKNOWN)
563 		i->f->set_signalling(shost, type);
564 
565 	return count;
566 }
567 static DEVICE_ATTR(signalling, S_IRUGO,
568 		   show_spi_host_signalling,
569 		   store_spi_host_signalling);
570 
571 #define DV_SET(x, y)			\
572 	if(i->f->set_##x)		\
573 		i->f->set_##x(sdev->sdev_target, y)
574 
575 enum spi_compare_returns {
576 	SPI_COMPARE_SUCCESS,
577 	SPI_COMPARE_FAILURE,
578 	SPI_COMPARE_SKIP_TEST,
579 };
580 
581 
582 /* This is for read/write Domain Validation:  If the device supports
583  * an echo buffer, we do read/write tests to it */
584 static enum spi_compare_returns
585 spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer,
586 			  u8 *ptr, const int retries)
587 {
588 	int len = ptr - buffer;
589 	int j, k, r, result;
590 	unsigned int pattern = 0x0000ffff;
591 	struct scsi_sense_hdr sshdr;
592 
593 	const char spi_write_buffer[] = {
594 		WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
595 	};
596 	const char spi_read_buffer[] = {
597 		READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
598 	};
599 
600 	/* set up the pattern buffer.  Doesn't matter if we spill
601 	 * slightly beyond since that's where the read buffer is */
602 	for (j = 0; j < len; ) {
603 
604 		/* fill the buffer with counting (test a) */
605 		for ( ; j < min(len, 32); j++)
606 			buffer[j] = j;
607 		k = j;
608 		/* fill the buffer with alternating words of 0x0 and
609 		 * 0xffff (test b) */
610 		for ( ; j < min(len, k + 32); j += 2) {
611 			u16 *word = (u16 *)&buffer[j];
612 
613 			*word = (j & 0x02) ? 0x0000 : 0xffff;
614 		}
615 		k = j;
616 		/* fill with crosstalk (alternating 0x5555 0xaaa)
617                  * (test c) */
618 		for ( ; j < min(len, k + 32); j += 2) {
619 			u16 *word = (u16 *)&buffer[j];
620 
621 			*word = (j & 0x02) ? 0x5555 : 0xaaaa;
622 		}
623 		k = j;
624 		/* fill with shifting bits (test d) */
625 		for ( ; j < min(len, k + 32); j += 4) {
626 			u32 *word = (unsigned int *)&buffer[j];
627 			u32 roll = (pattern & 0x80000000) ? 1 : 0;
628 
629 			*word = pattern;
630 			pattern = (pattern << 1) | roll;
631 		}
632 		/* don't bother with random data (test e) */
633 	}
634 
635 	for (r = 0; r < retries; r++) {
636 		result = spi_execute(sdev, spi_write_buffer, DMA_TO_DEVICE,
637 				     buffer, len, &sshdr);
638 		if(result || !scsi_device_online(sdev)) {
639 
640 			scsi_device_set_state(sdev, SDEV_QUIESCE);
641 			if (scsi_sense_valid(&sshdr)
642 			    && sshdr.sense_key == ILLEGAL_REQUEST
643 			    /* INVALID FIELD IN CDB */
644 			    && sshdr.asc == 0x24 && sshdr.ascq == 0x00)
645 				/* This would mean that the drive lied
646 				 * to us about supporting an echo
647 				 * buffer (unfortunately some Western
648 				 * Digital drives do precisely this)
649 				 */
650 				return SPI_COMPARE_SKIP_TEST;
651 
652 
653 			sdev_printk(KERN_ERR, sdev, "Write Buffer failure %x\n", result);
654 			return SPI_COMPARE_FAILURE;
655 		}
656 
657 		memset(ptr, 0, len);
658 		spi_execute(sdev, spi_read_buffer, DMA_FROM_DEVICE,
659 			    ptr, len, NULL);
660 		scsi_device_set_state(sdev, SDEV_QUIESCE);
661 
662 		if (memcmp(buffer, ptr, len) != 0)
663 			return SPI_COMPARE_FAILURE;
664 	}
665 	return SPI_COMPARE_SUCCESS;
666 }
667 
668 /* This is for the simplest form of Domain Validation: a read test
669  * on the inquiry data from the device */
670 static enum spi_compare_returns
671 spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer,
672 			      u8 *ptr, const int retries)
673 {
674 	int r, result;
675 	const int len = sdev->inquiry_len;
676 	const char spi_inquiry[] = {
677 		INQUIRY, 0, 0, 0, len, 0
678 	};
679 
680 	for (r = 0; r < retries; r++) {
681 		memset(ptr, 0, len);
682 
683 		result = spi_execute(sdev, spi_inquiry, DMA_FROM_DEVICE,
684 				     ptr, len, NULL);
685 
686 		if(result || !scsi_device_online(sdev)) {
687 			scsi_device_set_state(sdev, SDEV_QUIESCE);
688 			return SPI_COMPARE_FAILURE;
689 		}
690 
691 		/* If we don't have the inquiry data already, the
692 		 * first read gets it */
693 		if (ptr == buffer) {
694 			ptr += len;
695 			--r;
696 			continue;
697 		}
698 
699 		if (memcmp(buffer, ptr, len) != 0)
700 			/* failure */
701 			return SPI_COMPARE_FAILURE;
702 	}
703 	return SPI_COMPARE_SUCCESS;
704 }
705 
706 static enum spi_compare_returns
707 spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr,
708 	       enum spi_compare_returns
709 	       (*compare_fn)(struct scsi_device *, u8 *, u8 *, int))
710 {
711 	struct spi_internal *i = to_spi_internal(sdev->host->transportt);
712 	struct scsi_target *starget = sdev->sdev_target;
713 	int period = 0, prevperiod = 0;
714 	enum spi_compare_returns retval;
715 
716 
717 	for (;;) {
718 		int newperiod;
719 		retval = compare_fn(sdev, buffer, ptr, DV_LOOPS);
720 
721 		if (retval == SPI_COMPARE_SUCCESS
722 		    || retval == SPI_COMPARE_SKIP_TEST)
723 			break;
724 
725 		/* OK, retrain, fallback */
726 		if (i->f->get_iu)
727 			i->f->get_iu(starget);
728 		if (i->f->get_qas)
729 			i->f->get_qas(starget);
730 		if (i->f->get_period)
731 			i->f->get_period(sdev->sdev_target);
732 
733 		/* Here's the fallback sequence; first try turning off
734 		 * IU, then QAS (if we can control them), then finally
735 		 * fall down the periods */
736 		if (i->f->set_iu && spi_iu(starget)) {
737 			starget_printk(KERN_ERR, starget, "Domain Validation Disabing Information Units\n");
738 			DV_SET(iu, 0);
739 		} else if (i->f->set_qas && spi_qas(starget)) {
740 			starget_printk(KERN_ERR, starget, "Domain Validation Disabing Quick Arbitration and Selection\n");
741 			DV_SET(qas, 0);
742 		} else {
743 			newperiod = spi_period(starget);
744 			period = newperiod > period ? newperiod : period;
745 			if (period < 0x0d)
746 				period++;
747 			else
748 				period += period >> 1;
749 
750 			if (unlikely(period > 0xff || period == prevperiod)) {
751 				/* Total failure; set to async and return */
752 				starget_printk(KERN_ERR, starget, "Domain Validation Failure, dropping back to Asynchronous\n");
753 				DV_SET(offset, 0);
754 				return SPI_COMPARE_FAILURE;
755 			}
756 			starget_printk(KERN_ERR, starget, "Domain Validation detected failure, dropping back\n");
757 			DV_SET(period, period);
758 			prevperiod = period;
759 		}
760 	}
761 	return retval;
762 }
763 
764 static int
765 spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer)
766 {
767 	int l, result;
768 
769 	/* first off do a test unit ready.  This can error out
770 	 * because of reservations or some other reason.  If it
771 	 * fails, the device won't let us write to the echo buffer
772 	 * so just return failure */
773 
774 	const char spi_test_unit_ready[] = {
775 		TEST_UNIT_READY, 0, 0, 0, 0, 0
776 	};
777 
778 	const char spi_read_buffer_descriptor[] = {
779 		READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0
780 	};
781 
782 
783 	/* We send a set of three TURs to clear any outstanding
784 	 * unit attention conditions if they exist (Otherwise the
785 	 * buffer tests won't be happy).  If the TUR still fails
786 	 * (reservation conflict, device not ready, etc) just
787 	 * skip the write tests */
788 	for (l = 0; ; l++) {
789 		result = spi_execute(sdev, spi_test_unit_ready, DMA_NONE,
790 				     NULL, 0, NULL);
791 
792 		if(result) {
793 			if(l >= 3)
794 				return 0;
795 		} else {
796 			/* TUR succeeded */
797 			break;
798 		}
799 	}
800 
801 	result = spi_execute(sdev, spi_read_buffer_descriptor,
802 			     DMA_FROM_DEVICE, buffer, 4, NULL);
803 
804 	if (result)
805 		/* Device has no echo buffer */
806 		return 0;
807 
808 	return buffer[3] + ((buffer[2] & 0x1f) << 8);
809 }
810 
811 static void
812 spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer)
813 {
814 	struct spi_internal *i = to_spi_internal(sdev->host->transportt);
815 	struct scsi_target *starget = sdev->sdev_target;
816 	struct Scsi_Host *shost = sdev->host;
817 	int len = sdev->inquiry_len;
818 	int min_period = spi_min_period(starget);
819 	int max_width = spi_max_width(starget);
820 	/* first set us up for narrow async */
821 	DV_SET(offset, 0);
822 	DV_SET(width, 0);
823 
824 	if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS)
825 	    != SPI_COMPARE_SUCCESS) {
826 		starget_printk(KERN_ERR, starget, "Domain Validation Initial Inquiry Failed\n");
827 		/* FIXME: should probably offline the device here? */
828 		return;
829 	}
830 
831 	if (!scsi_device_wide(sdev)) {
832 		spi_max_width(starget) = 0;
833 		max_width = 0;
834 	}
835 
836 	/* test width */
837 	if (i->f->set_width && max_width) {
838 		i->f->set_width(starget, 1);
839 
840 		if (spi_dv_device_compare_inquiry(sdev, buffer,
841 						   buffer + len,
842 						   DV_LOOPS)
843 		    != SPI_COMPARE_SUCCESS) {
844 			starget_printk(KERN_ERR, starget, "Wide Transfers Fail\n");
845 			i->f->set_width(starget, 0);
846 			/* Make sure we don't force wide back on by asking
847 			 * for a transfer period that requires it */
848 			max_width = 0;
849 			if (min_period < 10)
850 				min_period = 10;
851 		}
852 	}
853 
854 	if (!i->f->set_period)
855 		return;
856 
857 	/* device can't handle synchronous */
858 	if (!scsi_device_sync(sdev) && !scsi_device_dt(sdev))
859 		return;
860 
861 	/* len == -1 is the signal that we need to ascertain the
862 	 * presence of an echo buffer before trying to use it.  len ==
863 	 * 0 means we don't have an echo buffer */
864 	len = -1;
865 
866  retry:
867 
868 	/* now set up to the maximum */
869 	DV_SET(offset, spi_max_offset(starget));
870 	DV_SET(period, min_period);
871 
872 	/* try QAS requests; this should be harmless to set if the
873 	 * target supports it */
874 	if (scsi_device_qas(sdev)) {
875 		DV_SET(qas, 1);
876 	} else {
877 		DV_SET(qas, 0);
878 	}
879 
880 	if (scsi_device_ius(sdev) && min_period < 9) {
881 		/* This u320 (or u640). Set IU transfers */
882 		DV_SET(iu, 1);
883 		/* Then set the optional parameters */
884 		DV_SET(rd_strm, 1);
885 		DV_SET(wr_flow, 1);
886 		DV_SET(rti, 1);
887 		if (min_period == 8)
888 			DV_SET(pcomp_en, 1);
889 	} else {
890 		DV_SET(iu, 0);
891 	}
892 
893 	/* now that we've done all this, actually check the bus
894 	 * signal type (if known).  Some devices are stupid on
895 	 * a SE bus and still claim they can try LVD only settings */
896 	if (i->f->get_signalling)
897 		i->f->get_signalling(shost);
898 	if (spi_signalling(shost) == SPI_SIGNAL_SE ||
899 	    spi_signalling(shost) == SPI_SIGNAL_HVD ||
900 	    !scsi_device_dt(sdev)) {
901 		DV_SET(dt, 0);
902 	} else {
903 		DV_SET(dt, 1);
904 	}
905 	/* set width last because it will pull all the other
906 	 * parameters down to required values */
907 	DV_SET(width, max_width);
908 
909 	/* Do the read only INQUIRY tests */
910 	spi_dv_retrain(sdev, buffer, buffer + sdev->inquiry_len,
911 		       spi_dv_device_compare_inquiry);
912 	/* See if we actually managed to negotiate and sustain DT */
913 	if (i->f->get_dt)
914 		i->f->get_dt(starget);
915 
916 	/* see if the device has an echo buffer.  If it does we can do
917 	 * the SPI pattern write tests.  Because of some broken
918 	 * devices, we *only* try this on a device that has actually
919 	 * negotiated DT */
920 
921 	if (len == -1 && spi_dt(starget))
922 		len = spi_dv_device_get_echo_buffer(sdev, buffer);
923 
924 	if (len <= 0) {
925 		starget_printk(KERN_INFO, starget, "Domain Validation skipping write tests\n");
926 		return;
927 	}
928 
929 	if (len > SPI_MAX_ECHO_BUFFER_SIZE) {
930 		starget_printk(KERN_WARNING, starget, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE);
931 		len = SPI_MAX_ECHO_BUFFER_SIZE;
932 	}
933 
934 	if (spi_dv_retrain(sdev, buffer, buffer + len,
935 			   spi_dv_device_echo_buffer)
936 	    == SPI_COMPARE_SKIP_TEST) {
937 		/* OK, the stupid drive can't do a write echo buffer
938 		 * test after all, fall back to the read tests */
939 		len = 0;
940 		goto retry;
941 	}
942 }
943 
944 
945 /**	spi_dv_device - Do Domain Validation on the device
946  *	@sdev:		scsi device to validate
947  *
948  *	Performs the domain validation on the given device in the
949  *	current execution thread.  Since DV operations may sleep,
950  *	the current thread must have user context.  Also no SCSI
951  *	related locks that would deadlock I/O issued by the DV may
952  *	be held.
953  */
954 void
955 spi_dv_device(struct scsi_device *sdev)
956 {
957 	struct scsi_target *starget = sdev->sdev_target;
958 	u8 *buffer;
959 	const int len = SPI_MAX_ECHO_BUFFER_SIZE*2;
960 
961 	if (unlikely(scsi_device_get(sdev)))
962 		return;
963 
964 	if (unlikely(spi_dv_in_progress(starget)))
965 		return;
966 	spi_dv_in_progress(starget) = 1;
967 
968 	buffer = kzalloc(len, GFP_KERNEL);
969 
970 	if (unlikely(!buffer))
971 		goto out_put;
972 
973 	/* We need to verify that the actual device will quiesce; the
974 	 * later target quiesce is just a nice to have */
975 	if (unlikely(scsi_device_quiesce(sdev)))
976 		goto out_free;
977 
978 	scsi_target_quiesce(starget);
979 
980 	spi_dv_pending(starget) = 1;
981 	mutex_lock(&spi_dv_mutex(starget));
982 
983 	starget_printk(KERN_INFO, starget, "Beginning Domain Validation\n");
984 
985 	spi_dv_device_internal(sdev, buffer);
986 
987 	starget_printk(KERN_INFO, starget, "Ending Domain Validation\n");
988 
989 	mutex_unlock(&spi_dv_mutex(starget));
990 	spi_dv_pending(starget) = 0;
991 
992 	scsi_target_resume(starget);
993 
994 	spi_initial_dv(starget) = 1;
995 
996  out_free:
997 	kfree(buffer);
998  out_put:
999 	spi_dv_in_progress(starget) = 0;
1000 	scsi_device_put(sdev);
1001 }
1002 EXPORT_SYMBOL(spi_dv_device);
1003 
1004 struct work_queue_wrapper {
1005 	struct work_struct	work;
1006 	struct scsi_device	*sdev;
1007 };
1008 
1009 static void
1010 spi_dv_device_work_wrapper(struct work_struct *work)
1011 {
1012 	struct work_queue_wrapper *wqw =
1013 		container_of(work, struct work_queue_wrapper, work);
1014 	struct scsi_device *sdev = wqw->sdev;
1015 
1016 	kfree(wqw);
1017 	spi_dv_device(sdev);
1018 	spi_dv_pending(sdev->sdev_target) = 0;
1019 	scsi_device_put(sdev);
1020 }
1021 
1022 
1023 /**
1024  *	spi_schedule_dv_device - schedule domain validation to occur on the device
1025  *	@sdev:	The device to validate
1026  *
1027  *	Identical to spi_dv_device() above, except that the DV will be
1028  *	scheduled to occur in a workqueue later.  All memory allocations
1029  *	are atomic, so may be called from any context including those holding
1030  *	SCSI locks.
1031  */
1032 void
1033 spi_schedule_dv_device(struct scsi_device *sdev)
1034 {
1035 	struct work_queue_wrapper *wqw =
1036 		kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC);
1037 
1038 	if (unlikely(!wqw))
1039 		return;
1040 
1041 	if (unlikely(spi_dv_pending(sdev->sdev_target))) {
1042 		kfree(wqw);
1043 		return;
1044 	}
1045 	/* Set pending early (dv_device doesn't check it, only sets it) */
1046 	spi_dv_pending(sdev->sdev_target) = 1;
1047 	if (unlikely(scsi_device_get(sdev))) {
1048 		kfree(wqw);
1049 		spi_dv_pending(sdev->sdev_target) = 0;
1050 		return;
1051 	}
1052 
1053 	INIT_WORK(&wqw->work, spi_dv_device_work_wrapper);
1054 	wqw->sdev = sdev;
1055 
1056 	schedule_work(&wqw->work);
1057 }
1058 EXPORT_SYMBOL(spi_schedule_dv_device);
1059 
1060 /**
1061  * spi_display_xfer_agreement - Print the current target transfer agreement
1062  * @starget: The target for which to display the agreement
1063  *
1064  * Each SPI port is required to maintain a transfer agreement for each
1065  * other port on the bus.  This function prints a one-line summary of
1066  * the current agreement; more detailed information is available in sysfs.
1067  */
1068 void spi_display_xfer_agreement(struct scsi_target *starget)
1069 {
1070 	struct spi_transport_attrs *tp;
1071 	tp = (struct spi_transport_attrs *)&starget->starget_data;
1072 
1073 	if (tp->offset > 0 && tp->period > 0) {
1074 		unsigned int picosec, kb100;
1075 		char *scsi = "FAST-?";
1076 		char tmp[8];
1077 
1078 		if (tp->period <= SPI_STATIC_PPR) {
1079 			picosec = ppr_to_ps[tp->period];
1080 			switch (tp->period) {
1081 				case  7: scsi = "FAST-320"; break;
1082 				case  8: scsi = "FAST-160"; break;
1083 				case  9: scsi = "FAST-80"; break;
1084 				case 10:
1085 				case 11: scsi = "FAST-40"; break;
1086 				case 12: scsi = "FAST-20"; break;
1087 			}
1088 		} else {
1089 			picosec = tp->period * 4000;
1090 			if (tp->period < 25)
1091 				scsi = "FAST-20";
1092 			else if (tp->period < 50)
1093 				scsi = "FAST-10";
1094 			else
1095 				scsi = "FAST-5";
1096 		}
1097 
1098 		kb100 = (10000000 + picosec / 2) / picosec;
1099 		if (tp->width)
1100 			kb100 *= 2;
1101 		sprint_frac(tmp, picosec, 1000);
1102 
1103 		dev_info(&starget->dev,
1104 			 "%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n",
1105 			 scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10,
1106 			 tp->dt ? "DT" : "ST",
1107 			 tp->iu ? " IU" : "",
1108 			 tp->qas  ? " QAS" : "",
1109 			 tp->rd_strm ? " RDSTRM" : "",
1110 			 tp->rti ? " RTI" : "",
1111 			 tp->wr_flow ? " WRFLOW" : "",
1112 			 tp->pcomp_en ? " PCOMP" : "",
1113 			 tp->hold_mcs ? " HMCS" : "",
1114 			 tmp, tp->offset);
1115 	} else {
1116 		dev_info(&starget->dev, "%sasynchronous\n",
1117 				tp->width ? "wide " : "");
1118 	}
1119 }
1120 EXPORT_SYMBOL(spi_display_xfer_agreement);
1121 
1122 int spi_populate_width_msg(unsigned char *msg, int width)
1123 {
1124 	msg[0] = EXTENDED_MESSAGE;
1125 	msg[1] = 2;
1126 	msg[2] = EXTENDED_WDTR;
1127 	msg[3] = width;
1128 	return 4;
1129 }
1130 EXPORT_SYMBOL_GPL(spi_populate_width_msg);
1131 
1132 int spi_populate_sync_msg(unsigned char *msg, int period, int offset)
1133 {
1134 	msg[0] = EXTENDED_MESSAGE;
1135 	msg[1] = 3;
1136 	msg[2] = EXTENDED_SDTR;
1137 	msg[3] = period;
1138 	msg[4] = offset;
1139 	return 5;
1140 }
1141 EXPORT_SYMBOL_GPL(spi_populate_sync_msg);
1142 
1143 int spi_populate_ppr_msg(unsigned char *msg, int period, int offset,
1144 		int width, int options)
1145 {
1146 	msg[0] = EXTENDED_MESSAGE;
1147 	msg[1] = 6;
1148 	msg[2] = EXTENDED_PPR;
1149 	msg[3] = period;
1150 	msg[4] = 0;
1151 	msg[5] = offset;
1152 	msg[6] = width;
1153 	msg[7] = options;
1154 	return 8;
1155 }
1156 EXPORT_SYMBOL_GPL(spi_populate_ppr_msg);
1157 
1158 #ifdef CONFIG_SCSI_CONSTANTS
1159 static const char * const one_byte_msgs[] = {
1160 /* 0x00 */ "Task Complete", NULL /* Extended Message */, "Save Pointers",
1161 /* 0x03 */ "Restore Pointers", "Disconnect", "Initiator Error",
1162 /* 0x06 */ "Abort Task Set", "Message Reject", "Nop", "Message Parity Error",
1163 /* 0x0a */ "Linked Command Complete", "Linked Command Complete w/flag",
1164 /* 0x0c */ "Target Reset", "Abort Task", "Clear Task Set",
1165 /* 0x0f */ "Initiate Recovery", "Release Recovery",
1166 /* 0x11 */ "Terminate Process", "Continue Task", "Target Transfer Disable",
1167 /* 0x14 */ NULL, NULL, "Clear ACA", "LUN Reset"
1168 };
1169 
1170 static const char * const two_byte_msgs[] = {
1171 /* 0x20 */ "Simple Queue Tag", "Head of Queue Tag", "Ordered Queue Tag",
1172 /* 0x23 */ "Ignore Wide Residue", "ACA"
1173 };
1174 
1175 static const char * const extended_msgs[] = {
1176 /* 0x00 */ "Modify Data Pointer", "Synchronous Data Transfer Request",
1177 /* 0x02 */ "SCSI-I Extended Identify", "Wide Data Transfer Request",
1178 /* 0x04 */ "Parallel Protocol Request", "Modify Bidirectional Data Pointer"
1179 };
1180 
1181 static void print_nego(const unsigned char *msg, int per, int off, int width)
1182 {
1183 	if (per) {
1184 		char buf[20];
1185 		period_to_str(buf, msg[per]);
1186 		printk("period = %s ns ", buf);
1187 	}
1188 
1189 	if (off)
1190 		printk("offset = %d ", msg[off]);
1191 	if (width)
1192 		printk("width = %d ", 8 << msg[width]);
1193 }
1194 
1195 static void print_ptr(const unsigned char *msg, int msb, const char *desc)
1196 {
1197 	int ptr = (msg[msb] << 24) | (msg[msb+1] << 16) | (msg[msb+2] << 8) |
1198 			msg[msb+3];
1199 	printk("%s = %d ", desc, ptr);
1200 }
1201 
1202 int spi_print_msg(const unsigned char *msg)
1203 {
1204 	int len = 1, i;
1205 	if (msg[0] == EXTENDED_MESSAGE) {
1206 		len = 2 + msg[1];
1207 		if (len == 2)
1208 			len += 256;
1209 		if (msg[2] < ARRAY_SIZE(extended_msgs))
1210 			printk ("%s ", extended_msgs[msg[2]]);
1211 		else
1212 			printk ("Extended Message, reserved code (0x%02x) ",
1213 				(int) msg[2]);
1214 		switch (msg[2]) {
1215 		case EXTENDED_MODIFY_DATA_POINTER:
1216 			print_ptr(msg, 3, "pointer");
1217 			break;
1218 		case EXTENDED_SDTR:
1219 			print_nego(msg, 3, 4, 0);
1220 			break;
1221 		case EXTENDED_WDTR:
1222 			print_nego(msg, 0, 0, 3);
1223 			break;
1224 		case EXTENDED_PPR:
1225 			print_nego(msg, 3, 5, 6);
1226 			break;
1227 		case EXTENDED_MODIFY_BIDI_DATA_PTR:
1228 			print_ptr(msg, 3, "out");
1229 			print_ptr(msg, 7, "in");
1230 			break;
1231 		default:
1232 		for (i = 2; i < len; ++i)
1233 			printk("%02x ", msg[i]);
1234 		}
1235 	/* Identify */
1236 	} else if (msg[0] & 0x80) {
1237 		printk("Identify disconnect %sallowed %s %d ",
1238 			(msg[0] & 0x40) ? "" : "not ",
1239 			(msg[0] & 0x20) ? "target routine" : "lun",
1240 			msg[0] & 0x7);
1241 	/* Normal One byte */
1242 	} else if (msg[0] < 0x1f) {
1243 		if (msg[0] < ARRAY_SIZE(one_byte_msgs) && one_byte_msgs[msg[0]])
1244 			printk("%s ", one_byte_msgs[msg[0]]);
1245 		else
1246 			printk("reserved (%02x) ", msg[0]);
1247 	} else if (msg[0] == 0x55) {
1248 		printk("QAS Request ");
1249 	/* Two byte */
1250 	} else if (msg[0] <= 0x2f) {
1251 		if ((msg[0] - 0x20) < ARRAY_SIZE(two_byte_msgs))
1252 			printk("%s %02x ", two_byte_msgs[msg[0] - 0x20],
1253 				msg[1]);
1254 		else
1255 			printk("reserved two byte (%02x %02x) ",
1256 				msg[0], msg[1]);
1257 		len = 2;
1258 	} else
1259 		printk("reserved ");
1260 	return len;
1261 }
1262 EXPORT_SYMBOL(spi_print_msg);
1263 
1264 #else  /* ifndef CONFIG_SCSI_CONSTANTS */
1265 
1266 int spi_print_msg(const unsigned char *msg)
1267 {
1268 	int len = 1, i;
1269 
1270 	if (msg[0] == EXTENDED_MESSAGE) {
1271 		len = 2 + msg[1];
1272 		if (len == 2)
1273 			len += 256;
1274 		for (i = 0; i < len; ++i)
1275 			printk("%02x ", msg[i]);
1276 	/* Identify */
1277 	} else if (msg[0] & 0x80) {
1278 		printk("%02x ", msg[0]);
1279 	/* Normal One byte */
1280 	} else if ((msg[0] < 0x1f) || (msg[0] == 0x55)) {
1281 		printk("%02x ", msg[0]);
1282 	/* Two byte */
1283 	} else if (msg[0] <= 0x2f) {
1284 		printk("%02x %02x", msg[0], msg[1]);
1285 		len = 2;
1286 	} else
1287 		printk("%02x ", msg[0]);
1288 	return len;
1289 }
1290 EXPORT_SYMBOL(spi_print_msg);
1291 #endif /* ! CONFIG_SCSI_CONSTANTS */
1292 
1293 static int spi_device_match(struct attribute_container *cont,
1294 			    struct device *dev)
1295 {
1296 	struct scsi_device *sdev;
1297 	struct Scsi_Host *shost;
1298 	struct spi_internal *i;
1299 
1300 	if (!scsi_is_sdev_device(dev))
1301 		return 0;
1302 
1303 	sdev = to_scsi_device(dev);
1304 	shost = sdev->host;
1305 	if (!shost->transportt  || shost->transportt->host_attrs.ac.class
1306 	    != &spi_host_class.class)
1307 		return 0;
1308 	/* Note: this class has no device attributes, so it has
1309 	 * no per-HBA allocation and thus we don't need to distinguish
1310 	 * the attribute containers for the device */
1311 	i = to_spi_internal(shost->transportt);
1312 	if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target))
1313 		return 0;
1314 	return 1;
1315 }
1316 
1317 static int spi_target_match(struct attribute_container *cont,
1318 			    struct device *dev)
1319 {
1320 	struct Scsi_Host *shost;
1321 	struct scsi_target *starget;
1322 	struct spi_internal *i;
1323 
1324 	if (!scsi_is_target_device(dev))
1325 		return 0;
1326 
1327 	shost = dev_to_shost(dev->parent);
1328 	if (!shost->transportt  || shost->transportt->host_attrs.ac.class
1329 	    != &spi_host_class.class)
1330 		return 0;
1331 
1332 	i = to_spi_internal(shost->transportt);
1333 	starget = to_scsi_target(dev);
1334 
1335 	if (i->f->deny_binding && i->f->deny_binding(starget))
1336 		return 0;
1337 
1338 	return &i->t.target_attrs.ac == cont;
1339 }
1340 
1341 static DECLARE_TRANSPORT_CLASS(spi_transport_class,
1342 			       "spi_transport",
1343 			       spi_setup_transport_attrs,
1344 			       NULL,
1345 			       spi_target_configure);
1346 
1347 static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class,
1348 				    spi_device_match,
1349 				    spi_device_configure);
1350 
1351 static struct attribute *host_attributes[] = {
1352 	&dev_attr_signalling.attr,
1353 	NULL
1354 };
1355 
1356 static struct attribute_group host_attribute_group = {
1357 	.attrs = host_attributes,
1358 };
1359 
1360 static int spi_host_configure(struct transport_container *tc,
1361 			      struct device *dev,
1362 			      struct device *cdev)
1363 {
1364 	struct kobject *kobj = &cdev->kobj;
1365 	struct Scsi_Host *shost = transport_class_to_shost(cdev);
1366 	struct spi_internal *si = to_spi_internal(shost->transportt);
1367 	struct attribute *attr = &dev_attr_signalling.attr;
1368 	int rc = 0;
1369 
1370 	if (si->f->set_signalling)
1371 		rc = sysfs_chmod_file(kobj, attr, attr->mode | S_IWUSR);
1372 
1373 	return rc;
1374 }
1375 
1376 /* returns true if we should be showing the variable.  Also
1377  * overloads the return by setting 1<<1 if the attribute should
1378  * be writeable */
1379 #define TARGET_ATTRIBUTE_HELPER(name) \
1380 	(si->f->show_##name ? S_IRUGO : 0) | \
1381 	(si->f->set_##name ? S_IWUSR : 0)
1382 
1383 static mode_t target_attribute_is_visible(struct kobject *kobj,
1384 					  struct attribute *attr, int i)
1385 {
1386 	struct device *cdev = container_of(kobj, struct device, kobj);
1387 	struct scsi_target *starget = transport_class_to_starget(cdev);
1388 	struct Scsi_Host *shost = transport_class_to_shost(cdev);
1389 	struct spi_internal *si = to_spi_internal(shost->transportt);
1390 
1391 	if (attr == &dev_attr_period.attr &&
1392 	    spi_support_sync(starget))
1393 		return TARGET_ATTRIBUTE_HELPER(period);
1394 	else if (attr == &dev_attr_min_period.attr &&
1395 		 spi_support_sync(starget))
1396 		return TARGET_ATTRIBUTE_HELPER(period);
1397 	else if (attr == &dev_attr_offset.attr &&
1398 		 spi_support_sync(starget))
1399 		return TARGET_ATTRIBUTE_HELPER(offset);
1400 	else if (attr == &dev_attr_max_offset.attr &&
1401 		 spi_support_sync(starget))
1402 		return TARGET_ATTRIBUTE_HELPER(offset);
1403 	else if (attr == &dev_attr_width.attr &&
1404 		 spi_support_wide(starget))
1405 		return TARGET_ATTRIBUTE_HELPER(width);
1406 	else if (attr == &dev_attr_max_width.attr &&
1407 		 spi_support_wide(starget))
1408 		return TARGET_ATTRIBUTE_HELPER(width);
1409 	else if (attr == &dev_attr_iu.attr &&
1410 		 spi_support_ius(starget))
1411 		return TARGET_ATTRIBUTE_HELPER(iu);
1412 	else if (attr == &dev_attr_dt.attr &&
1413 		 spi_support_dt(starget))
1414 		return TARGET_ATTRIBUTE_HELPER(dt);
1415 	else if (attr == &dev_attr_qas.attr &&
1416 		 spi_support_qas(starget))
1417 		return TARGET_ATTRIBUTE_HELPER(qas);
1418 	else if (attr == &dev_attr_wr_flow.attr &&
1419 		 spi_support_ius(starget))
1420 		return TARGET_ATTRIBUTE_HELPER(wr_flow);
1421 	else if (attr == &dev_attr_rd_strm.attr &&
1422 		 spi_support_ius(starget))
1423 		return TARGET_ATTRIBUTE_HELPER(rd_strm);
1424 	else if (attr == &dev_attr_rti.attr &&
1425 		 spi_support_ius(starget))
1426 		return TARGET_ATTRIBUTE_HELPER(rti);
1427 	else if (attr == &dev_attr_pcomp_en.attr &&
1428 		 spi_support_ius(starget))
1429 		return TARGET_ATTRIBUTE_HELPER(pcomp_en);
1430 	else if (attr == &dev_attr_hold_mcs.attr &&
1431 		 spi_support_ius(starget))
1432 		return TARGET_ATTRIBUTE_HELPER(hold_mcs);
1433 	else if (attr == &dev_attr_revalidate.attr)
1434 		return S_IWUSR;
1435 
1436 	return 0;
1437 }
1438 
1439 static struct attribute *target_attributes[] = {
1440 	&dev_attr_period.attr,
1441 	&dev_attr_min_period.attr,
1442 	&dev_attr_offset.attr,
1443 	&dev_attr_max_offset.attr,
1444 	&dev_attr_width.attr,
1445 	&dev_attr_max_width.attr,
1446 	&dev_attr_iu.attr,
1447 	&dev_attr_dt.attr,
1448 	&dev_attr_qas.attr,
1449 	&dev_attr_wr_flow.attr,
1450 	&dev_attr_rd_strm.attr,
1451 	&dev_attr_rti.attr,
1452 	&dev_attr_pcomp_en.attr,
1453 	&dev_attr_hold_mcs.attr,
1454 	&dev_attr_revalidate.attr,
1455 	NULL
1456 };
1457 
1458 static struct attribute_group target_attribute_group = {
1459 	.attrs = target_attributes,
1460 	.is_visible = target_attribute_is_visible,
1461 };
1462 
1463 static int spi_target_configure(struct transport_container *tc,
1464 				struct device *dev,
1465 				struct device *cdev)
1466 {
1467 	struct kobject *kobj = &cdev->kobj;
1468 
1469 	/* force an update based on parameters read from the device */
1470 	sysfs_update_group(kobj, &target_attribute_group);
1471 
1472 	return 0;
1473 }
1474 
1475 struct scsi_transport_template *
1476 spi_attach_transport(struct spi_function_template *ft)
1477 {
1478 	struct spi_internal *i = kzalloc(sizeof(struct spi_internal),
1479 					 GFP_KERNEL);
1480 
1481 	if (unlikely(!i))
1482 		return NULL;
1483 
1484 	i->t.target_attrs.ac.class = &spi_transport_class.class;
1485 	i->t.target_attrs.ac.grp = &target_attribute_group;
1486 	i->t.target_attrs.ac.match = spi_target_match;
1487 	transport_container_register(&i->t.target_attrs);
1488 	i->t.target_size = sizeof(struct spi_transport_attrs);
1489 	i->t.host_attrs.ac.class = &spi_host_class.class;
1490 	i->t.host_attrs.ac.grp = &host_attribute_group;
1491 	i->t.host_attrs.ac.match = spi_host_match;
1492 	transport_container_register(&i->t.host_attrs);
1493 	i->t.host_size = sizeof(struct spi_host_attrs);
1494 	i->f = ft;
1495 
1496 	return &i->t;
1497 }
1498 EXPORT_SYMBOL(spi_attach_transport);
1499 
1500 void spi_release_transport(struct scsi_transport_template *t)
1501 {
1502 	struct spi_internal *i = to_spi_internal(t);
1503 
1504 	transport_container_unregister(&i->t.target_attrs);
1505 	transport_container_unregister(&i->t.host_attrs);
1506 
1507 	kfree(i);
1508 }
1509 EXPORT_SYMBOL(spi_release_transport);
1510 
1511 static __init int spi_transport_init(void)
1512 {
1513 	int error = transport_class_register(&spi_transport_class);
1514 	if (error)
1515 		return error;
1516 	error = anon_transport_class_register(&spi_device_class);
1517 	return transport_class_register(&spi_host_class);
1518 }
1519 
1520 static void __exit spi_transport_exit(void)
1521 {
1522 	transport_class_unregister(&spi_transport_class);
1523 	anon_transport_class_unregister(&spi_device_class);
1524 	transport_class_unregister(&spi_host_class);
1525 }
1526 
1527 MODULE_AUTHOR("Martin Hicks");
1528 MODULE_DESCRIPTION("SPI Transport Attributes");
1529 MODULE_LICENSE("GPL");
1530 
1531 module_init(spi_transport_init);
1532 module_exit(spi_transport_exit);
1533