1 /* 2 * Parallel SCSI (SPI) transport specific attributes exported to sysfs. 3 * 4 * Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved. 5 * Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 #include <linux/ctype.h> 22 #include <linux/init.h> 23 #include <linux/module.h> 24 #include <linux/workqueue.h> 25 #include <linux/blkdev.h> 26 #include <linux/mutex.h> 27 #include <linux/sysfs.h> 28 #include <linux/slab.h> 29 #include <scsi/scsi.h> 30 #include "scsi_priv.h" 31 #include <scsi/scsi_device.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_cmnd.h> 34 #include <scsi/scsi_eh.h> 35 #include <scsi/scsi_transport.h> 36 #include <scsi/scsi_transport_spi.h> 37 38 #define SPI_NUM_ATTRS 14 /* increase this if you add attributes */ 39 #define SPI_OTHER_ATTRS 1 /* Increase this if you add "always 40 * on" attributes */ 41 #define SPI_HOST_ATTRS 1 42 43 #define SPI_MAX_ECHO_BUFFER_SIZE 4096 44 45 #define DV_LOOPS 3 46 #define DV_TIMEOUT (10*HZ) 47 #define DV_RETRIES 3 /* should only need at most 48 * two cc/ua clears */ 49 50 /* Our blacklist flags */ 51 enum { 52 SPI_BLIST_NOIUS = 0x1, 53 }; 54 55 /* blacklist table, modelled on scsi_devinfo.c */ 56 static struct { 57 char *vendor; 58 char *model; 59 unsigned flags; 60 } spi_static_device_list[] __initdata = { 61 {"HP", "Ultrium 3-SCSI", SPI_BLIST_NOIUS }, 62 {"IBM", "ULTRIUM-TD3", SPI_BLIST_NOIUS }, 63 {NULL, NULL, 0} 64 }; 65 66 /* Private data accessors (keep these out of the header file) */ 67 #define spi_dv_in_progress(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_in_progress) 68 #define spi_dv_mutex(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_mutex) 69 70 struct spi_internal { 71 struct scsi_transport_template t; 72 struct spi_function_template *f; 73 }; 74 75 #define to_spi_internal(tmpl) container_of(tmpl, struct spi_internal, t) 76 77 static const int ppr_to_ps[] = { 78 /* The PPR values 0-6 are reserved, fill them in when 79 * the committee defines them */ 80 -1, /* 0x00 */ 81 -1, /* 0x01 */ 82 -1, /* 0x02 */ 83 -1, /* 0x03 */ 84 -1, /* 0x04 */ 85 -1, /* 0x05 */ 86 -1, /* 0x06 */ 87 3125, /* 0x07 */ 88 6250, /* 0x08 */ 89 12500, /* 0x09 */ 90 25000, /* 0x0a */ 91 30300, /* 0x0b */ 92 50000, /* 0x0c */ 93 }; 94 /* The PPR values at which you calculate the period in ns by multiplying 95 * by 4 */ 96 #define SPI_STATIC_PPR 0x0c 97 98 static int sprint_frac(char *dest, int value, int denom) 99 { 100 int frac = value % denom; 101 int result = sprintf(dest, "%d", value / denom); 102 103 if (frac == 0) 104 return result; 105 dest[result++] = '.'; 106 107 do { 108 denom /= 10; 109 sprintf(dest + result, "%d", frac / denom); 110 result++; 111 frac %= denom; 112 } while (frac); 113 114 dest[result++] = '\0'; 115 return result; 116 } 117 118 static int spi_execute(struct scsi_device *sdev, const void *cmd, 119 enum dma_data_direction dir, 120 void *buffer, unsigned bufflen, 121 struct scsi_sense_hdr *sshdr) 122 { 123 int i, result; 124 unsigned char sense[SCSI_SENSE_BUFFERSIZE]; 125 126 for(i = 0; i < DV_RETRIES; i++) { 127 result = scsi_execute(sdev, cmd, dir, buffer, bufflen, 128 sense, DV_TIMEOUT, /* retries */ 1, 129 REQ_FAILFAST_DEV | 130 REQ_FAILFAST_TRANSPORT | 131 REQ_FAILFAST_DRIVER, 132 NULL); 133 if (driver_byte(result) & DRIVER_SENSE) { 134 struct scsi_sense_hdr sshdr_tmp; 135 if (!sshdr) 136 sshdr = &sshdr_tmp; 137 138 if (scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, 139 sshdr) 140 && sshdr->sense_key == UNIT_ATTENTION) 141 continue; 142 } 143 break; 144 } 145 return result; 146 } 147 148 static struct { 149 enum spi_signal_type value; 150 char *name; 151 } signal_types[] = { 152 { SPI_SIGNAL_UNKNOWN, "unknown" }, 153 { SPI_SIGNAL_SE, "SE" }, 154 { SPI_SIGNAL_LVD, "LVD" }, 155 { SPI_SIGNAL_HVD, "HVD" }, 156 }; 157 158 static inline const char *spi_signal_to_string(enum spi_signal_type type) 159 { 160 int i; 161 162 for (i = 0; i < ARRAY_SIZE(signal_types); i++) { 163 if (type == signal_types[i].value) 164 return signal_types[i].name; 165 } 166 return NULL; 167 } 168 static inline enum spi_signal_type spi_signal_to_value(const char *name) 169 { 170 int i, len; 171 172 for (i = 0; i < ARRAY_SIZE(signal_types); i++) { 173 len = strlen(signal_types[i].name); 174 if (strncmp(name, signal_types[i].name, len) == 0 && 175 (name[len] == '\n' || name[len] == '\0')) 176 return signal_types[i].value; 177 } 178 return SPI_SIGNAL_UNKNOWN; 179 } 180 181 static int spi_host_setup(struct transport_container *tc, struct device *dev, 182 struct device *cdev) 183 { 184 struct Scsi_Host *shost = dev_to_shost(dev); 185 186 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN; 187 188 return 0; 189 } 190 191 static int spi_host_configure(struct transport_container *tc, 192 struct device *dev, 193 struct device *cdev); 194 195 static DECLARE_TRANSPORT_CLASS(spi_host_class, 196 "spi_host", 197 spi_host_setup, 198 NULL, 199 spi_host_configure); 200 201 static int spi_host_match(struct attribute_container *cont, 202 struct device *dev) 203 { 204 struct Scsi_Host *shost; 205 206 if (!scsi_is_host_device(dev)) 207 return 0; 208 209 shost = dev_to_shost(dev); 210 if (!shost->transportt || shost->transportt->host_attrs.ac.class 211 != &spi_host_class.class) 212 return 0; 213 214 return &shost->transportt->host_attrs.ac == cont; 215 } 216 217 static int spi_target_configure(struct transport_container *tc, 218 struct device *dev, 219 struct device *cdev); 220 221 static int spi_device_configure(struct transport_container *tc, 222 struct device *dev, 223 struct device *cdev) 224 { 225 struct scsi_device *sdev = to_scsi_device(dev); 226 struct scsi_target *starget = sdev->sdev_target; 227 unsigned bflags = scsi_get_device_flags_keyed(sdev, &sdev->inquiry[8], 228 &sdev->inquiry[16], 229 SCSI_DEVINFO_SPI); 230 231 /* Populate the target capability fields with the values 232 * gleaned from the device inquiry */ 233 234 spi_support_sync(starget) = scsi_device_sync(sdev); 235 spi_support_wide(starget) = scsi_device_wide(sdev); 236 spi_support_dt(starget) = scsi_device_dt(sdev); 237 spi_support_dt_only(starget) = scsi_device_dt_only(sdev); 238 spi_support_ius(starget) = scsi_device_ius(sdev); 239 if (bflags & SPI_BLIST_NOIUS) { 240 dev_info(dev, "Information Units disabled by blacklist\n"); 241 spi_support_ius(starget) = 0; 242 } 243 spi_support_qas(starget) = scsi_device_qas(sdev); 244 245 return 0; 246 } 247 248 static int spi_setup_transport_attrs(struct transport_container *tc, 249 struct device *dev, 250 struct device *cdev) 251 { 252 struct scsi_target *starget = to_scsi_target(dev); 253 254 spi_period(starget) = -1; /* illegal value */ 255 spi_min_period(starget) = 0; 256 spi_offset(starget) = 0; /* async */ 257 spi_max_offset(starget) = 255; 258 spi_width(starget) = 0; /* narrow */ 259 spi_max_width(starget) = 1; 260 spi_iu(starget) = 0; /* no IU */ 261 spi_max_iu(starget) = 1; 262 spi_dt(starget) = 0; /* ST */ 263 spi_qas(starget) = 0; 264 spi_max_qas(starget) = 1; 265 spi_wr_flow(starget) = 0; 266 spi_rd_strm(starget) = 0; 267 spi_rti(starget) = 0; 268 spi_pcomp_en(starget) = 0; 269 spi_hold_mcs(starget) = 0; 270 spi_dv_pending(starget) = 0; 271 spi_dv_in_progress(starget) = 0; 272 spi_initial_dv(starget) = 0; 273 mutex_init(&spi_dv_mutex(starget)); 274 275 return 0; 276 } 277 278 #define spi_transport_show_simple(field, format_string) \ 279 \ 280 static ssize_t \ 281 show_spi_transport_##field(struct device *dev, \ 282 struct device_attribute *attr, char *buf) \ 283 { \ 284 struct scsi_target *starget = transport_class_to_starget(dev); \ 285 struct spi_transport_attrs *tp; \ 286 \ 287 tp = (struct spi_transport_attrs *)&starget->starget_data; \ 288 return snprintf(buf, 20, format_string, tp->field); \ 289 } 290 291 #define spi_transport_store_simple(field, format_string) \ 292 \ 293 static ssize_t \ 294 store_spi_transport_##field(struct device *dev, \ 295 struct device_attribute *attr, \ 296 const char *buf, size_t count) \ 297 { \ 298 int val; \ 299 struct scsi_target *starget = transport_class_to_starget(dev); \ 300 struct spi_transport_attrs *tp; \ 301 \ 302 tp = (struct spi_transport_attrs *)&starget->starget_data; \ 303 val = simple_strtoul(buf, NULL, 0); \ 304 tp->field = val; \ 305 return count; \ 306 } 307 308 #define spi_transport_show_function(field, format_string) \ 309 \ 310 static ssize_t \ 311 show_spi_transport_##field(struct device *dev, \ 312 struct device_attribute *attr, char *buf) \ 313 { \ 314 struct scsi_target *starget = transport_class_to_starget(dev); \ 315 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 316 struct spi_transport_attrs *tp; \ 317 struct spi_internal *i = to_spi_internal(shost->transportt); \ 318 tp = (struct spi_transport_attrs *)&starget->starget_data; \ 319 if (i->f->get_##field) \ 320 i->f->get_##field(starget); \ 321 return snprintf(buf, 20, format_string, tp->field); \ 322 } 323 324 #define spi_transport_store_function(field, format_string) \ 325 static ssize_t \ 326 store_spi_transport_##field(struct device *dev, \ 327 struct device_attribute *attr, \ 328 const char *buf, size_t count) \ 329 { \ 330 int val; \ 331 struct scsi_target *starget = transport_class_to_starget(dev); \ 332 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 333 struct spi_internal *i = to_spi_internal(shost->transportt); \ 334 \ 335 if (!i->f->set_##field) \ 336 return -EINVAL; \ 337 val = simple_strtoul(buf, NULL, 0); \ 338 i->f->set_##field(starget, val); \ 339 return count; \ 340 } 341 342 #define spi_transport_store_max(field, format_string) \ 343 static ssize_t \ 344 store_spi_transport_##field(struct device *dev, \ 345 struct device_attribute *attr, \ 346 const char *buf, size_t count) \ 347 { \ 348 int val; \ 349 struct scsi_target *starget = transport_class_to_starget(dev); \ 350 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 351 struct spi_internal *i = to_spi_internal(shost->transportt); \ 352 struct spi_transport_attrs *tp \ 353 = (struct spi_transport_attrs *)&starget->starget_data; \ 354 \ 355 if (i->f->set_##field) \ 356 return -EINVAL; \ 357 val = simple_strtoul(buf, NULL, 0); \ 358 if (val > tp->max_##field) \ 359 val = tp->max_##field; \ 360 i->f->set_##field(starget, val); \ 361 return count; \ 362 } 363 364 #define spi_transport_rd_attr(field, format_string) \ 365 spi_transport_show_function(field, format_string) \ 366 spi_transport_store_function(field, format_string) \ 367 static DEVICE_ATTR(field, S_IRUGO, \ 368 show_spi_transport_##field, \ 369 store_spi_transport_##field); 370 371 #define spi_transport_simple_attr(field, format_string) \ 372 spi_transport_show_simple(field, format_string) \ 373 spi_transport_store_simple(field, format_string) \ 374 static DEVICE_ATTR(field, S_IRUGO, \ 375 show_spi_transport_##field, \ 376 store_spi_transport_##field); 377 378 #define spi_transport_max_attr(field, format_string) \ 379 spi_transport_show_function(field, format_string) \ 380 spi_transport_store_max(field, format_string) \ 381 spi_transport_simple_attr(max_##field, format_string) \ 382 static DEVICE_ATTR(field, S_IRUGO, \ 383 show_spi_transport_##field, \ 384 store_spi_transport_##field); 385 386 /* The Parallel SCSI Tranport Attributes: */ 387 spi_transport_max_attr(offset, "%d\n"); 388 spi_transport_max_attr(width, "%d\n"); 389 spi_transport_max_attr(iu, "%d\n"); 390 spi_transport_rd_attr(dt, "%d\n"); 391 spi_transport_max_attr(qas, "%d\n"); 392 spi_transport_rd_attr(wr_flow, "%d\n"); 393 spi_transport_rd_attr(rd_strm, "%d\n"); 394 spi_transport_rd_attr(rti, "%d\n"); 395 spi_transport_rd_attr(pcomp_en, "%d\n"); 396 spi_transport_rd_attr(hold_mcs, "%d\n"); 397 398 /* we only care about the first child device that's a real SCSI device 399 * so we return 1 to terminate the iteration when we find it */ 400 static int child_iter(struct device *dev, void *data) 401 { 402 if (!scsi_is_sdev_device(dev)) 403 return 0; 404 405 spi_dv_device(to_scsi_device(dev)); 406 return 1; 407 } 408 409 static ssize_t 410 store_spi_revalidate(struct device *dev, struct device_attribute *attr, 411 const char *buf, size_t count) 412 { 413 struct scsi_target *starget = transport_class_to_starget(dev); 414 415 device_for_each_child(&starget->dev, NULL, child_iter); 416 return count; 417 } 418 static DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate); 419 420 /* Translate the period into ns according to the current spec 421 * for SDTR/PPR messages */ 422 static int period_to_str(char *buf, int period) 423 { 424 int len, picosec; 425 426 if (period < 0 || period > 0xff) { 427 picosec = -1; 428 } else if (period <= SPI_STATIC_PPR) { 429 picosec = ppr_to_ps[period]; 430 } else { 431 picosec = period * 4000; 432 } 433 434 if (picosec == -1) { 435 len = sprintf(buf, "reserved"); 436 } else { 437 len = sprint_frac(buf, picosec, 1000); 438 } 439 440 return len; 441 } 442 443 static ssize_t 444 show_spi_transport_period_helper(char *buf, int period) 445 { 446 int len = period_to_str(buf, period); 447 buf[len++] = '\n'; 448 buf[len] = '\0'; 449 return len; 450 } 451 452 static ssize_t 453 store_spi_transport_period_helper(struct device *dev, const char *buf, 454 size_t count, int *periodp) 455 { 456 int j, picosec, period = -1; 457 char *endp; 458 459 picosec = simple_strtoul(buf, &endp, 10) * 1000; 460 if (*endp == '.') { 461 int mult = 100; 462 do { 463 endp++; 464 if (!isdigit(*endp)) 465 break; 466 picosec += (*endp - '0') * mult; 467 mult /= 10; 468 } while (mult > 0); 469 } 470 471 for (j = 0; j <= SPI_STATIC_PPR; j++) { 472 if (ppr_to_ps[j] < picosec) 473 continue; 474 period = j; 475 break; 476 } 477 478 if (period == -1) 479 period = picosec / 4000; 480 481 if (period > 0xff) 482 period = 0xff; 483 484 *periodp = period; 485 486 return count; 487 } 488 489 static ssize_t 490 show_spi_transport_period(struct device *dev, 491 struct device_attribute *attr, char *buf) 492 { 493 struct scsi_target *starget = transport_class_to_starget(dev); 494 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 495 struct spi_internal *i = to_spi_internal(shost->transportt); 496 struct spi_transport_attrs *tp = 497 (struct spi_transport_attrs *)&starget->starget_data; 498 499 if (i->f->get_period) 500 i->f->get_period(starget); 501 502 return show_spi_transport_period_helper(buf, tp->period); 503 } 504 505 static ssize_t 506 store_spi_transport_period(struct device *cdev, struct device_attribute *attr, 507 const char *buf, size_t count) 508 { 509 struct scsi_target *starget = transport_class_to_starget(cdev); 510 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 511 struct spi_internal *i = to_spi_internal(shost->transportt); 512 struct spi_transport_attrs *tp = 513 (struct spi_transport_attrs *)&starget->starget_data; 514 int period, retval; 515 516 if (!i->f->set_period) 517 return -EINVAL; 518 519 retval = store_spi_transport_period_helper(cdev, buf, count, &period); 520 521 if (period < tp->min_period) 522 period = tp->min_period; 523 524 i->f->set_period(starget, period); 525 526 return retval; 527 } 528 529 static DEVICE_ATTR(period, S_IRUGO, 530 show_spi_transport_period, 531 store_spi_transport_period); 532 533 static ssize_t 534 show_spi_transport_min_period(struct device *cdev, 535 struct device_attribute *attr, char *buf) 536 { 537 struct scsi_target *starget = transport_class_to_starget(cdev); 538 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 539 struct spi_internal *i = to_spi_internal(shost->transportt); 540 struct spi_transport_attrs *tp = 541 (struct spi_transport_attrs *)&starget->starget_data; 542 543 if (!i->f->set_period) 544 return -EINVAL; 545 546 return show_spi_transport_period_helper(buf, tp->min_period); 547 } 548 549 static ssize_t 550 store_spi_transport_min_period(struct device *cdev, 551 struct device_attribute *attr, 552 const char *buf, size_t count) 553 { 554 struct scsi_target *starget = transport_class_to_starget(cdev); 555 struct spi_transport_attrs *tp = 556 (struct spi_transport_attrs *)&starget->starget_data; 557 558 return store_spi_transport_period_helper(cdev, buf, count, 559 &tp->min_period); 560 } 561 562 563 static DEVICE_ATTR(min_period, S_IRUGO, 564 show_spi_transport_min_period, 565 store_spi_transport_min_period); 566 567 568 static ssize_t show_spi_host_signalling(struct device *cdev, 569 struct device_attribute *attr, 570 char *buf) 571 { 572 struct Scsi_Host *shost = transport_class_to_shost(cdev); 573 struct spi_internal *i = to_spi_internal(shost->transportt); 574 575 if (i->f->get_signalling) 576 i->f->get_signalling(shost); 577 578 return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost))); 579 } 580 static ssize_t store_spi_host_signalling(struct device *dev, 581 struct device_attribute *attr, 582 const char *buf, size_t count) 583 { 584 struct Scsi_Host *shost = transport_class_to_shost(dev); 585 struct spi_internal *i = to_spi_internal(shost->transportt); 586 enum spi_signal_type type = spi_signal_to_value(buf); 587 588 if (!i->f->set_signalling) 589 return -EINVAL; 590 591 if (type != SPI_SIGNAL_UNKNOWN) 592 i->f->set_signalling(shost, type); 593 594 return count; 595 } 596 static DEVICE_ATTR(signalling, S_IRUGO, 597 show_spi_host_signalling, 598 store_spi_host_signalling); 599 600 static ssize_t show_spi_host_width(struct device *cdev, 601 struct device_attribute *attr, 602 char *buf) 603 { 604 struct Scsi_Host *shost = transport_class_to_shost(cdev); 605 606 return sprintf(buf, "%s\n", shost->max_id == 16 ? "wide" : "narrow"); 607 } 608 static DEVICE_ATTR(host_width, S_IRUGO, 609 show_spi_host_width, NULL); 610 611 static ssize_t show_spi_host_hba_id(struct device *cdev, 612 struct device_attribute *attr, 613 char *buf) 614 { 615 struct Scsi_Host *shost = transport_class_to_shost(cdev); 616 617 return sprintf(buf, "%d\n", shost->this_id); 618 } 619 static DEVICE_ATTR(hba_id, S_IRUGO, 620 show_spi_host_hba_id, NULL); 621 622 #define DV_SET(x, y) \ 623 if(i->f->set_##x) \ 624 i->f->set_##x(sdev->sdev_target, y) 625 626 enum spi_compare_returns { 627 SPI_COMPARE_SUCCESS, 628 SPI_COMPARE_FAILURE, 629 SPI_COMPARE_SKIP_TEST, 630 }; 631 632 633 /* This is for read/write Domain Validation: If the device supports 634 * an echo buffer, we do read/write tests to it */ 635 static enum spi_compare_returns 636 spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer, 637 u8 *ptr, const int retries) 638 { 639 int len = ptr - buffer; 640 int j, k, r, result; 641 unsigned int pattern = 0x0000ffff; 642 struct scsi_sense_hdr sshdr; 643 644 const char spi_write_buffer[] = { 645 WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0 646 }; 647 const char spi_read_buffer[] = { 648 READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0 649 }; 650 651 /* set up the pattern buffer. Doesn't matter if we spill 652 * slightly beyond since that's where the read buffer is */ 653 for (j = 0; j < len; ) { 654 655 /* fill the buffer with counting (test a) */ 656 for ( ; j < min(len, 32); j++) 657 buffer[j] = j; 658 k = j; 659 /* fill the buffer with alternating words of 0x0 and 660 * 0xffff (test b) */ 661 for ( ; j < min(len, k + 32); j += 2) { 662 u16 *word = (u16 *)&buffer[j]; 663 664 *word = (j & 0x02) ? 0x0000 : 0xffff; 665 } 666 k = j; 667 /* fill with crosstalk (alternating 0x5555 0xaaa) 668 * (test c) */ 669 for ( ; j < min(len, k + 32); j += 2) { 670 u16 *word = (u16 *)&buffer[j]; 671 672 *word = (j & 0x02) ? 0x5555 : 0xaaaa; 673 } 674 k = j; 675 /* fill with shifting bits (test d) */ 676 for ( ; j < min(len, k + 32); j += 4) { 677 u32 *word = (unsigned int *)&buffer[j]; 678 u32 roll = (pattern & 0x80000000) ? 1 : 0; 679 680 *word = pattern; 681 pattern = (pattern << 1) | roll; 682 } 683 /* don't bother with random data (test e) */ 684 } 685 686 for (r = 0; r < retries; r++) { 687 result = spi_execute(sdev, spi_write_buffer, DMA_TO_DEVICE, 688 buffer, len, &sshdr); 689 if(result || !scsi_device_online(sdev)) { 690 691 scsi_device_set_state(sdev, SDEV_QUIESCE); 692 if (scsi_sense_valid(&sshdr) 693 && sshdr.sense_key == ILLEGAL_REQUEST 694 /* INVALID FIELD IN CDB */ 695 && sshdr.asc == 0x24 && sshdr.ascq == 0x00) 696 /* This would mean that the drive lied 697 * to us about supporting an echo 698 * buffer (unfortunately some Western 699 * Digital drives do precisely this) 700 */ 701 return SPI_COMPARE_SKIP_TEST; 702 703 704 sdev_printk(KERN_ERR, sdev, "Write Buffer failure %x\n", result); 705 return SPI_COMPARE_FAILURE; 706 } 707 708 memset(ptr, 0, len); 709 spi_execute(sdev, spi_read_buffer, DMA_FROM_DEVICE, 710 ptr, len, NULL); 711 scsi_device_set_state(sdev, SDEV_QUIESCE); 712 713 if (memcmp(buffer, ptr, len) != 0) 714 return SPI_COMPARE_FAILURE; 715 } 716 return SPI_COMPARE_SUCCESS; 717 } 718 719 /* This is for the simplest form of Domain Validation: a read test 720 * on the inquiry data from the device */ 721 static enum spi_compare_returns 722 spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer, 723 u8 *ptr, const int retries) 724 { 725 int r, result; 726 const int len = sdev->inquiry_len; 727 const char spi_inquiry[] = { 728 INQUIRY, 0, 0, 0, len, 0 729 }; 730 731 for (r = 0; r < retries; r++) { 732 memset(ptr, 0, len); 733 734 result = spi_execute(sdev, spi_inquiry, DMA_FROM_DEVICE, 735 ptr, len, NULL); 736 737 if(result || !scsi_device_online(sdev)) { 738 scsi_device_set_state(sdev, SDEV_QUIESCE); 739 return SPI_COMPARE_FAILURE; 740 } 741 742 /* If we don't have the inquiry data already, the 743 * first read gets it */ 744 if (ptr == buffer) { 745 ptr += len; 746 --r; 747 continue; 748 } 749 750 if (memcmp(buffer, ptr, len) != 0) 751 /* failure */ 752 return SPI_COMPARE_FAILURE; 753 } 754 return SPI_COMPARE_SUCCESS; 755 } 756 757 static enum spi_compare_returns 758 spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr, 759 enum spi_compare_returns 760 (*compare_fn)(struct scsi_device *, u8 *, u8 *, int)) 761 { 762 struct spi_internal *i = to_spi_internal(sdev->host->transportt); 763 struct scsi_target *starget = sdev->sdev_target; 764 int period = 0, prevperiod = 0; 765 enum spi_compare_returns retval; 766 767 768 for (;;) { 769 int newperiod; 770 retval = compare_fn(sdev, buffer, ptr, DV_LOOPS); 771 772 if (retval == SPI_COMPARE_SUCCESS 773 || retval == SPI_COMPARE_SKIP_TEST) 774 break; 775 776 /* OK, retrain, fallback */ 777 if (i->f->get_iu) 778 i->f->get_iu(starget); 779 if (i->f->get_qas) 780 i->f->get_qas(starget); 781 if (i->f->get_period) 782 i->f->get_period(sdev->sdev_target); 783 784 /* Here's the fallback sequence; first try turning off 785 * IU, then QAS (if we can control them), then finally 786 * fall down the periods */ 787 if (i->f->set_iu && spi_iu(starget)) { 788 starget_printk(KERN_ERR, starget, "Domain Validation Disabing Information Units\n"); 789 DV_SET(iu, 0); 790 } else if (i->f->set_qas && spi_qas(starget)) { 791 starget_printk(KERN_ERR, starget, "Domain Validation Disabing Quick Arbitration and Selection\n"); 792 DV_SET(qas, 0); 793 } else { 794 newperiod = spi_period(starget); 795 period = newperiod > period ? newperiod : period; 796 if (period < 0x0d) 797 period++; 798 else 799 period += period >> 1; 800 801 if (unlikely(period > 0xff || period == prevperiod)) { 802 /* Total failure; set to async and return */ 803 starget_printk(KERN_ERR, starget, "Domain Validation Failure, dropping back to Asynchronous\n"); 804 DV_SET(offset, 0); 805 return SPI_COMPARE_FAILURE; 806 } 807 starget_printk(KERN_ERR, starget, "Domain Validation detected failure, dropping back\n"); 808 DV_SET(period, period); 809 prevperiod = period; 810 } 811 } 812 return retval; 813 } 814 815 static int 816 spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer) 817 { 818 int l, result; 819 820 /* first off do a test unit ready. This can error out 821 * because of reservations or some other reason. If it 822 * fails, the device won't let us write to the echo buffer 823 * so just return failure */ 824 825 const char spi_test_unit_ready[] = { 826 TEST_UNIT_READY, 0, 0, 0, 0, 0 827 }; 828 829 const char spi_read_buffer_descriptor[] = { 830 READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0 831 }; 832 833 834 /* We send a set of three TURs to clear any outstanding 835 * unit attention conditions if they exist (Otherwise the 836 * buffer tests won't be happy). If the TUR still fails 837 * (reservation conflict, device not ready, etc) just 838 * skip the write tests */ 839 for (l = 0; ; l++) { 840 result = spi_execute(sdev, spi_test_unit_ready, DMA_NONE, 841 NULL, 0, NULL); 842 843 if(result) { 844 if(l >= 3) 845 return 0; 846 } else { 847 /* TUR succeeded */ 848 break; 849 } 850 } 851 852 result = spi_execute(sdev, spi_read_buffer_descriptor, 853 DMA_FROM_DEVICE, buffer, 4, NULL); 854 855 if (result) 856 /* Device has no echo buffer */ 857 return 0; 858 859 return buffer[3] + ((buffer[2] & 0x1f) << 8); 860 } 861 862 static void 863 spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer) 864 { 865 struct spi_internal *i = to_spi_internal(sdev->host->transportt); 866 struct scsi_target *starget = sdev->sdev_target; 867 struct Scsi_Host *shost = sdev->host; 868 int len = sdev->inquiry_len; 869 int min_period = spi_min_period(starget); 870 int max_width = spi_max_width(starget); 871 /* first set us up for narrow async */ 872 DV_SET(offset, 0); 873 DV_SET(width, 0); 874 875 if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS) 876 != SPI_COMPARE_SUCCESS) { 877 starget_printk(KERN_ERR, starget, "Domain Validation Initial Inquiry Failed\n"); 878 /* FIXME: should probably offline the device here? */ 879 return; 880 } 881 882 if (!spi_support_wide(starget)) { 883 spi_max_width(starget) = 0; 884 max_width = 0; 885 } 886 887 /* test width */ 888 if (i->f->set_width && max_width) { 889 i->f->set_width(starget, 1); 890 891 if (spi_dv_device_compare_inquiry(sdev, buffer, 892 buffer + len, 893 DV_LOOPS) 894 != SPI_COMPARE_SUCCESS) { 895 starget_printk(KERN_ERR, starget, "Wide Transfers Fail\n"); 896 i->f->set_width(starget, 0); 897 /* Make sure we don't force wide back on by asking 898 * for a transfer period that requires it */ 899 max_width = 0; 900 if (min_period < 10) 901 min_period = 10; 902 } 903 } 904 905 if (!i->f->set_period) 906 return; 907 908 /* device can't handle synchronous */ 909 if (!spi_support_sync(starget) && !spi_support_dt(starget)) 910 return; 911 912 /* len == -1 is the signal that we need to ascertain the 913 * presence of an echo buffer before trying to use it. len == 914 * 0 means we don't have an echo buffer */ 915 len = -1; 916 917 retry: 918 919 /* now set up to the maximum */ 920 DV_SET(offset, spi_max_offset(starget)); 921 DV_SET(period, min_period); 922 923 /* try QAS requests; this should be harmless to set if the 924 * target supports it */ 925 if (spi_support_qas(starget) && spi_max_qas(starget)) { 926 DV_SET(qas, 1); 927 } else { 928 DV_SET(qas, 0); 929 } 930 931 if (spi_support_ius(starget) && spi_max_iu(starget) && 932 min_period < 9) { 933 /* This u320 (or u640). Set IU transfers */ 934 DV_SET(iu, 1); 935 /* Then set the optional parameters */ 936 DV_SET(rd_strm, 1); 937 DV_SET(wr_flow, 1); 938 DV_SET(rti, 1); 939 if (min_period == 8) 940 DV_SET(pcomp_en, 1); 941 } else { 942 DV_SET(iu, 0); 943 } 944 945 /* now that we've done all this, actually check the bus 946 * signal type (if known). Some devices are stupid on 947 * a SE bus and still claim they can try LVD only settings */ 948 if (i->f->get_signalling) 949 i->f->get_signalling(shost); 950 if (spi_signalling(shost) == SPI_SIGNAL_SE || 951 spi_signalling(shost) == SPI_SIGNAL_HVD || 952 !spi_support_dt(starget)) { 953 DV_SET(dt, 0); 954 } else { 955 DV_SET(dt, 1); 956 } 957 /* set width last because it will pull all the other 958 * parameters down to required values */ 959 DV_SET(width, max_width); 960 961 /* Do the read only INQUIRY tests */ 962 spi_dv_retrain(sdev, buffer, buffer + sdev->inquiry_len, 963 spi_dv_device_compare_inquiry); 964 /* See if we actually managed to negotiate and sustain DT */ 965 if (i->f->get_dt) 966 i->f->get_dt(starget); 967 968 /* see if the device has an echo buffer. If it does we can do 969 * the SPI pattern write tests. Because of some broken 970 * devices, we *only* try this on a device that has actually 971 * negotiated DT */ 972 973 if (len == -1 && spi_dt(starget)) 974 len = spi_dv_device_get_echo_buffer(sdev, buffer); 975 976 if (len <= 0) { 977 starget_printk(KERN_INFO, starget, "Domain Validation skipping write tests\n"); 978 return; 979 } 980 981 if (len > SPI_MAX_ECHO_BUFFER_SIZE) { 982 starget_printk(KERN_WARNING, starget, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE); 983 len = SPI_MAX_ECHO_BUFFER_SIZE; 984 } 985 986 if (spi_dv_retrain(sdev, buffer, buffer + len, 987 spi_dv_device_echo_buffer) 988 == SPI_COMPARE_SKIP_TEST) { 989 /* OK, the stupid drive can't do a write echo buffer 990 * test after all, fall back to the read tests */ 991 len = 0; 992 goto retry; 993 } 994 } 995 996 997 /** spi_dv_device - Do Domain Validation on the device 998 * @sdev: scsi device to validate 999 * 1000 * Performs the domain validation on the given device in the 1001 * current execution thread. Since DV operations may sleep, 1002 * the current thread must have user context. Also no SCSI 1003 * related locks that would deadlock I/O issued by the DV may 1004 * be held. 1005 */ 1006 void 1007 spi_dv_device(struct scsi_device *sdev) 1008 { 1009 struct scsi_target *starget = sdev->sdev_target; 1010 u8 *buffer; 1011 const int len = SPI_MAX_ECHO_BUFFER_SIZE*2; 1012 1013 if (unlikely(spi_dv_in_progress(starget))) 1014 return; 1015 1016 if (unlikely(scsi_device_get(sdev))) 1017 return; 1018 spi_dv_in_progress(starget) = 1; 1019 1020 buffer = kzalloc(len, GFP_KERNEL); 1021 1022 if (unlikely(!buffer)) 1023 goto out_put; 1024 1025 /* We need to verify that the actual device will quiesce; the 1026 * later target quiesce is just a nice to have */ 1027 if (unlikely(scsi_device_quiesce(sdev))) 1028 goto out_free; 1029 1030 scsi_target_quiesce(starget); 1031 1032 spi_dv_pending(starget) = 1; 1033 mutex_lock(&spi_dv_mutex(starget)); 1034 1035 starget_printk(KERN_INFO, starget, "Beginning Domain Validation\n"); 1036 1037 spi_dv_device_internal(sdev, buffer); 1038 1039 starget_printk(KERN_INFO, starget, "Ending Domain Validation\n"); 1040 1041 mutex_unlock(&spi_dv_mutex(starget)); 1042 spi_dv_pending(starget) = 0; 1043 1044 scsi_target_resume(starget); 1045 1046 spi_initial_dv(starget) = 1; 1047 1048 out_free: 1049 kfree(buffer); 1050 out_put: 1051 spi_dv_in_progress(starget) = 0; 1052 scsi_device_put(sdev); 1053 } 1054 EXPORT_SYMBOL(spi_dv_device); 1055 1056 struct work_queue_wrapper { 1057 struct work_struct work; 1058 struct scsi_device *sdev; 1059 }; 1060 1061 static void 1062 spi_dv_device_work_wrapper(struct work_struct *work) 1063 { 1064 struct work_queue_wrapper *wqw = 1065 container_of(work, struct work_queue_wrapper, work); 1066 struct scsi_device *sdev = wqw->sdev; 1067 1068 kfree(wqw); 1069 spi_dv_device(sdev); 1070 spi_dv_pending(sdev->sdev_target) = 0; 1071 scsi_device_put(sdev); 1072 } 1073 1074 1075 /** 1076 * spi_schedule_dv_device - schedule domain validation to occur on the device 1077 * @sdev: The device to validate 1078 * 1079 * Identical to spi_dv_device() above, except that the DV will be 1080 * scheduled to occur in a workqueue later. All memory allocations 1081 * are atomic, so may be called from any context including those holding 1082 * SCSI locks. 1083 */ 1084 void 1085 spi_schedule_dv_device(struct scsi_device *sdev) 1086 { 1087 struct work_queue_wrapper *wqw = 1088 kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC); 1089 1090 if (unlikely(!wqw)) 1091 return; 1092 1093 if (unlikely(spi_dv_pending(sdev->sdev_target))) { 1094 kfree(wqw); 1095 return; 1096 } 1097 /* Set pending early (dv_device doesn't check it, only sets it) */ 1098 spi_dv_pending(sdev->sdev_target) = 1; 1099 if (unlikely(scsi_device_get(sdev))) { 1100 kfree(wqw); 1101 spi_dv_pending(sdev->sdev_target) = 0; 1102 return; 1103 } 1104 1105 INIT_WORK(&wqw->work, spi_dv_device_work_wrapper); 1106 wqw->sdev = sdev; 1107 1108 schedule_work(&wqw->work); 1109 } 1110 EXPORT_SYMBOL(spi_schedule_dv_device); 1111 1112 /** 1113 * spi_display_xfer_agreement - Print the current target transfer agreement 1114 * @starget: The target for which to display the agreement 1115 * 1116 * Each SPI port is required to maintain a transfer agreement for each 1117 * other port on the bus. This function prints a one-line summary of 1118 * the current agreement; more detailed information is available in sysfs. 1119 */ 1120 void spi_display_xfer_agreement(struct scsi_target *starget) 1121 { 1122 struct spi_transport_attrs *tp; 1123 tp = (struct spi_transport_attrs *)&starget->starget_data; 1124 1125 if (tp->offset > 0 && tp->period > 0) { 1126 unsigned int picosec, kb100; 1127 char *scsi = "FAST-?"; 1128 char tmp[8]; 1129 1130 if (tp->period <= SPI_STATIC_PPR) { 1131 picosec = ppr_to_ps[tp->period]; 1132 switch (tp->period) { 1133 case 7: scsi = "FAST-320"; break; 1134 case 8: scsi = "FAST-160"; break; 1135 case 9: scsi = "FAST-80"; break; 1136 case 10: 1137 case 11: scsi = "FAST-40"; break; 1138 case 12: scsi = "FAST-20"; break; 1139 } 1140 } else { 1141 picosec = tp->period * 4000; 1142 if (tp->period < 25) 1143 scsi = "FAST-20"; 1144 else if (tp->period < 50) 1145 scsi = "FAST-10"; 1146 else 1147 scsi = "FAST-5"; 1148 } 1149 1150 kb100 = (10000000 + picosec / 2) / picosec; 1151 if (tp->width) 1152 kb100 *= 2; 1153 sprint_frac(tmp, picosec, 1000); 1154 1155 dev_info(&starget->dev, 1156 "%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n", 1157 scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10, 1158 tp->dt ? "DT" : "ST", 1159 tp->iu ? " IU" : "", 1160 tp->qas ? " QAS" : "", 1161 tp->rd_strm ? " RDSTRM" : "", 1162 tp->rti ? " RTI" : "", 1163 tp->wr_flow ? " WRFLOW" : "", 1164 tp->pcomp_en ? " PCOMP" : "", 1165 tp->hold_mcs ? " HMCS" : "", 1166 tmp, tp->offset); 1167 } else { 1168 dev_info(&starget->dev, "%sasynchronous\n", 1169 tp->width ? "wide " : ""); 1170 } 1171 } 1172 EXPORT_SYMBOL(spi_display_xfer_agreement); 1173 1174 int spi_populate_width_msg(unsigned char *msg, int width) 1175 { 1176 msg[0] = EXTENDED_MESSAGE; 1177 msg[1] = 2; 1178 msg[2] = EXTENDED_WDTR; 1179 msg[3] = width; 1180 return 4; 1181 } 1182 EXPORT_SYMBOL_GPL(spi_populate_width_msg); 1183 1184 int spi_populate_sync_msg(unsigned char *msg, int period, int offset) 1185 { 1186 msg[0] = EXTENDED_MESSAGE; 1187 msg[1] = 3; 1188 msg[2] = EXTENDED_SDTR; 1189 msg[3] = period; 1190 msg[4] = offset; 1191 return 5; 1192 } 1193 EXPORT_SYMBOL_GPL(spi_populate_sync_msg); 1194 1195 int spi_populate_ppr_msg(unsigned char *msg, int period, int offset, 1196 int width, int options) 1197 { 1198 msg[0] = EXTENDED_MESSAGE; 1199 msg[1] = 6; 1200 msg[2] = EXTENDED_PPR; 1201 msg[3] = period; 1202 msg[4] = 0; 1203 msg[5] = offset; 1204 msg[6] = width; 1205 msg[7] = options; 1206 return 8; 1207 } 1208 EXPORT_SYMBOL_GPL(spi_populate_ppr_msg); 1209 1210 #ifdef CONFIG_SCSI_CONSTANTS 1211 static const char * const one_byte_msgs[] = { 1212 /* 0x00 */ "Task Complete", NULL /* Extended Message */, "Save Pointers", 1213 /* 0x03 */ "Restore Pointers", "Disconnect", "Initiator Error", 1214 /* 0x06 */ "Abort Task Set", "Message Reject", "Nop", "Message Parity Error", 1215 /* 0x0a */ "Linked Command Complete", "Linked Command Complete w/flag", 1216 /* 0x0c */ "Target Reset", "Abort Task", "Clear Task Set", 1217 /* 0x0f */ "Initiate Recovery", "Release Recovery", 1218 /* 0x11 */ "Terminate Process", "Continue Task", "Target Transfer Disable", 1219 /* 0x14 */ NULL, NULL, "Clear ACA", "LUN Reset" 1220 }; 1221 1222 static const char * const two_byte_msgs[] = { 1223 /* 0x20 */ "Simple Queue Tag", "Head of Queue Tag", "Ordered Queue Tag", 1224 /* 0x23 */ "Ignore Wide Residue", "ACA" 1225 }; 1226 1227 static const char * const extended_msgs[] = { 1228 /* 0x00 */ "Modify Data Pointer", "Synchronous Data Transfer Request", 1229 /* 0x02 */ "SCSI-I Extended Identify", "Wide Data Transfer Request", 1230 /* 0x04 */ "Parallel Protocol Request", "Modify Bidirectional Data Pointer" 1231 }; 1232 1233 static void print_nego(const unsigned char *msg, int per, int off, int width) 1234 { 1235 if (per) { 1236 char buf[20]; 1237 period_to_str(buf, msg[per]); 1238 printk("period = %s ns ", buf); 1239 } 1240 1241 if (off) 1242 printk("offset = %d ", msg[off]); 1243 if (width) 1244 printk("width = %d ", 8 << msg[width]); 1245 } 1246 1247 static void print_ptr(const unsigned char *msg, int msb, const char *desc) 1248 { 1249 int ptr = (msg[msb] << 24) | (msg[msb+1] << 16) | (msg[msb+2] << 8) | 1250 msg[msb+3]; 1251 printk("%s = %d ", desc, ptr); 1252 } 1253 1254 int spi_print_msg(const unsigned char *msg) 1255 { 1256 int len = 1, i; 1257 if (msg[0] == EXTENDED_MESSAGE) { 1258 len = 2 + msg[1]; 1259 if (len == 2) 1260 len += 256; 1261 if (msg[2] < ARRAY_SIZE(extended_msgs)) 1262 printk ("%s ", extended_msgs[msg[2]]); 1263 else 1264 printk ("Extended Message, reserved code (0x%02x) ", 1265 (int) msg[2]); 1266 switch (msg[2]) { 1267 case EXTENDED_MODIFY_DATA_POINTER: 1268 print_ptr(msg, 3, "pointer"); 1269 break; 1270 case EXTENDED_SDTR: 1271 print_nego(msg, 3, 4, 0); 1272 break; 1273 case EXTENDED_WDTR: 1274 print_nego(msg, 0, 0, 3); 1275 break; 1276 case EXTENDED_PPR: 1277 print_nego(msg, 3, 5, 6); 1278 break; 1279 case EXTENDED_MODIFY_BIDI_DATA_PTR: 1280 print_ptr(msg, 3, "out"); 1281 print_ptr(msg, 7, "in"); 1282 break; 1283 default: 1284 for (i = 2; i < len; ++i) 1285 printk("%02x ", msg[i]); 1286 } 1287 /* Identify */ 1288 } else if (msg[0] & 0x80) { 1289 printk("Identify disconnect %sallowed %s %d ", 1290 (msg[0] & 0x40) ? "" : "not ", 1291 (msg[0] & 0x20) ? "target routine" : "lun", 1292 msg[0] & 0x7); 1293 /* Normal One byte */ 1294 } else if (msg[0] < 0x1f) { 1295 if (msg[0] < ARRAY_SIZE(one_byte_msgs) && one_byte_msgs[msg[0]]) 1296 printk("%s ", one_byte_msgs[msg[0]]); 1297 else 1298 printk("reserved (%02x) ", msg[0]); 1299 } else if (msg[0] == 0x55) { 1300 printk("QAS Request "); 1301 /* Two byte */ 1302 } else if (msg[0] <= 0x2f) { 1303 if ((msg[0] - 0x20) < ARRAY_SIZE(two_byte_msgs)) 1304 printk("%s %02x ", two_byte_msgs[msg[0] - 0x20], 1305 msg[1]); 1306 else 1307 printk("reserved two byte (%02x %02x) ", 1308 msg[0], msg[1]); 1309 len = 2; 1310 } else 1311 printk("reserved "); 1312 return len; 1313 } 1314 EXPORT_SYMBOL(spi_print_msg); 1315 1316 #else /* ifndef CONFIG_SCSI_CONSTANTS */ 1317 1318 int spi_print_msg(const unsigned char *msg) 1319 { 1320 int len = 1, i; 1321 1322 if (msg[0] == EXTENDED_MESSAGE) { 1323 len = 2 + msg[1]; 1324 if (len == 2) 1325 len += 256; 1326 for (i = 0; i < len; ++i) 1327 printk("%02x ", msg[i]); 1328 /* Identify */ 1329 } else if (msg[0] & 0x80) { 1330 printk("%02x ", msg[0]); 1331 /* Normal One byte */ 1332 } else if ((msg[0] < 0x1f) || (msg[0] == 0x55)) { 1333 printk("%02x ", msg[0]); 1334 /* Two byte */ 1335 } else if (msg[0] <= 0x2f) { 1336 printk("%02x %02x", msg[0], msg[1]); 1337 len = 2; 1338 } else 1339 printk("%02x ", msg[0]); 1340 return len; 1341 } 1342 EXPORT_SYMBOL(spi_print_msg); 1343 #endif /* ! CONFIG_SCSI_CONSTANTS */ 1344 1345 static int spi_device_match(struct attribute_container *cont, 1346 struct device *dev) 1347 { 1348 struct scsi_device *sdev; 1349 struct Scsi_Host *shost; 1350 struct spi_internal *i; 1351 1352 if (!scsi_is_sdev_device(dev)) 1353 return 0; 1354 1355 sdev = to_scsi_device(dev); 1356 shost = sdev->host; 1357 if (!shost->transportt || shost->transportt->host_attrs.ac.class 1358 != &spi_host_class.class) 1359 return 0; 1360 /* Note: this class has no device attributes, so it has 1361 * no per-HBA allocation and thus we don't need to distinguish 1362 * the attribute containers for the device */ 1363 i = to_spi_internal(shost->transportt); 1364 if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target)) 1365 return 0; 1366 return 1; 1367 } 1368 1369 static int spi_target_match(struct attribute_container *cont, 1370 struct device *dev) 1371 { 1372 struct Scsi_Host *shost; 1373 struct scsi_target *starget; 1374 struct spi_internal *i; 1375 1376 if (!scsi_is_target_device(dev)) 1377 return 0; 1378 1379 shost = dev_to_shost(dev->parent); 1380 if (!shost->transportt || shost->transportt->host_attrs.ac.class 1381 != &spi_host_class.class) 1382 return 0; 1383 1384 i = to_spi_internal(shost->transportt); 1385 starget = to_scsi_target(dev); 1386 1387 if (i->f->deny_binding && i->f->deny_binding(starget)) 1388 return 0; 1389 1390 return &i->t.target_attrs.ac == cont; 1391 } 1392 1393 static DECLARE_TRANSPORT_CLASS(spi_transport_class, 1394 "spi_transport", 1395 spi_setup_transport_attrs, 1396 NULL, 1397 spi_target_configure); 1398 1399 static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class, 1400 spi_device_match, 1401 spi_device_configure); 1402 1403 static struct attribute *host_attributes[] = { 1404 &dev_attr_signalling.attr, 1405 &dev_attr_host_width.attr, 1406 &dev_attr_hba_id.attr, 1407 NULL 1408 }; 1409 1410 static struct attribute_group host_attribute_group = { 1411 .attrs = host_attributes, 1412 }; 1413 1414 static int spi_host_configure(struct transport_container *tc, 1415 struct device *dev, 1416 struct device *cdev) 1417 { 1418 struct kobject *kobj = &cdev->kobj; 1419 struct Scsi_Host *shost = transport_class_to_shost(cdev); 1420 struct spi_internal *si = to_spi_internal(shost->transportt); 1421 struct attribute *attr = &dev_attr_signalling.attr; 1422 int rc = 0; 1423 1424 if (si->f->set_signalling) 1425 rc = sysfs_chmod_file(kobj, attr, attr->mode | S_IWUSR); 1426 1427 return rc; 1428 } 1429 1430 /* returns true if we should be showing the variable. Also 1431 * overloads the return by setting 1<<1 if the attribute should 1432 * be writeable */ 1433 #define TARGET_ATTRIBUTE_HELPER(name) \ 1434 (si->f->show_##name ? S_IRUGO : 0) | \ 1435 (si->f->set_##name ? S_IWUSR : 0) 1436 1437 static umode_t target_attribute_is_visible(struct kobject *kobj, 1438 struct attribute *attr, int i) 1439 { 1440 struct device *cdev = container_of(kobj, struct device, kobj); 1441 struct scsi_target *starget = transport_class_to_starget(cdev); 1442 struct Scsi_Host *shost = transport_class_to_shost(cdev); 1443 struct spi_internal *si = to_spi_internal(shost->transportt); 1444 1445 if (attr == &dev_attr_period.attr && 1446 spi_support_sync(starget)) 1447 return TARGET_ATTRIBUTE_HELPER(period); 1448 else if (attr == &dev_attr_min_period.attr && 1449 spi_support_sync(starget)) 1450 return TARGET_ATTRIBUTE_HELPER(period); 1451 else if (attr == &dev_attr_offset.attr && 1452 spi_support_sync(starget)) 1453 return TARGET_ATTRIBUTE_HELPER(offset); 1454 else if (attr == &dev_attr_max_offset.attr && 1455 spi_support_sync(starget)) 1456 return TARGET_ATTRIBUTE_HELPER(offset); 1457 else if (attr == &dev_attr_width.attr && 1458 spi_support_wide(starget)) 1459 return TARGET_ATTRIBUTE_HELPER(width); 1460 else if (attr == &dev_attr_max_width.attr && 1461 spi_support_wide(starget)) 1462 return TARGET_ATTRIBUTE_HELPER(width); 1463 else if (attr == &dev_attr_iu.attr && 1464 spi_support_ius(starget)) 1465 return TARGET_ATTRIBUTE_HELPER(iu); 1466 else if (attr == &dev_attr_max_iu.attr && 1467 spi_support_ius(starget)) 1468 return TARGET_ATTRIBUTE_HELPER(iu); 1469 else if (attr == &dev_attr_dt.attr && 1470 spi_support_dt(starget)) 1471 return TARGET_ATTRIBUTE_HELPER(dt); 1472 else if (attr == &dev_attr_qas.attr && 1473 spi_support_qas(starget)) 1474 return TARGET_ATTRIBUTE_HELPER(qas); 1475 else if (attr == &dev_attr_max_qas.attr && 1476 spi_support_qas(starget)) 1477 return TARGET_ATTRIBUTE_HELPER(qas); 1478 else if (attr == &dev_attr_wr_flow.attr && 1479 spi_support_ius(starget)) 1480 return TARGET_ATTRIBUTE_HELPER(wr_flow); 1481 else if (attr == &dev_attr_rd_strm.attr && 1482 spi_support_ius(starget)) 1483 return TARGET_ATTRIBUTE_HELPER(rd_strm); 1484 else if (attr == &dev_attr_rti.attr && 1485 spi_support_ius(starget)) 1486 return TARGET_ATTRIBUTE_HELPER(rti); 1487 else if (attr == &dev_attr_pcomp_en.attr && 1488 spi_support_ius(starget)) 1489 return TARGET_ATTRIBUTE_HELPER(pcomp_en); 1490 else if (attr == &dev_attr_hold_mcs.attr && 1491 spi_support_ius(starget)) 1492 return TARGET_ATTRIBUTE_HELPER(hold_mcs); 1493 else if (attr == &dev_attr_revalidate.attr) 1494 return S_IWUSR; 1495 1496 return 0; 1497 } 1498 1499 static struct attribute *target_attributes[] = { 1500 &dev_attr_period.attr, 1501 &dev_attr_min_period.attr, 1502 &dev_attr_offset.attr, 1503 &dev_attr_max_offset.attr, 1504 &dev_attr_width.attr, 1505 &dev_attr_max_width.attr, 1506 &dev_attr_iu.attr, 1507 &dev_attr_max_iu.attr, 1508 &dev_attr_dt.attr, 1509 &dev_attr_qas.attr, 1510 &dev_attr_max_qas.attr, 1511 &dev_attr_wr_flow.attr, 1512 &dev_attr_rd_strm.attr, 1513 &dev_attr_rti.attr, 1514 &dev_attr_pcomp_en.attr, 1515 &dev_attr_hold_mcs.attr, 1516 &dev_attr_revalidate.attr, 1517 NULL 1518 }; 1519 1520 static struct attribute_group target_attribute_group = { 1521 .attrs = target_attributes, 1522 .is_visible = target_attribute_is_visible, 1523 }; 1524 1525 static int spi_target_configure(struct transport_container *tc, 1526 struct device *dev, 1527 struct device *cdev) 1528 { 1529 struct kobject *kobj = &cdev->kobj; 1530 1531 /* force an update based on parameters read from the device */ 1532 sysfs_update_group(kobj, &target_attribute_group); 1533 1534 return 0; 1535 } 1536 1537 struct scsi_transport_template * 1538 spi_attach_transport(struct spi_function_template *ft) 1539 { 1540 struct spi_internal *i = kzalloc(sizeof(struct spi_internal), 1541 GFP_KERNEL); 1542 1543 if (unlikely(!i)) 1544 return NULL; 1545 1546 i->t.target_attrs.ac.class = &spi_transport_class.class; 1547 i->t.target_attrs.ac.grp = &target_attribute_group; 1548 i->t.target_attrs.ac.match = spi_target_match; 1549 transport_container_register(&i->t.target_attrs); 1550 i->t.target_size = sizeof(struct spi_transport_attrs); 1551 i->t.host_attrs.ac.class = &spi_host_class.class; 1552 i->t.host_attrs.ac.grp = &host_attribute_group; 1553 i->t.host_attrs.ac.match = spi_host_match; 1554 transport_container_register(&i->t.host_attrs); 1555 i->t.host_size = sizeof(struct spi_host_attrs); 1556 i->f = ft; 1557 1558 return &i->t; 1559 } 1560 EXPORT_SYMBOL(spi_attach_transport); 1561 1562 void spi_release_transport(struct scsi_transport_template *t) 1563 { 1564 struct spi_internal *i = to_spi_internal(t); 1565 1566 transport_container_unregister(&i->t.target_attrs); 1567 transport_container_unregister(&i->t.host_attrs); 1568 1569 kfree(i); 1570 } 1571 EXPORT_SYMBOL(spi_release_transport); 1572 1573 static __init int spi_transport_init(void) 1574 { 1575 int error = scsi_dev_info_add_list(SCSI_DEVINFO_SPI, 1576 "SCSI Parallel Transport Class"); 1577 if (!error) { 1578 int i; 1579 1580 for (i = 0; spi_static_device_list[i].vendor; i++) 1581 scsi_dev_info_list_add_keyed(1, /* compatible */ 1582 spi_static_device_list[i].vendor, 1583 spi_static_device_list[i].model, 1584 NULL, 1585 spi_static_device_list[i].flags, 1586 SCSI_DEVINFO_SPI); 1587 } 1588 1589 error = transport_class_register(&spi_transport_class); 1590 if (error) 1591 return error; 1592 error = anon_transport_class_register(&spi_device_class); 1593 return transport_class_register(&spi_host_class); 1594 } 1595 1596 static void __exit spi_transport_exit(void) 1597 { 1598 transport_class_unregister(&spi_transport_class); 1599 anon_transport_class_unregister(&spi_device_class); 1600 transport_class_unregister(&spi_host_class); 1601 scsi_dev_info_remove_list(SCSI_DEVINFO_SPI); 1602 } 1603 1604 MODULE_AUTHOR("Martin Hicks"); 1605 MODULE_DESCRIPTION("SPI Transport Attributes"); 1606 MODULE_LICENSE("GPL"); 1607 1608 module_init(spi_transport_init); 1609 module_exit(spi_transport_exit); 1610