1 /* 2 * Parallel SCSI (SPI) transport specific attributes exported to sysfs. 3 * 4 * Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved. 5 * Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 #include <linux/ctype.h> 22 #include <linux/init.h> 23 #include <linux/module.h> 24 #include <linux/workqueue.h> 25 #include <asm/semaphore.h> 26 #include <scsi/scsi.h> 27 #include "scsi_priv.h" 28 #include <scsi/scsi_device.h> 29 #include <scsi/scsi_host.h> 30 #include <scsi/scsi_request.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_transport.h> 33 #include <scsi/scsi_transport_spi.h> 34 35 #define SPI_PRINTK(x, l, f, a...) dev_printk(l, &(x)->dev, f , ##a) 36 37 #define SPI_NUM_ATTRS 10 /* increase this if you add attributes */ 38 #define SPI_OTHER_ATTRS 1 /* Increase this if you add "always 39 * on" attributes */ 40 #define SPI_HOST_ATTRS 1 41 42 #define SPI_MAX_ECHO_BUFFER_SIZE 4096 43 44 /* Private data accessors (keep these out of the header file) */ 45 #define spi_dv_pending(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_pending) 46 #define spi_dv_sem(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_sem) 47 48 struct spi_internal { 49 struct scsi_transport_template t; 50 struct spi_function_template *f; 51 /* The actual attributes */ 52 struct class_device_attribute private_attrs[SPI_NUM_ATTRS]; 53 /* The array of null terminated pointers to attributes 54 * needed by scsi_sysfs.c */ 55 struct class_device_attribute *attrs[SPI_NUM_ATTRS + SPI_OTHER_ATTRS + 1]; 56 struct class_device_attribute private_host_attrs[SPI_HOST_ATTRS]; 57 struct class_device_attribute *host_attrs[SPI_HOST_ATTRS + 1]; 58 }; 59 60 #define to_spi_internal(tmpl) container_of(tmpl, struct spi_internal, t) 61 62 static const int ppr_to_ps[] = { 63 /* The PPR values 0-6 are reserved, fill them in when 64 * the committee defines them */ 65 -1, /* 0x00 */ 66 -1, /* 0x01 */ 67 -1, /* 0x02 */ 68 -1, /* 0x03 */ 69 -1, /* 0x04 */ 70 -1, /* 0x05 */ 71 -1, /* 0x06 */ 72 3125, /* 0x07 */ 73 6250, /* 0x08 */ 74 12500, /* 0x09 */ 75 25000, /* 0x0a */ 76 30300, /* 0x0b */ 77 50000, /* 0x0c */ 78 }; 79 /* The PPR values at which you calculate the period in ns by multiplying 80 * by 4 */ 81 #define SPI_STATIC_PPR 0x0c 82 83 static int sprint_frac(char *dest, int value, int denom) 84 { 85 int frac = value % denom; 86 int result = sprintf(dest, "%d", value / denom); 87 88 if (frac == 0) 89 return result; 90 dest[result++] = '.'; 91 92 do { 93 denom /= 10; 94 sprintf(dest + result, "%d", frac / denom); 95 result++; 96 frac %= denom; 97 } while (frac); 98 99 dest[result++] = '\0'; 100 return result; 101 } 102 103 static struct { 104 enum spi_signal_type value; 105 char *name; 106 } signal_types[] = { 107 { SPI_SIGNAL_UNKNOWN, "unknown" }, 108 { SPI_SIGNAL_SE, "SE" }, 109 { SPI_SIGNAL_LVD, "LVD" }, 110 { SPI_SIGNAL_HVD, "HVD" }, 111 }; 112 113 static inline const char *spi_signal_to_string(enum spi_signal_type type) 114 { 115 int i; 116 117 for (i = 0; i < sizeof(signal_types)/sizeof(signal_types[0]); i++) { 118 if (type == signal_types[i].value) 119 return signal_types[i].name; 120 } 121 return NULL; 122 } 123 static inline enum spi_signal_type spi_signal_to_value(const char *name) 124 { 125 int i, len; 126 127 for (i = 0; i < sizeof(signal_types)/sizeof(signal_types[0]); i++) { 128 len = strlen(signal_types[i].name); 129 if (strncmp(name, signal_types[i].name, len) == 0 && 130 (name[len] == '\n' || name[len] == '\0')) 131 return signal_types[i].value; 132 } 133 return SPI_SIGNAL_UNKNOWN; 134 } 135 136 static int spi_host_setup(struct device *dev) 137 { 138 struct Scsi_Host *shost = dev_to_shost(dev); 139 140 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN; 141 142 return 0; 143 } 144 145 static DECLARE_TRANSPORT_CLASS(spi_host_class, 146 "spi_host", 147 spi_host_setup, 148 NULL, 149 NULL); 150 151 static int spi_host_match(struct attribute_container *cont, 152 struct device *dev) 153 { 154 struct Scsi_Host *shost; 155 struct spi_internal *i; 156 157 if (!scsi_is_host_device(dev)) 158 return 0; 159 160 shost = dev_to_shost(dev); 161 if (!shost->transportt || shost->transportt->host_attrs.ac.class 162 != &spi_host_class.class) 163 return 0; 164 165 i = to_spi_internal(shost->transportt); 166 167 return &i->t.host_attrs.ac == cont; 168 } 169 170 static int spi_device_configure(struct device *dev) 171 { 172 struct scsi_device *sdev = to_scsi_device(dev); 173 struct scsi_target *starget = sdev->sdev_target; 174 175 /* Populate the target capability fields with the values 176 * gleaned from the device inquiry */ 177 178 spi_support_sync(starget) = scsi_device_sync(sdev); 179 spi_support_wide(starget) = scsi_device_wide(sdev); 180 spi_support_dt(starget) = scsi_device_dt(sdev); 181 spi_support_dt_only(starget) = scsi_device_dt_only(sdev); 182 spi_support_ius(starget) = scsi_device_ius(sdev); 183 spi_support_qas(starget) = scsi_device_qas(sdev); 184 185 return 0; 186 } 187 188 static int spi_setup_transport_attrs(struct device *dev) 189 { 190 struct scsi_target *starget = to_scsi_target(dev); 191 192 spi_period(starget) = -1; /* illegal value */ 193 spi_offset(starget) = 0; /* async */ 194 spi_width(starget) = 0; /* narrow */ 195 spi_iu(starget) = 0; /* no IU */ 196 spi_dt(starget) = 0; /* ST */ 197 spi_qas(starget) = 0; 198 spi_wr_flow(starget) = 0; 199 spi_rd_strm(starget) = 0; 200 spi_rti(starget) = 0; 201 spi_pcomp_en(starget) = 0; 202 spi_dv_pending(starget) = 0; 203 spi_initial_dv(starget) = 0; 204 init_MUTEX(&spi_dv_sem(starget)); 205 206 return 0; 207 } 208 209 #define spi_transport_show_function(field, format_string) \ 210 \ 211 static ssize_t \ 212 show_spi_transport_##field(struct class_device *cdev, char *buf) \ 213 { \ 214 struct scsi_target *starget = transport_class_to_starget(cdev); \ 215 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 216 struct spi_transport_attrs *tp; \ 217 struct spi_internal *i = to_spi_internal(shost->transportt); \ 218 tp = (struct spi_transport_attrs *)&starget->starget_data; \ 219 if (i->f->get_##field) \ 220 i->f->get_##field(starget); \ 221 return snprintf(buf, 20, format_string, tp->field); \ 222 } 223 224 #define spi_transport_store_function(field, format_string) \ 225 static ssize_t \ 226 store_spi_transport_##field(struct class_device *cdev, const char *buf, \ 227 size_t count) \ 228 { \ 229 int val; \ 230 struct scsi_target *starget = transport_class_to_starget(cdev); \ 231 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 232 struct spi_internal *i = to_spi_internal(shost->transportt); \ 233 \ 234 val = simple_strtoul(buf, NULL, 0); \ 235 i->f->set_##field(starget, val); \ 236 return count; \ 237 } 238 239 #define spi_transport_rd_attr(field, format_string) \ 240 spi_transport_show_function(field, format_string) \ 241 spi_transport_store_function(field, format_string) \ 242 static CLASS_DEVICE_ATTR(field, S_IRUGO | S_IWUSR, \ 243 show_spi_transport_##field, \ 244 store_spi_transport_##field); 245 246 /* The Parallel SCSI Tranport Attributes: */ 247 spi_transport_rd_attr(offset, "%d\n"); 248 spi_transport_rd_attr(width, "%d\n"); 249 spi_transport_rd_attr(iu, "%d\n"); 250 spi_transport_rd_attr(dt, "%d\n"); 251 spi_transport_rd_attr(qas, "%d\n"); 252 spi_transport_rd_attr(wr_flow, "%d\n"); 253 spi_transport_rd_attr(rd_strm, "%d\n"); 254 spi_transport_rd_attr(rti, "%d\n"); 255 spi_transport_rd_attr(pcomp_en, "%d\n"); 256 257 static ssize_t 258 store_spi_revalidate(struct class_device *cdev, const char *buf, size_t count) 259 { 260 struct scsi_target *starget = transport_class_to_starget(cdev); 261 262 /* FIXME: we're relying on an awful lot of device internals 263 * here. We really need a function to get the first available 264 * child */ 265 struct device *dev = container_of(starget->dev.children.next, struct device, node); 266 struct scsi_device *sdev = to_scsi_device(dev); 267 spi_dv_device(sdev); 268 return count; 269 } 270 static CLASS_DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate); 271 272 /* Translate the period into ns according to the current spec 273 * for SDTR/PPR messages */ 274 static ssize_t show_spi_transport_period(struct class_device *cdev, char *buf) 275 276 { 277 struct scsi_target *starget = transport_class_to_starget(cdev); 278 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 279 struct spi_transport_attrs *tp; 280 int len, picosec; 281 struct spi_internal *i = to_spi_internal(shost->transportt); 282 283 tp = (struct spi_transport_attrs *)&starget->starget_data; 284 285 if (i->f->get_period) 286 i->f->get_period(starget); 287 288 if (tp->period < 0 || tp->period > 0xff) { 289 picosec = -1; 290 } else if (tp->period <= SPI_STATIC_PPR) { 291 picosec = ppr_to_ps[tp->period]; 292 } else { 293 picosec = tp->period * 4000; 294 } 295 296 if (picosec == -1) { 297 len = sprintf(buf, "reserved"); 298 } else { 299 len = sprint_frac(buf, picosec, 1000); 300 } 301 302 buf[len++] = '\n'; 303 buf[len] = '\0'; 304 return len; 305 } 306 307 static ssize_t 308 store_spi_transport_period(struct class_device *cdev, const char *buf, 309 size_t count) 310 { 311 struct scsi_target *starget = transport_class_to_starget(cdev); 312 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 313 struct spi_internal *i = to_spi_internal(shost->transportt); 314 int j, picosec, period = -1; 315 char *endp; 316 317 picosec = simple_strtoul(buf, &endp, 10) * 1000; 318 if (*endp == '.') { 319 int mult = 100; 320 do { 321 endp++; 322 if (!isdigit(*endp)) 323 break; 324 picosec += (*endp - '0') * mult; 325 mult /= 10; 326 } while (mult > 0); 327 } 328 329 for (j = 0; j <= SPI_STATIC_PPR; j++) { 330 if (ppr_to_ps[j] < picosec) 331 continue; 332 period = j; 333 break; 334 } 335 336 if (period == -1) 337 period = picosec / 4000; 338 339 if (period > 0xff) 340 period = 0xff; 341 342 i->f->set_period(starget, period); 343 344 return count; 345 } 346 347 static CLASS_DEVICE_ATTR(period, S_IRUGO | S_IWUSR, 348 show_spi_transport_period, 349 store_spi_transport_period); 350 351 static ssize_t show_spi_host_signalling(struct class_device *cdev, char *buf) 352 { 353 struct Scsi_Host *shost = transport_class_to_shost(cdev); 354 struct spi_internal *i = to_spi_internal(shost->transportt); 355 356 if (i->f->get_signalling) 357 i->f->get_signalling(shost); 358 359 return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost))); 360 } 361 static ssize_t store_spi_host_signalling(struct class_device *cdev, 362 const char *buf, size_t count) 363 { 364 struct Scsi_Host *shost = transport_class_to_shost(cdev); 365 struct spi_internal *i = to_spi_internal(shost->transportt); 366 enum spi_signal_type type = spi_signal_to_value(buf); 367 368 if (type != SPI_SIGNAL_UNKNOWN) 369 i->f->set_signalling(shost, type); 370 371 return count; 372 } 373 static CLASS_DEVICE_ATTR(signalling, S_IRUGO | S_IWUSR, 374 show_spi_host_signalling, 375 store_spi_host_signalling); 376 377 #define DV_SET(x, y) \ 378 if(i->f->set_##x) \ 379 i->f->set_##x(sdev->sdev_target, y) 380 381 #define DV_LOOPS 3 382 #define DV_TIMEOUT (10*HZ) 383 #define DV_RETRIES 3 /* should only need at most 384 * two cc/ua clears */ 385 386 enum spi_compare_returns { 387 SPI_COMPARE_SUCCESS, 388 SPI_COMPARE_FAILURE, 389 SPI_COMPARE_SKIP_TEST, 390 }; 391 392 393 /* This is for read/write Domain Validation: If the device supports 394 * an echo buffer, we do read/write tests to it */ 395 static enum spi_compare_returns 396 spi_dv_device_echo_buffer(struct scsi_request *sreq, u8 *buffer, 397 u8 *ptr, const int retries) 398 { 399 struct scsi_device *sdev = sreq->sr_device; 400 int len = ptr - buffer; 401 int j, k, r; 402 unsigned int pattern = 0x0000ffff; 403 404 const char spi_write_buffer[] = { 405 WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0 406 }; 407 const char spi_read_buffer[] = { 408 READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0 409 }; 410 411 /* set up the pattern buffer. Doesn't matter if we spill 412 * slightly beyond since that's where the read buffer is */ 413 for (j = 0; j < len; ) { 414 415 /* fill the buffer with counting (test a) */ 416 for ( ; j < min(len, 32); j++) 417 buffer[j] = j; 418 k = j; 419 /* fill the buffer with alternating words of 0x0 and 420 * 0xffff (test b) */ 421 for ( ; j < min(len, k + 32); j += 2) { 422 u16 *word = (u16 *)&buffer[j]; 423 424 *word = (j & 0x02) ? 0x0000 : 0xffff; 425 } 426 k = j; 427 /* fill with crosstalk (alternating 0x5555 0xaaa) 428 * (test c) */ 429 for ( ; j < min(len, k + 32); j += 2) { 430 u16 *word = (u16 *)&buffer[j]; 431 432 *word = (j & 0x02) ? 0x5555 : 0xaaaa; 433 } 434 k = j; 435 /* fill with shifting bits (test d) */ 436 for ( ; j < min(len, k + 32); j += 4) { 437 u32 *word = (unsigned int *)&buffer[j]; 438 u32 roll = (pattern & 0x80000000) ? 1 : 0; 439 440 *word = pattern; 441 pattern = (pattern << 1) | roll; 442 } 443 /* don't bother with random data (test e) */ 444 } 445 446 for (r = 0; r < retries; r++) { 447 sreq->sr_cmd_len = 0; /* wait_req to fill in */ 448 sreq->sr_data_direction = DMA_TO_DEVICE; 449 scsi_wait_req(sreq, spi_write_buffer, buffer, len, 450 DV_TIMEOUT, DV_RETRIES); 451 if(sreq->sr_result || !scsi_device_online(sdev)) { 452 struct scsi_sense_hdr sshdr; 453 454 scsi_device_set_state(sdev, SDEV_QUIESCE); 455 if (scsi_request_normalize_sense(sreq, &sshdr) 456 && sshdr.sense_key == ILLEGAL_REQUEST 457 /* INVALID FIELD IN CDB */ 458 && sshdr.asc == 0x24 && sshdr.ascq == 0x00) 459 /* This would mean that the drive lied 460 * to us about supporting an echo 461 * buffer (unfortunately some Western 462 * Digital drives do precisely this) 463 */ 464 return SPI_COMPARE_SKIP_TEST; 465 466 467 SPI_PRINTK(sdev->sdev_target, KERN_ERR, "Write Buffer failure %x\n", sreq->sr_result); 468 return SPI_COMPARE_FAILURE; 469 } 470 471 memset(ptr, 0, len); 472 sreq->sr_cmd_len = 0; /* wait_req to fill in */ 473 sreq->sr_data_direction = DMA_FROM_DEVICE; 474 scsi_wait_req(sreq, spi_read_buffer, ptr, len, 475 DV_TIMEOUT, DV_RETRIES); 476 scsi_device_set_state(sdev, SDEV_QUIESCE); 477 478 if (memcmp(buffer, ptr, len) != 0) 479 return SPI_COMPARE_FAILURE; 480 } 481 return SPI_COMPARE_SUCCESS; 482 } 483 484 /* This is for the simplest form of Domain Validation: a read test 485 * on the inquiry data from the device */ 486 static enum spi_compare_returns 487 spi_dv_device_compare_inquiry(struct scsi_request *sreq, u8 *buffer, 488 u8 *ptr, const int retries) 489 { 490 int r; 491 const int len = sreq->sr_device->inquiry_len; 492 struct scsi_device *sdev = sreq->sr_device; 493 const char spi_inquiry[] = { 494 INQUIRY, 0, 0, 0, len, 0 495 }; 496 497 for (r = 0; r < retries; r++) { 498 sreq->sr_cmd_len = 0; /* wait_req to fill in */ 499 sreq->sr_data_direction = DMA_FROM_DEVICE; 500 501 memset(ptr, 0, len); 502 503 scsi_wait_req(sreq, spi_inquiry, ptr, len, 504 DV_TIMEOUT, DV_RETRIES); 505 506 if(sreq->sr_result || !scsi_device_online(sdev)) { 507 scsi_device_set_state(sdev, SDEV_QUIESCE); 508 return SPI_COMPARE_FAILURE; 509 } 510 511 /* If we don't have the inquiry data already, the 512 * first read gets it */ 513 if (ptr == buffer) { 514 ptr += len; 515 --r; 516 continue; 517 } 518 519 if (memcmp(buffer, ptr, len) != 0) 520 /* failure */ 521 return SPI_COMPARE_FAILURE; 522 } 523 return SPI_COMPARE_SUCCESS; 524 } 525 526 static enum spi_compare_returns 527 spi_dv_retrain(struct scsi_request *sreq, u8 *buffer, u8 *ptr, 528 enum spi_compare_returns 529 (*compare_fn)(struct scsi_request *, u8 *, u8 *, int)) 530 { 531 struct spi_internal *i = to_spi_internal(sreq->sr_host->transportt); 532 struct scsi_device *sdev = sreq->sr_device; 533 int period = 0, prevperiod = 0; 534 enum spi_compare_returns retval; 535 536 537 for (;;) { 538 int newperiod; 539 retval = compare_fn(sreq, buffer, ptr, DV_LOOPS); 540 541 if (retval == SPI_COMPARE_SUCCESS 542 || retval == SPI_COMPARE_SKIP_TEST) 543 break; 544 545 /* OK, retrain, fallback */ 546 if (i->f->get_period) 547 i->f->get_period(sdev->sdev_target); 548 newperiod = spi_period(sdev->sdev_target); 549 period = newperiod > period ? newperiod : period; 550 if (period < 0x0d) 551 period++; 552 else 553 period += period >> 1; 554 555 if (unlikely(period > 0xff || period == prevperiod)) { 556 /* Total failure; set to async and return */ 557 SPI_PRINTK(sdev->sdev_target, KERN_ERR, "Domain Validation Failure, dropping back to Asynchronous\n"); 558 DV_SET(offset, 0); 559 return SPI_COMPARE_FAILURE; 560 } 561 SPI_PRINTK(sdev->sdev_target, KERN_ERR, "Domain Validation detected failure, dropping back\n"); 562 DV_SET(period, period); 563 prevperiod = period; 564 } 565 return retval; 566 } 567 568 static int 569 spi_dv_device_get_echo_buffer(struct scsi_request *sreq, u8 *buffer) 570 { 571 int l; 572 573 /* first off do a test unit ready. This can error out 574 * because of reservations or some other reason. If it 575 * fails, the device won't let us write to the echo buffer 576 * so just return failure */ 577 578 const char spi_test_unit_ready[] = { 579 TEST_UNIT_READY, 0, 0, 0, 0, 0 580 }; 581 582 const char spi_read_buffer_descriptor[] = { 583 READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0 584 }; 585 586 587 sreq->sr_cmd_len = 0; 588 sreq->sr_data_direction = DMA_NONE; 589 590 /* We send a set of three TURs to clear any outstanding 591 * unit attention conditions if they exist (Otherwise the 592 * buffer tests won't be happy). If the TUR still fails 593 * (reservation conflict, device not ready, etc) just 594 * skip the write tests */ 595 for (l = 0; ; l++) { 596 scsi_wait_req(sreq, spi_test_unit_ready, NULL, 0, 597 DV_TIMEOUT, DV_RETRIES); 598 599 if(sreq->sr_result) { 600 if(l >= 3) 601 return 0; 602 } else { 603 /* TUR succeeded */ 604 break; 605 } 606 } 607 608 sreq->sr_cmd_len = 0; 609 sreq->sr_data_direction = DMA_FROM_DEVICE; 610 611 scsi_wait_req(sreq, spi_read_buffer_descriptor, buffer, 4, 612 DV_TIMEOUT, DV_RETRIES); 613 614 if (sreq->sr_result) 615 /* Device has no echo buffer */ 616 return 0; 617 618 return buffer[3] + ((buffer[2] & 0x1f) << 8); 619 } 620 621 static void 622 spi_dv_device_internal(struct scsi_request *sreq, u8 *buffer) 623 { 624 struct spi_internal *i = to_spi_internal(sreq->sr_host->transportt); 625 struct scsi_device *sdev = sreq->sr_device; 626 int len = sdev->inquiry_len; 627 /* first set us up for narrow async */ 628 DV_SET(offset, 0); 629 DV_SET(width, 0); 630 631 if (spi_dv_device_compare_inquiry(sreq, buffer, buffer, DV_LOOPS) 632 != SPI_COMPARE_SUCCESS) { 633 SPI_PRINTK(sdev->sdev_target, KERN_ERR, "Domain Validation Initial Inquiry Failed\n"); 634 /* FIXME: should probably offline the device here? */ 635 return; 636 } 637 638 /* test width */ 639 if (i->f->set_width && sdev->wdtr) { 640 i->f->set_width(sdev->sdev_target, 1); 641 642 if (spi_dv_device_compare_inquiry(sreq, buffer, 643 buffer + len, 644 DV_LOOPS) 645 != SPI_COMPARE_SUCCESS) { 646 SPI_PRINTK(sdev->sdev_target, KERN_ERR, "Wide Transfers Fail\n"); 647 i->f->set_width(sdev->sdev_target, 0); 648 } 649 } 650 651 if (!i->f->set_period) 652 return; 653 654 /* device can't handle synchronous */ 655 if(!sdev->ppr && !sdev->sdtr) 656 return; 657 658 /* see if the device has an echo buffer. If it does we can 659 * do the SPI pattern write tests */ 660 661 len = 0; 662 if (sdev->ppr) 663 len = spi_dv_device_get_echo_buffer(sreq, buffer); 664 665 retry: 666 667 /* now set up to the maximum */ 668 DV_SET(offset, 255); 669 DV_SET(period, 1); 670 671 if (len == 0) { 672 SPI_PRINTK(sdev->sdev_target, KERN_INFO, "Domain Validation skipping write tests\n"); 673 spi_dv_retrain(sreq, buffer, buffer + len, 674 spi_dv_device_compare_inquiry); 675 return; 676 } 677 678 if (len > SPI_MAX_ECHO_BUFFER_SIZE) { 679 SPI_PRINTK(sdev->sdev_target, KERN_WARNING, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE); 680 len = SPI_MAX_ECHO_BUFFER_SIZE; 681 } 682 683 if (spi_dv_retrain(sreq, buffer, buffer + len, 684 spi_dv_device_echo_buffer) 685 == SPI_COMPARE_SKIP_TEST) { 686 /* OK, the stupid drive can't do a write echo buffer 687 * test after all, fall back to the read tests */ 688 len = 0; 689 goto retry; 690 } 691 } 692 693 694 /** spi_dv_device - Do Domain Validation on the device 695 * @sdev: scsi device to validate 696 * 697 * Performs the domain validation on the given device in the 698 * current execution thread. Since DV operations may sleep, 699 * the current thread must have user context. Also no SCSI 700 * related locks that would deadlock I/O issued by the DV may 701 * be held. 702 */ 703 void 704 spi_dv_device(struct scsi_device *sdev) 705 { 706 struct scsi_request *sreq = scsi_allocate_request(sdev, GFP_KERNEL); 707 struct scsi_target *starget = sdev->sdev_target; 708 u8 *buffer; 709 const int len = SPI_MAX_ECHO_BUFFER_SIZE*2; 710 711 if (unlikely(!sreq)) 712 return; 713 714 if (unlikely(scsi_device_get(sdev))) 715 goto out_free_req; 716 717 buffer = kmalloc(len, GFP_KERNEL); 718 719 if (unlikely(!buffer)) 720 goto out_put; 721 722 memset(buffer, 0, len); 723 724 /* We need to verify that the actual device will quiesce; the 725 * later target quiesce is just a nice to have */ 726 if (unlikely(scsi_device_quiesce(sdev))) 727 goto out_free; 728 729 scsi_target_quiesce(starget); 730 731 spi_dv_pending(starget) = 1; 732 down(&spi_dv_sem(starget)); 733 734 SPI_PRINTK(starget, KERN_INFO, "Beginning Domain Validation\n"); 735 736 spi_dv_device_internal(sreq, buffer); 737 738 SPI_PRINTK(starget, KERN_INFO, "Ending Domain Validation\n"); 739 740 up(&spi_dv_sem(starget)); 741 spi_dv_pending(starget) = 0; 742 743 scsi_target_resume(starget); 744 745 spi_initial_dv(starget) = 1; 746 747 out_free: 748 kfree(buffer); 749 out_put: 750 scsi_device_put(sdev); 751 out_free_req: 752 scsi_release_request(sreq); 753 } 754 EXPORT_SYMBOL(spi_dv_device); 755 756 struct work_queue_wrapper { 757 struct work_struct work; 758 struct scsi_device *sdev; 759 }; 760 761 static void 762 spi_dv_device_work_wrapper(void *data) 763 { 764 struct work_queue_wrapper *wqw = (struct work_queue_wrapper *)data; 765 struct scsi_device *sdev = wqw->sdev; 766 767 kfree(wqw); 768 spi_dv_device(sdev); 769 spi_dv_pending(sdev->sdev_target) = 0; 770 scsi_device_put(sdev); 771 } 772 773 774 /** 775 * spi_schedule_dv_device - schedule domain validation to occur on the device 776 * @sdev: The device to validate 777 * 778 * Identical to spi_dv_device() above, except that the DV will be 779 * scheduled to occur in a workqueue later. All memory allocations 780 * are atomic, so may be called from any context including those holding 781 * SCSI locks. 782 */ 783 void 784 spi_schedule_dv_device(struct scsi_device *sdev) 785 { 786 struct work_queue_wrapper *wqw = 787 kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC); 788 789 if (unlikely(!wqw)) 790 return; 791 792 if (unlikely(spi_dv_pending(sdev->sdev_target))) { 793 kfree(wqw); 794 return; 795 } 796 /* Set pending early (dv_device doesn't check it, only sets it) */ 797 spi_dv_pending(sdev->sdev_target) = 1; 798 if (unlikely(scsi_device_get(sdev))) { 799 kfree(wqw); 800 spi_dv_pending(sdev->sdev_target) = 0; 801 return; 802 } 803 804 INIT_WORK(&wqw->work, spi_dv_device_work_wrapper, wqw); 805 wqw->sdev = sdev; 806 807 schedule_work(&wqw->work); 808 } 809 EXPORT_SYMBOL(spi_schedule_dv_device); 810 811 /** 812 * spi_display_xfer_agreement - Print the current target transfer agreement 813 * @starget: The target for which to display the agreement 814 * 815 * Each SPI port is required to maintain a transfer agreement for each 816 * other port on the bus. This function prints a one-line summary of 817 * the current agreement; more detailed information is available in sysfs. 818 */ 819 void spi_display_xfer_agreement(struct scsi_target *starget) 820 { 821 struct spi_transport_attrs *tp; 822 tp = (struct spi_transport_attrs *)&starget->starget_data; 823 824 if (tp->offset > 0 && tp->period > 0) { 825 unsigned int picosec, kb100; 826 char *scsi = "FAST-?"; 827 char tmp[8]; 828 829 if (tp->period <= SPI_STATIC_PPR) { 830 picosec = ppr_to_ps[tp->period]; 831 switch (tp->period) { 832 case 7: scsi = "FAST-320"; break; 833 case 8: scsi = "FAST-160"; break; 834 case 9: scsi = "FAST-80"; break; 835 case 10: 836 case 11: scsi = "FAST-40"; break; 837 case 12: scsi = "FAST-20"; break; 838 } 839 } else { 840 picosec = tp->period * 4000; 841 if (tp->period < 25) 842 scsi = "FAST-20"; 843 else if (tp->period < 50) 844 scsi = "FAST-10"; 845 else 846 scsi = "FAST-5"; 847 } 848 849 kb100 = (10000000 + picosec / 2) / picosec; 850 if (tp->width) 851 kb100 *= 2; 852 sprint_frac(tmp, picosec, 1000); 853 854 dev_info(&starget->dev, 855 "%s %sSCSI %d.%d MB/s %s%s%s (%s ns, offset %d)\n", 856 scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10, 857 tp->dt ? "DT" : "ST", tp->iu ? " IU" : "", 858 tp->qas ? " QAS" : "", tmp, tp->offset); 859 } else { 860 dev_info(&starget->dev, "%sasynchronous.\n", 861 tp->width ? "wide " : ""); 862 } 863 } 864 EXPORT_SYMBOL(spi_display_xfer_agreement); 865 866 #define SETUP_ATTRIBUTE(field) \ 867 i->private_attrs[count] = class_device_attr_##field; \ 868 if (!i->f->set_##field) { \ 869 i->private_attrs[count].attr.mode = S_IRUGO; \ 870 i->private_attrs[count].store = NULL; \ 871 } \ 872 i->attrs[count] = &i->private_attrs[count]; \ 873 if (i->f->show_##field) \ 874 count++ 875 876 #define SETUP_HOST_ATTRIBUTE(field) \ 877 i->private_host_attrs[count] = class_device_attr_##field; \ 878 if (!i->f->set_##field) { \ 879 i->private_host_attrs[count].attr.mode = S_IRUGO; \ 880 i->private_host_attrs[count].store = NULL; \ 881 } \ 882 i->host_attrs[count] = &i->private_host_attrs[count]; \ 883 count++ 884 885 static int spi_device_match(struct attribute_container *cont, 886 struct device *dev) 887 { 888 struct scsi_device *sdev; 889 struct Scsi_Host *shost; 890 891 if (!scsi_is_sdev_device(dev)) 892 return 0; 893 894 sdev = to_scsi_device(dev); 895 shost = sdev->host; 896 if (!shost->transportt || shost->transportt->host_attrs.ac.class 897 != &spi_host_class.class) 898 return 0; 899 /* Note: this class has no device attributes, so it has 900 * no per-HBA allocation and thus we don't need to distinguish 901 * the attribute containers for the device */ 902 return 1; 903 } 904 905 static int spi_target_match(struct attribute_container *cont, 906 struct device *dev) 907 { 908 struct Scsi_Host *shost; 909 struct spi_internal *i; 910 911 if (!scsi_is_target_device(dev)) 912 return 0; 913 914 shost = dev_to_shost(dev->parent); 915 if (!shost->transportt || shost->transportt->host_attrs.ac.class 916 != &spi_host_class.class) 917 return 0; 918 919 i = to_spi_internal(shost->transportt); 920 921 return &i->t.target_attrs.ac == cont; 922 } 923 924 static DECLARE_TRANSPORT_CLASS(spi_transport_class, 925 "spi_transport", 926 spi_setup_transport_attrs, 927 NULL, 928 NULL); 929 930 static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class, 931 spi_device_match, 932 spi_device_configure); 933 934 struct scsi_transport_template * 935 spi_attach_transport(struct spi_function_template *ft) 936 { 937 struct spi_internal *i = kmalloc(sizeof(struct spi_internal), 938 GFP_KERNEL); 939 int count = 0; 940 if (unlikely(!i)) 941 return NULL; 942 943 memset(i, 0, sizeof(struct spi_internal)); 944 945 946 i->t.target_attrs.ac.class = &spi_transport_class.class; 947 i->t.target_attrs.ac.attrs = &i->attrs[0]; 948 i->t.target_attrs.ac.match = spi_target_match; 949 transport_container_register(&i->t.target_attrs); 950 i->t.target_size = sizeof(struct spi_transport_attrs); 951 i->t.host_attrs.ac.class = &spi_host_class.class; 952 i->t.host_attrs.ac.attrs = &i->host_attrs[0]; 953 i->t.host_attrs.ac.match = spi_host_match; 954 transport_container_register(&i->t.host_attrs); 955 i->t.host_size = sizeof(struct spi_host_attrs); 956 i->f = ft; 957 958 SETUP_ATTRIBUTE(period); 959 SETUP_ATTRIBUTE(offset); 960 SETUP_ATTRIBUTE(width); 961 SETUP_ATTRIBUTE(iu); 962 SETUP_ATTRIBUTE(dt); 963 SETUP_ATTRIBUTE(qas); 964 SETUP_ATTRIBUTE(wr_flow); 965 SETUP_ATTRIBUTE(rd_strm); 966 SETUP_ATTRIBUTE(rti); 967 SETUP_ATTRIBUTE(pcomp_en); 968 969 /* if you add an attribute but forget to increase SPI_NUM_ATTRS 970 * this bug will trigger */ 971 BUG_ON(count > SPI_NUM_ATTRS); 972 973 i->attrs[count++] = &class_device_attr_revalidate; 974 975 i->attrs[count] = NULL; 976 977 count = 0; 978 SETUP_HOST_ATTRIBUTE(signalling); 979 980 BUG_ON(count > SPI_HOST_ATTRS); 981 982 i->host_attrs[count] = NULL; 983 984 return &i->t; 985 } 986 EXPORT_SYMBOL(spi_attach_transport); 987 988 void spi_release_transport(struct scsi_transport_template *t) 989 { 990 struct spi_internal *i = to_spi_internal(t); 991 992 transport_container_unregister(&i->t.target_attrs); 993 transport_container_unregister(&i->t.host_attrs); 994 995 kfree(i); 996 } 997 EXPORT_SYMBOL(spi_release_transport); 998 999 static __init int spi_transport_init(void) 1000 { 1001 int error = transport_class_register(&spi_transport_class); 1002 if (error) 1003 return error; 1004 error = anon_transport_class_register(&spi_device_class); 1005 return transport_class_register(&spi_host_class); 1006 } 1007 1008 static void __exit spi_transport_exit(void) 1009 { 1010 transport_class_unregister(&spi_transport_class); 1011 anon_transport_class_unregister(&spi_device_class); 1012 transport_class_unregister(&spi_host_class); 1013 } 1014 1015 MODULE_AUTHOR("Martin Hicks"); 1016 MODULE_DESCRIPTION("SPI Transport Attributes"); 1017 MODULE_LICENSE("GPL"); 1018 1019 module_init(spi_transport_init); 1020 module_exit(spi_transport_exit); 1021