xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sense_cache;
56 static struct kmem_cache *scsi_sense_isadma_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
61 static inline struct kmem_cache *
62 scsi_select_sense_cache(bool unchecked_isa_dma)
63 {
64 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
65 }
66 
67 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
68 				   unsigned char *sense_buffer)
69 {
70 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
71 			sense_buffer);
72 }
73 
74 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
75 	gfp_t gfp_mask, int numa_node)
76 {
77 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
78 				     gfp_mask, numa_node);
79 }
80 
81 int scsi_init_sense_cache(struct Scsi_Host *shost)
82 {
83 	struct kmem_cache *cache;
84 	int ret = 0;
85 
86 	mutex_lock(&scsi_sense_cache_mutex);
87 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
88 	if (cache)
89 		goto exit;
90 
91 	if (shost->unchecked_isa_dma) {
92 		scsi_sense_isadma_cache =
93 			kmem_cache_create("scsi_sense_cache(DMA)",
94 				SCSI_SENSE_BUFFERSIZE, 0,
95 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
96 		if (!scsi_sense_isadma_cache)
97 			ret = -ENOMEM;
98 	} else {
99 		scsi_sense_cache =
100 			kmem_cache_create_usercopy("scsi_sense_cache",
101 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
102 				0, SCSI_SENSE_BUFFERSIZE, NULL);
103 		if (!scsi_sense_cache)
104 			ret = -ENOMEM;
105 	}
106  exit:
107 	mutex_unlock(&scsi_sense_cache_mutex);
108 	return ret;
109 }
110 
111 /*
112  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
113  * not change behaviour from the previous unplug mechanism, experimentation
114  * may prove this needs changing.
115  */
116 #define SCSI_QUEUE_DELAY	3
117 
118 static void
119 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
120 {
121 	struct Scsi_Host *host = cmd->device->host;
122 	struct scsi_device *device = cmd->device;
123 	struct scsi_target *starget = scsi_target(device);
124 
125 	/*
126 	 * Set the appropriate busy bit for the device/host.
127 	 *
128 	 * If the host/device isn't busy, assume that something actually
129 	 * completed, and that we should be able to queue a command now.
130 	 *
131 	 * Note that the prior mid-layer assumption that any host could
132 	 * always queue at least one command is now broken.  The mid-layer
133 	 * will implement a user specifiable stall (see
134 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
135 	 * if a command is requeued with no other commands outstanding
136 	 * either for the device or for the host.
137 	 */
138 	switch (reason) {
139 	case SCSI_MLQUEUE_HOST_BUSY:
140 		atomic_set(&host->host_blocked, host->max_host_blocked);
141 		break;
142 	case SCSI_MLQUEUE_DEVICE_BUSY:
143 	case SCSI_MLQUEUE_EH_RETRY:
144 		atomic_set(&device->device_blocked,
145 			   device->max_device_blocked);
146 		break;
147 	case SCSI_MLQUEUE_TARGET_BUSY:
148 		atomic_set(&starget->target_blocked,
149 			   starget->max_target_blocked);
150 		break;
151 	}
152 }
153 
154 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
155 {
156 	if (cmd->request->rq_flags & RQF_DONTPREP) {
157 		cmd->request->rq_flags &= ~RQF_DONTPREP;
158 		scsi_mq_uninit_cmd(cmd);
159 	} else {
160 		WARN_ON_ONCE(true);
161 	}
162 	blk_mq_requeue_request(cmd->request, true);
163 }
164 
165 /**
166  * __scsi_queue_insert - private queue insertion
167  * @cmd: The SCSI command being requeued
168  * @reason:  The reason for the requeue
169  * @unbusy: Whether the queue should be unbusied
170  *
171  * This is a private queue insertion.  The public interface
172  * scsi_queue_insert() always assumes the queue should be unbusied
173  * because it's always called before the completion.  This function is
174  * for a requeue after completion, which should only occur in this
175  * file.
176  */
177 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
178 {
179 	struct scsi_device *device = cmd->device;
180 
181 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
182 		"Inserting command %p into mlqueue\n", cmd));
183 
184 	scsi_set_blocked(cmd, reason);
185 
186 	/*
187 	 * Decrement the counters, since these commands are no longer
188 	 * active on the host/device.
189 	 */
190 	if (unbusy)
191 		scsi_device_unbusy(device, cmd);
192 
193 	/*
194 	 * Requeue this command.  It will go before all other commands
195 	 * that are already in the queue. Schedule requeue work under
196 	 * lock such that the kblockd_schedule_work() call happens
197 	 * before blk_cleanup_queue() finishes.
198 	 */
199 	cmd->result = 0;
200 
201 	blk_mq_requeue_request(cmd->request, true);
202 }
203 
204 /**
205  * scsi_queue_insert - Reinsert a command in the queue.
206  * @cmd:    command that we are adding to queue.
207  * @reason: why we are inserting command to queue.
208  *
209  * We do this for one of two cases. Either the host is busy and it cannot accept
210  * any more commands for the time being, or the device returned QUEUE_FULL and
211  * can accept no more commands.
212  *
213  * Context: This could be called either from an interrupt context or a normal
214  * process context.
215  */
216 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
217 {
218 	__scsi_queue_insert(cmd, reason, true);
219 }
220 
221 
222 /**
223  * __scsi_execute - insert request and wait for the result
224  * @sdev:	scsi device
225  * @cmd:	scsi command
226  * @data_direction: data direction
227  * @buffer:	data buffer
228  * @bufflen:	len of buffer
229  * @sense:	optional sense buffer
230  * @sshdr:	optional decoded sense header
231  * @timeout:	request timeout in seconds
232  * @retries:	number of times to retry request
233  * @flags:	flags for ->cmd_flags
234  * @rq_flags:	flags for ->rq_flags
235  * @resid:	optional residual length
236  *
237  * Returns the scsi_cmnd result field if a command was executed, or a negative
238  * Linux error code if we didn't get that far.
239  */
240 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
241 		 int data_direction, void *buffer, unsigned bufflen,
242 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
243 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
244 		 int *resid)
245 {
246 	struct request *req;
247 	struct scsi_request *rq;
248 	int ret = DRIVER_ERROR << 24;
249 
250 	req = blk_get_request(sdev->request_queue,
251 			data_direction == DMA_TO_DEVICE ?
252 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
253 	if (IS_ERR(req))
254 		return ret;
255 	rq = scsi_req(req);
256 
257 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
258 					buffer, bufflen, GFP_NOIO))
259 		goto out;
260 
261 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
262 	memcpy(rq->cmd, cmd, rq->cmd_len);
263 	rq->retries = retries;
264 	req->timeout = timeout;
265 	req->cmd_flags |= flags;
266 	req->rq_flags |= rq_flags | RQF_QUIET;
267 
268 	/*
269 	 * head injection *required* here otherwise quiesce won't work
270 	 */
271 	blk_execute_rq(req->q, NULL, req, 1);
272 
273 	/*
274 	 * Some devices (USB mass-storage in particular) may transfer
275 	 * garbage data together with a residue indicating that the data
276 	 * is invalid.  Prevent the garbage from being misinterpreted
277 	 * and prevent security leaks by zeroing out the excess data.
278 	 */
279 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
280 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
281 
282 	if (resid)
283 		*resid = rq->resid_len;
284 	if (sense && rq->sense_len)
285 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
286 	if (sshdr)
287 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
288 	ret = rq->result;
289  out:
290 	blk_put_request(req);
291 
292 	return ret;
293 }
294 EXPORT_SYMBOL(__scsi_execute);
295 
296 /**
297  * scsi_init_cmd_errh - Initialize cmd fields related to error handling.
298  * @cmd:  command that is ready to be queued.
299  *
300  * This function has the job of initializing a number of fields related to error
301  * handling. Typically this will be called once for each command, as required.
302  */
303 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
304 {
305 	scsi_set_resid(cmd, 0);
306 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
307 	if (cmd->cmd_len == 0)
308 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
309 }
310 
311 /*
312  * Wake up the error handler if necessary. Avoid as follows that the error
313  * handler is not woken up if host in-flight requests number ==
314  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
315  * with an RCU read lock in this function to ensure that this function in
316  * its entirety either finishes before scsi_eh_scmd_add() increases the
317  * host_failed counter or that it notices the shost state change made by
318  * scsi_eh_scmd_add().
319  */
320 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
321 {
322 	unsigned long flags;
323 
324 	rcu_read_lock();
325 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
326 	if (unlikely(scsi_host_in_recovery(shost))) {
327 		spin_lock_irqsave(shost->host_lock, flags);
328 		if (shost->host_failed || shost->host_eh_scheduled)
329 			scsi_eh_wakeup(shost);
330 		spin_unlock_irqrestore(shost->host_lock, flags);
331 	}
332 	rcu_read_unlock();
333 }
334 
335 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
336 {
337 	struct Scsi_Host *shost = sdev->host;
338 	struct scsi_target *starget = scsi_target(sdev);
339 
340 	scsi_dec_host_busy(shost, cmd);
341 
342 	if (starget->can_queue > 0)
343 		atomic_dec(&starget->target_busy);
344 
345 	atomic_dec(&sdev->device_busy);
346 }
347 
348 static void scsi_kick_queue(struct request_queue *q)
349 {
350 	blk_mq_run_hw_queues(q, false);
351 }
352 
353 /*
354  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
355  * and call blk_run_queue for all the scsi_devices on the target -
356  * including current_sdev first.
357  *
358  * Called with *no* scsi locks held.
359  */
360 static void scsi_single_lun_run(struct scsi_device *current_sdev)
361 {
362 	struct Scsi_Host *shost = current_sdev->host;
363 	struct scsi_device *sdev, *tmp;
364 	struct scsi_target *starget = scsi_target(current_sdev);
365 	unsigned long flags;
366 
367 	spin_lock_irqsave(shost->host_lock, flags);
368 	starget->starget_sdev_user = NULL;
369 	spin_unlock_irqrestore(shost->host_lock, flags);
370 
371 	/*
372 	 * Call blk_run_queue for all LUNs on the target, starting with
373 	 * current_sdev. We race with others (to set starget_sdev_user),
374 	 * but in most cases, we will be first. Ideally, each LU on the
375 	 * target would get some limited time or requests on the target.
376 	 */
377 	scsi_kick_queue(current_sdev->request_queue);
378 
379 	spin_lock_irqsave(shost->host_lock, flags);
380 	if (starget->starget_sdev_user)
381 		goto out;
382 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
383 			same_target_siblings) {
384 		if (sdev == current_sdev)
385 			continue;
386 		if (scsi_device_get(sdev))
387 			continue;
388 
389 		spin_unlock_irqrestore(shost->host_lock, flags);
390 		scsi_kick_queue(sdev->request_queue);
391 		spin_lock_irqsave(shost->host_lock, flags);
392 
393 		scsi_device_put(sdev);
394 	}
395  out:
396 	spin_unlock_irqrestore(shost->host_lock, flags);
397 }
398 
399 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
400 {
401 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
402 		return true;
403 	if (atomic_read(&sdev->device_blocked) > 0)
404 		return true;
405 	return false;
406 }
407 
408 static inline bool scsi_target_is_busy(struct scsi_target *starget)
409 {
410 	if (starget->can_queue > 0) {
411 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
412 			return true;
413 		if (atomic_read(&starget->target_blocked) > 0)
414 			return true;
415 	}
416 	return false;
417 }
418 
419 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
420 {
421 	if (atomic_read(&shost->host_blocked) > 0)
422 		return true;
423 	if (shost->host_self_blocked)
424 		return true;
425 	return false;
426 }
427 
428 static void scsi_starved_list_run(struct Scsi_Host *shost)
429 {
430 	LIST_HEAD(starved_list);
431 	struct scsi_device *sdev;
432 	unsigned long flags;
433 
434 	spin_lock_irqsave(shost->host_lock, flags);
435 	list_splice_init(&shost->starved_list, &starved_list);
436 
437 	while (!list_empty(&starved_list)) {
438 		struct request_queue *slq;
439 
440 		/*
441 		 * As long as shost is accepting commands and we have
442 		 * starved queues, call blk_run_queue. scsi_request_fn
443 		 * drops the queue_lock and can add us back to the
444 		 * starved_list.
445 		 *
446 		 * host_lock protects the starved_list and starved_entry.
447 		 * scsi_request_fn must get the host_lock before checking
448 		 * or modifying starved_list or starved_entry.
449 		 */
450 		if (scsi_host_is_busy(shost))
451 			break;
452 
453 		sdev = list_entry(starved_list.next,
454 				  struct scsi_device, starved_entry);
455 		list_del_init(&sdev->starved_entry);
456 		if (scsi_target_is_busy(scsi_target(sdev))) {
457 			list_move_tail(&sdev->starved_entry,
458 				       &shost->starved_list);
459 			continue;
460 		}
461 
462 		/*
463 		 * Once we drop the host lock, a racing scsi_remove_device()
464 		 * call may remove the sdev from the starved list and destroy
465 		 * it and the queue.  Mitigate by taking a reference to the
466 		 * queue and never touching the sdev again after we drop the
467 		 * host lock.  Note: if __scsi_remove_device() invokes
468 		 * blk_cleanup_queue() before the queue is run from this
469 		 * function then blk_run_queue() will return immediately since
470 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
471 		 */
472 		slq = sdev->request_queue;
473 		if (!blk_get_queue(slq))
474 			continue;
475 		spin_unlock_irqrestore(shost->host_lock, flags);
476 
477 		scsi_kick_queue(slq);
478 		blk_put_queue(slq);
479 
480 		spin_lock_irqsave(shost->host_lock, flags);
481 	}
482 	/* put any unprocessed entries back */
483 	list_splice(&starved_list, &shost->starved_list);
484 	spin_unlock_irqrestore(shost->host_lock, flags);
485 }
486 
487 /**
488  * scsi_run_queue - Select a proper request queue to serve next.
489  * @q:  last request's queue
490  *
491  * The previous command was completely finished, start a new one if possible.
492  */
493 static void scsi_run_queue(struct request_queue *q)
494 {
495 	struct scsi_device *sdev = q->queuedata;
496 
497 	if (scsi_target(sdev)->single_lun)
498 		scsi_single_lun_run(sdev);
499 	if (!list_empty(&sdev->host->starved_list))
500 		scsi_starved_list_run(sdev->host);
501 
502 	blk_mq_run_hw_queues(q, false);
503 }
504 
505 void scsi_requeue_run_queue(struct work_struct *work)
506 {
507 	struct scsi_device *sdev;
508 	struct request_queue *q;
509 
510 	sdev = container_of(work, struct scsi_device, requeue_work);
511 	q = sdev->request_queue;
512 	scsi_run_queue(q);
513 }
514 
515 void scsi_run_host_queues(struct Scsi_Host *shost)
516 {
517 	struct scsi_device *sdev;
518 
519 	shost_for_each_device(sdev, shost)
520 		scsi_run_queue(sdev->request_queue);
521 }
522 
523 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
524 {
525 	if (!blk_rq_is_passthrough(cmd->request)) {
526 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
527 
528 		if (drv->uninit_command)
529 			drv->uninit_command(cmd);
530 	}
531 }
532 
533 static void scsi_free_sgtables(struct scsi_cmnd *cmd)
534 {
535 	if (cmd->sdb.table.nents)
536 		sg_free_table_chained(&cmd->sdb.table,
537 				SCSI_INLINE_SG_CNT);
538 	if (scsi_prot_sg_count(cmd))
539 		sg_free_table_chained(&cmd->prot_sdb->table,
540 				SCSI_INLINE_PROT_SG_CNT);
541 }
542 
543 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
544 {
545 	scsi_free_sgtables(cmd);
546 	scsi_uninit_cmd(cmd);
547 }
548 
549 static void scsi_run_queue_async(struct scsi_device *sdev)
550 {
551 	if (scsi_target(sdev)->single_lun ||
552 	    !list_empty(&sdev->host->starved_list))
553 		kblockd_schedule_work(&sdev->requeue_work);
554 	else
555 		blk_mq_run_hw_queues(sdev->request_queue, true);
556 }
557 
558 /* Returns false when no more bytes to process, true if there are more */
559 static bool scsi_end_request(struct request *req, blk_status_t error,
560 		unsigned int bytes)
561 {
562 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
563 	struct scsi_device *sdev = cmd->device;
564 	struct request_queue *q = sdev->request_queue;
565 
566 	if (blk_update_request(req, error, bytes))
567 		return true;
568 
569 	if (blk_queue_add_random(q))
570 		add_disk_randomness(req->rq_disk);
571 
572 	if (!blk_rq_is_scsi(req)) {
573 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
574 		cmd->flags &= ~SCMD_INITIALIZED;
575 	}
576 
577 	/*
578 	 * Calling rcu_barrier() is not necessary here because the
579 	 * SCSI error handler guarantees that the function called by
580 	 * call_rcu() has been called before scsi_end_request() is
581 	 * called.
582 	 */
583 	destroy_rcu_head(&cmd->rcu);
584 
585 	/*
586 	 * In the MQ case the command gets freed by __blk_mq_end_request,
587 	 * so we have to do all cleanup that depends on it earlier.
588 	 *
589 	 * We also can't kick the queues from irq context, so we
590 	 * will have to defer it to a workqueue.
591 	 */
592 	scsi_mq_uninit_cmd(cmd);
593 
594 	/*
595 	 * queue is still alive, so grab the ref for preventing it
596 	 * from being cleaned up during running queue.
597 	 */
598 	percpu_ref_get(&q->q_usage_counter);
599 
600 	__blk_mq_end_request(req, error);
601 
602 	scsi_run_queue_async(sdev);
603 
604 	percpu_ref_put(&q->q_usage_counter);
605 	return false;
606 }
607 
608 /**
609  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
610  * @cmd:	SCSI command
611  * @result:	scsi error code
612  *
613  * Translate a SCSI result code into a blk_status_t value. May reset the host
614  * byte of @cmd->result.
615  */
616 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
617 {
618 	switch (host_byte(result)) {
619 	case DID_OK:
620 		/*
621 		 * Also check the other bytes than the status byte in result
622 		 * to handle the case when a SCSI LLD sets result to
623 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
624 		 */
625 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
626 			return BLK_STS_OK;
627 		return BLK_STS_IOERR;
628 	case DID_TRANSPORT_FAILFAST:
629 		return BLK_STS_TRANSPORT;
630 	case DID_TARGET_FAILURE:
631 		set_host_byte(cmd, DID_OK);
632 		return BLK_STS_TARGET;
633 	case DID_NEXUS_FAILURE:
634 		set_host_byte(cmd, DID_OK);
635 		return BLK_STS_NEXUS;
636 	case DID_ALLOC_FAILURE:
637 		set_host_byte(cmd, DID_OK);
638 		return BLK_STS_NOSPC;
639 	case DID_MEDIUM_ERROR:
640 		set_host_byte(cmd, DID_OK);
641 		return BLK_STS_MEDIUM;
642 	default:
643 		return BLK_STS_IOERR;
644 	}
645 }
646 
647 /* Helper for scsi_io_completion() when "reprep" action required. */
648 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
649 				      struct request_queue *q)
650 {
651 	/* A new command will be prepared and issued. */
652 	scsi_mq_requeue_cmd(cmd);
653 }
654 
655 /* Helper for scsi_io_completion() when special action required. */
656 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
657 {
658 	struct request_queue *q = cmd->device->request_queue;
659 	struct request *req = cmd->request;
660 	int level = 0;
661 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
662 	      ACTION_DELAYED_RETRY} action;
663 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
664 	struct scsi_sense_hdr sshdr;
665 	bool sense_valid;
666 	bool sense_current = true;      /* false implies "deferred sense" */
667 	blk_status_t blk_stat;
668 
669 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
670 	if (sense_valid)
671 		sense_current = !scsi_sense_is_deferred(&sshdr);
672 
673 	blk_stat = scsi_result_to_blk_status(cmd, result);
674 
675 	if (host_byte(result) == DID_RESET) {
676 		/* Third party bus reset or reset for error recovery
677 		 * reasons.  Just retry the command and see what
678 		 * happens.
679 		 */
680 		action = ACTION_RETRY;
681 	} else if (sense_valid && sense_current) {
682 		switch (sshdr.sense_key) {
683 		case UNIT_ATTENTION:
684 			if (cmd->device->removable) {
685 				/* Detected disc change.  Set a bit
686 				 * and quietly refuse further access.
687 				 */
688 				cmd->device->changed = 1;
689 				action = ACTION_FAIL;
690 			} else {
691 				/* Must have been a power glitch, or a
692 				 * bus reset.  Could not have been a
693 				 * media change, so we just retry the
694 				 * command and see what happens.
695 				 */
696 				action = ACTION_RETRY;
697 			}
698 			break;
699 		case ILLEGAL_REQUEST:
700 			/* If we had an ILLEGAL REQUEST returned, then
701 			 * we may have performed an unsupported
702 			 * command.  The only thing this should be
703 			 * would be a ten byte read where only a six
704 			 * byte read was supported.  Also, on a system
705 			 * where READ CAPACITY failed, we may have
706 			 * read past the end of the disk.
707 			 */
708 			if ((cmd->device->use_10_for_rw &&
709 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
710 			    (cmd->cmnd[0] == READ_10 ||
711 			     cmd->cmnd[0] == WRITE_10)) {
712 				/* This will issue a new 6-byte command. */
713 				cmd->device->use_10_for_rw = 0;
714 				action = ACTION_REPREP;
715 			} else if (sshdr.asc == 0x10) /* DIX */ {
716 				action = ACTION_FAIL;
717 				blk_stat = BLK_STS_PROTECTION;
718 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
719 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
720 				action = ACTION_FAIL;
721 				blk_stat = BLK_STS_TARGET;
722 			} else
723 				action = ACTION_FAIL;
724 			break;
725 		case ABORTED_COMMAND:
726 			action = ACTION_FAIL;
727 			if (sshdr.asc == 0x10) /* DIF */
728 				blk_stat = BLK_STS_PROTECTION;
729 			break;
730 		case NOT_READY:
731 			/* If the device is in the process of becoming
732 			 * ready, or has a temporary blockage, retry.
733 			 */
734 			if (sshdr.asc == 0x04) {
735 				switch (sshdr.ascq) {
736 				case 0x01: /* becoming ready */
737 				case 0x04: /* format in progress */
738 				case 0x05: /* rebuild in progress */
739 				case 0x06: /* recalculation in progress */
740 				case 0x07: /* operation in progress */
741 				case 0x08: /* Long write in progress */
742 				case 0x09: /* self test in progress */
743 				case 0x14: /* space allocation in progress */
744 				case 0x1a: /* start stop unit in progress */
745 				case 0x1b: /* sanitize in progress */
746 				case 0x1d: /* configuration in progress */
747 				case 0x24: /* depopulation in progress */
748 					action = ACTION_DELAYED_RETRY;
749 					break;
750 				default:
751 					action = ACTION_FAIL;
752 					break;
753 				}
754 			} else
755 				action = ACTION_FAIL;
756 			break;
757 		case VOLUME_OVERFLOW:
758 			/* See SSC3rXX or current. */
759 			action = ACTION_FAIL;
760 			break;
761 		default:
762 			action = ACTION_FAIL;
763 			break;
764 		}
765 	} else
766 		action = ACTION_FAIL;
767 
768 	if (action != ACTION_FAIL &&
769 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
770 		action = ACTION_FAIL;
771 
772 	switch (action) {
773 	case ACTION_FAIL:
774 		/* Give up and fail the remainder of the request */
775 		if (!(req->rq_flags & RQF_QUIET)) {
776 			static DEFINE_RATELIMIT_STATE(_rs,
777 					DEFAULT_RATELIMIT_INTERVAL,
778 					DEFAULT_RATELIMIT_BURST);
779 
780 			if (unlikely(scsi_logging_level))
781 				level =
782 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
783 						    SCSI_LOG_MLCOMPLETE_BITS);
784 
785 			/*
786 			 * if logging is enabled the failure will be printed
787 			 * in scsi_log_completion(), so avoid duplicate messages
788 			 */
789 			if (!level && __ratelimit(&_rs)) {
790 				scsi_print_result(cmd, NULL, FAILED);
791 				if (driver_byte(result) == DRIVER_SENSE)
792 					scsi_print_sense(cmd);
793 				scsi_print_command(cmd);
794 			}
795 		}
796 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
797 			return;
798 		fallthrough;
799 	case ACTION_REPREP:
800 		scsi_io_completion_reprep(cmd, q);
801 		break;
802 	case ACTION_RETRY:
803 		/* Retry the same command immediately */
804 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
805 		break;
806 	case ACTION_DELAYED_RETRY:
807 		/* Retry the same command after a delay */
808 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
809 		break;
810 	}
811 }
812 
813 /*
814  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
815  * new result that may suppress further error checking. Also modifies
816  * *blk_statp in some cases.
817  */
818 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
819 					blk_status_t *blk_statp)
820 {
821 	bool sense_valid;
822 	bool sense_current = true;	/* false implies "deferred sense" */
823 	struct request *req = cmd->request;
824 	struct scsi_sense_hdr sshdr;
825 
826 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
827 	if (sense_valid)
828 		sense_current = !scsi_sense_is_deferred(&sshdr);
829 
830 	if (blk_rq_is_passthrough(req)) {
831 		if (sense_valid) {
832 			/*
833 			 * SG_IO wants current and deferred errors
834 			 */
835 			scsi_req(req)->sense_len =
836 				min(8 + cmd->sense_buffer[7],
837 				    SCSI_SENSE_BUFFERSIZE);
838 		}
839 		if (sense_current)
840 			*blk_statp = scsi_result_to_blk_status(cmd, result);
841 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
842 		/*
843 		 * Flush commands do not transfers any data, and thus cannot use
844 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
845 		 * This sets *blk_statp explicitly for the problem case.
846 		 */
847 		*blk_statp = scsi_result_to_blk_status(cmd, result);
848 	}
849 	/*
850 	 * Recovered errors need reporting, but they're always treated as
851 	 * success, so fiddle the result code here.  For passthrough requests
852 	 * we already took a copy of the original into sreq->result which
853 	 * is what gets returned to the user
854 	 */
855 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
856 		bool do_print = true;
857 		/*
858 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
859 		 * skip print since caller wants ATA registers. Only occurs
860 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
861 		 */
862 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
863 			do_print = false;
864 		else if (req->rq_flags & RQF_QUIET)
865 			do_print = false;
866 		if (do_print)
867 			scsi_print_sense(cmd);
868 		result = 0;
869 		/* for passthrough, *blk_statp may be set */
870 		*blk_statp = BLK_STS_OK;
871 	}
872 	/*
873 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
874 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
875 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
876 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
877 	 * intermediate statuses (both obsolete in SAM-4) as good.
878 	 */
879 	if (status_byte(result) && scsi_status_is_good(result)) {
880 		result = 0;
881 		*blk_statp = BLK_STS_OK;
882 	}
883 	return result;
884 }
885 
886 /**
887  * scsi_io_completion - Completion processing for SCSI commands.
888  * @cmd:	command that is finished.
889  * @good_bytes:	number of processed bytes.
890  *
891  * We will finish off the specified number of sectors. If we are done, the
892  * command block will be released and the queue function will be goosed. If we
893  * are not done then we have to figure out what to do next:
894  *
895  *   a) We can call scsi_io_completion_reprep().  The request will be
896  *	unprepared and put back on the queue.  Then a new command will
897  *	be created for it.  This should be used if we made forward
898  *	progress, or if we want to switch from READ(10) to READ(6) for
899  *	example.
900  *
901  *   b) We can call scsi_io_completion_action().  The request will be
902  *	put back on the queue and retried using the same command as
903  *	before, possibly after a delay.
904  *
905  *   c) We can call scsi_end_request() with blk_stat other than
906  *	BLK_STS_OK, to fail the remainder of the request.
907  */
908 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
909 {
910 	int result = cmd->result;
911 	struct request_queue *q = cmd->device->request_queue;
912 	struct request *req = cmd->request;
913 	blk_status_t blk_stat = BLK_STS_OK;
914 
915 	if (unlikely(result))	/* a nz result may or may not be an error */
916 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
917 
918 	if (unlikely(blk_rq_is_passthrough(req))) {
919 		/*
920 		 * scsi_result_to_blk_status may have reset the host_byte
921 		 */
922 		scsi_req(req)->result = cmd->result;
923 	}
924 
925 	/*
926 	 * Next deal with any sectors which we were able to correctly
927 	 * handle.
928 	 */
929 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
930 		"%u sectors total, %d bytes done.\n",
931 		blk_rq_sectors(req), good_bytes));
932 
933 	/*
934 	 * Failed, zero length commands always need to drop down
935 	 * to retry code. Fast path should return in this block.
936 	 */
937 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
938 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
939 			return; /* no bytes remaining */
940 	}
941 
942 	/* Kill remainder if no retries. */
943 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
944 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
945 			WARN_ONCE(true,
946 			    "Bytes remaining after failed, no-retry command");
947 		return;
948 	}
949 
950 	/*
951 	 * If there had been no error, but we have leftover bytes in the
952 	 * requeues just queue the command up again.
953 	 */
954 	if (likely(result == 0))
955 		scsi_io_completion_reprep(cmd, q);
956 	else
957 		scsi_io_completion_action(cmd, result);
958 }
959 
960 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
961 		struct request *rq)
962 {
963 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
964 	       !op_is_write(req_op(rq)) &&
965 	       sdev->host->hostt->dma_need_drain(rq);
966 }
967 
968 /**
969  * scsi_init_io - SCSI I/O initialization function.
970  * @cmd:  command descriptor we wish to initialize
971  *
972  * Returns:
973  * * BLK_STS_OK       - on success
974  * * BLK_STS_RESOURCE - if the failure is retryable
975  * * BLK_STS_IOERR    - if the failure is fatal
976  */
977 blk_status_t scsi_init_io(struct scsi_cmnd *cmd)
978 {
979 	struct scsi_device *sdev = cmd->device;
980 	struct request *rq = cmd->request;
981 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
982 	struct scatterlist *last_sg = NULL;
983 	blk_status_t ret;
984 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
985 	int count;
986 
987 	if (WARN_ON_ONCE(!nr_segs))
988 		return BLK_STS_IOERR;
989 
990 	/*
991 	 * Make sure there is space for the drain.  The driver must adjust
992 	 * max_hw_segments to be prepared for this.
993 	 */
994 	if (need_drain)
995 		nr_segs++;
996 
997 	/*
998 	 * If sg table allocation fails, requeue request later.
999 	 */
1000 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1001 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1002 		return BLK_STS_RESOURCE;
1003 
1004 	/*
1005 	 * Next, walk the list, and fill in the addresses and sizes of
1006 	 * each segment.
1007 	 */
1008 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1009 
1010 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1011 		unsigned int pad_len =
1012 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1013 
1014 		last_sg->length += pad_len;
1015 		cmd->extra_len += pad_len;
1016 	}
1017 
1018 	if (need_drain) {
1019 		sg_unmark_end(last_sg);
1020 		last_sg = sg_next(last_sg);
1021 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1022 		sg_mark_end(last_sg);
1023 
1024 		cmd->extra_len += sdev->dma_drain_len;
1025 		count++;
1026 	}
1027 
1028 	BUG_ON(count > cmd->sdb.table.nents);
1029 	cmd->sdb.table.nents = count;
1030 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1031 
1032 	if (blk_integrity_rq(rq)) {
1033 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1034 		int ivecs;
1035 
1036 		if (WARN_ON_ONCE(!prot_sdb)) {
1037 			/*
1038 			 * This can happen if someone (e.g. multipath)
1039 			 * queues a command to a device on an adapter
1040 			 * that does not support DIX.
1041 			 */
1042 			ret = BLK_STS_IOERR;
1043 			goto out_free_sgtables;
1044 		}
1045 
1046 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1047 
1048 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1049 				prot_sdb->table.sgl,
1050 				SCSI_INLINE_PROT_SG_CNT)) {
1051 			ret = BLK_STS_RESOURCE;
1052 			goto out_free_sgtables;
1053 		}
1054 
1055 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1056 						prot_sdb->table.sgl);
1057 		BUG_ON(count > ivecs);
1058 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1059 
1060 		cmd->prot_sdb = prot_sdb;
1061 		cmd->prot_sdb->table.nents = count;
1062 	}
1063 
1064 	return BLK_STS_OK;
1065 out_free_sgtables:
1066 	scsi_free_sgtables(cmd);
1067 	return ret;
1068 }
1069 EXPORT_SYMBOL(scsi_init_io);
1070 
1071 /**
1072  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1073  * @rq: Request associated with the SCSI command to be initialized.
1074  *
1075  * This function initializes the members of struct scsi_cmnd that must be
1076  * initialized before request processing starts and that won't be
1077  * reinitialized if a SCSI command is requeued.
1078  *
1079  * Called from inside blk_get_request() for pass-through requests and from
1080  * inside scsi_init_command() for filesystem requests.
1081  */
1082 static void scsi_initialize_rq(struct request *rq)
1083 {
1084 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1085 
1086 	scsi_req_init(&cmd->req);
1087 	init_rcu_head(&cmd->rcu);
1088 	cmd->jiffies_at_alloc = jiffies;
1089 	cmd->retries = 0;
1090 }
1091 
1092 /*
1093  * Only called when the request isn't completed by SCSI, and not freed by
1094  * SCSI
1095  */
1096 static void scsi_cleanup_rq(struct request *rq)
1097 {
1098 	if (rq->rq_flags & RQF_DONTPREP) {
1099 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1100 		rq->rq_flags &= ~RQF_DONTPREP;
1101 	}
1102 }
1103 
1104 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1105 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1106 {
1107 	void *buf = cmd->sense_buffer;
1108 	void *prot = cmd->prot_sdb;
1109 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1110 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1111 	unsigned long jiffies_at_alloc;
1112 	int retries, to_clear;
1113 	bool in_flight;
1114 
1115 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1116 		flags |= SCMD_INITIALIZED;
1117 		scsi_initialize_rq(rq);
1118 	}
1119 
1120 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1121 	retries = cmd->retries;
1122 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1123 	/*
1124 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1125 	 * the driver-private command data if the LLD does not supply a
1126 	 * function to initialize that data.
1127 	 */
1128 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1129 	if (!dev->host->hostt->init_cmd_priv)
1130 		to_clear += dev->host->hostt->cmd_size;
1131 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1132 
1133 	cmd->device = dev;
1134 	cmd->sense_buffer = buf;
1135 	cmd->prot_sdb = prot;
1136 	cmd->flags = flags;
1137 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1138 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1139 	cmd->retries = retries;
1140 	if (in_flight)
1141 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1142 
1143 }
1144 
1145 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1146 		struct request *req)
1147 {
1148 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1149 
1150 	/*
1151 	 * Passthrough requests may transfer data, in which case they must
1152 	 * a bio attached to them.  Or they might contain a SCSI command
1153 	 * that does not transfer data, in which case they may optionally
1154 	 * submit a request without an attached bio.
1155 	 */
1156 	if (req->bio) {
1157 		blk_status_t ret = scsi_init_io(cmd);
1158 		if (unlikely(ret != BLK_STS_OK))
1159 			return ret;
1160 	} else {
1161 		BUG_ON(blk_rq_bytes(req));
1162 
1163 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1164 	}
1165 
1166 	cmd->cmd_len = scsi_req(req)->cmd_len;
1167 	cmd->cmnd = scsi_req(req)->cmd;
1168 	cmd->transfersize = blk_rq_bytes(req);
1169 	cmd->allowed = scsi_req(req)->retries;
1170 	return BLK_STS_OK;
1171 }
1172 
1173 /*
1174  * Setup a normal block command.  These are simple request from filesystems
1175  * that still need to be translated to SCSI CDBs from the ULD.
1176  */
1177 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev,
1178 		struct request *req)
1179 {
1180 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1181 
1182 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1183 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1184 		if (ret != BLK_STS_OK)
1185 			return ret;
1186 	}
1187 
1188 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1189 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1190 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1191 }
1192 
1193 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev,
1194 		struct request *req)
1195 {
1196 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1197 	blk_status_t ret;
1198 
1199 	if (!blk_rq_bytes(req))
1200 		cmd->sc_data_direction = DMA_NONE;
1201 	else if (rq_data_dir(req) == WRITE)
1202 		cmd->sc_data_direction = DMA_TO_DEVICE;
1203 	else
1204 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1205 
1206 	if (blk_rq_is_scsi(req))
1207 		ret = scsi_setup_scsi_cmnd(sdev, req);
1208 	else
1209 		ret = scsi_setup_fs_cmnd(sdev, req);
1210 
1211 	if (ret != BLK_STS_OK)
1212 		scsi_free_sgtables(cmd);
1213 
1214 	return ret;
1215 }
1216 
1217 static blk_status_t
1218 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1219 {
1220 	switch (sdev->sdev_state) {
1221 	case SDEV_OFFLINE:
1222 	case SDEV_TRANSPORT_OFFLINE:
1223 		/*
1224 		 * If the device is offline we refuse to process any
1225 		 * commands.  The device must be brought online
1226 		 * before trying any recovery commands.
1227 		 */
1228 		if (!sdev->offline_already) {
1229 			sdev->offline_already = true;
1230 			sdev_printk(KERN_ERR, sdev,
1231 				    "rejecting I/O to offline device\n");
1232 		}
1233 		return BLK_STS_IOERR;
1234 	case SDEV_DEL:
1235 		/*
1236 		 * If the device is fully deleted, we refuse to
1237 		 * process any commands as well.
1238 		 */
1239 		sdev_printk(KERN_ERR, sdev,
1240 			    "rejecting I/O to dead device\n");
1241 		return BLK_STS_IOERR;
1242 	case SDEV_BLOCK:
1243 	case SDEV_CREATED_BLOCK:
1244 		return BLK_STS_RESOURCE;
1245 	case SDEV_QUIESCE:
1246 		/*
1247 		 * If the devices is blocked we defer normal commands.
1248 		 */
1249 		if (req && !(req->rq_flags & RQF_PREEMPT))
1250 			return BLK_STS_RESOURCE;
1251 		return BLK_STS_OK;
1252 	default:
1253 		/*
1254 		 * For any other not fully online state we only allow
1255 		 * special commands.  In particular any user initiated
1256 		 * command is not allowed.
1257 		 */
1258 		if (req && !(req->rq_flags & RQF_PREEMPT))
1259 			return BLK_STS_IOERR;
1260 		return BLK_STS_OK;
1261 	}
1262 }
1263 
1264 /*
1265  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1266  * return 0.
1267  *
1268  * Called with the queue_lock held.
1269  */
1270 static inline int scsi_dev_queue_ready(struct request_queue *q,
1271 				  struct scsi_device *sdev)
1272 {
1273 	unsigned int busy;
1274 
1275 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1276 	if (atomic_read(&sdev->device_blocked)) {
1277 		if (busy)
1278 			goto out_dec;
1279 
1280 		/*
1281 		 * unblock after device_blocked iterates to zero
1282 		 */
1283 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1284 			goto out_dec;
1285 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1286 				   "unblocking device at zero depth\n"));
1287 	}
1288 
1289 	if (busy >= sdev->queue_depth)
1290 		goto out_dec;
1291 
1292 	return 1;
1293 out_dec:
1294 	atomic_dec(&sdev->device_busy);
1295 	return 0;
1296 }
1297 
1298 /*
1299  * scsi_target_queue_ready: checks if there we can send commands to target
1300  * @sdev: scsi device on starget to check.
1301  */
1302 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1303 					   struct scsi_device *sdev)
1304 {
1305 	struct scsi_target *starget = scsi_target(sdev);
1306 	unsigned int busy;
1307 
1308 	if (starget->single_lun) {
1309 		spin_lock_irq(shost->host_lock);
1310 		if (starget->starget_sdev_user &&
1311 		    starget->starget_sdev_user != sdev) {
1312 			spin_unlock_irq(shost->host_lock);
1313 			return 0;
1314 		}
1315 		starget->starget_sdev_user = sdev;
1316 		spin_unlock_irq(shost->host_lock);
1317 	}
1318 
1319 	if (starget->can_queue <= 0)
1320 		return 1;
1321 
1322 	busy = atomic_inc_return(&starget->target_busy) - 1;
1323 	if (atomic_read(&starget->target_blocked) > 0) {
1324 		if (busy)
1325 			goto starved;
1326 
1327 		/*
1328 		 * unblock after target_blocked iterates to zero
1329 		 */
1330 		if (atomic_dec_return(&starget->target_blocked) > 0)
1331 			goto out_dec;
1332 
1333 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1334 				 "unblocking target at zero depth\n"));
1335 	}
1336 
1337 	if (busy >= starget->can_queue)
1338 		goto starved;
1339 
1340 	return 1;
1341 
1342 starved:
1343 	spin_lock_irq(shost->host_lock);
1344 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1345 	spin_unlock_irq(shost->host_lock);
1346 out_dec:
1347 	if (starget->can_queue > 0)
1348 		atomic_dec(&starget->target_busy);
1349 	return 0;
1350 }
1351 
1352 /*
1353  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1354  * return 0. We must end up running the queue again whenever 0 is
1355  * returned, else IO can hang.
1356  */
1357 static inline int scsi_host_queue_ready(struct request_queue *q,
1358 				   struct Scsi_Host *shost,
1359 				   struct scsi_device *sdev,
1360 				   struct scsi_cmnd *cmd)
1361 {
1362 	if (scsi_host_in_recovery(shost))
1363 		return 0;
1364 
1365 	if (atomic_read(&shost->host_blocked) > 0) {
1366 		if (scsi_host_busy(shost) > 0)
1367 			goto starved;
1368 
1369 		/*
1370 		 * unblock after host_blocked iterates to zero
1371 		 */
1372 		if (atomic_dec_return(&shost->host_blocked) > 0)
1373 			goto out_dec;
1374 
1375 		SCSI_LOG_MLQUEUE(3,
1376 			shost_printk(KERN_INFO, shost,
1377 				     "unblocking host at zero depth\n"));
1378 	}
1379 
1380 	if (shost->host_self_blocked)
1381 		goto starved;
1382 
1383 	/* We're OK to process the command, so we can't be starved */
1384 	if (!list_empty(&sdev->starved_entry)) {
1385 		spin_lock_irq(shost->host_lock);
1386 		if (!list_empty(&sdev->starved_entry))
1387 			list_del_init(&sdev->starved_entry);
1388 		spin_unlock_irq(shost->host_lock);
1389 	}
1390 
1391 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1392 
1393 	return 1;
1394 
1395 starved:
1396 	spin_lock_irq(shost->host_lock);
1397 	if (list_empty(&sdev->starved_entry))
1398 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1399 	spin_unlock_irq(shost->host_lock);
1400 out_dec:
1401 	scsi_dec_host_busy(shost, cmd);
1402 	return 0;
1403 }
1404 
1405 /*
1406  * Busy state exporting function for request stacking drivers.
1407  *
1408  * For efficiency, no lock is taken to check the busy state of
1409  * shost/starget/sdev, since the returned value is not guaranteed and
1410  * may be changed after request stacking drivers call the function,
1411  * regardless of taking lock or not.
1412  *
1413  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1414  * needs to return 'not busy'. Otherwise, request stacking drivers
1415  * may hold requests forever.
1416  */
1417 static bool scsi_mq_lld_busy(struct request_queue *q)
1418 {
1419 	struct scsi_device *sdev = q->queuedata;
1420 	struct Scsi_Host *shost;
1421 
1422 	if (blk_queue_dying(q))
1423 		return false;
1424 
1425 	shost = sdev->host;
1426 
1427 	/*
1428 	 * Ignore host/starget busy state.
1429 	 * Since block layer does not have a concept of fairness across
1430 	 * multiple queues, congestion of host/starget needs to be handled
1431 	 * in SCSI layer.
1432 	 */
1433 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1434 		return true;
1435 
1436 	return false;
1437 }
1438 
1439 static void scsi_softirq_done(struct request *rq)
1440 {
1441 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1442 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1443 	int disposition;
1444 
1445 	INIT_LIST_HEAD(&cmd->eh_entry);
1446 
1447 	atomic_inc(&cmd->device->iodone_cnt);
1448 	if (cmd->result)
1449 		atomic_inc(&cmd->device->ioerr_cnt);
1450 
1451 	disposition = scsi_decide_disposition(cmd);
1452 	if (disposition != SUCCESS &&
1453 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1454 		scmd_printk(KERN_ERR, cmd,
1455 			    "timing out command, waited %lus\n",
1456 			    wait_for/HZ);
1457 		disposition = SUCCESS;
1458 	}
1459 
1460 	scsi_log_completion(cmd, disposition);
1461 
1462 	switch (disposition) {
1463 	case SUCCESS:
1464 		scsi_finish_command(cmd);
1465 		break;
1466 	case NEEDS_RETRY:
1467 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1468 		break;
1469 	case ADD_TO_MLQUEUE:
1470 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1471 		break;
1472 	default:
1473 		scsi_eh_scmd_add(cmd);
1474 		break;
1475 	}
1476 }
1477 
1478 /**
1479  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1480  * @cmd: command block we are dispatching.
1481  *
1482  * Return: nonzero return request was rejected and device's queue needs to be
1483  * plugged.
1484  */
1485 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1486 {
1487 	struct Scsi_Host *host = cmd->device->host;
1488 	int rtn = 0;
1489 
1490 	atomic_inc(&cmd->device->iorequest_cnt);
1491 
1492 	/* check if the device is still usable */
1493 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1494 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1495 		 * returns an immediate error upwards, and signals
1496 		 * that the device is no longer present */
1497 		cmd->result = DID_NO_CONNECT << 16;
1498 		goto done;
1499 	}
1500 
1501 	/* Check to see if the scsi lld made this device blocked. */
1502 	if (unlikely(scsi_device_blocked(cmd->device))) {
1503 		/*
1504 		 * in blocked state, the command is just put back on
1505 		 * the device queue.  The suspend state has already
1506 		 * blocked the queue so future requests should not
1507 		 * occur until the device transitions out of the
1508 		 * suspend state.
1509 		 */
1510 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1511 			"queuecommand : device blocked\n"));
1512 		return SCSI_MLQUEUE_DEVICE_BUSY;
1513 	}
1514 
1515 	/* Store the LUN value in cmnd, if needed. */
1516 	if (cmd->device->lun_in_cdb)
1517 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1518 			       (cmd->device->lun << 5 & 0xe0);
1519 
1520 	scsi_log_send(cmd);
1521 
1522 	/*
1523 	 * Before we queue this command, check if the command
1524 	 * length exceeds what the host adapter can handle.
1525 	 */
1526 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1527 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1528 			       "queuecommand : command too long. "
1529 			       "cdb_size=%d host->max_cmd_len=%d\n",
1530 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1531 		cmd->result = (DID_ABORT << 16);
1532 		goto done;
1533 	}
1534 
1535 	if (unlikely(host->shost_state == SHOST_DEL)) {
1536 		cmd->result = (DID_NO_CONNECT << 16);
1537 		goto done;
1538 
1539 	}
1540 
1541 	trace_scsi_dispatch_cmd_start(cmd);
1542 	rtn = host->hostt->queuecommand(host, cmd);
1543 	if (rtn) {
1544 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1545 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1546 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1547 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1548 
1549 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1550 			"queuecommand : request rejected\n"));
1551 	}
1552 
1553 	return rtn;
1554  done:
1555 	cmd->scsi_done(cmd);
1556 	return 0;
1557 }
1558 
1559 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1560 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1561 {
1562 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1563 		sizeof(struct scatterlist);
1564 }
1565 
1566 static blk_status_t scsi_mq_prep_fn(struct request *req)
1567 {
1568 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1569 	struct scsi_device *sdev = req->q->queuedata;
1570 	struct Scsi_Host *shost = sdev->host;
1571 	struct scatterlist *sg;
1572 
1573 	scsi_init_command(sdev, cmd);
1574 
1575 	cmd->request = req;
1576 	cmd->tag = req->tag;
1577 	cmd->prot_op = SCSI_PROT_NORMAL;
1578 
1579 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1580 	cmd->sdb.table.sgl = sg;
1581 
1582 	if (scsi_host_get_prot(shost)) {
1583 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1584 
1585 		cmd->prot_sdb->table.sgl =
1586 			(struct scatterlist *)(cmd->prot_sdb + 1);
1587 	}
1588 
1589 	blk_mq_start_request(req);
1590 
1591 	return scsi_setup_cmnd(sdev, req);
1592 }
1593 
1594 static void scsi_mq_done(struct scsi_cmnd *cmd)
1595 {
1596 	if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1597 		return;
1598 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1599 		return;
1600 	trace_scsi_dispatch_cmd_done(cmd);
1601 	blk_mq_complete_request(cmd->request);
1602 }
1603 
1604 static void scsi_mq_put_budget(struct request_queue *q)
1605 {
1606 	struct scsi_device *sdev = q->queuedata;
1607 
1608 	atomic_dec(&sdev->device_busy);
1609 }
1610 
1611 static bool scsi_mq_get_budget(struct request_queue *q)
1612 {
1613 	struct scsi_device *sdev = q->queuedata;
1614 
1615 	return scsi_dev_queue_ready(q, sdev);
1616 }
1617 
1618 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1619 			 const struct blk_mq_queue_data *bd)
1620 {
1621 	struct request *req = bd->rq;
1622 	struct request_queue *q = req->q;
1623 	struct scsi_device *sdev = q->queuedata;
1624 	struct Scsi_Host *shost = sdev->host;
1625 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1626 	blk_status_t ret;
1627 	int reason;
1628 
1629 	/*
1630 	 * If the device is not in running state we will reject some or all
1631 	 * commands.
1632 	 */
1633 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1634 		ret = scsi_prep_state_check(sdev, req);
1635 		if (ret != BLK_STS_OK)
1636 			goto out_put_budget;
1637 	}
1638 
1639 	ret = BLK_STS_RESOURCE;
1640 	if (!scsi_target_queue_ready(shost, sdev))
1641 		goto out_put_budget;
1642 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1643 		goto out_dec_target_busy;
1644 
1645 	if (!(req->rq_flags & RQF_DONTPREP)) {
1646 		ret = scsi_mq_prep_fn(req);
1647 		if (ret != BLK_STS_OK)
1648 			goto out_dec_host_busy;
1649 		req->rq_flags |= RQF_DONTPREP;
1650 	} else {
1651 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1652 		blk_mq_start_request(req);
1653 	}
1654 
1655 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1656 	if (sdev->simple_tags)
1657 		cmd->flags |= SCMD_TAGGED;
1658 	if (bd->last)
1659 		cmd->flags |= SCMD_LAST;
1660 
1661 	scsi_init_cmd_errh(cmd);
1662 	cmd->scsi_done = scsi_mq_done;
1663 
1664 	reason = scsi_dispatch_cmd(cmd);
1665 	if (reason) {
1666 		scsi_set_blocked(cmd, reason);
1667 		ret = BLK_STS_RESOURCE;
1668 		goto out_dec_host_busy;
1669 	}
1670 
1671 	return BLK_STS_OK;
1672 
1673 out_dec_host_busy:
1674 	scsi_dec_host_busy(shost, cmd);
1675 out_dec_target_busy:
1676 	if (scsi_target(sdev)->can_queue > 0)
1677 		atomic_dec(&scsi_target(sdev)->target_busy);
1678 out_put_budget:
1679 	scsi_mq_put_budget(q);
1680 	switch (ret) {
1681 	case BLK_STS_OK:
1682 		break;
1683 	case BLK_STS_RESOURCE:
1684 	case BLK_STS_ZONE_RESOURCE:
1685 		if (atomic_read(&sdev->device_busy) ||
1686 		    scsi_device_blocked(sdev))
1687 			ret = BLK_STS_DEV_RESOURCE;
1688 		break;
1689 	default:
1690 		if (unlikely(!scsi_device_online(sdev)))
1691 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1692 		else
1693 			scsi_req(req)->result = DID_ERROR << 16;
1694 		/*
1695 		 * Make sure to release all allocated resources when
1696 		 * we hit an error, as we will never see this command
1697 		 * again.
1698 		 */
1699 		if (req->rq_flags & RQF_DONTPREP)
1700 			scsi_mq_uninit_cmd(cmd);
1701 		scsi_run_queue_async(sdev);
1702 		break;
1703 	}
1704 	return ret;
1705 }
1706 
1707 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1708 		bool reserved)
1709 {
1710 	if (reserved)
1711 		return BLK_EH_RESET_TIMER;
1712 	return scsi_times_out(req);
1713 }
1714 
1715 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1716 				unsigned int hctx_idx, unsigned int numa_node)
1717 {
1718 	struct Scsi_Host *shost = set->driver_data;
1719 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1720 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1721 	struct scatterlist *sg;
1722 	int ret = 0;
1723 
1724 	if (unchecked_isa_dma)
1725 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1726 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1727 						    GFP_KERNEL, numa_node);
1728 	if (!cmd->sense_buffer)
1729 		return -ENOMEM;
1730 	cmd->req.sense = cmd->sense_buffer;
1731 
1732 	if (scsi_host_get_prot(shost)) {
1733 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1734 			shost->hostt->cmd_size;
1735 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1736 	}
1737 
1738 	if (shost->hostt->init_cmd_priv) {
1739 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1740 		if (ret < 0)
1741 			scsi_free_sense_buffer(unchecked_isa_dma,
1742 					       cmd->sense_buffer);
1743 	}
1744 
1745 	return ret;
1746 }
1747 
1748 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1749 				 unsigned int hctx_idx)
1750 {
1751 	struct Scsi_Host *shost = set->driver_data;
1752 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1753 
1754 	if (shost->hostt->exit_cmd_priv)
1755 		shost->hostt->exit_cmd_priv(shost, cmd);
1756 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1757 			       cmd->sense_buffer);
1758 }
1759 
1760 static int scsi_map_queues(struct blk_mq_tag_set *set)
1761 {
1762 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1763 
1764 	if (shost->hostt->map_queues)
1765 		return shost->hostt->map_queues(shost);
1766 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1767 }
1768 
1769 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1770 {
1771 	struct device *dev = shost->dma_dev;
1772 
1773 	/*
1774 	 * this limit is imposed by hardware restrictions
1775 	 */
1776 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1777 					SG_MAX_SEGMENTS));
1778 
1779 	if (scsi_host_prot_dma(shost)) {
1780 		shost->sg_prot_tablesize =
1781 			min_not_zero(shost->sg_prot_tablesize,
1782 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1783 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1784 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1785 	}
1786 
1787 	if (dev->dma_mask) {
1788 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1789 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1790 	}
1791 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1792 	if (shost->unchecked_isa_dma)
1793 		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1794 	blk_queue_segment_boundary(q, shost->dma_boundary);
1795 	dma_set_seg_boundary(dev, shost->dma_boundary);
1796 
1797 	blk_queue_max_segment_size(q, shost->max_segment_size);
1798 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1799 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1800 
1801 	/*
1802 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1803 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1804 	 * which is set by the platform.
1805 	 *
1806 	 * Devices that require a bigger alignment can increase it later.
1807 	 */
1808 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1809 }
1810 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1811 
1812 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1813 	.get_budget	= scsi_mq_get_budget,
1814 	.put_budget	= scsi_mq_put_budget,
1815 	.queue_rq	= scsi_queue_rq,
1816 	.complete	= scsi_softirq_done,
1817 	.timeout	= scsi_timeout,
1818 #ifdef CONFIG_BLK_DEBUG_FS
1819 	.show_rq	= scsi_show_rq,
1820 #endif
1821 	.init_request	= scsi_mq_init_request,
1822 	.exit_request	= scsi_mq_exit_request,
1823 	.initialize_rq_fn = scsi_initialize_rq,
1824 	.cleanup_rq	= scsi_cleanup_rq,
1825 	.busy		= scsi_mq_lld_busy,
1826 	.map_queues	= scsi_map_queues,
1827 };
1828 
1829 
1830 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1831 {
1832 	struct request_queue *q = hctx->queue;
1833 	struct scsi_device *sdev = q->queuedata;
1834 	struct Scsi_Host *shost = sdev->host;
1835 
1836 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1837 }
1838 
1839 static const struct blk_mq_ops scsi_mq_ops = {
1840 	.get_budget	= scsi_mq_get_budget,
1841 	.put_budget	= scsi_mq_put_budget,
1842 	.queue_rq	= scsi_queue_rq,
1843 	.commit_rqs	= scsi_commit_rqs,
1844 	.complete	= scsi_softirq_done,
1845 	.timeout	= scsi_timeout,
1846 #ifdef CONFIG_BLK_DEBUG_FS
1847 	.show_rq	= scsi_show_rq,
1848 #endif
1849 	.init_request	= scsi_mq_init_request,
1850 	.exit_request	= scsi_mq_exit_request,
1851 	.initialize_rq_fn = scsi_initialize_rq,
1852 	.cleanup_rq	= scsi_cleanup_rq,
1853 	.busy		= scsi_mq_lld_busy,
1854 	.map_queues	= scsi_map_queues,
1855 };
1856 
1857 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1858 {
1859 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1860 	if (IS_ERR(sdev->request_queue))
1861 		return NULL;
1862 
1863 	sdev->request_queue->queuedata = sdev;
1864 	__scsi_init_queue(sdev->host, sdev->request_queue);
1865 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1866 	return sdev->request_queue;
1867 }
1868 
1869 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1870 {
1871 	unsigned int cmd_size, sgl_size;
1872 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1873 
1874 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1875 				scsi_mq_inline_sgl_size(shost));
1876 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1877 	if (scsi_host_get_prot(shost))
1878 		cmd_size += sizeof(struct scsi_data_buffer) +
1879 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1880 
1881 	memset(tag_set, 0, sizeof(*tag_set));
1882 	if (shost->hostt->commit_rqs)
1883 		tag_set->ops = &scsi_mq_ops;
1884 	else
1885 		tag_set->ops = &scsi_mq_ops_no_commit;
1886 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1887 	tag_set->queue_depth = shost->can_queue;
1888 	tag_set->cmd_size = cmd_size;
1889 	tag_set->numa_node = NUMA_NO_NODE;
1890 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1891 	tag_set->flags |=
1892 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1893 	tag_set->driver_data = shost;
1894 
1895 	return blk_mq_alloc_tag_set(tag_set);
1896 }
1897 
1898 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1899 {
1900 	blk_mq_free_tag_set(&shost->tag_set);
1901 }
1902 
1903 /**
1904  * scsi_device_from_queue - return sdev associated with a request_queue
1905  * @q: The request queue to return the sdev from
1906  *
1907  * Return the sdev associated with a request queue or NULL if the
1908  * request_queue does not reference a SCSI device.
1909  */
1910 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1911 {
1912 	struct scsi_device *sdev = NULL;
1913 
1914 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1915 	    q->mq_ops == &scsi_mq_ops)
1916 		sdev = q->queuedata;
1917 	if (!sdev || !get_device(&sdev->sdev_gendev))
1918 		sdev = NULL;
1919 
1920 	return sdev;
1921 }
1922 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
1923 
1924 /**
1925  * scsi_block_requests - Utility function used by low-level drivers to prevent
1926  * further commands from being queued to the device.
1927  * @shost:  host in question
1928  *
1929  * There is no timer nor any other means by which the requests get unblocked
1930  * other than the low-level driver calling scsi_unblock_requests().
1931  */
1932 void scsi_block_requests(struct Scsi_Host *shost)
1933 {
1934 	shost->host_self_blocked = 1;
1935 }
1936 EXPORT_SYMBOL(scsi_block_requests);
1937 
1938 /**
1939  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1940  * further commands to be queued to the device.
1941  * @shost:  host in question
1942  *
1943  * There is no timer nor any other means by which the requests get unblocked
1944  * other than the low-level driver calling scsi_unblock_requests(). This is done
1945  * as an API function so that changes to the internals of the scsi mid-layer
1946  * won't require wholesale changes to drivers that use this feature.
1947  */
1948 void scsi_unblock_requests(struct Scsi_Host *shost)
1949 {
1950 	shost->host_self_blocked = 0;
1951 	scsi_run_host_queues(shost);
1952 }
1953 EXPORT_SYMBOL(scsi_unblock_requests);
1954 
1955 void scsi_exit_queue(void)
1956 {
1957 	kmem_cache_destroy(scsi_sense_cache);
1958 	kmem_cache_destroy(scsi_sense_isadma_cache);
1959 }
1960 
1961 /**
1962  *	scsi_mode_select - issue a mode select
1963  *	@sdev:	SCSI device to be queried
1964  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1965  *	@sp:	Save page bit (0 == don't save, 1 == save)
1966  *	@modepage: mode page being requested
1967  *	@buffer: request buffer (may not be smaller than eight bytes)
1968  *	@len:	length of request buffer.
1969  *	@timeout: command timeout
1970  *	@retries: number of retries before failing
1971  *	@data: returns a structure abstracting the mode header data
1972  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1973  *		must be SCSI_SENSE_BUFFERSIZE big.
1974  *
1975  *	Returns zero if successful; negative error number or scsi
1976  *	status on error
1977  *
1978  */
1979 int
1980 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1981 		 unsigned char *buffer, int len, int timeout, int retries,
1982 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1983 {
1984 	unsigned char cmd[10];
1985 	unsigned char *real_buffer;
1986 	int ret;
1987 
1988 	memset(cmd, 0, sizeof(cmd));
1989 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1990 
1991 	if (sdev->use_10_for_ms) {
1992 		if (len > 65535)
1993 			return -EINVAL;
1994 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1995 		if (!real_buffer)
1996 			return -ENOMEM;
1997 		memcpy(real_buffer + 8, buffer, len);
1998 		len += 8;
1999 		real_buffer[0] = 0;
2000 		real_buffer[1] = 0;
2001 		real_buffer[2] = data->medium_type;
2002 		real_buffer[3] = data->device_specific;
2003 		real_buffer[4] = data->longlba ? 0x01 : 0;
2004 		real_buffer[5] = 0;
2005 		real_buffer[6] = data->block_descriptor_length >> 8;
2006 		real_buffer[7] = data->block_descriptor_length;
2007 
2008 		cmd[0] = MODE_SELECT_10;
2009 		cmd[7] = len >> 8;
2010 		cmd[8] = len;
2011 	} else {
2012 		if (len > 255 || data->block_descriptor_length > 255 ||
2013 		    data->longlba)
2014 			return -EINVAL;
2015 
2016 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2017 		if (!real_buffer)
2018 			return -ENOMEM;
2019 		memcpy(real_buffer + 4, buffer, len);
2020 		len += 4;
2021 		real_buffer[0] = 0;
2022 		real_buffer[1] = data->medium_type;
2023 		real_buffer[2] = data->device_specific;
2024 		real_buffer[3] = data->block_descriptor_length;
2025 
2026 		cmd[0] = MODE_SELECT;
2027 		cmd[4] = len;
2028 	}
2029 
2030 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2031 			       sshdr, timeout, retries, NULL);
2032 	kfree(real_buffer);
2033 	return ret;
2034 }
2035 EXPORT_SYMBOL_GPL(scsi_mode_select);
2036 
2037 /**
2038  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2039  *	@sdev:	SCSI device to be queried
2040  *	@dbd:	set if mode sense will allow block descriptors to be returned
2041  *	@modepage: mode page being requested
2042  *	@buffer: request buffer (may not be smaller than eight bytes)
2043  *	@len:	length of request buffer.
2044  *	@timeout: command timeout
2045  *	@retries: number of retries before failing
2046  *	@data: returns a structure abstracting the mode header data
2047  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2048  *		must be SCSI_SENSE_BUFFERSIZE big.
2049  *
2050  *	Returns zero if unsuccessful, or the header offset (either 4
2051  *	or 8 depending on whether a six or ten byte command was
2052  *	issued) if successful.
2053  */
2054 int
2055 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2056 		  unsigned char *buffer, int len, int timeout, int retries,
2057 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2058 {
2059 	unsigned char cmd[12];
2060 	int use_10_for_ms;
2061 	int header_length;
2062 	int result, retry_count = retries;
2063 	struct scsi_sense_hdr my_sshdr;
2064 
2065 	memset(data, 0, sizeof(*data));
2066 	memset(&cmd[0], 0, 12);
2067 
2068 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2069 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2070 	cmd[2] = modepage;
2071 
2072 	/* caller might not be interested in sense, but we need it */
2073 	if (!sshdr)
2074 		sshdr = &my_sshdr;
2075 
2076  retry:
2077 	use_10_for_ms = sdev->use_10_for_ms;
2078 
2079 	if (use_10_for_ms) {
2080 		if (len < 8)
2081 			len = 8;
2082 
2083 		cmd[0] = MODE_SENSE_10;
2084 		cmd[8] = len;
2085 		header_length = 8;
2086 	} else {
2087 		if (len < 4)
2088 			len = 4;
2089 
2090 		cmd[0] = MODE_SENSE;
2091 		cmd[4] = len;
2092 		header_length = 4;
2093 	}
2094 
2095 	memset(buffer, 0, len);
2096 
2097 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2098 				  sshdr, timeout, retries, NULL);
2099 
2100 	/* This code looks awful: what it's doing is making sure an
2101 	 * ILLEGAL REQUEST sense return identifies the actual command
2102 	 * byte as the problem.  MODE_SENSE commands can return
2103 	 * ILLEGAL REQUEST if the code page isn't supported */
2104 
2105 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2106 	    driver_byte(result) == DRIVER_SENSE) {
2107 		if (scsi_sense_valid(sshdr)) {
2108 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2109 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2110 				/*
2111 				 * Invalid command operation code
2112 				 */
2113 				sdev->use_10_for_ms = 0;
2114 				goto retry;
2115 			}
2116 		}
2117 	}
2118 
2119 	if (scsi_status_is_good(result)) {
2120 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2121 			     (modepage == 6 || modepage == 8))) {
2122 			/* Initio breakage? */
2123 			header_length = 0;
2124 			data->length = 13;
2125 			data->medium_type = 0;
2126 			data->device_specific = 0;
2127 			data->longlba = 0;
2128 			data->block_descriptor_length = 0;
2129 		} else if (use_10_for_ms) {
2130 			data->length = buffer[0]*256 + buffer[1] + 2;
2131 			data->medium_type = buffer[2];
2132 			data->device_specific = buffer[3];
2133 			data->longlba = buffer[4] & 0x01;
2134 			data->block_descriptor_length = buffer[6]*256
2135 				+ buffer[7];
2136 		} else {
2137 			data->length = buffer[0] + 1;
2138 			data->medium_type = buffer[1];
2139 			data->device_specific = buffer[2];
2140 			data->block_descriptor_length = buffer[3];
2141 		}
2142 		data->header_length = header_length;
2143 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2144 		   scsi_sense_valid(sshdr) &&
2145 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2146 		retry_count--;
2147 		goto retry;
2148 	}
2149 
2150 	return result;
2151 }
2152 EXPORT_SYMBOL(scsi_mode_sense);
2153 
2154 /**
2155  *	scsi_test_unit_ready - test if unit is ready
2156  *	@sdev:	scsi device to change the state of.
2157  *	@timeout: command timeout
2158  *	@retries: number of retries before failing
2159  *	@sshdr: outpout pointer for decoded sense information.
2160  *
2161  *	Returns zero if unsuccessful or an error if TUR failed.  For
2162  *	removable media, UNIT_ATTENTION sets ->changed flag.
2163  **/
2164 int
2165 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2166 		     struct scsi_sense_hdr *sshdr)
2167 {
2168 	char cmd[] = {
2169 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2170 	};
2171 	int result;
2172 
2173 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2174 	do {
2175 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2176 					  timeout, 1, NULL);
2177 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2178 		    sshdr->sense_key == UNIT_ATTENTION)
2179 			sdev->changed = 1;
2180 	} while (scsi_sense_valid(sshdr) &&
2181 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2182 
2183 	return result;
2184 }
2185 EXPORT_SYMBOL(scsi_test_unit_ready);
2186 
2187 /**
2188  *	scsi_device_set_state - Take the given device through the device state model.
2189  *	@sdev:	scsi device to change the state of.
2190  *	@state:	state to change to.
2191  *
2192  *	Returns zero if successful or an error if the requested
2193  *	transition is illegal.
2194  */
2195 int
2196 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2197 {
2198 	enum scsi_device_state oldstate = sdev->sdev_state;
2199 
2200 	if (state == oldstate)
2201 		return 0;
2202 
2203 	switch (state) {
2204 	case SDEV_CREATED:
2205 		switch (oldstate) {
2206 		case SDEV_CREATED_BLOCK:
2207 			break;
2208 		default:
2209 			goto illegal;
2210 		}
2211 		break;
2212 
2213 	case SDEV_RUNNING:
2214 		switch (oldstate) {
2215 		case SDEV_CREATED:
2216 		case SDEV_OFFLINE:
2217 		case SDEV_TRANSPORT_OFFLINE:
2218 		case SDEV_QUIESCE:
2219 		case SDEV_BLOCK:
2220 			break;
2221 		default:
2222 			goto illegal;
2223 		}
2224 		break;
2225 
2226 	case SDEV_QUIESCE:
2227 		switch (oldstate) {
2228 		case SDEV_RUNNING:
2229 		case SDEV_OFFLINE:
2230 		case SDEV_TRANSPORT_OFFLINE:
2231 			break;
2232 		default:
2233 			goto illegal;
2234 		}
2235 		break;
2236 
2237 	case SDEV_OFFLINE:
2238 	case SDEV_TRANSPORT_OFFLINE:
2239 		switch (oldstate) {
2240 		case SDEV_CREATED:
2241 		case SDEV_RUNNING:
2242 		case SDEV_QUIESCE:
2243 		case SDEV_BLOCK:
2244 			break;
2245 		default:
2246 			goto illegal;
2247 		}
2248 		break;
2249 
2250 	case SDEV_BLOCK:
2251 		switch (oldstate) {
2252 		case SDEV_RUNNING:
2253 		case SDEV_CREATED_BLOCK:
2254 		case SDEV_QUIESCE:
2255 		case SDEV_OFFLINE:
2256 			break;
2257 		default:
2258 			goto illegal;
2259 		}
2260 		break;
2261 
2262 	case SDEV_CREATED_BLOCK:
2263 		switch (oldstate) {
2264 		case SDEV_CREATED:
2265 			break;
2266 		default:
2267 			goto illegal;
2268 		}
2269 		break;
2270 
2271 	case SDEV_CANCEL:
2272 		switch (oldstate) {
2273 		case SDEV_CREATED:
2274 		case SDEV_RUNNING:
2275 		case SDEV_QUIESCE:
2276 		case SDEV_OFFLINE:
2277 		case SDEV_TRANSPORT_OFFLINE:
2278 			break;
2279 		default:
2280 			goto illegal;
2281 		}
2282 		break;
2283 
2284 	case SDEV_DEL:
2285 		switch (oldstate) {
2286 		case SDEV_CREATED:
2287 		case SDEV_RUNNING:
2288 		case SDEV_OFFLINE:
2289 		case SDEV_TRANSPORT_OFFLINE:
2290 		case SDEV_CANCEL:
2291 		case SDEV_BLOCK:
2292 		case SDEV_CREATED_BLOCK:
2293 			break;
2294 		default:
2295 			goto illegal;
2296 		}
2297 		break;
2298 
2299 	}
2300 	sdev->offline_already = false;
2301 	sdev->sdev_state = state;
2302 	return 0;
2303 
2304  illegal:
2305 	SCSI_LOG_ERROR_RECOVERY(1,
2306 				sdev_printk(KERN_ERR, sdev,
2307 					    "Illegal state transition %s->%s",
2308 					    scsi_device_state_name(oldstate),
2309 					    scsi_device_state_name(state))
2310 				);
2311 	return -EINVAL;
2312 }
2313 EXPORT_SYMBOL(scsi_device_set_state);
2314 
2315 /**
2316  * 	sdev_evt_emit - emit a single SCSI device uevent
2317  *	@sdev: associated SCSI device
2318  *	@evt: event to emit
2319  *
2320  *	Send a single uevent (scsi_event) to the associated scsi_device.
2321  */
2322 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2323 {
2324 	int idx = 0;
2325 	char *envp[3];
2326 
2327 	switch (evt->evt_type) {
2328 	case SDEV_EVT_MEDIA_CHANGE:
2329 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2330 		break;
2331 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2332 		scsi_rescan_device(&sdev->sdev_gendev);
2333 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2334 		break;
2335 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2336 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2337 		break;
2338 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2339 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2340 		break;
2341 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2342 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2343 		break;
2344 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2345 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2346 		break;
2347 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2348 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2349 		break;
2350 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2351 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2352 		break;
2353 	default:
2354 		/* do nothing */
2355 		break;
2356 	}
2357 
2358 	envp[idx++] = NULL;
2359 
2360 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2361 }
2362 
2363 /**
2364  * 	sdev_evt_thread - send a uevent for each scsi event
2365  *	@work: work struct for scsi_device
2366  *
2367  *	Dispatch queued events to their associated scsi_device kobjects
2368  *	as uevents.
2369  */
2370 void scsi_evt_thread(struct work_struct *work)
2371 {
2372 	struct scsi_device *sdev;
2373 	enum scsi_device_event evt_type;
2374 	LIST_HEAD(event_list);
2375 
2376 	sdev = container_of(work, struct scsi_device, event_work);
2377 
2378 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2379 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2380 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2381 
2382 	while (1) {
2383 		struct scsi_event *evt;
2384 		struct list_head *this, *tmp;
2385 		unsigned long flags;
2386 
2387 		spin_lock_irqsave(&sdev->list_lock, flags);
2388 		list_splice_init(&sdev->event_list, &event_list);
2389 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2390 
2391 		if (list_empty(&event_list))
2392 			break;
2393 
2394 		list_for_each_safe(this, tmp, &event_list) {
2395 			evt = list_entry(this, struct scsi_event, node);
2396 			list_del(&evt->node);
2397 			scsi_evt_emit(sdev, evt);
2398 			kfree(evt);
2399 		}
2400 	}
2401 }
2402 
2403 /**
2404  * 	sdev_evt_send - send asserted event to uevent thread
2405  *	@sdev: scsi_device event occurred on
2406  *	@evt: event to send
2407  *
2408  *	Assert scsi device event asynchronously.
2409  */
2410 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2411 {
2412 	unsigned long flags;
2413 
2414 #if 0
2415 	/* FIXME: currently this check eliminates all media change events
2416 	 * for polled devices.  Need to update to discriminate between AN
2417 	 * and polled events */
2418 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2419 		kfree(evt);
2420 		return;
2421 	}
2422 #endif
2423 
2424 	spin_lock_irqsave(&sdev->list_lock, flags);
2425 	list_add_tail(&evt->node, &sdev->event_list);
2426 	schedule_work(&sdev->event_work);
2427 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2428 }
2429 EXPORT_SYMBOL_GPL(sdev_evt_send);
2430 
2431 /**
2432  * 	sdev_evt_alloc - allocate a new scsi event
2433  *	@evt_type: type of event to allocate
2434  *	@gfpflags: GFP flags for allocation
2435  *
2436  *	Allocates and returns a new scsi_event.
2437  */
2438 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2439 				  gfp_t gfpflags)
2440 {
2441 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2442 	if (!evt)
2443 		return NULL;
2444 
2445 	evt->evt_type = evt_type;
2446 	INIT_LIST_HEAD(&evt->node);
2447 
2448 	/* evt_type-specific initialization, if any */
2449 	switch (evt_type) {
2450 	case SDEV_EVT_MEDIA_CHANGE:
2451 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2452 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2453 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2454 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2455 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2456 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2457 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2458 	default:
2459 		/* do nothing */
2460 		break;
2461 	}
2462 
2463 	return evt;
2464 }
2465 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2466 
2467 /**
2468  * 	sdev_evt_send_simple - send asserted event to uevent thread
2469  *	@sdev: scsi_device event occurred on
2470  *	@evt_type: type of event to send
2471  *	@gfpflags: GFP flags for allocation
2472  *
2473  *	Assert scsi device event asynchronously, given an event type.
2474  */
2475 void sdev_evt_send_simple(struct scsi_device *sdev,
2476 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2477 {
2478 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2479 	if (!evt) {
2480 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2481 			    evt_type);
2482 		return;
2483 	}
2484 
2485 	sdev_evt_send(sdev, evt);
2486 }
2487 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2488 
2489 /**
2490  *	scsi_device_quiesce - Block user issued commands.
2491  *	@sdev:	scsi device to quiesce.
2492  *
2493  *	This works by trying to transition to the SDEV_QUIESCE state
2494  *	(which must be a legal transition).  When the device is in this
2495  *	state, only special requests will be accepted, all others will
2496  *	be deferred.  Since special requests may also be requeued requests,
2497  *	a successful return doesn't guarantee the device will be
2498  *	totally quiescent.
2499  *
2500  *	Must be called with user context, may sleep.
2501  *
2502  *	Returns zero if unsuccessful or an error if not.
2503  */
2504 int
2505 scsi_device_quiesce(struct scsi_device *sdev)
2506 {
2507 	struct request_queue *q = sdev->request_queue;
2508 	int err;
2509 
2510 	/*
2511 	 * It is allowed to call scsi_device_quiesce() multiple times from
2512 	 * the same context but concurrent scsi_device_quiesce() calls are
2513 	 * not allowed.
2514 	 */
2515 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2516 
2517 	if (sdev->quiesced_by == current)
2518 		return 0;
2519 
2520 	blk_set_pm_only(q);
2521 
2522 	blk_mq_freeze_queue(q);
2523 	/*
2524 	 * Ensure that the effect of blk_set_pm_only() will be visible
2525 	 * for percpu_ref_tryget() callers that occur after the queue
2526 	 * unfreeze even if the queue was already frozen before this function
2527 	 * was called. See also https://lwn.net/Articles/573497/.
2528 	 */
2529 	synchronize_rcu();
2530 	blk_mq_unfreeze_queue(q);
2531 
2532 	mutex_lock(&sdev->state_mutex);
2533 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2534 	if (err == 0)
2535 		sdev->quiesced_by = current;
2536 	else
2537 		blk_clear_pm_only(q);
2538 	mutex_unlock(&sdev->state_mutex);
2539 
2540 	return err;
2541 }
2542 EXPORT_SYMBOL(scsi_device_quiesce);
2543 
2544 /**
2545  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2546  *	@sdev:	scsi device to resume.
2547  *
2548  *	Moves the device from quiesced back to running and restarts the
2549  *	queues.
2550  *
2551  *	Must be called with user context, may sleep.
2552  */
2553 void scsi_device_resume(struct scsi_device *sdev)
2554 {
2555 	/* check if the device state was mutated prior to resume, and if
2556 	 * so assume the state is being managed elsewhere (for example
2557 	 * device deleted during suspend)
2558 	 */
2559 	mutex_lock(&sdev->state_mutex);
2560 	if (sdev->quiesced_by) {
2561 		sdev->quiesced_by = NULL;
2562 		blk_clear_pm_only(sdev->request_queue);
2563 	}
2564 	if (sdev->sdev_state == SDEV_QUIESCE)
2565 		scsi_device_set_state(sdev, SDEV_RUNNING);
2566 	mutex_unlock(&sdev->state_mutex);
2567 }
2568 EXPORT_SYMBOL(scsi_device_resume);
2569 
2570 static void
2571 device_quiesce_fn(struct scsi_device *sdev, void *data)
2572 {
2573 	scsi_device_quiesce(sdev);
2574 }
2575 
2576 void
2577 scsi_target_quiesce(struct scsi_target *starget)
2578 {
2579 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2580 }
2581 EXPORT_SYMBOL(scsi_target_quiesce);
2582 
2583 static void
2584 device_resume_fn(struct scsi_device *sdev, void *data)
2585 {
2586 	scsi_device_resume(sdev);
2587 }
2588 
2589 void
2590 scsi_target_resume(struct scsi_target *starget)
2591 {
2592 	starget_for_each_device(starget, NULL, device_resume_fn);
2593 }
2594 EXPORT_SYMBOL(scsi_target_resume);
2595 
2596 /**
2597  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2598  * @sdev: device to block
2599  *
2600  * Pause SCSI command processing on the specified device. Does not sleep.
2601  *
2602  * Returns zero if successful or a negative error code upon failure.
2603  *
2604  * Notes:
2605  * This routine transitions the device to the SDEV_BLOCK state (which must be
2606  * a legal transition). When the device is in this state, command processing
2607  * is paused until the device leaves the SDEV_BLOCK state. See also
2608  * scsi_internal_device_unblock_nowait().
2609  */
2610 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2611 {
2612 	struct request_queue *q = sdev->request_queue;
2613 	int err = 0;
2614 
2615 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2616 	if (err) {
2617 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2618 
2619 		if (err)
2620 			return err;
2621 	}
2622 
2623 	/*
2624 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2625 	 * block layer from calling the midlayer with this device's
2626 	 * request queue.
2627 	 */
2628 	blk_mq_quiesce_queue_nowait(q);
2629 	return 0;
2630 }
2631 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2632 
2633 /**
2634  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2635  * @sdev: device to block
2636  *
2637  * Pause SCSI command processing on the specified device and wait until all
2638  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2639  *
2640  * Returns zero if successful or a negative error code upon failure.
2641  *
2642  * Note:
2643  * This routine transitions the device to the SDEV_BLOCK state (which must be
2644  * a legal transition). When the device is in this state, command processing
2645  * is paused until the device leaves the SDEV_BLOCK state. See also
2646  * scsi_internal_device_unblock().
2647  */
2648 static int scsi_internal_device_block(struct scsi_device *sdev)
2649 {
2650 	struct request_queue *q = sdev->request_queue;
2651 	int err;
2652 
2653 	mutex_lock(&sdev->state_mutex);
2654 	err = scsi_internal_device_block_nowait(sdev);
2655 	if (err == 0)
2656 		blk_mq_quiesce_queue(q);
2657 	mutex_unlock(&sdev->state_mutex);
2658 
2659 	return err;
2660 }
2661 
2662 void scsi_start_queue(struct scsi_device *sdev)
2663 {
2664 	struct request_queue *q = sdev->request_queue;
2665 
2666 	blk_mq_unquiesce_queue(q);
2667 }
2668 
2669 /**
2670  * scsi_internal_device_unblock_nowait - resume a device after a block request
2671  * @sdev:	device to resume
2672  * @new_state:	state to set the device to after unblocking
2673  *
2674  * Restart the device queue for a previously suspended SCSI device. Does not
2675  * sleep.
2676  *
2677  * Returns zero if successful or a negative error code upon failure.
2678  *
2679  * Notes:
2680  * This routine transitions the device to the SDEV_RUNNING state or to one of
2681  * the offline states (which must be a legal transition) allowing the midlayer
2682  * to goose the queue for this device.
2683  */
2684 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2685 					enum scsi_device_state new_state)
2686 {
2687 	switch (new_state) {
2688 	case SDEV_RUNNING:
2689 	case SDEV_TRANSPORT_OFFLINE:
2690 		break;
2691 	default:
2692 		return -EINVAL;
2693 	}
2694 
2695 	/*
2696 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2697 	 * offlined states and goose the device queue if successful.
2698 	 */
2699 	switch (sdev->sdev_state) {
2700 	case SDEV_BLOCK:
2701 	case SDEV_TRANSPORT_OFFLINE:
2702 		sdev->sdev_state = new_state;
2703 		break;
2704 	case SDEV_CREATED_BLOCK:
2705 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2706 		    new_state == SDEV_OFFLINE)
2707 			sdev->sdev_state = new_state;
2708 		else
2709 			sdev->sdev_state = SDEV_CREATED;
2710 		break;
2711 	case SDEV_CANCEL:
2712 	case SDEV_OFFLINE:
2713 		break;
2714 	default:
2715 		return -EINVAL;
2716 	}
2717 	scsi_start_queue(sdev);
2718 
2719 	return 0;
2720 }
2721 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2722 
2723 /**
2724  * scsi_internal_device_unblock - resume a device after a block request
2725  * @sdev:	device to resume
2726  * @new_state:	state to set the device to after unblocking
2727  *
2728  * Restart the device queue for a previously suspended SCSI device. May sleep.
2729  *
2730  * Returns zero if successful or a negative error code upon failure.
2731  *
2732  * Notes:
2733  * This routine transitions the device to the SDEV_RUNNING state or to one of
2734  * the offline states (which must be a legal transition) allowing the midlayer
2735  * to goose the queue for this device.
2736  */
2737 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2738 					enum scsi_device_state new_state)
2739 {
2740 	int ret;
2741 
2742 	mutex_lock(&sdev->state_mutex);
2743 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2744 	mutex_unlock(&sdev->state_mutex);
2745 
2746 	return ret;
2747 }
2748 
2749 static void
2750 device_block(struct scsi_device *sdev, void *data)
2751 {
2752 	int ret;
2753 
2754 	ret = scsi_internal_device_block(sdev);
2755 
2756 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2757 		  dev_name(&sdev->sdev_gendev), ret);
2758 }
2759 
2760 static int
2761 target_block(struct device *dev, void *data)
2762 {
2763 	if (scsi_is_target_device(dev))
2764 		starget_for_each_device(to_scsi_target(dev), NULL,
2765 					device_block);
2766 	return 0;
2767 }
2768 
2769 void
2770 scsi_target_block(struct device *dev)
2771 {
2772 	if (scsi_is_target_device(dev))
2773 		starget_for_each_device(to_scsi_target(dev), NULL,
2774 					device_block);
2775 	else
2776 		device_for_each_child(dev, NULL, target_block);
2777 }
2778 EXPORT_SYMBOL_GPL(scsi_target_block);
2779 
2780 static void
2781 device_unblock(struct scsi_device *sdev, void *data)
2782 {
2783 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2784 }
2785 
2786 static int
2787 target_unblock(struct device *dev, void *data)
2788 {
2789 	if (scsi_is_target_device(dev))
2790 		starget_for_each_device(to_scsi_target(dev), data,
2791 					device_unblock);
2792 	return 0;
2793 }
2794 
2795 void
2796 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2797 {
2798 	if (scsi_is_target_device(dev))
2799 		starget_for_each_device(to_scsi_target(dev), &new_state,
2800 					device_unblock);
2801 	else
2802 		device_for_each_child(dev, &new_state, target_unblock);
2803 }
2804 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2805 
2806 int
2807 scsi_host_block(struct Scsi_Host *shost)
2808 {
2809 	struct scsi_device *sdev;
2810 	int ret = 0;
2811 
2812 	/*
2813 	 * Call scsi_internal_device_block_nowait so we can avoid
2814 	 * calling synchronize_rcu() for each LUN.
2815 	 */
2816 	shost_for_each_device(sdev, shost) {
2817 		mutex_lock(&sdev->state_mutex);
2818 		ret = scsi_internal_device_block_nowait(sdev);
2819 		mutex_unlock(&sdev->state_mutex);
2820 		if (ret) {
2821 			scsi_device_put(sdev);
2822 			break;
2823 		}
2824 	}
2825 
2826 	/*
2827 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2828 	 * calling synchronize_rcu() once is enough.
2829 	 */
2830 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2831 
2832 	if (!ret)
2833 		synchronize_rcu();
2834 
2835 	return ret;
2836 }
2837 EXPORT_SYMBOL_GPL(scsi_host_block);
2838 
2839 int
2840 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2841 {
2842 	struct scsi_device *sdev;
2843 	int ret = 0;
2844 
2845 	shost_for_each_device(sdev, shost) {
2846 		ret = scsi_internal_device_unblock(sdev, new_state);
2847 		if (ret) {
2848 			scsi_device_put(sdev);
2849 			break;
2850 		}
2851 	}
2852 	return ret;
2853 }
2854 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2855 
2856 /**
2857  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2858  * @sgl:	scatter-gather list
2859  * @sg_count:	number of segments in sg
2860  * @offset:	offset in bytes into sg, on return offset into the mapped area
2861  * @len:	bytes to map, on return number of bytes mapped
2862  *
2863  * Returns virtual address of the start of the mapped page
2864  */
2865 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2866 			  size_t *offset, size_t *len)
2867 {
2868 	int i;
2869 	size_t sg_len = 0, len_complete = 0;
2870 	struct scatterlist *sg;
2871 	struct page *page;
2872 
2873 	WARN_ON(!irqs_disabled());
2874 
2875 	for_each_sg(sgl, sg, sg_count, i) {
2876 		len_complete = sg_len; /* Complete sg-entries */
2877 		sg_len += sg->length;
2878 		if (sg_len > *offset)
2879 			break;
2880 	}
2881 
2882 	if (unlikely(i == sg_count)) {
2883 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2884 			"elements %d\n",
2885 		       __func__, sg_len, *offset, sg_count);
2886 		WARN_ON(1);
2887 		return NULL;
2888 	}
2889 
2890 	/* Offset starting from the beginning of first page in this sg-entry */
2891 	*offset = *offset - len_complete + sg->offset;
2892 
2893 	/* Assumption: contiguous pages can be accessed as "page + i" */
2894 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2895 	*offset &= ~PAGE_MASK;
2896 
2897 	/* Bytes in this sg-entry from *offset to the end of the page */
2898 	sg_len = PAGE_SIZE - *offset;
2899 	if (*len > sg_len)
2900 		*len = sg_len;
2901 
2902 	return kmap_atomic(page);
2903 }
2904 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2905 
2906 /**
2907  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2908  * @virt:	virtual address to be unmapped
2909  */
2910 void scsi_kunmap_atomic_sg(void *virt)
2911 {
2912 	kunmap_atomic(virt);
2913 }
2914 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2915 
2916 void sdev_disable_disk_events(struct scsi_device *sdev)
2917 {
2918 	atomic_inc(&sdev->disk_events_disable_depth);
2919 }
2920 EXPORT_SYMBOL(sdev_disable_disk_events);
2921 
2922 void sdev_enable_disk_events(struct scsi_device *sdev)
2923 {
2924 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2925 		return;
2926 	atomic_dec(&sdev->disk_events_disable_depth);
2927 }
2928 EXPORT_SYMBOL(sdev_enable_disk_events);
2929 
2930 /**
2931  * scsi_vpd_lun_id - return a unique device identification
2932  * @sdev: SCSI device
2933  * @id:   buffer for the identification
2934  * @id_len:  length of the buffer
2935  *
2936  * Copies a unique device identification into @id based
2937  * on the information in the VPD page 0x83 of the device.
2938  * The string will be formatted as a SCSI name string.
2939  *
2940  * Returns the length of the identification or error on failure.
2941  * If the identifier is longer than the supplied buffer the actual
2942  * identifier length is returned and the buffer is not zero-padded.
2943  */
2944 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2945 {
2946 	u8 cur_id_type = 0xff;
2947 	u8 cur_id_size = 0;
2948 	const unsigned char *d, *cur_id_str;
2949 	const struct scsi_vpd *vpd_pg83;
2950 	int id_size = -EINVAL;
2951 
2952 	rcu_read_lock();
2953 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2954 	if (!vpd_pg83) {
2955 		rcu_read_unlock();
2956 		return -ENXIO;
2957 	}
2958 
2959 	/*
2960 	 * Look for the correct descriptor.
2961 	 * Order of preference for lun descriptor:
2962 	 * - SCSI name string
2963 	 * - NAA IEEE Registered Extended
2964 	 * - EUI-64 based 16-byte
2965 	 * - EUI-64 based 12-byte
2966 	 * - NAA IEEE Registered
2967 	 * - NAA IEEE Extended
2968 	 * - T10 Vendor ID
2969 	 * as longer descriptors reduce the likelyhood
2970 	 * of identification clashes.
2971 	 */
2972 
2973 	/* The id string must be at least 20 bytes + terminating NULL byte */
2974 	if (id_len < 21) {
2975 		rcu_read_unlock();
2976 		return -EINVAL;
2977 	}
2978 
2979 	memset(id, 0, id_len);
2980 	d = vpd_pg83->data + 4;
2981 	while (d < vpd_pg83->data + vpd_pg83->len) {
2982 		/* Skip designators not referring to the LUN */
2983 		if ((d[1] & 0x30) != 0x00)
2984 			goto next_desig;
2985 
2986 		switch (d[1] & 0xf) {
2987 		case 0x1:
2988 			/* T10 Vendor ID */
2989 			if (cur_id_size > d[3])
2990 				break;
2991 			/* Prefer anything */
2992 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
2993 				break;
2994 			cur_id_size = d[3];
2995 			if (cur_id_size + 4 > id_len)
2996 				cur_id_size = id_len - 4;
2997 			cur_id_str = d + 4;
2998 			cur_id_type = d[1] & 0xf;
2999 			id_size = snprintf(id, id_len, "t10.%*pE",
3000 					   cur_id_size, cur_id_str);
3001 			break;
3002 		case 0x2:
3003 			/* EUI-64 */
3004 			if (cur_id_size > d[3])
3005 				break;
3006 			/* Prefer NAA IEEE Registered Extended */
3007 			if (cur_id_type == 0x3 &&
3008 			    cur_id_size == d[3])
3009 				break;
3010 			cur_id_size = d[3];
3011 			cur_id_str = d + 4;
3012 			cur_id_type = d[1] & 0xf;
3013 			switch (cur_id_size) {
3014 			case 8:
3015 				id_size = snprintf(id, id_len,
3016 						   "eui.%8phN",
3017 						   cur_id_str);
3018 				break;
3019 			case 12:
3020 				id_size = snprintf(id, id_len,
3021 						   "eui.%12phN",
3022 						   cur_id_str);
3023 				break;
3024 			case 16:
3025 				id_size = snprintf(id, id_len,
3026 						   "eui.%16phN",
3027 						   cur_id_str);
3028 				break;
3029 			default:
3030 				cur_id_size = 0;
3031 				break;
3032 			}
3033 			break;
3034 		case 0x3:
3035 			/* NAA */
3036 			if (cur_id_size > d[3])
3037 				break;
3038 			cur_id_size = d[3];
3039 			cur_id_str = d + 4;
3040 			cur_id_type = d[1] & 0xf;
3041 			switch (cur_id_size) {
3042 			case 8:
3043 				id_size = snprintf(id, id_len,
3044 						   "naa.%8phN",
3045 						   cur_id_str);
3046 				break;
3047 			case 16:
3048 				id_size = snprintf(id, id_len,
3049 						   "naa.%16phN",
3050 						   cur_id_str);
3051 				break;
3052 			default:
3053 				cur_id_size = 0;
3054 				break;
3055 			}
3056 			break;
3057 		case 0x8:
3058 			/* SCSI name string */
3059 			if (cur_id_size + 4 > d[3])
3060 				break;
3061 			/* Prefer others for truncated descriptor */
3062 			if (cur_id_size && d[3] > id_len)
3063 				break;
3064 			cur_id_size = id_size = d[3];
3065 			cur_id_str = d + 4;
3066 			cur_id_type = d[1] & 0xf;
3067 			if (cur_id_size >= id_len)
3068 				cur_id_size = id_len - 1;
3069 			memcpy(id, cur_id_str, cur_id_size);
3070 			/* Decrease priority for truncated descriptor */
3071 			if (cur_id_size != id_size)
3072 				cur_id_size = 6;
3073 			break;
3074 		default:
3075 			break;
3076 		}
3077 next_desig:
3078 		d += d[3] + 4;
3079 	}
3080 	rcu_read_unlock();
3081 
3082 	return id_size;
3083 }
3084 EXPORT_SYMBOL(scsi_vpd_lun_id);
3085 
3086 /*
3087  * scsi_vpd_tpg_id - return a target port group identifier
3088  * @sdev: SCSI device
3089  *
3090  * Returns the Target Port Group identifier from the information
3091  * froom VPD page 0x83 of the device.
3092  *
3093  * Returns the identifier or error on failure.
3094  */
3095 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3096 {
3097 	const unsigned char *d;
3098 	const struct scsi_vpd *vpd_pg83;
3099 	int group_id = -EAGAIN, rel_port = -1;
3100 
3101 	rcu_read_lock();
3102 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3103 	if (!vpd_pg83) {
3104 		rcu_read_unlock();
3105 		return -ENXIO;
3106 	}
3107 
3108 	d = vpd_pg83->data + 4;
3109 	while (d < vpd_pg83->data + vpd_pg83->len) {
3110 		switch (d[1] & 0xf) {
3111 		case 0x4:
3112 			/* Relative target port */
3113 			rel_port = get_unaligned_be16(&d[6]);
3114 			break;
3115 		case 0x5:
3116 			/* Target port group */
3117 			group_id = get_unaligned_be16(&d[6]);
3118 			break;
3119 		default:
3120 			break;
3121 		}
3122 		d += d[3] + 4;
3123 	}
3124 	rcu_read_unlock();
3125 
3126 	if (group_id >= 0 && rel_id && rel_port != -1)
3127 		*rel_id = rel_port;
3128 
3129 	return group_id;
3130 }
3131 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3132