xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision f71a261a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27 
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37 
38 #include <trace/events/scsi.h>
39 
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43 
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55 
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 	int ret = 0;
64 
65 	mutex_lock(&scsi_sense_cache_mutex);
66 	if (!scsi_sense_cache) {
67 		scsi_sense_cache =
68 			kmem_cache_create_usercopy("scsi_sense_cache",
69 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 				0, SCSI_SENSE_BUFFERSIZE, NULL);
71 		if (!scsi_sense_cache)
72 			ret = -ENOMEM;
73 	}
74 	mutex_unlock(&scsi_sense_cache_mutex);
75 	return ret;
76 }
77 
78 /*
79  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
80  * not change behaviour from the previous unplug mechanism, experimentation
81  * may prove this needs changing.
82  */
83 #define SCSI_QUEUE_DELAY	3
84 
85 static void
86 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
87 {
88 	struct Scsi_Host *host = cmd->device->host;
89 	struct scsi_device *device = cmd->device;
90 	struct scsi_target *starget = scsi_target(device);
91 
92 	/*
93 	 * Set the appropriate busy bit for the device/host.
94 	 *
95 	 * If the host/device isn't busy, assume that something actually
96 	 * completed, and that we should be able to queue a command now.
97 	 *
98 	 * Note that the prior mid-layer assumption that any host could
99 	 * always queue at least one command is now broken.  The mid-layer
100 	 * will implement a user specifiable stall (see
101 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
102 	 * if a command is requeued with no other commands outstanding
103 	 * either for the device or for the host.
104 	 */
105 	switch (reason) {
106 	case SCSI_MLQUEUE_HOST_BUSY:
107 		atomic_set(&host->host_blocked, host->max_host_blocked);
108 		break;
109 	case SCSI_MLQUEUE_DEVICE_BUSY:
110 	case SCSI_MLQUEUE_EH_RETRY:
111 		atomic_set(&device->device_blocked,
112 			   device->max_device_blocked);
113 		break;
114 	case SCSI_MLQUEUE_TARGET_BUSY:
115 		atomic_set(&starget->target_blocked,
116 			   starget->max_target_blocked);
117 		break;
118 	}
119 }
120 
121 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
122 {
123 	struct request *rq = scsi_cmd_to_rq(cmd);
124 
125 	if (rq->rq_flags & RQF_DONTPREP) {
126 		rq->rq_flags &= ~RQF_DONTPREP;
127 		scsi_mq_uninit_cmd(cmd);
128 	} else {
129 		WARN_ON_ONCE(true);
130 	}
131 	blk_mq_requeue_request(rq, true);
132 }
133 
134 /**
135  * __scsi_queue_insert - private queue insertion
136  * @cmd: The SCSI command being requeued
137  * @reason:  The reason for the requeue
138  * @unbusy: Whether the queue should be unbusied
139  *
140  * This is a private queue insertion.  The public interface
141  * scsi_queue_insert() always assumes the queue should be unbusied
142  * because it's always called before the completion.  This function is
143  * for a requeue after completion, which should only occur in this
144  * file.
145  */
146 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
147 {
148 	struct scsi_device *device = cmd->device;
149 
150 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
151 		"Inserting command %p into mlqueue\n", cmd));
152 
153 	scsi_set_blocked(cmd, reason);
154 
155 	/*
156 	 * Decrement the counters, since these commands are no longer
157 	 * active on the host/device.
158 	 */
159 	if (unbusy)
160 		scsi_device_unbusy(device, cmd);
161 
162 	/*
163 	 * Requeue this command.  It will go before all other commands
164 	 * that are already in the queue. Schedule requeue work under
165 	 * lock such that the kblockd_schedule_work() call happens
166 	 * before blk_cleanup_queue() finishes.
167 	 */
168 	cmd->result = 0;
169 
170 	blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
171 }
172 
173 /**
174  * scsi_queue_insert - Reinsert a command in the queue.
175  * @cmd:    command that we are adding to queue.
176  * @reason: why we are inserting command to queue.
177  *
178  * We do this for one of two cases. Either the host is busy and it cannot accept
179  * any more commands for the time being, or the device returned QUEUE_FULL and
180  * can accept no more commands.
181  *
182  * Context: This could be called either from an interrupt context or a normal
183  * process context.
184  */
185 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
186 {
187 	__scsi_queue_insert(cmd, reason, true);
188 }
189 
190 
191 /**
192  * __scsi_execute - insert request and wait for the result
193  * @sdev:	scsi device
194  * @cmd:	scsi command
195  * @data_direction: data direction
196  * @buffer:	data buffer
197  * @bufflen:	len of buffer
198  * @sense:	optional sense buffer
199  * @sshdr:	optional decoded sense header
200  * @timeout:	request timeout in HZ
201  * @retries:	number of times to retry request
202  * @flags:	flags for ->cmd_flags
203  * @rq_flags:	flags for ->rq_flags
204  * @resid:	optional residual length
205  *
206  * Returns the scsi_cmnd result field if a command was executed, or a negative
207  * Linux error code if we didn't get that far.
208  */
209 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
210 		 int data_direction, void *buffer, unsigned bufflen,
211 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
212 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
213 		 int *resid)
214 {
215 	struct request *req;
216 	struct scsi_cmnd *scmd;
217 	int ret;
218 
219 	req = scsi_alloc_request(sdev->request_queue,
220 			data_direction == DMA_TO_DEVICE ?
221 			REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
222 			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
223 	if (IS_ERR(req))
224 		return PTR_ERR(req);
225 
226 	if (bufflen) {
227 		ret = blk_rq_map_kern(sdev->request_queue, req,
228 				      buffer, bufflen, GFP_NOIO);
229 		if (ret)
230 			goto out;
231 	}
232 	scmd = blk_mq_rq_to_pdu(req);
233 	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
234 	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
235 	scmd->allowed = retries;
236 	req->timeout = timeout;
237 	req->cmd_flags |= flags;
238 	req->rq_flags |= rq_flags | RQF_QUIET;
239 
240 	/*
241 	 * head injection *required* here otherwise quiesce won't work
242 	 */
243 	blk_execute_rq(req, true);
244 
245 	/*
246 	 * Some devices (USB mass-storage in particular) may transfer
247 	 * garbage data together with a residue indicating that the data
248 	 * is invalid.  Prevent the garbage from being misinterpreted
249 	 * and prevent security leaks by zeroing out the excess data.
250 	 */
251 	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
252 		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
253 
254 	if (resid)
255 		*resid = scmd->resid_len;
256 	if (sense && scmd->sense_len)
257 		memcpy(sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
258 	if (sshdr)
259 		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
260 				     sshdr);
261 	ret = scmd->result;
262  out:
263 	blk_mq_free_request(req);
264 
265 	return ret;
266 }
267 EXPORT_SYMBOL(__scsi_execute);
268 
269 /*
270  * Wake up the error handler if necessary. Avoid as follows that the error
271  * handler is not woken up if host in-flight requests number ==
272  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
273  * with an RCU read lock in this function to ensure that this function in
274  * its entirety either finishes before scsi_eh_scmd_add() increases the
275  * host_failed counter or that it notices the shost state change made by
276  * scsi_eh_scmd_add().
277  */
278 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
279 {
280 	unsigned long flags;
281 
282 	rcu_read_lock();
283 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
284 	if (unlikely(scsi_host_in_recovery(shost))) {
285 		spin_lock_irqsave(shost->host_lock, flags);
286 		if (shost->host_failed || shost->host_eh_scheduled)
287 			scsi_eh_wakeup(shost);
288 		spin_unlock_irqrestore(shost->host_lock, flags);
289 	}
290 	rcu_read_unlock();
291 }
292 
293 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
294 {
295 	struct Scsi_Host *shost = sdev->host;
296 	struct scsi_target *starget = scsi_target(sdev);
297 
298 	scsi_dec_host_busy(shost, cmd);
299 
300 	if (starget->can_queue > 0)
301 		atomic_dec(&starget->target_busy);
302 
303 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
304 	cmd->budget_token = -1;
305 }
306 
307 static void scsi_kick_queue(struct request_queue *q)
308 {
309 	blk_mq_run_hw_queues(q, false);
310 }
311 
312 /*
313  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
314  * and call blk_run_queue for all the scsi_devices on the target -
315  * including current_sdev first.
316  *
317  * Called with *no* scsi locks held.
318  */
319 static void scsi_single_lun_run(struct scsi_device *current_sdev)
320 {
321 	struct Scsi_Host *shost = current_sdev->host;
322 	struct scsi_device *sdev, *tmp;
323 	struct scsi_target *starget = scsi_target(current_sdev);
324 	unsigned long flags;
325 
326 	spin_lock_irqsave(shost->host_lock, flags);
327 	starget->starget_sdev_user = NULL;
328 	spin_unlock_irqrestore(shost->host_lock, flags);
329 
330 	/*
331 	 * Call blk_run_queue for all LUNs on the target, starting with
332 	 * current_sdev. We race with others (to set starget_sdev_user),
333 	 * but in most cases, we will be first. Ideally, each LU on the
334 	 * target would get some limited time or requests on the target.
335 	 */
336 	scsi_kick_queue(current_sdev->request_queue);
337 
338 	spin_lock_irqsave(shost->host_lock, flags);
339 	if (starget->starget_sdev_user)
340 		goto out;
341 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
342 			same_target_siblings) {
343 		if (sdev == current_sdev)
344 			continue;
345 		if (scsi_device_get(sdev))
346 			continue;
347 
348 		spin_unlock_irqrestore(shost->host_lock, flags);
349 		scsi_kick_queue(sdev->request_queue);
350 		spin_lock_irqsave(shost->host_lock, flags);
351 
352 		scsi_device_put(sdev);
353 	}
354  out:
355 	spin_unlock_irqrestore(shost->host_lock, flags);
356 }
357 
358 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
359 {
360 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
361 		return true;
362 	if (atomic_read(&sdev->device_blocked) > 0)
363 		return true;
364 	return false;
365 }
366 
367 static inline bool scsi_target_is_busy(struct scsi_target *starget)
368 {
369 	if (starget->can_queue > 0) {
370 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
371 			return true;
372 		if (atomic_read(&starget->target_blocked) > 0)
373 			return true;
374 	}
375 	return false;
376 }
377 
378 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
379 {
380 	if (atomic_read(&shost->host_blocked) > 0)
381 		return true;
382 	if (shost->host_self_blocked)
383 		return true;
384 	return false;
385 }
386 
387 static void scsi_starved_list_run(struct Scsi_Host *shost)
388 {
389 	LIST_HEAD(starved_list);
390 	struct scsi_device *sdev;
391 	unsigned long flags;
392 
393 	spin_lock_irqsave(shost->host_lock, flags);
394 	list_splice_init(&shost->starved_list, &starved_list);
395 
396 	while (!list_empty(&starved_list)) {
397 		struct request_queue *slq;
398 
399 		/*
400 		 * As long as shost is accepting commands and we have
401 		 * starved queues, call blk_run_queue. scsi_request_fn
402 		 * drops the queue_lock and can add us back to the
403 		 * starved_list.
404 		 *
405 		 * host_lock protects the starved_list and starved_entry.
406 		 * scsi_request_fn must get the host_lock before checking
407 		 * or modifying starved_list or starved_entry.
408 		 */
409 		if (scsi_host_is_busy(shost))
410 			break;
411 
412 		sdev = list_entry(starved_list.next,
413 				  struct scsi_device, starved_entry);
414 		list_del_init(&sdev->starved_entry);
415 		if (scsi_target_is_busy(scsi_target(sdev))) {
416 			list_move_tail(&sdev->starved_entry,
417 				       &shost->starved_list);
418 			continue;
419 		}
420 
421 		/*
422 		 * Once we drop the host lock, a racing scsi_remove_device()
423 		 * call may remove the sdev from the starved list and destroy
424 		 * it and the queue.  Mitigate by taking a reference to the
425 		 * queue and never touching the sdev again after we drop the
426 		 * host lock.  Note: if __scsi_remove_device() invokes
427 		 * blk_cleanup_queue() before the queue is run from this
428 		 * function then blk_run_queue() will return immediately since
429 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
430 		 */
431 		slq = sdev->request_queue;
432 		if (!blk_get_queue(slq))
433 			continue;
434 		spin_unlock_irqrestore(shost->host_lock, flags);
435 
436 		scsi_kick_queue(slq);
437 		blk_put_queue(slq);
438 
439 		spin_lock_irqsave(shost->host_lock, flags);
440 	}
441 	/* put any unprocessed entries back */
442 	list_splice(&starved_list, &shost->starved_list);
443 	spin_unlock_irqrestore(shost->host_lock, flags);
444 }
445 
446 /**
447  * scsi_run_queue - Select a proper request queue to serve next.
448  * @q:  last request's queue
449  *
450  * The previous command was completely finished, start a new one if possible.
451  */
452 static void scsi_run_queue(struct request_queue *q)
453 {
454 	struct scsi_device *sdev = q->queuedata;
455 
456 	if (scsi_target(sdev)->single_lun)
457 		scsi_single_lun_run(sdev);
458 	if (!list_empty(&sdev->host->starved_list))
459 		scsi_starved_list_run(sdev->host);
460 
461 	blk_mq_run_hw_queues(q, false);
462 }
463 
464 void scsi_requeue_run_queue(struct work_struct *work)
465 {
466 	struct scsi_device *sdev;
467 	struct request_queue *q;
468 
469 	sdev = container_of(work, struct scsi_device, requeue_work);
470 	q = sdev->request_queue;
471 	scsi_run_queue(q);
472 }
473 
474 void scsi_run_host_queues(struct Scsi_Host *shost)
475 {
476 	struct scsi_device *sdev;
477 
478 	shost_for_each_device(sdev, shost)
479 		scsi_run_queue(sdev->request_queue);
480 }
481 
482 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
483 {
484 	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
485 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
486 
487 		if (drv->uninit_command)
488 			drv->uninit_command(cmd);
489 	}
490 }
491 
492 void scsi_free_sgtables(struct scsi_cmnd *cmd)
493 {
494 	if (cmd->sdb.table.nents)
495 		sg_free_table_chained(&cmd->sdb.table,
496 				SCSI_INLINE_SG_CNT);
497 	if (scsi_prot_sg_count(cmd))
498 		sg_free_table_chained(&cmd->prot_sdb->table,
499 				SCSI_INLINE_PROT_SG_CNT);
500 }
501 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
502 
503 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
504 {
505 	scsi_free_sgtables(cmd);
506 	scsi_uninit_cmd(cmd);
507 }
508 
509 static void scsi_run_queue_async(struct scsi_device *sdev)
510 {
511 	if (scsi_target(sdev)->single_lun ||
512 	    !list_empty(&sdev->host->starved_list)) {
513 		kblockd_schedule_work(&sdev->requeue_work);
514 	} else {
515 		/*
516 		 * smp_mb() present in sbitmap_queue_clear() or implied in
517 		 * .end_io is for ordering writing .device_busy in
518 		 * scsi_device_unbusy() and reading sdev->restarts.
519 		 */
520 		int old = atomic_read(&sdev->restarts);
521 
522 		/*
523 		 * ->restarts has to be kept as non-zero if new budget
524 		 *  contention occurs.
525 		 *
526 		 *  No need to run queue when either another re-run
527 		 *  queue wins in updating ->restarts or a new budget
528 		 *  contention occurs.
529 		 */
530 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
531 			blk_mq_run_hw_queues(sdev->request_queue, true);
532 	}
533 }
534 
535 /* Returns false when no more bytes to process, true if there are more */
536 static bool scsi_end_request(struct request *req, blk_status_t error,
537 		unsigned int bytes)
538 {
539 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
540 	struct scsi_device *sdev = cmd->device;
541 	struct request_queue *q = sdev->request_queue;
542 
543 	if (blk_update_request(req, error, bytes))
544 		return true;
545 
546 	// XXX:
547 	if (blk_queue_add_random(q))
548 		add_disk_randomness(req->q->disk);
549 
550 	if (!blk_rq_is_passthrough(req)) {
551 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
552 		cmd->flags &= ~SCMD_INITIALIZED;
553 	}
554 
555 	/*
556 	 * Calling rcu_barrier() is not necessary here because the
557 	 * SCSI error handler guarantees that the function called by
558 	 * call_rcu() has been called before scsi_end_request() is
559 	 * called.
560 	 */
561 	destroy_rcu_head(&cmd->rcu);
562 
563 	/*
564 	 * In the MQ case the command gets freed by __blk_mq_end_request,
565 	 * so we have to do all cleanup that depends on it earlier.
566 	 *
567 	 * We also can't kick the queues from irq context, so we
568 	 * will have to defer it to a workqueue.
569 	 */
570 	scsi_mq_uninit_cmd(cmd);
571 
572 	/*
573 	 * queue is still alive, so grab the ref for preventing it
574 	 * from being cleaned up during running queue.
575 	 */
576 	percpu_ref_get(&q->q_usage_counter);
577 
578 	__blk_mq_end_request(req, error);
579 
580 	scsi_run_queue_async(sdev);
581 
582 	percpu_ref_put(&q->q_usage_counter);
583 	return false;
584 }
585 
586 /**
587  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
588  * @cmd:	SCSI command
589  * @result:	scsi error code
590  *
591  * Translate a SCSI result code into a blk_status_t value. May reset the host
592  * byte of @cmd->result.
593  */
594 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
595 {
596 	switch (host_byte(result)) {
597 	case DID_OK:
598 		if (scsi_status_is_good(result))
599 			return BLK_STS_OK;
600 		return BLK_STS_IOERR;
601 	case DID_TRANSPORT_FAILFAST:
602 	case DID_TRANSPORT_MARGINAL:
603 		return BLK_STS_TRANSPORT;
604 	case DID_TARGET_FAILURE:
605 		set_host_byte(cmd, DID_OK);
606 		return BLK_STS_TARGET;
607 	case DID_NEXUS_FAILURE:
608 		set_host_byte(cmd, DID_OK);
609 		return BLK_STS_NEXUS;
610 	case DID_ALLOC_FAILURE:
611 		set_host_byte(cmd, DID_OK);
612 		return BLK_STS_NOSPC;
613 	case DID_MEDIUM_ERROR:
614 		set_host_byte(cmd, DID_OK);
615 		return BLK_STS_MEDIUM;
616 	default:
617 		return BLK_STS_IOERR;
618 	}
619 }
620 
621 /**
622  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
623  * @rq: request to examine
624  *
625  * Description:
626  *     A request could be merge of IOs which require different failure
627  *     handling.  This function determines the number of bytes which
628  *     can be failed from the beginning of the request without
629  *     crossing into area which need to be retried further.
630  *
631  * Return:
632  *     The number of bytes to fail.
633  */
634 static unsigned int scsi_rq_err_bytes(const struct request *rq)
635 {
636 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
637 	unsigned int bytes = 0;
638 	struct bio *bio;
639 
640 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
641 		return blk_rq_bytes(rq);
642 
643 	/*
644 	 * Currently the only 'mixing' which can happen is between
645 	 * different fastfail types.  We can safely fail portions
646 	 * which have all the failfast bits that the first one has -
647 	 * the ones which are at least as eager to fail as the first
648 	 * one.
649 	 */
650 	for (bio = rq->bio; bio; bio = bio->bi_next) {
651 		if ((bio->bi_opf & ff) != ff)
652 			break;
653 		bytes += bio->bi_iter.bi_size;
654 	}
655 
656 	/* this could lead to infinite loop */
657 	BUG_ON(blk_rq_bytes(rq) && !bytes);
658 	return bytes;
659 }
660 
661 /* Helper for scsi_io_completion() when "reprep" action required. */
662 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
663 				      struct request_queue *q)
664 {
665 	/* A new command will be prepared and issued. */
666 	scsi_mq_requeue_cmd(cmd);
667 }
668 
669 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
670 {
671 	struct request *req = scsi_cmd_to_rq(cmd);
672 	unsigned long wait_for;
673 
674 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
675 		return false;
676 
677 	wait_for = (cmd->allowed + 1) * req->timeout;
678 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
679 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
680 			    wait_for/HZ);
681 		return true;
682 	}
683 	return false;
684 }
685 
686 /* Helper for scsi_io_completion() when special action required. */
687 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
688 {
689 	struct request_queue *q = cmd->device->request_queue;
690 	struct request *req = scsi_cmd_to_rq(cmd);
691 	int level = 0;
692 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
693 	      ACTION_DELAYED_RETRY} action;
694 	struct scsi_sense_hdr sshdr;
695 	bool sense_valid;
696 	bool sense_current = true;      /* false implies "deferred sense" */
697 	blk_status_t blk_stat;
698 
699 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
700 	if (sense_valid)
701 		sense_current = !scsi_sense_is_deferred(&sshdr);
702 
703 	blk_stat = scsi_result_to_blk_status(cmd, result);
704 
705 	if (host_byte(result) == DID_RESET) {
706 		/* Third party bus reset or reset for error recovery
707 		 * reasons.  Just retry the command and see what
708 		 * happens.
709 		 */
710 		action = ACTION_RETRY;
711 	} else if (sense_valid && sense_current) {
712 		switch (sshdr.sense_key) {
713 		case UNIT_ATTENTION:
714 			if (cmd->device->removable) {
715 				/* Detected disc change.  Set a bit
716 				 * and quietly refuse further access.
717 				 */
718 				cmd->device->changed = 1;
719 				action = ACTION_FAIL;
720 			} else {
721 				/* Must have been a power glitch, or a
722 				 * bus reset.  Could not have been a
723 				 * media change, so we just retry the
724 				 * command and see what happens.
725 				 */
726 				action = ACTION_RETRY;
727 			}
728 			break;
729 		case ILLEGAL_REQUEST:
730 			/* If we had an ILLEGAL REQUEST returned, then
731 			 * we may have performed an unsupported
732 			 * command.  The only thing this should be
733 			 * would be a ten byte read where only a six
734 			 * byte read was supported.  Also, on a system
735 			 * where READ CAPACITY failed, we may have
736 			 * read past the end of the disk.
737 			 */
738 			if ((cmd->device->use_10_for_rw &&
739 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
740 			    (cmd->cmnd[0] == READ_10 ||
741 			     cmd->cmnd[0] == WRITE_10)) {
742 				/* This will issue a new 6-byte command. */
743 				cmd->device->use_10_for_rw = 0;
744 				action = ACTION_REPREP;
745 			} else if (sshdr.asc == 0x10) /* DIX */ {
746 				action = ACTION_FAIL;
747 				blk_stat = BLK_STS_PROTECTION;
748 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
749 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
750 				action = ACTION_FAIL;
751 				blk_stat = BLK_STS_TARGET;
752 			} else
753 				action = ACTION_FAIL;
754 			break;
755 		case ABORTED_COMMAND:
756 			action = ACTION_FAIL;
757 			if (sshdr.asc == 0x10) /* DIF */
758 				blk_stat = BLK_STS_PROTECTION;
759 			break;
760 		case NOT_READY:
761 			/* If the device is in the process of becoming
762 			 * ready, or has a temporary blockage, retry.
763 			 */
764 			if (sshdr.asc == 0x04) {
765 				switch (sshdr.ascq) {
766 				case 0x01: /* becoming ready */
767 				case 0x04: /* format in progress */
768 				case 0x05: /* rebuild in progress */
769 				case 0x06: /* recalculation in progress */
770 				case 0x07: /* operation in progress */
771 				case 0x08: /* Long write in progress */
772 				case 0x09: /* self test in progress */
773 				case 0x11: /* notify (enable spinup) required */
774 				case 0x14: /* space allocation in progress */
775 				case 0x1a: /* start stop unit in progress */
776 				case 0x1b: /* sanitize in progress */
777 				case 0x1d: /* configuration in progress */
778 				case 0x24: /* depopulation in progress */
779 					action = ACTION_DELAYED_RETRY;
780 					break;
781 				case 0x0a: /* ALUA state transition */
782 					blk_stat = BLK_STS_AGAIN;
783 					fallthrough;
784 				default:
785 					action = ACTION_FAIL;
786 					break;
787 				}
788 			} else
789 				action = ACTION_FAIL;
790 			break;
791 		case VOLUME_OVERFLOW:
792 			/* See SSC3rXX or current. */
793 			action = ACTION_FAIL;
794 			break;
795 		case DATA_PROTECT:
796 			action = ACTION_FAIL;
797 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
798 			    (sshdr.asc == 0x55 &&
799 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
800 				/* Insufficient zone resources */
801 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
802 			}
803 			break;
804 		default:
805 			action = ACTION_FAIL;
806 			break;
807 		}
808 	} else
809 		action = ACTION_FAIL;
810 
811 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
812 		action = ACTION_FAIL;
813 
814 	switch (action) {
815 	case ACTION_FAIL:
816 		/* Give up and fail the remainder of the request */
817 		if (!(req->rq_flags & RQF_QUIET)) {
818 			static DEFINE_RATELIMIT_STATE(_rs,
819 					DEFAULT_RATELIMIT_INTERVAL,
820 					DEFAULT_RATELIMIT_BURST);
821 
822 			if (unlikely(scsi_logging_level))
823 				level =
824 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
825 						    SCSI_LOG_MLCOMPLETE_BITS);
826 
827 			/*
828 			 * if logging is enabled the failure will be printed
829 			 * in scsi_log_completion(), so avoid duplicate messages
830 			 */
831 			if (!level && __ratelimit(&_rs)) {
832 				scsi_print_result(cmd, NULL, FAILED);
833 				if (sense_valid)
834 					scsi_print_sense(cmd);
835 				scsi_print_command(cmd);
836 			}
837 		}
838 		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
839 			return;
840 		fallthrough;
841 	case ACTION_REPREP:
842 		scsi_io_completion_reprep(cmd, q);
843 		break;
844 	case ACTION_RETRY:
845 		/* Retry the same command immediately */
846 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
847 		break;
848 	case ACTION_DELAYED_RETRY:
849 		/* Retry the same command after a delay */
850 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
851 		break;
852 	}
853 }
854 
855 /*
856  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
857  * new result that may suppress further error checking. Also modifies
858  * *blk_statp in some cases.
859  */
860 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
861 					blk_status_t *blk_statp)
862 {
863 	bool sense_valid;
864 	bool sense_current = true;	/* false implies "deferred sense" */
865 	struct request *req = scsi_cmd_to_rq(cmd);
866 	struct scsi_sense_hdr sshdr;
867 
868 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
869 	if (sense_valid)
870 		sense_current = !scsi_sense_is_deferred(&sshdr);
871 
872 	if (blk_rq_is_passthrough(req)) {
873 		if (sense_valid) {
874 			/*
875 			 * SG_IO wants current and deferred errors
876 			 */
877 			cmd->sense_len = min(8 + cmd->sense_buffer[7],
878 					     SCSI_SENSE_BUFFERSIZE);
879 		}
880 		if (sense_current)
881 			*blk_statp = scsi_result_to_blk_status(cmd, result);
882 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
883 		/*
884 		 * Flush commands do not transfers any data, and thus cannot use
885 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
886 		 * This sets *blk_statp explicitly for the problem case.
887 		 */
888 		*blk_statp = scsi_result_to_blk_status(cmd, result);
889 	}
890 	/*
891 	 * Recovered errors need reporting, but they're always treated as
892 	 * success, so fiddle the result code here.  For passthrough requests
893 	 * we already took a copy of the original into sreq->result which
894 	 * is what gets returned to the user
895 	 */
896 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
897 		bool do_print = true;
898 		/*
899 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
900 		 * skip print since caller wants ATA registers. Only occurs
901 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
902 		 */
903 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
904 			do_print = false;
905 		else if (req->rq_flags & RQF_QUIET)
906 			do_print = false;
907 		if (do_print)
908 			scsi_print_sense(cmd);
909 		result = 0;
910 		/* for passthrough, *blk_statp may be set */
911 		*blk_statp = BLK_STS_OK;
912 	}
913 	/*
914 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
915 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
916 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
917 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
918 	 * intermediate statuses (both obsolete in SAM-4) as good.
919 	 */
920 	if ((result & 0xff) && scsi_status_is_good(result)) {
921 		result = 0;
922 		*blk_statp = BLK_STS_OK;
923 	}
924 	return result;
925 }
926 
927 /**
928  * scsi_io_completion - Completion processing for SCSI commands.
929  * @cmd:	command that is finished.
930  * @good_bytes:	number of processed bytes.
931  *
932  * We will finish off the specified number of sectors. If we are done, the
933  * command block will be released and the queue function will be goosed. If we
934  * are not done then we have to figure out what to do next:
935  *
936  *   a) We can call scsi_io_completion_reprep().  The request will be
937  *	unprepared and put back on the queue.  Then a new command will
938  *	be created for it.  This should be used if we made forward
939  *	progress, or if we want to switch from READ(10) to READ(6) for
940  *	example.
941  *
942  *   b) We can call scsi_io_completion_action().  The request will be
943  *	put back on the queue and retried using the same command as
944  *	before, possibly after a delay.
945  *
946  *   c) We can call scsi_end_request() with blk_stat other than
947  *	BLK_STS_OK, to fail the remainder of the request.
948  */
949 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
950 {
951 	int result = cmd->result;
952 	struct request_queue *q = cmd->device->request_queue;
953 	struct request *req = scsi_cmd_to_rq(cmd);
954 	blk_status_t blk_stat = BLK_STS_OK;
955 
956 	if (unlikely(result))	/* a nz result may or may not be an error */
957 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
958 
959 	/*
960 	 * Next deal with any sectors which we were able to correctly
961 	 * handle.
962 	 */
963 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
964 		"%u sectors total, %d bytes done.\n",
965 		blk_rq_sectors(req), good_bytes));
966 
967 	/*
968 	 * Failed, zero length commands always need to drop down
969 	 * to retry code. Fast path should return in this block.
970 	 */
971 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
972 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
973 			return; /* no bytes remaining */
974 	}
975 
976 	/* Kill remainder if no retries. */
977 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
978 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
979 			WARN_ONCE(true,
980 			    "Bytes remaining after failed, no-retry command");
981 		return;
982 	}
983 
984 	/*
985 	 * If there had been no error, but we have leftover bytes in the
986 	 * request just queue the command up again.
987 	 */
988 	if (likely(result == 0))
989 		scsi_io_completion_reprep(cmd, q);
990 	else
991 		scsi_io_completion_action(cmd, result);
992 }
993 
994 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
995 		struct request *rq)
996 {
997 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
998 	       !op_is_write(req_op(rq)) &&
999 	       sdev->host->hostt->dma_need_drain(rq);
1000 }
1001 
1002 /**
1003  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1004  * @cmd: SCSI command data structure to initialize.
1005  *
1006  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1007  * for @cmd.
1008  *
1009  * Returns:
1010  * * BLK_STS_OK       - on success
1011  * * BLK_STS_RESOURCE - if the failure is retryable
1012  * * BLK_STS_IOERR    - if the failure is fatal
1013  */
1014 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1015 {
1016 	struct scsi_device *sdev = cmd->device;
1017 	struct request *rq = scsi_cmd_to_rq(cmd);
1018 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1019 	struct scatterlist *last_sg = NULL;
1020 	blk_status_t ret;
1021 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1022 	int count;
1023 
1024 	if (WARN_ON_ONCE(!nr_segs))
1025 		return BLK_STS_IOERR;
1026 
1027 	/*
1028 	 * Make sure there is space for the drain.  The driver must adjust
1029 	 * max_hw_segments to be prepared for this.
1030 	 */
1031 	if (need_drain)
1032 		nr_segs++;
1033 
1034 	/*
1035 	 * If sg table allocation fails, requeue request later.
1036 	 */
1037 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1038 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1039 		return BLK_STS_RESOURCE;
1040 
1041 	/*
1042 	 * Next, walk the list, and fill in the addresses and sizes of
1043 	 * each segment.
1044 	 */
1045 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1046 
1047 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1048 		unsigned int pad_len =
1049 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1050 
1051 		last_sg->length += pad_len;
1052 		cmd->extra_len += pad_len;
1053 	}
1054 
1055 	if (need_drain) {
1056 		sg_unmark_end(last_sg);
1057 		last_sg = sg_next(last_sg);
1058 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1059 		sg_mark_end(last_sg);
1060 
1061 		cmd->extra_len += sdev->dma_drain_len;
1062 		count++;
1063 	}
1064 
1065 	BUG_ON(count > cmd->sdb.table.nents);
1066 	cmd->sdb.table.nents = count;
1067 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1068 
1069 	if (blk_integrity_rq(rq)) {
1070 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1071 		int ivecs;
1072 
1073 		if (WARN_ON_ONCE(!prot_sdb)) {
1074 			/*
1075 			 * This can happen if someone (e.g. multipath)
1076 			 * queues a command to a device on an adapter
1077 			 * that does not support DIX.
1078 			 */
1079 			ret = BLK_STS_IOERR;
1080 			goto out_free_sgtables;
1081 		}
1082 
1083 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1084 
1085 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1086 				prot_sdb->table.sgl,
1087 				SCSI_INLINE_PROT_SG_CNT)) {
1088 			ret = BLK_STS_RESOURCE;
1089 			goto out_free_sgtables;
1090 		}
1091 
1092 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1093 						prot_sdb->table.sgl);
1094 		BUG_ON(count > ivecs);
1095 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1096 
1097 		cmd->prot_sdb = prot_sdb;
1098 		cmd->prot_sdb->table.nents = count;
1099 	}
1100 
1101 	return BLK_STS_OK;
1102 out_free_sgtables:
1103 	scsi_free_sgtables(cmd);
1104 	return ret;
1105 }
1106 EXPORT_SYMBOL(scsi_alloc_sgtables);
1107 
1108 /**
1109  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1110  * @rq: Request associated with the SCSI command to be initialized.
1111  *
1112  * This function initializes the members of struct scsi_cmnd that must be
1113  * initialized before request processing starts and that won't be
1114  * reinitialized if a SCSI command is requeued.
1115  */
1116 static void scsi_initialize_rq(struct request *rq)
1117 {
1118 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1119 
1120 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1121 	cmd->cmd_len = MAX_COMMAND_SIZE;
1122 	cmd->sense_len = 0;
1123 	init_rcu_head(&cmd->rcu);
1124 	cmd->jiffies_at_alloc = jiffies;
1125 	cmd->retries = 0;
1126 }
1127 
1128 struct request *scsi_alloc_request(struct request_queue *q,
1129 		unsigned int op, blk_mq_req_flags_t flags)
1130 {
1131 	struct request *rq;
1132 
1133 	rq = blk_mq_alloc_request(q, op, flags);
1134 	if (!IS_ERR(rq))
1135 		scsi_initialize_rq(rq);
1136 	return rq;
1137 }
1138 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1139 
1140 /*
1141  * Only called when the request isn't completed by SCSI, and not freed by
1142  * SCSI
1143  */
1144 static void scsi_cleanup_rq(struct request *rq)
1145 {
1146 	if (rq->rq_flags & RQF_DONTPREP) {
1147 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1148 		rq->rq_flags &= ~RQF_DONTPREP;
1149 	}
1150 }
1151 
1152 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1153 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1154 {
1155 	struct request *rq = scsi_cmd_to_rq(cmd);
1156 
1157 	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1158 		cmd->flags |= SCMD_INITIALIZED;
1159 		scsi_initialize_rq(rq);
1160 	}
1161 
1162 	cmd->device = dev;
1163 	INIT_LIST_HEAD(&cmd->eh_entry);
1164 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1165 }
1166 
1167 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1168 		struct request *req)
1169 {
1170 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1171 
1172 	/*
1173 	 * Passthrough requests may transfer data, in which case they must
1174 	 * a bio attached to them.  Or they might contain a SCSI command
1175 	 * that does not transfer data, in which case they may optionally
1176 	 * submit a request without an attached bio.
1177 	 */
1178 	if (req->bio) {
1179 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1180 		if (unlikely(ret != BLK_STS_OK))
1181 			return ret;
1182 	} else {
1183 		BUG_ON(blk_rq_bytes(req));
1184 
1185 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1186 	}
1187 
1188 	cmd->transfersize = blk_rq_bytes(req);
1189 	return BLK_STS_OK;
1190 }
1191 
1192 static blk_status_t
1193 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1194 {
1195 	switch (sdev->sdev_state) {
1196 	case SDEV_CREATED:
1197 		return BLK_STS_OK;
1198 	case SDEV_OFFLINE:
1199 	case SDEV_TRANSPORT_OFFLINE:
1200 		/*
1201 		 * If the device is offline we refuse to process any
1202 		 * commands.  The device must be brought online
1203 		 * before trying any recovery commands.
1204 		 */
1205 		if (!sdev->offline_already) {
1206 			sdev->offline_already = true;
1207 			sdev_printk(KERN_ERR, sdev,
1208 				    "rejecting I/O to offline device\n");
1209 		}
1210 		return BLK_STS_IOERR;
1211 	case SDEV_DEL:
1212 		/*
1213 		 * If the device is fully deleted, we refuse to
1214 		 * process any commands as well.
1215 		 */
1216 		sdev_printk(KERN_ERR, sdev,
1217 			    "rejecting I/O to dead device\n");
1218 		return BLK_STS_IOERR;
1219 	case SDEV_BLOCK:
1220 	case SDEV_CREATED_BLOCK:
1221 		return BLK_STS_RESOURCE;
1222 	case SDEV_QUIESCE:
1223 		/*
1224 		 * If the device is blocked we only accept power management
1225 		 * commands.
1226 		 */
1227 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1228 			return BLK_STS_RESOURCE;
1229 		return BLK_STS_OK;
1230 	default:
1231 		/*
1232 		 * For any other not fully online state we only allow
1233 		 * power management commands.
1234 		 */
1235 		if (req && !(req->rq_flags & RQF_PM))
1236 			return BLK_STS_OFFLINE;
1237 		return BLK_STS_OK;
1238 	}
1239 }
1240 
1241 /*
1242  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1243  * and return the token else return -1.
1244  */
1245 static inline int scsi_dev_queue_ready(struct request_queue *q,
1246 				  struct scsi_device *sdev)
1247 {
1248 	int token;
1249 
1250 	token = sbitmap_get(&sdev->budget_map);
1251 	if (atomic_read(&sdev->device_blocked)) {
1252 		if (token < 0)
1253 			goto out;
1254 
1255 		if (scsi_device_busy(sdev) > 1)
1256 			goto out_dec;
1257 
1258 		/*
1259 		 * unblock after device_blocked iterates to zero
1260 		 */
1261 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1262 			goto out_dec;
1263 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1264 				   "unblocking device at zero depth\n"));
1265 	}
1266 
1267 	return token;
1268 out_dec:
1269 	if (token >= 0)
1270 		sbitmap_put(&sdev->budget_map, token);
1271 out:
1272 	return -1;
1273 }
1274 
1275 /*
1276  * scsi_target_queue_ready: checks if there we can send commands to target
1277  * @sdev: scsi device on starget to check.
1278  */
1279 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1280 					   struct scsi_device *sdev)
1281 {
1282 	struct scsi_target *starget = scsi_target(sdev);
1283 	unsigned int busy;
1284 
1285 	if (starget->single_lun) {
1286 		spin_lock_irq(shost->host_lock);
1287 		if (starget->starget_sdev_user &&
1288 		    starget->starget_sdev_user != sdev) {
1289 			spin_unlock_irq(shost->host_lock);
1290 			return 0;
1291 		}
1292 		starget->starget_sdev_user = sdev;
1293 		spin_unlock_irq(shost->host_lock);
1294 	}
1295 
1296 	if (starget->can_queue <= 0)
1297 		return 1;
1298 
1299 	busy = atomic_inc_return(&starget->target_busy) - 1;
1300 	if (atomic_read(&starget->target_blocked) > 0) {
1301 		if (busy)
1302 			goto starved;
1303 
1304 		/*
1305 		 * unblock after target_blocked iterates to zero
1306 		 */
1307 		if (atomic_dec_return(&starget->target_blocked) > 0)
1308 			goto out_dec;
1309 
1310 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1311 				 "unblocking target at zero depth\n"));
1312 	}
1313 
1314 	if (busy >= starget->can_queue)
1315 		goto starved;
1316 
1317 	return 1;
1318 
1319 starved:
1320 	spin_lock_irq(shost->host_lock);
1321 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1322 	spin_unlock_irq(shost->host_lock);
1323 out_dec:
1324 	if (starget->can_queue > 0)
1325 		atomic_dec(&starget->target_busy);
1326 	return 0;
1327 }
1328 
1329 /*
1330  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1331  * return 0. We must end up running the queue again whenever 0 is
1332  * returned, else IO can hang.
1333  */
1334 static inline int scsi_host_queue_ready(struct request_queue *q,
1335 				   struct Scsi_Host *shost,
1336 				   struct scsi_device *sdev,
1337 				   struct scsi_cmnd *cmd)
1338 {
1339 	if (scsi_host_in_recovery(shost))
1340 		return 0;
1341 
1342 	if (atomic_read(&shost->host_blocked) > 0) {
1343 		if (scsi_host_busy(shost) > 0)
1344 			goto starved;
1345 
1346 		/*
1347 		 * unblock after host_blocked iterates to zero
1348 		 */
1349 		if (atomic_dec_return(&shost->host_blocked) > 0)
1350 			goto out_dec;
1351 
1352 		SCSI_LOG_MLQUEUE(3,
1353 			shost_printk(KERN_INFO, shost,
1354 				     "unblocking host at zero depth\n"));
1355 	}
1356 
1357 	if (shost->host_self_blocked)
1358 		goto starved;
1359 
1360 	/* We're OK to process the command, so we can't be starved */
1361 	if (!list_empty(&sdev->starved_entry)) {
1362 		spin_lock_irq(shost->host_lock);
1363 		if (!list_empty(&sdev->starved_entry))
1364 			list_del_init(&sdev->starved_entry);
1365 		spin_unlock_irq(shost->host_lock);
1366 	}
1367 
1368 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1369 
1370 	return 1;
1371 
1372 starved:
1373 	spin_lock_irq(shost->host_lock);
1374 	if (list_empty(&sdev->starved_entry))
1375 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1376 	spin_unlock_irq(shost->host_lock);
1377 out_dec:
1378 	scsi_dec_host_busy(shost, cmd);
1379 	return 0;
1380 }
1381 
1382 /*
1383  * Busy state exporting function for request stacking drivers.
1384  *
1385  * For efficiency, no lock is taken to check the busy state of
1386  * shost/starget/sdev, since the returned value is not guaranteed and
1387  * may be changed after request stacking drivers call the function,
1388  * regardless of taking lock or not.
1389  *
1390  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1391  * needs to return 'not busy'. Otherwise, request stacking drivers
1392  * may hold requests forever.
1393  */
1394 static bool scsi_mq_lld_busy(struct request_queue *q)
1395 {
1396 	struct scsi_device *sdev = q->queuedata;
1397 	struct Scsi_Host *shost;
1398 
1399 	if (blk_queue_dying(q))
1400 		return false;
1401 
1402 	shost = sdev->host;
1403 
1404 	/*
1405 	 * Ignore host/starget busy state.
1406 	 * Since block layer does not have a concept of fairness across
1407 	 * multiple queues, congestion of host/starget needs to be handled
1408 	 * in SCSI layer.
1409 	 */
1410 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1411 		return true;
1412 
1413 	return false;
1414 }
1415 
1416 /*
1417  * Block layer request completion callback. May be called from interrupt
1418  * context.
1419  */
1420 static void scsi_complete(struct request *rq)
1421 {
1422 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1423 	enum scsi_disposition disposition;
1424 
1425 	INIT_LIST_HEAD(&cmd->eh_entry);
1426 
1427 	atomic_inc(&cmd->device->iodone_cnt);
1428 	if (cmd->result)
1429 		atomic_inc(&cmd->device->ioerr_cnt);
1430 
1431 	disposition = scsi_decide_disposition(cmd);
1432 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1433 		disposition = SUCCESS;
1434 
1435 	scsi_log_completion(cmd, disposition);
1436 
1437 	switch (disposition) {
1438 	case SUCCESS:
1439 		scsi_finish_command(cmd);
1440 		break;
1441 	case NEEDS_RETRY:
1442 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1443 		break;
1444 	case ADD_TO_MLQUEUE:
1445 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1446 		break;
1447 	default:
1448 		scsi_eh_scmd_add(cmd);
1449 		break;
1450 	}
1451 }
1452 
1453 /**
1454  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1455  * @cmd: command block we are dispatching.
1456  *
1457  * Return: nonzero return request was rejected and device's queue needs to be
1458  * plugged.
1459  */
1460 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1461 {
1462 	struct Scsi_Host *host = cmd->device->host;
1463 	int rtn = 0;
1464 
1465 	atomic_inc(&cmd->device->iorequest_cnt);
1466 
1467 	/* check if the device is still usable */
1468 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1469 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1470 		 * returns an immediate error upwards, and signals
1471 		 * that the device is no longer present */
1472 		cmd->result = DID_NO_CONNECT << 16;
1473 		goto done;
1474 	}
1475 
1476 	/* Check to see if the scsi lld made this device blocked. */
1477 	if (unlikely(scsi_device_blocked(cmd->device))) {
1478 		/*
1479 		 * in blocked state, the command is just put back on
1480 		 * the device queue.  The suspend state has already
1481 		 * blocked the queue so future requests should not
1482 		 * occur until the device transitions out of the
1483 		 * suspend state.
1484 		 */
1485 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1486 			"queuecommand : device blocked\n"));
1487 		return SCSI_MLQUEUE_DEVICE_BUSY;
1488 	}
1489 
1490 	/* Store the LUN value in cmnd, if needed. */
1491 	if (cmd->device->lun_in_cdb)
1492 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1493 			       (cmd->device->lun << 5 & 0xe0);
1494 
1495 	scsi_log_send(cmd);
1496 
1497 	/*
1498 	 * Before we queue this command, check if the command
1499 	 * length exceeds what the host adapter can handle.
1500 	 */
1501 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1502 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1503 			       "queuecommand : command too long. "
1504 			       "cdb_size=%d host->max_cmd_len=%d\n",
1505 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1506 		cmd->result = (DID_ABORT << 16);
1507 		goto done;
1508 	}
1509 
1510 	if (unlikely(host->shost_state == SHOST_DEL)) {
1511 		cmd->result = (DID_NO_CONNECT << 16);
1512 		goto done;
1513 
1514 	}
1515 
1516 	trace_scsi_dispatch_cmd_start(cmd);
1517 	rtn = host->hostt->queuecommand(host, cmd);
1518 	if (rtn) {
1519 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1520 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1521 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1522 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1523 
1524 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1525 			"queuecommand : request rejected\n"));
1526 	}
1527 
1528 	return rtn;
1529  done:
1530 	scsi_done(cmd);
1531 	return 0;
1532 }
1533 
1534 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1535 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1536 {
1537 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1538 		sizeof(struct scatterlist);
1539 }
1540 
1541 static blk_status_t scsi_prepare_cmd(struct request *req)
1542 {
1543 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1544 	struct scsi_device *sdev = req->q->queuedata;
1545 	struct Scsi_Host *shost = sdev->host;
1546 	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1547 	struct scatterlist *sg;
1548 
1549 	scsi_init_command(sdev, cmd);
1550 
1551 	cmd->eh_eflags = 0;
1552 	cmd->allowed = 0;
1553 	cmd->prot_type = 0;
1554 	cmd->prot_flags = 0;
1555 	cmd->submitter = 0;
1556 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1557 	cmd->underflow = 0;
1558 	cmd->transfersize = 0;
1559 	cmd->host_scribble = NULL;
1560 	cmd->result = 0;
1561 	cmd->extra_len = 0;
1562 	cmd->state = 0;
1563 	if (in_flight)
1564 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1565 
1566 	/*
1567 	 * Only clear the driver-private command data if the LLD does not supply
1568 	 * a function to initialize that data.
1569 	 */
1570 	if (!shost->hostt->init_cmd_priv)
1571 		memset(cmd + 1, 0, shost->hostt->cmd_size);
1572 
1573 	cmd->prot_op = SCSI_PROT_NORMAL;
1574 	if (blk_rq_bytes(req))
1575 		cmd->sc_data_direction = rq_dma_dir(req);
1576 	else
1577 		cmd->sc_data_direction = DMA_NONE;
1578 
1579 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1580 	cmd->sdb.table.sgl = sg;
1581 
1582 	if (scsi_host_get_prot(shost)) {
1583 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1584 
1585 		cmd->prot_sdb->table.sgl =
1586 			(struct scatterlist *)(cmd->prot_sdb + 1);
1587 	}
1588 
1589 	/*
1590 	 * Special handling for passthrough commands, which don't go to the ULP
1591 	 * at all:
1592 	 */
1593 	if (blk_rq_is_passthrough(req))
1594 		return scsi_setup_scsi_cmnd(sdev, req);
1595 
1596 	if (sdev->handler && sdev->handler->prep_fn) {
1597 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1598 
1599 		if (ret != BLK_STS_OK)
1600 			return ret;
1601 	}
1602 
1603 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1604 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1605 }
1606 
1607 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1608 {
1609 	struct request *req = scsi_cmd_to_rq(cmd);
1610 
1611 	switch (cmd->submitter) {
1612 	case SUBMITTED_BY_BLOCK_LAYER:
1613 		break;
1614 	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1615 		return scsi_eh_done(cmd);
1616 	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1617 		return;
1618 	}
1619 
1620 	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1621 		return;
1622 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1623 		return;
1624 	trace_scsi_dispatch_cmd_done(cmd);
1625 
1626 	if (complete_directly)
1627 		blk_mq_complete_request_direct(req, scsi_complete);
1628 	else
1629 		blk_mq_complete_request(req);
1630 }
1631 
1632 void scsi_done(struct scsi_cmnd *cmd)
1633 {
1634 	scsi_done_internal(cmd, false);
1635 }
1636 EXPORT_SYMBOL(scsi_done);
1637 
1638 void scsi_done_direct(struct scsi_cmnd *cmd)
1639 {
1640 	scsi_done_internal(cmd, true);
1641 }
1642 EXPORT_SYMBOL(scsi_done_direct);
1643 
1644 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1645 {
1646 	struct scsi_device *sdev = q->queuedata;
1647 
1648 	sbitmap_put(&sdev->budget_map, budget_token);
1649 }
1650 
1651 static int scsi_mq_get_budget(struct request_queue *q)
1652 {
1653 	struct scsi_device *sdev = q->queuedata;
1654 	int token = scsi_dev_queue_ready(q, sdev);
1655 
1656 	if (token >= 0)
1657 		return token;
1658 
1659 	atomic_inc(&sdev->restarts);
1660 
1661 	/*
1662 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1663 	 * .restarts must be incremented before .device_busy is read because the
1664 	 * code in scsi_run_queue_async() depends on the order of these operations.
1665 	 */
1666 	smp_mb__after_atomic();
1667 
1668 	/*
1669 	 * If all in-flight requests originated from this LUN are completed
1670 	 * before reading .device_busy, sdev->device_busy will be observed as
1671 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1672 	 * soon. Otherwise, completion of one of these requests will observe
1673 	 * the .restarts flag, and the request queue will be run for handling
1674 	 * this request, see scsi_end_request().
1675 	 */
1676 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1677 				!scsi_device_blocked(sdev)))
1678 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1679 	return -1;
1680 }
1681 
1682 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1683 {
1684 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1685 
1686 	cmd->budget_token = token;
1687 }
1688 
1689 static int scsi_mq_get_rq_budget_token(struct request *req)
1690 {
1691 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1692 
1693 	return cmd->budget_token;
1694 }
1695 
1696 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1697 			 const struct blk_mq_queue_data *bd)
1698 {
1699 	struct request *req = bd->rq;
1700 	struct request_queue *q = req->q;
1701 	struct scsi_device *sdev = q->queuedata;
1702 	struct Scsi_Host *shost = sdev->host;
1703 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1704 	blk_status_t ret;
1705 	int reason;
1706 
1707 	WARN_ON_ONCE(cmd->budget_token < 0);
1708 
1709 	/*
1710 	 * If the device is not in running state we will reject some or all
1711 	 * commands.
1712 	 */
1713 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1714 		ret = scsi_device_state_check(sdev, req);
1715 		if (ret != BLK_STS_OK)
1716 			goto out_put_budget;
1717 	}
1718 
1719 	ret = BLK_STS_RESOURCE;
1720 	if (!scsi_target_queue_ready(shost, sdev))
1721 		goto out_put_budget;
1722 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1723 		goto out_dec_target_busy;
1724 
1725 	if (!(req->rq_flags & RQF_DONTPREP)) {
1726 		ret = scsi_prepare_cmd(req);
1727 		if (ret != BLK_STS_OK)
1728 			goto out_dec_host_busy;
1729 		req->rq_flags |= RQF_DONTPREP;
1730 	} else {
1731 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1732 	}
1733 
1734 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1735 	if (sdev->simple_tags)
1736 		cmd->flags |= SCMD_TAGGED;
1737 	if (bd->last)
1738 		cmd->flags |= SCMD_LAST;
1739 
1740 	scsi_set_resid(cmd, 0);
1741 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1742 	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1743 
1744 	blk_mq_start_request(req);
1745 	reason = scsi_dispatch_cmd(cmd);
1746 	if (reason) {
1747 		scsi_set_blocked(cmd, reason);
1748 		ret = BLK_STS_RESOURCE;
1749 		goto out_dec_host_busy;
1750 	}
1751 
1752 	return BLK_STS_OK;
1753 
1754 out_dec_host_busy:
1755 	scsi_dec_host_busy(shost, cmd);
1756 out_dec_target_busy:
1757 	if (scsi_target(sdev)->can_queue > 0)
1758 		atomic_dec(&scsi_target(sdev)->target_busy);
1759 out_put_budget:
1760 	scsi_mq_put_budget(q, cmd->budget_token);
1761 	cmd->budget_token = -1;
1762 	switch (ret) {
1763 	case BLK_STS_OK:
1764 		break;
1765 	case BLK_STS_RESOURCE:
1766 	case BLK_STS_ZONE_RESOURCE:
1767 		if (scsi_device_blocked(sdev))
1768 			ret = BLK_STS_DEV_RESOURCE;
1769 		break;
1770 	case BLK_STS_AGAIN:
1771 		cmd->result = DID_BUS_BUSY << 16;
1772 		if (req->rq_flags & RQF_DONTPREP)
1773 			scsi_mq_uninit_cmd(cmd);
1774 		break;
1775 	default:
1776 		if (unlikely(!scsi_device_online(sdev)))
1777 			cmd->result = DID_NO_CONNECT << 16;
1778 		else
1779 			cmd->result = DID_ERROR << 16;
1780 		/*
1781 		 * Make sure to release all allocated resources when
1782 		 * we hit an error, as we will never see this command
1783 		 * again.
1784 		 */
1785 		if (req->rq_flags & RQF_DONTPREP)
1786 			scsi_mq_uninit_cmd(cmd);
1787 		scsi_run_queue_async(sdev);
1788 		break;
1789 	}
1790 	return ret;
1791 }
1792 
1793 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1794 		bool reserved)
1795 {
1796 	if (reserved)
1797 		return BLK_EH_RESET_TIMER;
1798 	return scsi_times_out(req);
1799 }
1800 
1801 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1802 				unsigned int hctx_idx, unsigned int numa_node)
1803 {
1804 	struct Scsi_Host *shost = set->driver_data;
1805 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1806 	struct scatterlist *sg;
1807 	int ret = 0;
1808 
1809 	cmd->sense_buffer =
1810 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1811 	if (!cmd->sense_buffer)
1812 		return -ENOMEM;
1813 
1814 	if (scsi_host_get_prot(shost)) {
1815 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1816 			shost->hostt->cmd_size;
1817 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1818 	}
1819 
1820 	if (shost->hostt->init_cmd_priv) {
1821 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1822 		if (ret < 0)
1823 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1824 	}
1825 
1826 	return ret;
1827 }
1828 
1829 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1830 				 unsigned int hctx_idx)
1831 {
1832 	struct Scsi_Host *shost = set->driver_data;
1833 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1834 
1835 	if (shost->hostt->exit_cmd_priv)
1836 		shost->hostt->exit_cmd_priv(shost, cmd);
1837 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1838 }
1839 
1840 
1841 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1842 {
1843 	struct Scsi_Host *shost = hctx->driver_data;
1844 
1845 	if (shost->hostt->mq_poll)
1846 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1847 
1848 	return 0;
1849 }
1850 
1851 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1852 			  unsigned int hctx_idx)
1853 {
1854 	struct Scsi_Host *shost = data;
1855 
1856 	hctx->driver_data = shost;
1857 	return 0;
1858 }
1859 
1860 static int scsi_map_queues(struct blk_mq_tag_set *set)
1861 {
1862 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1863 
1864 	if (shost->hostt->map_queues)
1865 		return shost->hostt->map_queues(shost);
1866 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1867 }
1868 
1869 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1870 {
1871 	struct device *dev = shost->dma_dev;
1872 
1873 	/*
1874 	 * this limit is imposed by hardware restrictions
1875 	 */
1876 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1877 					SG_MAX_SEGMENTS));
1878 
1879 	if (scsi_host_prot_dma(shost)) {
1880 		shost->sg_prot_tablesize =
1881 			min_not_zero(shost->sg_prot_tablesize,
1882 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1883 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1884 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1885 	}
1886 
1887 	if (dev->dma_mask) {
1888 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1889 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1890 	}
1891 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1892 	blk_queue_segment_boundary(q, shost->dma_boundary);
1893 	dma_set_seg_boundary(dev, shost->dma_boundary);
1894 
1895 	blk_queue_max_segment_size(q, shost->max_segment_size);
1896 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1897 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1898 
1899 	/*
1900 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1901 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1902 	 * which is set by the platform.
1903 	 *
1904 	 * Devices that require a bigger alignment can increase it later.
1905 	 */
1906 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1907 }
1908 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1909 
1910 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1911 	.get_budget	= scsi_mq_get_budget,
1912 	.put_budget	= scsi_mq_put_budget,
1913 	.queue_rq	= scsi_queue_rq,
1914 	.complete	= scsi_complete,
1915 	.timeout	= scsi_timeout,
1916 #ifdef CONFIG_BLK_DEBUG_FS
1917 	.show_rq	= scsi_show_rq,
1918 #endif
1919 	.init_request	= scsi_mq_init_request,
1920 	.exit_request	= scsi_mq_exit_request,
1921 	.cleanup_rq	= scsi_cleanup_rq,
1922 	.busy		= scsi_mq_lld_busy,
1923 	.map_queues	= scsi_map_queues,
1924 	.init_hctx	= scsi_init_hctx,
1925 	.poll		= scsi_mq_poll,
1926 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1927 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1928 };
1929 
1930 
1931 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1932 {
1933 	struct Scsi_Host *shost = hctx->driver_data;
1934 
1935 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1936 }
1937 
1938 static const struct blk_mq_ops scsi_mq_ops = {
1939 	.get_budget	= scsi_mq_get_budget,
1940 	.put_budget	= scsi_mq_put_budget,
1941 	.queue_rq	= scsi_queue_rq,
1942 	.commit_rqs	= scsi_commit_rqs,
1943 	.complete	= scsi_complete,
1944 	.timeout	= scsi_timeout,
1945 #ifdef CONFIG_BLK_DEBUG_FS
1946 	.show_rq	= scsi_show_rq,
1947 #endif
1948 	.init_request	= scsi_mq_init_request,
1949 	.exit_request	= scsi_mq_exit_request,
1950 	.cleanup_rq	= scsi_cleanup_rq,
1951 	.busy		= scsi_mq_lld_busy,
1952 	.map_queues	= scsi_map_queues,
1953 	.init_hctx	= scsi_init_hctx,
1954 	.poll		= scsi_mq_poll,
1955 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1956 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1957 };
1958 
1959 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1960 {
1961 	unsigned int cmd_size, sgl_size;
1962 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1963 
1964 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1965 				scsi_mq_inline_sgl_size(shost));
1966 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1967 	if (scsi_host_get_prot(shost))
1968 		cmd_size += sizeof(struct scsi_data_buffer) +
1969 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1970 
1971 	memset(tag_set, 0, sizeof(*tag_set));
1972 	if (shost->hostt->commit_rqs)
1973 		tag_set->ops = &scsi_mq_ops;
1974 	else
1975 		tag_set->ops = &scsi_mq_ops_no_commit;
1976 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1977 	tag_set->nr_maps = shost->nr_maps ? : 1;
1978 	tag_set->queue_depth = shost->can_queue;
1979 	tag_set->cmd_size = cmd_size;
1980 	tag_set->numa_node = dev_to_node(shost->dma_dev);
1981 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1982 	tag_set->flags |=
1983 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1984 	tag_set->driver_data = shost;
1985 	if (shost->host_tagset)
1986 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1987 
1988 	return blk_mq_alloc_tag_set(tag_set);
1989 }
1990 
1991 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1992 {
1993 	blk_mq_free_tag_set(&shost->tag_set);
1994 }
1995 
1996 /**
1997  * scsi_device_from_queue - return sdev associated with a request_queue
1998  * @q: The request queue to return the sdev from
1999  *
2000  * Return the sdev associated with a request queue or NULL if the
2001  * request_queue does not reference a SCSI device.
2002  */
2003 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2004 {
2005 	struct scsi_device *sdev = NULL;
2006 
2007 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2008 	    q->mq_ops == &scsi_mq_ops)
2009 		sdev = q->queuedata;
2010 	if (!sdev || !get_device(&sdev->sdev_gendev))
2011 		sdev = NULL;
2012 
2013 	return sdev;
2014 }
2015 /*
2016  * pktcdvd should have been integrated into the SCSI layers, but for historical
2017  * reasons like the old IDE driver it isn't.  This export allows it to safely
2018  * probe if a given device is a SCSI one and only attach to that.
2019  */
2020 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2021 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2022 #endif
2023 
2024 /**
2025  * scsi_block_requests - Utility function used by low-level drivers to prevent
2026  * further commands from being queued to the device.
2027  * @shost:  host in question
2028  *
2029  * There is no timer nor any other means by which the requests get unblocked
2030  * other than the low-level driver calling scsi_unblock_requests().
2031  */
2032 void scsi_block_requests(struct Scsi_Host *shost)
2033 {
2034 	shost->host_self_blocked = 1;
2035 }
2036 EXPORT_SYMBOL(scsi_block_requests);
2037 
2038 /**
2039  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2040  * further commands to be queued to the device.
2041  * @shost:  host in question
2042  *
2043  * There is no timer nor any other means by which the requests get unblocked
2044  * other than the low-level driver calling scsi_unblock_requests(). This is done
2045  * as an API function so that changes to the internals of the scsi mid-layer
2046  * won't require wholesale changes to drivers that use this feature.
2047  */
2048 void scsi_unblock_requests(struct Scsi_Host *shost)
2049 {
2050 	shost->host_self_blocked = 0;
2051 	scsi_run_host_queues(shost);
2052 }
2053 EXPORT_SYMBOL(scsi_unblock_requests);
2054 
2055 void scsi_exit_queue(void)
2056 {
2057 	kmem_cache_destroy(scsi_sense_cache);
2058 }
2059 
2060 /**
2061  *	scsi_mode_select - issue a mode select
2062  *	@sdev:	SCSI device to be queried
2063  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2064  *	@sp:	Save page bit (0 == don't save, 1 == save)
2065  *	@buffer: request buffer (may not be smaller than eight bytes)
2066  *	@len:	length of request buffer.
2067  *	@timeout: command timeout
2068  *	@retries: number of retries before failing
2069  *	@data: returns a structure abstracting the mode header data
2070  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2071  *		must be SCSI_SENSE_BUFFERSIZE big.
2072  *
2073  *	Returns zero if successful; negative error number or scsi
2074  *	status on error
2075  *
2076  */
2077 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2078 		     unsigned char *buffer, int len, int timeout, int retries,
2079 		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2080 {
2081 	unsigned char cmd[10];
2082 	unsigned char *real_buffer;
2083 	int ret;
2084 
2085 	memset(cmd, 0, sizeof(cmd));
2086 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2087 
2088 	/*
2089 	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2090 	 * and the mode select header cannot fit within the maximumm 255 bytes
2091 	 * of the MODE SELECT(6) command.
2092 	 */
2093 	if (sdev->use_10_for_ms ||
2094 	    len + 4 > 255 ||
2095 	    data->block_descriptor_length > 255) {
2096 		if (len > 65535 - 8)
2097 			return -EINVAL;
2098 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2099 		if (!real_buffer)
2100 			return -ENOMEM;
2101 		memcpy(real_buffer + 8, buffer, len);
2102 		len += 8;
2103 		real_buffer[0] = 0;
2104 		real_buffer[1] = 0;
2105 		real_buffer[2] = data->medium_type;
2106 		real_buffer[3] = data->device_specific;
2107 		real_buffer[4] = data->longlba ? 0x01 : 0;
2108 		real_buffer[5] = 0;
2109 		put_unaligned_be16(data->block_descriptor_length,
2110 				   &real_buffer[6]);
2111 
2112 		cmd[0] = MODE_SELECT_10;
2113 		put_unaligned_be16(len, &cmd[7]);
2114 	} else {
2115 		if (data->longlba)
2116 			return -EINVAL;
2117 
2118 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2119 		if (!real_buffer)
2120 			return -ENOMEM;
2121 		memcpy(real_buffer + 4, buffer, len);
2122 		len += 4;
2123 		real_buffer[0] = 0;
2124 		real_buffer[1] = data->medium_type;
2125 		real_buffer[2] = data->device_specific;
2126 		real_buffer[3] = data->block_descriptor_length;
2127 
2128 		cmd[0] = MODE_SELECT;
2129 		cmd[4] = len;
2130 	}
2131 
2132 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2133 			       sshdr, timeout, retries, NULL);
2134 	kfree(real_buffer);
2135 	return ret;
2136 }
2137 EXPORT_SYMBOL_GPL(scsi_mode_select);
2138 
2139 /**
2140  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2141  *	@sdev:	SCSI device to be queried
2142  *	@dbd:	set to prevent mode sense from returning block descriptors
2143  *	@modepage: mode page being requested
2144  *	@buffer: request buffer (may not be smaller than eight bytes)
2145  *	@len:	length of request buffer.
2146  *	@timeout: command timeout
2147  *	@retries: number of retries before failing
2148  *	@data: returns a structure abstracting the mode header data
2149  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2150  *		must be SCSI_SENSE_BUFFERSIZE big.
2151  *
2152  *	Returns zero if successful, or a negative error number on failure
2153  */
2154 int
2155 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2156 		  unsigned char *buffer, int len, int timeout, int retries,
2157 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2158 {
2159 	unsigned char cmd[12];
2160 	int use_10_for_ms;
2161 	int header_length;
2162 	int result, retry_count = retries;
2163 	struct scsi_sense_hdr my_sshdr;
2164 
2165 	memset(data, 0, sizeof(*data));
2166 	memset(&cmd[0], 0, 12);
2167 
2168 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2169 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2170 	cmd[2] = modepage;
2171 
2172 	/* caller might not be interested in sense, but we need it */
2173 	if (!sshdr)
2174 		sshdr = &my_sshdr;
2175 
2176  retry:
2177 	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2178 
2179 	if (use_10_for_ms) {
2180 		if (len < 8 || len > 65535)
2181 			return -EINVAL;
2182 
2183 		cmd[0] = MODE_SENSE_10;
2184 		put_unaligned_be16(len, &cmd[7]);
2185 		header_length = 8;
2186 	} else {
2187 		if (len < 4)
2188 			return -EINVAL;
2189 
2190 		cmd[0] = MODE_SENSE;
2191 		cmd[4] = len;
2192 		header_length = 4;
2193 	}
2194 
2195 	memset(buffer, 0, len);
2196 
2197 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2198 				  sshdr, timeout, retries, NULL);
2199 	if (result < 0)
2200 		return result;
2201 
2202 	/* This code looks awful: what it's doing is making sure an
2203 	 * ILLEGAL REQUEST sense return identifies the actual command
2204 	 * byte as the problem.  MODE_SENSE commands can return
2205 	 * ILLEGAL REQUEST if the code page isn't supported */
2206 
2207 	if (!scsi_status_is_good(result)) {
2208 		if (scsi_sense_valid(sshdr)) {
2209 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2210 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2211 				/*
2212 				 * Invalid command operation code: retry using
2213 				 * MODE SENSE(6) if this was a MODE SENSE(10)
2214 				 * request, except if the request mode page is
2215 				 * too large for MODE SENSE single byte
2216 				 * allocation length field.
2217 				 */
2218 				if (use_10_for_ms) {
2219 					if (len > 255)
2220 						return -EIO;
2221 					sdev->use_10_for_ms = 0;
2222 					goto retry;
2223 				}
2224 			}
2225 			if (scsi_status_is_check_condition(result) &&
2226 			    sshdr->sense_key == UNIT_ATTENTION &&
2227 			    retry_count) {
2228 				retry_count--;
2229 				goto retry;
2230 			}
2231 		}
2232 		return -EIO;
2233 	}
2234 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2235 		     (modepage == 6 || modepage == 8))) {
2236 		/* Initio breakage? */
2237 		header_length = 0;
2238 		data->length = 13;
2239 		data->medium_type = 0;
2240 		data->device_specific = 0;
2241 		data->longlba = 0;
2242 		data->block_descriptor_length = 0;
2243 	} else if (use_10_for_ms) {
2244 		data->length = get_unaligned_be16(&buffer[0]) + 2;
2245 		data->medium_type = buffer[2];
2246 		data->device_specific = buffer[3];
2247 		data->longlba = buffer[4] & 0x01;
2248 		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2249 	} else {
2250 		data->length = buffer[0] + 1;
2251 		data->medium_type = buffer[1];
2252 		data->device_specific = buffer[2];
2253 		data->block_descriptor_length = buffer[3];
2254 	}
2255 	data->header_length = header_length;
2256 
2257 	return 0;
2258 }
2259 EXPORT_SYMBOL(scsi_mode_sense);
2260 
2261 /**
2262  *	scsi_test_unit_ready - test if unit is ready
2263  *	@sdev:	scsi device to change the state of.
2264  *	@timeout: command timeout
2265  *	@retries: number of retries before failing
2266  *	@sshdr: outpout pointer for decoded sense information.
2267  *
2268  *	Returns zero if unsuccessful or an error if TUR failed.  For
2269  *	removable media, UNIT_ATTENTION sets ->changed flag.
2270  **/
2271 int
2272 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2273 		     struct scsi_sense_hdr *sshdr)
2274 {
2275 	char cmd[] = {
2276 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2277 	};
2278 	int result;
2279 
2280 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2281 	do {
2282 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2283 					  timeout, 1, NULL);
2284 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2285 		    sshdr->sense_key == UNIT_ATTENTION)
2286 			sdev->changed = 1;
2287 	} while (scsi_sense_valid(sshdr) &&
2288 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2289 
2290 	return result;
2291 }
2292 EXPORT_SYMBOL(scsi_test_unit_ready);
2293 
2294 /**
2295  *	scsi_device_set_state - Take the given device through the device state model.
2296  *	@sdev:	scsi device to change the state of.
2297  *	@state:	state to change to.
2298  *
2299  *	Returns zero if successful or an error if the requested
2300  *	transition is illegal.
2301  */
2302 int
2303 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2304 {
2305 	enum scsi_device_state oldstate = sdev->sdev_state;
2306 
2307 	if (state == oldstate)
2308 		return 0;
2309 
2310 	switch (state) {
2311 	case SDEV_CREATED:
2312 		switch (oldstate) {
2313 		case SDEV_CREATED_BLOCK:
2314 			break;
2315 		default:
2316 			goto illegal;
2317 		}
2318 		break;
2319 
2320 	case SDEV_RUNNING:
2321 		switch (oldstate) {
2322 		case SDEV_CREATED:
2323 		case SDEV_OFFLINE:
2324 		case SDEV_TRANSPORT_OFFLINE:
2325 		case SDEV_QUIESCE:
2326 		case SDEV_BLOCK:
2327 			break;
2328 		default:
2329 			goto illegal;
2330 		}
2331 		break;
2332 
2333 	case SDEV_QUIESCE:
2334 		switch (oldstate) {
2335 		case SDEV_RUNNING:
2336 		case SDEV_OFFLINE:
2337 		case SDEV_TRANSPORT_OFFLINE:
2338 			break;
2339 		default:
2340 			goto illegal;
2341 		}
2342 		break;
2343 
2344 	case SDEV_OFFLINE:
2345 	case SDEV_TRANSPORT_OFFLINE:
2346 		switch (oldstate) {
2347 		case SDEV_CREATED:
2348 		case SDEV_RUNNING:
2349 		case SDEV_QUIESCE:
2350 		case SDEV_BLOCK:
2351 			break;
2352 		default:
2353 			goto illegal;
2354 		}
2355 		break;
2356 
2357 	case SDEV_BLOCK:
2358 		switch (oldstate) {
2359 		case SDEV_RUNNING:
2360 		case SDEV_CREATED_BLOCK:
2361 		case SDEV_QUIESCE:
2362 		case SDEV_OFFLINE:
2363 			break;
2364 		default:
2365 			goto illegal;
2366 		}
2367 		break;
2368 
2369 	case SDEV_CREATED_BLOCK:
2370 		switch (oldstate) {
2371 		case SDEV_CREATED:
2372 			break;
2373 		default:
2374 			goto illegal;
2375 		}
2376 		break;
2377 
2378 	case SDEV_CANCEL:
2379 		switch (oldstate) {
2380 		case SDEV_CREATED:
2381 		case SDEV_RUNNING:
2382 		case SDEV_QUIESCE:
2383 		case SDEV_OFFLINE:
2384 		case SDEV_TRANSPORT_OFFLINE:
2385 			break;
2386 		default:
2387 			goto illegal;
2388 		}
2389 		break;
2390 
2391 	case SDEV_DEL:
2392 		switch (oldstate) {
2393 		case SDEV_CREATED:
2394 		case SDEV_RUNNING:
2395 		case SDEV_OFFLINE:
2396 		case SDEV_TRANSPORT_OFFLINE:
2397 		case SDEV_CANCEL:
2398 		case SDEV_BLOCK:
2399 		case SDEV_CREATED_BLOCK:
2400 			break;
2401 		default:
2402 			goto illegal;
2403 		}
2404 		break;
2405 
2406 	}
2407 	sdev->offline_already = false;
2408 	sdev->sdev_state = state;
2409 	return 0;
2410 
2411  illegal:
2412 	SCSI_LOG_ERROR_RECOVERY(1,
2413 				sdev_printk(KERN_ERR, sdev,
2414 					    "Illegal state transition %s->%s",
2415 					    scsi_device_state_name(oldstate),
2416 					    scsi_device_state_name(state))
2417 				);
2418 	return -EINVAL;
2419 }
2420 EXPORT_SYMBOL(scsi_device_set_state);
2421 
2422 /**
2423  *	scsi_evt_emit - emit a single SCSI device uevent
2424  *	@sdev: associated SCSI device
2425  *	@evt: event to emit
2426  *
2427  *	Send a single uevent (scsi_event) to the associated scsi_device.
2428  */
2429 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2430 {
2431 	int idx = 0;
2432 	char *envp[3];
2433 
2434 	switch (evt->evt_type) {
2435 	case SDEV_EVT_MEDIA_CHANGE:
2436 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2437 		break;
2438 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2439 		scsi_rescan_device(&sdev->sdev_gendev);
2440 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2441 		break;
2442 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2443 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2444 		break;
2445 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2446 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2447 		break;
2448 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2449 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2450 		break;
2451 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2452 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2453 		break;
2454 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2455 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2456 		break;
2457 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2458 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2459 		break;
2460 	default:
2461 		/* do nothing */
2462 		break;
2463 	}
2464 
2465 	envp[idx++] = NULL;
2466 
2467 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2468 }
2469 
2470 /**
2471  *	scsi_evt_thread - send a uevent for each scsi event
2472  *	@work: work struct for scsi_device
2473  *
2474  *	Dispatch queued events to their associated scsi_device kobjects
2475  *	as uevents.
2476  */
2477 void scsi_evt_thread(struct work_struct *work)
2478 {
2479 	struct scsi_device *sdev;
2480 	enum scsi_device_event evt_type;
2481 	LIST_HEAD(event_list);
2482 
2483 	sdev = container_of(work, struct scsi_device, event_work);
2484 
2485 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2486 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2487 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2488 
2489 	while (1) {
2490 		struct scsi_event *evt;
2491 		struct list_head *this, *tmp;
2492 		unsigned long flags;
2493 
2494 		spin_lock_irqsave(&sdev->list_lock, flags);
2495 		list_splice_init(&sdev->event_list, &event_list);
2496 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2497 
2498 		if (list_empty(&event_list))
2499 			break;
2500 
2501 		list_for_each_safe(this, tmp, &event_list) {
2502 			evt = list_entry(this, struct scsi_event, node);
2503 			list_del(&evt->node);
2504 			scsi_evt_emit(sdev, evt);
2505 			kfree(evt);
2506 		}
2507 	}
2508 }
2509 
2510 /**
2511  * 	sdev_evt_send - send asserted event to uevent thread
2512  *	@sdev: scsi_device event occurred on
2513  *	@evt: event to send
2514  *
2515  *	Assert scsi device event asynchronously.
2516  */
2517 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2518 {
2519 	unsigned long flags;
2520 
2521 #if 0
2522 	/* FIXME: currently this check eliminates all media change events
2523 	 * for polled devices.  Need to update to discriminate between AN
2524 	 * and polled events */
2525 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2526 		kfree(evt);
2527 		return;
2528 	}
2529 #endif
2530 
2531 	spin_lock_irqsave(&sdev->list_lock, flags);
2532 	list_add_tail(&evt->node, &sdev->event_list);
2533 	schedule_work(&sdev->event_work);
2534 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2535 }
2536 EXPORT_SYMBOL_GPL(sdev_evt_send);
2537 
2538 /**
2539  * 	sdev_evt_alloc - allocate a new scsi event
2540  *	@evt_type: type of event to allocate
2541  *	@gfpflags: GFP flags for allocation
2542  *
2543  *	Allocates and returns a new scsi_event.
2544  */
2545 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2546 				  gfp_t gfpflags)
2547 {
2548 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2549 	if (!evt)
2550 		return NULL;
2551 
2552 	evt->evt_type = evt_type;
2553 	INIT_LIST_HEAD(&evt->node);
2554 
2555 	/* evt_type-specific initialization, if any */
2556 	switch (evt_type) {
2557 	case SDEV_EVT_MEDIA_CHANGE:
2558 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2559 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2560 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2561 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2562 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2563 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2564 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2565 	default:
2566 		/* do nothing */
2567 		break;
2568 	}
2569 
2570 	return evt;
2571 }
2572 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2573 
2574 /**
2575  * 	sdev_evt_send_simple - send asserted event to uevent thread
2576  *	@sdev: scsi_device event occurred on
2577  *	@evt_type: type of event to send
2578  *	@gfpflags: GFP flags for allocation
2579  *
2580  *	Assert scsi device event asynchronously, given an event type.
2581  */
2582 void sdev_evt_send_simple(struct scsi_device *sdev,
2583 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2584 {
2585 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2586 	if (!evt) {
2587 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2588 			    evt_type);
2589 		return;
2590 	}
2591 
2592 	sdev_evt_send(sdev, evt);
2593 }
2594 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2595 
2596 /**
2597  *	scsi_device_quiesce - Block all commands except power management.
2598  *	@sdev:	scsi device to quiesce.
2599  *
2600  *	This works by trying to transition to the SDEV_QUIESCE state
2601  *	(which must be a legal transition).  When the device is in this
2602  *	state, only power management requests will be accepted, all others will
2603  *	be deferred.
2604  *
2605  *	Must be called with user context, may sleep.
2606  *
2607  *	Returns zero if unsuccessful or an error if not.
2608  */
2609 int
2610 scsi_device_quiesce(struct scsi_device *sdev)
2611 {
2612 	struct request_queue *q = sdev->request_queue;
2613 	int err;
2614 
2615 	/*
2616 	 * It is allowed to call scsi_device_quiesce() multiple times from
2617 	 * the same context but concurrent scsi_device_quiesce() calls are
2618 	 * not allowed.
2619 	 */
2620 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2621 
2622 	if (sdev->quiesced_by == current)
2623 		return 0;
2624 
2625 	blk_set_pm_only(q);
2626 
2627 	blk_mq_freeze_queue(q);
2628 	/*
2629 	 * Ensure that the effect of blk_set_pm_only() will be visible
2630 	 * for percpu_ref_tryget() callers that occur after the queue
2631 	 * unfreeze even if the queue was already frozen before this function
2632 	 * was called. See also https://lwn.net/Articles/573497/.
2633 	 */
2634 	synchronize_rcu();
2635 	blk_mq_unfreeze_queue(q);
2636 
2637 	mutex_lock(&sdev->state_mutex);
2638 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2639 	if (err == 0)
2640 		sdev->quiesced_by = current;
2641 	else
2642 		blk_clear_pm_only(q);
2643 	mutex_unlock(&sdev->state_mutex);
2644 
2645 	return err;
2646 }
2647 EXPORT_SYMBOL(scsi_device_quiesce);
2648 
2649 /**
2650  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2651  *	@sdev:	scsi device to resume.
2652  *
2653  *	Moves the device from quiesced back to running and restarts the
2654  *	queues.
2655  *
2656  *	Must be called with user context, may sleep.
2657  */
2658 void scsi_device_resume(struct scsi_device *sdev)
2659 {
2660 	/* check if the device state was mutated prior to resume, and if
2661 	 * so assume the state is being managed elsewhere (for example
2662 	 * device deleted during suspend)
2663 	 */
2664 	mutex_lock(&sdev->state_mutex);
2665 	if (sdev->sdev_state == SDEV_QUIESCE)
2666 		scsi_device_set_state(sdev, SDEV_RUNNING);
2667 	if (sdev->quiesced_by) {
2668 		sdev->quiesced_by = NULL;
2669 		blk_clear_pm_only(sdev->request_queue);
2670 	}
2671 	mutex_unlock(&sdev->state_mutex);
2672 }
2673 EXPORT_SYMBOL(scsi_device_resume);
2674 
2675 static void
2676 device_quiesce_fn(struct scsi_device *sdev, void *data)
2677 {
2678 	scsi_device_quiesce(sdev);
2679 }
2680 
2681 void
2682 scsi_target_quiesce(struct scsi_target *starget)
2683 {
2684 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2685 }
2686 EXPORT_SYMBOL(scsi_target_quiesce);
2687 
2688 static void
2689 device_resume_fn(struct scsi_device *sdev, void *data)
2690 {
2691 	scsi_device_resume(sdev);
2692 }
2693 
2694 void
2695 scsi_target_resume(struct scsi_target *starget)
2696 {
2697 	starget_for_each_device(starget, NULL, device_resume_fn);
2698 }
2699 EXPORT_SYMBOL(scsi_target_resume);
2700 
2701 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2702 {
2703 	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2704 		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2705 
2706 	return 0;
2707 }
2708 
2709 void scsi_start_queue(struct scsi_device *sdev)
2710 {
2711 	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2712 		blk_mq_unquiesce_queue(sdev->request_queue);
2713 }
2714 
2715 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
2716 {
2717 	/*
2718 	 * The atomic variable of ->queue_stopped covers that
2719 	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2720 	 *
2721 	 * However, we still need to wait until quiesce is done
2722 	 * in case that queue has been stopped.
2723 	 */
2724 	if (!cmpxchg(&sdev->queue_stopped, 0, 1)) {
2725 		if (nowait)
2726 			blk_mq_quiesce_queue_nowait(sdev->request_queue);
2727 		else
2728 			blk_mq_quiesce_queue(sdev->request_queue);
2729 	} else {
2730 		if (!nowait)
2731 			blk_mq_wait_quiesce_done(sdev->request_queue);
2732 	}
2733 }
2734 
2735 /**
2736  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2737  * @sdev: device to block
2738  *
2739  * Pause SCSI command processing on the specified device. Does not sleep.
2740  *
2741  * Returns zero if successful or a negative error code upon failure.
2742  *
2743  * Notes:
2744  * This routine transitions the device to the SDEV_BLOCK state (which must be
2745  * a legal transition). When the device is in this state, command processing
2746  * is paused until the device leaves the SDEV_BLOCK state. See also
2747  * scsi_internal_device_unblock_nowait().
2748  */
2749 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2750 {
2751 	int ret = __scsi_internal_device_block_nowait(sdev);
2752 
2753 	/*
2754 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2755 	 * block layer from calling the midlayer with this device's
2756 	 * request queue.
2757 	 */
2758 	if (!ret)
2759 		scsi_stop_queue(sdev, true);
2760 	return ret;
2761 }
2762 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2763 
2764 /**
2765  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2766  * @sdev: device to block
2767  *
2768  * Pause SCSI command processing on the specified device and wait until all
2769  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2770  *
2771  * Returns zero if successful or a negative error code upon failure.
2772  *
2773  * Note:
2774  * This routine transitions the device to the SDEV_BLOCK state (which must be
2775  * a legal transition). When the device is in this state, command processing
2776  * is paused until the device leaves the SDEV_BLOCK state. See also
2777  * scsi_internal_device_unblock().
2778  */
2779 static int scsi_internal_device_block(struct scsi_device *sdev)
2780 {
2781 	int err;
2782 
2783 	mutex_lock(&sdev->state_mutex);
2784 	err = __scsi_internal_device_block_nowait(sdev);
2785 	if (err == 0)
2786 		scsi_stop_queue(sdev, false);
2787 	mutex_unlock(&sdev->state_mutex);
2788 
2789 	return err;
2790 }
2791 
2792 /**
2793  * scsi_internal_device_unblock_nowait - resume a device after a block request
2794  * @sdev:	device to resume
2795  * @new_state:	state to set the device to after unblocking
2796  *
2797  * Restart the device queue for a previously suspended SCSI device. Does not
2798  * sleep.
2799  *
2800  * Returns zero if successful or a negative error code upon failure.
2801  *
2802  * Notes:
2803  * This routine transitions the device to the SDEV_RUNNING state or to one of
2804  * the offline states (which must be a legal transition) allowing the midlayer
2805  * to goose the queue for this device.
2806  */
2807 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2808 					enum scsi_device_state new_state)
2809 {
2810 	switch (new_state) {
2811 	case SDEV_RUNNING:
2812 	case SDEV_TRANSPORT_OFFLINE:
2813 		break;
2814 	default:
2815 		return -EINVAL;
2816 	}
2817 
2818 	/*
2819 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2820 	 * offlined states and goose the device queue if successful.
2821 	 */
2822 	switch (sdev->sdev_state) {
2823 	case SDEV_BLOCK:
2824 	case SDEV_TRANSPORT_OFFLINE:
2825 		sdev->sdev_state = new_state;
2826 		break;
2827 	case SDEV_CREATED_BLOCK:
2828 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2829 		    new_state == SDEV_OFFLINE)
2830 			sdev->sdev_state = new_state;
2831 		else
2832 			sdev->sdev_state = SDEV_CREATED;
2833 		break;
2834 	case SDEV_CANCEL:
2835 	case SDEV_OFFLINE:
2836 		break;
2837 	default:
2838 		return -EINVAL;
2839 	}
2840 	scsi_start_queue(sdev);
2841 
2842 	return 0;
2843 }
2844 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2845 
2846 /**
2847  * scsi_internal_device_unblock - resume a device after a block request
2848  * @sdev:	device to resume
2849  * @new_state:	state to set the device to after unblocking
2850  *
2851  * Restart the device queue for a previously suspended SCSI device. May sleep.
2852  *
2853  * Returns zero if successful or a negative error code upon failure.
2854  *
2855  * Notes:
2856  * This routine transitions the device to the SDEV_RUNNING state or to one of
2857  * the offline states (which must be a legal transition) allowing the midlayer
2858  * to goose the queue for this device.
2859  */
2860 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2861 					enum scsi_device_state new_state)
2862 {
2863 	int ret;
2864 
2865 	mutex_lock(&sdev->state_mutex);
2866 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2867 	mutex_unlock(&sdev->state_mutex);
2868 
2869 	return ret;
2870 }
2871 
2872 static void
2873 device_block(struct scsi_device *sdev, void *data)
2874 {
2875 	int ret;
2876 
2877 	ret = scsi_internal_device_block(sdev);
2878 
2879 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2880 		  dev_name(&sdev->sdev_gendev), ret);
2881 }
2882 
2883 static int
2884 target_block(struct device *dev, void *data)
2885 {
2886 	if (scsi_is_target_device(dev))
2887 		starget_for_each_device(to_scsi_target(dev), NULL,
2888 					device_block);
2889 	return 0;
2890 }
2891 
2892 void
2893 scsi_target_block(struct device *dev)
2894 {
2895 	if (scsi_is_target_device(dev))
2896 		starget_for_each_device(to_scsi_target(dev), NULL,
2897 					device_block);
2898 	else
2899 		device_for_each_child(dev, NULL, target_block);
2900 }
2901 EXPORT_SYMBOL_GPL(scsi_target_block);
2902 
2903 static void
2904 device_unblock(struct scsi_device *sdev, void *data)
2905 {
2906 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2907 }
2908 
2909 static int
2910 target_unblock(struct device *dev, void *data)
2911 {
2912 	if (scsi_is_target_device(dev))
2913 		starget_for_each_device(to_scsi_target(dev), data,
2914 					device_unblock);
2915 	return 0;
2916 }
2917 
2918 void
2919 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2920 {
2921 	if (scsi_is_target_device(dev))
2922 		starget_for_each_device(to_scsi_target(dev), &new_state,
2923 					device_unblock);
2924 	else
2925 		device_for_each_child(dev, &new_state, target_unblock);
2926 }
2927 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2928 
2929 int
2930 scsi_host_block(struct Scsi_Host *shost)
2931 {
2932 	struct scsi_device *sdev;
2933 	int ret = 0;
2934 
2935 	/*
2936 	 * Call scsi_internal_device_block_nowait so we can avoid
2937 	 * calling synchronize_rcu() for each LUN.
2938 	 */
2939 	shost_for_each_device(sdev, shost) {
2940 		mutex_lock(&sdev->state_mutex);
2941 		ret = scsi_internal_device_block_nowait(sdev);
2942 		mutex_unlock(&sdev->state_mutex);
2943 		if (ret) {
2944 			scsi_device_put(sdev);
2945 			break;
2946 		}
2947 	}
2948 
2949 	/*
2950 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2951 	 * calling synchronize_rcu() once is enough.
2952 	 */
2953 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2954 
2955 	if (!ret)
2956 		synchronize_rcu();
2957 
2958 	return ret;
2959 }
2960 EXPORT_SYMBOL_GPL(scsi_host_block);
2961 
2962 int
2963 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2964 {
2965 	struct scsi_device *sdev;
2966 	int ret = 0;
2967 
2968 	shost_for_each_device(sdev, shost) {
2969 		ret = scsi_internal_device_unblock(sdev, new_state);
2970 		if (ret) {
2971 			scsi_device_put(sdev);
2972 			break;
2973 		}
2974 	}
2975 	return ret;
2976 }
2977 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2978 
2979 /**
2980  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2981  * @sgl:	scatter-gather list
2982  * @sg_count:	number of segments in sg
2983  * @offset:	offset in bytes into sg, on return offset into the mapped area
2984  * @len:	bytes to map, on return number of bytes mapped
2985  *
2986  * Returns virtual address of the start of the mapped page
2987  */
2988 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2989 			  size_t *offset, size_t *len)
2990 {
2991 	int i;
2992 	size_t sg_len = 0, len_complete = 0;
2993 	struct scatterlist *sg;
2994 	struct page *page;
2995 
2996 	WARN_ON(!irqs_disabled());
2997 
2998 	for_each_sg(sgl, sg, sg_count, i) {
2999 		len_complete = sg_len; /* Complete sg-entries */
3000 		sg_len += sg->length;
3001 		if (sg_len > *offset)
3002 			break;
3003 	}
3004 
3005 	if (unlikely(i == sg_count)) {
3006 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3007 			"elements %d\n",
3008 		       __func__, sg_len, *offset, sg_count);
3009 		WARN_ON(1);
3010 		return NULL;
3011 	}
3012 
3013 	/* Offset starting from the beginning of first page in this sg-entry */
3014 	*offset = *offset - len_complete + sg->offset;
3015 
3016 	/* Assumption: contiguous pages can be accessed as "page + i" */
3017 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3018 	*offset &= ~PAGE_MASK;
3019 
3020 	/* Bytes in this sg-entry from *offset to the end of the page */
3021 	sg_len = PAGE_SIZE - *offset;
3022 	if (*len > sg_len)
3023 		*len = sg_len;
3024 
3025 	return kmap_atomic(page);
3026 }
3027 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3028 
3029 /**
3030  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3031  * @virt:	virtual address to be unmapped
3032  */
3033 void scsi_kunmap_atomic_sg(void *virt)
3034 {
3035 	kunmap_atomic(virt);
3036 }
3037 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3038 
3039 void sdev_disable_disk_events(struct scsi_device *sdev)
3040 {
3041 	atomic_inc(&sdev->disk_events_disable_depth);
3042 }
3043 EXPORT_SYMBOL(sdev_disable_disk_events);
3044 
3045 void sdev_enable_disk_events(struct scsi_device *sdev)
3046 {
3047 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3048 		return;
3049 	atomic_dec(&sdev->disk_events_disable_depth);
3050 }
3051 EXPORT_SYMBOL(sdev_enable_disk_events);
3052 
3053 static unsigned char designator_prio(const unsigned char *d)
3054 {
3055 	if (d[1] & 0x30)
3056 		/* not associated with LUN */
3057 		return 0;
3058 
3059 	if (d[3] == 0)
3060 		/* invalid length */
3061 		return 0;
3062 
3063 	/*
3064 	 * Order of preference for lun descriptor:
3065 	 * - SCSI name string
3066 	 * - NAA IEEE Registered Extended
3067 	 * - EUI-64 based 16-byte
3068 	 * - EUI-64 based 12-byte
3069 	 * - NAA IEEE Registered
3070 	 * - NAA IEEE Extended
3071 	 * - EUI-64 based 8-byte
3072 	 * - SCSI name string (truncated)
3073 	 * - T10 Vendor ID
3074 	 * as longer descriptors reduce the likelyhood
3075 	 * of identification clashes.
3076 	 */
3077 
3078 	switch (d[1] & 0xf) {
3079 	case 8:
3080 		/* SCSI name string, variable-length UTF-8 */
3081 		return 9;
3082 	case 3:
3083 		switch (d[4] >> 4) {
3084 		case 6:
3085 			/* NAA registered extended */
3086 			return 8;
3087 		case 5:
3088 			/* NAA registered */
3089 			return 5;
3090 		case 4:
3091 			/* NAA extended */
3092 			return 4;
3093 		case 3:
3094 			/* NAA locally assigned */
3095 			return 1;
3096 		default:
3097 			break;
3098 		}
3099 		break;
3100 	case 2:
3101 		switch (d[3]) {
3102 		case 16:
3103 			/* EUI64-based, 16 byte */
3104 			return 7;
3105 		case 12:
3106 			/* EUI64-based, 12 byte */
3107 			return 6;
3108 		case 8:
3109 			/* EUI64-based, 8 byte */
3110 			return 3;
3111 		default:
3112 			break;
3113 		}
3114 		break;
3115 	case 1:
3116 		/* T10 vendor ID */
3117 		return 1;
3118 	default:
3119 		break;
3120 	}
3121 
3122 	return 0;
3123 }
3124 
3125 /**
3126  * scsi_vpd_lun_id - return a unique device identification
3127  * @sdev: SCSI device
3128  * @id:   buffer for the identification
3129  * @id_len:  length of the buffer
3130  *
3131  * Copies a unique device identification into @id based
3132  * on the information in the VPD page 0x83 of the device.
3133  * The string will be formatted as a SCSI name string.
3134  *
3135  * Returns the length of the identification or error on failure.
3136  * If the identifier is longer than the supplied buffer the actual
3137  * identifier length is returned and the buffer is not zero-padded.
3138  */
3139 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3140 {
3141 	u8 cur_id_prio = 0;
3142 	u8 cur_id_size = 0;
3143 	const unsigned char *d, *cur_id_str;
3144 	const struct scsi_vpd *vpd_pg83;
3145 	int id_size = -EINVAL;
3146 
3147 	rcu_read_lock();
3148 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3149 	if (!vpd_pg83) {
3150 		rcu_read_unlock();
3151 		return -ENXIO;
3152 	}
3153 
3154 	/* The id string must be at least 20 bytes + terminating NULL byte */
3155 	if (id_len < 21) {
3156 		rcu_read_unlock();
3157 		return -EINVAL;
3158 	}
3159 
3160 	memset(id, 0, id_len);
3161 	for (d = vpd_pg83->data + 4;
3162 	     d < vpd_pg83->data + vpd_pg83->len;
3163 	     d += d[3] + 4) {
3164 		u8 prio = designator_prio(d);
3165 
3166 		if (prio == 0 || cur_id_prio > prio)
3167 			continue;
3168 
3169 		switch (d[1] & 0xf) {
3170 		case 0x1:
3171 			/* T10 Vendor ID */
3172 			if (cur_id_size > d[3])
3173 				break;
3174 			cur_id_prio = prio;
3175 			cur_id_size = d[3];
3176 			if (cur_id_size + 4 > id_len)
3177 				cur_id_size = id_len - 4;
3178 			cur_id_str = d + 4;
3179 			id_size = snprintf(id, id_len, "t10.%*pE",
3180 					   cur_id_size, cur_id_str);
3181 			break;
3182 		case 0x2:
3183 			/* EUI-64 */
3184 			cur_id_prio = prio;
3185 			cur_id_size = d[3];
3186 			cur_id_str = d + 4;
3187 			switch (cur_id_size) {
3188 			case 8:
3189 				id_size = snprintf(id, id_len,
3190 						   "eui.%8phN",
3191 						   cur_id_str);
3192 				break;
3193 			case 12:
3194 				id_size = snprintf(id, id_len,
3195 						   "eui.%12phN",
3196 						   cur_id_str);
3197 				break;
3198 			case 16:
3199 				id_size = snprintf(id, id_len,
3200 						   "eui.%16phN",
3201 						   cur_id_str);
3202 				break;
3203 			default:
3204 				break;
3205 			}
3206 			break;
3207 		case 0x3:
3208 			/* NAA */
3209 			cur_id_prio = prio;
3210 			cur_id_size = d[3];
3211 			cur_id_str = d + 4;
3212 			switch (cur_id_size) {
3213 			case 8:
3214 				id_size = snprintf(id, id_len,
3215 						   "naa.%8phN",
3216 						   cur_id_str);
3217 				break;
3218 			case 16:
3219 				id_size = snprintf(id, id_len,
3220 						   "naa.%16phN",
3221 						   cur_id_str);
3222 				break;
3223 			default:
3224 				break;
3225 			}
3226 			break;
3227 		case 0x8:
3228 			/* SCSI name string */
3229 			if (cur_id_size > d[3])
3230 				break;
3231 			/* Prefer others for truncated descriptor */
3232 			if (d[3] > id_len) {
3233 				prio = 2;
3234 				if (cur_id_prio > prio)
3235 					break;
3236 			}
3237 			cur_id_prio = prio;
3238 			cur_id_size = id_size = d[3];
3239 			cur_id_str = d + 4;
3240 			if (cur_id_size >= id_len)
3241 				cur_id_size = id_len - 1;
3242 			memcpy(id, cur_id_str, cur_id_size);
3243 			break;
3244 		default:
3245 			break;
3246 		}
3247 	}
3248 	rcu_read_unlock();
3249 
3250 	return id_size;
3251 }
3252 EXPORT_SYMBOL(scsi_vpd_lun_id);
3253 
3254 /*
3255  * scsi_vpd_tpg_id - return a target port group identifier
3256  * @sdev: SCSI device
3257  *
3258  * Returns the Target Port Group identifier from the information
3259  * froom VPD page 0x83 of the device.
3260  *
3261  * Returns the identifier or error on failure.
3262  */
3263 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3264 {
3265 	const unsigned char *d;
3266 	const struct scsi_vpd *vpd_pg83;
3267 	int group_id = -EAGAIN, rel_port = -1;
3268 
3269 	rcu_read_lock();
3270 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3271 	if (!vpd_pg83) {
3272 		rcu_read_unlock();
3273 		return -ENXIO;
3274 	}
3275 
3276 	d = vpd_pg83->data + 4;
3277 	while (d < vpd_pg83->data + vpd_pg83->len) {
3278 		switch (d[1] & 0xf) {
3279 		case 0x4:
3280 			/* Relative target port */
3281 			rel_port = get_unaligned_be16(&d[6]);
3282 			break;
3283 		case 0x5:
3284 			/* Target port group */
3285 			group_id = get_unaligned_be16(&d[6]);
3286 			break;
3287 		default:
3288 			break;
3289 		}
3290 		d += d[3] + 4;
3291 	}
3292 	rcu_read_unlock();
3293 
3294 	if (group_id >= 0 && rel_id && rel_port != -1)
3295 		*rel_id = rel_port;
3296 
3297 	return group_id;
3298 }
3299 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3300 
3301 /**
3302  * scsi_build_sense - build sense data for a command
3303  * @scmd:	scsi command for which the sense should be formatted
3304  * @desc:	Sense format (non-zero == descriptor format,
3305  *              0 == fixed format)
3306  * @key:	Sense key
3307  * @asc:	Additional sense code
3308  * @ascq:	Additional sense code qualifier
3309  *
3310  **/
3311 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3312 {
3313 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3314 	scmd->result = SAM_STAT_CHECK_CONDITION;
3315 }
3316 EXPORT_SYMBOL_GPL(scsi_build_sense);
3317