xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision f677b30b487ca3763c3de3f1b4d8c976c2961cd1)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31 
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34 
35 
36 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE		2
38 
39 struct scsi_host_sg_pool {
40 	size_t		size;
41 	char		*name;
42 	struct kmem_cache	*slab;
43 	mempool_t	*pool;
44 };
45 
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 	SP(8),
52 	SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 	SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 	SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 	SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 	SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68 
69 struct kmem_cache *scsi_sdb_cache;
70 
71 /*
72  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73  * not change behaviour from the previous unplug mechanism, experimentation
74  * may prove this needs changing.
75  */
76 #define SCSI_QUEUE_DELAY	3
77 
78 /*
79  * Function:	scsi_unprep_request()
80  *
81  * Purpose:	Remove all preparation done for a request, including its
82  *		associated scsi_cmnd, so that it can be requeued.
83  *
84  * Arguments:	req	- request to unprepare
85  *
86  * Lock status:	Assumed that no locks are held upon entry.
87  *
88  * Returns:	Nothing.
89  */
90 static void scsi_unprep_request(struct request *req)
91 {
92 	struct scsi_cmnd *cmd = req->special;
93 
94 	blk_unprep_request(req);
95 	req->special = NULL;
96 
97 	scsi_put_command(cmd);
98 }
99 
100 /**
101  * __scsi_queue_insert - private queue insertion
102  * @cmd: The SCSI command being requeued
103  * @reason:  The reason for the requeue
104  * @unbusy: Whether the queue should be unbusied
105  *
106  * This is a private queue insertion.  The public interface
107  * scsi_queue_insert() always assumes the queue should be unbusied
108  * because it's always called before the completion.  This function is
109  * for a requeue after completion, which should only occur in this
110  * file.
111  */
112 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
113 {
114 	struct Scsi_Host *host = cmd->device->host;
115 	struct scsi_device *device = cmd->device;
116 	struct scsi_target *starget = scsi_target(device);
117 	struct request_queue *q = device->request_queue;
118 	unsigned long flags;
119 
120 	SCSI_LOG_MLQUEUE(1,
121 		 printk("Inserting command %p into mlqueue\n", cmd));
122 
123 	/*
124 	 * Set the appropriate busy bit for the device/host.
125 	 *
126 	 * If the host/device isn't busy, assume that something actually
127 	 * completed, and that we should be able to queue a command now.
128 	 *
129 	 * Note that the prior mid-layer assumption that any host could
130 	 * always queue at least one command is now broken.  The mid-layer
131 	 * will implement a user specifiable stall (see
132 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133 	 * if a command is requeued with no other commands outstanding
134 	 * either for the device or for the host.
135 	 */
136 	switch (reason) {
137 	case SCSI_MLQUEUE_HOST_BUSY:
138 		host->host_blocked = host->max_host_blocked;
139 		break;
140 	case SCSI_MLQUEUE_DEVICE_BUSY:
141 	case SCSI_MLQUEUE_EH_RETRY:
142 		device->device_blocked = device->max_device_blocked;
143 		break;
144 	case SCSI_MLQUEUE_TARGET_BUSY:
145 		starget->target_blocked = starget->max_target_blocked;
146 		break;
147 	}
148 
149 	/*
150 	 * Decrement the counters, since these commands are no longer
151 	 * active on the host/device.
152 	 */
153 	if (unbusy)
154 		scsi_device_unbusy(device);
155 
156 	/*
157 	 * Requeue this command.  It will go before all other commands
158 	 * that are already in the queue. Schedule requeue work under
159 	 * lock such that the kblockd_schedule_work() call happens
160 	 * before blk_cleanup_queue() finishes.
161 	 */
162 	spin_lock_irqsave(q->queue_lock, flags);
163 	blk_requeue_request(q, cmd->request);
164 	kblockd_schedule_work(q, &device->requeue_work);
165 	spin_unlock_irqrestore(q->queue_lock, flags);
166 }
167 
168 /*
169  * Function:    scsi_queue_insert()
170  *
171  * Purpose:     Insert a command in the midlevel queue.
172  *
173  * Arguments:   cmd    - command that we are adding to queue.
174  *              reason - why we are inserting command to queue.
175  *
176  * Lock status: Assumed that lock is not held upon entry.
177  *
178  * Returns:     Nothing.
179  *
180  * Notes:       We do this for one of two cases.  Either the host is busy
181  *              and it cannot accept any more commands for the time being,
182  *              or the device returned QUEUE_FULL and can accept no more
183  *              commands.
184  * Notes:       This could be called either from an interrupt context or a
185  *              normal process context.
186  */
187 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
188 {
189 	__scsi_queue_insert(cmd, reason, 1);
190 }
191 /**
192  * scsi_execute - insert request and wait for the result
193  * @sdev:	scsi device
194  * @cmd:	scsi command
195  * @data_direction: data direction
196  * @buffer:	data buffer
197  * @bufflen:	len of buffer
198  * @sense:	optional sense buffer
199  * @timeout:	request timeout in seconds
200  * @retries:	number of times to retry request
201  * @flags:	or into request flags;
202  * @resid:	optional residual length
203  *
204  * returns the req->errors value which is the scsi_cmnd result
205  * field.
206  */
207 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
208 		 int data_direction, void *buffer, unsigned bufflen,
209 		 unsigned char *sense, int timeout, int retries, int flags,
210 		 int *resid)
211 {
212 	struct request *req;
213 	int write = (data_direction == DMA_TO_DEVICE);
214 	int ret = DRIVER_ERROR << 24;
215 
216 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
217 	if (!req)
218 		return ret;
219 
220 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
221 					buffer, bufflen, __GFP_WAIT))
222 		goto out;
223 
224 	req->cmd_len = COMMAND_SIZE(cmd[0]);
225 	memcpy(req->cmd, cmd, req->cmd_len);
226 	req->sense = sense;
227 	req->sense_len = 0;
228 	req->retries = retries;
229 	req->timeout = timeout;
230 	req->cmd_type = REQ_TYPE_BLOCK_PC;
231 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
232 
233 	/*
234 	 * head injection *required* here otherwise quiesce won't work
235 	 */
236 	blk_execute_rq(req->q, NULL, req, 1);
237 
238 	/*
239 	 * Some devices (USB mass-storage in particular) may transfer
240 	 * garbage data together with a residue indicating that the data
241 	 * is invalid.  Prevent the garbage from being misinterpreted
242 	 * and prevent security leaks by zeroing out the excess data.
243 	 */
244 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
245 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
246 
247 	if (resid)
248 		*resid = req->resid_len;
249 	ret = req->errors;
250  out:
251 	blk_put_request(req);
252 
253 	return ret;
254 }
255 EXPORT_SYMBOL(scsi_execute);
256 
257 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
258 		     int data_direction, void *buffer, unsigned bufflen,
259 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
260 		     int *resid, int flags)
261 {
262 	char *sense = NULL;
263 	int result;
264 
265 	if (sshdr) {
266 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267 		if (!sense)
268 			return DRIVER_ERROR << 24;
269 	}
270 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271 			      sense, timeout, retries, flags, resid);
272 	if (sshdr)
273 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274 
275 	kfree(sense);
276 	return result;
277 }
278 EXPORT_SYMBOL(scsi_execute_req_flags);
279 
280 /*
281  * Function:    scsi_init_cmd_errh()
282  *
283  * Purpose:     Initialize cmd fields related to error handling.
284  *
285  * Arguments:   cmd	- command that is ready to be queued.
286  *
287  * Notes:       This function has the job of initializing a number of
288  *              fields related to error handling.   Typically this will
289  *              be called once for each command, as required.
290  */
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292 {
293 	cmd->serial_number = 0;
294 	scsi_set_resid(cmd, 0);
295 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296 	if (cmd->cmd_len == 0)
297 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
298 }
299 
300 void scsi_device_unbusy(struct scsi_device *sdev)
301 {
302 	struct Scsi_Host *shost = sdev->host;
303 	struct scsi_target *starget = scsi_target(sdev);
304 	unsigned long flags;
305 
306 	spin_lock_irqsave(shost->host_lock, flags);
307 	shost->host_busy--;
308 	starget->target_busy--;
309 	if (unlikely(scsi_host_in_recovery(shost) &&
310 		     (shost->host_failed || shost->host_eh_scheduled)))
311 		scsi_eh_wakeup(shost);
312 	spin_unlock(shost->host_lock);
313 	spin_lock(sdev->request_queue->queue_lock);
314 	sdev->device_busy--;
315 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316 }
317 
318 /*
319  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320  * and call blk_run_queue for all the scsi_devices on the target -
321  * including current_sdev first.
322  *
323  * Called with *no* scsi locks held.
324  */
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
326 {
327 	struct Scsi_Host *shost = current_sdev->host;
328 	struct scsi_device *sdev, *tmp;
329 	struct scsi_target *starget = scsi_target(current_sdev);
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(shost->host_lock, flags);
333 	starget->starget_sdev_user = NULL;
334 	spin_unlock_irqrestore(shost->host_lock, flags);
335 
336 	/*
337 	 * Call blk_run_queue for all LUNs on the target, starting with
338 	 * current_sdev. We race with others (to set starget_sdev_user),
339 	 * but in most cases, we will be first. Ideally, each LU on the
340 	 * target would get some limited time or requests on the target.
341 	 */
342 	blk_run_queue(current_sdev->request_queue);
343 
344 	spin_lock_irqsave(shost->host_lock, flags);
345 	if (starget->starget_sdev_user)
346 		goto out;
347 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
348 			same_target_siblings) {
349 		if (sdev == current_sdev)
350 			continue;
351 		if (scsi_device_get(sdev))
352 			continue;
353 
354 		spin_unlock_irqrestore(shost->host_lock, flags);
355 		blk_run_queue(sdev->request_queue);
356 		spin_lock_irqsave(shost->host_lock, flags);
357 
358 		scsi_device_put(sdev);
359 	}
360  out:
361 	spin_unlock_irqrestore(shost->host_lock, flags);
362 }
363 
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
365 {
366 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367 		return 1;
368 
369 	return 0;
370 }
371 
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
373 {
374 	return ((starget->can_queue > 0 &&
375 		 starget->target_busy >= starget->can_queue) ||
376 		 starget->target_blocked);
377 }
378 
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380 {
381 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382 	    shost->host_blocked || shost->host_self_blocked)
383 		return 1;
384 
385 	return 0;
386 }
387 
388 /*
389  * Function:	scsi_run_queue()
390  *
391  * Purpose:	Select a proper request queue to serve next
392  *
393  * Arguments:	q	- last request's queue
394  *
395  * Returns:     Nothing
396  *
397  * Notes:	The previous command was completely finished, start
398  *		a new one if possible.
399  */
400 static void scsi_run_queue(struct request_queue *q)
401 {
402 	struct scsi_device *sdev = q->queuedata;
403 	struct Scsi_Host *shost;
404 	LIST_HEAD(starved_list);
405 	unsigned long flags;
406 
407 	shost = sdev->host;
408 	if (scsi_target(sdev)->single_lun)
409 		scsi_single_lun_run(sdev);
410 
411 	spin_lock_irqsave(shost->host_lock, flags);
412 	list_splice_init(&shost->starved_list, &starved_list);
413 
414 	while (!list_empty(&starved_list)) {
415 		struct request_queue *slq;
416 
417 		/*
418 		 * As long as shost is accepting commands and we have
419 		 * starved queues, call blk_run_queue. scsi_request_fn
420 		 * drops the queue_lock and can add us back to the
421 		 * starved_list.
422 		 *
423 		 * host_lock protects the starved_list and starved_entry.
424 		 * scsi_request_fn must get the host_lock before checking
425 		 * or modifying starved_list or starved_entry.
426 		 */
427 		if (scsi_host_is_busy(shost))
428 			break;
429 
430 		sdev = list_entry(starved_list.next,
431 				  struct scsi_device, starved_entry);
432 		list_del_init(&sdev->starved_entry);
433 		if (scsi_target_is_busy(scsi_target(sdev))) {
434 			list_move_tail(&sdev->starved_entry,
435 				       &shost->starved_list);
436 			continue;
437 		}
438 
439 		/*
440 		 * Once we drop the host lock, a racing scsi_remove_device()
441 		 * call may remove the sdev from the starved list and destroy
442 		 * it and the queue.  Mitigate by taking a reference to the
443 		 * queue and never touching the sdev again after we drop the
444 		 * host lock.  Note: if __scsi_remove_device() invokes
445 		 * blk_cleanup_queue() before the queue is run from this
446 		 * function then blk_run_queue() will return immediately since
447 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
448 		 */
449 		slq = sdev->request_queue;
450 		if (!blk_get_queue(slq))
451 			continue;
452 		spin_unlock_irqrestore(shost->host_lock, flags);
453 
454 		blk_run_queue(slq);
455 		blk_put_queue(slq);
456 
457 		spin_lock_irqsave(shost->host_lock, flags);
458 	}
459 	/* put any unprocessed entries back */
460 	list_splice(&starved_list, &shost->starved_list);
461 	spin_unlock_irqrestore(shost->host_lock, flags);
462 
463 	blk_run_queue(q);
464 }
465 
466 void scsi_requeue_run_queue(struct work_struct *work)
467 {
468 	struct scsi_device *sdev;
469 	struct request_queue *q;
470 
471 	sdev = container_of(work, struct scsi_device, requeue_work);
472 	q = sdev->request_queue;
473 	scsi_run_queue(q);
474 }
475 
476 /*
477  * Function:	scsi_requeue_command()
478  *
479  * Purpose:	Handle post-processing of completed commands.
480  *
481  * Arguments:	q	- queue to operate on
482  *		cmd	- command that may need to be requeued.
483  *
484  * Returns:	Nothing
485  *
486  * Notes:	After command completion, there may be blocks left
487  *		over which weren't finished by the previous command
488  *		this can be for a number of reasons - the main one is
489  *		I/O errors in the middle of the request, in which case
490  *		we need to request the blocks that come after the bad
491  *		sector.
492  * Notes:	Upon return, cmd is a stale pointer.
493  */
494 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
495 {
496 	struct scsi_device *sdev = cmd->device;
497 	struct request *req = cmd->request;
498 	unsigned long flags;
499 
500 	/*
501 	 * We need to hold a reference on the device to avoid the queue being
502 	 * killed after the unlock and before scsi_run_queue is invoked which
503 	 * may happen because scsi_unprep_request() puts the command which
504 	 * releases its reference on the device.
505 	 */
506 	get_device(&sdev->sdev_gendev);
507 
508 	spin_lock_irqsave(q->queue_lock, flags);
509 	scsi_unprep_request(req);
510 	blk_requeue_request(q, req);
511 	spin_unlock_irqrestore(q->queue_lock, flags);
512 
513 	scsi_run_queue(q);
514 
515 	put_device(&sdev->sdev_gendev);
516 }
517 
518 void scsi_next_command(struct scsi_cmnd *cmd)
519 {
520 	struct scsi_device *sdev = cmd->device;
521 	struct request_queue *q = sdev->request_queue;
522 
523 	/* need to hold a reference on the device before we let go of the cmd */
524 	get_device(&sdev->sdev_gendev);
525 
526 	scsi_put_command(cmd);
527 	scsi_run_queue(q);
528 
529 	/* ok to remove device now */
530 	put_device(&sdev->sdev_gendev);
531 }
532 
533 void scsi_run_host_queues(struct Scsi_Host *shost)
534 {
535 	struct scsi_device *sdev;
536 
537 	shost_for_each_device(sdev, shost)
538 		scsi_run_queue(sdev->request_queue);
539 }
540 
541 static void __scsi_release_buffers(struct scsi_cmnd *, int);
542 
543 /*
544  * Function:    scsi_end_request()
545  *
546  * Purpose:     Post-processing of completed commands (usually invoked at end
547  *		of upper level post-processing and scsi_io_completion).
548  *
549  * Arguments:   cmd	 - command that is complete.
550  *              error    - 0 if I/O indicates success, < 0 for I/O error.
551  *              bytes    - number of bytes of completed I/O
552  *		requeue  - indicates whether we should requeue leftovers.
553  *
554  * Lock status: Assumed that lock is not held upon entry.
555  *
556  * Returns:     cmd if requeue required, NULL otherwise.
557  *
558  * Notes:       This is called for block device requests in order to
559  *              mark some number of sectors as complete.
560  *
561  *		We are guaranteeing that the request queue will be goosed
562  *		at some point during this call.
563  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
564  */
565 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
566 					  int bytes, int requeue)
567 {
568 	struct request_queue *q = cmd->device->request_queue;
569 	struct request *req = cmd->request;
570 
571 	/*
572 	 * If there are blocks left over at the end, set up the command
573 	 * to queue the remainder of them.
574 	 */
575 	if (blk_end_request(req, error, bytes)) {
576 		/* kill remainder if no retrys */
577 		if (error && scsi_noretry_cmd(cmd))
578 			blk_end_request_all(req, error);
579 		else {
580 			if (requeue) {
581 				/*
582 				 * Bleah.  Leftovers again.  Stick the
583 				 * leftovers in the front of the
584 				 * queue, and goose the queue again.
585 				 */
586 				scsi_release_buffers(cmd);
587 				scsi_requeue_command(q, cmd);
588 				cmd = NULL;
589 			}
590 			return cmd;
591 		}
592 	}
593 
594 	/*
595 	 * This will goose the queue request function at the end, so we don't
596 	 * need to worry about launching another command.
597 	 */
598 	__scsi_release_buffers(cmd, 0);
599 	scsi_next_command(cmd);
600 	return NULL;
601 }
602 
603 static inline unsigned int scsi_sgtable_index(unsigned short nents)
604 {
605 	unsigned int index;
606 
607 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
608 
609 	if (nents <= 8)
610 		index = 0;
611 	else
612 		index = get_count_order(nents) - 3;
613 
614 	return index;
615 }
616 
617 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
618 {
619 	struct scsi_host_sg_pool *sgp;
620 
621 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
622 	mempool_free(sgl, sgp->pool);
623 }
624 
625 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
626 {
627 	struct scsi_host_sg_pool *sgp;
628 
629 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
630 	return mempool_alloc(sgp->pool, gfp_mask);
631 }
632 
633 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
634 			      gfp_t gfp_mask)
635 {
636 	int ret;
637 
638 	BUG_ON(!nents);
639 
640 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
641 			       gfp_mask, scsi_sg_alloc);
642 	if (unlikely(ret))
643 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
644 				scsi_sg_free);
645 
646 	return ret;
647 }
648 
649 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
650 {
651 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
652 }
653 
654 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
655 {
656 
657 	if (cmd->sdb.table.nents)
658 		scsi_free_sgtable(&cmd->sdb);
659 
660 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
661 
662 	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
663 		struct scsi_data_buffer *bidi_sdb =
664 			cmd->request->next_rq->special;
665 		scsi_free_sgtable(bidi_sdb);
666 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
667 		cmd->request->next_rq->special = NULL;
668 	}
669 
670 	if (scsi_prot_sg_count(cmd))
671 		scsi_free_sgtable(cmd->prot_sdb);
672 }
673 
674 /*
675  * Function:    scsi_release_buffers()
676  *
677  * Purpose:     Completion processing for block device I/O requests.
678  *
679  * Arguments:   cmd	- command that we are bailing.
680  *
681  * Lock status: Assumed that no lock is held upon entry.
682  *
683  * Returns:     Nothing
684  *
685  * Notes:       In the event that an upper level driver rejects a
686  *		command, we must release resources allocated during
687  *		the __init_io() function.  Primarily this would involve
688  *		the scatter-gather table, and potentially any bounce
689  *		buffers.
690  */
691 void scsi_release_buffers(struct scsi_cmnd *cmd)
692 {
693 	__scsi_release_buffers(cmd, 1);
694 }
695 EXPORT_SYMBOL(scsi_release_buffers);
696 
697 /**
698  * __scsi_error_from_host_byte - translate SCSI error code into errno
699  * @cmd:	SCSI command (unused)
700  * @result:	scsi error code
701  *
702  * Translate SCSI error code into standard UNIX errno.
703  * Return values:
704  * -ENOLINK	temporary transport failure
705  * -EREMOTEIO	permanent target failure, do not retry
706  * -EBADE	permanent nexus failure, retry on other path
707  * -ENOSPC	No write space available
708  * -ENODATA	Medium error
709  * -EIO		unspecified I/O error
710  */
711 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
712 {
713 	int error = 0;
714 
715 	switch(host_byte(result)) {
716 	case DID_TRANSPORT_FAILFAST:
717 		error = -ENOLINK;
718 		break;
719 	case DID_TARGET_FAILURE:
720 		set_host_byte(cmd, DID_OK);
721 		error = -EREMOTEIO;
722 		break;
723 	case DID_NEXUS_FAILURE:
724 		set_host_byte(cmd, DID_OK);
725 		error = -EBADE;
726 		break;
727 	case DID_ALLOC_FAILURE:
728 		set_host_byte(cmd, DID_OK);
729 		error = -ENOSPC;
730 		break;
731 	case DID_MEDIUM_ERROR:
732 		set_host_byte(cmd, DID_OK);
733 		error = -ENODATA;
734 		break;
735 	default:
736 		error = -EIO;
737 		break;
738 	}
739 
740 	return error;
741 }
742 
743 /*
744  * Function:    scsi_io_completion()
745  *
746  * Purpose:     Completion processing for block device I/O requests.
747  *
748  * Arguments:   cmd   - command that is finished.
749  *
750  * Lock status: Assumed that no lock is held upon entry.
751  *
752  * Returns:     Nothing
753  *
754  * Notes:       This function is matched in terms of capabilities to
755  *              the function that created the scatter-gather list.
756  *              In other words, if there are no bounce buffers
757  *              (the normal case for most drivers), we don't need
758  *              the logic to deal with cleaning up afterwards.
759  *
760  *		We must call scsi_end_request().  This will finish off
761  *		the specified number of sectors.  If we are done, the
762  *		command block will be released and the queue function
763  *		will be goosed.  If we are not done then we have to
764  *		figure out what to do next:
765  *
766  *		a) We can call scsi_requeue_command().  The request
767  *		   will be unprepared and put back on the queue.  Then
768  *		   a new command will be created for it.  This should
769  *		   be used if we made forward progress, or if we want
770  *		   to switch from READ(10) to READ(6) for example.
771  *
772  *		b) We can call scsi_queue_insert().  The request will
773  *		   be put back on the queue and retried using the same
774  *		   command as before, possibly after a delay.
775  *
776  *		c) We can call blk_end_request() with -EIO to fail
777  *		   the remainder of the request.
778  */
779 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
780 {
781 	int result = cmd->result;
782 	struct request_queue *q = cmd->device->request_queue;
783 	struct request *req = cmd->request;
784 	int error = 0;
785 	struct scsi_sense_hdr sshdr;
786 	int sense_valid = 0;
787 	int sense_deferred = 0;
788 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
789 	      ACTION_DELAYED_RETRY} action;
790 	char *description = NULL;
791 
792 	if (result) {
793 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
794 		if (sense_valid)
795 			sense_deferred = scsi_sense_is_deferred(&sshdr);
796 	}
797 
798 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
799 		if (result) {
800 			if (sense_valid && req->sense) {
801 				/*
802 				 * SG_IO wants current and deferred errors
803 				 */
804 				int len = 8 + cmd->sense_buffer[7];
805 
806 				if (len > SCSI_SENSE_BUFFERSIZE)
807 					len = SCSI_SENSE_BUFFERSIZE;
808 				memcpy(req->sense, cmd->sense_buffer,  len);
809 				req->sense_len = len;
810 			}
811 			if (!sense_deferred)
812 				error = __scsi_error_from_host_byte(cmd, result);
813 		}
814 		/*
815 		 * __scsi_error_from_host_byte may have reset the host_byte
816 		 */
817 		req->errors = cmd->result;
818 
819 		req->resid_len = scsi_get_resid(cmd);
820 
821 		if (scsi_bidi_cmnd(cmd)) {
822 			/*
823 			 * Bidi commands Must be complete as a whole,
824 			 * both sides at once.
825 			 */
826 			req->next_rq->resid_len = scsi_in(cmd)->resid;
827 
828 			scsi_release_buffers(cmd);
829 			blk_end_request_all(req, 0);
830 
831 			scsi_next_command(cmd);
832 			return;
833 		}
834 	}
835 
836 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
837 	BUG_ON(blk_bidi_rq(req));
838 
839 	/*
840 	 * Next deal with any sectors which we were able to correctly
841 	 * handle.
842 	 */
843 	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
844 				      "%d bytes done.\n",
845 				      blk_rq_sectors(req), good_bytes));
846 
847 	/*
848 	 * Recovered errors need reporting, but they're always treated
849 	 * as success, so fiddle the result code here.  For BLOCK_PC
850 	 * we already took a copy of the original into rq->errors which
851 	 * is what gets returned to the user
852 	 */
853 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
854 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
855 		 * print since caller wants ATA registers. Only occurs on
856 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
857 		 */
858 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
859 			;
860 		else if (!(req->cmd_flags & REQ_QUIET))
861 			scsi_print_sense("", cmd);
862 		result = 0;
863 		/* BLOCK_PC may have set error */
864 		error = 0;
865 	}
866 
867 	/*
868 	 * A number of bytes were successfully read.  If there
869 	 * are leftovers and there is some kind of error
870 	 * (result != 0), retry the rest.
871 	 */
872 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
873 		return;
874 
875 	error = __scsi_error_from_host_byte(cmd, result);
876 
877 	if (host_byte(result) == DID_RESET) {
878 		/* Third party bus reset or reset for error recovery
879 		 * reasons.  Just retry the command and see what
880 		 * happens.
881 		 */
882 		action = ACTION_RETRY;
883 	} else if (sense_valid && !sense_deferred) {
884 		switch (sshdr.sense_key) {
885 		case UNIT_ATTENTION:
886 			if (cmd->device->removable) {
887 				/* Detected disc change.  Set a bit
888 				 * and quietly refuse further access.
889 				 */
890 				cmd->device->changed = 1;
891 				description = "Media Changed";
892 				action = ACTION_FAIL;
893 			} else {
894 				/* Must have been a power glitch, or a
895 				 * bus reset.  Could not have been a
896 				 * media change, so we just retry the
897 				 * command and see what happens.
898 				 */
899 				action = ACTION_RETRY;
900 			}
901 			break;
902 		case ILLEGAL_REQUEST:
903 			/* If we had an ILLEGAL REQUEST returned, then
904 			 * we may have performed an unsupported
905 			 * command.  The only thing this should be
906 			 * would be a ten byte read where only a six
907 			 * byte read was supported.  Also, on a system
908 			 * where READ CAPACITY failed, we may have
909 			 * read past the end of the disk.
910 			 */
911 			if ((cmd->device->use_10_for_rw &&
912 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
913 			    (cmd->cmnd[0] == READ_10 ||
914 			     cmd->cmnd[0] == WRITE_10)) {
915 				/* This will issue a new 6-byte command. */
916 				cmd->device->use_10_for_rw = 0;
917 				action = ACTION_REPREP;
918 			} else if (sshdr.asc == 0x10) /* DIX */ {
919 				description = "Host Data Integrity Failure";
920 				action = ACTION_FAIL;
921 				error = -EILSEQ;
922 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
923 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
924 				switch (cmd->cmnd[0]) {
925 				case UNMAP:
926 					description = "Discard failure";
927 					break;
928 				case WRITE_SAME:
929 				case WRITE_SAME_16:
930 					if (cmd->cmnd[1] & 0x8)
931 						description = "Discard failure";
932 					else
933 						description =
934 							"Write same failure";
935 					break;
936 				default:
937 					description = "Invalid command failure";
938 					break;
939 				}
940 				action = ACTION_FAIL;
941 				error = -EREMOTEIO;
942 			} else
943 				action = ACTION_FAIL;
944 			break;
945 		case ABORTED_COMMAND:
946 			action = ACTION_FAIL;
947 			if (sshdr.asc == 0x10) { /* DIF */
948 				description = "Target Data Integrity Failure";
949 				error = -EILSEQ;
950 			}
951 			break;
952 		case NOT_READY:
953 			/* If the device is in the process of becoming
954 			 * ready, or has a temporary blockage, retry.
955 			 */
956 			if (sshdr.asc == 0x04) {
957 				switch (sshdr.ascq) {
958 				case 0x01: /* becoming ready */
959 				case 0x04: /* format in progress */
960 				case 0x05: /* rebuild in progress */
961 				case 0x06: /* recalculation in progress */
962 				case 0x07: /* operation in progress */
963 				case 0x08: /* Long write in progress */
964 				case 0x09: /* self test in progress */
965 				case 0x14: /* space allocation in progress */
966 					action = ACTION_DELAYED_RETRY;
967 					break;
968 				default:
969 					description = "Device not ready";
970 					action = ACTION_FAIL;
971 					break;
972 				}
973 			} else {
974 				description = "Device not ready";
975 				action = ACTION_FAIL;
976 			}
977 			break;
978 		case VOLUME_OVERFLOW:
979 			/* See SSC3rXX or current. */
980 			action = ACTION_FAIL;
981 			break;
982 		default:
983 			description = "Unhandled sense code";
984 			action = ACTION_FAIL;
985 			break;
986 		}
987 	} else {
988 		description = "Unhandled error code";
989 		action = ACTION_FAIL;
990 	}
991 
992 	switch (action) {
993 	case ACTION_FAIL:
994 		/* Give up and fail the remainder of the request */
995 		scsi_release_buffers(cmd);
996 		if (!(req->cmd_flags & REQ_QUIET)) {
997 			if (description)
998 				scmd_printk(KERN_INFO, cmd, "%s\n",
999 					    description);
1000 			scsi_print_result(cmd);
1001 			if (driver_byte(result) & DRIVER_SENSE)
1002 				scsi_print_sense("", cmd);
1003 			scsi_print_command(cmd);
1004 		}
1005 		if (blk_end_request_err(req, error))
1006 			scsi_requeue_command(q, cmd);
1007 		else
1008 			scsi_next_command(cmd);
1009 		break;
1010 	case ACTION_REPREP:
1011 		/* Unprep the request and put it back at the head of the queue.
1012 		 * A new command will be prepared and issued.
1013 		 */
1014 		scsi_release_buffers(cmd);
1015 		scsi_requeue_command(q, cmd);
1016 		break;
1017 	case ACTION_RETRY:
1018 		/* Retry the same command immediately */
1019 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1020 		break;
1021 	case ACTION_DELAYED_RETRY:
1022 		/* Retry the same command after a delay */
1023 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1024 		break;
1025 	}
1026 }
1027 
1028 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1029 			     gfp_t gfp_mask)
1030 {
1031 	int count;
1032 
1033 	/*
1034 	 * If sg table allocation fails, requeue request later.
1035 	 */
1036 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1037 					gfp_mask))) {
1038 		return BLKPREP_DEFER;
1039 	}
1040 
1041 	req->buffer = NULL;
1042 
1043 	/*
1044 	 * Next, walk the list, and fill in the addresses and sizes of
1045 	 * each segment.
1046 	 */
1047 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1048 	BUG_ON(count > sdb->table.nents);
1049 	sdb->table.nents = count;
1050 	sdb->length = blk_rq_bytes(req);
1051 	return BLKPREP_OK;
1052 }
1053 
1054 /*
1055  * Function:    scsi_init_io()
1056  *
1057  * Purpose:     SCSI I/O initialize function.
1058  *
1059  * Arguments:   cmd   - Command descriptor we wish to initialize
1060  *
1061  * Returns:     0 on success
1062  *		BLKPREP_DEFER if the failure is retryable
1063  *		BLKPREP_KILL if the failure is fatal
1064  */
1065 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1066 {
1067 	struct request *rq = cmd->request;
1068 
1069 	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1070 	if (error)
1071 		goto err_exit;
1072 
1073 	if (blk_bidi_rq(rq)) {
1074 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1075 			scsi_sdb_cache, GFP_ATOMIC);
1076 		if (!bidi_sdb) {
1077 			error = BLKPREP_DEFER;
1078 			goto err_exit;
1079 		}
1080 
1081 		rq->next_rq->special = bidi_sdb;
1082 		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1083 		if (error)
1084 			goto err_exit;
1085 	}
1086 
1087 	if (blk_integrity_rq(rq)) {
1088 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1089 		int ivecs, count;
1090 
1091 		BUG_ON(prot_sdb == NULL);
1092 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1093 
1094 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1095 			error = BLKPREP_DEFER;
1096 			goto err_exit;
1097 		}
1098 
1099 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1100 						prot_sdb->table.sgl);
1101 		BUG_ON(unlikely(count > ivecs));
1102 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1103 
1104 		cmd->prot_sdb = prot_sdb;
1105 		cmd->prot_sdb->table.nents = count;
1106 	}
1107 
1108 	return BLKPREP_OK ;
1109 
1110 err_exit:
1111 	scsi_release_buffers(cmd);
1112 	cmd->request->special = NULL;
1113 	scsi_put_command(cmd);
1114 	return error;
1115 }
1116 EXPORT_SYMBOL(scsi_init_io);
1117 
1118 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1119 		struct request *req)
1120 {
1121 	struct scsi_cmnd *cmd;
1122 
1123 	if (!req->special) {
1124 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1125 		if (unlikely(!cmd))
1126 			return NULL;
1127 		req->special = cmd;
1128 	} else {
1129 		cmd = req->special;
1130 	}
1131 
1132 	/* pull a tag out of the request if we have one */
1133 	cmd->tag = req->tag;
1134 	cmd->request = req;
1135 
1136 	cmd->cmnd = req->cmd;
1137 	cmd->prot_op = SCSI_PROT_NORMAL;
1138 
1139 	return cmd;
1140 }
1141 
1142 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1143 {
1144 	struct scsi_cmnd *cmd;
1145 	int ret = scsi_prep_state_check(sdev, req);
1146 
1147 	if (ret != BLKPREP_OK)
1148 		return ret;
1149 
1150 	cmd = scsi_get_cmd_from_req(sdev, req);
1151 	if (unlikely(!cmd))
1152 		return BLKPREP_DEFER;
1153 
1154 	/*
1155 	 * BLOCK_PC requests may transfer data, in which case they must
1156 	 * a bio attached to them.  Or they might contain a SCSI command
1157 	 * that does not transfer data, in which case they may optionally
1158 	 * submit a request without an attached bio.
1159 	 */
1160 	if (req->bio) {
1161 		int ret;
1162 
1163 		BUG_ON(!req->nr_phys_segments);
1164 
1165 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1166 		if (unlikely(ret))
1167 			return ret;
1168 	} else {
1169 		BUG_ON(blk_rq_bytes(req));
1170 
1171 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1172 		req->buffer = NULL;
1173 	}
1174 
1175 	cmd->cmd_len = req->cmd_len;
1176 	if (!blk_rq_bytes(req))
1177 		cmd->sc_data_direction = DMA_NONE;
1178 	else if (rq_data_dir(req) == WRITE)
1179 		cmd->sc_data_direction = DMA_TO_DEVICE;
1180 	else
1181 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1182 
1183 	cmd->transfersize = blk_rq_bytes(req);
1184 	cmd->allowed = req->retries;
1185 	return BLKPREP_OK;
1186 }
1187 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1188 
1189 /*
1190  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1191  * from filesystems that still need to be translated to SCSI CDBs from
1192  * the ULD.
1193  */
1194 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1195 {
1196 	struct scsi_cmnd *cmd;
1197 	int ret = scsi_prep_state_check(sdev, req);
1198 
1199 	if (ret != BLKPREP_OK)
1200 		return ret;
1201 
1202 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1203 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1204 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1205 		if (ret != BLKPREP_OK)
1206 			return ret;
1207 	}
1208 
1209 	/*
1210 	 * Filesystem requests must transfer data.
1211 	 */
1212 	BUG_ON(!req->nr_phys_segments);
1213 
1214 	cmd = scsi_get_cmd_from_req(sdev, req);
1215 	if (unlikely(!cmd))
1216 		return BLKPREP_DEFER;
1217 
1218 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1219 	return scsi_init_io(cmd, GFP_ATOMIC);
1220 }
1221 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1222 
1223 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1224 {
1225 	int ret = BLKPREP_OK;
1226 
1227 	/*
1228 	 * If the device is not in running state we will reject some
1229 	 * or all commands.
1230 	 */
1231 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1232 		switch (sdev->sdev_state) {
1233 		case SDEV_OFFLINE:
1234 		case SDEV_TRANSPORT_OFFLINE:
1235 			/*
1236 			 * If the device is offline we refuse to process any
1237 			 * commands.  The device must be brought online
1238 			 * before trying any recovery commands.
1239 			 */
1240 			sdev_printk(KERN_ERR, sdev,
1241 				    "rejecting I/O to offline device\n");
1242 			ret = BLKPREP_KILL;
1243 			break;
1244 		case SDEV_DEL:
1245 			/*
1246 			 * If the device is fully deleted, we refuse to
1247 			 * process any commands as well.
1248 			 */
1249 			sdev_printk(KERN_ERR, sdev,
1250 				    "rejecting I/O to dead device\n");
1251 			ret = BLKPREP_KILL;
1252 			break;
1253 		case SDEV_QUIESCE:
1254 		case SDEV_BLOCK:
1255 		case SDEV_CREATED_BLOCK:
1256 			/*
1257 			 * If the devices is blocked we defer normal commands.
1258 			 */
1259 			if (!(req->cmd_flags & REQ_PREEMPT))
1260 				ret = BLKPREP_DEFER;
1261 			break;
1262 		default:
1263 			/*
1264 			 * For any other not fully online state we only allow
1265 			 * special commands.  In particular any user initiated
1266 			 * command is not allowed.
1267 			 */
1268 			if (!(req->cmd_flags & REQ_PREEMPT))
1269 				ret = BLKPREP_KILL;
1270 			break;
1271 		}
1272 	}
1273 	return ret;
1274 }
1275 EXPORT_SYMBOL(scsi_prep_state_check);
1276 
1277 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1278 {
1279 	struct scsi_device *sdev = q->queuedata;
1280 
1281 	switch (ret) {
1282 	case BLKPREP_KILL:
1283 		req->errors = DID_NO_CONNECT << 16;
1284 		/* release the command and kill it */
1285 		if (req->special) {
1286 			struct scsi_cmnd *cmd = req->special;
1287 			scsi_release_buffers(cmd);
1288 			scsi_put_command(cmd);
1289 			req->special = NULL;
1290 		}
1291 		break;
1292 	case BLKPREP_DEFER:
1293 		/*
1294 		 * If we defer, the blk_peek_request() returns NULL, but the
1295 		 * queue must be restarted, so we schedule a callback to happen
1296 		 * shortly.
1297 		 */
1298 		if (sdev->device_busy == 0)
1299 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1300 		break;
1301 	default:
1302 		req->cmd_flags |= REQ_DONTPREP;
1303 	}
1304 
1305 	return ret;
1306 }
1307 EXPORT_SYMBOL(scsi_prep_return);
1308 
1309 int scsi_prep_fn(struct request_queue *q, struct request *req)
1310 {
1311 	struct scsi_device *sdev = q->queuedata;
1312 	int ret = BLKPREP_KILL;
1313 
1314 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1315 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1316 	return scsi_prep_return(q, req, ret);
1317 }
1318 EXPORT_SYMBOL(scsi_prep_fn);
1319 
1320 /*
1321  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1322  * return 0.
1323  *
1324  * Called with the queue_lock held.
1325  */
1326 static inline int scsi_dev_queue_ready(struct request_queue *q,
1327 				  struct scsi_device *sdev)
1328 {
1329 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1330 		/*
1331 		 * unblock after device_blocked iterates to zero
1332 		 */
1333 		if (--sdev->device_blocked == 0) {
1334 			SCSI_LOG_MLQUEUE(3,
1335 				   sdev_printk(KERN_INFO, sdev,
1336 				   "unblocking device at zero depth\n"));
1337 		} else {
1338 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1339 			return 0;
1340 		}
1341 	}
1342 	if (scsi_device_is_busy(sdev))
1343 		return 0;
1344 
1345 	return 1;
1346 }
1347 
1348 
1349 /*
1350  * scsi_target_queue_ready: checks if there we can send commands to target
1351  * @sdev: scsi device on starget to check.
1352  *
1353  * Called with the host lock held.
1354  */
1355 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1356 					   struct scsi_device *sdev)
1357 {
1358 	struct scsi_target *starget = scsi_target(sdev);
1359 
1360 	if (starget->single_lun) {
1361 		if (starget->starget_sdev_user &&
1362 		    starget->starget_sdev_user != sdev)
1363 			return 0;
1364 		starget->starget_sdev_user = sdev;
1365 	}
1366 
1367 	if (starget->target_busy == 0 && starget->target_blocked) {
1368 		/*
1369 		 * unblock after target_blocked iterates to zero
1370 		 */
1371 		if (--starget->target_blocked == 0) {
1372 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1373 					 "unblocking target at zero depth\n"));
1374 		} else
1375 			return 0;
1376 	}
1377 
1378 	if (scsi_target_is_busy(starget)) {
1379 		list_move_tail(&sdev->starved_entry, &shost->starved_list);
1380 		return 0;
1381 	}
1382 
1383 	return 1;
1384 }
1385 
1386 /*
1387  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1388  * return 0. We must end up running the queue again whenever 0 is
1389  * returned, else IO can hang.
1390  *
1391  * Called with host_lock held.
1392  */
1393 static inline int scsi_host_queue_ready(struct request_queue *q,
1394 				   struct Scsi_Host *shost,
1395 				   struct scsi_device *sdev)
1396 {
1397 	if (scsi_host_in_recovery(shost))
1398 		return 0;
1399 	if (shost->host_busy == 0 && shost->host_blocked) {
1400 		/*
1401 		 * unblock after host_blocked iterates to zero
1402 		 */
1403 		if (--shost->host_blocked == 0) {
1404 			SCSI_LOG_MLQUEUE(3,
1405 				printk("scsi%d unblocking host at zero depth\n",
1406 					shost->host_no));
1407 		} else {
1408 			return 0;
1409 		}
1410 	}
1411 	if (scsi_host_is_busy(shost)) {
1412 		if (list_empty(&sdev->starved_entry))
1413 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1414 		return 0;
1415 	}
1416 
1417 	/* We're OK to process the command, so we can't be starved */
1418 	if (!list_empty(&sdev->starved_entry))
1419 		list_del_init(&sdev->starved_entry);
1420 
1421 	return 1;
1422 }
1423 
1424 /*
1425  * Busy state exporting function for request stacking drivers.
1426  *
1427  * For efficiency, no lock is taken to check the busy state of
1428  * shost/starget/sdev, since the returned value is not guaranteed and
1429  * may be changed after request stacking drivers call the function,
1430  * regardless of taking lock or not.
1431  *
1432  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1433  * needs to return 'not busy'. Otherwise, request stacking drivers
1434  * may hold requests forever.
1435  */
1436 static int scsi_lld_busy(struct request_queue *q)
1437 {
1438 	struct scsi_device *sdev = q->queuedata;
1439 	struct Scsi_Host *shost;
1440 
1441 	if (blk_queue_dying(q))
1442 		return 0;
1443 
1444 	shost = sdev->host;
1445 
1446 	/*
1447 	 * Ignore host/starget busy state.
1448 	 * Since block layer does not have a concept of fairness across
1449 	 * multiple queues, congestion of host/starget needs to be handled
1450 	 * in SCSI layer.
1451 	 */
1452 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1453 		return 1;
1454 
1455 	return 0;
1456 }
1457 
1458 /*
1459  * Kill a request for a dead device
1460  */
1461 static void scsi_kill_request(struct request *req, struct request_queue *q)
1462 {
1463 	struct scsi_cmnd *cmd = req->special;
1464 	struct scsi_device *sdev;
1465 	struct scsi_target *starget;
1466 	struct Scsi_Host *shost;
1467 
1468 	blk_start_request(req);
1469 
1470 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1471 
1472 	sdev = cmd->device;
1473 	starget = scsi_target(sdev);
1474 	shost = sdev->host;
1475 	scsi_init_cmd_errh(cmd);
1476 	cmd->result = DID_NO_CONNECT << 16;
1477 	atomic_inc(&cmd->device->iorequest_cnt);
1478 
1479 	/*
1480 	 * SCSI request completion path will do scsi_device_unbusy(),
1481 	 * bump busy counts.  To bump the counters, we need to dance
1482 	 * with the locks as normal issue path does.
1483 	 */
1484 	sdev->device_busy++;
1485 	spin_unlock(sdev->request_queue->queue_lock);
1486 	spin_lock(shost->host_lock);
1487 	shost->host_busy++;
1488 	starget->target_busy++;
1489 	spin_unlock(shost->host_lock);
1490 	spin_lock(sdev->request_queue->queue_lock);
1491 
1492 	blk_complete_request(req);
1493 }
1494 
1495 static void scsi_softirq_done(struct request *rq)
1496 {
1497 	struct scsi_cmnd *cmd = rq->special;
1498 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1499 	int disposition;
1500 
1501 	INIT_LIST_HEAD(&cmd->eh_entry);
1502 
1503 	atomic_inc(&cmd->device->iodone_cnt);
1504 	if (cmd->result)
1505 		atomic_inc(&cmd->device->ioerr_cnt);
1506 
1507 	disposition = scsi_decide_disposition(cmd);
1508 	if (disposition != SUCCESS &&
1509 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1510 		sdev_printk(KERN_ERR, cmd->device,
1511 			    "timing out command, waited %lus\n",
1512 			    wait_for/HZ);
1513 		disposition = SUCCESS;
1514 	}
1515 
1516 	scsi_log_completion(cmd, disposition);
1517 
1518 	switch (disposition) {
1519 		case SUCCESS:
1520 			scsi_finish_command(cmd);
1521 			break;
1522 		case NEEDS_RETRY:
1523 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1524 			break;
1525 		case ADD_TO_MLQUEUE:
1526 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1527 			break;
1528 		default:
1529 			if (!scsi_eh_scmd_add(cmd, 0))
1530 				scsi_finish_command(cmd);
1531 	}
1532 }
1533 
1534 /*
1535  * Function:    scsi_request_fn()
1536  *
1537  * Purpose:     Main strategy routine for SCSI.
1538  *
1539  * Arguments:   q       - Pointer to actual queue.
1540  *
1541  * Returns:     Nothing
1542  *
1543  * Lock status: IO request lock assumed to be held when called.
1544  */
1545 static void scsi_request_fn(struct request_queue *q)
1546 {
1547 	struct scsi_device *sdev = q->queuedata;
1548 	struct Scsi_Host *shost;
1549 	struct scsi_cmnd *cmd;
1550 	struct request *req;
1551 
1552 	if(!get_device(&sdev->sdev_gendev))
1553 		/* We must be tearing the block queue down already */
1554 		return;
1555 
1556 	/*
1557 	 * To start with, we keep looping until the queue is empty, or until
1558 	 * the host is no longer able to accept any more requests.
1559 	 */
1560 	shost = sdev->host;
1561 	for (;;) {
1562 		int rtn;
1563 		/*
1564 		 * get next queueable request.  We do this early to make sure
1565 		 * that the request is fully prepared even if we cannot
1566 		 * accept it.
1567 		 */
1568 		req = blk_peek_request(q);
1569 		if (!req || !scsi_dev_queue_ready(q, sdev))
1570 			break;
1571 
1572 		if (unlikely(!scsi_device_online(sdev))) {
1573 			sdev_printk(KERN_ERR, sdev,
1574 				    "rejecting I/O to offline device\n");
1575 			scsi_kill_request(req, q);
1576 			continue;
1577 		}
1578 
1579 
1580 		/*
1581 		 * Remove the request from the request list.
1582 		 */
1583 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1584 			blk_start_request(req);
1585 		sdev->device_busy++;
1586 
1587 		spin_unlock(q->queue_lock);
1588 		cmd = req->special;
1589 		if (unlikely(cmd == NULL)) {
1590 			printk(KERN_CRIT "impossible request in %s.\n"
1591 					 "please mail a stack trace to "
1592 					 "linux-scsi@vger.kernel.org\n",
1593 					 __func__);
1594 			blk_dump_rq_flags(req, "foo");
1595 			BUG();
1596 		}
1597 		spin_lock(shost->host_lock);
1598 
1599 		/*
1600 		 * We hit this when the driver is using a host wide
1601 		 * tag map. For device level tag maps the queue_depth check
1602 		 * in the device ready fn would prevent us from trying
1603 		 * to allocate a tag. Since the map is a shared host resource
1604 		 * we add the dev to the starved list so it eventually gets
1605 		 * a run when a tag is freed.
1606 		 */
1607 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1608 			if (list_empty(&sdev->starved_entry))
1609 				list_add_tail(&sdev->starved_entry,
1610 					      &shost->starved_list);
1611 			goto not_ready;
1612 		}
1613 
1614 		if (!scsi_target_queue_ready(shost, sdev))
1615 			goto not_ready;
1616 
1617 		if (!scsi_host_queue_ready(q, shost, sdev))
1618 			goto not_ready;
1619 
1620 		scsi_target(sdev)->target_busy++;
1621 		shost->host_busy++;
1622 
1623 		/*
1624 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1625 		 *		take the lock again.
1626 		 */
1627 		spin_unlock_irq(shost->host_lock);
1628 
1629 		/*
1630 		 * Finally, initialize any error handling parameters, and set up
1631 		 * the timers for timeouts.
1632 		 */
1633 		scsi_init_cmd_errh(cmd);
1634 
1635 		/*
1636 		 * Dispatch the command to the low-level driver.
1637 		 */
1638 		rtn = scsi_dispatch_cmd(cmd);
1639 		spin_lock_irq(q->queue_lock);
1640 		if (rtn)
1641 			goto out_delay;
1642 	}
1643 
1644 	goto out;
1645 
1646  not_ready:
1647 	spin_unlock_irq(shost->host_lock);
1648 
1649 	/*
1650 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1651 	 * must return with queue_lock held.
1652 	 *
1653 	 * Decrementing device_busy without checking it is OK, as all such
1654 	 * cases (host limits or settings) should run the queue at some
1655 	 * later time.
1656 	 */
1657 	spin_lock_irq(q->queue_lock);
1658 	blk_requeue_request(q, req);
1659 	sdev->device_busy--;
1660 out_delay:
1661 	if (sdev->device_busy == 0)
1662 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1663 out:
1664 	/* must be careful here...if we trigger the ->remove() function
1665 	 * we cannot be holding the q lock */
1666 	spin_unlock_irq(q->queue_lock);
1667 	put_device(&sdev->sdev_gendev);
1668 	spin_lock_irq(q->queue_lock);
1669 }
1670 
1671 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1672 {
1673 	struct device *host_dev;
1674 	u64 bounce_limit = 0xffffffff;
1675 
1676 	if (shost->unchecked_isa_dma)
1677 		return BLK_BOUNCE_ISA;
1678 	/*
1679 	 * Platforms with virtual-DMA translation
1680 	 * hardware have no practical limit.
1681 	 */
1682 	if (!PCI_DMA_BUS_IS_PHYS)
1683 		return BLK_BOUNCE_ANY;
1684 
1685 	host_dev = scsi_get_device(shost);
1686 	if (host_dev && host_dev->dma_mask)
1687 		bounce_limit = dma_max_pfn(host_dev) << PAGE_SHIFT;
1688 
1689 	return bounce_limit;
1690 }
1691 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1692 
1693 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1694 					 request_fn_proc *request_fn)
1695 {
1696 	struct request_queue *q;
1697 	struct device *dev = shost->dma_dev;
1698 
1699 	q = blk_init_queue(request_fn, NULL);
1700 	if (!q)
1701 		return NULL;
1702 
1703 	/*
1704 	 * this limit is imposed by hardware restrictions
1705 	 */
1706 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1707 					SCSI_MAX_SG_CHAIN_SEGMENTS));
1708 
1709 	if (scsi_host_prot_dma(shost)) {
1710 		shost->sg_prot_tablesize =
1711 			min_not_zero(shost->sg_prot_tablesize,
1712 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1713 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1714 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1715 	}
1716 
1717 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1718 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1719 	blk_queue_segment_boundary(q, shost->dma_boundary);
1720 	dma_set_seg_boundary(dev, shost->dma_boundary);
1721 
1722 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1723 
1724 	if (!shost->use_clustering)
1725 		q->limits.cluster = 0;
1726 
1727 	/*
1728 	 * set a reasonable default alignment on word boundaries: the
1729 	 * host and device may alter it using
1730 	 * blk_queue_update_dma_alignment() later.
1731 	 */
1732 	blk_queue_dma_alignment(q, 0x03);
1733 
1734 	return q;
1735 }
1736 EXPORT_SYMBOL(__scsi_alloc_queue);
1737 
1738 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1739 {
1740 	struct request_queue *q;
1741 
1742 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1743 	if (!q)
1744 		return NULL;
1745 
1746 	blk_queue_prep_rq(q, scsi_prep_fn);
1747 	blk_queue_softirq_done(q, scsi_softirq_done);
1748 	blk_queue_rq_timed_out(q, scsi_times_out);
1749 	blk_queue_lld_busy(q, scsi_lld_busy);
1750 	return q;
1751 }
1752 
1753 /*
1754  * Function:    scsi_block_requests()
1755  *
1756  * Purpose:     Utility function used by low-level drivers to prevent further
1757  *		commands from being queued to the device.
1758  *
1759  * Arguments:   shost       - Host in question
1760  *
1761  * Returns:     Nothing
1762  *
1763  * Lock status: No locks are assumed held.
1764  *
1765  * Notes:       There is no timer nor any other means by which the requests
1766  *		get unblocked other than the low-level driver calling
1767  *		scsi_unblock_requests().
1768  */
1769 void scsi_block_requests(struct Scsi_Host *shost)
1770 {
1771 	shost->host_self_blocked = 1;
1772 }
1773 EXPORT_SYMBOL(scsi_block_requests);
1774 
1775 /*
1776  * Function:    scsi_unblock_requests()
1777  *
1778  * Purpose:     Utility function used by low-level drivers to allow further
1779  *		commands from being queued to the device.
1780  *
1781  * Arguments:   shost       - Host in question
1782  *
1783  * Returns:     Nothing
1784  *
1785  * Lock status: No locks are assumed held.
1786  *
1787  * Notes:       There is no timer nor any other means by which the requests
1788  *		get unblocked other than the low-level driver calling
1789  *		scsi_unblock_requests().
1790  *
1791  *		This is done as an API function so that changes to the
1792  *		internals of the scsi mid-layer won't require wholesale
1793  *		changes to drivers that use this feature.
1794  */
1795 void scsi_unblock_requests(struct Scsi_Host *shost)
1796 {
1797 	shost->host_self_blocked = 0;
1798 	scsi_run_host_queues(shost);
1799 }
1800 EXPORT_SYMBOL(scsi_unblock_requests);
1801 
1802 int __init scsi_init_queue(void)
1803 {
1804 	int i;
1805 
1806 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1807 					   sizeof(struct scsi_data_buffer),
1808 					   0, 0, NULL);
1809 	if (!scsi_sdb_cache) {
1810 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1811 		return -ENOMEM;
1812 	}
1813 
1814 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1815 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1816 		int size = sgp->size * sizeof(struct scatterlist);
1817 
1818 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1819 				SLAB_HWCACHE_ALIGN, NULL);
1820 		if (!sgp->slab) {
1821 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1822 					sgp->name);
1823 			goto cleanup_sdb;
1824 		}
1825 
1826 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1827 						     sgp->slab);
1828 		if (!sgp->pool) {
1829 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1830 					sgp->name);
1831 			goto cleanup_sdb;
1832 		}
1833 	}
1834 
1835 	return 0;
1836 
1837 cleanup_sdb:
1838 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1839 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1840 		if (sgp->pool)
1841 			mempool_destroy(sgp->pool);
1842 		if (sgp->slab)
1843 			kmem_cache_destroy(sgp->slab);
1844 	}
1845 	kmem_cache_destroy(scsi_sdb_cache);
1846 
1847 	return -ENOMEM;
1848 }
1849 
1850 void scsi_exit_queue(void)
1851 {
1852 	int i;
1853 
1854 	kmem_cache_destroy(scsi_sdb_cache);
1855 
1856 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1857 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1858 		mempool_destroy(sgp->pool);
1859 		kmem_cache_destroy(sgp->slab);
1860 	}
1861 }
1862 
1863 /**
1864  *	scsi_mode_select - issue a mode select
1865  *	@sdev:	SCSI device to be queried
1866  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1867  *	@sp:	Save page bit (0 == don't save, 1 == save)
1868  *	@modepage: mode page being requested
1869  *	@buffer: request buffer (may not be smaller than eight bytes)
1870  *	@len:	length of request buffer.
1871  *	@timeout: command timeout
1872  *	@retries: number of retries before failing
1873  *	@data: returns a structure abstracting the mode header data
1874  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1875  *		must be SCSI_SENSE_BUFFERSIZE big.
1876  *
1877  *	Returns zero if successful; negative error number or scsi
1878  *	status on error
1879  *
1880  */
1881 int
1882 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1883 		 unsigned char *buffer, int len, int timeout, int retries,
1884 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1885 {
1886 	unsigned char cmd[10];
1887 	unsigned char *real_buffer;
1888 	int ret;
1889 
1890 	memset(cmd, 0, sizeof(cmd));
1891 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1892 
1893 	if (sdev->use_10_for_ms) {
1894 		if (len > 65535)
1895 			return -EINVAL;
1896 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1897 		if (!real_buffer)
1898 			return -ENOMEM;
1899 		memcpy(real_buffer + 8, buffer, len);
1900 		len += 8;
1901 		real_buffer[0] = 0;
1902 		real_buffer[1] = 0;
1903 		real_buffer[2] = data->medium_type;
1904 		real_buffer[3] = data->device_specific;
1905 		real_buffer[4] = data->longlba ? 0x01 : 0;
1906 		real_buffer[5] = 0;
1907 		real_buffer[6] = data->block_descriptor_length >> 8;
1908 		real_buffer[7] = data->block_descriptor_length;
1909 
1910 		cmd[0] = MODE_SELECT_10;
1911 		cmd[7] = len >> 8;
1912 		cmd[8] = len;
1913 	} else {
1914 		if (len > 255 || data->block_descriptor_length > 255 ||
1915 		    data->longlba)
1916 			return -EINVAL;
1917 
1918 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1919 		if (!real_buffer)
1920 			return -ENOMEM;
1921 		memcpy(real_buffer + 4, buffer, len);
1922 		len += 4;
1923 		real_buffer[0] = 0;
1924 		real_buffer[1] = data->medium_type;
1925 		real_buffer[2] = data->device_specific;
1926 		real_buffer[3] = data->block_descriptor_length;
1927 
1928 
1929 		cmd[0] = MODE_SELECT;
1930 		cmd[4] = len;
1931 	}
1932 
1933 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1934 			       sshdr, timeout, retries, NULL);
1935 	kfree(real_buffer);
1936 	return ret;
1937 }
1938 EXPORT_SYMBOL_GPL(scsi_mode_select);
1939 
1940 /**
1941  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1942  *	@sdev:	SCSI device to be queried
1943  *	@dbd:	set if mode sense will allow block descriptors to be returned
1944  *	@modepage: mode page being requested
1945  *	@buffer: request buffer (may not be smaller than eight bytes)
1946  *	@len:	length of request buffer.
1947  *	@timeout: command timeout
1948  *	@retries: number of retries before failing
1949  *	@data: returns a structure abstracting the mode header data
1950  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1951  *		must be SCSI_SENSE_BUFFERSIZE big.
1952  *
1953  *	Returns zero if unsuccessful, or the header offset (either 4
1954  *	or 8 depending on whether a six or ten byte command was
1955  *	issued) if successful.
1956  */
1957 int
1958 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1959 		  unsigned char *buffer, int len, int timeout, int retries,
1960 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1961 {
1962 	unsigned char cmd[12];
1963 	int use_10_for_ms;
1964 	int header_length;
1965 	int result;
1966 	struct scsi_sense_hdr my_sshdr;
1967 
1968 	memset(data, 0, sizeof(*data));
1969 	memset(&cmd[0], 0, 12);
1970 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1971 	cmd[2] = modepage;
1972 
1973 	/* caller might not be interested in sense, but we need it */
1974 	if (!sshdr)
1975 		sshdr = &my_sshdr;
1976 
1977  retry:
1978 	use_10_for_ms = sdev->use_10_for_ms;
1979 
1980 	if (use_10_for_ms) {
1981 		if (len < 8)
1982 			len = 8;
1983 
1984 		cmd[0] = MODE_SENSE_10;
1985 		cmd[8] = len;
1986 		header_length = 8;
1987 	} else {
1988 		if (len < 4)
1989 			len = 4;
1990 
1991 		cmd[0] = MODE_SENSE;
1992 		cmd[4] = len;
1993 		header_length = 4;
1994 	}
1995 
1996 	memset(buffer, 0, len);
1997 
1998 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1999 				  sshdr, timeout, retries, NULL);
2000 
2001 	/* This code looks awful: what it's doing is making sure an
2002 	 * ILLEGAL REQUEST sense return identifies the actual command
2003 	 * byte as the problem.  MODE_SENSE commands can return
2004 	 * ILLEGAL REQUEST if the code page isn't supported */
2005 
2006 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2007 	    (driver_byte(result) & DRIVER_SENSE)) {
2008 		if (scsi_sense_valid(sshdr)) {
2009 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2010 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2011 				/*
2012 				 * Invalid command operation code
2013 				 */
2014 				sdev->use_10_for_ms = 0;
2015 				goto retry;
2016 			}
2017 		}
2018 	}
2019 
2020 	if(scsi_status_is_good(result)) {
2021 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2022 			     (modepage == 6 || modepage == 8))) {
2023 			/* Initio breakage? */
2024 			header_length = 0;
2025 			data->length = 13;
2026 			data->medium_type = 0;
2027 			data->device_specific = 0;
2028 			data->longlba = 0;
2029 			data->block_descriptor_length = 0;
2030 		} else if(use_10_for_ms) {
2031 			data->length = buffer[0]*256 + buffer[1] + 2;
2032 			data->medium_type = buffer[2];
2033 			data->device_specific = buffer[3];
2034 			data->longlba = buffer[4] & 0x01;
2035 			data->block_descriptor_length = buffer[6]*256
2036 				+ buffer[7];
2037 		} else {
2038 			data->length = buffer[0] + 1;
2039 			data->medium_type = buffer[1];
2040 			data->device_specific = buffer[2];
2041 			data->block_descriptor_length = buffer[3];
2042 		}
2043 		data->header_length = header_length;
2044 	}
2045 
2046 	return result;
2047 }
2048 EXPORT_SYMBOL(scsi_mode_sense);
2049 
2050 /**
2051  *	scsi_test_unit_ready - test if unit is ready
2052  *	@sdev:	scsi device to change the state of.
2053  *	@timeout: command timeout
2054  *	@retries: number of retries before failing
2055  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2056  *		returning sense. Make sure that this is cleared before passing
2057  *		in.
2058  *
2059  *	Returns zero if unsuccessful or an error if TUR failed.  For
2060  *	removable media, UNIT_ATTENTION sets ->changed flag.
2061  **/
2062 int
2063 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2064 		     struct scsi_sense_hdr *sshdr_external)
2065 {
2066 	char cmd[] = {
2067 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2068 	};
2069 	struct scsi_sense_hdr *sshdr;
2070 	int result;
2071 
2072 	if (!sshdr_external)
2073 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2074 	else
2075 		sshdr = sshdr_external;
2076 
2077 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2078 	do {
2079 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2080 					  timeout, retries, NULL);
2081 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2082 		    sshdr->sense_key == UNIT_ATTENTION)
2083 			sdev->changed = 1;
2084 	} while (scsi_sense_valid(sshdr) &&
2085 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2086 
2087 	if (!sshdr_external)
2088 		kfree(sshdr);
2089 	return result;
2090 }
2091 EXPORT_SYMBOL(scsi_test_unit_ready);
2092 
2093 /**
2094  *	scsi_device_set_state - Take the given device through the device state model.
2095  *	@sdev:	scsi device to change the state of.
2096  *	@state:	state to change to.
2097  *
2098  *	Returns zero if unsuccessful or an error if the requested
2099  *	transition is illegal.
2100  */
2101 int
2102 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2103 {
2104 	enum scsi_device_state oldstate = sdev->sdev_state;
2105 
2106 	if (state == oldstate)
2107 		return 0;
2108 
2109 	switch (state) {
2110 	case SDEV_CREATED:
2111 		switch (oldstate) {
2112 		case SDEV_CREATED_BLOCK:
2113 			break;
2114 		default:
2115 			goto illegal;
2116 		}
2117 		break;
2118 
2119 	case SDEV_RUNNING:
2120 		switch (oldstate) {
2121 		case SDEV_CREATED:
2122 		case SDEV_OFFLINE:
2123 		case SDEV_TRANSPORT_OFFLINE:
2124 		case SDEV_QUIESCE:
2125 		case SDEV_BLOCK:
2126 			break;
2127 		default:
2128 			goto illegal;
2129 		}
2130 		break;
2131 
2132 	case SDEV_QUIESCE:
2133 		switch (oldstate) {
2134 		case SDEV_RUNNING:
2135 		case SDEV_OFFLINE:
2136 		case SDEV_TRANSPORT_OFFLINE:
2137 			break;
2138 		default:
2139 			goto illegal;
2140 		}
2141 		break;
2142 
2143 	case SDEV_OFFLINE:
2144 	case SDEV_TRANSPORT_OFFLINE:
2145 		switch (oldstate) {
2146 		case SDEV_CREATED:
2147 		case SDEV_RUNNING:
2148 		case SDEV_QUIESCE:
2149 		case SDEV_BLOCK:
2150 			break;
2151 		default:
2152 			goto illegal;
2153 		}
2154 		break;
2155 
2156 	case SDEV_BLOCK:
2157 		switch (oldstate) {
2158 		case SDEV_RUNNING:
2159 		case SDEV_CREATED_BLOCK:
2160 			break;
2161 		default:
2162 			goto illegal;
2163 		}
2164 		break;
2165 
2166 	case SDEV_CREATED_BLOCK:
2167 		switch (oldstate) {
2168 		case SDEV_CREATED:
2169 			break;
2170 		default:
2171 			goto illegal;
2172 		}
2173 		break;
2174 
2175 	case SDEV_CANCEL:
2176 		switch (oldstate) {
2177 		case SDEV_CREATED:
2178 		case SDEV_RUNNING:
2179 		case SDEV_QUIESCE:
2180 		case SDEV_OFFLINE:
2181 		case SDEV_TRANSPORT_OFFLINE:
2182 		case SDEV_BLOCK:
2183 			break;
2184 		default:
2185 			goto illegal;
2186 		}
2187 		break;
2188 
2189 	case SDEV_DEL:
2190 		switch (oldstate) {
2191 		case SDEV_CREATED:
2192 		case SDEV_RUNNING:
2193 		case SDEV_OFFLINE:
2194 		case SDEV_TRANSPORT_OFFLINE:
2195 		case SDEV_CANCEL:
2196 		case SDEV_CREATED_BLOCK:
2197 			break;
2198 		default:
2199 			goto illegal;
2200 		}
2201 		break;
2202 
2203 	}
2204 	sdev->sdev_state = state;
2205 	return 0;
2206 
2207  illegal:
2208 	SCSI_LOG_ERROR_RECOVERY(1,
2209 				sdev_printk(KERN_ERR, sdev,
2210 					    "Illegal state transition %s->%s\n",
2211 					    scsi_device_state_name(oldstate),
2212 					    scsi_device_state_name(state))
2213 				);
2214 	return -EINVAL;
2215 }
2216 EXPORT_SYMBOL(scsi_device_set_state);
2217 
2218 /**
2219  * 	sdev_evt_emit - emit a single SCSI device uevent
2220  *	@sdev: associated SCSI device
2221  *	@evt: event to emit
2222  *
2223  *	Send a single uevent (scsi_event) to the associated scsi_device.
2224  */
2225 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2226 {
2227 	int idx = 0;
2228 	char *envp[3];
2229 
2230 	switch (evt->evt_type) {
2231 	case SDEV_EVT_MEDIA_CHANGE:
2232 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2233 		break;
2234 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2235 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2236 		break;
2237 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2238 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2239 		break;
2240 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2241 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2242 		break;
2243 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2244 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2245 		break;
2246 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2247 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2248 		break;
2249 	default:
2250 		/* do nothing */
2251 		break;
2252 	}
2253 
2254 	envp[idx++] = NULL;
2255 
2256 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2257 }
2258 
2259 /**
2260  * 	sdev_evt_thread - send a uevent for each scsi event
2261  *	@work: work struct for scsi_device
2262  *
2263  *	Dispatch queued events to their associated scsi_device kobjects
2264  *	as uevents.
2265  */
2266 void scsi_evt_thread(struct work_struct *work)
2267 {
2268 	struct scsi_device *sdev;
2269 	enum scsi_device_event evt_type;
2270 	LIST_HEAD(event_list);
2271 
2272 	sdev = container_of(work, struct scsi_device, event_work);
2273 
2274 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2275 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2276 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2277 
2278 	while (1) {
2279 		struct scsi_event *evt;
2280 		struct list_head *this, *tmp;
2281 		unsigned long flags;
2282 
2283 		spin_lock_irqsave(&sdev->list_lock, flags);
2284 		list_splice_init(&sdev->event_list, &event_list);
2285 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2286 
2287 		if (list_empty(&event_list))
2288 			break;
2289 
2290 		list_for_each_safe(this, tmp, &event_list) {
2291 			evt = list_entry(this, struct scsi_event, node);
2292 			list_del(&evt->node);
2293 			scsi_evt_emit(sdev, evt);
2294 			kfree(evt);
2295 		}
2296 	}
2297 }
2298 
2299 /**
2300  * 	sdev_evt_send - send asserted event to uevent thread
2301  *	@sdev: scsi_device event occurred on
2302  *	@evt: event to send
2303  *
2304  *	Assert scsi device event asynchronously.
2305  */
2306 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2307 {
2308 	unsigned long flags;
2309 
2310 #if 0
2311 	/* FIXME: currently this check eliminates all media change events
2312 	 * for polled devices.  Need to update to discriminate between AN
2313 	 * and polled events */
2314 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2315 		kfree(evt);
2316 		return;
2317 	}
2318 #endif
2319 
2320 	spin_lock_irqsave(&sdev->list_lock, flags);
2321 	list_add_tail(&evt->node, &sdev->event_list);
2322 	schedule_work(&sdev->event_work);
2323 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2324 }
2325 EXPORT_SYMBOL_GPL(sdev_evt_send);
2326 
2327 /**
2328  * 	sdev_evt_alloc - allocate a new scsi event
2329  *	@evt_type: type of event to allocate
2330  *	@gfpflags: GFP flags for allocation
2331  *
2332  *	Allocates and returns a new scsi_event.
2333  */
2334 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2335 				  gfp_t gfpflags)
2336 {
2337 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2338 	if (!evt)
2339 		return NULL;
2340 
2341 	evt->evt_type = evt_type;
2342 	INIT_LIST_HEAD(&evt->node);
2343 
2344 	/* evt_type-specific initialization, if any */
2345 	switch (evt_type) {
2346 	case SDEV_EVT_MEDIA_CHANGE:
2347 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2348 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2349 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2350 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2351 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2352 	default:
2353 		/* do nothing */
2354 		break;
2355 	}
2356 
2357 	return evt;
2358 }
2359 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2360 
2361 /**
2362  * 	sdev_evt_send_simple - send asserted event to uevent thread
2363  *	@sdev: scsi_device event occurred on
2364  *	@evt_type: type of event to send
2365  *	@gfpflags: GFP flags for allocation
2366  *
2367  *	Assert scsi device event asynchronously, given an event type.
2368  */
2369 void sdev_evt_send_simple(struct scsi_device *sdev,
2370 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2371 {
2372 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2373 	if (!evt) {
2374 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2375 			    evt_type);
2376 		return;
2377 	}
2378 
2379 	sdev_evt_send(sdev, evt);
2380 }
2381 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2382 
2383 /**
2384  *	scsi_device_quiesce - Block user issued commands.
2385  *	@sdev:	scsi device to quiesce.
2386  *
2387  *	This works by trying to transition to the SDEV_QUIESCE state
2388  *	(which must be a legal transition).  When the device is in this
2389  *	state, only special requests will be accepted, all others will
2390  *	be deferred.  Since special requests may also be requeued requests,
2391  *	a successful return doesn't guarantee the device will be
2392  *	totally quiescent.
2393  *
2394  *	Must be called with user context, may sleep.
2395  *
2396  *	Returns zero if unsuccessful or an error if not.
2397  */
2398 int
2399 scsi_device_quiesce(struct scsi_device *sdev)
2400 {
2401 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2402 	if (err)
2403 		return err;
2404 
2405 	scsi_run_queue(sdev->request_queue);
2406 	while (sdev->device_busy) {
2407 		msleep_interruptible(200);
2408 		scsi_run_queue(sdev->request_queue);
2409 	}
2410 	return 0;
2411 }
2412 EXPORT_SYMBOL(scsi_device_quiesce);
2413 
2414 /**
2415  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2416  *	@sdev:	scsi device to resume.
2417  *
2418  *	Moves the device from quiesced back to running and restarts the
2419  *	queues.
2420  *
2421  *	Must be called with user context, may sleep.
2422  */
2423 void scsi_device_resume(struct scsi_device *sdev)
2424 {
2425 	/* check if the device state was mutated prior to resume, and if
2426 	 * so assume the state is being managed elsewhere (for example
2427 	 * device deleted during suspend)
2428 	 */
2429 	if (sdev->sdev_state != SDEV_QUIESCE ||
2430 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2431 		return;
2432 	scsi_run_queue(sdev->request_queue);
2433 }
2434 EXPORT_SYMBOL(scsi_device_resume);
2435 
2436 static void
2437 device_quiesce_fn(struct scsi_device *sdev, void *data)
2438 {
2439 	scsi_device_quiesce(sdev);
2440 }
2441 
2442 void
2443 scsi_target_quiesce(struct scsi_target *starget)
2444 {
2445 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2446 }
2447 EXPORT_SYMBOL(scsi_target_quiesce);
2448 
2449 static void
2450 device_resume_fn(struct scsi_device *sdev, void *data)
2451 {
2452 	scsi_device_resume(sdev);
2453 }
2454 
2455 void
2456 scsi_target_resume(struct scsi_target *starget)
2457 {
2458 	starget_for_each_device(starget, NULL, device_resume_fn);
2459 }
2460 EXPORT_SYMBOL(scsi_target_resume);
2461 
2462 /**
2463  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2464  * @sdev:	device to block
2465  *
2466  * Block request made by scsi lld's to temporarily stop all
2467  * scsi commands on the specified device.  Called from interrupt
2468  * or normal process context.
2469  *
2470  * Returns zero if successful or error if not
2471  *
2472  * Notes:
2473  *	This routine transitions the device to the SDEV_BLOCK state
2474  *	(which must be a legal transition).  When the device is in this
2475  *	state, all commands are deferred until the scsi lld reenables
2476  *	the device with scsi_device_unblock or device_block_tmo fires.
2477  */
2478 int
2479 scsi_internal_device_block(struct scsi_device *sdev)
2480 {
2481 	struct request_queue *q = sdev->request_queue;
2482 	unsigned long flags;
2483 	int err = 0;
2484 
2485 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2486 	if (err) {
2487 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2488 
2489 		if (err)
2490 			return err;
2491 	}
2492 
2493 	/*
2494 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2495 	 * block layer from calling the midlayer with this device's
2496 	 * request queue.
2497 	 */
2498 	spin_lock_irqsave(q->queue_lock, flags);
2499 	blk_stop_queue(q);
2500 	spin_unlock_irqrestore(q->queue_lock, flags);
2501 
2502 	return 0;
2503 }
2504 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2505 
2506 /**
2507  * scsi_internal_device_unblock - resume a device after a block request
2508  * @sdev:	device to resume
2509  * @new_state:	state to set devices to after unblocking
2510  *
2511  * Called by scsi lld's or the midlayer to restart the device queue
2512  * for the previously suspended scsi device.  Called from interrupt or
2513  * normal process context.
2514  *
2515  * Returns zero if successful or error if not.
2516  *
2517  * Notes:
2518  *	This routine transitions the device to the SDEV_RUNNING state
2519  *	or to one of the offline states (which must be a legal transition)
2520  *	allowing the midlayer to goose the queue for this device.
2521  */
2522 int
2523 scsi_internal_device_unblock(struct scsi_device *sdev,
2524 			     enum scsi_device_state new_state)
2525 {
2526 	struct request_queue *q = sdev->request_queue;
2527 	unsigned long flags;
2528 
2529 	/*
2530 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2531 	 * offlined states and goose the device queue if successful.
2532 	 */
2533 	if ((sdev->sdev_state == SDEV_BLOCK) ||
2534 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2535 		sdev->sdev_state = new_state;
2536 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2537 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2538 		    new_state == SDEV_OFFLINE)
2539 			sdev->sdev_state = new_state;
2540 		else
2541 			sdev->sdev_state = SDEV_CREATED;
2542 	} else if (sdev->sdev_state != SDEV_CANCEL &&
2543 		 sdev->sdev_state != SDEV_OFFLINE)
2544 		return -EINVAL;
2545 
2546 	spin_lock_irqsave(q->queue_lock, flags);
2547 	blk_start_queue(q);
2548 	spin_unlock_irqrestore(q->queue_lock, flags);
2549 
2550 	return 0;
2551 }
2552 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2553 
2554 static void
2555 device_block(struct scsi_device *sdev, void *data)
2556 {
2557 	scsi_internal_device_block(sdev);
2558 }
2559 
2560 static int
2561 target_block(struct device *dev, void *data)
2562 {
2563 	if (scsi_is_target_device(dev))
2564 		starget_for_each_device(to_scsi_target(dev), NULL,
2565 					device_block);
2566 	return 0;
2567 }
2568 
2569 void
2570 scsi_target_block(struct device *dev)
2571 {
2572 	if (scsi_is_target_device(dev))
2573 		starget_for_each_device(to_scsi_target(dev), NULL,
2574 					device_block);
2575 	else
2576 		device_for_each_child(dev, NULL, target_block);
2577 }
2578 EXPORT_SYMBOL_GPL(scsi_target_block);
2579 
2580 static void
2581 device_unblock(struct scsi_device *sdev, void *data)
2582 {
2583 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2584 }
2585 
2586 static int
2587 target_unblock(struct device *dev, void *data)
2588 {
2589 	if (scsi_is_target_device(dev))
2590 		starget_for_each_device(to_scsi_target(dev), data,
2591 					device_unblock);
2592 	return 0;
2593 }
2594 
2595 void
2596 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2597 {
2598 	if (scsi_is_target_device(dev))
2599 		starget_for_each_device(to_scsi_target(dev), &new_state,
2600 					device_unblock);
2601 	else
2602 		device_for_each_child(dev, &new_state, target_unblock);
2603 }
2604 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2605 
2606 /**
2607  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2608  * @sgl:	scatter-gather list
2609  * @sg_count:	number of segments in sg
2610  * @offset:	offset in bytes into sg, on return offset into the mapped area
2611  * @len:	bytes to map, on return number of bytes mapped
2612  *
2613  * Returns virtual address of the start of the mapped page
2614  */
2615 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2616 			  size_t *offset, size_t *len)
2617 {
2618 	int i;
2619 	size_t sg_len = 0, len_complete = 0;
2620 	struct scatterlist *sg;
2621 	struct page *page;
2622 
2623 	WARN_ON(!irqs_disabled());
2624 
2625 	for_each_sg(sgl, sg, sg_count, i) {
2626 		len_complete = sg_len; /* Complete sg-entries */
2627 		sg_len += sg->length;
2628 		if (sg_len > *offset)
2629 			break;
2630 	}
2631 
2632 	if (unlikely(i == sg_count)) {
2633 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2634 			"elements %d\n",
2635 		       __func__, sg_len, *offset, sg_count);
2636 		WARN_ON(1);
2637 		return NULL;
2638 	}
2639 
2640 	/* Offset starting from the beginning of first page in this sg-entry */
2641 	*offset = *offset - len_complete + sg->offset;
2642 
2643 	/* Assumption: contiguous pages can be accessed as "page + i" */
2644 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2645 	*offset &= ~PAGE_MASK;
2646 
2647 	/* Bytes in this sg-entry from *offset to the end of the page */
2648 	sg_len = PAGE_SIZE - *offset;
2649 	if (*len > sg_len)
2650 		*len = sg_len;
2651 
2652 	return kmap_atomic(page);
2653 }
2654 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2655 
2656 /**
2657  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2658  * @virt:	virtual address to be unmapped
2659  */
2660 void scsi_kunmap_atomic_sg(void *virt)
2661 {
2662 	kunmap_atomic(virt);
2663 }
2664 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2665 
2666 void sdev_disable_disk_events(struct scsi_device *sdev)
2667 {
2668 	atomic_inc(&sdev->disk_events_disable_depth);
2669 }
2670 EXPORT_SYMBOL(sdev_disable_disk_events);
2671 
2672 void sdev_enable_disk_events(struct scsi_device *sdev)
2673 {
2674 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2675 		return;
2676 	atomic_dec(&sdev->disk_events_disable_depth);
2677 }
2678 EXPORT_SYMBOL(sdev_enable_disk_events);
2679