xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30 
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33 
34 
35 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE		2
37 
38 struct scsi_host_sg_pool {
39 	size_t		size;
40 	char		*name;
41 	struct kmem_cache	*slab;
42 	mempool_t	*pool;
43 };
44 
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 	SP(8),
51 	SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 	SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 	SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 	SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 	SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67 
68 struct kmem_cache *scsi_sdb_cache;
69 
70 static void scsi_run_queue(struct request_queue *q);
71 
72 /*
73  * Function:	scsi_unprep_request()
74  *
75  * Purpose:	Remove all preparation done for a request, including its
76  *		associated scsi_cmnd, so that it can be requeued.
77  *
78  * Arguments:	req	- request to unprepare
79  *
80  * Lock status:	Assumed that no locks are held upon entry.
81  *
82  * Returns:	Nothing.
83  */
84 static void scsi_unprep_request(struct request *req)
85 {
86 	struct scsi_cmnd *cmd = req->special;
87 
88 	req->cmd_flags &= ~REQ_DONTPREP;
89 	req->special = NULL;
90 
91 	scsi_put_command(cmd);
92 }
93 
94 /*
95  * Function:    scsi_queue_insert()
96  *
97  * Purpose:     Insert a command in the midlevel queue.
98  *
99  * Arguments:   cmd    - command that we are adding to queue.
100  *              reason - why we are inserting command to queue.
101  *
102  * Lock status: Assumed that lock is not held upon entry.
103  *
104  * Returns:     Nothing.
105  *
106  * Notes:       We do this for one of two cases.  Either the host is busy
107  *              and it cannot accept any more commands for the time being,
108  *              or the device returned QUEUE_FULL and can accept no more
109  *              commands.
110  * Notes:       This could be called either from an interrupt context or a
111  *              normal process context.
112  */
113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
114 {
115 	struct Scsi_Host *host = cmd->device->host;
116 	struct scsi_device *device = cmd->device;
117 	struct request_queue *q = device->request_queue;
118 	unsigned long flags;
119 
120 	SCSI_LOG_MLQUEUE(1,
121 		 printk("Inserting command %p into mlqueue\n", cmd));
122 
123 	/*
124 	 * Set the appropriate busy bit for the device/host.
125 	 *
126 	 * If the host/device isn't busy, assume that something actually
127 	 * completed, and that we should be able to queue a command now.
128 	 *
129 	 * Note that the prior mid-layer assumption that any host could
130 	 * always queue at least one command is now broken.  The mid-layer
131 	 * will implement a user specifiable stall (see
132 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133 	 * if a command is requeued with no other commands outstanding
134 	 * either for the device or for the host.
135 	 */
136 	if (reason == SCSI_MLQUEUE_HOST_BUSY)
137 		host->host_blocked = host->max_host_blocked;
138 	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
139 		device->device_blocked = device->max_device_blocked;
140 
141 	/*
142 	 * Decrement the counters, since these commands are no longer
143 	 * active on the host/device.
144 	 */
145 	scsi_device_unbusy(device);
146 
147 	/*
148 	 * Requeue this command.  It will go before all other commands
149 	 * that are already in the queue.
150 	 *
151 	 * NOTE: there is magic here about the way the queue is plugged if
152 	 * we have no outstanding commands.
153 	 *
154 	 * Although we *don't* plug the queue, we call the request
155 	 * function.  The SCSI request function detects the blocked condition
156 	 * and plugs the queue appropriately.
157          */
158 	spin_lock_irqsave(q->queue_lock, flags);
159 	blk_requeue_request(q, cmd->request);
160 	spin_unlock_irqrestore(q->queue_lock, flags);
161 
162 	scsi_run_queue(q);
163 
164 	return 0;
165 }
166 
167 /**
168  * scsi_execute - insert request and wait for the result
169  * @sdev:	scsi device
170  * @cmd:	scsi command
171  * @data_direction: data direction
172  * @buffer:	data buffer
173  * @bufflen:	len of buffer
174  * @sense:	optional sense buffer
175  * @timeout:	request timeout in seconds
176  * @retries:	number of times to retry request
177  * @flags:	or into request flags;
178  *
179  * returns the req->errors value which is the scsi_cmnd result
180  * field.
181  */
182 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
183 		 int data_direction, void *buffer, unsigned bufflen,
184 		 unsigned char *sense, int timeout, int retries, int flags)
185 {
186 	struct request *req;
187 	int write = (data_direction == DMA_TO_DEVICE);
188 	int ret = DRIVER_ERROR << 24;
189 
190 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
191 
192 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
193 					buffer, bufflen, __GFP_WAIT))
194 		goto out;
195 
196 	req->cmd_len = COMMAND_SIZE(cmd[0]);
197 	memcpy(req->cmd, cmd, req->cmd_len);
198 	req->sense = sense;
199 	req->sense_len = 0;
200 	req->retries = retries;
201 	req->timeout = timeout;
202 	req->cmd_type = REQ_TYPE_BLOCK_PC;
203 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
204 
205 	/*
206 	 * head injection *required* here otherwise quiesce won't work
207 	 */
208 	blk_execute_rq(req->q, NULL, req, 1);
209 
210 	/*
211 	 * Some devices (USB mass-storage in particular) may transfer
212 	 * garbage data together with a residue indicating that the data
213 	 * is invalid.  Prevent the garbage from being misinterpreted
214 	 * and prevent security leaks by zeroing out the excess data.
215 	 */
216 	if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
217 		memset(buffer + (bufflen - req->data_len), 0, req->data_len);
218 
219 	ret = req->errors;
220  out:
221 	blk_put_request(req);
222 
223 	return ret;
224 }
225 EXPORT_SYMBOL(scsi_execute);
226 
227 
228 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
229 		     int data_direction, void *buffer, unsigned bufflen,
230 		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
231 {
232 	char *sense = NULL;
233 	int result;
234 
235 	if (sshdr) {
236 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
237 		if (!sense)
238 			return DRIVER_ERROR << 24;
239 	}
240 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
241 			      sense, timeout, retries, 0);
242 	if (sshdr)
243 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
244 
245 	kfree(sense);
246 	return result;
247 }
248 EXPORT_SYMBOL(scsi_execute_req);
249 
250 struct scsi_io_context {
251 	void *data;
252 	void (*done)(void *data, char *sense, int result, int resid);
253 	char sense[SCSI_SENSE_BUFFERSIZE];
254 };
255 
256 static struct kmem_cache *scsi_io_context_cache;
257 
258 static void scsi_end_async(struct request *req, int uptodate)
259 {
260 	struct scsi_io_context *sioc = req->end_io_data;
261 
262 	if (sioc->done)
263 		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
264 
265 	kmem_cache_free(scsi_io_context_cache, sioc);
266 	__blk_put_request(req->q, req);
267 }
268 
269 static int scsi_merge_bio(struct request *rq, struct bio *bio)
270 {
271 	struct request_queue *q = rq->q;
272 
273 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
274 	if (rq_data_dir(rq) == WRITE)
275 		bio->bi_rw |= (1 << BIO_RW);
276 	blk_queue_bounce(q, &bio);
277 
278 	return blk_rq_append_bio(q, rq, bio);
279 }
280 
281 static void scsi_bi_endio(struct bio *bio, int error)
282 {
283 	bio_put(bio);
284 }
285 
286 /**
287  * scsi_req_map_sg - map a scatterlist into a request
288  * @rq:		request to fill
289  * @sgl:	scatterlist
290  * @nsegs:	number of elements
291  * @bufflen:	len of buffer
292  * @gfp:	memory allocation flags
293  *
294  * scsi_req_map_sg maps a scatterlist into a request so that the
295  * request can be sent to the block layer. We do not trust the scatterlist
296  * sent to use, as some ULDs use that struct to only organize the pages.
297  */
298 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
299 			   int nsegs, unsigned bufflen, gfp_t gfp)
300 {
301 	struct request_queue *q = rq->q;
302 	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
303 	unsigned int data_len = bufflen, len, bytes, off;
304 	struct scatterlist *sg;
305 	struct page *page;
306 	struct bio *bio = NULL;
307 	int i, err, nr_vecs = 0;
308 
309 	for_each_sg(sgl, sg, nsegs, i) {
310 		page = sg_page(sg);
311 		off = sg->offset;
312 		len = sg->length;
313 
314 		while (len > 0 && data_len > 0) {
315 			/*
316 			 * sg sends a scatterlist that is larger than
317 			 * the data_len it wants transferred for certain
318 			 * IO sizes
319 			 */
320 			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
321 			bytes = min(bytes, data_len);
322 
323 			if (!bio) {
324 				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
325 				nr_pages -= nr_vecs;
326 
327 				bio = bio_alloc(gfp, nr_vecs);
328 				if (!bio) {
329 					err = -ENOMEM;
330 					goto free_bios;
331 				}
332 				bio->bi_end_io = scsi_bi_endio;
333 			}
334 
335 			if (bio_add_pc_page(q, bio, page, bytes, off) !=
336 			    bytes) {
337 				bio_put(bio);
338 				err = -EINVAL;
339 				goto free_bios;
340 			}
341 
342 			if (bio->bi_vcnt >= nr_vecs) {
343 				err = scsi_merge_bio(rq, bio);
344 				if (err) {
345 					bio_endio(bio, 0);
346 					goto free_bios;
347 				}
348 				bio = NULL;
349 			}
350 
351 			page++;
352 			len -= bytes;
353 			data_len -=bytes;
354 			off = 0;
355 		}
356 	}
357 
358 	rq->buffer = rq->data = NULL;
359 	rq->data_len = bufflen;
360 	return 0;
361 
362 free_bios:
363 	while ((bio = rq->bio) != NULL) {
364 		rq->bio = bio->bi_next;
365 		/*
366 		 * call endio instead of bio_put incase it was bounced
367 		 */
368 		bio_endio(bio, 0);
369 	}
370 
371 	return err;
372 }
373 
374 /**
375  * scsi_execute_async - insert request
376  * @sdev:	scsi device
377  * @cmd:	scsi command
378  * @cmd_len:	length of scsi cdb
379  * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
380  * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
381  * @bufflen:	len of buffer
382  * @use_sg:	if buffer is a scatterlist this is the number of elements
383  * @timeout:	request timeout in seconds
384  * @retries:	number of times to retry request
385  * @privdata:	data passed to done()
386  * @done:	callback function when done
387  * @gfp:	memory allocation flags
388  */
389 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
390 		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
391 		       int use_sg, int timeout, int retries, void *privdata,
392 		       void (*done)(void *, char *, int, int), gfp_t gfp)
393 {
394 	struct request *req;
395 	struct scsi_io_context *sioc;
396 	int err = 0;
397 	int write = (data_direction == DMA_TO_DEVICE);
398 
399 	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
400 	if (!sioc)
401 		return DRIVER_ERROR << 24;
402 
403 	req = blk_get_request(sdev->request_queue, write, gfp);
404 	if (!req)
405 		goto free_sense;
406 	req->cmd_type = REQ_TYPE_BLOCK_PC;
407 	req->cmd_flags |= REQ_QUIET;
408 
409 	if (use_sg)
410 		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
411 	else if (bufflen)
412 		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
413 
414 	if (err)
415 		goto free_req;
416 
417 	req->cmd_len = cmd_len;
418 	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
419 	memcpy(req->cmd, cmd, req->cmd_len);
420 	req->sense = sioc->sense;
421 	req->sense_len = 0;
422 	req->timeout = timeout;
423 	req->retries = retries;
424 	req->end_io_data = sioc;
425 
426 	sioc->data = privdata;
427 	sioc->done = done;
428 
429 	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
430 	return 0;
431 
432 free_req:
433 	blk_put_request(req);
434 free_sense:
435 	kmem_cache_free(scsi_io_context_cache, sioc);
436 	return DRIVER_ERROR << 24;
437 }
438 EXPORT_SYMBOL_GPL(scsi_execute_async);
439 
440 /*
441  * Function:    scsi_init_cmd_errh()
442  *
443  * Purpose:     Initialize cmd fields related to error handling.
444  *
445  * Arguments:   cmd	- command that is ready to be queued.
446  *
447  * Notes:       This function has the job of initializing a number of
448  *              fields related to error handling.   Typically this will
449  *              be called once for each command, as required.
450  */
451 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
452 {
453 	cmd->serial_number = 0;
454 	scsi_set_resid(cmd, 0);
455 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
456 	if (cmd->cmd_len == 0)
457 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
458 }
459 
460 void scsi_device_unbusy(struct scsi_device *sdev)
461 {
462 	struct Scsi_Host *shost = sdev->host;
463 	unsigned long flags;
464 
465 	spin_lock_irqsave(shost->host_lock, flags);
466 	shost->host_busy--;
467 	if (unlikely(scsi_host_in_recovery(shost) &&
468 		     (shost->host_failed || shost->host_eh_scheduled)))
469 		scsi_eh_wakeup(shost);
470 	spin_unlock(shost->host_lock);
471 	spin_lock(sdev->request_queue->queue_lock);
472 	sdev->device_busy--;
473 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
474 }
475 
476 /*
477  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
478  * and call blk_run_queue for all the scsi_devices on the target -
479  * including current_sdev first.
480  *
481  * Called with *no* scsi locks held.
482  */
483 static void scsi_single_lun_run(struct scsi_device *current_sdev)
484 {
485 	struct Scsi_Host *shost = current_sdev->host;
486 	struct scsi_device *sdev, *tmp;
487 	struct scsi_target *starget = scsi_target(current_sdev);
488 	unsigned long flags;
489 
490 	spin_lock_irqsave(shost->host_lock, flags);
491 	starget->starget_sdev_user = NULL;
492 	spin_unlock_irqrestore(shost->host_lock, flags);
493 
494 	/*
495 	 * Call blk_run_queue for all LUNs on the target, starting with
496 	 * current_sdev. We race with others (to set starget_sdev_user),
497 	 * but in most cases, we will be first. Ideally, each LU on the
498 	 * target would get some limited time or requests on the target.
499 	 */
500 	blk_run_queue(current_sdev->request_queue);
501 
502 	spin_lock_irqsave(shost->host_lock, flags);
503 	if (starget->starget_sdev_user)
504 		goto out;
505 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
506 			same_target_siblings) {
507 		if (sdev == current_sdev)
508 			continue;
509 		if (scsi_device_get(sdev))
510 			continue;
511 
512 		spin_unlock_irqrestore(shost->host_lock, flags);
513 		blk_run_queue(sdev->request_queue);
514 		spin_lock_irqsave(shost->host_lock, flags);
515 
516 		scsi_device_put(sdev);
517 	}
518  out:
519 	spin_unlock_irqrestore(shost->host_lock, flags);
520 }
521 
522 /*
523  * Function:	scsi_run_queue()
524  *
525  * Purpose:	Select a proper request queue to serve next
526  *
527  * Arguments:	q	- last request's queue
528  *
529  * Returns:     Nothing
530  *
531  * Notes:	The previous command was completely finished, start
532  *		a new one if possible.
533  */
534 static void scsi_run_queue(struct request_queue *q)
535 {
536 	struct scsi_device *sdev = q->queuedata;
537 	struct Scsi_Host *shost = sdev->host;
538 	unsigned long flags;
539 
540 	if (scsi_target(sdev)->single_lun)
541 		scsi_single_lun_run(sdev);
542 
543 	spin_lock_irqsave(shost->host_lock, flags);
544 	while (!list_empty(&shost->starved_list) &&
545 	       !shost->host_blocked && !shost->host_self_blocked &&
546 		!((shost->can_queue > 0) &&
547 		  (shost->host_busy >= shost->can_queue))) {
548 
549 		int flagset;
550 
551 		/*
552 		 * As long as shost is accepting commands and we have
553 		 * starved queues, call blk_run_queue. scsi_request_fn
554 		 * drops the queue_lock and can add us back to the
555 		 * starved_list.
556 		 *
557 		 * host_lock protects the starved_list and starved_entry.
558 		 * scsi_request_fn must get the host_lock before checking
559 		 * or modifying starved_list or starved_entry.
560 		 */
561 		sdev = list_entry(shost->starved_list.next,
562 					  struct scsi_device, starved_entry);
563 		list_del_init(&sdev->starved_entry);
564 		spin_unlock(shost->host_lock);
565 
566 		spin_lock(sdev->request_queue->queue_lock);
567 		flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
568 				!test_bit(QUEUE_FLAG_REENTER,
569 					&sdev->request_queue->queue_flags);
570 		if (flagset)
571 			queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
572 		__blk_run_queue(sdev->request_queue);
573 		if (flagset)
574 			queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
575 		spin_unlock(sdev->request_queue->queue_lock);
576 
577 		spin_lock(shost->host_lock);
578 		if (unlikely(!list_empty(&sdev->starved_entry)))
579 			/*
580 			 * sdev lost a race, and was put back on the
581 			 * starved list. This is unlikely but without this
582 			 * in theory we could loop forever.
583 			 */
584 			break;
585 	}
586 	spin_unlock_irqrestore(shost->host_lock, flags);
587 
588 	blk_run_queue(q);
589 }
590 
591 /*
592  * Function:	scsi_requeue_command()
593  *
594  * Purpose:	Handle post-processing of completed commands.
595  *
596  * Arguments:	q	- queue to operate on
597  *		cmd	- command that may need to be requeued.
598  *
599  * Returns:	Nothing
600  *
601  * Notes:	After command completion, there may be blocks left
602  *		over which weren't finished by the previous command
603  *		this can be for a number of reasons - the main one is
604  *		I/O errors in the middle of the request, in which case
605  *		we need to request the blocks that come after the bad
606  *		sector.
607  * Notes:	Upon return, cmd is a stale pointer.
608  */
609 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
610 {
611 	struct request *req = cmd->request;
612 	unsigned long flags;
613 
614 	scsi_unprep_request(req);
615 	spin_lock_irqsave(q->queue_lock, flags);
616 	blk_requeue_request(q, req);
617 	spin_unlock_irqrestore(q->queue_lock, flags);
618 
619 	scsi_run_queue(q);
620 }
621 
622 void scsi_next_command(struct scsi_cmnd *cmd)
623 {
624 	struct scsi_device *sdev = cmd->device;
625 	struct request_queue *q = sdev->request_queue;
626 
627 	/* need to hold a reference on the device before we let go of the cmd */
628 	get_device(&sdev->sdev_gendev);
629 
630 	scsi_put_command(cmd);
631 	scsi_run_queue(q);
632 
633 	/* ok to remove device now */
634 	put_device(&sdev->sdev_gendev);
635 }
636 
637 void scsi_run_host_queues(struct Scsi_Host *shost)
638 {
639 	struct scsi_device *sdev;
640 
641 	shost_for_each_device(sdev, shost)
642 		scsi_run_queue(sdev->request_queue);
643 }
644 
645 /*
646  * Function:    scsi_end_request()
647  *
648  * Purpose:     Post-processing of completed commands (usually invoked at end
649  *		of upper level post-processing and scsi_io_completion).
650  *
651  * Arguments:   cmd	 - command that is complete.
652  *              error    - 0 if I/O indicates success, < 0 for I/O error.
653  *              bytes    - number of bytes of completed I/O
654  *		requeue  - indicates whether we should requeue leftovers.
655  *
656  * Lock status: Assumed that lock is not held upon entry.
657  *
658  * Returns:     cmd if requeue required, NULL otherwise.
659  *
660  * Notes:       This is called for block device requests in order to
661  *              mark some number of sectors as complete.
662  *
663  *		We are guaranteeing that the request queue will be goosed
664  *		at some point during this call.
665  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
666  */
667 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
668 					  int bytes, int requeue)
669 {
670 	struct request_queue *q = cmd->device->request_queue;
671 	struct request *req = cmd->request;
672 
673 	/*
674 	 * If there are blocks left over at the end, set up the command
675 	 * to queue the remainder of them.
676 	 */
677 	if (blk_end_request(req, error, bytes)) {
678 		int leftover = (req->hard_nr_sectors << 9);
679 
680 		if (blk_pc_request(req))
681 			leftover = req->data_len;
682 
683 		/* kill remainder if no retrys */
684 		if (error && blk_noretry_request(req))
685 			blk_end_request(req, error, leftover);
686 		else {
687 			if (requeue) {
688 				/*
689 				 * Bleah.  Leftovers again.  Stick the
690 				 * leftovers in the front of the
691 				 * queue, and goose the queue again.
692 				 */
693 				scsi_requeue_command(q, cmd);
694 				cmd = NULL;
695 			}
696 			return cmd;
697 		}
698 	}
699 
700 	/*
701 	 * This will goose the queue request function at the end, so we don't
702 	 * need to worry about launching another command.
703 	 */
704 	scsi_next_command(cmd);
705 	return NULL;
706 }
707 
708 static inline unsigned int scsi_sgtable_index(unsigned short nents)
709 {
710 	unsigned int index;
711 
712 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
713 
714 	if (nents <= 8)
715 		index = 0;
716 	else
717 		index = get_count_order(nents) - 3;
718 
719 	return index;
720 }
721 
722 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
723 {
724 	struct scsi_host_sg_pool *sgp;
725 
726 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
727 	mempool_free(sgl, sgp->pool);
728 }
729 
730 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
731 {
732 	struct scsi_host_sg_pool *sgp;
733 
734 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
735 	return mempool_alloc(sgp->pool, gfp_mask);
736 }
737 
738 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
739 			      gfp_t gfp_mask)
740 {
741 	int ret;
742 
743 	BUG_ON(!nents);
744 
745 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
746 			       gfp_mask, scsi_sg_alloc);
747 	if (unlikely(ret))
748 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
749 				scsi_sg_free);
750 
751 	return ret;
752 }
753 
754 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
755 {
756 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
757 }
758 
759 /*
760  * Function:    scsi_release_buffers()
761  *
762  * Purpose:     Completion processing for block device I/O requests.
763  *
764  * Arguments:   cmd	- command that we are bailing.
765  *
766  * Lock status: Assumed that no lock is held upon entry.
767  *
768  * Returns:     Nothing
769  *
770  * Notes:       In the event that an upper level driver rejects a
771  *		command, we must release resources allocated during
772  *		the __init_io() function.  Primarily this would involve
773  *		the scatter-gather table, and potentially any bounce
774  *		buffers.
775  */
776 void scsi_release_buffers(struct scsi_cmnd *cmd)
777 {
778 	if (cmd->sdb.table.nents)
779 		scsi_free_sgtable(&cmd->sdb);
780 
781 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
782 
783 	if (scsi_bidi_cmnd(cmd)) {
784 		struct scsi_data_buffer *bidi_sdb =
785 			cmd->request->next_rq->special;
786 		scsi_free_sgtable(bidi_sdb);
787 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
788 		cmd->request->next_rq->special = NULL;
789 	}
790 
791 	if (scsi_prot_sg_count(cmd))
792 		scsi_free_sgtable(cmd->prot_sdb);
793 }
794 EXPORT_SYMBOL(scsi_release_buffers);
795 
796 /*
797  * Bidi commands Must be complete as a whole, both sides at once.
798  * If part of the bytes were written and lld returned
799  * scsi_in()->resid and/or scsi_out()->resid this information will be left
800  * in req->data_len and req->next_rq->data_len. The upper-layer driver can
801  * decide what to do with this information.
802  */
803 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
804 {
805 	struct request *req = cmd->request;
806 	unsigned int dlen = req->data_len;
807 	unsigned int next_dlen = req->next_rq->data_len;
808 
809 	req->data_len = scsi_out(cmd)->resid;
810 	req->next_rq->data_len = scsi_in(cmd)->resid;
811 
812 	/* The req and req->next_rq have not been completed */
813 	BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
814 
815 	scsi_release_buffers(cmd);
816 
817 	/*
818 	 * This will goose the queue request function at the end, so we don't
819 	 * need to worry about launching another command.
820 	 */
821 	scsi_next_command(cmd);
822 }
823 
824 /*
825  * Function:    scsi_io_completion()
826  *
827  * Purpose:     Completion processing for block device I/O requests.
828  *
829  * Arguments:   cmd   - command that is finished.
830  *
831  * Lock status: Assumed that no lock is held upon entry.
832  *
833  * Returns:     Nothing
834  *
835  * Notes:       This function is matched in terms of capabilities to
836  *              the function that created the scatter-gather list.
837  *              In other words, if there are no bounce buffers
838  *              (the normal case for most drivers), we don't need
839  *              the logic to deal with cleaning up afterwards.
840  *
841  *		We must do one of several things here:
842  *
843  *		a) Call scsi_end_request.  This will finish off the
844  *		   specified number of sectors.  If we are done, the
845  *		   command block will be released, and the queue
846  *		   function will be goosed.  If we are not done, then
847  *		   scsi_end_request will directly goose the queue.
848  *
849  *		b) We can just use scsi_requeue_command() here.  This would
850  *		   be used if we just wanted to retry, for example.
851  */
852 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
853 {
854 	int result = cmd->result;
855 	int this_count = scsi_bufflen(cmd);
856 	struct request_queue *q = cmd->device->request_queue;
857 	struct request *req = cmd->request;
858 	int error = 0;
859 	struct scsi_sense_hdr sshdr;
860 	int sense_valid = 0;
861 	int sense_deferred = 0;
862 
863 	if (result) {
864 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
865 		if (sense_valid)
866 			sense_deferred = scsi_sense_is_deferred(&sshdr);
867 	}
868 
869 	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
870 		req->errors = result;
871 		if (result) {
872 			if (sense_valid && req->sense) {
873 				/*
874 				 * SG_IO wants current and deferred errors
875 				 */
876 				int len = 8 + cmd->sense_buffer[7];
877 
878 				if (len > SCSI_SENSE_BUFFERSIZE)
879 					len = SCSI_SENSE_BUFFERSIZE;
880 				memcpy(req->sense, cmd->sense_buffer,  len);
881 				req->sense_len = len;
882 			}
883 			if (!sense_deferred)
884 				error = -EIO;
885 		}
886 		if (scsi_bidi_cmnd(cmd)) {
887 			/* will also release_buffers */
888 			scsi_end_bidi_request(cmd);
889 			return;
890 		}
891 		req->data_len = scsi_get_resid(cmd);
892 	}
893 
894 	BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
895 	scsi_release_buffers(cmd);
896 
897 	/*
898 	 * Next deal with any sectors which we were able to correctly
899 	 * handle.
900 	 */
901 	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
902 				      "%d bytes done.\n",
903 				      req->nr_sectors, good_bytes));
904 
905 	/* A number of bytes were successfully read.  If there
906 	 * are leftovers and there is some kind of error
907 	 * (result != 0), retry the rest.
908 	 */
909 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
910 		return;
911 
912 	/* good_bytes = 0, or (inclusive) there were leftovers and
913 	 * result = 0, so scsi_end_request couldn't retry.
914 	 */
915 	if (sense_valid && !sense_deferred) {
916 		switch (sshdr.sense_key) {
917 		case UNIT_ATTENTION:
918 			if (cmd->device->removable) {
919 				/* Detected disc change.  Set a bit
920 				 * and quietly refuse further access.
921 				 */
922 				cmd->device->changed = 1;
923 				scsi_end_request(cmd, -EIO, this_count, 1);
924 				return;
925 			} else {
926 				/* Must have been a power glitch, or a
927 				 * bus reset.  Could not have been a
928 				 * media change, so we just retry the
929 				 * request and see what happens.
930 				 */
931 				scsi_requeue_command(q, cmd);
932 				return;
933 			}
934 			break;
935 		case ILLEGAL_REQUEST:
936 			/* If we had an ILLEGAL REQUEST returned, then
937 			 * we may have performed an unsupported
938 			 * command.  The only thing this should be
939 			 * would be a ten byte read where only a six
940 			 * byte read was supported.  Also, on a system
941 			 * where READ CAPACITY failed, we may have
942 			 * read past the end of the disk.
943 			 */
944 			if ((cmd->device->use_10_for_rw &&
945 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
946 			    (cmd->cmnd[0] == READ_10 ||
947 			     cmd->cmnd[0] == WRITE_10)) {
948 				cmd->device->use_10_for_rw = 0;
949 				/* This will cause a retry with a
950 				 * 6-byte command.
951 				 */
952 				scsi_requeue_command(q, cmd);
953 			} else if (sshdr.asc == 0x10) /* DIX */
954 				scsi_end_request(cmd, -EIO, this_count, 0);
955 			else
956 				scsi_end_request(cmd, -EIO, this_count, 1);
957 			return;
958 		case ABORTED_COMMAND:
959 			if (sshdr.asc == 0x10) { /* DIF */
960 				scsi_end_request(cmd, -EIO, this_count, 0);
961 				return;
962 			}
963 			break;
964 		case NOT_READY:
965 			/* If the device is in the process of becoming
966 			 * ready, or has a temporary blockage, retry.
967 			 */
968 			if (sshdr.asc == 0x04) {
969 				switch (sshdr.ascq) {
970 				case 0x01: /* becoming ready */
971 				case 0x04: /* format in progress */
972 				case 0x05: /* rebuild in progress */
973 				case 0x06: /* recalculation in progress */
974 				case 0x07: /* operation in progress */
975 				case 0x08: /* Long write in progress */
976 				case 0x09: /* self test in progress */
977 					scsi_requeue_command(q, cmd);
978 					return;
979 				default:
980 					break;
981 				}
982 			}
983 			if (!(req->cmd_flags & REQ_QUIET))
984 				scsi_cmd_print_sense_hdr(cmd,
985 							 "Device not ready",
986 							 &sshdr);
987 
988 			scsi_end_request(cmd, -EIO, this_count, 1);
989 			return;
990 		case VOLUME_OVERFLOW:
991 			if (!(req->cmd_flags & REQ_QUIET)) {
992 				scmd_printk(KERN_INFO, cmd,
993 					    "Volume overflow, CDB: ");
994 				__scsi_print_command(cmd->cmnd);
995 				scsi_print_sense("", cmd);
996 			}
997 			/* See SSC3rXX or current. */
998 			scsi_end_request(cmd, -EIO, this_count, 1);
999 			return;
1000 		default:
1001 			break;
1002 		}
1003 	}
1004 	if (host_byte(result) == DID_RESET) {
1005 		/* Third party bus reset or reset for error recovery
1006 		 * reasons.  Just retry the request and see what
1007 		 * happens.
1008 		 */
1009 		scsi_requeue_command(q, cmd);
1010 		return;
1011 	}
1012 	if (result) {
1013 		if (!(req->cmd_flags & REQ_QUIET)) {
1014 			scsi_print_result(cmd);
1015 			if (driver_byte(result) & DRIVER_SENSE)
1016 				scsi_print_sense("", cmd);
1017 		}
1018 	}
1019 	scsi_end_request(cmd, -EIO, this_count, !result);
1020 }
1021 
1022 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1023 			     gfp_t gfp_mask)
1024 {
1025 	int count;
1026 
1027 	/*
1028 	 * If sg table allocation fails, requeue request later.
1029 	 */
1030 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1031 					gfp_mask))) {
1032 		return BLKPREP_DEFER;
1033 	}
1034 
1035 	req->buffer = NULL;
1036 
1037 	/*
1038 	 * Next, walk the list, and fill in the addresses and sizes of
1039 	 * each segment.
1040 	 */
1041 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1042 	BUG_ON(count > sdb->table.nents);
1043 	sdb->table.nents = count;
1044 	if (blk_pc_request(req))
1045 		sdb->length = req->data_len;
1046 	else
1047 		sdb->length = req->nr_sectors << 9;
1048 	return BLKPREP_OK;
1049 }
1050 
1051 /*
1052  * Function:    scsi_init_io()
1053  *
1054  * Purpose:     SCSI I/O initialize function.
1055  *
1056  * Arguments:   cmd   - Command descriptor we wish to initialize
1057  *
1058  * Returns:     0 on success
1059  *		BLKPREP_DEFER if the failure is retryable
1060  *		BLKPREP_KILL if the failure is fatal
1061  */
1062 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1063 {
1064 	int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1065 	if (error)
1066 		goto err_exit;
1067 
1068 	if (blk_bidi_rq(cmd->request)) {
1069 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1070 			scsi_sdb_cache, GFP_ATOMIC);
1071 		if (!bidi_sdb) {
1072 			error = BLKPREP_DEFER;
1073 			goto err_exit;
1074 		}
1075 
1076 		cmd->request->next_rq->special = bidi_sdb;
1077 		error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1078 								    GFP_ATOMIC);
1079 		if (error)
1080 			goto err_exit;
1081 	}
1082 
1083 	if (blk_integrity_rq(cmd->request)) {
1084 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1085 		int ivecs, count;
1086 
1087 		BUG_ON(prot_sdb == NULL);
1088 		ivecs = blk_rq_count_integrity_sg(cmd->request);
1089 
1090 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1091 			error = BLKPREP_DEFER;
1092 			goto err_exit;
1093 		}
1094 
1095 		count = blk_rq_map_integrity_sg(cmd->request,
1096 						prot_sdb->table.sgl);
1097 		BUG_ON(unlikely(count > ivecs));
1098 
1099 		cmd->prot_sdb = prot_sdb;
1100 		cmd->prot_sdb->table.nents = count;
1101 	}
1102 
1103 	return BLKPREP_OK ;
1104 
1105 err_exit:
1106 	scsi_release_buffers(cmd);
1107 	if (error == BLKPREP_KILL)
1108 		scsi_put_command(cmd);
1109 	else /* BLKPREP_DEFER */
1110 		scsi_unprep_request(cmd->request);
1111 
1112 	return error;
1113 }
1114 EXPORT_SYMBOL(scsi_init_io);
1115 
1116 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1117 		struct request *req)
1118 {
1119 	struct scsi_cmnd *cmd;
1120 
1121 	if (!req->special) {
1122 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1123 		if (unlikely(!cmd))
1124 			return NULL;
1125 		req->special = cmd;
1126 	} else {
1127 		cmd = req->special;
1128 	}
1129 
1130 	/* pull a tag out of the request if we have one */
1131 	cmd->tag = req->tag;
1132 	cmd->request = req;
1133 
1134 	cmd->cmnd = req->cmd;
1135 
1136 	return cmd;
1137 }
1138 
1139 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1140 {
1141 	struct scsi_cmnd *cmd;
1142 	int ret = scsi_prep_state_check(sdev, req);
1143 
1144 	if (ret != BLKPREP_OK)
1145 		return ret;
1146 
1147 	cmd = scsi_get_cmd_from_req(sdev, req);
1148 	if (unlikely(!cmd))
1149 		return BLKPREP_DEFER;
1150 
1151 	/*
1152 	 * BLOCK_PC requests may transfer data, in which case they must
1153 	 * a bio attached to them.  Or they might contain a SCSI command
1154 	 * that does not transfer data, in which case they may optionally
1155 	 * submit a request without an attached bio.
1156 	 */
1157 	if (req->bio) {
1158 		int ret;
1159 
1160 		BUG_ON(!req->nr_phys_segments);
1161 
1162 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1163 		if (unlikely(ret))
1164 			return ret;
1165 	} else {
1166 		BUG_ON(req->data_len);
1167 		BUG_ON(req->data);
1168 
1169 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1170 		req->buffer = NULL;
1171 	}
1172 
1173 	cmd->cmd_len = req->cmd_len;
1174 	if (!req->data_len)
1175 		cmd->sc_data_direction = DMA_NONE;
1176 	else if (rq_data_dir(req) == WRITE)
1177 		cmd->sc_data_direction = DMA_TO_DEVICE;
1178 	else
1179 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1180 
1181 	cmd->transfersize = req->data_len;
1182 	cmd->allowed = req->retries;
1183 	cmd->timeout_per_command = req->timeout;
1184 	return BLKPREP_OK;
1185 }
1186 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1187 
1188 /*
1189  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1190  * from filesystems that still need to be translated to SCSI CDBs from
1191  * the ULD.
1192  */
1193 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1194 {
1195 	struct scsi_cmnd *cmd;
1196 	int ret = scsi_prep_state_check(sdev, req);
1197 
1198 	if (ret != BLKPREP_OK)
1199 		return ret;
1200 
1201 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1202 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1203 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1204 		if (ret != BLKPREP_OK)
1205 			return ret;
1206 	}
1207 
1208 	/*
1209 	 * Filesystem requests must transfer data.
1210 	 */
1211 	BUG_ON(!req->nr_phys_segments);
1212 
1213 	cmd = scsi_get_cmd_from_req(sdev, req);
1214 	if (unlikely(!cmd))
1215 		return BLKPREP_DEFER;
1216 
1217 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1218 	return scsi_init_io(cmd, GFP_ATOMIC);
1219 }
1220 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1221 
1222 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1223 {
1224 	int ret = BLKPREP_OK;
1225 
1226 	/*
1227 	 * If the device is not in running state we will reject some
1228 	 * or all commands.
1229 	 */
1230 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1231 		switch (sdev->sdev_state) {
1232 		case SDEV_OFFLINE:
1233 			/*
1234 			 * If the device is offline we refuse to process any
1235 			 * commands.  The device must be brought online
1236 			 * before trying any recovery commands.
1237 			 */
1238 			sdev_printk(KERN_ERR, sdev,
1239 				    "rejecting I/O to offline device\n");
1240 			ret = BLKPREP_KILL;
1241 			break;
1242 		case SDEV_DEL:
1243 			/*
1244 			 * If the device is fully deleted, we refuse to
1245 			 * process any commands as well.
1246 			 */
1247 			sdev_printk(KERN_ERR, sdev,
1248 				    "rejecting I/O to dead device\n");
1249 			ret = BLKPREP_KILL;
1250 			break;
1251 		case SDEV_QUIESCE:
1252 		case SDEV_BLOCK:
1253 			/*
1254 			 * If the devices is blocked we defer normal commands.
1255 			 */
1256 			if (!(req->cmd_flags & REQ_PREEMPT))
1257 				ret = BLKPREP_DEFER;
1258 			break;
1259 		default:
1260 			/*
1261 			 * For any other not fully online state we only allow
1262 			 * special commands.  In particular any user initiated
1263 			 * command is not allowed.
1264 			 */
1265 			if (!(req->cmd_flags & REQ_PREEMPT))
1266 				ret = BLKPREP_KILL;
1267 			break;
1268 		}
1269 	}
1270 	return ret;
1271 }
1272 EXPORT_SYMBOL(scsi_prep_state_check);
1273 
1274 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1275 {
1276 	struct scsi_device *sdev = q->queuedata;
1277 
1278 	switch (ret) {
1279 	case BLKPREP_KILL:
1280 		req->errors = DID_NO_CONNECT << 16;
1281 		/* release the command and kill it */
1282 		if (req->special) {
1283 			struct scsi_cmnd *cmd = req->special;
1284 			scsi_release_buffers(cmd);
1285 			scsi_put_command(cmd);
1286 			req->special = NULL;
1287 		}
1288 		break;
1289 	case BLKPREP_DEFER:
1290 		/*
1291 		 * If we defer, the elv_next_request() returns NULL, but the
1292 		 * queue must be restarted, so we plug here if no returning
1293 		 * command will automatically do that.
1294 		 */
1295 		if (sdev->device_busy == 0)
1296 			blk_plug_device(q);
1297 		break;
1298 	default:
1299 		req->cmd_flags |= REQ_DONTPREP;
1300 	}
1301 
1302 	return ret;
1303 }
1304 EXPORT_SYMBOL(scsi_prep_return);
1305 
1306 int scsi_prep_fn(struct request_queue *q, struct request *req)
1307 {
1308 	struct scsi_device *sdev = q->queuedata;
1309 	int ret = BLKPREP_KILL;
1310 
1311 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1312 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1313 	return scsi_prep_return(q, req, ret);
1314 }
1315 
1316 /*
1317  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1318  * return 0.
1319  *
1320  * Called with the queue_lock held.
1321  */
1322 static inline int scsi_dev_queue_ready(struct request_queue *q,
1323 				  struct scsi_device *sdev)
1324 {
1325 	if (sdev->device_busy >= sdev->queue_depth)
1326 		return 0;
1327 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1328 		/*
1329 		 * unblock after device_blocked iterates to zero
1330 		 */
1331 		if (--sdev->device_blocked == 0) {
1332 			SCSI_LOG_MLQUEUE(3,
1333 				   sdev_printk(KERN_INFO, sdev,
1334 				   "unblocking device at zero depth\n"));
1335 		} else {
1336 			blk_plug_device(q);
1337 			return 0;
1338 		}
1339 	}
1340 	if (sdev->device_blocked)
1341 		return 0;
1342 
1343 	return 1;
1344 }
1345 
1346 /*
1347  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1348  * return 0. We must end up running the queue again whenever 0 is
1349  * returned, else IO can hang.
1350  *
1351  * Called with host_lock held.
1352  */
1353 static inline int scsi_host_queue_ready(struct request_queue *q,
1354 				   struct Scsi_Host *shost,
1355 				   struct scsi_device *sdev)
1356 {
1357 	if (scsi_host_in_recovery(shost))
1358 		return 0;
1359 	if (shost->host_busy == 0 && shost->host_blocked) {
1360 		/*
1361 		 * unblock after host_blocked iterates to zero
1362 		 */
1363 		if (--shost->host_blocked == 0) {
1364 			SCSI_LOG_MLQUEUE(3,
1365 				printk("scsi%d unblocking host at zero depth\n",
1366 					shost->host_no));
1367 		} else {
1368 			return 0;
1369 		}
1370 	}
1371 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1372 	    shost->host_blocked || shost->host_self_blocked) {
1373 		if (list_empty(&sdev->starved_entry))
1374 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1375 		return 0;
1376 	}
1377 
1378 	/* We're OK to process the command, so we can't be starved */
1379 	if (!list_empty(&sdev->starved_entry))
1380 		list_del_init(&sdev->starved_entry);
1381 
1382 	return 1;
1383 }
1384 
1385 /*
1386  * Kill a request for a dead device
1387  */
1388 static void scsi_kill_request(struct request *req, struct request_queue *q)
1389 {
1390 	struct scsi_cmnd *cmd = req->special;
1391 	struct scsi_device *sdev = cmd->device;
1392 	struct Scsi_Host *shost = sdev->host;
1393 
1394 	blkdev_dequeue_request(req);
1395 
1396 	if (unlikely(cmd == NULL)) {
1397 		printk(KERN_CRIT "impossible request in %s.\n",
1398 				 __func__);
1399 		BUG();
1400 	}
1401 
1402 	scsi_init_cmd_errh(cmd);
1403 	cmd->result = DID_NO_CONNECT << 16;
1404 	atomic_inc(&cmd->device->iorequest_cnt);
1405 
1406 	/*
1407 	 * SCSI request completion path will do scsi_device_unbusy(),
1408 	 * bump busy counts.  To bump the counters, we need to dance
1409 	 * with the locks as normal issue path does.
1410 	 */
1411 	sdev->device_busy++;
1412 	spin_unlock(sdev->request_queue->queue_lock);
1413 	spin_lock(shost->host_lock);
1414 	shost->host_busy++;
1415 	spin_unlock(shost->host_lock);
1416 	spin_lock(sdev->request_queue->queue_lock);
1417 
1418 	__scsi_done(cmd);
1419 }
1420 
1421 static void scsi_softirq_done(struct request *rq)
1422 {
1423 	struct scsi_cmnd *cmd = rq->completion_data;
1424 	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1425 	int disposition;
1426 
1427 	INIT_LIST_HEAD(&cmd->eh_entry);
1428 
1429 	disposition = scsi_decide_disposition(cmd);
1430 	if (disposition != SUCCESS &&
1431 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1432 		sdev_printk(KERN_ERR, cmd->device,
1433 			    "timing out command, waited %lus\n",
1434 			    wait_for/HZ);
1435 		disposition = SUCCESS;
1436 	}
1437 
1438 	scsi_log_completion(cmd, disposition);
1439 
1440 	switch (disposition) {
1441 		case SUCCESS:
1442 			scsi_finish_command(cmd);
1443 			break;
1444 		case NEEDS_RETRY:
1445 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1446 			break;
1447 		case ADD_TO_MLQUEUE:
1448 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1449 			break;
1450 		default:
1451 			if (!scsi_eh_scmd_add(cmd, 0))
1452 				scsi_finish_command(cmd);
1453 	}
1454 }
1455 
1456 /*
1457  * Function:    scsi_request_fn()
1458  *
1459  * Purpose:     Main strategy routine for SCSI.
1460  *
1461  * Arguments:   q       - Pointer to actual queue.
1462  *
1463  * Returns:     Nothing
1464  *
1465  * Lock status: IO request lock assumed to be held when called.
1466  */
1467 static void scsi_request_fn(struct request_queue *q)
1468 {
1469 	struct scsi_device *sdev = q->queuedata;
1470 	struct Scsi_Host *shost;
1471 	struct scsi_cmnd *cmd;
1472 	struct request *req;
1473 
1474 	if (!sdev) {
1475 		printk("scsi: killing requests for dead queue\n");
1476 		while ((req = elv_next_request(q)) != NULL)
1477 			scsi_kill_request(req, q);
1478 		return;
1479 	}
1480 
1481 	if(!get_device(&sdev->sdev_gendev))
1482 		/* We must be tearing the block queue down already */
1483 		return;
1484 
1485 	/*
1486 	 * To start with, we keep looping until the queue is empty, or until
1487 	 * the host is no longer able to accept any more requests.
1488 	 */
1489 	shost = sdev->host;
1490 	while (!blk_queue_plugged(q)) {
1491 		int rtn;
1492 		/*
1493 		 * get next queueable request.  We do this early to make sure
1494 		 * that the request is fully prepared even if we cannot
1495 		 * accept it.
1496 		 */
1497 		req = elv_next_request(q);
1498 		if (!req || !scsi_dev_queue_ready(q, sdev))
1499 			break;
1500 
1501 		if (unlikely(!scsi_device_online(sdev))) {
1502 			sdev_printk(KERN_ERR, sdev,
1503 				    "rejecting I/O to offline device\n");
1504 			scsi_kill_request(req, q);
1505 			continue;
1506 		}
1507 
1508 
1509 		/*
1510 		 * Remove the request from the request list.
1511 		 */
1512 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1513 			blkdev_dequeue_request(req);
1514 		sdev->device_busy++;
1515 
1516 		spin_unlock(q->queue_lock);
1517 		cmd = req->special;
1518 		if (unlikely(cmd == NULL)) {
1519 			printk(KERN_CRIT "impossible request in %s.\n"
1520 					 "please mail a stack trace to "
1521 					 "linux-scsi@vger.kernel.org\n",
1522 					 __func__);
1523 			blk_dump_rq_flags(req, "foo");
1524 			BUG();
1525 		}
1526 		spin_lock(shost->host_lock);
1527 
1528 		/*
1529 		 * We hit this when the driver is using a host wide
1530 		 * tag map. For device level tag maps the queue_depth check
1531 		 * in the device ready fn would prevent us from trying
1532 		 * to allocate a tag. Since the map is a shared host resource
1533 		 * we add the dev to the starved list so it eventually gets
1534 		 * a run when a tag is freed.
1535 		 */
1536 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1537 			if (list_empty(&sdev->starved_entry))
1538 				list_add_tail(&sdev->starved_entry,
1539 					      &shost->starved_list);
1540 			goto not_ready;
1541 		}
1542 
1543 		if (!scsi_host_queue_ready(q, shost, sdev))
1544 			goto not_ready;
1545 		if (scsi_target(sdev)->single_lun) {
1546 			if (scsi_target(sdev)->starget_sdev_user &&
1547 			    scsi_target(sdev)->starget_sdev_user != sdev)
1548 				goto not_ready;
1549 			scsi_target(sdev)->starget_sdev_user = sdev;
1550 		}
1551 		shost->host_busy++;
1552 
1553 		/*
1554 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1555 		 *		take the lock again.
1556 		 */
1557 		spin_unlock_irq(shost->host_lock);
1558 
1559 		/*
1560 		 * Finally, initialize any error handling parameters, and set up
1561 		 * the timers for timeouts.
1562 		 */
1563 		scsi_init_cmd_errh(cmd);
1564 
1565 		/*
1566 		 * Dispatch the command to the low-level driver.
1567 		 */
1568 		rtn = scsi_dispatch_cmd(cmd);
1569 		spin_lock_irq(q->queue_lock);
1570 		if(rtn) {
1571 			/* we're refusing the command; because of
1572 			 * the way locks get dropped, we need to
1573 			 * check here if plugging is required */
1574 			if(sdev->device_busy == 0)
1575 				blk_plug_device(q);
1576 
1577 			break;
1578 		}
1579 	}
1580 
1581 	goto out;
1582 
1583  not_ready:
1584 	spin_unlock_irq(shost->host_lock);
1585 
1586 	/*
1587 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1588 	 * must return with queue_lock held.
1589 	 *
1590 	 * Decrementing device_busy without checking it is OK, as all such
1591 	 * cases (host limits or settings) should run the queue at some
1592 	 * later time.
1593 	 */
1594 	spin_lock_irq(q->queue_lock);
1595 	blk_requeue_request(q, req);
1596 	sdev->device_busy--;
1597 	if(sdev->device_busy == 0)
1598 		blk_plug_device(q);
1599  out:
1600 	/* must be careful here...if we trigger the ->remove() function
1601 	 * we cannot be holding the q lock */
1602 	spin_unlock_irq(q->queue_lock);
1603 	put_device(&sdev->sdev_gendev);
1604 	spin_lock_irq(q->queue_lock);
1605 }
1606 
1607 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1608 {
1609 	struct device *host_dev;
1610 	u64 bounce_limit = 0xffffffff;
1611 
1612 	if (shost->unchecked_isa_dma)
1613 		return BLK_BOUNCE_ISA;
1614 	/*
1615 	 * Platforms with virtual-DMA translation
1616 	 * hardware have no practical limit.
1617 	 */
1618 	if (!PCI_DMA_BUS_IS_PHYS)
1619 		return BLK_BOUNCE_ANY;
1620 
1621 	host_dev = scsi_get_device(shost);
1622 	if (host_dev && host_dev->dma_mask)
1623 		bounce_limit = *host_dev->dma_mask;
1624 
1625 	return bounce_limit;
1626 }
1627 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1628 
1629 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1630 					 request_fn_proc *request_fn)
1631 {
1632 	struct request_queue *q;
1633 	struct device *dev = shost->shost_gendev.parent;
1634 
1635 	q = blk_init_queue(request_fn, NULL);
1636 	if (!q)
1637 		return NULL;
1638 
1639 	/*
1640 	 * this limit is imposed by hardware restrictions
1641 	 */
1642 	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1643 	blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1644 
1645 	blk_queue_max_sectors(q, shost->max_sectors);
1646 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1647 	blk_queue_segment_boundary(q, shost->dma_boundary);
1648 	dma_set_seg_boundary(dev, shost->dma_boundary);
1649 
1650 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1651 
1652 	/* New queue, no concurrency on queue_flags */
1653 	if (!shost->use_clustering)
1654 		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1655 
1656 	/*
1657 	 * set a reasonable default alignment on word boundaries: the
1658 	 * host and device may alter it using
1659 	 * blk_queue_update_dma_alignment() later.
1660 	 */
1661 	blk_queue_dma_alignment(q, 0x03);
1662 
1663 	return q;
1664 }
1665 EXPORT_SYMBOL(__scsi_alloc_queue);
1666 
1667 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1668 {
1669 	struct request_queue *q;
1670 
1671 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1672 	if (!q)
1673 		return NULL;
1674 
1675 	blk_queue_prep_rq(q, scsi_prep_fn);
1676 	blk_queue_softirq_done(q, scsi_softirq_done);
1677 	return q;
1678 }
1679 
1680 void scsi_free_queue(struct request_queue *q)
1681 {
1682 	blk_cleanup_queue(q);
1683 }
1684 
1685 /*
1686  * Function:    scsi_block_requests()
1687  *
1688  * Purpose:     Utility function used by low-level drivers to prevent further
1689  *		commands from being queued to the device.
1690  *
1691  * Arguments:   shost       - Host in question
1692  *
1693  * Returns:     Nothing
1694  *
1695  * Lock status: No locks are assumed held.
1696  *
1697  * Notes:       There is no timer nor any other means by which the requests
1698  *		get unblocked other than the low-level driver calling
1699  *		scsi_unblock_requests().
1700  */
1701 void scsi_block_requests(struct Scsi_Host *shost)
1702 {
1703 	shost->host_self_blocked = 1;
1704 }
1705 EXPORT_SYMBOL(scsi_block_requests);
1706 
1707 /*
1708  * Function:    scsi_unblock_requests()
1709  *
1710  * Purpose:     Utility function used by low-level drivers to allow further
1711  *		commands from being queued to the device.
1712  *
1713  * Arguments:   shost       - Host in question
1714  *
1715  * Returns:     Nothing
1716  *
1717  * Lock status: No locks are assumed held.
1718  *
1719  * Notes:       There is no timer nor any other means by which the requests
1720  *		get unblocked other than the low-level driver calling
1721  *		scsi_unblock_requests().
1722  *
1723  *		This is done as an API function so that changes to the
1724  *		internals of the scsi mid-layer won't require wholesale
1725  *		changes to drivers that use this feature.
1726  */
1727 void scsi_unblock_requests(struct Scsi_Host *shost)
1728 {
1729 	shost->host_self_blocked = 0;
1730 	scsi_run_host_queues(shost);
1731 }
1732 EXPORT_SYMBOL(scsi_unblock_requests);
1733 
1734 int __init scsi_init_queue(void)
1735 {
1736 	int i;
1737 
1738 	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1739 					sizeof(struct scsi_io_context),
1740 					0, 0, NULL);
1741 	if (!scsi_io_context_cache) {
1742 		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1743 		return -ENOMEM;
1744 	}
1745 
1746 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1747 					   sizeof(struct scsi_data_buffer),
1748 					   0, 0, NULL);
1749 	if (!scsi_sdb_cache) {
1750 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1751 		goto cleanup_io_context;
1752 	}
1753 
1754 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1755 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1756 		int size = sgp->size * sizeof(struct scatterlist);
1757 
1758 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1759 				SLAB_HWCACHE_ALIGN, NULL);
1760 		if (!sgp->slab) {
1761 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1762 					sgp->name);
1763 			goto cleanup_sdb;
1764 		}
1765 
1766 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1767 						     sgp->slab);
1768 		if (!sgp->pool) {
1769 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1770 					sgp->name);
1771 			goto cleanup_sdb;
1772 		}
1773 	}
1774 
1775 	return 0;
1776 
1777 cleanup_sdb:
1778 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1779 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1780 		if (sgp->pool)
1781 			mempool_destroy(sgp->pool);
1782 		if (sgp->slab)
1783 			kmem_cache_destroy(sgp->slab);
1784 	}
1785 	kmem_cache_destroy(scsi_sdb_cache);
1786 cleanup_io_context:
1787 	kmem_cache_destroy(scsi_io_context_cache);
1788 
1789 	return -ENOMEM;
1790 }
1791 
1792 void scsi_exit_queue(void)
1793 {
1794 	int i;
1795 
1796 	kmem_cache_destroy(scsi_io_context_cache);
1797 	kmem_cache_destroy(scsi_sdb_cache);
1798 
1799 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1800 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1801 		mempool_destroy(sgp->pool);
1802 		kmem_cache_destroy(sgp->slab);
1803 	}
1804 }
1805 
1806 /**
1807  *	scsi_mode_select - issue a mode select
1808  *	@sdev:	SCSI device to be queried
1809  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1810  *	@sp:	Save page bit (0 == don't save, 1 == save)
1811  *	@modepage: mode page being requested
1812  *	@buffer: request buffer (may not be smaller than eight bytes)
1813  *	@len:	length of request buffer.
1814  *	@timeout: command timeout
1815  *	@retries: number of retries before failing
1816  *	@data: returns a structure abstracting the mode header data
1817  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1818  *		must be SCSI_SENSE_BUFFERSIZE big.
1819  *
1820  *	Returns zero if successful; negative error number or scsi
1821  *	status on error
1822  *
1823  */
1824 int
1825 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1826 		 unsigned char *buffer, int len, int timeout, int retries,
1827 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1828 {
1829 	unsigned char cmd[10];
1830 	unsigned char *real_buffer;
1831 	int ret;
1832 
1833 	memset(cmd, 0, sizeof(cmd));
1834 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1835 
1836 	if (sdev->use_10_for_ms) {
1837 		if (len > 65535)
1838 			return -EINVAL;
1839 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1840 		if (!real_buffer)
1841 			return -ENOMEM;
1842 		memcpy(real_buffer + 8, buffer, len);
1843 		len += 8;
1844 		real_buffer[0] = 0;
1845 		real_buffer[1] = 0;
1846 		real_buffer[2] = data->medium_type;
1847 		real_buffer[3] = data->device_specific;
1848 		real_buffer[4] = data->longlba ? 0x01 : 0;
1849 		real_buffer[5] = 0;
1850 		real_buffer[6] = data->block_descriptor_length >> 8;
1851 		real_buffer[7] = data->block_descriptor_length;
1852 
1853 		cmd[0] = MODE_SELECT_10;
1854 		cmd[7] = len >> 8;
1855 		cmd[8] = len;
1856 	} else {
1857 		if (len > 255 || data->block_descriptor_length > 255 ||
1858 		    data->longlba)
1859 			return -EINVAL;
1860 
1861 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1862 		if (!real_buffer)
1863 			return -ENOMEM;
1864 		memcpy(real_buffer + 4, buffer, len);
1865 		len += 4;
1866 		real_buffer[0] = 0;
1867 		real_buffer[1] = data->medium_type;
1868 		real_buffer[2] = data->device_specific;
1869 		real_buffer[3] = data->block_descriptor_length;
1870 
1871 
1872 		cmd[0] = MODE_SELECT;
1873 		cmd[4] = len;
1874 	}
1875 
1876 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1877 			       sshdr, timeout, retries);
1878 	kfree(real_buffer);
1879 	return ret;
1880 }
1881 EXPORT_SYMBOL_GPL(scsi_mode_select);
1882 
1883 /**
1884  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1885  *	@sdev:	SCSI device to be queried
1886  *	@dbd:	set if mode sense will allow block descriptors to be returned
1887  *	@modepage: mode page being requested
1888  *	@buffer: request buffer (may not be smaller than eight bytes)
1889  *	@len:	length of request buffer.
1890  *	@timeout: command timeout
1891  *	@retries: number of retries before failing
1892  *	@data: returns a structure abstracting the mode header data
1893  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1894  *		must be SCSI_SENSE_BUFFERSIZE big.
1895  *
1896  *	Returns zero if unsuccessful, or the header offset (either 4
1897  *	or 8 depending on whether a six or ten byte command was
1898  *	issued) if successful.
1899  */
1900 int
1901 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1902 		  unsigned char *buffer, int len, int timeout, int retries,
1903 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1904 {
1905 	unsigned char cmd[12];
1906 	int use_10_for_ms;
1907 	int header_length;
1908 	int result;
1909 	struct scsi_sense_hdr my_sshdr;
1910 
1911 	memset(data, 0, sizeof(*data));
1912 	memset(&cmd[0], 0, 12);
1913 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1914 	cmd[2] = modepage;
1915 
1916 	/* caller might not be interested in sense, but we need it */
1917 	if (!sshdr)
1918 		sshdr = &my_sshdr;
1919 
1920  retry:
1921 	use_10_for_ms = sdev->use_10_for_ms;
1922 
1923 	if (use_10_for_ms) {
1924 		if (len < 8)
1925 			len = 8;
1926 
1927 		cmd[0] = MODE_SENSE_10;
1928 		cmd[8] = len;
1929 		header_length = 8;
1930 	} else {
1931 		if (len < 4)
1932 			len = 4;
1933 
1934 		cmd[0] = MODE_SENSE;
1935 		cmd[4] = len;
1936 		header_length = 4;
1937 	}
1938 
1939 	memset(buffer, 0, len);
1940 
1941 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1942 				  sshdr, timeout, retries);
1943 
1944 	/* This code looks awful: what it's doing is making sure an
1945 	 * ILLEGAL REQUEST sense return identifies the actual command
1946 	 * byte as the problem.  MODE_SENSE commands can return
1947 	 * ILLEGAL REQUEST if the code page isn't supported */
1948 
1949 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1950 	    (driver_byte(result) & DRIVER_SENSE)) {
1951 		if (scsi_sense_valid(sshdr)) {
1952 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1953 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1954 				/*
1955 				 * Invalid command operation code
1956 				 */
1957 				sdev->use_10_for_ms = 0;
1958 				goto retry;
1959 			}
1960 		}
1961 	}
1962 
1963 	if(scsi_status_is_good(result)) {
1964 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1965 			     (modepage == 6 || modepage == 8))) {
1966 			/* Initio breakage? */
1967 			header_length = 0;
1968 			data->length = 13;
1969 			data->medium_type = 0;
1970 			data->device_specific = 0;
1971 			data->longlba = 0;
1972 			data->block_descriptor_length = 0;
1973 		} else if(use_10_for_ms) {
1974 			data->length = buffer[0]*256 + buffer[1] + 2;
1975 			data->medium_type = buffer[2];
1976 			data->device_specific = buffer[3];
1977 			data->longlba = buffer[4] & 0x01;
1978 			data->block_descriptor_length = buffer[6]*256
1979 				+ buffer[7];
1980 		} else {
1981 			data->length = buffer[0] + 1;
1982 			data->medium_type = buffer[1];
1983 			data->device_specific = buffer[2];
1984 			data->block_descriptor_length = buffer[3];
1985 		}
1986 		data->header_length = header_length;
1987 	}
1988 
1989 	return result;
1990 }
1991 EXPORT_SYMBOL(scsi_mode_sense);
1992 
1993 /**
1994  *	scsi_test_unit_ready - test if unit is ready
1995  *	@sdev:	scsi device to change the state of.
1996  *	@timeout: command timeout
1997  *	@retries: number of retries before failing
1998  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
1999  *		returning sense. Make sure that this is cleared before passing
2000  *		in.
2001  *
2002  *	Returns zero if unsuccessful or an error if TUR failed.  For
2003  *	removable media, a return of NOT_READY or UNIT_ATTENTION is
2004  *	translated to success, with the ->changed flag updated.
2005  **/
2006 int
2007 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2008 		     struct scsi_sense_hdr *sshdr_external)
2009 {
2010 	char cmd[] = {
2011 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2012 	};
2013 	struct scsi_sense_hdr *sshdr;
2014 	int result;
2015 
2016 	if (!sshdr_external)
2017 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2018 	else
2019 		sshdr = sshdr_external;
2020 
2021 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2022 	do {
2023 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2024 					  timeout, retries);
2025 	} while ((driver_byte(result) & DRIVER_SENSE) &&
2026 		 sshdr && sshdr->sense_key == UNIT_ATTENTION &&
2027 		 --retries);
2028 
2029 	if (!sshdr)
2030 		/* could not allocate sense buffer, so can't process it */
2031 		return result;
2032 
2033 	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
2034 
2035 		if ((scsi_sense_valid(sshdr)) &&
2036 		    ((sshdr->sense_key == UNIT_ATTENTION) ||
2037 		     (sshdr->sense_key == NOT_READY))) {
2038 			sdev->changed = 1;
2039 			result = 0;
2040 		}
2041 	}
2042 	if (!sshdr_external)
2043 		kfree(sshdr);
2044 	return result;
2045 }
2046 EXPORT_SYMBOL(scsi_test_unit_ready);
2047 
2048 /**
2049  *	scsi_device_set_state - Take the given device through the device state model.
2050  *	@sdev:	scsi device to change the state of.
2051  *	@state:	state to change to.
2052  *
2053  *	Returns zero if unsuccessful or an error if the requested
2054  *	transition is illegal.
2055  */
2056 int
2057 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2058 {
2059 	enum scsi_device_state oldstate = sdev->sdev_state;
2060 
2061 	if (state == oldstate)
2062 		return 0;
2063 
2064 	switch (state) {
2065 	case SDEV_CREATED:
2066 		/* There are no legal states that come back to
2067 		 * created.  This is the manually initialised start
2068 		 * state */
2069 		goto illegal;
2070 
2071 	case SDEV_RUNNING:
2072 		switch (oldstate) {
2073 		case SDEV_CREATED:
2074 		case SDEV_OFFLINE:
2075 		case SDEV_QUIESCE:
2076 		case SDEV_BLOCK:
2077 			break;
2078 		default:
2079 			goto illegal;
2080 		}
2081 		break;
2082 
2083 	case SDEV_QUIESCE:
2084 		switch (oldstate) {
2085 		case SDEV_RUNNING:
2086 		case SDEV_OFFLINE:
2087 			break;
2088 		default:
2089 			goto illegal;
2090 		}
2091 		break;
2092 
2093 	case SDEV_OFFLINE:
2094 		switch (oldstate) {
2095 		case SDEV_CREATED:
2096 		case SDEV_RUNNING:
2097 		case SDEV_QUIESCE:
2098 		case SDEV_BLOCK:
2099 			break;
2100 		default:
2101 			goto illegal;
2102 		}
2103 		break;
2104 
2105 	case SDEV_BLOCK:
2106 		switch (oldstate) {
2107 		case SDEV_CREATED:
2108 		case SDEV_RUNNING:
2109 			break;
2110 		default:
2111 			goto illegal;
2112 		}
2113 		break;
2114 
2115 	case SDEV_CANCEL:
2116 		switch (oldstate) {
2117 		case SDEV_CREATED:
2118 		case SDEV_RUNNING:
2119 		case SDEV_QUIESCE:
2120 		case SDEV_OFFLINE:
2121 		case SDEV_BLOCK:
2122 			break;
2123 		default:
2124 			goto illegal;
2125 		}
2126 		break;
2127 
2128 	case SDEV_DEL:
2129 		switch (oldstate) {
2130 		case SDEV_CREATED:
2131 		case SDEV_RUNNING:
2132 		case SDEV_OFFLINE:
2133 		case SDEV_CANCEL:
2134 			break;
2135 		default:
2136 			goto illegal;
2137 		}
2138 		break;
2139 
2140 	}
2141 	sdev->sdev_state = state;
2142 	return 0;
2143 
2144  illegal:
2145 	SCSI_LOG_ERROR_RECOVERY(1,
2146 				sdev_printk(KERN_ERR, sdev,
2147 					    "Illegal state transition %s->%s\n",
2148 					    scsi_device_state_name(oldstate),
2149 					    scsi_device_state_name(state))
2150 				);
2151 	return -EINVAL;
2152 }
2153 EXPORT_SYMBOL(scsi_device_set_state);
2154 
2155 /**
2156  * 	sdev_evt_emit - emit a single SCSI device uevent
2157  *	@sdev: associated SCSI device
2158  *	@evt: event to emit
2159  *
2160  *	Send a single uevent (scsi_event) to the associated scsi_device.
2161  */
2162 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2163 {
2164 	int idx = 0;
2165 	char *envp[3];
2166 
2167 	switch (evt->evt_type) {
2168 	case SDEV_EVT_MEDIA_CHANGE:
2169 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2170 		break;
2171 
2172 	default:
2173 		/* do nothing */
2174 		break;
2175 	}
2176 
2177 	envp[idx++] = NULL;
2178 
2179 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2180 }
2181 
2182 /**
2183  * 	sdev_evt_thread - send a uevent for each scsi event
2184  *	@work: work struct for scsi_device
2185  *
2186  *	Dispatch queued events to their associated scsi_device kobjects
2187  *	as uevents.
2188  */
2189 void scsi_evt_thread(struct work_struct *work)
2190 {
2191 	struct scsi_device *sdev;
2192 	LIST_HEAD(event_list);
2193 
2194 	sdev = container_of(work, struct scsi_device, event_work);
2195 
2196 	while (1) {
2197 		struct scsi_event *evt;
2198 		struct list_head *this, *tmp;
2199 		unsigned long flags;
2200 
2201 		spin_lock_irqsave(&sdev->list_lock, flags);
2202 		list_splice_init(&sdev->event_list, &event_list);
2203 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2204 
2205 		if (list_empty(&event_list))
2206 			break;
2207 
2208 		list_for_each_safe(this, tmp, &event_list) {
2209 			evt = list_entry(this, struct scsi_event, node);
2210 			list_del(&evt->node);
2211 			scsi_evt_emit(sdev, evt);
2212 			kfree(evt);
2213 		}
2214 	}
2215 }
2216 
2217 /**
2218  * 	sdev_evt_send - send asserted event to uevent thread
2219  *	@sdev: scsi_device event occurred on
2220  *	@evt: event to send
2221  *
2222  *	Assert scsi device event asynchronously.
2223  */
2224 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2225 {
2226 	unsigned long flags;
2227 
2228 #if 0
2229 	/* FIXME: currently this check eliminates all media change events
2230 	 * for polled devices.  Need to update to discriminate between AN
2231 	 * and polled events */
2232 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2233 		kfree(evt);
2234 		return;
2235 	}
2236 #endif
2237 
2238 	spin_lock_irqsave(&sdev->list_lock, flags);
2239 	list_add_tail(&evt->node, &sdev->event_list);
2240 	schedule_work(&sdev->event_work);
2241 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2242 }
2243 EXPORT_SYMBOL_GPL(sdev_evt_send);
2244 
2245 /**
2246  * 	sdev_evt_alloc - allocate a new scsi event
2247  *	@evt_type: type of event to allocate
2248  *	@gfpflags: GFP flags for allocation
2249  *
2250  *	Allocates and returns a new scsi_event.
2251  */
2252 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2253 				  gfp_t gfpflags)
2254 {
2255 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2256 	if (!evt)
2257 		return NULL;
2258 
2259 	evt->evt_type = evt_type;
2260 	INIT_LIST_HEAD(&evt->node);
2261 
2262 	/* evt_type-specific initialization, if any */
2263 	switch (evt_type) {
2264 	case SDEV_EVT_MEDIA_CHANGE:
2265 	default:
2266 		/* do nothing */
2267 		break;
2268 	}
2269 
2270 	return evt;
2271 }
2272 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2273 
2274 /**
2275  * 	sdev_evt_send_simple - send asserted event to uevent thread
2276  *	@sdev: scsi_device event occurred on
2277  *	@evt_type: type of event to send
2278  *	@gfpflags: GFP flags for allocation
2279  *
2280  *	Assert scsi device event asynchronously, given an event type.
2281  */
2282 void sdev_evt_send_simple(struct scsi_device *sdev,
2283 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2284 {
2285 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2286 	if (!evt) {
2287 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2288 			    evt_type);
2289 		return;
2290 	}
2291 
2292 	sdev_evt_send(sdev, evt);
2293 }
2294 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2295 
2296 /**
2297  *	scsi_device_quiesce - Block user issued commands.
2298  *	@sdev:	scsi device to quiesce.
2299  *
2300  *	This works by trying to transition to the SDEV_QUIESCE state
2301  *	(which must be a legal transition).  When the device is in this
2302  *	state, only special requests will be accepted, all others will
2303  *	be deferred.  Since special requests may also be requeued requests,
2304  *	a successful return doesn't guarantee the device will be
2305  *	totally quiescent.
2306  *
2307  *	Must be called with user context, may sleep.
2308  *
2309  *	Returns zero if unsuccessful or an error if not.
2310  */
2311 int
2312 scsi_device_quiesce(struct scsi_device *sdev)
2313 {
2314 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2315 	if (err)
2316 		return err;
2317 
2318 	scsi_run_queue(sdev->request_queue);
2319 	while (sdev->device_busy) {
2320 		msleep_interruptible(200);
2321 		scsi_run_queue(sdev->request_queue);
2322 	}
2323 	return 0;
2324 }
2325 EXPORT_SYMBOL(scsi_device_quiesce);
2326 
2327 /**
2328  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2329  *	@sdev:	scsi device to resume.
2330  *
2331  *	Moves the device from quiesced back to running and restarts the
2332  *	queues.
2333  *
2334  *	Must be called with user context, may sleep.
2335  */
2336 void
2337 scsi_device_resume(struct scsi_device *sdev)
2338 {
2339 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2340 		return;
2341 	scsi_run_queue(sdev->request_queue);
2342 }
2343 EXPORT_SYMBOL(scsi_device_resume);
2344 
2345 static void
2346 device_quiesce_fn(struct scsi_device *sdev, void *data)
2347 {
2348 	scsi_device_quiesce(sdev);
2349 }
2350 
2351 void
2352 scsi_target_quiesce(struct scsi_target *starget)
2353 {
2354 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2355 }
2356 EXPORT_SYMBOL(scsi_target_quiesce);
2357 
2358 static void
2359 device_resume_fn(struct scsi_device *sdev, void *data)
2360 {
2361 	scsi_device_resume(sdev);
2362 }
2363 
2364 void
2365 scsi_target_resume(struct scsi_target *starget)
2366 {
2367 	starget_for_each_device(starget, NULL, device_resume_fn);
2368 }
2369 EXPORT_SYMBOL(scsi_target_resume);
2370 
2371 /**
2372  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2373  * @sdev:	device to block
2374  *
2375  * Block request made by scsi lld's to temporarily stop all
2376  * scsi commands on the specified device.  Called from interrupt
2377  * or normal process context.
2378  *
2379  * Returns zero if successful or error if not
2380  *
2381  * Notes:
2382  *	This routine transitions the device to the SDEV_BLOCK state
2383  *	(which must be a legal transition).  When the device is in this
2384  *	state, all commands are deferred until the scsi lld reenables
2385  *	the device with scsi_device_unblock or device_block_tmo fires.
2386  *	This routine assumes the host_lock is held on entry.
2387  */
2388 int
2389 scsi_internal_device_block(struct scsi_device *sdev)
2390 {
2391 	struct request_queue *q = sdev->request_queue;
2392 	unsigned long flags;
2393 	int err = 0;
2394 
2395 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2396 	if (err)
2397 		return err;
2398 
2399 	/*
2400 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2401 	 * block layer from calling the midlayer with this device's
2402 	 * request queue.
2403 	 */
2404 	spin_lock_irqsave(q->queue_lock, flags);
2405 	blk_stop_queue(q);
2406 	spin_unlock_irqrestore(q->queue_lock, flags);
2407 
2408 	return 0;
2409 }
2410 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2411 
2412 /**
2413  * scsi_internal_device_unblock - resume a device after a block request
2414  * @sdev:	device to resume
2415  *
2416  * Called by scsi lld's or the midlayer to restart the device queue
2417  * for the previously suspended scsi device.  Called from interrupt or
2418  * normal process context.
2419  *
2420  * Returns zero if successful or error if not.
2421  *
2422  * Notes:
2423  *	This routine transitions the device to the SDEV_RUNNING state
2424  *	(which must be a legal transition) allowing the midlayer to
2425  *	goose the queue for this device.  This routine assumes the
2426  *	host_lock is held upon entry.
2427  */
2428 int
2429 scsi_internal_device_unblock(struct scsi_device *sdev)
2430 {
2431 	struct request_queue *q = sdev->request_queue;
2432 	int err;
2433 	unsigned long flags;
2434 
2435 	/*
2436 	 * Try to transition the scsi device to SDEV_RUNNING
2437 	 * and goose the device queue if successful.
2438 	 */
2439 	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2440 	if (err)
2441 		return err;
2442 
2443 	spin_lock_irqsave(q->queue_lock, flags);
2444 	blk_start_queue(q);
2445 	spin_unlock_irqrestore(q->queue_lock, flags);
2446 
2447 	return 0;
2448 }
2449 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2450 
2451 static void
2452 device_block(struct scsi_device *sdev, void *data)
2453 {
2454 	scsi_internal_device_block(sdev);
2455 }
2456 
2457 static int
2458 target_block(struct device *dev, void *data)
2459 {
2460 	if (scsi_is_target_device(dev))
2461 		starget_for_each_device(to_scsi_target(dev), NULL,
2462 					device_block);
2463 	return 0;
2464 }
2465 
2466 void
2467 scsi_target_block(struct device *dev)
2468 {
2469 	if (scsi_is_target_device(dev))
2470 		starget_for_each_device(to_scsi_target(dev), NULL,
2471 					device_block);
2472 	else
2473 		device_for_each_child(dev, NULL, target_block);
2474 }
2475 EXPORT_SYMBOL_GPL(scsi_target_block);
2476 
2477 static void
2478 device_unblock(struct scsi_device *sdev, void *data)
2479 {
2480 	scsi_internal_device_unblock(sdev);
2481 }
2482 
2483 static int
2484 target_unblock(struct device *dev, void *data)
2485 {
2486 	if (scsi_is_target_device(dev))
2487 		starget_for_each_device(to_scsi_target(dev), NULL,
2488 					device_unblock);
2489 	return 0;
2490 }
2491 
2492 void
2493 scsi_target_unblock(struct device *dev)
2494 {
2495 	if (scsi_is_target_device(dev))
2496 		starget_for_each_device(to_scsi_target(dev), NULL,
2497 					device_unblock);
2498 	else
2499 		device_for_each_child(dev, NULL, target_unblock);
2500 }
2501 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2502 
2503 /**
2504  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2505  * @sgl:	scatter-gather list
2506  * @sg_count:	number of segments in sg
2507  * @offset:	offset in bytes into sg, on return offset into the mapped area
2508  * @len:	bytes to map, on return number of bytes mapped
2509  *
2510  * Returns virtual address of the start of the mapped page
2511  */
2512 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2513 			  size_t *offset, size_t *len)
2514 {
2515 	int i;
2516 	size_t sg_len = 0, len_complete = 0;
2517 	struct scatterlist *sg;
2518 	struct page *page;
2519 
2520 	WARN_ON(!irqs_disabled());
2521 
2522 	for_each_sg(sgl, sg, sg_count, i) {
2523 		len_complete = sg_len; /* Complete sg-entries */
2524 		sg_len += sg->length;
2525 		if (sg_len > *offset)
2526 			break;
2527 	}
2528 
2529 	if (unlikely(i == sg_count)) {
2530 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2531 			"elements %d\n",
2532 		       __func__, sg_len, *offset, sg_count);
2533 		WARN_ON(1);
2534 		return NULL;
2535 	}
2536 
2537 	/* Offset starting from the beginning of first page in this sg-entry */
2538 	*offset = *offset - len_complete + sg->offset;
2539 
2540 	/* Assumption: contiguous pages can be accessed as "page + i" */
2541 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2542 	*offset &= ~PAGE_MASK;
2543 
2544 	/* Bytes in this sg-entry from *offset to the end of the page */
2545 	sg_len = PAGE_SIZE - *offset;
2546 	if (*len > sg_len)
2547 		*len = sg_len;
2548 
2549 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2550 }
2551 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2552 
2553 /**
2554  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2555  * @virt:	virtual address to be unmapped
2556  */
2557 void scsi_kunmap_atomic_sg(void *virt)
2558 {
2559 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2560 }
2561 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2562