1 /* 2 * Copyright (C) 1999 Eric Youngdale 3 * Copyright (C) 2014 Christoph Hellwig 4 * 5 * SCSI queueing library. 6 * Initial versions: Eric Youngdale (eric@andante.org). 7 * Based upon conversations with large numbers 8 * of people at Linux Expo. 9 */ 10 11 #include <linux/bio.h> 12 #include <linux/bitops.h> 13 #include <linux/blkdev.h> 14 #include <linux/completion.h> 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 #include <linux/blk-mq.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_driver.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 34 #include <scsi/scsi_dh.h> 35 36 #include <trace/events/scsi.h> 37 38 #include "scsi_debugfs.h" 39 #include "scsi_priv.h" 40 #include "scsi_logging.h" 41 42 static struct kmem_cache *scsi_sdb_cache; 43 static struct kmem_cache *scsi_sense_cache; 44 static struct kmem_cache *scsi_sense_isadma_cache; 45 static DEFINE_MUTEX(scsi_sense_cache_mutex); 46 47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 48 49 static inline struct kmem_cache * 50 scsi_select_sense_cache(bool unchecked_isa_dma) 51 { 52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 53 } 54 55 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 56 unsigned char *sense_buffer) 57 { 58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 59 sense_buffer); 60 } 61 62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 63 gfp_t gfp_mask, int numa_node) 64 { 65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 66 gfp_mask, numa_node); 67 } 68 69 int scsi_init_sense_cache(struct Scsi_Host *shost) 70 { 71 struct kmem_cache *cache; 72 int ret = 0; 73 74 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 75 if (cache) 76 return 0; 77 78 mutex_lock(&scsi_sense_cache_mutex); 79 if (shost->unchecked_isa_dma) { 80 scsi_sense_isadma_cache = 81 kmem_cache_create("scsi_sense_cache(DMA)", 82 SCSI_SENSE_BUFFERSIZE, 0, 83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 84 if (!scsi_sense_isadma_cache) 85 ret = -ENOMEM; 86 } else { 87 scsi_sense_cache = 88 kmem_cache_create_usercopy("scsi_sense_cache", 89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 90 0, SCSI_SENSE_BUFFERSIZE, NULL); 91 if (!scsi_sense_cache) 92 ret = -ENOMEM; 93 } 94 95 mutex_unlock(&scsi_sense_cache_mutex); 96 return ret; 97 } 98 99 /* 100 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 101 * not change behaviour from the previous unplug mechanism, experimentation 102 * may prove this needs changing. 103 */ 104 #define SCSI_QUEUE_DELAY 3 105 106 static void 107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 108 { 109 struct Scsi_Host *host = cmd->device->host; 110 struct scsi_device *device = cmd->device; 111 struct scsi_target *starget = scsi_target(device); 112 113 /* 114 * Set the appropriate busy bit for the device/host. 115 * 116 * If the host/device isn't busy, assume that something actually 117 * completed, and that we should be able to queue a command now. 118 * 119 * Note that the prior mid-layer assumption that any host could 120 * always queue at least one command is now broken. The mid-layer 121 * will implement a user specifiable stall (see 122 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 123 * if a command is requeued with no other commands outstanding 124 * either for the device or for the host. 125 */ 126 switch (reason) { 127 case SCSI_MLQUEUE_HOST_BUSY: 128 atomic_set(&host->host_blocked, host->max_host_blocked); 129 break; 130 case SCSI_MLQUEUE_DEVICE_BUSY: 131 case SCSI_MLQUEUE_EH_RETRY: 132 atomic_set(&device->device_blocked, 133 device->max_device_blocked); 134 break; 135 case SCSI_MLQUEUE_TARGET_BUSY: 136 atomic_set(&starget->target_blocked, 137 starget->max_target_blocked); 138 break; 139 } 140 } 141 142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 143 { 144 struct scsi_device *sdev = cmd->device; 145 146 if (cmd->request->rq_flags & RQF_DONTPREP) { 147 cmd->request->rq_flags &= ~RQF_DONTPREP; 148 scsi_mq_uninit_cmd(cmd); 149 } else { 150 WARN_ON_ONCE(true); 151 } 152 blk_mq_requeue_request(cmd->request, true); 153 put_device(&sdev->sdev_gendev); 154 } 155 156 /** 157 * __scsi_queue_insert - private queue insertion 158 * @cmd: The SCSI command being requeued 159 * @reason: The reason for the requeue 160 * @unbusy: Whether the queue should be unbusied 161 * 162 * This is a private queue insertion. The public interface 163 * scsi_queue_insert() always assumes the queue should be unbusied 164 * because it's always called before the completion. This function is 165 * for a requeue after completion, which should only occur in this 166 * file. 167 */ 168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 169 { 170 struct scsi_device *device = cmd->device; 171 struct request_queue *q = device->request_queue; 172 unsigned long flags; 173 174 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 175 "Inserting command %p into mlqueue\n", cmd)); 176 177 scsi_set_blocked(cmd, reason); 178 179 /* 180 * Decrement the counters, since these commands are no longer 181 * active on the host/device. 182 */ 183 if (unbusy) 184 scsi_device_unbusy(device); 185 186 /* 187 * Requeue this command. It will go before all other commands 188 * that are already in the queue. Schedule requeue work under 189 * lock such that the kblockd_schedule_work() call happens 190 * before blk_cleanup_queue() finishes. 191 */ 192 cmd->result = 0; 193 if (q->mq_ops) { 194 /* 195 * Before a SCSI command is dispatched, 196 * get_device(&sdev->sdev_gendev) is called and the host, 197 * target and device busy counters are increased. Since 198 * requeuing a request causes these actions to be repeated and 199 * since scsi_device_unbusy() has already been called, 200 * put_device(&device->sdev_gendev) must still be called. Call 201 * put_device() after blk_mq_requeue_request() to avoid that 202 * removal of the SCSI device can start before requeueing has 203 * happened. 204 */ 205 blk_mq_requeue_request(cmd->request, true); 206 put_device(&device->sdev_gendev); 207 return; 208 } 209 spin_lock_irqsave(q->queue_lock, flags); 210 blk_requeue_request(q, cmd->request); 211 kblockd_schedule_work(&device->requeue_work); 212 spin_unlock_irqrestore(q->queue_lock, flags); 213 } 214 215 /* 216 * Function: scsi_queue_insert() 217 * 218 * Purpose: Insert a command in the midlevel queue. 219 * 220 * Arguments: cmd - command that we are adding to queue. 221 * reason - why we are inserting command to queue. 222 * 223 * Lock status: Assumed that lock is not held upon entry. 224 * 225 * Returns: Nothing. 226 * 227 * Notes: We do this for one of two cases. Either the host is busy 228 * and it cannot accept any more commands for the time being, 229 * or the device returned QUEUE_FULL and can accept no more 230 * commands. 231 * Notes: This could be called either from an interrupt context or a 232 * normal process context. 233 */ 234 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 235 { 236 __scsi_queue_insert(cmd, reason, true); 237 } 238 239 240 /** 241 * __scsi_execute - insert request and wait for the result 242 * @sdev: scsi device 243 * @cmd: scsi command 244 * @data_direction: data direction 245 * @buffer: data buffer 246 * @bufflen: len of buffer 247 * @sense: optional sense buffer 248 * @sshdr: optional decoded sense header 249 * @timeout: request timeout in seconds 250 * @retries: number of times to retry request 251 * @flags: flags for ->cmd_flags 252 * @rq_flags: flags for ->rq_flags 253 * @resid: optional residual length 254 * 255 * Returns the scsi_cmnd result field if a command was executed, or a negative 256 * Linux error code if we didn't get that far. 257 */ 258 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 259 int data_direction, void *buffer, unsigned bufflen, 260 unsigned char *sense, struct scsi_sense_hdr *sshdr, 261 int timeout, int retries, u64 flags, req_flags_t rq_flags, 262 int *resid) 263 { 264 struct request *req; 265 struct scsi_request *rq; 266 int ret = DRIVER_ERROR << 24; 267 268 req = blk_get_request(sdev->request_queue, 269 data_direction == DMA_TO_DEVICE ? 270 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 271 if (IS_ERR(req)) 272 return ret; 273 rq = scsi_req(req); 274 275 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 276 buffer, bufflen, GFP_NOIO)) 277 goto out; 278 279 rq->cmd_len = COMMAND_SIZE(cmd[0]); 280 memcpy(rq->cmd, cmd, rq->cmd_len); 281 rq->retries = retries; 282 req->timeout = timeout; 283 req->cmd_flags |= flags; 284 req->rq_flags |= rq_flags | RQF_QUIET; 285 286 /* 287 * head injection *required* here otherwise quiesce won't work 288 */ 289 blk_execute_rq(req->q, NULL, req, 1); 290 291 /* 292 * Some devices (USB mass-storage in particular) may transfer 293 * garbage data together with a residue indicating that the data 294 * is invalid. Prevent the garbage from being misinterpreted 295 * and prevent security leaks by zeroing out the excess data. 296 */ 297 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 298 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 299 300 if (resid) 301 *resid = rq->resid_len; 302 if (sense && rq->sense_len) 303 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 304 if (sshdr) 305 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 306 ret = rq->result; 307 out: 308 blk_put_request(req); 309 310 return ret; 311 } 312 EXPORT_SYMBOL(__scsi_execute); 313 314 /* 315 * Function: scsi_init_cmd_errh() 316 * 317 * Purpose: Initialize cmd fields related to error handling. 318 * 319 * Arguments: cmd - command that is ready to be queued. 320 * 321 * Notes: This function has the job of initializing a number of 322 * fields related to error handling. Typically this will 323 * be called once for each command, as required. 324 */ 325 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 326 { 327 cmd->serial_number = 0; 328 scsi_set_resid(cmd, 0); 329 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 330 if (cmd->cmd_len == 0) 331 cmd->cmd_len = scsi_command_size(cmd->cmnd); 332 } 333 334 /* 335 * Decrement the host_busy counter and wake up the error handler if necessary. 336 * Avoid as follows that the error handler is not woken up if shost->host_busy 337 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 338 * with an RCU read lock in this function to ensure that this function in its 339 * entirety either finishes before scsi_eh_scmd_add() increases the 340 * host_failed counter or that it notices the shost state change made by 341 * scsi_eh_scmd_add(). 342 */ 343 static void scsi_dec_host_busy(struct Scsi_Host *shost) 344 { 345 unsigned long flags; 346 347 rcu_read_lock(); 348 if (!shost->use_blk_mq) 349 atomic_dec(&shost->host_busy); 350 if (unlikely(scsi_host_in_recovery(shost))) { 351 spin_lock_irqsave(shost->host_lock, flags); 352 if (shost->host_failed || shost->host_eh_scheduled) 353 scsi_eh_wakeup(shost); 354 spin_unlock_irqrestore(shost->host_lock, flags); 355 } 356 rcu_read_unlock(); 357 } 358 359 void scsi_device_unbusy(struct scsi_device *sdev) 360 { 361 struct Scsi_Host *shost = sdev->host; 362 struct scsi_target *starget = scsi_target(sdev); 363 364 scsi_dec_host_busy(shost); 365 366 if (starget->can_queue > 0) 367 atomic_dec(&starget->target_busy); 368 369 atomic_dec(&sdev->device_busy); 370 } 371 372 static void scsi_kick_queue(struct request_queue *q) 373 { 374 if (q->mq_ops) 375 blk_mq_run_hw_queues(q, false); 376 else 377 blk_run_queue(q); 378 } 379 380 /* 381 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 382 * and call blk_run_queue for all the scsi_devices on the target - 383 * including current_sdev first. 384 * 385 * Called with *no* scsi locks held. 386 */ 387 static void scsi_single_lun_run(struct scsi_device *current_sdev) 388 { 389 struct Scsi_Host *shost = current_sdev->host; 390 struct scsi_device *sdev, *tmp; 391 struct scsi_target *starget = scsi_target(current_sdev); 392 unsigned long flags; 393 394 spin_lock_irqsave(shost->host_lock, flags); 395 starget->starget_sdev_user = NULL; 396 spin_unlock_irqrestore(shost->host_lock, flags); 397 398 /* 399 * Call blk_run_queue for all LUNs on the target, starting with 400 * current_sdev. We race with others (to set starget_sdev_user), 401 * but in most cases, we will be first. Ideally, each LU on the 402 * target would get some limited time or requests on the target. 403 */ 404 scsi_kick_queue(current_sdev->request_queue); 405 406 spin_lock_irqsave(shost->host_lock, flags); 407 if (starget->starget_sdev_user) 408 goto out; 409 list_for_each_entry_safe(sdev, tmp, &starget->devices, 410 same_target_siblings) { 411 if (sdev == current_sdev) 412 continue; 413 if (scsi_device_get(sdev)) 414 continue; 415 416 spin_unlock_irqrestore(shost->host_lock, flags); 417 scsi_kick_queue(sdev->request_queue); 418 spin_lock_irqsave(shost->host_lock, flags); 419 420 scsi_device_put(sdev); 421 } 422 out: 423 spin_unlock_irqrestore(shost->host_lock, flags); 424 } 425 426 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 427 { 428 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 429 return true; 430 if (atomic_read(&sdev->device_blocked) > 0) 431 return true; 432 return false; 433 } 434 435 static inline bool scsi_target_is_busy(struct scsi_target *starget) 436 { 437 if (starget->can_queue > 0) { 438 if (atomic_read(&starget->target_busy) >= starget->can_queue) 439 return true; 440 if (atomic_read(&starget->target_blocked) > 0) 441 return true; 442 } 443 return false; 444 } 445 446 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 447 { 448 /* 449 * blk-mq can handle host queue busy efficiently via host-wide driver 450 * tag allocation 451 */ 452 453 if (!shost->use_blk_mq && shost->can_queue > 0 && 454 atomic_read(&shost->host_busy) >= shost->can_queue) 455 return true; 456 if (atomic_read(&shost->host_blocked) > 0) 457 return true; 458 if (shost->host_self_blocked) 459 return true; 460 return false; 461 } 462 463 static void scsi_starved_list_run(struct Scsi_Host *shost) 464 { 465 LIST_HEAD(starved_list); 466 struct scsi_device *sdev; 467 unsigned long flags; 468 469 spin_lock_irqsave(shost->host_lock, flags); 470 list_splice_init(&shost->starved_list, &starved_list); 471 472 while (!list_empty(&starved_list)) { 473 struct request_queue *slq; 474 475 /* 476 * As long as shost is accepting commands and we have 477 * starved queues, call blk_run_queue. scsi_request_fn 478 * drops the queue_lock and can add us back to the 479 * starved_list. 480 * 481 * host_lock protects the starved_list and starved_entry. 482 * scsi_request_fn must get the host_lock before checking 483 * or modifying starved_list or starved_entry. 484 */ 485 if (scsi_host_is_busy(shost)) 486 break; 487 488 sdev = list_entry(starved_list.next, 489 struct scsi_device, starved_entry); 490 list_del_init(&sdev->starved_entry); 491 if (scsi_target_is_busy(scsi_target(sdev))) { 492 list_move_tail(&sdev->starved_entry, 493 &shost->starved_list); 494 continue; 495 } 496 497 /* 498 * Once we drop the host lock, a racing scsi_remove_device() 499 * call may remove the sdev from the starved list and destroy 500 * it and the queue. Mitigate by taking a reference to the 501 * queue and never touching the sdev again after we drop the 502 * host lock. Note: if __scsi_remove_device() invokes 503 * blk_cleanup_queue() before the queue is run from this 504 * function then blk_run_queue() will return immediately since 505 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 506 */ 507 slq = sdev->request_queue; 508 if (!blk_get_queue(slq)) 509 continue; 510 spin_unlock_irqrestore(shost->host_lock, flags); 511 512 scsi_kick_queue(slq); 513 blk_put_queue(slq); 514 515 spin_lock_irqsave(shost->host_lock, flags); 516 } 517 /* put any unprocessed entries back */ 518 list_splice(&starved_list, &shost->starved_list); 519 spin_unlock_irqrestore(shost->host_lock, flags); 520 } 521 522 /* 523 * Function: scsi_run_queue() 524 * 525 * Purpose: Select a proper request queue to serve next 526 * 527 * Arguments: q - last request's queue 528 * 529 * Returns: Nothing 530 * 531 * Notes: The previous command was completely finished, start 532 * a new one if possible. 533 */ 534 static void scsi_run_queue(struct request_queue *q) 535 { 536 struct scsi_device *sdev = q->queuedata; 537 538 if (scsi_target(sdev)->single_lun) 539 scsi_single_lun_run(sdev); 540 if (!list_empty(&sdev->host->starved_list)) 541 scsi_starved_list_run(sdev->host); 542 543 if (q->mq_ops) 544 blk_mq_run_hw_queues(q, false); 545 else 546 blk_run_queue(q); 547 } 548 549 void scsi_requeue_run_queue(struct work_struct *work) 550 { 551 struct scsi_device *sdev; 552 struct request_queue *q; 553 554 sdev = container_of(work, struct scsi_device, requeue_work); 555 q = sdev->request_queue; 556 scsi_run_queue(q); 557 } 558 559 /* 560 * Function: scsi_requeue_command() 561 * 562 * Purpose: Handle post-processing of completed commands. 563 * 564 * Arguments: q - queue to operate on 565 * cmd - command that may need to be requeued. 566 * 567 * Returns: Nothing 568 * 569 * Notes: After command completion, there may be blocks left 570 * over which weren't finished by the previous command 571 * this can be for a number of reasons - the main one is 572 * I/O errors in the middle of the request, in which case 573 * we need to request the blocks that come after the bad 574 * sector. 575 * Notes: Upon return, cmd is a stale pointer. 576 */ 577 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 578 { 579 struct scsi_device *sdev = cmd->device; 580 struct request *req = cmd->request; 581 unsigned long flags; 582 583 spin_lock_irqsave(q->queue_lock, flags); 584 blk_unprep_request(req); 585 req->special = NULL; 586 scsi_put_command(cmd); 587 blk_requeue_request(q, req); 588 spin_unlock_irqrestore(q->queue_lock, flags); 589 590 scsi_run_queue(q); 591 592 put_device(&sdev->sdev_gendev); 593 } 594 595 void scsi_run_host_queues(struct Scsi_Host *shost) 596 { 597 struct scsi_device *sdev; 598 599 shost_for_each_device(sdev, shost) 600 scsi_run_queue(sdev->request_queue); 601 } 602 603 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 604 { 605 if (!blk_rq_is_passthrough(cmd->request)) { 606 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 607 608 if (drv->uninit_command) 609 drv->uninit_command(cmd); 610 } 611 } 612 613 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 614 { 615 struct scsi_data_buffer *sdb; 616 617 if (cmd->sdb.table.nents) 618 sg_free_table_chained(&cmd->sdb.table, true); 619 if (cmd->request->next_rq) { 620 sdb = cmd->request->next_rq->special; 621 if (sdb) 622 sg_free_table_chained(&sdb->table, true); 623 } 624 if (scsi_prot_sg_count(cmd)) 625 sg_free_table_chained(&cmd->prot_sdb->table, true); 626 } 627 628 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 629 { 630 scsi_mq_free_sgtables(cmd); 631 scsi_uninit_cmd(cmd); 632 scsi_del_cmd_from_list(cmd); 633 } 634 635 /* 636 * Function: scsi_release_buffers() 637 * 638 * Purpose: Free resources allocate for a scsi_command. 639 * 640 * Arguments: cmd - command that we are bailing. 641 * 642 * Lock status: Assumed that no lock is held upon entry. 643 * 644 * Returns: Nothing 645 * 646 * Notes: In the event that an upper level driver rejects a 647 * command, we must release resources allocated during 648 * the __init_io() function. Primarily this would involve 649 * the scatter-gather table. 650 */ 651 static void scsi_release_buffers(struct scsi_cmnd *cmd) 652 { 653 if (cmd->sdb.table.nents) 654 sg_free_table_chained(&cmd->sdb.table, false); 655 656 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 657 658 if (scsi_prot_sg_count(cmd)) 659 sg_free_table_chained(&cmd->prot_sdb->table, false); 660 } 661 662 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd) 663 { 664 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special; 665 666 sg_free_table_chained(&bidi_sdb->table, false); 667 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 668 cmd->request->next_rq->special = NULL; 669 } 670 671 /* Returns false when no more bytes to process, true if there are more */ 672 static bool scsi_end_request(struct request *req, blk_status_t error, 673 unsigned int bytes, unsigned int bidi_bytes) 674 { 675 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 676 struct scsi_device *sdev = cmd->device; 677 struct request_queue *q = sdev->request_queue; 678 679 if (blk_update_request(req, error, bytes)) 680 return true; 681 682 /* Bidi request must be completed as a whole */ 683 if (unlikely(bidi_bytes) && 684 blk_update_request(req->next_rq, error, bidi_bytes)) 685 return true; 686 687 if (blk_queue_add_random(q)) 688 add_disk_randomness(req->rq_disk); 689 690 if (!blk_rq_is_scsi(req)) { 691 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 692 cmd->flags &= ~SCMD_INITIALIZED; 693 destroy_rcu_head(&cmd->rcu); 694 } 695 696 if (req->mq_ctx) { 697 /* 698 * In the MQ case the command gets freed by __blk_mq_end_request, 699 * so we have to do all cleanup that depends on it earlier. 700 * 701 * We also can't kick the queues from irq context, so we 702 * will have to defer it to a workqueue. 703 */ 704 scsi_mq_uninit_cmd(cmd); 705 706 __blk_mq_end_request(req, error); 707 708 if (scsi_target(sdev)->single_lun || 709 !list_empty(&sdev->host->starved_list)) 710 kblockd_schedule_work(&sdev->requeue_work); 711 else 712 blk_mq_run_hw_queues(q, true); 713 } else { 714 unsigned long flags; 715 716 if (bidi_bytes) 717 scsi_release_bidi_buffers(cmd); 718 scsi_release_buffers(cmd); 719 scsi_put_command(cmd); 720 721 spin_lock_irqsave(q->queue_lock, flags); 722 blk_finish_request(req, error); 723 spin_unlock_irqrestore(q->queue_lock, flags); 724 725 scsi_run_queue(q); 726 } 727 728 put_device(&sdev->sdev_gendev); 729 return false; 730 } 731 732 /** 733 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 734 * @cmd: SCSI command 735 * @result: scsi error code 736 * 737 * Translate a SCSI result code into a blk_status_t value. May reset the host 738 * byte of @cmd->result. 739 */ 740 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 741 { 742 switch (host_byte(result)) { 743 case DID_OK: 744 /* 745 * Also check the other bytes than the status byte in result 746 * to handle the case when a SCSI LLD sets result to 747 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 748 */ 749 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 750 return BLK_STS_OK; 751 return BLK_STS_IOERR; 752 case DID_TRANSPORT_FAILFAST: 753 return BLK_STS_TRANSPORT; 754 case DID_TARGET_FAILURE: 755 set_host_byte(cmd, DID_OK); 756 return BLK_STS_TARGET; 757 case DID_NEXUS_FAILURE: 758 return BLK_STS_NEXUS; 759 case DID_ALLOC_FAILURE: 760 set_host_byte(cmd, DID_OK); 761 return BLK_STS_NOSPC; 762 case DID_MEDIUM_ERROR: 763 set_host_byte(cmd, DID_OK); 764 return BLK_STS_MEDIUM; 765 default: 766 return BLK_STS_IOERR; 767 } 768 } 769 770 /* Helper for scsi_io_completion() when "reprep" action required. */ 771 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 772 struct request_queue *q) 773 { 774 /* A new command will be prepared and issued. */ 775 if (q->mq_ops) { 776 scsi_mq_requeue_cmd(cmd); 777 } else { 778 /* Unprep request and put it back at head of the queue. */ 779 scsi_release_buffers(cmd); 780 scsi_requeue_command(q, cmd); 781 } 782 } 783 784 /* Helper for scsi_io_completion() when special action required. */ 785 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 786 { 787 struct request_queue *q = cmd->device->request_queue; 788 struct request *req = cmd->request; 789 int level = 0; 790 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 791 ACTION_DELAYED_RETRY} action; 792 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 793 struct scsi_sense_hdr sshdr; 794 bool sense_valid; 795 bool sense_current = true; /* false implies "deferred sense" */ 796 blk_status_t blk_stat; 797 798 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 799 if (sense_valid) 800 sense_current = !scsi_sense_is_deferred(&sshdr); 801 802 blk_stat = scsi_result_to_blk_status(cmd, result); 803 804 if (host_byte(result) == DID_RESET) { 805 /* Third party bus reset or reset for error recovery 806 * reasons. Just retry the command and see what 807 * happens. 808 */ 809 action = ACTION_RETRY; 810 } else if (sense_valid && sense_current) { 811 switch (sshdr.sense_key) { 812 case UNIT_ATTENTION: 813 if (cmd->device->removable) { 814 /* Detected disc change. Set a bit 815 * and quietly refuse further access. 816 */ 817 cmd->device->changed = 1; 818 action = ACTION_FAIL; 819 } else { 820 /* Must have been a power glitch, or a 821 * bus reset. Could not have been a 822 * media change, so we just retry the 823 * command and see what happens. 824 */ 825 action = ACTION_RETRY; 826 } 827 break; 828 case ILLEGAL_REQUEST: 829 /* If we had an ILLEGAL REQUEST returned, then 830 * we may have performed an unsupported 831 * command. The only thing this should be 832 * would be a ten byte read where only a six 833 * byte read was supported. Also, on a system 834 * where READ CAPACITY failed, we may have 835 * read past the end of the disk. 836 */ 837 if ((cmd->device->use_10_for_rw && 838 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 839 (cmd->cmnd[0] == READ_10 || 840 cmd->cmnd[0] == WRITE_10)) { 841 /* This will issue a new 6-byte command. */ 842 cmd->device->use_10_for_rw = 0; 843 action = ACTION_REPREP; 844 } else if (sshdr.asc == 0x10) /* DIX */ { 845 action = ACTION_FAIL; 846 blk_stat = BLK_STS_PROTECTION; 847 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 848 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 849 action = ACTION_FAIL; 850 blk_stat = BLK_STS_TARGET; 851 } else 852 action = ACTION_FAIL; 853 break; 854 case ABORTED_COMMAND: 855 action = ACTION_FAIL; 856 if (sshdr.asc == 0x10) /* DIF */ 857 blk_stat = BLK_STS_PROTECTION; 858 break; 859 case NOT_READY: 860 /* If the device is in the process of becoming 861 * ready, or has a temporary blockage, retry. 862 */ 863 if (sshdr.asc == 0x04) { 864 switch (sshdr.ascq) { 865 case 0x01: /* becoming ready */ 866 case 0x04: /* format in progress */ 867 case 0x05: /* rebuild in progress */ 868 case 0x06: /* recalculation in progress */ 869 case 0x07: /* operation in progress */ 870 case 0x08: /* Long write in progress */ 871 case 0x09: /* self test in progress */ 872 case 0x14: /* space allocation in progress */ 873 case 0x1a: /* start stop unit in progress */ 874 case 0x1b: /* sanitize in progress */ 875 case 0x1d: /* configuration in progress */ 876 case 0x24: /* depopulation in progress */ 877 action = ACTION_DELAYED_RETRY; 878 break; 879 default: 880 action = ACTION_FAIL; 881 break; 882 } 883 } else 884 action = ACTION_FAIL; 885 break; 886 case VOLUME_OVERFLOW: 887 /* See SSC3rXX or current. */ 888 action = ACTION_FAIL; 889 break; 890 default: 891 action = ACTION_FAIL; 892 break; 893 } 894 } else 895 action = ACTION_FAIL; 896 897 if (action != ACTION_FAIL && 898 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 899 action = ACTION_FAIL; 900 901 switch (action) { 902 case ACTION_FAIL: 903 /* Give up and fail the remainder of the request */ 904 if (!(req->rq_flags & RQF_QUIET)) { 905 static DEFINE_RATELIMIT_STATE(_rs, 906 DEFAULT_RATELIMIT_INTERVAL, 907 DEFAULT_RATELIMIT_BURST); 908 909 if (unlikely(scsi_logging_level)) 910 level = 911 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 912 SCSI_LOG_MLCOMPLETE_BITS); 913 914 /* 915 * if logging is enabled the failure will be printed 916 * in scsi_log_completion(), so avoid duplicate messages 917 */ 918 if (!level && __ratelimit(&_rs)) { 919 scsi_print_result(cmd, NULL, FAILED); 920 if (driver_byte(result) == DRIVER_SENSE) 921 scsi_print_sense(cmd); 922 scsi_print_command(cmd); 923 } 924 } 925 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req), 0)) 926 return; 927 /*FALLTHRU*/ 928 case ACTION_REPREP: 929 scsi_io_completion_reprep(cmd, q); 930 break; 931 case ACTION_RETRY: 932 /* Retry the same command immediately */ 933 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 934 break; 935 case ACTION_DELAYED_RETRY: 936 /* Retry the same command after a delay */ 937 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 938 break; 939 } 940 } 941 942 /* 943 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 944 * new result that may suppress further error checking. Also modifies 945 * *blk_statp in some cases. 946 */ 947 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 948 blk_status_t *blk_statp) 949 { 950 bool sense_valid; 951 bool sense_current = true; /* false implies "deferred sense" */ 952 struct request *req = cmd->request; 953 struct scsi_sense_hdr sshdr; 954 955 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 956 if (sense_valid) 957 sense_current = !scsi_sense_is_deferred(&sshdr); 958 959 if (blk_rq_is_passthrough(req)) { 960 if (sense_valid) { 961 /* 962 * SG_IO wants current and deferred errors 963 */ 964 scsi_req(req)->sense_len = 965 min(8 + cmd->sense_buffer[7], 966 SCSI_SENSE_BUFFERSIZE); 967 } 968 if (sense_current) 969 *blk_statp = scsi_result_to_blk_status(cmd, result); 970 } else if (blk_rq_bytes(req) == 0 && sense_current) { 971 /* 972 * Flush commands do not transfers any data, and thus cannot use 973 * good_bytes != blk_rq_bytes(req) as the signal for an error. 974 * This sets *blk_statp explicitly for the problem case. 975 */ 976 *blk_statp = scsi_result_to_blk_status(cmd, result); 977 } 978 /* 979 * Recovered errors need reporting, but they're always treated as 980 * success, so fiddle the result code here. For passthrough requests 981 * we already took a copy of the original into sreq->result which 982 * is what gets returned to the user 983 */ 984 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 985 bool do_print = true; 986 /* 987 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 988 * skip print since caller wants ATA registers. Only occurs 989 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 990 */ 991 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 992 do_print = false; 993 else if (req->rq_flags & RQF_QUIET) 994 do_print = false; 995 if (do_print) 996 scsi_print_sense(cmd); 997 result = 0; 998 /* for passthrough, *blk_statp may be set */ 999 *blk_statp = BLK_STS_OK; 1000 } 1001 /* 1002 * Another corner case: the SCSI status byte is non-zero but 'good'. 1003 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 1004 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 1005 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 1006 * intermediate statuses (both obsolete in SAM-4) as good. 1007 */ 1008 if (status_byte(result) && scsi_status_is_good(result)) { 1009 result = 0; 1010 *blk_statp = BLK_STS_OK; 1011 } 1012 return result; 1013 } 1014 1015 /* 1016 * Function: scsi_io_completion() 1017 * 1018 * Purpose: Completion processing for block device I/O requests. 1019 * 1020 * Arguments: cmd - command that is finished. 1021 * 1022 * Lock status: Assumed that no lock is held upon entry. 1023 * 1024 * Returns: Nothing 1025 * 1026 * Notes: We will finish off the specified number of sectors. If we 1027 * are done, the command block will be released and the queue 1028 * function will be goosed. If we are not done then we have to 1029 * figure out what to do next: 1030 * 1031 * a) We can call scsi_requeue_command(). The request 1032 * will be unprepared and put back on the queue. Then 1033 * a new command will be created for it. This should 1034 * be used if we made forward progress, or if we want 1035 * to switch from READ(10) to READ(6) for example. 1036 * 1037 * b) We can call __scsi_queue_insert(). The request will 1038 * be put back on the queue and retried using the same 1039 * command as before, possibly after a delay. 1040 * 1041 * c) We can call scsi_end_request() with blk_stat other than 1042 * BLK_STS_OK, to fail the remainder of the request. 1043 */ 1044 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 1045 { 1046 int result = cmd->result; 1047 struct request_queue *q = cmd->device->request_queue; 1048 struct request *req = cmd->request; 1049 blk_status_t blk_stat = BLK_STS_OK; 1050 1051 if (unlikely(result)) /* a nz result may or may not be an error */ 1052 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 1053 1054 if (unlikely(blk_rq_is_passthrough(req))) { 1055 /* 1056 * scsi_result_to_blk_status may have reset the host_byte 1057 */ 1058 scsi_req(req)->result = cmd->result; 1059 scsi_req(req)->resid_len = scsi_get_resid(cmd); 1060 1061 if (unlikely(scsi_bidi_cmnd(cmd))) { 1062 /* 1063 * Bidi commands Must be complete as a whole, 1064 * both sides at once. 1065 */ 1066 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid; 1067 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req), 1068 blk_rq_bytes(req->next_rq))) 1069 WARN_ONCE(true, 1070 "Bidi command with remaining bytes"); 1071 return; 1072 } 1073 } 1074 1075 /* no bidi support yet, other than in pass-through */ 1076 if (unlikely(blk_bidi_rq(req))) { 1077 WARN_ONCE(true, "Only support bidi command in passthrough"); 1078 scmd_printk(KERN_ERR, cmd, "Killing bidi command\n"); 1079 if (scsi_end_request(req, BLK_STS_IOERR, blk_rq_bytes(req), 1080 blk_rq_bytes(req->next_rq))) 1081 WARN_ONCE(true, "Bidi command with remaining bytes"); 1082 return; 1083 } 1084 1085 /* 1086 * Next deal with any sectors which we were able to correctly 1087 * handle. 1088 */ 1089 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 1090 "%u sectors total, %d bytes done.\n", 1091 blk_rq_sectors(req), good_bytes)); 1092 1093 /* 1094 * Next deal with any sectors which we were able to correctly 1095 * handle. Failed, zero length commands always need to drop down 1096 * to retry code. Fast path should return in this block. 1097 */ 1098 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 1099 if (likely(!scsi_end_request(req, blk_stat, good_bytes, 0))) 1100 return; /* no bytes remaining */ 1101 } 1102 1103 /* Kill remainder if no retries. */ 1104 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 1105 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req), 0)) 1106 WARN_ONCE(true, 1107 "Bytes remaining after failed, no-retry command"); 1108 return; 1109 } 1110 1111 /* 1112 * If there had been no error, but we have leftover bytes in the 1113 * requeues just queue the command up again. 1114 */ 1115 if (likely(result == 0)) 1116 scsi_io_completion_reprep(cmd, q); 1117 else 1118 scsi_io_completion_action(cmd, result); 1119 } 1120 1121 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb) 1122 { 1123 int count; 1124 1125 /* 1126 * If sg table allocation fails, requeue request later. 1127 */ 1128 if (unlikely(sg_alloc_table_chained(&sdb->table, 1129 blk_rq_nr_phys_segments(req), sdb->table.sgl))) 1130 return BLKPREP_DEFER; 1131 1132 /* 1133 * Next, walk the list, and fill in the addresses and sizes of 1134 * each segment. 1135 */ 1136 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1137 BUG_ON(count > sdb->table.nents); 1138 sdb->table.nents = count; 1139 sdb->length = blk_rq_payload_bytes(req); 1140 return BLKPREP_OK; 1141 } 1142 1143 /* 1144 * Function: scsi_init_io() 1145 * 1146 * Purpose: SCSI I/O initialize function. 1147 * 1148 * Arguments: cmd - Command descriptor we wish to initialize 1149 * 1150 * Returns: 0 on success 1151 * BLKPREP_DEFER if the failure is retryable 1152 * BLKPREP_KILL if the failure is fatal 1153 */ 1154 int scsi_init_io(struct scsi_cmnd *cmd) 1155 { 1156 struct scsi_device *sdev = cmd->device; 1157 struct request *rq = cmd->request; 1158 bool is_mq = (rq->mq_ctx != NULL); 1159 int error = BLKPREP_KILL; 1160 1161 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1162 goto err_exit; 1163 1164 error = scsi_init_sgtable(rq, &cmd->sdb); 1165 if (error) 1166 goto err_exit; 1167 1168 if (blk_bidi_rq(rq)) { 1169 if (!rq->q->mq_ops) { 1170 struct scsi_data_buffer *bidi_sdb = 1171 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC); 1172 if (!bidi_sdb) { 1173 error = BLKPREP_DEFER; 1174 goto err_exit; 1175 } 1176 1177 rq->next_rq->special = bidi_sdb; 1178 } 1179 1180 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special); 1181 if (error) 1182 goto err_exit; 1183 } 1184 1185 if (blk_integrity_rq(rq)) { 1186 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1187 int ivecs, count; 1188 1189 if (prot_sdb == NULL) { 1190 /* 1191 * This can happen if someone (e.g. multipath) 1192 * queues a command to a device on an adapter 1193 * that does not support DIX. 1194 */ 1195 WARN_ON_ONCE(1); 1196 error = BLKPREP_KILL; 1197 goto err_exit; 1198 } 1199 1200 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1201 1202 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1203 prot_sdb->table.sgl)) { 1204 error = BLKPREP_DEFER; 1205 goto err_exit; 1206 } 1207 1208 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1209 prot_sdb->table.sgl); 1210 BUG_ON(unlikely(count > ivecs)); 1211 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1212 1213 cmd->prot_sdb = prot_sdb; 1214 cmd->prot_sdb->table.nents = count; 1215 } 1216 1217 return BLKPREP_OK; 1218 err_exit: 1219 if (is_mq) { 1220 scsi_mq_free_sgtables(cmd); 1221 } else { 1222 scsi_release_buffers(cmd); 1223 cmd->request->special = NULL; 1224 scsi_put_command(cmd); 1225 put_device(&sdev->sdev_gendev); 1226 } 1227 return error; 1228 } 1229 EXPORT_SYMBOL(scsi_init_io); 1230 1231 /** 1232 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1233 * @rq: Request associated with the SCSI command to be initialized. 1234 * 1235 * This function initializes the members of struct scsi_cmnd that must be 1236 * initialized before request processing starts and that won't be 1237 * reinitialized if a SCSI command is requeued. 1238 * 1239 * Called from inside blk_get_request() for pass-through requests and from 1240 * inside scsi_init_command() for filesystem requests. 1241 */ 1242 static void scsi_initialize_rq(struct request *rq) 1243 { 1244 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1245 1246 scsi_req_init(&cmd->req); 1247 init_rcu_head(&cmd->rcu); 1248 cmd->jiffies_at_alloc = jiffies; 1249 cmd->retries = 0; 1250 } 1251 1252 /* Add a command to the list used by the aacraid and dpt_i2o drivers */ 1253 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd) 1254 { 1255 struct scsi_device *sdev = cmd->device; 1256 struct Scsi_Host *shost = sdev->host; 1257 unsigned long flags; 1258 1259 if (shost->use_cmd_list) { 1260 spin_lock_irqsave(&sdev->list_lock, flags); 1261 list_add_tail(&cmd->list, &sdev->cmd_list); 1262 spin_unlock_irqrestore(&sdev->list_lock, flags); 1263 } 1264 } 1265 1266 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */ 1267 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd) 1268 { 1269 struct scsi_device *sdev = cmd->device; 1270 struct Scsi_Host *shost = sdev->host; 1271 unsigned long flags; 1272 1273 if (shost->use_cmd_list) { 1274 spin_lock_irqsave(&sdev->list_lock, flags); 1275 BUG_ON(list_empty(&cmd->list)); 1276 list_del_init(&cmd->list); 1277 spin_unlock_irqrestore(&sdev->list_lock, flags); 1278 } 1279 } 1280 1281 /* Called after a request has been started. */ 1282 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1283 { 1284 void *buf = cmd->sense_buffer; 1285 void *prot = cmd->prot_sdb; 1286 struct request *rq = blk_mq_rq_from_pdu(cmd); 1287 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1288 unsigned long jiffies_at_alloc; 1289 int retries; 1290 1291 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1292 flags |= SCMD_INITIALIZED; 1293 scsi_initialize_rq(rq); 1294 } 1295 1296 jiffies_at_alloc = cmd->jiffies_at_alloc; 1297 retries = cmd->retries; 1298 /* zero out the cmd, except for the embedded scsi_request */ 1299 memset((char *)cmd + sizeof(cmd->req), 0, 1300 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1301 1302 cmd->device = dev; 1303 cmd->sense_buffer = buf; 1304 cmd->prot_sdb = prot; 1305 cmd->flags = flags; 1306 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1307 cmd->jiffies_at_alloc = jiffies_at_alloc; 1308 cmd->retries = retries; 1309 1310 scsi_add_cmd_to_list(cmd); 1311 } 1312 1313 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req) 1314 { 1315 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1316 1317 /* 1318 * Passthrough requests may transfer data, in which case they must 1319 * a bio attached to them. Or they might contain a SCSI command 1320 * that does not transfer data, in which case they may optionally 1321 * submit a request without an attached bio. 1322 */ 1323 if (req->bio) { 1324 int ret = scsi_init_io(cmd); 1325 if (unlikely(ret)) 1326 return ret; 1327 } else { 1328 BUG_ON(blk_rq_bytes(req)); 1329 1330 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1331 } 1332 1333 cmd->cmd_len = scsi_req(req)->cmd_len; 1334 cmd->cmnd = scsi_req(req)->cmd; 1335 cmd->transfersize = blk_rq_bytes(req); 1336 cmd->allowed = scsi_req(req)->retries; 1337 return BLKPREP_OK; 1338 } 1339 1340 /* 1341 * Setup a normal block command. These are simple request from filesystems 1342 * that still need to be translated to SCSI CDBs from the ULD. 1343 */ 1344 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1345 { 1346 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1347 1348 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1349 int ret = sdev->handler->prep_fn(sdev, req); 1350 if (ret != BLKPREP_OK) 1351 return ret; 1352 } 1353 1354 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1355 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1356 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1357 } 1358 1359 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req) 1360 { 1361 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1362 1363 if (!blk_rq_bytes(req)) 1364 cmd->sc_data_direction = DMA_NONE; 1365 else if (rq_data_dir(req) == WRITE) 1366 cmd->sc_data_direction = DMA_TO_DEVICE; 1367 else 1368 cmd->sc_data_direction = DMA_FROM_DEVICE; 1369 1370 if (blk_rq_is_scsi(req)) 1371 return scsi_setup_scsi_cmnd(sdev, req); 1372 else 1373 return scsi_setup_fs_cmnd(sdev, req); 1374 } 1375 1376 static int 1377 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1378 { 1379 int ret = BLKPREP_OK; 1380 1381 /* 1382 * If the device is not in running state we will reject some 1383 * or all commands. 1384 */ 1385 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1386 switch (sdev->sdev_state) { 1387 case SDEV_OFFLINE: 1388 case SDEV_TRANSPORT_OFFLINE: 1389 /* 1390 * If the device is offline we refuse to process any 1391 * commands. The device must be brought online 1392 * before trying any recovery commands. 1393 */ 1394 sdev_printk(KERN_ERR, sdev, 1395 "rejecting I/O to offline device\n"); 1396 ret = BLKPREP_KILL; 1397 break; 1398 case SDEV_DEL: 1399 /* 1400 * If the device is fully deleted, we refuse to 1401 * process any commands as well. 1402 */ 1403 sdev_printk(KERN_ERR, sdev, 1404 "rejecting I/O to dead device\n"); 1405 ret = BLKPREP_KILL; 1406 break; 1407 case SDEV_BLOCK: 1408 case SDEV_CREATED_BLOCK: 1409 ret = BLKPREP_DEFER; 1410 break; 1411 case SDEV_QUIESCE: 1412 /* 1413 * If the devices is blocked we defer normal commands. 1414 */ 1415 if (req && !(req->rq_flags & RQF_PREEMPT)) 1416 ret = BLKPREP_DEFER; 1417 break; 1418 default: 1419 /* 1420 * For any other not fully online state we only allow 1421 * special commands. In particular any user initiated 1422 * command is not allowed. 1423 */ 1424 if (req && !(req->rq_flags & RQF_PREEMPT)) 1425 ret = BLKPREP_KILL; 1426 break; 1427 } 1428 } 1429 return ret; 1430 } 1431 1432 static int 1433 scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1434 { 1435 struct scsi_device *sdev = q->queuedata; 1436 1437 switch (ret) { 1438 case BLKPREP_KILL: 1439 case BLKPREP_INVALID: 1440 scsi_req(req)->result = DID_NO_CONNECT << 16; 1441 /* release the command and kill it */ 1442 if (req->special) { 1443 struct scsi_cmnd *cmd = req->special; 1444 scsi_release_buffers(cmd); 1445 scsi_put_command(cmd); 1446 put_device(&sdev->sdev_gendev); 1447 req->special = NULL; 1448 } 1449 break; 1450 case BLKPREP_DEFER: 1451 /* 1452 * If we defer, the blk_peek_request() returns NULL, but the 1453 * queue must be restarted, so we schedule a callback to happen 1454 * shortly. 1455 */ 1456 if (atomic_read(&sdev->device_busy) == 0) 1457 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1458 break; 1459 default: 1460 req->rq_flags |= RQF_DONTPREP; 1461 } 1462 1463 return ret; 1464 } 1465 1466 static int scsi_prep_fn(struct request_queue *q, struct request *req) 1467 { 1468 struct scsi_device *sdev = q->queuedata; 1469 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1470 int ret; 1471 1472 ret = scsi_prep_state_check(sdev, req); 1473 if (ret != BLKPREP_OK) 1474 goto out; 1475 1476 if (!req->special) { 1477 /* Bail if we can't get a reference to the device */ 1478 if (unlikely(!get_device(&sdev->sdev_gendev))) { 1479 ret = BLKPREP_DEFER; 1480 goto out; 1481 } 1482 1483 scsi_init_command(sdev, cmd); 1484 req->special = cmd; 1485 } 1486 1487 cmd->tag = req->tag; 1488 cmd->request = req; 1489 cmd->prot_op = SCSI_PROT_NORMAL; 1490 1491 ret = scsi_setup_cmnd(sdev, req); 1492 out: 1493 return scsi_prep_return(q, req, ret); 1494 } 1495 1496 static void scsi_unprep_fn(struct request_queue *q, struct request *req) 1497 { 1498 scsi_uninit_cmd(blk_mq_rq_to_pdu(req)); 1499 } 1500 1501 /* 1502 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1503 * return 0. 1504 * 1505 * Called with the queue_lock held. 1506 */ 1507 static inline int scsi_dev_queue_ready(struct request_queue *q, 1508 struct scsi_device *sdev) 1509 { 1510 unsigned int busy; 1511 1512 busy = atomic_inc_return(&sdev->device_busy) - 1; 1513 if (atomic_read(&sdev->device_blocked)) { 1514 if (busy) 1515 goto out_dec; 1516 1517 /* 1518 * unblock after device_blocked iterates to zero 1519 */ 1520 if (atomic_dec_return(&sdev->device_blocked) > 0) { 1521 /* 1522 * For the MQ case we take care of this in the caller. 1523 */ 1524 if (!q->mq_ops) 1525 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1526 goto out_dec; 1527 } 1528 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1529 "unblocking device at zero depth\n")); 1530 } 1531 1532 if (busy >= sdev->queue_depth) 1533 goto out_dec; 1534 1535 return 1; 1536 out_dec: 1537 atomic_dec(&sdev->device_busy); 1538 return 0; 1539 } 1540 1541 /* 1542 * scsi_target_queue_ready: checks if there we can send commands to target 1543 * @sdev: scsi device on starget to check. 1544 */ 1545 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1546 struct scsi_device *sdev) 1547 { 1548 struct scsi_target *starget = scsi_target(sdev); 1549 unsigned int busy; 1550 1551 if (starget->single_lun) { 1552 spin_lock_irq(shost->host_lock); 1553 if (starget->starget_sdev_user && 1554 starget->starget_sdev_user != sdev) { 1555 spin_unlock_irq(shost->host_lock); 1556 return 0; 1557 } 1558 starget->starget_sdev_user = sdev; 1559 spin_unlock_irq(shost->host_lock); 1560 } 1561 1562 if (starget->can_queue <= 0) 1563 return 1; 1564 1565 busy = atomic_inc_return(&starget->target_busy) - 1; 1566 if (atomic_read(&starget->target_blocked) > 0) { 1567 if (busy) 1568 goto starved; 1569 1570 /* 1571 * unblock after target_blocked iterates to zero 1572 */ 1573 if (atomic_dec_return(&starget->target_blocked) > 0) 1574 goto out_dec; 1575 1576 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1577 "unblocking target at zero depth\n")); 1578 } 1579 1580 if (busy >= starget->can_queue) 1581 goto starved; 1582 1583 return 1; 1584 1585 starved: 1586 spin_lock_irq(shost->host_lock); 1587 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1588 spin_unlock_irq(shost->host_lock); 1589 out_dec: 1590 if (starget->can_queue > 0) 1591 atomic_dec(&starget->target_busy); 1592 return 0; 1593 } 1594 1595 /* 1596 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1597 * return 0. We must end up running the queue again whenever 0 is 1598 * returned, else IO can hang. 1599 */ 1600 static inline int scsi_host_queue_ready(struct request_queue *q, 1601 struct Scsi_Host *shost, 1602 struct scsi_device *sdev) 1603 { 1604 unsigned int busy; 1605 1606 if (scsi_host_in_recovery(shost)) 1607 return 0; 1608 1609 if (!shost->use_blk_mq) 1610 busy = atomic_inc_return(&shost->host_busy) - 1; 1611 else 1612 busy = 0; 1613 if (atomic_read(&shost->host_blocked) > 0) { 1614 if (busy) 1615 goto starved; 1616 1617 /* 1618 * unblock after host_blocked iterates to zero 1619 */ 1620 if (atomic_dec_return(&shost->host_blocked) > 0) 1621 goto out_dec; 1622 1623 SCSI_LOG_MLQUEUE(3, 1624 shost_printk(KERN_INFO, shost, 1625 "unblocking host at zero depth\n")); 1626 } 1627 1628 if (!shost->use_blk_mq && shost->can_queue > 0 && busy >= shost->can_queue) 1629 goto starved; 1630 if (shost->host_self_blocked) 1631 goto starved; 1632 1633 /* We're OK to process the command, so we can't be starved */ 1634 if (!list_empty(&sdev->starved_entry)) { 1635 spin_lock_irq(shost->host_lock); 1636 if (!list_empty(&sdev->starved_entry)) 1637 list_del_init(&sdev->starved_entry); 1638 spin_unlock_irq(shost->host_lock); 1639 } 1640 1641 return 1; 1642 1643 starved: 1644 spin_lock_irq(shost->host_lock); 1645 if (list_empty(&sdev->starved_entry)) 1646 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1647 spin_unlock_irq(shost->host_lock); 1648 out_dec: 1649 scsi_dec_host_busy(shost); 1650 return 0; 1651 } 1652 1653 /* 1654 * Busy state exporting function for request stacking drivers. 1655 * 1656 * For efficiency, no lock is taken to check the busy state of 1657 * shost/starget/sdev, since the returned value is not guaranteed and 1658 * may be changed after request stacking drivers call the function, 1659 * regardless of taking lock or not. 1660 * 1661 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1662 * needs to return 'not busy'. Otherwise, request stacking drivers 1663 * may hold requests forever. 1664 */ 1665 static int scsi_lld_busy(struct request_queue *q) 1666 { 1667 struct scsi_device *sdev = q->queuedata; 1668 struct Scsi_Host *shost; 1669 1670 if (blk_queue_dying(q)) 1671 return 0; 1672 1673 shost = sdev->host; 1674 1675 /* 1676 * Ignore host/starget busy state. 1677 * Since block layer does not have a concept of fairness across 1678 * multiple queues, congestion of host/starget needs to be handled 1679 * in SCSI layer. 1680 */ 1681 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1682 return 1; 1683 1684 return 0; 1685 } 1686 1687 /* 1688 * Kill a request for a dead device 1689 */ 1690 static void scsi_kill_request(struct request *req, struct request_queue *q) 1691 { 1692 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1693 struct scsi_device *sdev; 1694 struct scsi_target *starget; 1695 struct Scsi_Host *shost; 1696 1697 blk_start_request(req); 1698 1699 scmd_printk(KERN_INFO, cmd, "killing request\n"); 1700 1701 sdev = cmd->device; 1702 starget = scsi_target(sdev); 1703 shost = sdev->host; 1704 scsi_init_cmd_errh(cmd); 1705 cmd->result = DID_NO_CONNECT << 16; 1706 atomic_inc(&cmd->device->iorequest_cnt); 1707 1708 /* 1709 * SCSI request completion path will do scsi_device_unbusy(), 1710 * bump busy counts. To bump the counters, we need to dance 1711 * with the locks as normal issue path does. 1712 */ 1713 atomic_inc(&sdev->device_busy); 1714 1715 if (!shost->use_blk_mq) 1716 atomic_inc(&shost->host_busy); 1717 if (starget->can_queue > 0) 1718 atomic_inc(&starget->target_busy); 1719 1720 blk_complete_request(req); 1721 } 1722 1723 static void scsi_softirq_done(struct request *rq) 1724 { 1725 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1726 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1727 int disposition; 1728 1729 INIT_LIST_HEAD(&cmd->eh_entry); 1730 1731 atomic_inc(&cmd->device->iodone_cnt); 1732 if (cmd->result) 1733 atomic_inc(&cmd->device->ioerr_cnt); 1734 1735 disposition = scsi_decide_disposition(cmd); 1736 if (disposition != SUCCESS && 1737 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1738 sdev_printk(KERN_ERR, cmd->device, 1739 "timing out command, waited %lus\n", 1740 wait_for/HZ); 1741 disposition = SUCCESS; 1742 } 1743 1744 scsi_log_completion(cmd, disposition); 1745 1746 switch (disposition) { 1747 case SUCCESS: 1748 scsi_finish_command(cmd); 1749 break; 1750 case NEEDS_RETRY: 1751 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1752 break; 1753 case ADD_TO_MLQUEUE: 1754 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1755 break; 1756 default: 1757 scsi_eh_scmd_add(cmd); 1758 break; 1759 } 1760 } 1761 1762 /** 1763 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1764 * @cmd: command block we are dispatching. 1765 * 1766 * Return: nonzero return request was rejected and device's queue needs to be 1767 * plugged. 1768 */ 1769 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1770 { 1771 struct Scsi_Host *host = cmd->device->host; 1772 int rtn = 0; 1773 1774 atomic_inc(&cmd->device->iorequest_cnt); 1775 1776 /* check if the device is still usable */ 1777 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1778 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1779 * returns an immediate error upwards, and signals 1780 * that the device is no longer present */ 1781 cmd->result = DID_NO_CONNECT << 16; 1782 goto done; 1783 } 1784 1785 /* Check to see if the scsi lld made this device blocked. */ 1786 if (unlikely(scsi_device_blocked(cmd->device))) { 1787 /* 1788 * in blocked state, the command is just put back on 1789 * the device queue. The suspend state has already 1790 * blocked the queue so future requests should not 1791 * occur until the device transitions out of the 1792 * suspend state. 1793 */ 1794 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1795 "queuecommand : device blocked\n")); 1796 return SCSI_MLQUEUE_DEVICE_BUSY; 1797 } 1798 1799 /* Store the LUN value in cmnd, if needed. */ 1800 if (cmd->device->lun_in_cdb) 1801 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1802 (cmd->device->lun << 5 & 0xe0); 1803 1804 scsi_log_send(cmd); 1805 1806 /* 1807 * Before we queue this command, check if the command 1808 * length exceeds what the host adapter can handle. 1809 */ 1810 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1811 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1812 "queuecommand : command too long. " 1813 "cdb_size=%d host->max_cmd_len=%d\n", 1814 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1815 cmd->result = (DID_ABORT << 16); 1816 goto done; 1817 } 1818 1819 if (unlikely(host->shost_state == SHOST_DEL)) { 1820 cmd->result = (DID_NO_CONNECT << 16); 1821 goto done; 1822 1823 } 1824 1825 trace_scsi_dispatch_cmd_start(cmd); 1826 rtn = host->hostt->queuecommand(host, cmd); 1827 if (rtn) { 1828 trace_scsi_dispatch_cmd_error(cmd, rtn); 1829 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1830 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1831 rtn = SCSI_MLQUEUE_HOST_BUSY; 1832 1833 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1834 "queuecommand : request rejected\n")); 1835 } 1836 1837 return rtn; 1838 done: 1839 cmd->scsi_done(cmd); 1840 return 0; 1841 } 1842 1843 /** 1844 * scsi_done - Invoke completion on finished SCSI command. 1845 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives 1846 * ownership back to SCSI Core -- i.e. the LLDD has finished with it. 1847 * 1848 * Description: This function is the mid-level's (SCSI Core) interrupt routine, 1849 * which regains ownership of the SCSI command (de facto) from a LLDD, and 1850 * calls blk_complete_request() for further processing. 1851 * 1852 * This function is interrupt context safe. 1853 */ 1854 static void scsi_done(struct scsi_cmnd *cmd) 1855 { 1856 trace_scsi_dispatch_cmd_done(cmd); 1857 blk_complete_request(cmd->request); 1858 } 1859 1860 /* 1861 * Function: scsi_request_fn() 1862 * 1863 * Purpose: Main strategy routine for SCSI. 1864 * 1865 * Arguments: q - Pointer to actual queue. 1866 * 1867 * Returns: Nothing 1868 * 1869 * Lock status: request queue lock assumed to be held when called. 1870 * 1871 * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order 1872 * protection for ZBC disks. 1873 */ 1874 static void scsi_request_fn(struct request_queue *q) 1875 __releases(q->queue_lock) 1876 __acquires(q->queue_lock) 1877 { 1878 struct scsi_device *sdev = q->queuedata; 1879 struct Scsi_Host *shost; 1880 struct scsi_cmnd *cmd; 1881 struct request *req; 1882 1883 /* 1884 * To start with, we keep looping until the queue is empty, or until 1885 * the host is no longer able to accept any more requests. 1886 */ 1887 shost = sdev->host; 1888 for (;;) { 1889 int rtn; 1890 /* 1891 * get next queueable request. We do this early to make sure 1892 * that the request is fully prepared even if we cannot 1893 * accept it. 1894 */ 1895 req = blk_peek_request(q); 1896 if (!req) 1897 break; 1898 1899 if (unlikely(!scsi_device_online(sdev))) { 1900 sdev_printk(KERN_ERR, sdev, 1901 "rejecting I/O to offline device\n"); 1902 scsi_kill_request(req, q); 1903 continue; 1904 } 1905 1906 if (!scsi_dev_queue_ready(q, sdev)) 1907 break; 1908 1909 /* 1910 * Remove the request from the request list. 1911 */ 1912 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1913 blk_start_request(req); 1914 1915 spin_unlock_irq(q->queue_lock); 1916 cmd = blk_mq_rq_to_pdu(req); 1917 if (cmd != req->special) { 1918 printk(KERN_CRIT "impossible request in %s.\n" 1919 "please mail a stack trace to " 1920 "linux-scsi@vger.kernel.org\n", 1921 __func__); 1922 blk_dump_rq_flags(req, "foo"); 1923 BUG(); 1924 } 1925 1926 /* 1927 * We hit this when the driver is using a host wide 1928 * tag map. For device level tag maps the queue_depth check 1929 * in the device ready fn would prevent us from trying 1930 * to allocate a tag. Since the map is a shared host resource 1931 * we add the dev to the starved list so it eventually gets 1932 * a run when a tag is freed. 1933 */ 1934 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) { 1935 spin_lock_irq(shost->host_lock); 1936 if (list_empty(&sdev->starved_entry)) 1937 list_add_tail(&sdev->starved_entry, 1938 &shost->starved_list); 1939 spin_unlock_irq(shost->host_lock); 1940 goto not_ready; 1941 } 1942 1943 if (!scsi_target_queue_ready(shost, sdev)) 1944 goto not_ready; 1945 1946 if (!scsi_host_queue_ready(q, shost, sdev)) 1947 goto host_not_ready; 1948 1949 if (sdev->simple_tags) 1950 cmd->flags |= SCMD_TAGGED; 1951 else 1952 cmd->flags &= ~SCMD_TAGGED; 1953 1954 /* 1955 * Finally, initialize any error handling parameters, and set up 1956 * the timers for timeouts. 1957 */ 1958 scsi_init_cmd_errh(cmd); 1959 1960 /* 1961 * Dispatch the command to the low-level driver. 1962 */ 1963 cmd->scsi_done = scsi_done; 1964 rtn = scsi_dispatch_cmd(cmd); 1965 if (rtn) { 1966 scsi_queue_insert(cmd, rtn); 1967 spin_lock_irq(q->queue_lock); 1968 goto out_delay; 1969 } 1970 spin_lock_irq(q->queue_lock); 1971 } 1972 1973 return; 1974 1975 host_not_ready: 1976 if (scsi_target(sdev)->can_queue > 0) 1977 atomic_dec(&scsi_target(sdev)->target_busy); 1978 not_ready: 1979 /* 1980 * lock q, handle tag, requeue req, and decrement device_busy. We 1981 * must return with queue_lock held. 1982 * 1983 * Decrementing device_busy without checking it is OK, as all such 1984 * cases (host limits or settings) should run the queue at some 1985 * later time. 1986 */ 1987 spin_lock_irq(q->queue_lock); 1988 blk_requeue_request(q, req); 1989 atomic_dec(&sdev->device_busy); 1990 out_delay: 1991 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev)) 1992 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1993 } 1994 1995 static inline blk_status_t prep_to_mq(int ret) 1996 { 1997 switch (ret) { 1998 case BLKPREP_OK: 1999 return BLK_STS_OK; 2000 case BLKPREP_DEFER: 2001 return BLK_STS_RESOURCE; 2002 default: 2003 return BLK_STS_IOERR; 2004 } 2005 } 2006 2007 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 2008 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost) 2009 { 2010 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) * 2011 sizeof(struct scatterlist); 2012 } 2013 2014 static int scsi_mq_prep_fn(struct request *req) 2015 { 2016 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 2017 struct scsi_device *sdev = req->q->queuedata; 2018 struct Scsi_Host *shost = sdev->host; 2019 struct scatterlist *sg; 2020 2021 scsi_init_command(sdev, cmd); 2022 2023 req->special = cmd; 2024 2025 cmd->request = req; 2026 2027 cmd->tag = req->tag; 2028 cmd->prot_op = SCSI_PROT_NORMAL; 2029 2030 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 2031 cmd->sdb.table.sgl = sg; 2032 2033 if (scsi_host_get_prot(shost)) { 2034 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 2035 2036 cmd->prot_sdb->table.sgl = 2037 (struct scatterlist *)(cmd->prot_sdb + 1); 2038 } 2039 2040 if (blk_bidi_rq(req)) { 2041 struct request *next_rq = req->next_rq; 2042 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq); 2043 2044 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer)); 2045 bidi_sdb->table.sgl = 2046 (struct scatterlist *)(bidi_sdb + 1); 2047 2048 next_rq->special = bidi_sdb; 2049 } 2050 2051 blk_mq_start_request(req); 2052 2053 return scsi_setup_cmnd(sdev, req); 2054 } 2055 2056 static void scsi_mq_done(struct scsi_cmnd *cmd) 2057 { 2058 trace_scsi_dispatch_cmd_done(cmd); 2059 blk_mq_complete_request(cmd->request); 2060 } 2061 2062 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx) 2063 { 2064 struct request_queue *q = hctx->queue; 2065 struct scsi_device *sdev = q->queuedata; 2066 2067 atomic_dec(&sdev->device_busy); 2068 put_device(&sdev->sdev_gendev); 2069 } 2070 2071 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx) 2072 { 2073 struct request_queue *q = hctx->queue; 2074 struct scsi_device *sdev = q->queuedata; 2075 2076 if (!get_device(&sdev->sdev_gendev)) 2077 goto out; 2078 if (!scsi_dev_queue_ready(q, sdev)) 2079 goto out_put_device; 2080 2081 return true; 2082 2083 out_put_device: 2084 put_device(&sdev->sdev_gendev); 2085 out: 2086 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev)) 2087 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 2088 return false; 2089 } 2090 2091 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 2092 const struct blk_mq_queue_data *bd) 2093 { 2094 struct request *req = bd->rq; 2095 struct request_queue *q = req->q; 2096 struct scsi_device *sdev = q->queuedata; 2097 struct Scsi_Host *shost = sdev->host; 2098 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 2099 blk_status_t ret; 2100 int reason; 2101 2102 ret = prep_to_mq(scsi_prep_state_check(sdev, req)); 2103 if (ret != BLK_STS_OK) 2104 goto out_put_budget; 2105 2106 ret = BLK_STS_RESOURCE; 2107 if (!scsi_target_queue_ready(shost, sdev)) 2108 goto out_put_budget; 2109 if (!scsi_host_queue_ready(q, shost, sdev)) 2110 goto out_dec_target_busy; 2111 2112 if (!(req->rq_flags & RQF_DONTPREP)) { 2113 ret = prep_to_mq(scsi_mq_prep_fn(req)); 2114 if (ret != BLK_STS_OK) 2115 goto out_dec_host_busy; 2116 req->rq_flags |= RQF_DONTPREP; 2117 } else { 2118 blk_mq_start_request(req); 2119 } 2120 2121 if (sdev->simple_tags) 2122 cmd->flags |= SCMD_TAGGED; 2123 else 2124 cmd->flags &= ~SCMD_TAGGED; 2125 2126 scsi_init_cmd_errh(cmd); 2127 cmd->scsi_done = scsi_mq_done; 2128 2129 reason = scsi_dispatch_cmd(cmd); 2130 if (reason) { 2131 scsi_set_blocked(cmd, reason); 2132 ret = BLK_STS_RESOURCE; 2133 goto out_dec_host_busy; 2134 } 2135 2136 return BLK_STS_OK; 2137 2138 out_dec_host_busy: 2139 scsi_dec_host_busy(shost); 2140 out_dec_target_busy: 2141 if (scsi_target(sdev)->can_queue > 0) 2142 atomic_dec(&scsi_target(sdev)->target_busy); 2143 out_put_budget: 2144 scsi_mq_put_budget(hctx); 2145 switch (ret) { 2146 case BLK_STS_OK: 2147 break; 2148 case BLK_STS_RESOURCE: 2149 if (atomic_read(&sdev->device_busy) || 2150 scsi_device_blocked(sdev)) 2151 ret = BLK_STS_DEV_RESOURCE; 2152 break; 2153 default: 2154 /* 2155 * Make sure to release all allocated ressources when 2156 * we hit an error, as we will never see this command 2157 * again. 2158 */ 2159 if (req->rq_flags & RQF_DONTPREP) 2160 scsi_mq_uninit_cmd(cmd); 2161 break; 2162 } 2163 return ret; 2164 } 2165 2166 static enum blk_eh_timer_return scsi_timeout(struct request *req, 2167 bool reserved) 2168 { 2169 if (reserved) 2170 return BLK_EH_RESET_TIMER; 2171 return scsi_times_out(req); 2172 } 2173 2174 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2175 unsigned int hctx_idx, unsigned int numa_node) 2176 { 2177 struct Scsi_Host *shost = set->driver_data; 2178 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 2179 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2180 struct scatterlist *sg; 2181 2182 if (unchecked_isa_dma) 2183 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 2184 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 2185 GFP_KERNEL, numa_node); 2186 if (!cmd->sense_buffer) 2187 return -ENOMEM; 2188 cmd->req.sense = cmd->sense_buffer; 2189 2190 if (scsi_host_get_prot(shost)) { 2191 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 2192 shost->hostt->cmd_size; 2193 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost); 2194 } 2195 2196 return 0; 2197 } 2198 2199 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 2200 unsigned int hctx_idx) 2201 { 2202 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2203 2204 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 2205 cmd->sense_buffer); 2206 } 2207 2208 static int scsi_map_queues(struct blk_mq_tag_set *set) 2209 { 2210 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 2211 2212 if (shost->hostt->map_queues) 2213 return shost->hostt->map_queues(shost); 2214 return blk_mq_map_queues(set); 2215 } 2216 2217 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 2218 { 2219 struct device *dev = shost->dma_dev; 2220 2221 /* 2222 * this limit is imposed by hardware restrictions 2223 */ 2224 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 2225 SG_MAX_SEGMENTS)); 2226 2227 if (scsi_host_prot_dma(shost)) { 2228 shost->sg_prot_tablesize = 2229 min_not_zero(shost->sg_prot_tablesize, 2230 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 2231 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 2232 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 2233 } 2234 2235 blk_queue_max_hw_sectors(q, shost->max_sectors); 2236 if (shost->unchecked_isa_dma) 2237 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 2238 blk_queue_segment_boundary(q, shost->dma_boundary); 2239 dma_set_seg_boundary(dev, shost->dma_boundary); 2240 2241 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 2242 2243 if (!shost->use_clustering) 2244 q->limits.cluster = 0; 2245 2246 /* 2247 * Set a reasonable default alignment: The larger of 32-byte (dword), 2248 * which is a common minimum for HBAs, and the minimum DMA alignment, 2249 * which is set by the platform. 2250 * 2251 * Devices that require a bigger alignment can increase it later. 2252 */ 2253 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 2254 } 2255 EXPORT_SYMBOL_GPL(__scsi_init_queue); 2256 2257 static int scsi_old_init_rq(struct request_queue *q, struct request *rq, 2258 gfp_t gfp) 2259 { 2260 struct Scsi_Host *shost = q->rq_alloc_data; 2261 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 2262 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2263 2264 memset(cmd, 0, sizeof(*cmd)); 2265 2266 if (unchecked_isa_dma) 2267 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 2268 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp, 2269 NUMA_NO_NODE); 2270 if (!cmd->sense_buffer) 2271 goto fail; 2272 cmd->req.sense = cmd->sense_buffer; 2273 2274 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) { 2275 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp); 2276 if (!cmd->prot_sdb) 2277 goto fail_free_sense; 2278 } 2279 2280 return 0; 2281 2282 fail_free_sense: 2283 scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer); 2284 fail: 2285 return -ENOMEM; 2286 } 2287 2288 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq) 2289 { 2290 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2291 2292 if (cmd->prot_sdb) 2293 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb); 2294 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 2295 cmd->sense_buffer); 2296 } 2297 2298 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev) 2299 { 2300 struct Scsi_Host *shost = sdev->host; 2301 struct request_queue *q; 2302 2303 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL); 2304 if (!q) 2305 return NULL; 2306 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 2307 q->rq_alloc_data = shost; 2308 q->request_fn = scsi_request_fn; 2309 q->init_rq_fn = scsi_old_init_rq; 2310 q->exit_rq_fn = scsi_old_exit_rq; 2311 q->initialize_rq_fn = scsi_initialize_rq; 2312 2313 if (blk_init_allocated_queue(q) < 0) { 2314 blk_cleanup_queue(q); 2315 return NULL; 2316 } 2317 2318 __scsi_init_queue(shost, q); 2319 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q); 2320 blk_queue_prep_rq(q, scsi_prep_fn); 2321 blk_queue_unprep_rq(q, scsi_unprep_fn); 2322 blk_queue_softirq_done(q, scsi_softirq_done); 2323 blk_queue_rq_timed_out(q, scsi_times_out); 2324 blk_queue_lld_busy(q, scsi_lld_busy); 2325 return q; 2326 } 2327 2328 static const struct blk_mq_ops scsi_mq_ops = { 2329 .get_budget = scsi_mq_get_budget, 2330 .put_budget = scsi_mq_put_budget, 2331 .queue_rq = scsi_queue_rq, 2332 .complete = scsi_softirq_done, 2333 .timeout = scsi_timeout, 2334 #ifdef CONFIG_BLK_DEBUG_FS 2335 .show_rq = scsi_show_rq, 2336 #endif 2337 .init_request = scsi_mq_init_request, 2338 .exit_request = scsi_mq_exit_request, 2339 .initialize_rq_fn = scsi_initialize_rq, 2340 .map_queues = scsi_map_queues, 2341 }; 2342 2343 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 2344 { 2345 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 2346 if (IS_ERR(sdev->request_queue)) 2347 return NULL; 2348 2349 sdev->request_queue->queuedata = sdev; 2350 __scsi_init_queue(sdev->host, sdev->request_queue); 2351 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 2352 return sdev->request_queue; 2353 } 2354 2355 int scsi_mq_setup_tags(struct Scsi_Host *shost) 2356 { 2357 unsigned int cmd_size, sgl_size; 2358 2359 sgl_size = scsi_mq_sgl_size(shost); 2360 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 2361 if (scsi_host_get_prot(shost)) 2362 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size; 2363 2364 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 2365 shost->tag_set.ops = &scsi_mq_ops; 2366 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 2367 shost->tag_set.queue_depth = shost->can_queue; 2368 shost->tag_set.cmd_size = cmd_size; 2369 shost->tag_set.numa_node = NUMA_NO_NODE; 2370 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2371 shost->tag_set.flags |= 2372 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 2373 shost->tag_set.driver_data = shost; 2374 2375 return blk_mq_alloc_tag_set(&shost->tag_set); 2376 } 2377 2378 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 2379 { 2380 blk_mq_free_tag_set(&shost->tag_set); 2381 } 2382 2383 /** 2384 * scsi_device_from_queue - return sdev associated with a request_queue 2385 * @q: The request queue to return the sdev from 2386 * 2387 * Return the sdev associated with a request queue or NULL if the 2388 * request_queue does not reference a SCSI device. 2389 */ 2390 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2391 { 2392 struct scsi_device *sdev = NULL; 2393 2394 if (q->mq_ops) { 2395 if (q->mq_ops == &scsi_mq_ops) 2396 sdev = q->queuedata; 2397 } else if (q->request_fn == scsi_request_fn) 2398 sdev = q->queuedata; 2399 if (!sdev || !get_device(&sdev->sdev_gendev)) 2400 sdev = NULL; 2401 2402 return sdev; 2403 } 2404 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2405 2406 /* 2407 * Function: scsi_block_requests() 2408 * 2409 * Purpose: Utility function used by low-level drivers to prevent further 2410 * commands from being queued to the device. 2411 * 2412 * Arguments: shost - Host in question 2413 * 2414 * Returns: Nothing 2415 * 2416 * Lock status: No locks are assumed held. 2417 * 2418 * Notes: There is no timer nor any other means by which the requests 2419 * get unblocked other than the low-level driver calling 2420 * scsi_unblock_requests(). 2421 */ 2422 void scsi_block_requests(struct Scsi_Host *shost) 2423 { 2424 shost->host_self_blocked = 1; 2425 } 2426 EXPORT_SYMBOL(scsi_block_requests); 2427 2428 /* 2429 * Function: scsi_unblock_requests() 2430 * 2431 * Purpose: Utility function used by low-level drivers to allow further 2432 * commands from being queued to the device. 2433 * 2434 * Arguments: shost - Host in question 2435 * 2436 * Returns: Nothing 2437 * 2438 * Lock status: No locks are assumed held. 2439 * 2440 * Notes: There is no timer nor any other means by which the requests 2441 * get unblocked other than the low-level driver calling 2442 * scsi_unblock_requests(). 2443 * 2444 * This is done as an API function so that changes to the 2445 * internals of the scsi mid-layer won't require wholesale 2446 * changes to drivers that use this feature. 2447 */ 2448 void scsi_unblock_requests(struct Scsi_Host *shost) 2449 { 2450 shost->host_self_blocked = 0; 2451 scsi_run_host_queues(shost); 2452 } 2453 EXPORT_SYMBOL(scsi_unblock_requests); 2454 2455 int __init scsi_init_queue(void) 2456 { 2457 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 2458 sizeof(struct scsi_data_buffer), 2459 0, 0, NULL); 2460 if (!scsi_sdb_cache) { 2461 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 2462 return -ENOMEM; 2463 } 2464 2465 return 0; 2466 } 2467 2468 void scsi_exit_queue(void) 2469 { 2470 kmem_cache_destroy(scsi_sense_cache); 2471 kmem_cache_destroy(scsi_sense_isadma_cache); 2472 kmem_cache_destroy(scsi_sdb_cache); 2473 } 2474 2475 /** 2476 * scsi_mode_select - issue a mode select 2477 * @sdev: SCSI device to be queried 2478 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2479 * @sp: Save page bit (0 == don't save, 1 == save) 2480 * @modepage: mode page being requested 2481 * @buffer: request buffer (may not be smaller than eight bytes) 2482 * @len: length of request buffer. 2483 * @timeout: command timeout 2484 * @retries: number of retries before failing 2485 * @data: returns a structure abstracting the mode header data 2486 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2487 * must be SCSI_SENSE_BUFFERSIZE big. 2488 * 2489 * Returns zero if successful; negative error number or scsi 2490 * status on error 2491 * 2492 */ 2493 int 2494 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2495 unsigned char *buffer, int len, int timeout, int retries, 2496 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2497 { 2498 unsigned char cmd[10]; 2499 unsigned char *real_buffer; 2500 int ret; 2501 2502 memset(cmd, 0, sizeof(cmd)); 2503 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2504 2505 if (sdev->use_10_for_ms) { 2506 if (len > 65535) 2507 return -EINVAL; 2508 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2509 if (!real_buffer) 2510 return -ENOMEM; 2511 memcpy(real_buffer + 8, buffer, len); 2512 len += 8; 2513 real_buffer[0] = 0; 2514 real_buffer[1] = 0; 2515 real_buffer[2] = data->medium_type; 2516 real_buffer[3] = data->device_specific; 2517 real_buffer[4] = data->longlba ? 0x01 : 0; 2518 real_buffer[5] = 0; 2519 real_buffer[6] = data->block_descriptor_length >> 8; 2520 real_buffer[7] = data->block_descriptor_length; 2521 2522 cmd[0] = MODE_SELECT_10; 2523 cmd[7] = len >> 8; 2524 cmd[8] = len; 2525 } else { 2526 if (len > 255 || data->block_descriptor_length > 255 || 2527 data->longlba) 2528 return -EINVAL; 2529 2530 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2531 if (!real_buffer) 2532 return -ENOMEM; 2533 memcpy(real_buffer + 4, buffer, len); 2534 len += 4; 2535 real_buffer[0] = 0; 2536 real_buffer[1] = data->medium_type; 2537 real_buffer[2] = data->device_specific; 2538 real_buffer[3] = data->block_descriptor_length; 2539 2540 2541 cmd[0] = MODE_SELECT; 2542 cmd[4] = len; 2543 } 2544 2545 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2546 sshdr, timeout, retries, NULL); 2547 kfree(real_buffer); 2548 return ret; 2549 } 2550 EXPORT_SYMBOL_GPL(scsi_mode_select); 2551 2552 /** 2553 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2554 * @sdev: SCSI device to be queried 2555 * @dbd: set if mode sense will allow block descriptors to be returned 2556 * @modepage: mode page being requested 2557 * @buffer: request buffer (may not be smaller than eight bytes) 2558 * @len: length of request buffer. 2559 * @timeout: command timeout 2560 * @retries: number of retries before failing 2561 * @data: returns a structure abstracting the mode header data 2562 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2563 * must be SCSI_SENSE_BUFFERSIZE big. 2564 * 2565 * Returns zero if unsuccessful, or the header offset (either 4 2566 * or 8 depending on whether a six or ten byte command was 2567 * issued) if successful. 2568 */ 2569 int 2570 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2571 unsigned char *buffer, int len, int timeout, int retries, 2572 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2573 { 2574 unsigned char cmd[12]; 2575 int use_10_for_ms; 2576 int header_length; 2577 int result, retry_count = retries; 2578 struct scsi_sense_hdr my_sshdr; 2579 2580 memset(data, 0, sizeof(*data)); 2581 memset(&cmd[0], 0, 12); 2582 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2583 cmd[2] = modepage; 2584 2585 /* caller might not be interested in sense, but we need it */ 2586 if (!sshdr) 2587 sshdr = &my_sshdr; 2588 2589 retry: 2590 use_10_for_ms = sdev->use_10_for_ms; 2591 2592 if (use_10_for_ms) { 2593 if (len < 8) 2594 len = 8; 2595 2596 cmd[0] = MODE_SENSE_10; 2597 cmd[8] = len; 2598 header_length = 8; 2599 } else { 2600 if (len < 4) 2601 len = 4; 2602 2603 cmd[0] = MODE_SENSE; 2604 cmd[4] = len; 2605 header_length = 4; 2606 } 2607 2608 memset(buffer, 0, len); 2609 2610 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2611 sshdr, timeout, retries, NULL); 2612 2613 /* This code looks awful: what it's doing is making sure an 2614 * ILLEGAL REQUEST sense return identifies the actual command 2615 * byte as the problem. MODE_SENSE commands can return 2616 * ILLEGAL REQUEST if the code page isn't supported */ 2617 2618 if (use_10_for_ms && !scsi_status_is_good(result) && 2619 driver_byte(result) == DRIVER_SENSE) { 2620 if (scsi_sense_valid(sshdr)) { 2621 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2622 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2623 /* 2624 * Invalid command operation code 2625 */ 2626 sdev->use_10_for_ms = 0; 2627 goto retry; 2628 } 2629 } 2630 } 2631 2632 if(scsi_status_is_good(result)) { 2633 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2634 (modepage == 6 || modepage == 8))) { 2635 /* Initio breakage? */ 2636 header_length = 0; 2637 data->length = 13; 2638 data->medium_type = 0; 2639 data->device_specific = 0; 2640 data->longlba = 0; 2641 data->block_descriptor_length = 0; 2642 } else if(use_10_for_ms) { 2643 data->length = buffer[0]*256 + buffer[1] + 2; 2644 data->medium_type = buffer[2]; 2645 data->device_specific = buffer[3]; 2646 data->longlba = buffer[4] & 0x01; 2647 data->block_descriptor_length = buffer[6]*256 2648 + buffer[7]; 2649 } else { 2650 data->length = buffer[0] + 1; 2651 data->medium_type = buffer[1]; 2652 data->device_specific = buffer[2]; 2653 data->block_descriptor_length = buffer[3]; 2654 } 2655 data->header_length = header_length; 2656 } else if ((status_byte(result) == CHECK_CONDITION) && 2657 scsi_sense_valid(sshdr) && 2658 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2659 retry_count--; 2660 goto retry; 2661 } 2662 2663 return result; 2664 } 2665 EXPORT_SYMBOL(scsi_mode_sense); 2666 2667 /** 2668 * scsi_test_unit_ready - test if unit is ready 2669 * @sdev: scsi device to change the state of. 2670 * @timeout: command timeout 2671 * @retries: number of retries before failing 2672 * @sshdr: outpout pointer for decoded sense information. 2673 * 2674 * Returns zero if unsuccessful or an error if TUR failed. For 2675 * removable media, UNIT_ATTENTION sets ->changed flag. 2676 **/ 2677 int 2678 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2679 struct scsi_sense_hdr *sshdr) 2680 { 2681 char cmd[] = { 2682 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2683 }; 2684 int result; 2685 2686 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2687 do { 2688 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2689 timeout, 1, NULL); 2690 if (sdev->removable && scsi_sense_valid(sshdr) && 2691 sshdr->sense_key == UNIT_ATTENTION) 2692 sdev->changed = 1; 2693 } while (scsi_sense_valid(sshdr) && 2694 sshdr->sense_key == UNIT_ATTENTION && --retries); 2695 2696 return result; 2697 } 2698 EXPORT_SYMBOL(scsi_test_unit_ready); 2699 2700 /** 2701 * scsi_device_set_state - Take the given device through the device state model. 2702 * @sdev: scsi device to change the state of. 2703 * @state: state to change to. 2704 * 2705 * Returns zero if successful or an error if the requested 2706 * transition is illegal. 2707 */ 2708 int 2709 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2710 { 2711 enum scsi_device_state oldstate = sdev->sdev_state; 2712 2713 if (state == oldstate) 2714 return 0; 2715 2716 switch (state) { 2717 case SDEV_CREATED: 2718 switch (oldstate) { 2719 case SDEV_CREATED_BLOCK: 2720 break; 2721 default: 2722 goto illegal; 2723 } 2724 break; 2725 2726 case SDEV_RUNNING: 2727 switch (oldstate) { 2728 case SDEV_CREATED: 2729 case SDEV_OFFLINE: 2730 case SDEV_TRANSPORT_OFFLINE: 2731 case SDEV_QUIESCE: 2732 case SDEV_BLOCK: 2733 break; 2734 default: 2735 goto illegal; 2736 } 2737 break; 2738 2739 case SDEV_QUIESCE: 2740 switch (oldstate) { 2741 case SDEV_RUNNING: 2742 case SDEV_OFFLINE: 2743 case SDEV_TRANSPORT_OFFLINE: 2744 break; 2745 default: 2746 goto illegal; 2747 } 2748 break; 2749 2750 case SDEV_OFFLINE: 2751 case SDEV_TRANSPORT_OFFLINE: 2752 switch (oldstate) { 2753 case SDEV_CREATED: 2754 case SDEV_RUNNING: 2755 case SDEV_QUIESCE: 2756 case SDEV_BLOCK: 2757 break; 2758 default: 2759 goto illegal; 2760 } 2761 break; 2762 2763 case SDEV_BLOCK: 2764 switch (oldstate) { 2765 case SDEV_RUNNING: 2766 case SDEV_CREATED_BLOCK: 2767 break; 2768 default: 2769 goto illegal; 2770 } 2771 break; 2772 2773 case SDEV_CREATED_BLOCK: 2774 switch (oldstate) { 2775 case SDEV_CREATED: 2776 break; 2777 default: 2778 goto illegal; 2779 } 2780 break; 2781 2782 case SDEV_CANCEL: 2783 switch (oldstate) { 2784 case SDEV_CREATED: 2785 case SDEV_RUNNING: 2786 case SDEV_QUIESCE: 2787 case SDEV_OFFLINE: 2788 case SDEV_TRANSPORT_OFFLINE: 2789 break; 2790 default: 2791 goto illegal; 2792 } 2793 break; 2794 2795 case SDEV_DEL: 2796 switch (oldstate) { 2797 case SDEV_CREATED: 2798 case SDEV_RUNNING: 2799 case SDEV_OFFLINE: 2800 case SDEV_TRANSPORT_OFFLINE: 2801 case SDEV_CANCEL: 2802 case SDEV_BLOCK: 2803 case SDEV_CREATED_BLOCK: 2804 break; 2805 default: 2806 goto illegal; 2807 } 2808 break; 2809 2810 } 2811 sdev->sdev_state = state; 2812 return 0; 2813 2814 illegal: 2815 SCSI_LOG_ERROR_RECOVERY(1, 2816 sdev_printk(KERN_ERR, sdev, 2817 "Illegal state transition %s->%s", 2818 scsi_device_state_name(oldstate), 2819 scsi_device_state_name(state)) 2820 ); 2821 return -EINVAL; 2822 } 2823 EXPORT_SYMBOL(scsi_device_set_state); 2824 2825 /** 2826 * sdev_evt_emit - emit a single SCSI device uevent 2827 * @sdev: associated SCSI device 2828 * @evt: event to emit 2829 * 2830 * Send a single uevent (scsi_event) to the associated scsi_device. 2831 */ 2832 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2833 { 2834 int idx = 0; 2835 char *envp[3]; 2836 2837 switch (evt->evt_type) { 2838 case SDEV_EVT_MEDIA_CHANGE: 2839 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2840 break; 2841 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2842 scsi_rescan_device(&sdev->sdev_gendev); 2843 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2844 break; 2845 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2846 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2847 break; 2848 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2849 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2850 break; 2851 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2852 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2853 break; 2854 case SDEV_EVT_LUN_CHANGE_REPORTED: 2855 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2856 break; 2857 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2858 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2859 break; 2860 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2861 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2862 break; 2863 default: 2864 /* do nothing */ 2865 break; 2866 } 2867 2868 envp[idx++] = NULL; 2869 2870 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2871 } 2872 2873 /** 2874 * sdev_evt_thread - send a uevent for each scsi event 2875 * @work: work struct for scsi_device 2876 * 2877 * Dispatch queued events to their associated scsi_device kobjects 2878 * as uevents. 2879 */ 2880 void scsi_evt_thread(struct work_struct *work) 2881 { 2882 struct scsi_device *sdev; 2883 enum scsi_device_event evt_type; 2884 LIST_HEAD(event_list); 2885 2886 sdev = container_of(work, struct scsi_device, event_work); 2887 2888 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2889 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2890 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2891 2892 while (1) { 2893 struct scsi_event *evt; 2894 struct list_head *this, *tmp; 2895 unsigned long flags; 2896 2897 spin_lock_irqsave(&sdev->list_lock, flags); 2898 list_splice_init(&sdev->event_list, &event_list); 2899 spin_unlock_irqrestore(&sdev->list_lock, flags); 2900 2901 if (list_empty(&event_list)) 2902 break; 2903 2904 list_for_each_safe(this, tmp, &event_list) { 2905 evt = list_entry(this, struct scsi_event, node); 2906 list_del(&evt->node); 2907 scsi_evt_emit(sdev, evt); 2908 kfree(evt); 2909 } 2910 } 2911 } 2912 2913 /** 2914 * sdev_evt_send - send asserted event to uevent thread 2915 * @sdev: scsi_device event occurred on 2916 * @evt: event to send 2917 * 2918 * Assert scsi device event asynchronously. 2919 */ 2920 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2921 { 2922 unsigned long flags; 2923 2924 #if 0 2925 /* FIXME: currently this check eliminates all media change events 2926 * for polled devices. Need to update to discriminate between AN 2927 * and polled events */ 2928 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2929 kfree(evt); 2930 return; 2931 } 2932 #endif 2933 2934 spin_lock_irqsave(&sdev->list_lock, flags); 2935 list_add_tail(&evt->node, &sdev->event_list); 2936 schedule_work(&sdev->event_work); 2937 spin_unlock_irqrestore(&sdev->list_lock, flags); 2938 } 2939 EXPORT_SYMBOL_GPL(sdev_evt_send); 2940 2941 /** 2942 * sdev_evt_alloc - allocate a new scsi event 2943 * @evt_type: type of event to allocate 2944 * @gfpflags: GFP flags for allocation 2945 * 2946 * Allocates and returns a new scsi_event. 2947 */ 2948 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2949 gfp_t gfpflags) 2950 { 2951 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2952 if (!evt) 2953 return NULL; 2954 2955 evt->evt_type = evt_type; 2956 INIT_LIST_HEAD(&evt->node); 2957 2958 /* evt_type-specific initialization, if any */ 2959 switch (evt_type) { 2960 case SDEV_EVT_MEDIA_CHANGE: 2961 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2962 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2963 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2964 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2965 case SDEV_EVT_LUN_CHANGE_REPORTED: 2966 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2967 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2968 default: 2969 /* do nothing */ 2970 break; 2971 } 2972 2973 return evt; 2974 } 2975 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2976 2977 /** 2978 * sdev_evt_send_simple - send asserted event to uevent thread 2979 * @sdev: scsi_device event occurred on 2980 * @evt_type: type of event to send 2981 * @gfpflags: GFP flags for allocation 2982 * 2983 * Assert scsi device event asynchronously, given an event type. 2984 */ 2985 void sdev_evt_send_simple(struct scsi_device *sdev, 2986 enum scsi_device_event evt_type, gfp_t gfpflags) 2987 { 2988 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2989 if (!evt) { 2990 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2991 evt_type); 2992 return; 2993 } 2994 2995 sdev_evt_send(sdev, evt); 2996 } 2997 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2998 2999 /** 3000 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn() 3001 * @sdev: SCSI device to count the number of scsi_request_fn() callers for. 3002 */ 3003 static int scsi_request_fn_active(struct scsi_device *sdev) 3004 { 3005 struct request_queue *q = sdev->request_queue; 3006 int request_fn_active; 3007 3008 WARN_ON_ONCE(sdev->host->use_blk_mq); 3009 3010 spin_lock_irq(q->queue_lock); 3011 request_fn_active = q->request_fn_active; 3012 spin_unlock_irq(q->queue_lock); 3013 3014 return request_fn_active; 3015 } 3016 3017 /** 3018 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls 3019 * @sdev: SCSI device pointer. 3020 * 3021 * Wait until the ongoing shost->hostt->queuecommand() calls that are 3022 * invoked from scsi_request_fn() have finished. 3023 */ 3024 static void scsi_wait_for_queuecommand(struct scsi_device *sdev) 3025 { 3026 WARN_ON_ONCE(sdev->host->use_blk_mq); 3027 3028 while (scsi_request_fn_active(sdev)) 3029 msleep(20); 3030 } 3031 3032 /** 3033 * scsi_device_quiesce - Block user issued commands. 3034 * @sdev: scsi device to quiesce. 3035 * 3036 * This works by trying to transition to the SDEV_QUIESCE state 3037 * (which must be a legal transition). When the device is in this 3038 * state, only special requests will be accepted, all others will 3039 * be deferred. Since special requests may also be requeued requests, 3040 * a successful return doesn't guarantee the device will be 3041 * totally quiescent. 3042 * 3043 * Must be called with user context, may sleep. 3044 * 3045 * Returns zero if unsuccessful or an error if not. 3046 */ 3047 int 3048 scsi_device_quiesce(struct scsi_device *sdev) 3049 { 3050 struct request_queue *q = sdev->request_queue; 3051 int err; 3052 3053 /* 3054 * It is allowed to call scsi_device_quiesce() multiple times from 3055 * the same context but concurrent scsi_device_quiesce() calls are 3056 * not allowed. 3057 */ 3058 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 3059 3060 blk_set_preempt_only(q); 3061 3062 blk_mq_freeze_queue(q); 3063 /* 3064 * Ensure that the effect of blk_set_preempt_only() will be visible 3065 * for percpu_ref_tryget() callers that occur after the queue 3066 * unfreeze even if the queue was already frozen before this function 3067 * was called. See also https://lwn.net/Articles/573497/. 3068 */ 3069 synchronize_rcu(); 3070 blk_mq_unfreeze_queue(q); 3071 3072 mutex_lock(&sdev->state_mutex); 3073 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 3074 if (err == 0) 3075 sdev->quiesced_by = current; 3076 else 3077 blk_clear_preempt_only(q); 3078 mutex_unlock(&sdev->state_mutex); 3079 3080 return err; 3081 } 3082 EXPORT_SYMBOL(scsi_device_quiesce); 3083 3084 /** 3085 * scsi_device_resume - Restart user issued commands to a quiesced device. 3086 * @sdev: scsi device to resume. 3087 * 3088 * Moves the device from quiesced back to running and restarts the 3089 * queues. 3090 * 3091 * Must be called with user context, may sleep. 3092 */ 3093 void scsi_device_resume(struct scsi_device *sdev) 3094 { 3095 /* check if the device state was mutated prior to resume, and if 3096 * so assume the state is being managed elsewhere (for example 3097 * device deleted during suspend) 3098 */ 3099 mutex_lock(&sdev->state_mutex); 3100 WARN_ON_ONCE(!sdev->quiesced_by); 3101 sdev->quiesced_by = NULL; 3102 blk_clear_preempt_only(sdev->request_queue); 3103 if (sdev->sdev_state == SDEV_QUIESCE) 3104 scsi_device_set_state(sdev, SDEV_RUNNING); 3105 mutex_unlock(&sdev->state_mutex); 3106 } 3107 EXPORT_SYMBOL(scsi_device_resume); 3108 3109 static void 3110 device_quiesce_fn(struct scsi_device *sdev, void *data) 3111 { 3112 scsi_device_quiesce(sdev); 3113 } 3114 3115 void 3116 scsi_target_quiesce(struct scsi_target *starget) 3117 { 3118 starget_for_each_device(starget, NULL, device_quiesce_fn); 3119 } 3120 EXPORT_SYMBOL(scsi_target_quiesce); 3121 3122 static void 3123 device_resume_fn(struct scsi_device *sdev, void *data) 3124 { 3125 scsi_device_resume(sdev); 3126 } 3127 3128 void 3129 scsi_target_resume(struct scsi_target *starget) 3130 { 3131 starget_for_each_device(starget, NULL, device_resume_fn); 3132 } 3133 EXPORT_SYMBOL(scsi_target_resume); 3134 3135 /** 3136 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 3137 * @sdev: device to block 3138 * 3139 * Pause SCSI command processing on the specified device. Does not sleep. 3140 * 3141 * Returns zero if successful or a negative error code upon failure. 3142 * 3143 * Notes: 3144 * This routine transitions the device to the SDEV_BLOCK state (which must be 3145 * a legal transition). When the device is in this state, command processing 3146 * is paused until the device leaves the SDEV_BLOCK state. See also 3147 * scsi_internal_device_unblock_nowait(). 3148 */ 3149 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 3150 { 3151 struct request_queue *q = sdev->request_queue; 3152 unsigned long flags; 3153 int err = 0; 3154 3155 err = scsi_device_set_state(sdev, SDEV_BLOCK); 3156 if (err) { 3157 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 3158 3159 if (err) 3160 return err; 3161 } 3162 3163 /* 3164 * The device has transitioned to SDEV_BLOCK. Stop the 3165 * block layer from calling the midlayer with this device's 3166 * request queue. 3167 */ 3168 if (q->mq_ops) { 3169 blk_mq_quiesce_queue_nowait(q); 3170 } else { 3171 spin_lock_irqsave(q->queue_lock, flags); 3172 blk_stop_queue(q); 3173 spin_unlock_irqrestore(q->queue_lock, flags); 3174 } 3175 3176 return 0; 3177 } 3178 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 3179 3180 /** 3181 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 3182 * @sdev: device to block 3183 * 3184 * Pause SCSI command processing on the specified device and wait until all 3185 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 3186 * 3187 * Returns zero if successful or a negative error code upon failure. 3188 * 3189 * Note: 3190 * This routine transitions the device to the SDEV_BLOCK state (which must be 3191 * a legal transition). When the device is in this state, command processing 3192 * is paused until the device leaves the SDEV_BLOCK state. See also 3193 * scsi_internal_device_unblock(). 3194 * 3195 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after 3196 * scsi_internal_device_block() has blocked a SCSI device and also 3197 * remove the rport mutex lock and unlock calls from srp_queuecommand(). 3198 */ 3199 static int scsi_internal_device_block(struct scsi_device *sdev) 3200 { 3201 struct request_queue *q = sdev->request_queue; 3202 int err; 3203 3204 mutex_lock(&sdev->state_mutex); 3205 err = scsi_internal_device_block_nowait(sdev); 3206 if (err == 0) { 3207 if (q->mq_ops) 3208 blk_mq_quiesce_queue(q); 3209 else 3210 scsi_wait_for_queuecommand(sdev); 3211 } 3212 mutex_unlock(&sdev->state_mutex); 3213 3214 return err; 3215 } 3216 3217 void scsi_start_queue(struct scsi_device *sdev) 3218 { 3219 struct request_queue *q = sdev->request_queue; 3220 unsigned long flags; 3221 3222 if (q->mq_ops) { 3223 blk_mq_unquiesce_queue(q); 3224 } else { 3225 spin_lock_irqsave(q->queue_lock, flags); 3226 blk_start_queue(q); 3227 spin_unlock_irqrestore(q->queue_lock, flags); 3228 } 3229 } 3230 3231 /** 3232 * scsi_internal_device_unblock_nowait - resume a device after a block request 3233 * @sdev: device to resume 3234 * @new_state: state to set the device to after unblocking 3235 * 3236 * Restart the device queue for a previously suspended SCSI device. Does not 3237 * sleep. 3238 * 3239 * Returns zero if successful or a negative error code upon failure. 3240 * 3241 * Notes: 3242 * This routine transitions the device to the SDEV_RUNNING state or to one of 3243 * the offline states (which must be a legal transition) allowing the midlayer 3244 * to goose the queue for this device. 3245 */ 3246 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 3247 enum scsi_device_state new_state) 3248 { 3249 /* 3250 * Try to transition the scsi device to SDEV_RUNNING or one of the 3251 * offlined states and goose the device queue if successful. 3252 */ 3253 switch (sdev->sdev_state) { 3254 case SDEV_BLOCK: 3255 case SDEV_TRANSPORT_OFFLINE: 3256 sdev->sdev_state = new_state; 3257 break; 3258 case SDEV_CREATED_BLOCK: 3259 if (new_state == SDEV_TRANSPORT_OFFLINE || 3260 new_state == SDEV_OFFLINE) 3261 sdev->sdev_state = new_state; 3262 else 3263 sdev->sdev_state = SDEV_CREATED; 3264 break; 3265 case SDEV_CANCEL: 3266 case SDEV_OFFLINE: 3267 break; 3268 default: 3269 return -EINVAL; 3270 } 3271 scsi_start_queue(sdev); 3272 3273 return 0; 3274 } 3275 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 3276 3277 /** 3278 * scsi_internal_device_unblock - resume a device after a block request 3279 * @sdev: device to resume 3280 * @new_state: state to set the device to after unblocking 3281 * 3282 * Restart the device queue for a previously suspended SCSI device. May sleep. 3283 * 3284 * Returns zero if successful or a negative error code upon failure. 3285 * 3286 * Notes: 3287 * This routine transitions the device to the SDEV_RUNNING state or to one of 3288 * the offline states (which must be a legal transition) allowing the midlayer 3289 * to goose the queue for this device. 3290 */ 3291 static int scsi_internal_device_unblock(struct scsi_device *sdev, 3292 enum scsi_device_state new_state) 3293 { 3294 int ret; 3295 3296 mutex_lock(&sdev->state_mutex); 3297 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 3298 mutex_unlock(&sdev->state_mutex); 3299 3300 return ret; 3301 } 3302 3303 static void 3304 device_block(struct scsi_device *sdev, void *data) 3305 { 3306 scsi_internal_device_block(sdev); 3307 } 3308 3309 static int 3310 target_block(struct device *dev, void *data) 3311 { 3312 if (scsi_is_target_device(dev)) 3313 starget_for_each_device(to_scsi_target(dev), NULL, 3314 device_block); 3315 return 0; 3316 } 3317 3318 void 3319 scsi_target_block(struct device *dev) 3320 { 3321 if (scsi_is_target_device(dev)) 3322 starget_for_each_device(to_scsi_target(dev), NULL, 3323 device_block); 3324 else 3325 device_for_each_child(dev, NULL, target_block); 3326 } 3327 EXPORT_SYMBOL_GPL(scsi_target_block); 3328 3329 static void 3330 device_unblock(struct scsi_device *sdev, void *data) 3331 { 3332 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 3333 } 3334 3335 static int 3336 target_unblock(struct device *dev, void *data) 3337 { 3338 if (scsi_is_target_device(dev)) 3339 starget_for_each_device(to_scsi_target(dev), data, 3340 device_unblock); 3341 return 0; 3342 } 3343 3344 void 3345 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 3346 { 3347 if (scsi_is_target_device(dev)) 3348 starget_for_each_device(to_scsi_target(dev), &new_state, 3349 device_unblock); 3350 else 3351 device_for_each_child(dev, &new_state, target_unblock); 3352 } 3353 EXPORT_SYMBOL_GPL(scsi_target_unblock); 3354 3355 /** 3356 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 3357 * @sgl: scatter-gather list 3358 * @sg_count: number of segments in sg 3359 * @offset: offset in bytes into sg, on return offset into the mapped area 3360 * @len: bytes to map, on return number of bytes mapped 3361 * 3362 * Returns virtual address of the start of the mapped page 3363 */ 3364 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3365 size_t *offset, size_t *len) 3366 { 3367 int i; 3368 size_t sg_len = 0, len_complete = 0; 3369 struct scatterlist *sg; 3370 struct page *page; 3371 3372 WARN_ON(!irqs_disabled()); 3373 3374 for_each_sg(sgl, sg, sg_count, i) { 3375 len_complete = sg_len; /* Complete sg-entries */ 3376 sg_len += sg->length; 3377 if (sg_len > *offset) 3378 break; 3379 } 3380 3381 if (unlikely(i == sg_count)) { 3382 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3383 "elements %d\n", 3384 __func__, sg_len, *offset, sg_count); 3385 WARN_ON(1); 3386 return NULL; 3387 } 3388 3389 /* Offset starting from the beginning of first page in this sg-entry */ 3390 *offset = *offset - len_complete + sg->offset; 3391 3392 /* Assumption: contiguous pages can be accessed as "page + i" */ 3393 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3394 *offset &= ~PAGE_MASK; 3395 3396 /* Bytes in this sg-entry from *offset to the end of the page */ 3397 sg_len = PAGE_SIZE - *offset; 3398 if (*len > sg_len) 3399 *len = sg_len; 3400 3401 return kmap_atomic(page); 3402 } 3403 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3404 3405 /** 3406 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3407 * @virt: virtual address to be unmapped 3408 */ 3409 void scsi_kunmap_atomic_sg(void *virt) 3410 { 3411 kunmap_atomic(virt); 3412 } 3413 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3414 3415 void sdev_disable_disk_events(struct scsi_device *sdev) 3416 { 3417 atomic_inc(&sdev->disk_events_disable_depth); 3418 } 3419 EXPORT_SYMBOL(sdev_disable_disk_events); 3420 3421 void sdev_enable_disk_events(struct scsi_device *sdev) 3422 { 3423 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3424 return; 3425 atomic_dec(&sdev->disk_events_disable_depth); 3426 } 3427 EXPORT_SYMBOL(sdev_enable_disk_events); 3428 3429 /** 3430 * scsi_vpd_lun_id - return a unique device identification 3431 * @sdev: SCSI device 3432 * @id: buffer for the identification 3433 * @id_len: length of the buffer 3434 * 3435 * Copies a unique device identification into @id based 3436 * on the information in the VPD page 0x83 of the device. 3437 * The string will be formatted as a SCSI name string. 3438 * 3439 * Returns the length of the identification or error on failure. 3440 * If the identifier is longer than the supplied buffer the actual 3441 * identifier length is returned and the buffer is not zero-padded. 3442 */ 3443 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3444 { 3445 u8 cur_id_type = 0xff; 3446 u8 cur_id_size = 0; 3447 const unsigned char *d, *cur_id_str; 3448 const struct scsi_vpd *vpd_pg83; 3449 int id_size = -EINVAL; 3450 3451 rcu_read_lock(); 3452 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3453 if (!vpd_pg83) { 3454 rcu_read_unlock(); 3455 return -ENXIO; 3456 } 3457 3458 /* 3459 * Look for the correct descriptor. 3460 * Order of preference for lun descriptor: 3461 * - SCSI name string 3462 * - NAA IEEE Registered Extended 3463 * - EUI-64 based 16-byte 3464 * - EUI-64 based 12-byte 3465 * - NAA IEEE Registered 3466 * - NAA IEEE Extended 3467 * - T10 Vendor ID 3468 * as longer descriptors reduce the likelyhood 3469 * of identification clashes. 3470 */ 3471 3472 /* The id string must be at least 20 bytes + terminating NULL byte */ 3473 if (id_len < 21) { 3474 rcu_read_unlock(); 3475 return -EINVAL; 3476 } 3477 3478 memset(id, 0, id_len); 3479 d = vpd_pg83->data + 4; 3480 while (d < vpd_pg83->data + vpd_pg83->len) { 3481 /* Skip designators not referring to the LUN */ 3482 if ((d[1] & 0x30) != 0x00) 3483 goto next_desig; 3484 3485 switch (d[1] & 0xf) { 3486 case 0x1: 3487 /* T10 Vendor ID */ 3488 if (cur_id_size > d[3]) 3489 break; 3490 /* Prefer anything */ 3491 if (cur_id_type > 0x01 && cur_id_type != 0xff) 3492 break; 3493 cur_id_size = d[3]; 3494 if (cur_id_size + 4 > id_len) 3495 cur_id_size = id_len - 4; 3496 cur_id_str = d + 4; 3497 cur_id_type = d[1] & 0xf; 3498 id_size = snprintf(id, id_len, "t10.%*pE", 3499 cur_id_size, cur_id_str); 3500 break; 3501 case 0x2: 3502 /* EUI-64 */ 3503 if (cur_id_size > d[3]) 3504 break; 3505 /* Prefer NAA IEEE Registered Extended */ 3506 if (cur_id_type == 0x3 && 3507 cur_id_size == d[3]) 3508 break; 3509 cur_id_size = d[3]; 3510 cur_id_str = d + 4; 3511 cur_id_type = d[1] & 0xf; 3512 switch (cur_id_size) { 3513 case 8: 3514 id_size = snprintf(id, id_len, 3515 "eui.%8phN", 3516 cur_id_str); 3517 break; 3518 case 12: 3519 id_size = snprintf(id, id_len, 3520 "eui.%12phN", 3521 cur_id_str); 3522 break; 3523 case 16: 3524 id_size = snprintf(id, id_len, 3525 "eui.%16phN", 3526 cur_id_str); 3527 break; 3528 default: 3529 cur_id_size = 0; 3530 break; 3531 } 3532 break; 3533 case 0x3: 3534 /* NAA */ 3535 if (cur_id_size > d[3]) 3536 break; 3537 cur_id_size = d[3]; 3538 cur_id_str = d + 4; 3539 cur_id_type = d[1] & 0xf; 3540 switch (cur_id_size) { 3541 case 8: 3542 id_size = snprintf(id, id_len, 3543 "naa.%8phN", 3544 cur_id_str); 3545 break; 3546 case 16: 3547 id_size = snprintf(id, id_len, 3548 "naa.%16phN", 3549 cur_id_str); 3550 break; 3551 default: 3552 cur_id_size = 0; 3553 break; 3554 } 3555 break; 3556 case 0x8: 3557 /* SCSI name string */ 3558 if (cur_id_size + 4 > d[3]) 3559 break; 3560 /* Prefer others for truncated descriptor */ 3561 if (cur_id_size && d[3] > id_len) 3562 break; 3563 cur_id_size = id_size = d[3]; 3564 cur_id_str = d + 4; 3565 cur_id_type = d[1] & 0xf; 3566 if (cur_id_size >= id_len) 3567 cur_id_size = id_len - 1; 3568 memcpy(id, cur_id_str, cur_id_size); 3569 /* Decrease priority for truncated descriptor */ 3570 if (cur_id_size != id_size) 3571 cur_id_size = 6; 3572 break; 3573 default: 3574 break; 3575 } 3576 next_desig: 3577 d += d[3] + 4; 3578 } 3579 rcu_read_unlock(); 3580 3581 return id_size; 3582 } 3583 EXPORT_SYMBOL(scsi_vpd_lun_id); 3584 3585 /* 3586 * scsi_vpd_tpg_id - return a target port group identifier 3587 * @sdev: SCSI device 3588 * 3589 * Returns the Target Port Group identifier from the information 3590 * froom VPD page 0x83 of the device. 3591 * 3592 * Returns the identifier or error on failure. 3593 */ 3594 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3595 { 3596 const unsigned char *d; 3597 const struct scsi_vpd *vpd_pg83; 3598 int group_id = -EAGAIN, rel_port = -1; 3599 3600 rcu_read_lock(); 3601 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3602 if (!vpd_pg83) { 3603 rcu_read_unlock(); 3604 return -ENXIO; 3605 } 3606 3607 d = vpd_pg83->data + 4; 3608 while (d < vpd_pg83->data + vpd_pg83->len) { 3609 switch (d[1] & 0xf) { 3610 case 0x4: 3611 /* Relative target port */ 3612 rel_port = get_unaligned_be16(&d[6]); 3613 break; 3614 case 0x5: 3615 /* Target port group */ 3616 group_id = get_unaligned_be16(&d[6]); 3617 break; 3618 default: 3619 break; 3620 } 3621 d += d[3] + 4; 3622 } 3623 rcu_read_unlock(); 3624 3625 if (group_id >= 0 && rel_id && rel_port != -1) 3626 *rel_id = rel_port; 3627 3628 return group_id; 3629 } 3630 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3631