1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/blk-integrity.h> 25 #include <linux/ratelimit.h> 26 #include <asm/unaligned.h> 27 28 #include <scsi/scsi.h> 29 #include <scsi/scsi_cmnd.h> 30 #include <scsi/scsi_dbg.h> 31 #include <scsi/scsi_device.h> 32 #include <scsi/scsi_driver.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 36 #include <scsi/scsi_dh.h> 37 38 #include <trace/events/scsi.h> 39 40 #include "scsi_debugfs.h" 41 #include "scsi_priv.h" 42 #include "scsi_logging.h" 43 44 /* 45 * Size of integrity metadata is usually small, 1 inline sg should 46 * cover normal cases. 47 */ 48 #ifdef CONFIG_ARCH_NO_SG_CHAIN 49 #define SCSI_INLINE_PROT_SG_CNT 0 50 #define SCSI_INLINE_SG_CNT 0 51 #else 52 #define SCSI_INLINE_PROT_SG_CNT 1 53 #define SCSI_INLINE_SG_CNT 2 54 #endif 55 56 static struct kmem_cache *scsi_sense_cache; 57 static DEFINE_MUTEX(scsi_sense_cache_mutex); 58 59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 60 61 int scsi_init_sense_cache(struct Scsi_Host *shost) 62 { 63 int ret = 0; 64 65 mutex_lock(&scsi_sense_cache_mutex); 66 if (!scsi_sense_cache) { 67 scsi_sense_cache = 68 kmem_cache_create_usercopy("scsi_sense_cache", 69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 70 0, SCSI_SENSE_BUFFERSIZE, NULL); 71 if (!scsi_sense_cache) 72 ret = -ENOMEM; 73 } 74 mutex_unlock(&scsi_sense_cache_mutex); 75 return ret; 76 } 77 78 static void 79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 80 { 81 struct Scsi_Host *host = cmd->device->host; 82 struct scsi_device *device = cmd->device; 83 struct scsi_target *starget = scsi_target(device); 84 85 /* 86 * Set the appropriate busy bit for the device/host. 87 * 88 * If the host/device isn't busy, assume that something actually 89 * completed, and that we should be able to queue a command now. 90 * 91 * Note that the prior mid-layer assumption that any host could 92 * always queue at least one command is now broken. The mid-layer 93 * will implement a user specifiable stall (see 94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 95 * if a command is requeued with no other commands outstanding 96 * either for the device or for the host. 97 */ 98 switch (reason) { 99 case SCSI_MLQUEUE_HOST_BUSY: 100 atomic_set(&host->host_blocked, host->max_host_blocked); 101 break; 102 case SCSI_MLQUEUE_DEVICE_BUSY: 103 case SCSI_MLQUEUE_EH_RETRY: 104 atomic_set(&device->device_blocked, 105 device->max_device_blocked); 106 break; 107 case SCSI_MLQUEUE_TARGET_BUSY: 108 atomic_set(&starget->target_blocked, 109 starget->max_target_blocked); 110 break; 111 } 112 } 113 114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 115 { 116 struct request *rq = scsi_cmd_to_rq(cmd); 117 118 if (rq->rq_flags & RQF_DONTPREP) { 119 rq->rq_flags &= ~RQF_DONTPREP; 120 scsi_mq_uninit_cmd(cmd); 121 } else { 122 WARN_ON_ONCE(true); 123 } 124 blk_mq_requeue_request(rq, true); 125 } 126 127 /** 128 * __scsi_queue_insert - private queue insertion 129 * @cmd: The SCSI command being requeued 130 * @reason: The reason for the requeue 131 * @unbusy: Whether the queue should be unbusied 132 * 133 * This is a private queue insertion. The public interface 134 * scsi_queue_insert() always assumes the queue should be unbusied 135 * because it's always called before the completion. This function is 136 * for a requeue after completion, which should only occur in this 137 * file. 138 */ 139 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 140 { 141 struct scsi_device *device = cmd->device; 142 143 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 144 "Inserting command %p into mlqueue\n", cmd)); 145 146 scsi_set_blocked(cmd, reason); 147 148 /* 149 * Decrement the counters, since these commands are no longer 150 * active on the host/device. 151 */ 152 if (unbusy) 153 scsi_device_unbusy(device, cmd); 154 155 /* 156 * Requeue this command. It will go before all other commands 157 * that are already in the queue. Schedule requeue work under 158 * lock such that the kblockd_schedule_work() call happens 159 * before blk_cleanup_queue() finishes. 160 */ 161 cmd->result = 0; 162 163 blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true); 164 } 165 166 /** 167 * scsi_queue_insert - Reinsert a command in the queue. 168 * @cmd: command that we are adding to queue. 169 * @reason: why we are inserting command to queue. 170 * 171 * We do this for one of two cases. Either the host is busy and it cannot accept 172 * any more commands for the time being, or the device returned QUEUE_FULL and 173 * can accept no more commands. 174 * 175 * Context: This could be called either from an interrupt context or a normal 176 * process context. 177 */ 178 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 179 { 180 __scsi_queue_insert(cmd, reason, true); 181 } 182 183 184 /** 185 * __scsi_execute - insert request and wait for the result 186 * @sdev: scsi device 187 * @cmd: scsi command 188 * @data_direction: data direction 189 * @buffer: data buffer 190 * @bufflen: len of buffer 191 * @sense: optional sense buffer 192 * @sshdr: optional decoded sense header 193 * @timeout: request timeout in HZ 194 * @retries: number of times to retry request 195 * @flags: flags for ->cmd_flags 196 * @rq_flags: flags for ->rq_flags 197 * @resid: optional residual length 198 * 199 * Returns the scsi_cmnd result field if a command was executed, or a negative 200 * Linux error code if we didn't get that far. 201 */ 202 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 203 int data_direction, void *buffer, unsigned bufflen, 204 unsigned char *sense, struct scsi_sense_hdr *sshdr, 205 int timeout, int retries, u64 flags, req_flags_t rq_flags, 206 int *resid) 207 { 208 struct request *req; 209 struct scsi_cmnd *scmd; 210 int ret; 211 212 req = scsi_alloc_request(sdev->request_queue, 213 data_direction == DMA_TO_DEVICE ? 214 REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 215 rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0); 216 if (IS_ERR(req)) 217 return PTR_ERR(req); 218 219 if (bufflen) { 220 ret = blk_rq_map_kern(sdev->request_queue, req, 221 buffer, bufflen, GFP_NOIO); 222 if (ret) 223 goto out; 224 } 225 scmd = blk_mq_rq_to_pdu(req); 226 scmd->cmd_len = COMMAND_SIZE(cmd[0]); 227 memcpy(scmd->cmnd, cmd, scmd->cmd_len); 228 scmd->allowed = retries; 229 req->timeout = timeout; 230 req->cmd_flags |= flags; 231 req->rq_flags |= rq_flags | RQF_QUIET; 232 233 /* 234 * head injection *required* here otherwise quiesce won't work 235 */ 236 blk_execute_rq(req, true); 237 238 /* 239 * Some devices (USB mass-storage in particular) may transfer 240 * garbage data together with a residue indicating that the data 241 * is invalid. Prevent the garbage from being misinterpreted 242 * and prevent security leaks by zeroing out the excess data. 243 */ 244 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen)) 245 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len); 246 247 if (resid) 248 *resid = scmd->resid_len; 249 if (sense && scmd->sense_len) 250 memcpy(sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE); 251 if (sshdr) 252 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len, 253 sshdr); 254 ret = scmd->result; 255 out: 256 blk_mq_free_request(req); 257 258 return ret; 259 } 260 EXPORT_SYMBOL(__scsi_execute); 261 262 /* 263 * Wake up the error handler if necessary. Avoid as follows that the error 264 * handler is not woken up if host in-flight requests number == 265 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 266 * with an RCU read lock in this function to ensure that this function in 267 * its entirety either finishes before scsi_eh_scmd_add() increases the 268 * host_failed counter or that it notices the shost state change made by 269 * scsi_eh_scmd_add(). 270 */ 271 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 272 { 273 unsigned long flags; 274 275 rcu_read_lock(); 276 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 277 if (unlikely(scsi_host_in_recovery(shost))) { 278 spin_lock_irqsave(shost->host_lock, flags); 279 if (shost->host_failed || shost->host_eh_scheduled) 280 scsi_eh_wakeup(shost); 281 spin_unlock_irqrestore(shost->host_lock, flags); 282 } 283 rcu_read_unlock(); 284 } 285 286 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 287 { 288 struct Scsi_Host *shost = sdev->host; 289 struct scsi_target *starget = scsi_target(sdev); 290 291 scsi_dec_host_busy(shost, cmd); 292 293 if (starget->can_queue > 0) 294 atomic_dec(&starget->target_busy); 295 296 sbitmap_put(&sdev->budget_map, cmd->budget_token); 297 cmd->budget_token = -1; 298 } 299 300 static void scsi_kick_queue(struct request_queue *q) 301 { 302 blk_mq_run_hw_queues(q, false); 303 } 304 305 /* 306 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 307 * and call blk_run_queue for all the scsi_devices on the target - 308 * including current_sdev first. 309 * 310 * Called with *no* scsi locks held. 311 */ 312 static void scsi_single_lun_run(struct scsi_device *current_sdev) 313 { 314 struct Scsi_Host *shost = current_sdev->host; 315 struct scsi_device *sdev, *tmp; 316 struct scsi_target *starget = scsi_target(current_sdev); 317 unsigned long flags; 318 319 spin_lock_irqsave(shost->host_lock, flags); 320 starget->starget_sdev_user = NULL; 321 spin_unlock_irqrestore(shost->host_lock, flags); 322 323 /* 324 * Call blk_run_queue for all LUNs on the target, starting with 325 * current_sdev. We race with others (to set starget_sdev_user), 326 * but in most cases, we will be first. Ideally, each LU on the 327 * target would get some limited time or requests on the target. 328 */ 329 scsi_kick_queue(current_sdev->request_queue); 330 331 spin_lock_irqsave(shost->host_lock, flags); 332 if (starget->starget_sdev_user) 333 goto out; 334 list_for_each_entry_safe(sdev, tmp, &starget->devices, 335 same_target_siblings) { 336 if (sdev == current_sdev) 337 continue; 338 if (scsi_device_get(sdev)) 339 continue; 340 341 spin_unlock_irqrestore(shost->host_lock, flags); 342 scsi_kick_queue(sdev->request_queue); 343 spin_lock_irqsave(shost->host_lock, flags); 344 345 scsi_device_put(sdev); 346 } 347 out: 348 spin_unlock_irqrestore(shost->host_lock, flags); 349 } 350 351 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 352 { 353 if (scsi_device_busy(sdev) >= sdev->queue_depth) 354 return true; 355 if (atomic_read(&sdev->device_blocked) > 0) 356 return true; 357 return false; 358 } 359 360 static inline bool scsi_target_is_busy(struct scsi_target *starget) 361 { 362 if (starget->can_queue > 0) { 363 if (atomic_read(&starget->target_busy) >= starget->can_queue) 364 return true; 365 if (atomic_read(&starget->target_blocked) > 0) 366 return true; 367 } 368 return false; 369 } 370 371 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 372 { 373 if (atomic_read(&shost->host_blocked) > 0) 374 return true; 375 if (shost->host_self_blocked) 376 return true; 377 return false; 378 } 379 380 static void scsi_starved_list_run(struct Scsi_Host *shost) 381 { 382 LIST_HEAD(starved_list); 383 struct scsi_device *sdev; 384 unsigned long flags; 385 386 spin_lock_irqsave(shost->host_lock, flags); 387 list_splice_init(&shost->starved_list, &starved_list); 388 389 while (!list_empty(&starved_list)) { 390 struct request_queue *slq; 391 392 /* 393 * As long as shost is accepting commands and we have 394 * starved queues, call blk_run_queue. scsi_request_fn 395 * drops the queue_lock and can add us back to the 396 * starved_list. 397 * 398 * host_lock protects the starved_list and starved_entry. 399 * scsi_request_fn must get the host_lock before checking 400 * or modifying starved_list or starved_entry. 401 */ 402 if (scsi_host_is_busy(shost)) 403 break; 404 405 sdev = list_entry(starved_list.next, 406 struct scsi_device, starved_entry); 407 list_del_init(&sdev->starved_entry); 408 if (scsi_target_is_busy(scsi_target(sdev))) { 409 list_move_tail(&sdev->starved_entry, 410 &shost->starved_list); 411 continue; 412 } 413 414 /* 415 * Once we drop the host lock, a racing scsi_remove_device() 416 * call may remove the sdev from the starved list and destroy 417 * it and the queue. Mitigate by taking a reference to the 418 * queue and never touching the sdev again after we drop the 419 * host lock. Note: if __scsi_remove_device() invokes 420 * blk_cleanup_queue() before the queue is run from this 421 * function then blk_run_queue() will return immediately since 422 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 423 */ 424 slq = sdev->request_queue; 425 if (!blk_get_queue(slq)) 426 continue; 427 spin_unlock_irqrestore(shost->host_lock, flags); 428 429 scsi_kick_queue(slq); 430 blk_put_queue(slq); 431 432 spin_lock_irqsave(shost->host_lock, flags); 433 } 434 /* put any unprocessed entries back */ 435 list_splice(&starved_list, &shost->starved_list); 436 spin_unlock_irqrestore(shost->host_lock, flags); 437 } 438 439 /** 440 * scsi_run_queue - Select a proper request queue to serve next. 441 * @q: last request's queue 442 * 443 * The previous command was completely finished, start a new one if possible. 444 */ 445 static void scsi_run_queue(struct request_queue *q) 446 { 447 struct scsi_device *sdev = q->queuedata; 448 449 if (scsi_target(sdev)->single_lun) 450 scsi_single_lun_run(sdev); 451 if (!list_empty(&sdev->host->starved_list)) 452 scsi_starved_list_run(sdev->host); 453 454 blk_mq_run_hw_queues(q, false); 455 } 456 457 void scsi_requeue_run_queue(struct work_struct *work) 458 { 459 struct scsi_device *sdev; 460 struct request_queue *q; 461 462 sdev = container_of(work, struct scsi_device, requeue_work); 463 q = sdev->request_queue; 464 scsi_run_queue(q); 465 } 466 467 void scsi_run_host_queues(struct Scsi_Host *shost) 468 { 469 struct scsi_device *sdev; 470 471 shost_for_each_device(sdev, shost) 472 scsi_run_queue(sdev->request_queue); 473 } 474 475 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 476 { 477 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) { 478 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 479 480 if (drv->uninit_command) 481 drv->uninit_command(cmd); 482 } 483 } 484 485 void scsi_free_sgtables(struct scsi_cmnd *cmd) 486 { 487 if (cmd->sdb.table.nents) 488 sg_free_table_chained(&cmd->sdb.table, 489 SCSI_INLINE_SG_CNT); 490 if (scsi_prot_sg_count(cmd)) 491 sg_free_table_chained(&cmd->prot_sdb->table, 492 SCSI_INLINE_PROT_SG_CNT); 493 } 494 EXPORT_SYMBOL_GPL(scsi_free_sgtables); 495 496 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 497 { 498 scsi_free_sgtables(cmd); 499 scsi_uninit_cmd(cmd); 500 } 501 502 static void scsi_run_queue_async(struct scsi_device *sdev) 503 { 504 if (scsi_target(sdev)->single_lun || 505 !list_empty(&sdev->host->starved_list)) { 506 kblockd_schedule_work(&sdev->requeue_work); 507 } else { 508 /* 509 * smp_mb() present in sbitmap_queue_clear() or implied in 510 * .end_io is for ordering writing .device_busy in 511 * scsi_device_unbusy() and reading sdev->restarts. 512 */ 513 int old = atomic_read(&sdev->restarts); 514 515 /* 516 * ->restarts has to be kept as non-zero if new budget 517 * contention occurs. 518 * 519 * No need to run queue when either another re-run 520 * queue wins in updating ->restarts or a new budget 521 * contention occurs. 522 */ 523 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 524 blk_mq_run_hw_queues(sdev->request_queue, true); 525 } 526 } 527 528 /* Returns false when no more bytes to process, true if there are more */ 529 static bool scsi_end_request(struct request *req, blk_status_t error, 530 unsigned int bytes) 531 { 532 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 533 struct scsi_device *sdev = cmd->device; 534 struct request_queue *q = sdev->request_queue; 535 536 if (blk_update_request(req, error, bytes)) 537 return true; 538 539 // XXX: 540 if (blk_queue_add_random(q)) 541 add_disk_randomness(req->q->disk); 542 543 if (!blk_rq_is_passthrough(req)) { 544 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 545 cmd->flags &= ~SCMD_INITIALIZED; 546 } 547 548 /* 549 * Calling rcu_barrier() is not necessary here because the 550 * SCSI error handler guarantees that the function called by 551 * call_rcu() has been called before scsi_end_request() is 552 * called. 553 */ 554 destroy_rcu_head(&cmd->rcu); 555 556 /* 557 * In the MQ case the command gets freed by __blk_mq_end_request, 558 * so we have to do all cleanup that depends on it earlier. 559 * 560 * We also can't kick the queues from irq context, so we 561 * will have to defer it to a workqueue. 562 */ 563 scsi_mq_uninit_cmd(cmd); 564 565 /* 566 * queue is still alive, so grab the ref for preventing it 567 * from being cleaned up during running queue. 568 */ 569 percpu_ref_get(&q->q_usage_counter); 570 571 __blk_mq_end_request(req, error); 572 573 scsi_run_queue_async(sdev); 574 575 percpu_ref_put(&q->q_usage_counter); 576 return false; 577 } 578 579 /** 580 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 581 * @cmd: SCSI command 582 * @result: scsi error code 583 * 584 * Translate a SCSI result code into a blk_status_t value. May reset the host 585 * byte of @cmd->result. 586 */ 587 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 588 { 589 switch (host_byte(result)) { 590 case DID_OK: 591 if (scsi_status_is_good(result)) 592 return BLK_STS_OK; 593 return BLK_STS_IOERR; 594 case DID_TRANSPORT_FAILFAST: 595 case DID_TRANSPORT_MARGINAL: 596 return BLK_STS_TRANSPORT; 597 case DID_TARGET_FAILURE: 598 set_host_byte(cmd, DID_OK); 599 return BLK_STS_TARGET; 600 case DID_NEXUS_FAILURE: 601 set_host_byte(cmd, DID_OK); 602 return BLK_STS_NEXUS; 603 case DID_ALLOC_FAILURE: 604 set_host_byte(cmd, DID_OK); 605 return BLK_STS_NOSPC; 606 case DID_MEDIUM_ERROR: 607 set_host_byte(cmd, DID_OK); 608 return BLK_STS_MEDIUM; 609 default: 610 return BLK_STS_IOERR; 611 } 612 } 613 614 /** 615 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary 616 * @rq: request to examine 617 * 618 * Description: 619 * A request could be merge of IOs which require different failure 620 * handling. This function determines the number of bytes which 621 * can be failed from the beginning of the request without 622 * crossing into area which need to be retried further. 623 * 624 * Return: 625 * The number of bytes to fail. 626 */ 627 static unsigned int scsi_rq_err_bytes(const struct request *rq) 628 { 629 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 630 unsigned int bytes = 0; 631 struct bio *bio; 632 633 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 634 return blk_rq_bytes(rq); 635 636 /* 637 * Currently the only 'mixing' which can happen is between 638 * different fastfail types. We can safely fail portions 639 * which have all the failfast bits that the first one has - 640 * the ones which are at least as eager to fail as the first 641 * one. 642 */ 643 for (bio = rq->bio; bio; bio = bio->bi_next) { 644 if ((bio->bi_opf & ff) != ff) 645 break; 646 bytes += bio->bi_iter.bi_size; 647 } 648 649 /* this could lead to infinite loop */ 650 BUG_ON(blk_rq_bytes(rq) && !bytes); 651 return bytes; 652 } 653 654 /* Helper for scsi_io_completion() when "reprep" action required. */ 655 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 656 struct request_queue *q) 657 { 658 /* A new command will be prepared and issued. */ 659 scsi_mq_requeue_cmd(cmd); 660 } 661 662 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 663 { 664 struct request *req = scsi_cmd_to_rq(cmd); 665 unsigned long wait_for; 666 667 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 668 return false; 669 670 wait_for = (cmd->allowed + 1) * req->timeout; 671 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 672 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 673 wait_for/HZ); 674 return true; 675 } 676 return false; 677 } 678 679 /* Helper for scsi_io_completion() when special action required. */ 680 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 681 { 682 struct request_queue *q = cmd->device->request_queue; 683 struct request *req = scsi_cmd_to_rq(cmd); 684 int level = 0; 685 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 686 ACTION_DELAYED_RETRY} action; 687 struct scsi_sense_hdr sshdr; 688 bool sense_valid; 689 bool sense_current = true; /* false implies "deferred sense" */ 690 blk_status_t blk_stat; 691 692 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 693 if (sense_valid) 694 sense_current = !scsi_sense_is_deferred(&sshdr); 695 696 blk_stat = scsi_result_to_blk_status(cmd, result); 697 698 if (host_byte(result) == DID_RESET) { 699 /* Third party bus reset or reset for error recovery 700 * reasons. Just retry the command and see what 701 * happens. 702 */ 703 action = ACTION_RETRY; 704 } else if (sense_valid && sense_current) { 705 switch (sshdr.sense_key) { 706 case UNIT_ATTENTION: 707 if (cmd->device->removable) { 708 /* Detected disc change. Set a bit 709 * and quietly refuse further access. 710 */ 711 cmd->device->changed = 1; 712 action = ACTION_FAIL; 713 } else { 714 /* Must have been a power glitch, or a 715 * bus reset. Could not have been a 716 * media change, so we just retry the 717 * command and see what happens. 718 */ 719 action = ACTION_RETRY; 720 } 721 break; 722 case ILLEGAL_REQUEST: 723 /* If we had an ILLEGAL REQUEST returned, then 724 * we may have performed an unsupported 725 * command. The only thing this should be 726 * would be a ten byte read where only a six 727 * byte read was supported. Also, on a system 728 * where READ CAPACITY failed, we may have 729 * read past the end of the disk. 730 */ 731 if ((cmd->device->use_10_for_rw && 732 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 733 (cmd->cmnd[0] == READ_10 || 734 cmd->cmnd[0] == WRITE_10)) { 735 /* This will issue a new 6-byte command. */ 736 cmd->device->use_10_for_rw = 0; 737 action = ACTION_REPREP; 738 } else if (sshdr.asc == 0x10) /* DIX */ { 739 action = ACTION_FAIL; 740 blk_stat = BLK_STS_PROTECTION; 741 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 742 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 743 action = ACTION_FAIL; 744 blk_stat = BLK_STS_TARGET; 745 } else 746 action = ACTION_FAIL; 747 break; 748 case ABORTED_COMMAND: 749 action = ACTION_FAIL; 750 if (sshdr.asc == 0x10) /* DIF */ 751 blk_stat = BLK_STS_PROTECTION; 752 break; 753 case NOT_READY: 754 /* If the device is in the process of becoming 755 * ready, or has a temporary blockage, retry. 756 */ 757 if (sshdr.asc == 0x04) { 758 switch (sshdr.ascq) { 759 case 0x01: /* becoming ready */ 760 case 0x04: /* format in progress */ 761 case 0x05: /* rebuild in progress */ 762 case 0x06: /* recalculation in progress */ 763 case 0x07: /* operation in progress */ 764 case 0x08: /* Long write in progress */ 765 case 0x09: /* self test in progress */ 766 case 0x11: /* notify (enable spinup) required */ 767 case 0x14: /* space allocation in progress */ 768 case 0x1a: /* start stop unit in progress */ 769 case 0x1b: /* sanitize in progress */ 770 case 0x1d: /* configuration in progress */ 771 case 0x24: /* depopulation in progress */ 772 action = ACTION_DELAYED_RETRY; 773 break; 774 case 0x0a: /* ALUA state transition */ 775 blk_stat = BLK_STS_TRANSPORT; 776 fallthrough; 777 default: 778 action = ACTION_FAIL; 779 break; 780 } 781 } else 782 action = ACTION_FAIL; 783 break; 784 case VOLUME_OVERFLOW: 785 /* See SSC3rXX or current. */ 786 action = ACTION_FAIL; 787 break; 788 case DATA_PROTECT: 789 action = ACTION_FAIL; 790 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) || 791 (sshdr.asc == 0x55 && 792 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) { 793 /* Insufficient zone resources */ 794 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE; 795 } 796 break; 797 default: 798 action = ACTION_FAIL; 799 break; 800 } 801 } else 802 action = ACTION_FAIL; 803 804 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 805 action = ACTION_FAIL; 806 807 switch (action) { 808 case ACTION_FAIL: 809 /* Give up and fail the remainder of the request */ 810 if (!(req->rq_flags & RQF_QUIET)) { 811 static DEFINE_RATELIMIT_STATE(_rs, 812 DEFAULT_RATELIMIT_INTERVAL, 813 DEFAULT_RATELIMIT_BURST); 814 815 if (unlikely(scsi_logging_level)) 816 level = 817 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 818 SCSI_LOG_MLCOMPLETE_BITS); 819 820 /* 821 * if logging is enabled the failure will be printed 822 * in scsi_log_completion(), so avoid duplicate messages 823 */ 824 if (!level && __ratelimit(&_rs)) { 825 scsi_print_result(cmd, NULL, FAILED); 826 if (sense_valid) 827 scsi_print_sense(cmd); 828 scsi_print_command(cmd); 829 } 830 } 831 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req))) 832 return; 833 fallthrough; 834 case ACTION_REPREP: 835 scsi_io_completion_reprep(cmd, q); 836 break; 837 case ACTION_RETRY: 838 /* Retry the same command immediately */ 839 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 840 break; 841 case ACTION_DELAYED_RETRY: 842 /* Retry the same command after a delay */ 843 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 844 break; 845 } 846 } 847 848 /* 849 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 850 * new result that may suppress further error checking. Also modifies 851 * *blk_statp in some cases. 852 */ 853 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 854 blk_status_t *blk_statp) 855 { 856 bool sense_valid; 857 bool sense_current = true; /* false implies "deferred sense" */ 858 struct request *req = scsi_cmd_to_rq(cmd); 859 struct scsi_sense_hdr sshdr; 860 861 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 862 if (sense_valid) 863 sense_current = !scsi_sense_is_deferred(&sshdr); 864 865 if (blk_rq_is_passthrough(req)) { 866 if (sense_valid) { 867 /* 868 * SG_IO wants current and deferred errors 869 */ 870 cmd->sense_len = min(8 + cmd->sense_buffer[7], 871 SCSI_SENSE_BUFFERSIZE); 872 } 873 if (sense_current) 874 *blk_statp = scsi_result_to_blk_status(cmd, result); 875 } else if (blk_rq_bytes(req) == 0 && sense_current) { 876 /* 877 * Flush commands do not transfers any data, and thus cannot use 878 * good_bytes != blk_rq_bytes(req) as the signal for an error. 879 * This sets *blk_statp explicitly for the problem case. 880 */ 881 *blk_statp = scsi_result_to_blk_status(cmd, result); 882 } 883 /* 884 * Recovered errors need reporting, but they're always treated as 885 * success, so fiddle the result code here. For passthrough requests 886 * we already took a copy of the original into sreq->result which 887 * is what gets returned to the user 888 */ 889 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 890 bool do_print = true; 891 /* 892 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 893 * skip print since caller wants ATA registers. Only occurs 894 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 895 */ 896 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 897 do_print = false; 898 else if (req->rq_flags & RQF_QUIET) 899 do_print = false; 900 if (do_print) 901 scsi_print_sense(cmd); 902 result = 0; 903 /* for passthrough, *blk_statp may be set */ 904 *blk_statp = BLK_STS_OK; 905 } 906 /* 907 * Another corner case: the SCSI status byte is non-zero but 'good'. 908 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 909 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 910 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 911 * intermediate statuses (both obsolete in SAM-4) as good. 912 */ 913 if ((result & 0xff) && scsi_status_is_good(result)) { 914 result = 0; 915 *blk_statp = BLK_STS_OK; 916 } 917 return result; 918 } 919 920 /** 921 * scsi_io_completion - Completion processing for SCSI commands. 922 * @cmd: command that is finished. 923 * @good_bytes: number of processed bytes. 924 * 925 * We will finish off the specified number of sectors. If we are done, the 926 * command block will be released and the queue function will be goosed. If we 927 * are not done then we have to figure out what to do next: 928 * 929 * a) We can call scsi_io_completion_reprep(). The request will be 930 * unprepared and put back on the queue. Then a new command will 931 * be created for it. This should be used if we made forward 932 * progress, or if we want to switch from READ(10) to READ(6) for 933 * example. 934 * 935 * b) We can call scsi_io_completion_action(). The request will be 936 * put back on the queue and retried using the same command as 937 * before, possibly after a delay. 938 * 939 * c) We can call scsi_end_request() with blk_stat other than 940 * BLK_STS_OK, to fail the remainder of the request. 941 */ 942 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 943 { 944 int result = cmd->result; 945 struct request_queue *q = cmd->device->request_queue; 946 struct request *req = scsi_cmd_to_rq(cmd); 947 blk_status_t blk_stat = BLK_STS_OK; 948 949 if (unlikely(result)) /* a nz result may or may not be an error */ 950 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 951 952 /* 953 * Next deal with any sectors which we were able to correctly 954 * handle. 955 */ 956 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 957 "%u sectors total, %d bytes done.\n", 958 blk_rq_sectors(req), good_bytes)); 959 960 /* 961 * Failed, zero length commands always need to drop down 962 * to retry code. Fast path should return in this block. 963 */ 964 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 965 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 966 return; /* no bytes remaining */ 967 } 968 969 /* Kill remainder if no retries. */ 970 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 971 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 972 WARN_ONCE(true, 973 "Bytes remaining after failed, no-retry command"); 974 return; 975 } 976 977 /* 978 * If there had been no error, but we have leftover bytes in the 979 * request just queue the command up again. 980 */ 981 if (likely(result == 0)) 982 scsi_io_completion_reprep(cmd, q); 983 else 984 scsi_io_completion_action(cmd, result); 985 } 986 987 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 988 struct request *rq) 989 { 990 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 991 !op_is_write(req_op(rq)) && 992 sdev->host->hostt->dma_need_drain(rq); 993 } 994 995 /** 996 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists 997 * @cmd: SCSI command data structure to initialize. 998 * 999 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled 1000 * for @cmd. 1001 * 1002 * Returns: 1003 * * BLK_STS_OK - on success 1004 * * BLK_STS_RESOURCE - if the failure is retryable 1005 * * BLK_STS_IOERR - if the failure is fatal 1006 */ 1007 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd) 1008 { 1009 struct scsi_device *sdev = cmd->device; 1010 struct request *rq = scsi_cmd_to_rq(cmd); 1011 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 1012 struct scatterlist *last_sg = NULL; 1013 blk_status_t ret; 1014 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 1015 int count; 1016 1017 if (WARN_ON_ONCE(!nr_segs)) 1018 return BLK_STS_IOERR; 1019 1020 /* 1021 * Make sure there is space for the drain. The driver must adjust 1022 * max_hw_segments to be prepared for this. 1023 */ 1024 if (need_drain) 1025 nr_segs++; 1026 1027 /* 1028 * If sg table allocation fails, requeue request later. 1029 */ 1030 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1031 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1032 return BLK_STS_RESOURCE; 1033 1034 /* 1035 * Next, walk the list, and fill in the addresses and sizes of 1036 * each segment. 1037 */ 1038 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1039 1040 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) { 1041 unsigned int pad_len = 1042 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1043 1044 last_sg->length += pad_len; 1045 cmd->extra_len += pad_len; 1046 } 1047 1048 if (need_drain) { 1049 sg_unmark_end(last_sg); 1050 last_sg = sg_next(last_sg); 1051 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1052 sg_mark_end(last_sg); 1053 1054 cmd->extra_len += sdev->dma_drain_len; 1055 count++; 1056 } 1057 1058 BUG_ON(count > cmd->sdb.table.nents); 1059 cmd->sdb.table.nents = count; 1060 cmd->sdb.length = blk_rq_payload_bytes(rq); 1061 1062 if (blk_integrity_rq(rq)) { 1063 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1064 int ivecs; 1065 1066 if (WARN_ON_ONCE(!prot_sdb)) { 1067 /* 1068 * This can happen if someone (e.g. multipath) 1069 * queues a command to a device on an adapter 1070 * that does not support DIX. 1071 */ 1072 ret = BLK_STS_IOERR; 1073 goto out_free_sgtables; 1074 } 1075 1076 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1077 1078 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1079 prot_sdb->table.sgl, 1080 SCSI_INLINE_PROT_SG_CNT)) { 1081 ret = BLK_STS_RESOURCE; 1082 goto out_free_sgtables; 1083 } 1084 1085 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1086 prot_sdb->table.sgl); 1087 BUG_ON(count > ivecs); 1088 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1089 1090 cmd->prot_sdb = prot_sdb; 1091 cmd->prot_sdb->table.nents = count; 1092 } 1093 1094 return BLK_STS_OK; 1095 out_free_sgtables: 1096 scsi_free_sgtables(cmd); 1097 return ret; 1098 } 1099 EXPORT_SYMBOL(scsi_alloc_sgtables); 1100 1101 /** 1102 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1103 * @rq: Request associated with the SCSI command to be initialized. 1104 * 1105 * This function initializes the members of struct scsi_cmnd that must be 1106 * initialized before request processing starts and that won't be 1107 * reinitialized if a SCSI command is requeued. 1108 */ 1109 static void scsi_initialize_rq(struct request *rq) 1110 { 1111 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1112 1113 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1114 cmd->cmd_len = MAX_COMMAND_SIZE; 1115 cmd->sense_len = 0; 1116 init_rcu_head(&cmd->rcu); 1117 cmd->jiffies_at_alloc = jiffies; 1118 cmd->retries = 0; 1119 } 1120 1121 struct request *scsi_alloc_request(struct request_queue *q, 1122 unsigned int op, blk_mq_req_flags_t flags) 1123 { 1124 struct request *rq; 1125 1126 rq = blk_mq_alloc_request(q, op, flags); 1127 if (!IS_ERR(rq)) 1128 scsi_initialize_rq(rq); 1129 return rq; 1130 } 1131 EXPORT_SYMBOL_GPL(scsi_alloc_request); 1132 1133 /* 1134 * Only called when the request isn't completed by SCSI, and not freed by 1135 * SCSI 1136 */ 1137 static void scsi_cleanup_rq(struct request *rq) 1138 { 1139 if (rq->rq_flags & RQF_DONTPREP) { 1140 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1141 rq->rq_flags &= ~RQF_DONTPREP; 1142 } 1143 } 1144 1145 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1146 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1147 { 1148 struct request *rq = scsi_cmd_to_rq(cmd); 1149 1150 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) { 1151 cmd->flags |= SCMD_INITIALIZED; 1152 scsi_initialize_rq(rq); 1153 } 1154 1155 cmd->device = dev; 1156 INIT_LIST_HEAD(&cmd->eh_entry); 1157 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1158 } 1159 1160 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1161 struct request *req) 1162 { 1163 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1164 1165 /* 1166 * Passthrough requests may transfer data, in which case they must 1167 * a bio attached to them. Or they might contain a SCSI command 1168 * that does not transfer data, in which case they may optionally 1169 * submit a request without an attached bio. 1170 */ 1171 if (req->bio) { 1172 blk_status_t ret = scsi_alloc_sgtables(cmd); 1173 if (unlikely(ret != BLK_STS_OK)) 1174 return ret; 1175 } else { 1176 BUG_ON(blk_rq_bytes(req)); 1177 1178 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1179 } 1180 1181 cmd->transfersize = blk_rq_bytes(req); 1182 return BLK_STS_OK; 1183 } 1184 1185 static blk_status_t 1186 scsi_device_state_check(struct scsi_device *sdev, struct request *req) 1187 { 1188 switch (sdev->sdev_state) { 1189 case SDEV_CREATED: 1190 return BLK_STS_OK; 1191 case SDEV_OFFLINE: 1192 case SDEV_TRANSPORT_OFFLINE: 1193 /* 1194 * If the device is offline we refuse to process any 1195 * commands. The device must be brought online 1196 * before trying any recovery commands. 1197 */ 1198 if (!sdev->offline_already) { 1199 sdev->offline_already = true; 1200 sdev_printk(KERN_ERR, sdev, 1201 "rejecting I/O to offline device\n"); 1202 } 1203 return BLK_STS_IOERR; 1204 case SDEV_DEL: 1205 /* 1206 * If the device is fully deleted, we refuse to 1207 * process any commands as well. 1208 */ 1209 sdev_printk(KERN_ERR, sdev, 1210 "rejecting I/O to dead device\n"); 1211 return BLK_STS_IOERR; 1212 case SDEV_BLOCK: 1213 case SDEV_CREATED_BLOCK: 1214 return BLK_STS_RESOURCE; 1215 case SDEV_QUIESCE: 1216 /* 1217 * If the device is blocked we only accept power management 1218 * commands. 1219 */ 1220 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM))) 1221 return BLK_STS_RESOURCE; 1222 return BLK_STS_OK; 1223 default: 1224 /* 1225 * For any other not fully online state we only allow 1226 * power management commands. 1227 */ 1228 if (req && !(req->rq_flags & RQF_PM)) 1229 return BLK_STS_OFFLINE; 1230 return BLK_STS_OK; 1231 } 1232 } 1233 1234 /* 1235 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token 1236 * and return the token else return -1. 1237 */ 1238 static inline int scsi_dev_queue_ready(struct request_queue *q, 1239 struct scsi_device *sdev) 1240 { 1241 int token; 1242 1243 token = sbitmap_get(&sdev->budget_map); 1244 if (atomic_read(&sdev->device_blocked)) { 1245 if (token < 0) 1246 goto out; 1247 1248 if (scsi_device_busy(sdev) > 1) 1249 goto out_dec; 1250 1251 /* 1252 * unblock after device_blocked iterates to zero 1253 */ 1254 if (atomic_dec_return(&sdev->device_blocked) > 0) 1255 goto out_dec; 1256 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1257 "unblocking device at zero depth\n")); 1258 } 1259 1260 return token; 1261 out_dec: 1262 if (token >= 0) 1263 sbitmap_put(&sdev->budget_map, token); 1264 out: 1265 return -1; 1266 } 1267 1268 /* 1269 * scsi_target_queue_ready: checks if there we can send commands to target 1270 * @sdev: scsi device on starget to check. 1271 */ 1272 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1273 struct scsi_device *sdev) 1274 { 1275 struct scsi_target *starget = scsi_target(sdev); 1276 unsigned int busy; 1277 1278 if (starget->single_lun) { 1279 spin_lock_irq(shost->host_lock); 1280 if (starget->starget_sdev_user && 1281 starget->starget_sdev_user != sdev) { 1282 spin_unlock_irq(shost->host_lock); 1283 return 0; 1284 } 1285 starget->starget_sdev_user = sdev; 1286 spin_unlock_irq(shost->host_lock); 1287 } 1288 1289 if (starget->can_queue <= 0) 1290 return 1; 1291 1292 busy = atomic_inc_return(&starget->target_busy) - 1; 1293 if (atomic_read(&starget->target_blocked) > 0) { 1294 if (busy) 1295 goto starved; 1296 1297 /* 1298 * unblock after target_blocked iterates to zero 1299 */ 1300 if (atomic_dec_return(&starget->target_blocked) > 0) 1301 goto out_dec; 1302 1303 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1304 "unblocking target at zero depth\n")); 1305 } 1306 1307 if (busy >= starget->can_queue) 1308 goto starved; 1309 1310 return 1; 1311 1312 starved: 1313 spin_lock_irq(shost->host_lock); 1314 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1315 spin_unlock_irq(shost->host_lock); 1316 out_dec: 1317 if (starget->can_queue > 0) 1318 atomic_dec(&starget->target_busy); 1319 return 0; 1320 } 1321 1322 /* 1323 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1324 * return 0. We must end up running the queue again whenever 0 is 1325 * returned, else IO can hang. 1326 */ 1327 static inline int scsi_host_queue_ready(struct request_queue *q, 1328 struct Scsi_Host *shost, 1329 struct scsi_device *sdev, 1330 struct scsi_cmnd *cmd) 1331 { 1332 if (scsi_host_in_recovery(shost)) 1333 return 0; 1334 1335 if (atomic_read(&shost->host_blocked) > 0) { 1336 if (scsi_host_busy(shost) > 0) 1337 goto starved; 1338 1339 /* 1340 * unblock after host_blocked iterates to zero 1341 */ 1342 if (atomic_dec_return(&shost->host_blocked) > 0) 1343 goto out_dec; 1344 1345 SCSI_LOG_MLQUEUE(3, 1346 shost_printk(KERN_INFO, shost, 1347 "unblocking host at zero depth\n")); 1348 } 1349 1350 if (shost->host_self_blocked) 1351 goto starved; 1352 1353 /* We're OK to process the command, so we can't be starved */ 1354 if (!list_empty(&sdev->starved_entry)) { 1355 spin_lock_irq(shost->host_lock); 1356 if (!list_empty(&sdev->starved_entry)) 1357 list_del_init(&sdev->starved_entry); 1358 spin_unlock_irq(shost->host_lock); 1359 } 1360 1361 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1362 1363 return 1; 1364 1365 starved: 1366 spin_lock_irq(shost->host_lock); 1367 if (list_empty(&sdev->starved_entry)) 1368 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1369 spin_unlock_irq(shost->host_lock); 1370 out_dec: 1371 scsi_dec_host_busy(shost, cmd); 1372 return 0; 1373 } 1374 1375 /* 1376 * Busy state exporting function for request stacking drivers. 1377 * 1378 * For efficiency, no lock is taken to check the busy state of 1379 * shost/starget/sdev, since the returned value is not guaranteed and 1380 * may be changed after request stacking drivers call the function, 1381 * regardless of taking lock or not. 1382 * 1383 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1384 * needs to return 'not busy'. Otherwise, request stacking drivers 1385 * may hold requests forever. 1386 */ 1387 static bool scsi_mq_lld_busy(struct request_queue *q) 1388 { 1389 struct scsi_device *sdev = q->queuedata; 1390 struct Scsi_Host *shost; 1391 1392 if (blk_queue_dying(q)) 1393 return false; 1394 1395 shost = sdev->host; 1396 1397 /* 1398 * Ignore host/starget busy state. 1399 * Since block layer does not have a concept of fairness across 1400 * multiple queues, congestion of host/starget needs to be handled 1401 * in SCSI layer. 1402 */ 1403 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1404 return true; 1405 1406 return false; 1407 } 1408 1409 /* 1410 * Block layer request completion callback. May be called from interrupt 1411 * context. 1412 */ 1413 static void scsi_complete(struct request *rq) 1414 { 1415 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1416 enum scsi_disposition disposition; 1417 1418 INIT_LIST_HEAD(&cmd->eh_entry); 1419 1420 atomic_inc(&cmd->device->iodone_cnt); 1421 if (cmd->result) 1422 atomic_inc(&cmd->device->ioerr_cnt); 1423 1424 disposition = scsi_decide_disposition(cmd); 1425 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1426 disposition = SUCCESS; 1427 1428 scsi_log_completion(cmd, disposition); 1429 1430 switch (disposition) { 1431 case SUCCESS: 1432 scsi_finish_command(cmd); 1433 break; 1434 case NEEDS_RETRY: 1435 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1436 break; 1437 case ADD_TO_MLQUEUE: 1438 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1439 break; 1440 default: 1441 scsi_eh_scmd_add(cmd); 1442 break; 1443 } 1444 } 1445 1446 /** 1447 * scsi_dispatch_cmd - Dispatch a command to the low-level driver. 1448 * @cmd: command block we are dispatching. 1449 * 1450 * Return: nonzero return request was rejected and device's queue needs to be 1451 * plugged. 1452 */ 1453 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1454 { 1455 struct Scsi_Host *host = cmd->device->host; 1456 int rtn = 0; 1457 1458 atomic_inc(&cmd->device->iorequest_cnt); 1459 1460 /* check if the device is still usable */ 1461 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1462 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1463 * returns an immediate error upwards, and signals 1464 * that the device is no longer present */ 1465 cmd->result = DID_NO_CONNECT << 16; 1466 goto done; 1467 } 1468 1469 /* Check to see if the scsi lld made this device blocked. */ 1470 if (unlikely(scsi_device_blocked(cmd->device))) { 1471 /* 1472 * in blocked state, the command is just put back on 1473 * the device queue. The suspend state has already 1474 * blocked the queue so future requests should not 1475 * occur until the device transitions out of the 1476 * suspend state. 1477 */ 1478 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1479 "queuecommand : device blocked\n")); 1480 return SCSI_MLQUEUE_DEVICE_BUSY; 1481 } 1482 1483 /* Store the LUN value in cmnd, if needed. */ 1484 if (cmd->device->lun_in_cdb) 1485 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1486 (cmd->device->lun << 5 & 0xe0); 1487 1488 scsi_log_send(cmd); 1489 1490 /* 1491 * Before we queue this command, check if the command 1492 * length exceeds what the host adapter can handle. 1493 */ 1494 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1495 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1496 "queuecommand : command too long. " 1497 "cdb_size=%d host->max_cmd_len=%d\n", 1498 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1499 cmd->result = (DID_ABORT << 16); 1500 goto done; 1501 } 1502 1503 if (unlikely(host->shost_state == SHOST_DEL)) { 1504 cmd->result = (DID_NO_CONNECT << 16); 1505 goto done; 1506 1507 } 1508 1509 trace_scsi_dispatch_cmd_start(cmd); 1510 rtn = host->hostt->queuecommand(host, cmd); 1511 if (rtn) { 1512 trace_scsi_dispatch_cmd_error(cmd, rtn); 1513 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1514 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1515 rtn = SCSI_MLQUEUE_HOST_BUSY; 1516 1517 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1518 "queuecommand : request rejected\n")); 1519 } 1520 1521 return rtn; 1522 done: 1523 scsi_done(cmd); 1524 return 0; 1525 } 1526 1527 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1528 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1529 { 1530 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1531 sizeof(struct scatterlist); 1532 } 1533 1534 static blk_status_t scsi_prepare_cmd(struct request *req) 1535 { 1536 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1537 struct scsi_device *sdev = req->q->queuedata; 1538 struct Scsi_Host *shost = sdev->host; 1539 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1540 struct scatterlist *sg; 1541 1542 scsi_init_command(sdev, cmd); 1543 1544 cmd->eh_eflags = 0; 1545 cmd->allowed = 0; 1546 cmd->prot_type = 0; 1547 cmd->prot_flags = 0; 1548 cmd->submitter = 0; 1549 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1550 cmd->underflow = 0; 1551 cmd->transfersize = 0; 1552 cmd->host_scribble = NULL; 1553 cmd->result = 0; 1554 cmd->extra_len = 0; 1555 cmd->state = 0; 1556 if (in_flight) 1557 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1558 1559 /* 1560 * Only clear the driver-private command data if the LLD does not supply 1561 * a function to initialize that data. 1562 */ 1563 if (!shost->hostt->init_cmd_priv) 1564 memset(cmd + 1, 0, shost->hostt->cmd_size); 1565 1566 cmd->prot_op = SCSI_PROT_NORMAL; 1567 if (blk_rq_bytes(req)) 1568 cmd->sc_data_direction = rq_dma_dir(req); 1569 else 1570 cmd->sc_data_direction = DMA_NONE; 1571 1572 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1573 cmd->sdb.table.sgl = sg; 1574 1575 if (scsi_host_get_prot(shost)) { 1576 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1577 1578 cmd->prot_sdb->table.sgl = 1579 (struct scatterlist *)(cmd->prot_sdb + 1); 1580 } 1581 1582 /* 1583 * Special handling for passthrough commands, which don't go to the ULP 1584 * at all: 1585 */ 1586 if (blk_rq_is_passthrough(req)) 1587 return scsi_setup_scsi_cmnd(sdev, req); 1588 1589 if (sdev->handler && sdev->handler->prep_fn) { 1590 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1591 1592 if (ret != BLK_STS_OK) 1593 return ret; 1594 } 1595 1596 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1597 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1598 } 1599 1600 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly) 1601 { 1602 struct request *req = scsi_cmd_to_rq(cmd); 1603 1604 switch (cmd->submitter) { 1605 case SUBMITTED_BY_BLOCK_LAYER: 1606 break; 1607 case SUBMITTED_BY_SCSI_ERROR_HANDLER: 1608 return scsi_eh_done(cmd); 1609 case SUBMITTED_BY_SCSI_RESET_IOCTL: 1610 return; 1611 } 1612 1613 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q))) 1614 return; 1615 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1616 return; 1617 trace_scsi_dispatch_cmd_done(cmd); 1618 1619 if (complete_directly) 1620 blk_mq_complete_request_direct(req, scsi_complete); 1621 else 1622 blk_mq_complete_request(req); 1623 } 1624 1625 void scsi_done(struct scsi_cmnd *cmd) 1626 { 1627 scsi_done_internal(cmd, false); 1628 } 1629 EXPORT_SYMBOL(scsi_done); 1630 1631 void scsi_done_direct(struct scsi_cmnd *cmd) 1632 { 1633 scsi_done_internal(cmd, true); 1634 } 1635 EXPORT_SYMBOL(scsi_done_direct); 1636 1637 static void scsi_mq_put_budget(struct request_queue *q, int budget_token) 1638 { 1639 struct scsi_device *sdev = q->queuedata; 1640 1641 sbitmap_put(&sdev->budget_map, budget_token); 1642 } 1643 1644 /* 1645 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 1646 * not change behaviour from the previous unplug mechanism, experimentation 1647 * may prove this needs changing. 1648 */ 1649 #define SCSI_QUEUE_DELAY 3 1650 1651 static int scsi_mq_get_budget(struct request_queue *q) 1652 { 1653 struct scsi_device *sdev = q->queuedata; 1654 int token = scsi_dev_queue_ready(q, sdev); 1655 1656 if (token >= 0) 1657 return token; 1658 1659 atomic_inc(&sdev->restarts); 1660 1661 /* 1662 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1663 * .restarts must be incremented before .device_busy is read because the 1664 * code in scsi_run_queue_async() depends on the order of these operations. 1665 */ 1666 smp_mb__after_atomic(); 1667 1668 /* 1669 * If all in-flight requests originated from this LUN are completed 1670 * before reading .device_busy, sdev->device_busy will be observed as 1671 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1672 * soon. Otherwise, completion of one of these requests will observe 1673 * the .restarts flag, and the request queue will be run for handling 1674 * this request, see scsi_end_request(). 1675 */ 1676 if (unlikely(scsi_device_busy(sdev) == 0 && 1677 !scsi_device_blocked(sdev))) 1678 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1679 return -1; 1680 } 1681 1682 static void scsi_mq_set_rq_budget_token(struct request *req, int token) 1683 { 1684 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1685 1686 cmd->budget_token = token; 1687 } 1688 1689 static int scsi_mq_get_rq_budget_token(struct request *req) 1690 { 1691 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1692 1693 return cmd->budget_token; 1694 } 1695 1696 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1697 const struct blk_mq_queue_data *bd) 1698 { 1699 struct request *req = bd->rq; 1700 struct request_queue *q = req->q; 1701 struct scsi_device *sdev = q->queuedata; 1702 struct Scsi_Host *shost = sdev->host; 1703 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1704 blk_status_t ret; 1705 int reason; 1706 1707 WARN_ON_ONCE(cmd->budget_token < 0); 1708 1709 /* 1710 * If the device is not in running state we will reject some or all 1711 * commands. 1712 */ 1713 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1714 ret = scsi_device_state_check(sdev, req); 1715 if (ret != BLK_STS_OK) 1716 goto out_put_budget; 1717 } 1718 1719 ret = BLK_STS_RESOURCE; 1720 if (!scsi_target_queue_ready(shost, sdev)) 1721 goto out_put_budget; 1722 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1723 goto out_dec_target_busy; 1724 1725 if (!(req->rq_flags & RQF_DONTPREP)) { 1726 ret = scsi_prepare_cmd(req); 1727 if (ret != BLK_STS_OK) 1728 goto out_dec_host_busy; 1729 req->rq_flags |= RQF_DONTPREP; 1730 } else { 1731 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1732 } 1733 1734 cmd->flags &= SCMD_PRESERVED_FLAGS; 1735 if (sdev->simple_tags) 1736 cmd->flags |= SCMD_TAGGED; 1737 if (bd->last) 1738 cmd->flags |= SCMD_LAST; 1739 1740 scsi_set_resid(cmd, 0); 1741 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1742 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER; 1743 1744 blk_mq_start_request(req); 1745 reason = scsi_dispatch_cmd(cmd); 1746 if (reason) { 1747 scsi_set_blocked(cmd, reason); 1748 ret = BLK_STS_RESOURCE; 1749 goto out_dec_host_busy; 1750 } 1751 1752 return BLK_STS_OK; 1753 1754 out_dec_host_busy: 1755 scsi_dec_host_busy(shost, cmd); 1756 out_dec_target_busy: 1757 if (scsi_target(sdev)->can_queue > 0) 1758 atomic_dec(&scsi_target(sdev)->target_busy); 1759 out_put_budget: 1760 scsi_mq_put_budget(q, cmd->budget_token); 1761 cmd->budget_token = -1; 1762 switch (ret) { 1763 case BLK_STS_OK: 1764 break; 1765 case BLK_STS_RESOURCE: 1766 case BLK_STS_ZONE_RESOURCE: 1767 if (scsi_device_blocked(sdev)) 1768 ret = BLK_STS_DEV_RESOURCE; 1769 break; 1770 case BLK_STS_AGAIN: 1771 cmd->result = DID_BUS_BUSY << 16; 1772 if (req->rq_flags & RQF_DONTPREP) 1773 scsi_mq_uninit_cmd(cmd); 1774 break; 1775 default: 1776 if (unlikely(!scsi_device_online(sdev))) 1777 cmd->result = DID_NO_CONNECT << 16; 1778 else 1779 cmd->result = DID_ERROR << 16; 1780 /* 1781 * Make sure to release all allocated resources when 1782 * we hit an error, as we will never see this command 1783 * again. 1784 */ 1785 if (req->rq_flags & RQF_DONTPREP) 1786 scsi_mq_uninit_cmd(cmd); 1787 scsi_run_queue_async(sdev); 1788 break; 1789 } 1790 return ret; 1791 } 1792 1793 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1794 bool reserved) 1795 { 1796 if (reserved) 1797 return BLK_EH_RESET_TIMER; 1798 return scsi_times_out(req); 1799 } 1800 1801 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1802 unsigned int hctx_idx, unsigned int numa_node) 1803 { 1804 struct Scsi_Host *shost = set->driver_data; 1805 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1806 struct scatterlist *sg; 1807 int ret = 0; 1808 1809 cmd->sense_buffer = 1810 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node); 1811 if (!cmd->sense_buffer) 1812 return -ENOMEM; 1813 1814 if (scsi_host_get_prot(shost)) { 1815 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1816 shost->hostt->cmd_size; 1817 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1818 } 1819 1820 if (shost->hostt->init_cmd_priv) { 1821 ret = shost->hostt->init_cmd_priv(shost, cmd); 1822 if (ret < 0) 1823 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1824 } 1825 1826 return ret; 1827 } 1828 1829 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1830 unsigned int hctx_idx) 1831 { 1832 struct Scsi_Host *shost = set->driver_data; 1833 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1834 1835 if (shost->hostt->exit_cmd_priv) 1836 shost->hostt->exit_cmd_priv(shost, cmd); 1837 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1838 } 1839 1840 1841 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1842 { 1843 struct Scsi_Host *shost = hctx->driver_data; 1844 1845 if (shost->hostt->mq_poll) 1846 return shost->hostt->mq_poll(shost, hctx->queue_num); 1847 1848 return 0; 1849 } 1850 1851 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1852 unsigned int hctx_idx) 1853 { 1854 struct Scsi_Host *shost = data; 1855 1856 hctx->driver_data = shost; 1857 return 0; 1858 } 1859 1860 static int scsi_map_queues(struct blk_mq_tag_set *set) 1861 { 1862 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1863 1864 if (shost->hostt->map_queues) 1865 return shost->hostt->map_queues(shost); 1866 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1867 } 1868 1869 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1870 { 1871 struct device *dev = shost->dma_dev; 1872 1873 /* 1874 * this limit is imposed by hardware restrictions 1875 */ 1876 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1877 SG_MAX_SEGMENTS)); 1878 1879 if (scsi_host_prot_dma(shost)) { 1880 shost->sg_prot_tablesize = 1881 min_not_zero(shost->sg_prot_tablesize, 1882 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1883 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1884 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1885 } 1886 1887 if (dev->dma_mask) { 1888 shost->max_sectors = min_t(unsigned int, shost->max_sectors, 1889 dma_max_mapping_size(dev) >> SECTOR_SHIFT); 1890 } 1891 blk_queue_max_hw_sectors(q, shost->max_sectors); 1892 blk_queue_segment_boundary(q, shost->dma_boundary); 1893 dma_set_seg_boundary(dev, shost->dma_boundary); 1894 1895 blk_queue_max_segment_size(q, shost->max_segment_size); 1896 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1897 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1898 1899 /* 1900 * Set a reasonable default alignment: The larger of 32-byte (dword), 1901 * which is a common minimum for HBAs, and the minimum DMA alignment, 1902 * which is set by the platform. 1903 * 1904 * Devices that require a bigger alignment can increase it later. 1905 */ 1906 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1907 } 1908 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1909 1910 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1911 .get_budget = scsi_mq_get_budget, 1912 .put_budget = scsi_mq_put_budget, 1913 .queue_rq = scsi_queue_rq, 1914 .complete = scsi_complete, 1915 .timeout = scsi_timeout, 1916 #ifdef CONFIG_BLK_DEBUG_FS 1917 .show_rq = scsi_show_rq, 1918 #endif 1919 .init_request = scsi_mq_init_request, 1920 .exit_request = scsi_mq_exit_request, 1921 .cleanup_rq = scsi_cleanup_rq, 1922 .busy = scsi_mq_lld_busy, 1923 .map_queues = scsi_map_queues, 1924 .init_hctx = scsi_init_hctx, 1925 .poll = scsi_mq_poll, 1926 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1927 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1928 }; 1929 1930 1931 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1932 { 1933 struct Scsi_Host *shost = hctx->driver_data; 1934 1935 shost->hostt->commit_rqs(shost, hctx->queue_num); 1936 } 1937 1938 static const struct blk_mq_ops scsi_mq_ops = { 1939 .get_budget = scsi_mq_get_budget, 1940 .put_budget = scsi_mq_put_budget, 1941 .queue_rq = scsi_queue_rq, 1942 .commit_rqs = scsi_commit_rqs, 1943 .complete = scsi_complete, 1944 .timeout = scsi_timeout, 1945 #ifdef CONFIG_BLK_DEBUG_FS 1946 .show_rq = scsi_show_rq, 1947 #endif 1948 .init_request = scsi_mq_init_request, 1949 .exit_request = scsi_mq_exit_request, 1950 .cleanup_rq = scsi_cleanup_rq, 1951 .busy = scsi_mq_lld_busy, 1952 .map_queues = scsi_map_queues, 1953 .init_hctx = scsi_init_hctx, 1954 .poll = scsi_mq_poll, 1955 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1956 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1957 }; 1958 1959 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1960 { 1961 unsigned int cmd_size, sgl_size; 1962 struct blk_mq_tag_set *tag_set = &shost->tag_set; 1963 1964 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1965 scsi_mq_inline_sgl_size(shost)); 1966 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1967 if (scsi_host_get_prot(shost)) 1968 cmd_size += sizeof(struct scsi_data_buffer) + 1969 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1970 1971 memset(tag_set, 0, sizeof(*tag_set)); 1972 if (shost->hostt->commit_rqs) 1973 tag_set->ops = &scsi_mq_ops; 1974 else 1975 tag_set->ops = &scsi_mq_ops_no_commit; 1976 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 1977 tag_set->nr_maps = shost->nr_maps ? : 1; 1978 tag_set->queue_depth = shost->can_queue; 1979 tag_set->cmd_size = cmd_size; 1980 tag_set->numa_node = dev_to_node(shost->dma_dev); 1981 tag_set->flags = BLK_MQ_F_SHOULD_MERGE; 1982 tag_set->flags |= 1983 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1984 tag_set->driver_data = shost; 1985 if (shost->host_tagset) 1986 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1987 1988 return blk_mq_alloc_tag_set(tag_set); 1989 } 1990 1991 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1992 { 1993 blk_mq_free_tag_set(&shost->tag_set); 1994 } 1995 1996 /** 1997 * scsi_device_from_queue - return sdev associated with a request_queue 1998 * @q: The request queue to return the sdev from 1999 * 2000 * Return the sdev associated with a request queue or NULL if the 2001 * request_queue does not reference a SCSI device. 2002 */ 2003 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2004 { 2005 struct scsi_device *sdev = NULL; 2006 2007 if (q->mq_ops == &scsi_mq_ops_no_commit || 2008 q->mq_ops == &scsi_mq_ops) 2009 sdev = q->queuedata; 2010 if (!sdev || !get_device(&sdev->sdev_gendev)) 2011 sdev = NULL; 2012 2013 return sdev; 2014 } 2015 /* 2016 * pktcdvd should have been integrated into the SCSI layers, but for historical 2017 * reasons like the old IDE driver it isn't. This export allows it to safely 2018 * probe if a given device is a SCSI one and only attach to that. 2019 */ 2020 #ifdef CONFIG_CDROM_PKTCDVD_MODULE 2021 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2022 #endif 2023 2024 /** 2025 * scsi_block_requests - Utility function used by low-level drivers to prevent 2026 * further commands from being queued to the device. 2027 * @shost: host in question 2028 * 2029 * There is no timer nor any other means by which the requests get unblocked 2030 * other than the low-level driver calling scsi_unblock_requests(). 2031 */ 2032 void scsi_block_requests(struct Scsi_Host *shost) 2033 { 2034 shost->host_self_blocked = 1; 2035 } 2036 EXPORT_SYMBOL(scsi_block_requests); 2037 2038 /** 2039 * scsi_unblock_requests - Utility function used by low-level drivers to allow 2040 * further commands to be queued to the device. 2041 * @shost: host in question 2042 * 2043 * There is no timer nor any other means by which the requests get unblocked 2044 * other than the low-level driver calling scsi_unblock_requests(). This is done 2045 * as an API function so that changes to the internals of the scsi mid-layer 2046 * won't require wholesale changes to drivers that use this feature. 2047 */ 2048 void scsi_unblock_requests(struct Scsi_Host *shost) 2049 { 2050 shost->host_self_blocked = 0; 2051 scsi_run_host_queues(shost); 2052 } 2053 EXPORT_SYMBOL(scsi_unblock_requests); 2054 2055 void scsi_exit_queue(void) 2056 { 2057 kmem_cache_destroy(scsi_sense_cache); 2058 } 2059 2060 /** 2061 * scsi_mode_select - issue a mode select 2062 * @sdev: SCSI device to be queried 2063 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2064 * @sp: Save page bit (0 == don't save, 1 == save) 2065 * @buffer: request buffer (may not be smaller than eight bytes) 2066 * @len: length of request buffer. 2067 * @timeout: command timeout 2068 * @retries: number of retries before failing 2069 * @data: returns a structure abstracting the mode header data 2070 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2071 * must be SCSI_SENSE_BUFFERSIZE big. 2072 * 2073 * Returns zero if successful; negative error number or scsi 2074 * status on error 2075 * 2076 */ 2077 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp, 2078 unsigned char *buffer, int len, int timeout, int retries, 2079 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2080 { 2081 unsigned char cmd[10]; 2082 unsigned char *real_buffer; 2083 int ret; 2084 2085 memset(cmd, 0, sizeof(cmd)); 2086 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2087 2088 /* 2089 * Use MODE SELECT(10) if the device asked for it or if the mode page 2090 * and the mode select header cannot fit within the maximumm 255 bytes 2091 * of the MODE SELECT(6) command. 2092 */ 2093 if (sdev->use_10_for_ms || 2094 len + 4 > 255 || 2095 data->block_descriptor_length > 255) { 2096 if (len > 65535 - 8) 2097 return -EINVAL; 2098 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2099 if (!real_buffer) 2100 return -ENOMEM; 2101 memcpy(real_buffer + 8, buffer, len); 2102 len += 8; 2103 real_buffer[0] = 0; 2104 real_buffer[1] = 0; 2105 real_buffer[2] = data->medium_type; 2106 real_buffer[3] = data->device_specific; 2107 real_buffer[4] = data->longlba ? 0x01 : 0; 2108 real_buffer[5] = 0; 2109 put_unaligned_be16(data->block_descriptor_length, 2110 &real_buffer[6]); 2111 2112 cmd[0] = MODE_SELECT_10; 2113 put_unaligned_be16(len, &cmd[7]); 2114 } else { 2115 if (data->longlba) 2116 return -EINVAL; 2117 2118 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2119 if (!real_buffer) 2120 return -ENOMEM; 2121 memcpy(real_buffer + 4, buffer, len); 2122 len += 4; 2123 real_buffer[0] = 0; 2124 real_buffer[1] = data->medium_type; 2125 real_buffer[2] = data->device_specific; 2126 real_buffer[3] = data->block_descriptor_length; 2127 2128 cmd[0] = MODE_SELECT; 2129 cmd[4] = len; 2130 } 2131 2132 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2133 sshdr, timeout, retries, NULL); 2134 kfree(real_buffer); 2135 return ret; 2136 } 2137 EXPORT_SYMBOL_GPL(scsi_mode_select); 2138 2139 /** 2140 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2141 * @sdev: SCSI device to be queried 2142 * @dbd: set to prevent mode sense from returning block descriptors 2143 * @modepage: mode page being requested 2144 * @buffer: request buffer (may not be smaller than eight bytes) 2145 * @len: length of request buffer. 2146 * @timeout: command timeout 2147 * @retries: number of retries before failing 2148 * @data: returns a structure abstracting the mode header data 2149 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2150 * must be SCSI_SENSE_BUFFERSIZE big. 2151 * 2152 * Returns zero if successful, or a negative error number on failure 2153 */ 2154 int 2155 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2156 unsigned char *buffer, int len, int timeout, int retries, 2157 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2158 { 2159 unsigned char cmd[12]; 2160 int use_10_for_ms; 2161 int header_length; 2162 int result, retry_count = retries; 2163 struct scsi_sense_hdr my_sshdr; 2164 2165 memset(data, 0, sizeof(*data)); 2166 memset(&cmd[0], 0, 12); 2167 2168 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2169 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2170 cmd[2] = modepage; 2171 2172 /* caller might not be interested in sense, but we need it */ 2173 if (!sshdr) 2174 sshdr = &my_sshdr; 2175 2176 retry: 2177 use_10_for_ms = sdev->use_10_for_ms || len > 255; 2178 2179 if (use_10_for_ms) { 2180 if (len < 8 || len > 65535) 2181 return -EINVAL; 2182 2183 cmd[0] = MODE_SENSE_10; 2184 put_unaligned_be16(len, &cmd[7]); 2185 header_length = 8; 2186 } else { 2187 if (len < 4) 2188 return -EINVAL; 2189 2190 cmd[0] = MODE_SENSE; 2191 cmd[4] = len; 2192 header_length = 4; 2193 } 2194 2195 memset(buffer, 0, len); 2196 2197 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2198 sshdr, timeout, retries, NULL); 2199 if (result < 0) 2200 return result; 2201 2202 /* This code looks awful: what it's doing is making sure an 2203 * ILLEGAL REQUEST sense return identifies the actual command 2204 * byte as the problem. MODE_SENSE commands can return 2205 * ILLEGAL REQUEST if the code page isn't supported */ 2206 2207 if (!scsi_status_is_good(result)) { 2208 if (scsi_sense_valid(sshdr)) { 2209 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2210 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2211 /* 2212 * Invalid command operation code: retry using 2213 * MODE SENSE(6) if this was a MODE SENSE(10) 2214 * request, except if the request mode page is 2215 * too large for MODE SENSE single byte 2216 * allocation length field. 2217 */ 2218 if (use_10_for_ms) { 2219 if (len > 255) 2220 return -EIO; 2221 sdev->use_10_for_ms = 0; 2222 goto retry; 2223 } 2224 } 2225 if (scsi_status_is_check_condition(result) && 2226 sshdr->sense_key == UNIT_ATTENTION && 2227 retry_count) { 2228 retry_count--; 2229 goto retry; 2230 } 2231 } 2232 return -EIO; 2233 } 2234 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2235 (modepage == 6 || modepage == 8))) { 2236 /* Initio breakage? */ 2237 header_length = 0; 2238 data->length = 13; 2239 data->medium_type = 0; 2240 data->device_specific = 0; 2241 data->longlba = 0; 2242 data->block_descriptor_length = 0; 2243 } else if (use_10_for_ms) { 2244 data->length = get_unaligned_be16(&buffer[0]) + 2; 2245 data->medium_type = buffer[2]; 2246 data->device_specific = buffer[3]; 2247 data->longlba = buffer[4] & 0x01; 2248 data->block_descriptor_length = get_unaligned_be16(&buffer[6]); 2249 } else { 2250 data->length = buffer[0] + 1; 2251 data->medium_type = buffer[1]; 2252 data->device_specific = buffer[2]; 2253 data->block_descriptor_length = buffer[3]; 2254 } 2255 data->header_length = header_length; 2256 2257 return 0; 2258 } 2259 EXPORT_SYMBOL(scsi_mode_sense); 2260 2261 /** 2262 * scsi_test_unit_ready - test if unit is ready 2263 * @sdev: scsi device to change the state of. 2264 * @timeout: command timeout 2265 * @retries: number of retries before failing 2266 * @sshdr: outpout pointer for decoded sense information. 2267 * 2268 * Returns zero if unsuccessful or an error if TUR failed. For 2269 * removable media, UNIT_ATTENTION sets ->changed flag. 2270 **/ 2271 int 2272 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2273 struct scsi_sense_hdr *sshdr) 2274 { 2275 char cmd[] = { 2276 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2277 }; 2278 int result; 2279 2280 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2281 do { 2282 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2283 timeout, 1, NULL); 2284 if (sdev->removable && scsi_sense_valid(sshdr) && 2285 sshdr->sense_key == UNIT_ATTENTION) 2286 sdev->changed = 1; 2287 } while (scsi_sense_valid(sshdr) && 2288 sshdr->sense_key == UNIT_ATTENTION && --retries); 2289 2290 return result; 2291 } 2292 EXPORT_SYMBOL(scsi_test_unit_ready); 2293 2294 /** 2295 * scsi_device_set_state - Take the given device through the device state model. 2296 * @sdev: scsi device to change the state of. 2297 * @state: state to change to. 2298 * 2299 * Returns zero if successful or an error if the requested 2300 * transition is illegal. 2301 */ 2302 int 2303 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2304 { 2305 enum scsi_device_state oldstate = sdev->sdev_state; 2306 2307 if (state == oldstate) 2308 return 0; 2309 2310 switch (state) { 2311 case SDEV_CREATED: 2312 switch (oldstate) { 2313 case SDEV_CREATED_BLOCK: 2314 break; 2315 default: 2316 goto illegal; 2317 } 2318 break; 2319 2320 case SDEV_RUNNING: 2321 switch (oldstate) { 2322 case SDEV_CREATED: 2323 case SDEV_OFFLINE: 2324 case SDEV_TRANSPORT_OFFLINE: 2325 case SDEV_QUIESCE: 2326 case SDEV_BLOCK: 2327 break; 2328 default: 2329 goto illegal; 2330 } 2331 break; 2332 2333 case SDEV_QUIESCE: 2334 switch (oldstate) { 2335 case SDEV_RUNNING: 2336 case SDEV_OFFLINE: 2337 case SDEV_TRANSPORT_OFFLINE: 2338 break; 2339 default: 2340 goto illegal; 2341 } 2342 break; 2343 2344 case SDEV_OFFLINE: 2345 case SDEV_TRANSPORT_OFFLINE: 2346 switch (oldstate) { 2347 case SDEV_CREATED: 2348 case SDEV_RUNNING: 2349 case SDEV_QUIESCE: 2350 case SDEV_BLOCK: 2351 break; 2352 default: 2353 goto illegal; 2354 } 2355 break; 2356 2357 case SDEV_BLOCK: 2358 switch (oldstate) { 2359 case SDEV_RUNNING: 2360 case SDEV_CREATED_BLOCK: 2361 case SDEV_QUIESCE: 2362 case SDEV_OFFLINE: 2363 break; 2364 default: 2365 goto illegal; 2366 } 2367 break; 2368 2369 case SDEV_CREATED_BLOCK: 2370 switch (oldstate) { 2371 case SDEV_CREATED: 2372 break; 2373 default: 2374 goto illegal; 2375 } 2376 break; 2377 2378 case SDEV_CANCEL: 2379 switch (oldstate) { 2380 case SDEV_CREATED: 2381 case SDEV_RUNNING: 2382 case SDEV_QUIESCE: 2383 case SDEV_OFFLINE: 2384 case SDEV_TRANSPORT_OFFLINE: 2385 break; 2386 default: 2387 goto illegal; 2388 } 2389 break; 2390 2391 case SDEV_DEL: 2392 switch (oldstate) { 2393 case SDEV_CREATED: 2394 case SDEV_RUNNING: 2395 case SDEV_OFFLINE: 2396 case SDEV_TRANSPORT_OFFLINE: 2397 case SDEV_CANCEL: 2398 case SDEV_BLOCK: 2399 case SDEV_CREATED_BLOCK: 2400 break; 2401 default: 2402 goto illegal; 2403 } 2404 break; 2405 2406 } 2407 sdev->offline_already = false; 2408 sdev->sdev_state = state; 2409 return 0; 2410 2411 illegal: 2412 SCSI_LOG_ERROR_RECOVERY(1, 2413 sdev_printk(KERN_ERR, sdev, 2414 "Illegal state transition %s->%s", 2415 scsi_device_state_name(oldstate), 2416 scsi_device_state_name(state)) 2417 ); 2418 return -EINVAL; 2419 } 2420 EXPORT_SYMBOL(scsi_device_set_state); 2421 2422 /** 2423 * scsi_evt_emit - emit a single SCSI device uevent 2424 * @sdev: associated SCSI device 2425 * @evt: event to emit 2426 * 2427 * Send a single uevent (scsi_event) to the associated scsi_device. 2428 */ 2429 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2430 { 2431 int idx = 0; 2432 char *envp[3]; 2433 2434 switch (evt->evt_type) { 2435 case SDEV_EVT_MEDIA_CHANGE: 2436 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2437 break; 2438 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2439 scsi_rescan_device(&sdev->sdev_gendev); 2440 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2441 break; 2442 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2443 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2444 break; 2445 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2446 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2447 break; 2448 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2449 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2450 break; 2451 case SDEV_EVT_LUN_CHANGE_REPORTED: 2452 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2453 break; 2454 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2455 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2456 break; 2457 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2458 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2459 break; 2460 default: 2461 /* do nothing */ 2462 break; 2463 } 2464 2465 envp[idx++] = NULL; 2466 2467 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2468 } 2469 2470 /** 2471 * scsi_evt_thread - send a uevent for each scsi event 2472 * @work: work struct for scsi_device 2473 * 2474 * Dispatch queued events to their associated scsi_device kobjects 2475 * as uevents. 2476 */ 2477 void scsi_evt_thread(struct work_struct *work) 2478 { 2479 struct scsi_device *sdev; 2480 enum scsi_device_event evt_type; 2481 LIST_HEAD(event_list); 2482 2483 sdev = container_of(work, struct scsi_device, event_work); 2484 2485 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2486 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2487 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2488 2489 while (1) { 2490 struct scsi_event *evt; 2491 struct list_head *this, *tmp; 2492 unsigned long flags; 2493 2494 spin_lock_irqsave(&sdev->list_lock, flags); 2495 list_splice_init(&sdev->event_list, &event_list); 2496 spin_unlock_irqrestore(&sdev->list_lock, flags); 2497 2498 if (list_empty(&event_list)) 2499 break; 2500 2501 list_for_each_safe(this, tmp, &event_list) { 2502 evt = list_entry(this, struct scsi_event, node); 2503 list_del(&evt->node); 2504 scsi_evt_emit(sdev, evt); 2505 kfree(evt); 2506 } 2507 } 2508 } 2509 2510 /** 2511 * sdev_evt_send - send asserted event to uevent thread 2512 * @sdev: scsi_device event occurred on 2513 * @evt: event to send 2514 * 2515 * Assert scsi device event asynchronously. 2516 */ 2517 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2518 { 2519 unsigned long flags; 2520 2521 #if 0 2522 /* FIXME: currently this check eliminates all media change events 2523 * for polled devices. Need to update to discriminate between AN 2524 * and polled events */ 2525 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2526 kfree(evt); 2527 return; 2528 } 2529 #endif 2530 2531 spin_lock_irqsave(&sdev->list_lock, flags); 2532 list_add_tail(&evt->node, &sdev->event_list); 2533 schedule_work(&sdev->event_work); 2534 spin_unlock_irqrestore(&sdev->list_lock, flags); 2535 } 2536 EXPORT_SYMBOL_GPL(sdev_evt_send); 2537 2538 /** 2539 * sdev_evt_alloc - allocate a new scsi event 2540 * @evt_type: type of event to allocate 2541 * @gfpflags: GFP flags for allocation 2542 * 2543 * Allocates and returns a new scsi_event. 2544 */ 2545 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2546 gfp_t gfpflags) 2547 { 2548 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2549 if (!evt) 2550 return NULL; 2551 2552 evt->evt_type = evt_type; 2553 INIT_LIST_HEAD(&evt->node); 2554 2555 /* evt_type-specific initialization, if any */ 2556 switch (evt_type) { 2557 case SDEV_EVT_MEDIA_CHANGE: 2558 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2559 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2560 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2561 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2562 case SDEV_EVT_LUN_CHANGE_REPORTED: 2563 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2564 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2565 default: 2566 /* do nothing */ 2567 break; 2568 } 2569 2570 return evt; 2571 } 2572 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2573 2574 /** 2575 * sdev_evt_send_simple - send asserted event to uevent thread 2576 * @sdev: scsi_device event occurred on 2577 * @evt_type: type of event to send 2578 * @gfpflags: GFP flags for allocation 2579 * 2580 * Assert scsi device event asynchronously, given an event type. 2581 */ 2582 void sdev_evt_send_simple(struct scsi_device *sdev, 2583 enum scsi_device_event evt_type, gfp_t gfpflags) 2584 { 2585 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2586 if (!evt) { 2587 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2588 evt_type); 2589 return; 2590 } 2591 2592 sdev_evt_send(sdev, evt); 2593 } 2594 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2595 2596 /** 2597 * scsi_device_quiesce - Block all commands except power management. 2598 * @sdev: scsi device to quiesce. 2599 * 2600 * This works by trying to transition to the SDEV_QUIESCE state 2601 * (which must be a legal transition). When the device is in this 2602 * state, only power management requests will be accepted, all others will 2603 * be deferred. 2604 * 2605 * Must be called with user context, may sleep. 2606 * 2607 * Returns zero if unsuccessful or an error if not. 2608 */ 2609 int 2610 scsi_device_quiesce(struct scsi_device *sdev) 2611 { 2612 struct request_queue *q = sdev->request_queue; 2613 int err; 2614 2615 /* 2616 * It is allowed to call scsi_device_quiesce() multiple times from 2617 * the same context but concurrent scsi_device_quiesce() calls are 2618 * not allowed. 2619 */ 2620 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2621 2622 if (sdev->quiesced_by == current) 2623 return 0; 2624 2625 blk_set_pm_only(q); 2626 2627 blk_mq_freeze_queue(q); 2628 /* 2629 * Ensure that the effect of blk_set_pm_only() will be visible 2630 * for percpu_ref_tryget() callers that occur after the queue 2631 * unfreeze even if the queue was already frozen before this function 2632 * was called. See also https://lwn.net/Articles/573497/. 2633 */ 2634 synchronize_rcu(); 2635 blk_mq_unfreeze_queue(q); 2636 2637 mutex_lock(&sdev->state_mutex); 2638 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2639 if (err == 0) 2640 sdev->quiesced_by = current; 2641 else 2642 blk_clear_pm_only(q); 2643 mutex_unlock(&sdev->state_mutex); 2644 2645 return err; 2646 } 2647 EXPORT_SYMBOL(scsi_device_quiesce); 2648 2649 /** 2650 * scsi_device_resume - Restart user issued commands to a quiesced device. 2651 * @sdev: scsi device to resume. 2652 * 2653 * Moves the device from quiesced back to running and restarts the 2654 * queues. 2655 * 2656 * Must be called with user context, may sleep. 2657 */ 2658 void scsi_device_resume(struct scsi_device *sdev) 2659 { 2660 /* check if the device state was mutated prior to resume, and if 2661 * so assume the state is being managed elsewhere (for example 2662 * device deleted during suspend) 2663 */ 2664 mutex_lock(&sdev->state_mutex); 2665 if (sdev->sdev_state == SDEV_QUIESCE) 2666 scsi_device_set_state(sdev, SDEV_RUNNING); 2667 if (sdev->quiesced_by) { 2668 sdev->quiesced_by = NULL; 2669 blk_clear_pm_only(sdev->request_queue); 2670 } 2671 mutex_unlock(&sdev->state_mutex); 2672 } 2673 EXPORT_SYMBOL(scsi_device_resume); 2674 2675 static void 2676 device_quiesce_fn(struct scsi_device *sdev, void *data) 2677 { 2678 scsi_device_quiesce(sdev); 2679 } 2680 2681 void 2682 scsi_target_quiesce(struct scsi_target *starget) 2683 { 2684 starget_for_each_device(starget, NULL, device_quiesce_fn); 2685 } 2686 EXPORT_SYMBOL(scsi_target_quiesce); 2687 2688 static void 2689 device_resume_fn(struct scsi_device *sdev, void *data) 2690 { 2691 scsi_device_resume(sdev); 2692 } 2693 2694 void 2695 scsi_target_resume(struct scsi_target *starget) 2696 { 2697 starget_for_each_device(starget, NULL, device_resume_fn); 2698 } 2699 EXPORT_SYMBOL(scsi_target_resume); 2700 2701 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev) 2702 { 2703 if (scsi_device_set_state(sdev, SDEV_BLOCK)) 2704 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2705 2706 return 0; 2707 } 2708 2709 void scsi_start_queue(struct scsi_device *sdev) 2710 { 2711 if (cmpxchg(&sdev->queue_stopped, 1, 0)) 2712 blk_mq_unquiesce_queue(sdev->request_queue); 2713 } 2714 2715 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait) 2716 { 2717 /* 2718 * The atomic variable of ->queue_stopped covers that 2719 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue. 2720 * 2721 * However, we still need to wait until quiesce is done 2722 * in case that queue has been stopped. 2723 */ 2724 if (!cmpxchg(&sdev->queue_stopped, 0, 1)) { 2725 if (nowait) 2726 blk_mq_quiesce_queue_nowait(sdev->request_queue); 2727 else 2728 blk_mq_quiesce_queue(sdev->request_queue); 2729 } else { 2730 if (!nowait) 2731 blk_mq_wait_quiesce_done(sdev->request_queue); 2732 } 2733 } 2734 2735 /** 2736 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2737 * @sdev: device to block 2738 * 2739 * Pause SCSI command processing on the specified device. Does not sleep. 2740 * 2741 * Returns zero if successful or a negative error code upon failure. 2742 * 2743 * Notes: 2744 * This routine transitions the device to the SDEV_BLOCK state (which must be 2745 * a legal transition). When the device is in this state, command processing 2746 * is paused until the device leaves the SDEV_BLOCK state. See also 2747 * scsi_internal_device_unblock_nowait(). 2748 */ 2749 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2750 { 2751 int ret = __scsi_internal_device_block_nowait(sdev); 2752 2753 /* 2754 * The device has transitioned to SDEV_BLOCK. Stop the 2755 * block layer from calling the midlayer with this device's 2756 * request queue. 2757 */ 2758 if (!ret) 2759 scsi_stop_queue(sdev, true); 2760 return ret; 2761 } 2762 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2763 2764 /** 2765 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2766 * @sdev: device to block 2767 * 2768 * Pause SCSI command processing on the specified device and wait until all 2769 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2770 * 2771 * Returns zero if successful or a negative error code upon failure. 2772 * 2773 * Note: 2774 * This routine transitions the device to the SDEV_BLOCK state (which must be 2775 * a legal transition). When the device is in this state, command processing 2776 * is paused until the device leaves the SDEV_BLOCK state. See also 2777 * scsi_internal_device_unblock(). 2778 */ 2779 static int scsi_internal_device_block(struct scsi_device *sdev) 2780 { 2781 int err; 2782 2783 mutex_lock(&sdev->state_mutex); 2784 err = __scsi_internal_device_block_nowait(sdev); 2785 if (err == 0) 2786 scsi_stop_queue(sdev, false); 2787 mutex_unlock(&sdev->state_mutex); 2788 2789 return err; 2790 } 2791 2792 /** 2793 * scsi_internal_device_unblock_nowait - resume a device after a block request 2794 * @sdev: device to resume 2795 * @new_state: state to set the device to after unblocking 2796 * 2797 * Restart the device queue for a previously suspended SCSI device. Does not 2798 * sleep. 2799 * 2800 * Returns zero if successful or a negative error code upon failure. 2801 * 2802 * Notes: 2803 * This routine transitions the device to the SDEV_RUNNING state or to one of 2804 * the offline states (which must be a legal transition) allowing the midlayer 2805 * to goose the queue for this device. 2806 */ 2807 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2808 enum scsi_device_state new_state) 2809 { 2810 switch (new_state) { 2811 case SDEV_RUNNING: 2812 case SDEV_TRANSPORT_OFFLINE: 2813 break; 2814 default: 2815 return -EINVAL; 2816 } 2817 2818 /* 2819 * Try to transition the scsi device to SDEV_RUNNING or one of the 2820 * offlined states and goose the device queue if successful. 2821 */ 2822 switch (sdev->sdev_state) { 2823 case SDEV_BLOCK: 2824 case SDEV_TRANSPORT_OFFLINE: 2825 sdev->sdev_state = new_state; 2826 break; 2827 case SDEV_CREATED_BLOCK: 2828 if (new_state == SDEV_TRANSPORT_OFFLINE || 2829 new_state == SDEV_OFFLINE) 2830 sdev->sdev_state = new_state; 2831 else 2832 sdev->sdev_state = SDEV_CREATED; 2833 break; 2834 case SDEV_CANCEL: 2835 case SDEV_OFFLINE: 2836 break; 2837 default: 2838 return -EINVAL; 2839 } 2840 scsi_start_queue(sdev); 2841 2842 return 0; 2843 } 2844 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2845 2846 /** 2847 * scsi_internal_device_unblock - resume a device after a block request 2848 * @sdev: device to resume 2849 * @new_state: state to set the device to after unblocking 2850 * 2851 * Restart the device queue for a previously suspended SCSI device. May sleep. 2852 * 2853 * Returns zero if successful or a negative error code upon failure. 2854 * 2855 * Notes: 2856 * This routine transitions the device to the SDEV_RUNNING state or to one of 2857 * the offline states (which must be a legal transition) allowing the midlayer 2858 * to goose the queue for this device. 2859 */ 2860 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2861 enum scsi_device_state new_state) 2862 { 2863 int ret; 2864 2865 mutex_lock(&sdev->state_mutex); 2866 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2867 mutex_unlock(&sdev->state_mutex); 2868 2869 return ret; 2870 } 2871 2872 static void 2873 device_block(struct scsi_device *sdev, void *data) 2874 { 2875 int ret; 2876 2877 ret = scsi_internal_device_block(sdev); 2878 2879 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n", 2880 dev_name(&sdev->sdev_gendev), ret); 2881 } 2882 2883 static int 2884 target_block(struct device *dev, void *data) 2885 { 2886 if (scsi_is_target_device(dev)) 2887 starget_for_each_device(to_scsi_target(dev), NULL, 2888 device_block); 2889 return 0; 2890 } 2891 2892 void 2893 scsi_target_block(struct device *dev) 2894 { 2895 if (scsi_is_target_device(dev)) 2896 starget_for_each_device(to_scsi_target(dev), NULL, 2897 device_block); 2898 else 2899 device_for_each_child(dev, NULL, target_block); 2900 } 2901 EXPORT_SYMBOL_GPL(scsi_target_block); 2902 2903 static void 2904 device_unblock(struct scsi_device *sdev, void *data) 2905 { 2906 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2907 } 2908 2909 static int 2910 target_unblock(struct device *dev, void *data) 2911 { 2912 if (scsi_is_target_device(dev)) 2913 starget_for_each_device(to_scsi_target(dev), data, 2914 device_unblock); 2915 return 0; 2916 } 2917 2918 void 2919 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2920 { 2921 if (scsi_is_target_device(dev)) 2922 starget_for_each_device(to_scsi_target(dev), &new_state, 2923 device_unblock); 2924 else 2925 device_for_each_child(dev, &new_state, target_unblock); 2926 } 2927 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2928 2929 int 2930 scsi_host_block(struct Scsi_Host *shost) 2931 { 2932 struct scsi_device *sdev; 2933 int ret = 0; 2934 2935 /* 2936 * Call scsi_internal_device_block_nowait so we can avoid 2937 * calling synchronize_rcu() for each LUN. 2938 */ 2939 shost_for_each_device(sdev, shost) { 2940 mutex_lock(&sdev->state_mutex); 2941 ret = scsi_internal_device_block_nowait(sdev); 2942 mutex_unlock(&sdev->state_mutex); 2943 if (ret) { 2944 scsi_device_put(sdev); 2945 break; 2946 } 2947 } 2948 2949 /* 2950 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so 2951 * calling synchronize_rcu() once is enough. 2952 */ 2953 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING); 2954 2955 if (!ret) 2956 synchronize_rcu(); 2957 2958 return ret; 2959 } 2960 EXPORT_SYMBOL_GPL(scsi_host_block); 2961 2962 int 2963 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 2964 { 2965 struct scsi_device *sdev; 2966 int ret = 0; 2967 2968 shost_for_each_device(sdev, shost) { 2969 ret = scsi_internal_device_unblock(sdev, new_state); 2970 if (ret) { 2971 scsi_device_put(sdev); 2972 break; 2973 } 2974 } 2975 return ret; 2976 } 2977 EXPORT_SYMBOL_GPL(scsi_host_unblock); 2978 2979 /** 2980 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2981 * @sgl: scatter-gather list 2982 * @sg_count: number of segments in sg 2983 * @offset: offset in bytes into sg, on return offset into the mapped area 2984 * @len: bytes to map, on return number of bytes mapped 2985 * 2986 * Returns virtual address of the start of the mapped page 2987 */ 2988 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2989 size_t *offset, size_t *len) 2990 { 2991 int i; 2992 size_t sg_len = 0, len_complete = 0; 2993 struct scatterlist *sg; 2994 struct page *page; 2995 2996 WARN_ON(!irqs_disabled()); 2997 2998 for_each_sg(sgl, sg, sg_count, i) { 2999 len_complete = sg_len; /* Complete sg-entries */ 3000 sg_len += sg->length; 3001 if (sg_len > *offset) 3002 break; 3003 } 3004 3005 if (unlikely(i == sg_count)) { 3006 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3007 "elements %d\n", 3008 __func__, sg_len, *offset, sg_count); 3009 WARN_ON(1); 3010 return NULL; 3011 } 3012 3013 /* Offset starting from the beginning of first page in this sg-entry */ 3014 *offset = *offset - len_complete + sg->offset; 3015 3016 /* Assumption: contiguous pages can be accessed as "page + i" */ 3017 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3018 *offset &= ~PAGE_MASK; 3019 3020 /* Bytes in this sg-entry from *offset to the end of the page */ 3021 sg_len = PAGE_SIZE - *offset; 3022 if (*len > sg_len) 3023 *len = sg_len; 3024 3025 return kmap_atomic(page); 3026 } 3027 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3028 3029 /** 3030 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3031 * @virt: virtual address to be unmapped 3032 */ 3033 void scsi_kunmap_atomic_sg(void *virt) 3034 { 3035 kunmap_atomic(virt); 3036 } 3037 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3038 3039 void sdev_disable_disk_events(struct scsi_device *sdev) 3040 { 3041 atomic_inc(&sdev->disk_events_disable_depth); 3042 } 3043 EXPORT_SYMBOL(sdev_disable_disk_events); 3044 3045 void sdev_enable_disk_events(struct scsi_device *sdev) 3046 { 3047 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3048 return; 3049 atomic_dec(&sdev->disk_events_disable_depth); 3050 } 3051 EXPORT_SYMBOL(sdev_enable_disk_events); 3052 3053 static unsigned char designator_prio(const unsigned char *d) 3054 { 3055 if (d[1] & 0x30) 3056 /* not associated with LUN */ 3057 return 0; 3058 3059 if (d[3] == 0) 3060 /* invalid length */ 3061 return 0; 3062 3063 /* 3064 * Order of preference for lun descriptor: 3065 * - SCSI name string 3066 * - NAA IEEE Registered Extended 3067 * - EUI-64 based 16-byte 3068 * - EUI-64 based 12-byte 3069 * - NAA IEEE Registered 3070 * - NAA IEEE Extended 3071 * - EUI-64 based 8-byte 3072 * - SCSI name string (truncated) 3073 * - T10 Vendor ID 3074 * as longer descriptors reduce the likelyhood 3075 * of identification clashes. 3076 */ 3077 3078 switch (d[1] & 0xf) { 3079 case 8: 3080 /* SCSI name string, variable-length UTF-8 */ 3081 return 9; 3082 case 3: 3083 switch (d[4] >> 4) { 3084 case 6: 3085 /* NAA registered extended */ 3086 return 8; 3087 case 5: 3088 /* NAA registered */ 3089 return 5; 3090 case 4: 3091 /* NAA extended */ 3092 return 4; 3093 case 3: 3094 /* NAA locally assigned */ 3095 return 1; 3096 default: 3097 break; 3098 } 3099 break; 3100 case 2: 3101 switch (d[3]) { 3102 case 16: 3103 /* EUI64-based, 16 byte */ 3104 return 7; 3105 case 12: 3106 /* EUI64-based, 12 byte */ 3107 return 6; 3108 case 8: 3109 /* EUI64-based, 8 byte */ 3110 return 3; 3111 default: 3112 break; 3113 } 3114 break; 3115 case 1: 3116 /* T10 vendor ID */ 3117 return 1; 3118 default: 3119 break; 3120 } 3121 3122 return 0; 3123 } 3124 3125 /** 3126 * scsi_vpd_lun_id - return a unique device identification 3127 * @sdev: SCSI device 3128 * @id: buffer for the identification 3129 * @id_len: length of the buffer 3130 * 3131 * Copies a unique device identification into @id based 3132 * on the information in the VPD page 0x83 of the device. 3133 * The string will be formatted as a SCSI name string. 3134 * 3135 * Returns the length of the identification or error on failure. 3136 * If the identifier is longer than the supplied buffer the actual 3137 * identifier length is returned and the buffer is not zero-padded. 3138 */ 3139 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3140 { 3141 u8 cur_id_prio = 0; 3142 u8 cur_id_size = 0; 3143 const unsigned char *d, *cur_id_str; 3144 const struct scsi_vpd *vpd_pg83; 3145 int id_size = -EINVAL; 3146 3147 rcu_read_lock(); 3148 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3149 if (!vpd_pg83) { 3150 rcu_read_unlock(); 3151 return -ENXIO; 3152 } 3153 3154 /* The id string must be at least 20 bytes + terminating NULL byte */ 3155 if (id_len < 21) { 3156 rcu_read_unlock(); 3157 return -EINVAL; 3158 } 3159 3160 memset(id, 0, id_len); 3161 for (d = vpd_pg83->data + 4; 3162 d < vpd_pg83->data + vpd_pg83->len; 3163 d += d[3] + 4) { 3164 u8 prio = designator_prio(d); 3165 3166 if (prio == 0 || cur_id_prio > prio) 3167 continue; 3168 3169 switch (d[1] & 0xf) { 3170 case 0x1: 3171 /* T10 Vendor ID */ 3172 if (cur_id_size > d[3]) 3173 break; 3174 cur_id_prio = prio; 3175 cur_id_size = d[3]; 3176 if (cur_id_size + 4 > id_len) 3177 cur_id_size = id_len - 4; 3178 cur_id_str = d + 4; 3179 id_size = snprintf(id, id_len, "t10.%*pE", 3180 cur_id_size, cur_id_str); 3181 break; 3182 case 0x2: 3183 /* EUI-64 */ 3184 cur_id_prio = prio; 3185 cur_id_size = d[3]; 3186 cur_id_str = d + 4; 3187 switch (cur_id_size) { 3188 case 8: 3189 id_size = snprintf(id, id_len, 3190 "eui.%8phN", 3191 cur_id_str); 3192 break; 3193 case 12: 3194 id_size = snprintf(id, id_len, 3195 "eui.%12phN", 3196 cur_id_str); 3197 break; 3198 case 16: 3199 id_size = snprintf(id, id_len, 3200 "eui.%16phN", 3201 cur_id_str); 3202 break; 3203 default: 3204 break; 3205 } 3206 break; 3207 case 0x3: 3208 /* NAA */ 3209 cur_id_prio = prio; 3210 cur_id_size = d[3]; 3211 cur_id_str = d + 4; 3212 switch (cur_id_size) { 3213 case 8: 3214 id_size = snprintf(id, id_len, 3215 "naa.%8phN", 3216 cur_id_str); 3217 break; 3218 case 16: 3219 id_size = snprintf(id, id_len, 3220 "naa.%16phN", 3221 cur_id_str); 3222 break; 3223 default: 3224 break; 3225 } 3226 break; 3227 case 0x8: 3228 /* SCSI name string */ 3229 if (cur_id_size > d[3]) 3230 break; 3231 /* Prefer others for truncated descriptor */ 3232 if (d[3] > id_len) { 3233 prio = 2; 3234 if (cur_id_prio > prio) 3235 break; 3236 } 3237 cur_id_prio = prio; 3238 cur_id_size = id_size = d[3]; 3239 cur_id_str = d + 4; 3240 if (cur_id_size >= id_len) 3241 cur_id_size = id_len - 1; 3242 memcpy(id, cur_id_str, cur_id_size); 3243 break; 3244 default: 3245 break; 3246 } 3247 } 3248 rcu_read_unlock(); 3249 3250 return id_size; 3251 } 3252 EXPORT_SYMBOL(scsi_vpd_lun_id); 3253 3254 /* 3255 * scsi_vpd_tpg_id - return a target port group identifier 3256 * @sdev: SCSI device 3257 * 3258 * Returns the Target Port Group identifier from the information 3259 * froom VPD page 0x83 of the device. 3260 * 3261 * Returns the identifier or error on failure. 3262 */ 3263 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3264 { 3265 const unsigned char *d; 3266 const struct scsi_vpd *vpd_pg83; 3267 int group_id = -EAGAIN, rel_port = -1; 3268 3269 rcu_read_lock(); 3270 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3271 if (!vpd_pg83) { 3272 rcu_read_unlock(); 3273 return -ENXIO; 3274 } 3275 3276 d = vpd_pg83->data + 4; 3277 while (d < vpd_pg83->data + vpd_pg83->len) { 3278 switch (d[1] & 0xf) { 3279 case 0x4: 3280 /* Relative target port */ 3281 rel_port = get_unaligned_be16(&d[6]); 3282 break; 3283 case 0x5: 3284 /* Target port group */ 3285 group_id = get_unaligned_be16(&d[6]); 3286 break; 3287 default: 3288 break; 3289 } 3290 d += d[3] + 4; 3291 } 3292 rcu_read_unlock(); 3293 3294 if (group_id >= 0 && rel_id && rel_port != -1) 3295 *rel_id = rel_port; 3296 3297 return group_id; 3298 } 3299 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3300 3301 /** 3302 * scsi_build_sense - build sense data for a command 3303 * @scmd: scsi command for which the sense should be formatted 3304 * @desc: Sense format (non-zero == descriptor format, 3305 * 0 == fixed format) 3306 * @key: Sense key 3307 * @asc: Additional sense code 3308 * @ascq: Additional sense code qualifier 3309 * 3310 **/ 3311 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq) 3312 { 3313 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq); 3314 scmd->result = SAM_STAT_CHECK_CONDITION; 3315 } 3316 EXPORT_SYMBOL_GPL(scsi_build_sense); 3317