xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision ea47eed33a3fe3d919e6e3cf4e4eb5507b817188)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35 
36 #include <trace/events/scsi.h>
37 
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41 
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46 
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48 
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54 
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56 				   unsigned char *sense_buffer)
57 {
58 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59 			sense_buffer);
60 }
61 
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63 	gfp_t gfp_mask, int numa_node)
64 {
65 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66 				     gfp_mask, numa_node);
67 }
68 
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71 	struct kmem_cache *cache;
72 	int ret = 0;
73 
74 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75 	if (cache)
76 		return 0;
77 
78 	mutex_lock(&scsi_sense_cache_mutex);
79 	if (shost->unchecked_isa_dma) {
80 		scsi_sense_isadma_cache =
81 			kmem_cache_create("scsi_sense_cache(DMA)",
82 				SCSI_SENSE_BUFFERSIZE, 0,
83 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84 		if (!scsi_sense_isadma_cache)
85 			ret = -ENOMEM;
86 	} else {
87 		scsi_sense_cache =
88 			kmem_cache_create_usercopy("scsi_sense_cache",
89 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
90 				0, SCSI_SENSE_BUFFERSIZE, NULL);
91 		if (!scsi_sense_cache)
92 			ret = -ENOMEM;
93 	}
94 
95 	mutex_unlock(&scsi_sense_cache_mutex);
96 	return ret;
97 }
98 
99 /*
100  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
101  * not change behaviour from the previous unplug mechanism, experimentation
102  * may prove this needs changing.
103  */
104 #define SCSI_QUEUE_DELAY	3
105 
106 static void
107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
108 {
109 	struct Scsi_Host *host = cmd->device->host;
110 	struct scsi_device *device = cmd->device;
111 	struct scsi_target *starget = scsi_target(device);
112 
113 	/*
114 	 * Set the appropriate busy bit for the device/host.
115 	 *
116 	 * If the host/device isn't busy, assume that something actually
117 	 * completed, and that we should be able to queue a command now.
118 	 *
119 	 * Note that the prior mid-layer assumption that any host could
120 	 * always queue at least one command is now broken.  The mid-layer
121 	 * will implement a user specifiable stall (see
122 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
123 	 * if a command is requeued with no other commands outstanding
124 	 * either for the device or for the host.
125 	 */
126 	switch (reason) {
127 	case SCSI_MLQUEUE_HOST_BUSY:
128 		atomic_set(&host->host_blocked, host->max_host_blocked);
129 		break;
130 	case SCSI_MLQUEUE_DEVICE_BUSY:
131 	case SCSI_MLQUEUE_EH_RETRY:
132 		atomic_set(&device->device_blocked,
133 			   device->max_device_blocked);
134 		break;
135 	case SCSI_MLQUEUE_TARGET_BUSY:
136 		atomic_set(&starget->target_blocked,
137 			   starget->max_target_blocked);
138 		break;
139 	}
140 }
141 
142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
143 {
144 	struct scsi_device *sdev = cmd->device;
145 
146 	if (cmd->request->rq_flags & RQF_DONTPREP) {
147 		cmd->request->rq_flags &= ~RQF_DONTPREP;
148 		scsi_mq_uninit_cmd(cmd);
149 	} else {
150 		WARN_ON_ONCE(true);
151 	}
152 	blk_mq_requeue_request(cmd->request, true);
153 	put_device(&sdev->sdev_gendev);
154 }
155 
156 /**
157  * __scsi_queue_insert - private queue insertion
158  * @cmd: The SCSI command being requeued
159  * @reason:  The reason for the requeue
160  * @unbusy: Whether the queue should be unbusied
161  *
162  * This is a private queue insertion.  The public interface
163  * scsi_queue_insert() always assumes the queue should be unbusied
164  * because it's always called before the completion.  This function is
165  * for a requeue after completion, which should only occur in this
166  * file.
167  */
168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
169 {
170 	struct scsi_device *device = cmd->device;
171 	struct request_queue *q = device->request_queue;
172 	unsigned long flags;
173 
174 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
175 		"Inserting command %p into mlqueue\n", cmd));
176 
177 	scsi_set_blocked(cmd, reason);
178 
179 	/*
180 	 * Decrement the counters, since these commands are no longer
181 	 * active on the host/device.
182 	 */
183 	if (unbusy)
184 		scsi_device_unbusy(device);
185 
186 	/*
187 	 * Requeue this command.  It will go before all other commands
188 	 * that are already in the queue. Schedule requeue work under
189 	 * lock such that the kblockd_schedule_work() call happens
190 	 * before blk_cleanup_queue() finishes.
191 	 */
192 	cmd->result = 0;
193 	if (q->mq_ops) {
194 		/*
195 		 * Before a SCSI command is dispatched,
196 		 * get_device(&sdev->sdev_gendev) is called and the host,
197 		 * target and device busy counters are increased. Since
198 		 * requeuing a request causes these actions to be repeated and
199 		 * since scsi_device_unbusy() has already been called,
200 		 * put_device(&device->sdev_gendev) must still be called. Call
201 		 * put_device() after blk_mq_requeue_request() to avoid that
202 		 * removal of the SCSI device can start before requeueing has
203 		 * happened.
204 		 */
205 		blk_mq_requeue_request(cmd->request, true);
206 		put_device(&device->sdev_gendev);
207 		return;
208 	}
209 	spin_lock_irqsave(q->queue_lock, flags);
210 	blk_requeue_request(q, cmd->request);
211 	kblockd_schedule_work(&device->requeue_work);
212 	spin_unlock_irqrestore(q->queue_lock, flags);
213 }
214 
215 /*
216  * Function:    scsi_queue_insert()
217  *
218  * Purpose:     Insert a command in the midlevel queue.
219  *
220  * Arguments:   cmd    - command that we are adding to queue.
221  *              reason - why we are inserting command to queue.
222  *
223  * Lock status: Assumed that lock is not held upon entry.
224  *
225  * Returns:     Nothing.
226  *
227  * Notes:       We do this for one of two cases.  Either the host is busy
228  *              and it cannot accept any more commands for the time being,
229  *              or the device returned QUEUE_FULL and can accept no more
230  *              commands.
231  * Notes:       This could be called either from an interrupt context or a
232  *              normal process context.
233  */
234 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
235 {
236 	__scsi_queue_insert(cmd, reason, true);
237 }
238 
239 
240 /**
241  * scsi_execute - insert request and wait for the result
242  * @sdev:	scsi device
243  * @cmd:	scsi command
244  * @data_direction: data direction
245  * @buffer:	data buffer
246  * @bufflen:	len of buffer
247  * @sense:	optional sense buffer
248  * @sshdr:	optional decoded sense header
249  * @timeout:	request timeout in seconds
250  * @retries:	number of times to retry request
251  * @flags:	flags for ->cmd_flags
252  * @rq_flags:	flags for ->rq_flags
253  * @resid:	optional residual length
254  *
255  * Returns the scsi_cmnd result field if a command was executed, or a negative
256  * Linux error code if we didn't get that far.
257  */
258 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
259 		 int data_direction, void *buffer, unsigned bufflen,
260 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
261 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
262 		 int *resid)
263 {
264 	struct request *req;
265 	struct scsi_request *rq;
266 	int ret = DRIVER_ERROR << 24;
267 
268 	req = blk_get_request(sdev->request_queue,
269 			data_direction == DMA_TO_DEVICE ?
270 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
271 	if (IS_ERR(req))
272 		return ret;
273 	rq = scsi_req(req);
274 
275 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
276 					buffer, bufflen, GFP_NOIO))
277 		goto out;
278 
279 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
280 	memcpy(rq->cmd, cmd, rq->cmd_len);
281 	rq->retries = retries;
282 	req->timeout = timeout;
283 	req->cmd_flags |= flags;
284 	req->rq_flags |= rq_flags | RQF_QUIET;
285 
286 	/*
287 	 * head injection *required* here otherwise quiesce won't work
288 	 */
289 	blk_execute_rq(req->q, NULL, req, 1);
290 
291 	/*
292 	 * Some devices (USB mass-storage in particular) may transfer
293 	 * garbage data together with a residue indicating that the data
294 	 * is invalid.  Prevent the garbage from being misinterpreted
295 	 * and prevent security leaks by zeroing out the excess data.
296 	 */
297 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
298 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
299 
300 	if (resid)
301 		*resid = rq->resid_len;
302 	if (sense && rq->sense_len)
303 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
304 	if (sshdr)
305 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
306 	ret = rq->result;
307  out:
308 	blk_put_request(req);
309 
310 	return ret;
311 }
312 EXPORT_SYMBOL(scsi_execute);
313 
314 /*
315  * Function:    scsi_init_cmd_errh()
316  *
317  * Purpose:     Initialize cmd fields related to error handling.
318  *
319  * Arguments:   cmd	- command that is ready to be queued.
320  *
321  * Notes:       This function has the job of initializing a number of
322  *              fields related to error handling.   Typically this will
323  *              be called once for each command, as required.
324  */
325 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
326 {
327 	cmd->serial_number = 0;
328 	scsi_set_resid(cmd, 0);
329 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
330 	if (cmd->cmd_len == 0)
331 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
332 }
333 
334 /*
335  * Decrement the host_busy counter and wake up the error handler if necessary.
336  * Avoid as follows that the error handler is not woken up if shost->host_busy
337  * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
338  * with an RCU read lock in this function to ensure that this function in its
339  * entirety either finishes before scsi_eh_scmd_add() increases the
340  * host_failed counter or that it notices the shost state change made by
341  * scsi_eh_scmd_add().
342  */
343 static void scsi_dec_host_busy(struct Scsi_Host *shost)
344 {
345 	unsigned long flags;
346 
347 	rcu_read_lock();
348 	atomic_dec(&shost->host_busy);
349 	if (unlikely(scsi_host_in_recovery(shost))) {
350 		spin_lock_irqsave(shost->host_lock, flags);
351 		if (shost->host_failed || shost->host_eh_scheduled)
352 			scsi_eh_wakeup(shost);
353 		spin_unlock_irqrestore(shost->host_lock, flags);
354 	}
355 	rcu_read_unlock();
356 }
357 
358 void scsi_device_unbusy(struct scsi_device *sdev)
359 {
360 	struct Scsi_Host *shost = sdev->host;
361 	struct scsi_target *starget = scsi_target(sdev);
362 
363 	scsi_dec_host_busy(shost);
364 
365 	if (starget->can_queue > 0)
366 		atomic_dec(&starget->target_busy);
367 
368 	atomic_dec(&sdev->device_busy);
369 }
370 
371 static void scsi_kick_queue(struct request_queue *q)
372 {
373 	if (q->mq_ops)
374 		blk_mq_start_hw_queues(q);
375 	else
376 		blk_run_queue(q);
377 }
378 
379 /*
380  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
381  * and call blk_run_queue for all the scsi_devices on the target -
382  * including current_sdev first.
383  *
384  * Called with *no* scsi locks held.
385  */
386 static void scsi_single_lun_run(struct scsi_device *current_sdev)
387 {
388 	struct Scsi_Host *shost = current_sdev->host;
389 	struct scsi_device *sdev, *tmp;
390 	struct scsi_target *starget = scsi_target(current_sdev);
391 	unsigned long flags;
392 
393 	spin_lock_irqsave(shost->host_lock, flags);
394 	starget->starget_sdev_user = NULL;
395 	spin_unlock_irqrestore(shost->host_lock, flags);
396 
397 	/*
398 	 * Call blk_run_queue for all LUNs on the target, starting with
399 	 * current_sdev. We race with others (to set starget_sdev_user),
400 	 * but in most cases, we will be first. Ideally, each LU on the
401 	 * target would get some limited time or requests on the target.
402 	 */
403 	scsi_kick_queue(current_sdev->request_queue);
404 
405 	spin_lock_irqsave(shost->host_lock, flags);
406 	if (starget->starget_sdev_user)
407 		goto out;
408 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
409 			same_target_siblings) {
410 		if (sdev == current_sdev)
411 			continue;
412 		if (scsi_device_get(sdev))
413 			continue;
414 
415 		spin_unlock_irqrestore(shost->host_lock, flags);
416 		scsi_kick_queue(sdev->request_queue);
417 		spin_lock_irqsave(shost->host_lock, flags);
418 
419 		scsi_device_put(sdev);
420 	}
421  out:
422 	spin_unlock_irqrestore(shost->host_lock, flags);
423 }
424 
425 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
426 {
427 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
428 		return true;
429 	if (atomic_read(&sdev->device_blocked) > 0)
430 		return true;
431 	return false;
432 }
433 
434 static inline bool scsi_target_is_busy(struct scsi_target *starget)
435 {
436 	if (starget->can_queue > 0) {
437 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
438 			return true;
439 		if (atomic_read(&starget->target_blocked) > 0)
440 			return true;
441 	}
442 	return false;
443 }
444 
445 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
446 {
447 	if (shost->can_queue > 0 &&
448 	    atomic_read(&shost->host_busy) >= shost->can_queue)
449 		return true;
450 	if (atomic_read(&shost->host_blocked) > 0)
451 		return true;
452 	if (shost->host_self_blocked)
453 		return true;
454 	return false;
455 }
456 
457 static void scsi_starved_list_run(struct Scsi_Host *shost)
458 {
459 	LIST_HEAD(starved_list);
460 	struct scsi_device *sdev;
461 	unsigned long flags;
462 
463 	spin_lock_irqsave(shost->host_lock, flags);
464 	list_splice_init(&shost->starved_list, &starved_list);
465 
466 	while (!list_empty(&starved_list)) {
467 		struct request_queue *slq;
468 
469 		/*
470 		 * As long as shost is accepting commands and we have
471 		 * starved queues, call blk_run_queue. scsi_request_fn
472 		 * drops the queue_lock and can add us back to the
473 		 * starved_list.
474 		 *
475 		 * host_lock protects the starved_list and starved_entry.
476 		 * scsi_request_fn must get the host_lock before checking
477 		 * or modifying starved_list or starved_entry.
478 		 */
479 		if (scsi_host_is_busy(shost))
480 			break;
481 
482 		sdev = list_entry(starved_list.next,
483 				  struct scsi_device, starved_entry);
484 		list_del_init(&sdev->starved_entry);
485 		if (scsi_target_is_busy(scsi_target(sdev))) {
486 			list_move_tail(&sdev->starved_entry,
487 				       &shost->starved_list);
488 			continue;
489 		}
490 
491 		/*
492 		 * Once we drop the host lock, a racing scsi_remove_device()
493 		 * call may remove the sdev from the starved list and destroy
494 		 * it and the queue.  Mitigate by taking a reference to the
495 		 * queue and never touching the sdev again after we drop the
496 		 * host lock.  Note: if __scsi_remove_device() invokes
497 		 * blk_cleanup_queue() before the queue is run from this
498 		 * function then blk_run_queue() will return immediately since
499 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
500 		 */
501 		slq = sdev->request_queue;
502 		if (!blk_get_queue(slq))
503 			continue;
504 		spin_unlock_irqrestore(shost->host_lock, flags);
505 
506 		scsi_kick_queue(slq);
507 		blk_put_queue(slq);
508 
509 		spin_lock_irqsave(shost->host_lock, flags);
510 	}
511 	/* put any unprocessed entries back */
512 	list_splice(&starved_list, &shost->starved_list);
513 	spin_unlock_irqrestore(shost->host_lock, flags);
514 }
515 
516 /*
517  * Function:   scsi_run_queue()
518  *
519  * Purpose:    Select a proper request queue to serve next
520  *
521  * Arguments:  q       - last request's queue
522  *
523  * Returns:     Nothing
524  *
525  * Notes:      The previous command was completely finished, start
526  *             a new one if possible.
527  */
528 static void scsi_run_queue(struct request_queue *q)
529 {
530 	struct scsi_device *sdev = q->queuedata;
531 
532 	if (scsi_target(sdev)->single_lun)
533 		scsi_single_lun_run(sdev);
534 	if (!list_empty(&sdev->host->starved_list))
535 		scsi_starved_list_run(sdev->host);
536 
537 	if (q->mq_ops)
538 		blk_mq_run_hw_queues(q, false);
539 	else
540 		blk_run_queue(q);
541 }
542 
543 void scsi_requeue_run_queue(struct work_struct *work)
544 {
545 	struct scsi_device *sdev;
546 	struct request_queue *q;
547 
548 	sdev = container_of(work, struct scsi_device, requeue_work);
549 	q = sdev->request_queue;
550 	scsi_run_queue(q);
551 }
552 
553 /*
554  * Function:	scsi_requeue_command()
555  *
556  * Purpose:	Handle post-processing of completed commands.
557  *
558  * Arguments:	q	- queue to operate on
559  *		cmd	- command that may need to be requeued.
560  *
561  * Returns:	Nothing
562  *
563  * Notes:	After command completion, there may be blocks left
564  *		over which weren't finished by the previous command
565  *		this can be for a number of reasons - the main one is
566  *		I/O errors in the middle of the request, in which case
567  *		we need to request the blocks that come after the bad
568  *		sector.
569  * Notes:	Upon return, cmd is a stale pointer.
570  */
571 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
572 {
573 	struct scsi_device *sdev = cmd->device;
574 	struct request *req = cmd->request;
575 	unsigned long flags;
576 
577 	spin_lock_irqsave(q->queue_lock, flags);
578 	blk_unprep_request(req);
579 	req->special = NULL;
580 	scsi_put_command(cmd);
581 	blk_requeue_request(q, req);
582 	spin_unlock_irqrestore(q->queue_lock, flags);
583 
584 	scsi_run_queue(q);
585 
586 	put_device(&sdev->sdev_gendev);
587 }
588 
589 void scsi_run_host_queues(struct Scsi_Host *shost)
590 {
591 	struct scsi_device *sdev;
592 
593 	shost_for_each_device(sdev, shost)
594 		scsi_run_queue(sdev->request_queue);
595 }
596 
597 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
598 {
599 	if (!blk_rq_is_passthrough(cmd->request)) {
600 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
601 
602 		if (drv->uninit_command)
603 			drv->uninit_command(cmd);
604 	}
605 }
606 
607 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
608 {
609 	struct scsi_data_buffer *sdb;
610 
611 	if (cmd->sdb.table.nents)
612 		sg_free_table_chained(&cmd->sdb.table, true);
613 	if (cmd->request->next_rq) {
614 		sdb = cmd->request->next_rq->special;
615 		if (sdb)
616 			sg_free_table_chained(&sdb->table, true);
617 	}
618 	if (scsi_prot_sg_count(cmd))
619 		sg_free_table_chained(&cmd->prot_sdb->table, true);
620 }
621 
622 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
623 {
624 	scsi_mq_free_sgtables(cmd);
625 	scsi_uninit_cmd(cmd);
626 	scsi_del_cmd_from_list(cmd);
627 }
628 
629 /*
630  * Function:    scsi_release_buffers()
631  *
632  * Purpose:     Free resources allocate for a scsi_command.
633  *
634  * Arguments:   cmd	- command that we are bailing.
635  *
636  * Lock status: Assumed that no lock is held upon entry.
637  *
638  * Returns:     Nothing
639  *
640  * Notes:       In the event that an upper level driver rejects a
641  *		command, we must release resources allocated during
642  *		the __init_io() function.  Primarily this would involve
643  *		the scatter-gather table.
644  */
645 static void scsi_release_buffers(struct scsi_cmnd *cmd)
646 {
647 	if (cmd->sdb.table.nents)
648 		sg_free_table_chained(&cmd->sdb.table, false);
649 
650 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
651 
652 	if (scsi_prot_sg_count(cmd))
653 		sg_free_table_chained(&cmd->prot_sdb->table, false);
654 }
655 
656 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
657 {
658 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
659 
660 	sg_free_table_chained(&bidi_sdb->table, false);
661 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
662 	cmd->request->next_rq->special = NULL;
663 }
664 
665 static bool scsi_end_request(struct request *req, blk_status_t error,
666 		unsigned int bytes, unsigned int bidi_bytes)
667 {
668 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
669 	struct scsi_device *sdev = cmd->device;
670 	struct request_queue *q = sdev->request_queue;
671 
672 	if (blk_update_request(req, error, bytes))
673 		return true;
674 
675 	/* Bidi request must be completed as a whole */
676 	if (unlikely(bidi_bytes) &&
677 	    blk_update_request(req->next_rq, error, bidi_bytes))
678 		return true;
679 
680 	if (blk_queue_add_random(q))
681 		add_disk_randomness(req->rq_disk);
682 
683 	if (!blk_rq_is_scsi(req)) {
684 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
685 		cmd->flags &= ~SCMD_INITIALIZED;
686 		destroy_rcu_head(&cmd->rcu);
687 	}
688 
689 	if (req->mq_ctx) {
690 		/*
691 		 * In the MQ case the command gets freed by __blk_mq_end_request,
692 		 * so we have to do all cleanup that depends on it earlier.
693 		 *
694 		 * We also can't kick the queues from irq context, so we
695 		 * will have to defer it to a workqueue.
696 		 */
697 		scsi_mq_uninit_cmd(cmd);
698 
699 		__blk_mq_end_request(req, error);
700 
701 		if (scsi_target(sdev)->single_lun ||
702 		    !list_empty(&sdev->host->starved_list))
703 			kblockd_schedule_work(&sdev->requeue_work);
704 		else
705 			blk_mq_run_hw_queues(q, true);
706 	} else {
707 		unsigned long flags;
708 
709 		if (bidi_bytes)
710 			scsi_release_bidi_buffers(cmd);
711 		scsi_release_buffers(cmd);
712 		scsi_put_command(cmd);
713 
714 		spin_lock_irqsave(q->queue_lock, flags);
715 		blk_finish_request(req, error);
716 		spin_unlock_irqrestore(q->queue_lock, flags);
717 
718 		scsi_run_queue(q);
719 	}
720 
721 	put_device(&sdev->sdev_gendev);
722 	return false;
723 }
724 
725 /**
726  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
727  * @cmd:	SCSI command
728  * @result:	scsi error code
729  *
730  * Translate a SCSI result code into a blk_status_t value. May reset the host
731  * byte of @cmd->result.
732  */
733 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
734 {
735 	switch (host_byte(result)) {
736 	case DID_OK:
737 		/*
738 		 * Also check the other bytes than the status byte in result
739 		 * to handle the case when a SCSI LLD sets result to
740 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
741 		 */
742 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
743 			return BLK_STS_OK;
744 		return BLK_STS_IOERR;
745 	case DID_TRANSPORT_FAILFAST:
746 		return BLK_STS_TRANSPORT;
747 	case DID_TARGET_FAILURE:
748 		set_host_byte(cmd, DID_OK);
749 		return BLK_STS_TARGET;
750 	case DID_NEXUS_FAILURE:
751 		return BLK_STS_NEXUS;
752 	case DID_ALLOC_FAILURE:
753 		set_host_byte(cmd, DID_OK);
754 		return BLK_STS_NOSPC;
755 	case DID_MEDIUM_ERROR:
756 		set_host_byte(cmd, DID_OK);
757 		return BLK_STS_MEDIUM;
758 	default:
759 		return BLK_STS_IOERR;
760 	}
761 }
762 
763 /*
764  * Function:    scsi_io_completion()
765  *
766  * Purpose:     Completion processing for block device I/O requests.
767  *
768  * Arguments:   cmd   - command that is finished.
769  *
770  * Lock status: Assumed that no lock is held upon entry.
771  *
772  * Returns:     Nothing
773  *
774  * Notes:       We will finish off the specified number of sectors.  If we
775  *		are done, the command block will be released and the queue
776  *		function will be goosed.  If we are not done then we have to
777  *		figure out what to do next:
778  *
779  *		a) We can call scsi_requeue_command().  The request
780  *		   will be unprepared and put back on the queue.  Then
781  *		   a new command will be created for it.  This should
782  *		   be used if we made forward progress, or if we want
783  *		   to switch from READ(10) to READ(6) for example.
784  *
785  *		b) We can call __scsi_queue_insert().  The request will
786  *		   be put back on the queue and retried using the same
787  *		   command as before, possibly after a delay.
788  *
789  *		c) We can call scsi_end_request() with -EIO to fail
790  *		   the remainder of the request.
791  */
792 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
793 {
794 	int result = cmd->result;
795 	struct request_queue *q = cmd->device->request_queue;
796 	struct request *req = cmd->request;
797 	blk_status_t error = BLK_STS_OK;
798 	struct scsi_sense_hdr sshdr;
799 	bool sense_valid = false;
800 	int sense_deferred = 0, level = 0;
801 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
802 	      ACTION_DELAYED_RETRY} action;
803 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
804 
805 	if (result) {
806 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
807 		if (sense_valid)
808 			sense_deferred = scsi_sense_is_deferred(&sshdr);
809 	}
810 
811 	if (blk_rq_is_passthrough(req)) {
812 		if (result) {
813 			if (sense_valid) {
814 				/*
815 				 * SG_IO wants current and deferred errors
816 				 */
817 				scsi_req(req)->sense_len =
818 					min(8 + cmd->sense_buffer[7],
819 					    SCSI_SENSE_BUFFERSIZE);
820 			}
821 			if (!sense_deferred)
822 				error = scsi_result_to_blk_status(cmd, result);
823 		}
824 		/*
825 		 * scsi_result_to_blk_status may have reset the host_byte
826 		 */
827 		scsi_req(req)->result = cmd->result;
828 		scsi_req(req)->resid_len = scsi_get_resid(cmd);
829 
830 		if (scsi_bidi_cmnd(cmd)) {
831 			/*
832 			 * Bidi commands Must be complete as a whole,
833 			 * both sides at once.
834 			 */
835 			scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
836 			if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
837 					blk_rq_bytes(req->next_rq)))
838 				BUG();
839 			return;
840 		}
841 	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
842 		/*
843 		 * Flush commands do not transfers any data, and thus cannot use
844 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
845 		 * This sets the error explicitly for the problem case.
846 		 */
847 		error = scsi_result_to_blk_status(cmd, result);
848 	}
849 
850 	/* no bidi support for !blk_rq_is_passthrough yet */
851 	BUG_ON(blk_bidi_rq(req));
852 
853 	/*
854 	 * Next deal with any sectors which we were able to correctly
855 	 * handle.
856 	 */
857 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
858 		"%u sectors total, %d bytes done.\n",
859 		blk_rq_sectors(req), good_bytes));
860 
861 	/*
862 	 * Recovered errors need reporting, but they're always treated as
863 	 * success, so fiddle the result code here.  For passthrough requests
864 	 * we already took a copy of the original into sreq->result which
865 	 * is what gets returned to the user
866 	 */
867 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
868 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
869 		 * print since caller wants ATA registers. Only occurs on
870 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
871 		 */
872 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
873 			;
874 		else if (!(req->rq_flags & RQF_QUIET))
875 			scsi_print_sense(cmd);
876 		result = 0;
877 		/* for passthrough error may be set */
878 		error = BLK_STS_OK;
879 	}
880 	/*
881 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
882 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
883 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
884 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
885 	 * intermediate statuses (both obsolete in SAM-4) as good.
886 	 */
887 	if (status_byte(result) && scsi_status_is_good(result)) {
888 		result = 0;
889 		error = BLK_STS_OK;
890 	}
891 
892 	/*
893 	 * special case: failed zero length commands always need to
894 	 * drop down into the retry code. Otherwise, if we finished
895 	 * all bytes in the request we are done now.
896 	 */
897 	if (!(blk_rq_bytes(req) == 0 && error) &&
898 	    !scsi_end_request(req, error, good_bytes, 0))
899 		return;
900 
901 	/*
902 	 * Kill remainder if no retrys.
903 	 */
904 	if (error && scsi_noretry_cmd(cmd)) {
905 		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
906 			BUG();
907 		return;
908 	}
909 
910 	/*
911 	 * If there had been no error, but we have leftover bytes in the
912 	 * requeues just queue the command up again.
913 	 */
914 	if (result == 0)
915 		goto requeue;
916 
917 	error = scsi_result_to_blk_status(cmd, result);
918 
919 	if (host_byte(result) == DID_RESET) {
920 		/* Third party bus reset or reset for error recovery
921 		 * reasons.  Just retry the command and see what
922 		 * happens.
923 		 */
924 		action = ACTION_RETRY;
925 	} else if (sense_valid && !sense_deferred) {
926 		switch (sshdr.sense_key) {
927 		case UNIT_ATTENTION:
928 			if (cmd->device->removable) {
929 				/* Detected disc change.  Set a bit
930 				 * and quietly refuse further access.
931 				 */
932 				cmd->device->changed = 1;
933 				action = ACTION_FAIL;
934 			} else {
935 				/* Must have been a power glitch, or a
936 				 * bus reset.  Could not have been a
937 				 * media change, so we just retry the
938 				 * command and see what happens.
939 				 */
940 				action = ACTION_RETRY;
941 			}
942 			break;
943 		case ILLEGAL_REQUEST:
944 			/* If we had an ILLEGAL REQUEST returned, then
945 			 * we may have performed an unsupported
946 			 * command.  The only thing this should be
947 			 * would be a ten byte read where only a six
948 			 * byte read was supported.  Also, on a system
949 			 * where READ CAPACITY failed, we may have
950 			 * read past the end of the disk.
951 			 */
952 			if ((cmd->device->use_10_for_rw &&
953 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
954 			    (cmd->cmnd[0] == READ_10 ||
955 			     cmd->cmnd[0] == WRITE_10)) {
956 				/* This will issue a new 6-byte command. */
957 				cmd->device->use_10_for_rw = 0;
958 				action = ACTION_REPREP;
959 			} else if (sshdr.asc == 0x10) /* DIX */ {
960 				action = ACTION_FAIL;
961 				error = BLK_STS_PROTECTION;
962 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
963 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
964 				action = ACTION_FAIL;
965 				error = BLK_STS_TARGET;
966 			} else
967 				action = ACTION_FAIL;
968 			break;
969 		case ABORTED_COMMAND:
970 			action = ACTION_FAIL;
971 			if (sshdr.asc == 0x10) /* DIF */
972 				error = BLK_STS_PROTECTION;
973 			break;
974 		case NOT_READY:
975 			/* If the device is in the process of becoming
976 			 * ready, or has a temporary blockage, retry.
977 			 */
978 			if (sshdr.asc == 0x04) {
979 				switch (sshdr.ascq) {
980 				case 0x01: /* becoming ready */
981 				case 0x04: /* format in progress */
982 				case 0x05: /* rebuild in progress */
983 				case 0x06: /* recalculation in progress */
984 				case 0x07: /* operation in progress */
985 				case 0x08: /* Long write in progress */
986 				case 0x09: /* self test in progress */
987 				case 0x14: /* space allocation in progress */
988 				case 0x1a: /* start stop unit in progress */
989 				case 0x1b: /* sanitize in progress */
990 				case 0x1d: /* configuration in progress */
991 				case 0x24: /* depopulation in progress */
992 					action = ACTION_DELAYED_RETRY;
993 					break;
994 				default:
995 					action = ACTION_FAIL;
996 					break;
997 				}
998 			} else
999 				action = ACTION_FAIL;
1000 			break;
1001 		case VOLUME_OVERFLOW:
1002 			/* See SSC3rXX or current. */
1003 			action = ACTION_FAIL;
1004 			break;
1005 		default:
1006 			action = ACTION_FAIL;
1007 			break;
1008 		}
1009 	} else
1010 		action = ACTION_FAIL;
1011 
1012 	if (action != ACTION_FAIL &&
1013 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1014 		action = ACTION_FAIL;
1015 
1016 	switch (action) {
1017 	case ACTION_FAIL:
1018 		/* Give up and fail the remainder of the request */
1019 		if (!(req->rq_flags & RQF_QUIET)) {
1020 			static DEFINE_RATELIMIT_STATE(_rs,
1021 					DEFAULT_RATELIMIT_INTERVAL,
1022 					DEFAULT_RATELIMIT_BURST);
1023 
1024 			if (unlikely(scsi_logging_level))
1025 				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1026 						       SCSI_LOG_MLCOMPLETE_BITS);
1027 
1028 			/*
1029 			 * if logging is enabled the failure will be printed
1030 			 * in scsi_log_completion(), so avoid duplicate messages
1031 			 */
1032 			if (!level && __ratelimit(&_rs)) {
1033 				scsi_print_result(cmd, NULL, FAILED);
1034 				if (driver_byte(result) & DRIVER_SENSE)
1035 					scsi_print_sense(cmd);
1036 				scsi_print_command(cmd);
1037 			}
1038 		}
1039 		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1040 			return;
1041 		/*FALLTHRU*/
1042 	case ACTION_REPREP:
1043 	requeue:
1044 		/* Unprep the request and put it back at the head of the queue.
1045 		 * A new command will be prepared and issued.
1046 		 */
1047 		if (q->mq_ops) {
1048 			scsi_mq_requeue_cmd(cmd);
1049 		} else {
1050 			scsi_release_buffers(cmd);
1051 			scsi_requeue_command(q, cmd);
1052 		}
1053 		break;
1054 	case ACTION_RETRY:
1055 		/* Retry the same command immediately */
1056 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
1057 		break;
1058 	case ACTION_DELAYED_RETRY:
1059 		/* Retry the same command after a delay */
1060 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
1061 		break;
1062 	}
1063 }
1064 
1065 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1066 {
1067 	int count;
1068 
1069 	/*
1070 	 * If sg table allocation fails, requeue request later.
1071 	 */
1072 	if (unlikely(sg_alloc_table_chained(&sdb->table,
1073 			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1074 		return BLKPREP_DEFER;
1075 
1076 	/*
1077 	 * Next, walk the list, and fill in the addresses and sizes of
1078 	 * each segment.
1079 	 */
1080 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1081 	BUG_ON(count > sdb->table.nents);
1082 	sdb->table.nents = count;
1083 	sdb->length = blk_rq_payload_bytes(req);
1084 	return BLKPREP_OK;
1085 }
1086 
1087 /*
1088  * Function:    scsi_init_io()
1089  *
1090  * Purpose:     SCSI I/O initialize function.
1091  *
1092  * Arguments:   cmd   - Command descriptor we wish to initialize
1093  *
1094  * Returns:     0 on success
1095  *		BLKPREP_DEFER if the failure is retryable
1096  *		BLKPREP_KILL if the failure is fatal
1097  */
1098 int scsi_init_io(struct scsi_cmnd *cmd)
1099 {
1100 	struct scsi_device *sdev = cmd->device;
1101 	struct request *rq = cmd->request;
1102 	bool is_mq = (rq->mq_ctx != NULL);
1103 	int error = BLKPREP_KILL;
1104 
1105 	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1106 		goto err_exit;
1107 
1108 	error = scsi_init_sgtable(rq, &cmd->sdb);
1109 	if (error)
1110 		goto err_exit;
1111 
1112 	if (blk_bidi_rq(rq)) {
1113 		if (!rq->q->mq_ops) {
1114 			struct scsi_data_buffer *bidi_sdb =
1115 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1116 			if (!bidi_sdb) {
1117 				error = BLKPREP_DEFER;
1118 				goto err_exit;
1119 			}
1120 
1121 			rq->next_rq->special = bidi_sdb;
1122 		}
1123 
1124 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1125 		if (error)
1126 			goto err_exit;
1127 	}
1128 
1129 	if (blk_integrity_rq(rq)) {
1130 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1131 		int ivecs, count;
1132 
1133 		if (prot_sdb == NULL) {
1134 			/*
1135 			 * This can happen if someone (e.g. multipath)
1136 			 * queues a command to a device on an adapter
1137 			 * that does not support DIX.
1138 			 */
1139 			WARN_ON_ONCE(1);
1140 			error = BLKPREP_KILL;
1141 			goto err_exit;
1142 		}
1143 
1144 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1145 
1146 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1147 				prot_sdb->table.sgl)) {
1148 			error = BLKPREP_DEFER;
1149 			goto err_exit;
1150 		}
1151 
1152 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1153 						prot_sdb->table.sgl);
1154 		BUG_ON(unlikely(count > ivecs));
1155 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1156 
1157 		cmd->prot_sdb = prot_sdb;
1158 		cmd->prot_sdb->table.nents = count;
1159 	}
1160 
1161 	return BLKPREP_OK;
1162 err_exit:
1163 	if (is_mq) {
1164 		scsi_mq_free_sgtables(cmd);
1165 	} else {
1166 		scsi_release_buffers(cmd);
1167 		cmd->request->special = NULL;
1168 		scsi_put_command(cmd);
1169 		put_device(&sdev->sdev_gendev);
1170 	}
1171 	return error;
1172 }
1173 EXPORT_SYMBOL(scsi_init_io);
1174 
1175 /**
1176  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1177  * @rq: Request associated with the SCSI command to be initialized.
1178  *
1179  * This function initializes the members of struct scsi_cmnd that must be
1180  * initialized before request processing starts and that won't be
1181  * reinitialized if a SCSI command is requeued.
1182  *
1183  * Called from inside blk_get_request() for pass-through requests and from
1184  * inside scsi_init_command() for filesystem requests.
1185  */
1186 static void scsi_initialize_rq(struct request *rq)
1187 {
1188 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1189 
1190 	scsi_req_init(&cmd->req);
1191 	init_rcu_head(&cmd->rcu);
1192 	cmd->jiffies_at_alloc = jiffies;
1193 	cmd->retries = 0;
1194 }
1195 
1196 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1197 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1198 {
1199 	struct scsi_device *sdev = cmd->device;
1200 	struct Scsi_Host *shost = sdev->host;
1201 	unsigned long flags;
1202 
1203 	if (shost->use_cmd_list) {
1204 		spin_lock_irqsave(&sdev->list_lock, flags);
1205 		list_add_tail(&cmd->list, &sdev->cmd_list);
1206 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1207 	}
1208 }
1209 
1210 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1211 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1212 {
1213 	struct scsi_device *sdev = cmd->device;
1214 	struct Scsi_Host *shost = sdev->host;
1215 	unsigned long flags;
1216 
1217 	if (shost->use_cmd_list) {
1218 		spin_lock_irqsave(&sdev->list_lock, flags);
1219 		BUG_ON(list_empty(&cmd->list));
1220 		list_del_init(&cmd->list);
1221 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1222 	}
1223 }
1224 
1225 /* Called after a request has been started. */
1226 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1227 {
1228 	void *buf = cmd->sense_buffer;
1229 	void *prot = cmd->prot_sdb;
1230 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1231 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1232 	unsigned long jiffies_at_alloc;
1233 	int retries;
1234 
1235 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1236 		flags |= SCMD_INITIALIZED;
1237 		scsi_initialize_rq(rq);
1238 	}
1239 
1240 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1241 	retries = cmd->retries;
1242 	/* zero out the cmd, except for the embedded scsi_request */
1243 	memset((char *)cmd + sizeof(cmd->req), 0,
1244 		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1245 
1246 	cmd->device = dev;
1247 	cmd->sense_buffer = buf;
1248 	cmd->prot_sdb = prot;
1249 	cmd->flags = flags;
1250 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1251 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1252 	cmd->retries = retries;
1253 
1254 	scsi_add_cmd_to_list(cmd);
1255 }
1256 
1257 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1258 {
1259 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1260 
1261 	/*
1262 	 * Passthrough requests may transfer data, in which case they must
1263 	 * a bio attached to them.  Or they might contain a SCSI command
1264 	 * that does not transfer data, in which case they may optionally
1265 	 * submit a request without an attached bio.
1266 	 */
1267 	if (req->bio) {
1268 		int ret = scsi_init_io(cmd);
1269 		if (unlikely(ret))
1270 			return ret;
1271 	} else {
1272 		BUG_ON(blk_rq_bytes(req));
1273 
1274 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1275 	}
1276 
1277 	cmd->cmd_len = scsi_req(req)->cmd_len;
1278 	cmd->cmnd = scsi_req(req)->cmd;
1279 	cmd->transfersize = blk_rq_bytes(req);
1280 	cmd->allowed = scsi_req(req)->retries;
1281 	return BLKPREP_OK;
1282 }
1283 
1284 /*
1285  * Setup a normal block command.  These are simple request from filesystems
1286  * that still need to be translated to SCSI CDBs from the ULD.
1287  */
1288 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1289 {
1290 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1291 
1292 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1293 		int ret = sdev->handler->prep_fn(sdev, req);
1294 		if (ret != BLKPREP_OK)
1295 			return ret;
1296 	}
1297 
1298 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1299 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1300 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1301 }
1302 
1303 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1304 {
1305 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1306 
1307 	if (!blk_rq_bytes(req))
1308 		cmd->sc_data_direction = DMA_NONE;
1309 	else if (rq_data_dir(req) == WRITE)
1310 		cmd->sc_data_direction = DMA_TO_DEVICE;
1311 	else
1312 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1313 
1314 	if (blk_rq_is_scsi(req))
1315 		return scsi_setup_scsi_cmnd(sdev, req);
1316 	else
1317 		return scsi_setup_fs_cmnd(sdev, req);
1318 }
1319 
1320 static int
1321 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1322 {
1323 	int ret = BLKPREP_OK;
1324 
1325 	/*
1326 	 * If the device is not in running state we will reject some
1327 	 * or all commands.
1328 	 */
1329 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1330 		switch (sdev->sdev_state) {
1331 		case SDEV_OFFLINE:
1332 		case SDEV_TRANSPORT_OFFLINE:
1333 			/*
1334 			 * If the device is offline we refuse to process any
1335 			 * commands.  The device must be brought online
1336 			 * before trying any recovery commands.
1337 			 */
1338 			sdev_printk(KERN_ERR, sdev,
1339 				    "rejecting I/O to offline device\n");
1340 			ret = BLKPREP_KILL;
1341 			break;
1342 		case SDEV_DEL:
1343 			/*
1344 			 * If the device is fully deleted, we refuse to
1345 			 * process any commands as well.
1346 			 */
1347 			sdev_printk(KERN_ERR, sdev,
1348 				    "rejecting I/O to dead device\n");
1349 			ret = BLKPREP_KILL;
1350 			break;
1351 		case SDEV_BLOCK:
1352 		case SDEV_CREATED_BLOCK:
1353 			ret = BLKPREP_DEFER;
1354 			break;
1355 		case SDEV_QUIESCE:
1356 			/*
1357 			 * If the devices is blocked we defer normal commands.
1358 			 */
1359 			if (req && !(req->rq_flags & RQF_PREEMPT))
1360 				ret = BLKPREP_DEFER;
1361 			break;
1362 		default:
1363 			/*
1364 			 * For any other not fully online state we only allow
1365 			 * special commands.  In particular any user initiated
1366 			 * command is not allowed.
1367 			 */
1368 			if (req && !(req->rq_flags & RQF_PREEMPT))
1369 				ret = BLKPREP_KILL;
1370 			break;
1371 		}
1372 	}
1373 	return ret;
1374 }
1375 
1376 static int
1377 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1378 {
1379 	struct scsi_device *sdev = q->queuedata;
1380 
1381 	switch (ret) {
1382 	case BLKPREP_KILL:
1383 	case BLKPREP_INVALID:
1384 		scsi_req(req)->result = DID_NO_CONNECT << 16;
1385 		/* release the command and kill it */
1386 		if (req->special) {
1387 			struct scsi_cmnd *cmd = req->special;
1388 			scsi_release_buffers(cmd);
1389 			scsi_put_command(cmd);
1390 			put_device(&sdev->sdev_gendev);
1391 			req->special = NULL;
1392 		}
1393 		break;
1394 	case BLKPREP_DEFER:
1395 		/*
1396 		 * If we defer, the blk_peek_request() returns NULL, but the
1397 		 * queue must be restarted, so we schedule a callback to happen
1398 		 * shortly.
1399 		 */
1400 		if (atomic_read(&sdev->device_busy) == 0)
1401 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1402 		break;
1403 	default:
1404 		req->rq_flags |= RQF_DONTPREP;
1405 	}
1406 
1407 	return ret;
1408 }
1409 
1410 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1411 {
1412 	struct scsi_device *sdev = q->queuedata;
1413 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1414 	int ret;
1415 
1416 	ret = scsi_prep_state_check(sdev, req);
1417 	if (ret != BLKPREP_OK)
1418 		goto out;
1419 
1420 	if (!req->special) {
1421 		/* Bail if we can't get a reference to the device */
1422 		if (unlikely(!get_device(&sdev->sdev_gendev))) {
1423 			ret = BLKPREP_DEFER;
1424 			goto out;
1425 		}
1426 
1427 		scsi_init_command(sdev, cmd);
1428 		req->special = cmd;
1429 	}
1430 
1431 	cmd->tag = req->tag;
1432 	cmd->request = req;
1433 	cmd->prot_op = SCSI_PROT_NORMAL;
1434 
1435 	ret = scsi_setup_cmnd(sdev, req);
1436 out:
1437 	return scsi_prep_return(q, req, ret);
1438 }
1439 
1440 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1441 {
1442 	scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1443 }
1444 
1445 /*
1446  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1447  * return 0.
1448  *
1449  * Called with the queue_lock held.
1450  */
1451 static inline int scsi_dev_queue_ready(struct request_queue *q,
1452 				  struct scsi_device *sdev)
1453 {
1454 	unsigned int busy;
1455 
1456 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1457 	if (atomic_read(&sdev->device_blocked)) {
1458 		if (busy)
1459 			goto out_dec;
1460 
1461 		/*
1462 		 * unblock after device_blocked iterates to zero
1463 		 */
1464 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1465 			/*
1466 			 * For the MQ case we take care of this in the caller.
1467 			 */
1468 			if (!q->mq_ops)
1469 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1470 			goto out_dec;
1471 		}
1472 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1473 				   "unblocking device at zero depth\n"));
1474 	}
1475 
1476 	if (busy >= sdev->queue_depth)
1477 		goto out_dec;
1478 
1479 	return 1;
1480 out_dec:
1481 	atomic_dec(&sdev->device_busy);
1482 	return 0;
1483 }
1484 
1485 /*
1486  * scsi_target_queue_ready: checks if there we can send commands to target
1487  * @sdev: scsi device on starget to check.
1488  */
1489 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1490 					   struct scsi_device *sdev)
1491 {
1492 	struct scsi_target *starget = scsi_target(sdev);
1493 	unsigned int busy;
1494 
1495 	if (starget->single_lun) {
1496 		spin_lock_irq(shost->host_lock);
1497 		if (starget->starget_sdev_user &&
1498 		    starget->starget_sdev_user != sdev) {
1499 			spin_unlock_irq(shost->host_lock);
1500 			return 0;
1501 		}
1502 		starget->starget_sdev_user = sdev;
1503 		spin_unlock_irq(shost->host_lock);
1504 	}
1505 
1506 	if (starget->can_queue <= 0)
1507 		return 1;
1508 
1509 	busy = atomic_inc_return(&starget->target_busy) - 1;
1510 	if (atomic_read(&starget->target_blocked) > 0) {
1511 		if (busy)
1512 			goto starved;
1513 
1514 		/*
1515 		 * unblock after target_blocked iterates to zero
1516 		 */
1517 		if (atomic_dec_return(&starget->target_blocked) > 0)
1518 			goto out_dec;
1519 
1520 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1521 				 "unblocking target at zero depth\n"));
1522 	}
1523 
1524 	if (busy >= starget->can_queue)
1525 		goto starved;
1526 
1527 	return 1;
1528 
1529 starved:
1530 	spin_lock_irq(shost->host_lock);
1531 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1532 	spin_unlock_irq(shost->host_lock);
1533 out_dec:
1534 	if (starget->can_queue > 0)
1535 		atomic_dec(&starget->target_busy);
1536 	return 0;
1537 }
1538 
1539 /*
1540  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1541  * return 0. We must end up running the queue again whenever 0 is
1542  * returned, else IO can hang.
1543  */
1544 static inline int scsi_host_queue_ready(struct request_queue *q,
1545 				   struct Scsi_Host *shost,
1546 				   struct scsi_device *sdev)
1547 {
1548 	unsigned int busy;
1549 
1550 	if (scsi_host_in_recovery(shost))
1551 		return 0;
1552 
1553 	busy = atomic_inc_return(&shost->host_busy) - 1;
1554 	if (atomic_read(&shost->host_blocked) > 0) {
1555 		if (busy)
1556 			goto starved;
1557 
1558 		/*
1559 		 * unblock after host_blocked iterates to zero
1560 		 */
1561 		if (atomic_dec_return(&shost->host_blocked) > 0)
1562 			goto out_dec;
1563 
1564 		SCSI_LOG_MLQUEUE(3,
1565 			shost_printk(KERN_INFO, shost,
1566 				     "unblocking host at zero depth\n"));
1567 	}
1568 
1569 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1570 		goto starved;
1571 	if (shost->host_self_blocked)
1572 		goto starved;
1573 
1574 	/* We're OK to process the command, so we can't be starved */
1575 	if (!list_empty(&sdev->starved_entry)) {
1576 		spin_lock_irq(shost->host_lock);
1577 		if (!list_empty(&sdev->starved_entry))
1578 			list_del_init(&sdev->starved_entry);
1579 		spin_unlock_irq(shost->host_lock);
1580 	}
1581 
1582 	return 1;
1583 
1584 starved:
1585 	spin_lock_irq(shost->host_lock);
1586 	if (list_empty(&sdev->starved_entry))
1587 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1588 	spin_unlock_irq(shost->host_lock);
1589 out_dec:
1590 	scsi_dec_host_busy(shost);
1591 	return 0;
1592 }
1593 
1594 /*
1595  * Busy state exporting function for request stacking drivers.
1596  *
1597  * For efficiency, no lock is taken to check the busy state of
1598  * shost/starget/sdev, since the returned value is not guaranteed and
1599  * may be changed after request stacking drivers call the function,
1600  * regardless of taking lock or not.
1601  *
1602  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1603  * needs to return 'not busy'. Otherwise, request stacking drivers
1604  * may hold requests forever.
1605  */
1606 static int scsi_lld_busy(struct request_queue *q)
1607 {
1608 	struct scsi_device *sdev = q->queuedata;
1609 	struct Scsi_Host *shost;
1610 
1611 	if (blk_queue_dying(q))
1612 		return 0;
1613 
1614 	shost = sdev->host;
1615 
1616 	/*
1617 	 * Ignore host/starget busy state.
1618 	 * Since block layer does not have a concept of fairness across
1619 	 * multiple queues, congestion of host/starget needs to be handled
1620 	 * in SCSI layer.
1621 	 */
1622 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1623 		return 1;
1624 
1625 	return 0;
1626 }
1627 
1628 /*
1629  * Kill a request for a dead device
1630  */
1631 static void scsi_kill_request(struct request *req, struct request_queue *q)
1632 {
1633 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1634 	struct scsi_device *sdev;
1635 	struct scsi_target *starget;
1636 	struct Scsi_Host *shost;
1637 
1638 	blk_start_request(req);
1639 
1640 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1641 
1642 	sdev = cmd->device;
1643 	starget = scsi_target(sdev);
1644 	shost = sdev->host;
1645 	scsi_init_cmd_errh(cmd);
1646 	cmd->result = DID_NO_CONNECT << 16;
1647 	atomic_inc(&cmd->device->iorequest_cnt);
1648 
1649 	/*
1650 	 * SCSI request completion path will do scsi_device_unbusy(),
1651 	 * bump busy counts.  To bump the counters, we need to dance
1652 	 * with the locks as normal issue path does.
1653 	 */
1654 	atomic_inc(&sdev->device_busy);
1655 	atomic_inc(&shost->host_busy);
1656 	if (starget->can_queue > 0)
1657 		atomic_inc(&starget->target_busy);
1658 
1659 	blk_complete_request(req);
1660 }
1661 
1662 static void scsi_softirq_done(struct request *rq)
1663 {
1664 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1665 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1666 	int disposition;
1667 
1668 	INIT_LIST_HEAD(&cmd->eh_entry);
1669 
1670 	atomic_inc(&cmd->device->iodone_cnt);
1671 	if (cmd->result)
1672 		atomic_inc(&cmd->device->ioerr_cnt);
1673 
1674 	disposition = scsi_decide_disposition(cmd);
1675 	if (disposition != SUCCESS &&
1676 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1677 		sdev_printk(KERN_ERR, cmd->device,
1678 			    "timing out command, waited %lus\n",
1679 			    wait_for/HZ);
1680 		disposition = SUCCESS;
1681 	}
1682 
1683 	scsi_log_completion(cmd, disposition);
1684 
1685 	switch (disposition) {
1686 		case SUCCESS:
1687 			scsi_finish_command(cmd);
1688 			break;
1689 		case NEEDS_RETRY:
1690 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1691 			break;
1692 		case ADD_TO_MLQUEUE:
1693 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1694 			break;
1695 		default:
1696 			scsi_eh_scmd_add(cmd);
1697 			break;
1698 	}
1699 }
1700 
1701 /**
1702  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1703  * @cmd: command block we are dispatching.
1704  *
1705  * Return: nonzero return request was rejected and device's queue needs to be
1706  * plugged.
1707  */
1708 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1709 {
1710 	struct Scsi_Host *host = cmd->device->host;
1711 	int rtn = 0;
1712 
1713 	atomic_inc(&cmd->device->iorequest_cnt);
1714 
1715 	/* check if the device is still usable */
1716 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1717 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1718 		 * returns an immediate error upwards, and signals
1719 		 * that the device is no longer present */
1720 		cmd->result = DID_NO_CONNECT << 16;
1721 		goto done;
1722 	}
1723 
1724 	/* Check to see if the scsi lld made this device blocked. */
1725 	if (unlikely(scsi_device_blocked(cmd->device))) {
1726 		/*
1727 		 * in blocked state, the command is just put back on
1728 		 * the device queue.  The suspend state has already
1729 		 * blocked the queue so future requests should not
1730 		 * occur until the device transitions out of the
1731 		 * suspend state.
1732 		 */
1733 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1734 			"queuecommand : device blocked\n"));
1735 		return SCSI_MLQUEUE_DEVICE_BUSY;
1736 	}
1737 
1738 	/* Store the LUN value in cmnd, if needed. */
1739 	if (cmd->device->lun_in_cdb)
1740 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1741 			       (cmd->device->lun << 5 & 0xe0);
1742 
1743 	scsi_log_send(cmd);
1744 
1745 	/*
1746 	 * Before we queue this command, check if the command
1747 	 * length exceeds what the host adapter can handle.
1748 	 */
1749 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1750 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1751 			       "queuecommand : command too long. "
1752 			       "cdb_size=%d host->max_cmd_len=%d\n",
1753 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1754 		cmd->result = (DID_ABORT << 16);
1755 		goto done;
1756 	}
1757 
1758 	if (unlikely(host->shost_state == SHOST_DEL)) {
1759 		cmd->result = (DID_NO_CONNECT << 16);
1760 		goto done;
1761 
1762 	}
1763 
1764 	trace_scsi_dispatch_cmd_start(cmd);
1765 	rtn = host->hostt->queuecommand(host, cmd);
1766 	if (rtn) {
1767 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1768 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1769 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1770 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1771 
1772 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1773 			"queuecommand : request rejected\n"));
1774 	}
1775 
1776 	return rtn;
1777  done:
1778 	cmd->scsi_done(cmd);
1779 	return 0;
1780 }
1781 
1782 /**
1783  * scsi_done - Invoke completion on finished SCSI command.
1784  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1785  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1786  *
1787  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1788  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1789  * calls blk_complete_request() for further processing.
1790  *
1791  * This function is interrupt context safe.
1792  */
1793 static void scsi_done(struct scsi_cmnd *cmd)
1794 {
1795 	trace_scsi_dispatch_cmd_done(cmd);
1796 	blk_complete_request(cmd->request);
1797 }
1798 
1799 /*
1800  * Function:    scsi_request_fn()
1801  *
1802  * Purpose:     Main strategy routine for SCSI.
1803  *
1804  * Arguments:   q       - Pointer to actual queue.
1805  *
1806  * Returns:     Nothing
1807  *
1808  * Lock status: request queue lock assumed to be held when called.
1809  *
1810  * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1811  * protection for ZBC disks.
1812  */
1813 static void scsi_request_fn(struct request_queue *q)
1814 	__releases(q->queue_lock)
1815 	__acquires(q->queue_lock)
1816 {
1817 	struct scsi_device *sdev = q->queuedata;
1818 	struct Scsi_Host *shost;
1819 	struct scsi_cmnd *cmd;
1820 	struct request *req;
1821 
1822 	/*
1823 	 * To start with, we keep looping until the queue is empty, or until
1824 	 * the host is no longer able to accept any more requests.
1825 	 */
1826 	shost = sdev->host;
1827 	for (;;) {
1828 		int rtn;
1829 		/*
1830 		 * get next queueable request.  We do this early to make sure
1831 		 * that the request is fully prepared even if we cannot
1832 		 * accept it.
1833 		 */
1834 		req = blk_peek_request(q);
1835 		if (!req)
1836 			break;
1837 
1838 		if (unlikely(!scsi_device_online(sdev))) {
1839 			sdev_printk(KERN_ERR, sdev,
1840 				    "rejecting I/O to offline device\n");
1841 			scsi_kill_request(req, q);
1842 			continue;
1843 		}
1844 
1845 		if (!scsi_dev_queue_ready(q, sdev))
1846 			break;
1847 
1848 		/*
1849 		 * Remove the request from the request list.
1850 		 */
1851 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1852 			blk_start_request(req);
1853 
1854 		spin_unlock_irq(q->queue_lock);
1855 		cmd = blk_mq_rq_to_pdu(req);
1856 		if (cmd != req->special) {
1857 			printk(KERN_CRIT "impossible request in %s.\n"
1858 					 "please mail a stack trace to "
1859 					 "linux-scsi@vger.kernel.org\n",
1860 					 __func__);
1861 			blk_dump_rq_flags(req, "foo");
1862 			BUG();
1863 		}
1864 
1865 		/*
1866 		 * We hit this when the driver is using a host wide
1867 		 * tag map. For device level tag maps the queue_depth check
1868 		 * in the device ready fn would prevent us from trying
1869 		 * to allocate a tag. Since the map is a shared host resource
1870 		 * we add the dev to the starved list so it eventually gets
1871 		 * a run when a tag is freed.
1872 		 */
1873 		if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1874 			spin_lock_irq(shost->host_lock);
1875 			if (list_empty(&sdev->starved_entry))
1876 				list_add_tail(&sdev->starved_entry,
1877 					      &shost->starved_list);
1878 			spin_unlock_irq(shost->host_lock);
1879 			goto not_ready;
1880 		}
1881 
1882 		if (!scsi_target_queue_ready(shost, sdev))
1883 			goto not_ready;
1884 
1885 		if (!scsi_host_queue_ready(q, shost, sdev))
1886 			goto host_not_ready;
1887 
1888 		if (sdev->simple_tags)
1889 			cmd->flags |= SCMD_TAGGED;
1890 		else
1891 			cmd->flags &= ~SCMD_TAGGED;
1892 
1893 		/*
1894 		 * Finally, initialize any error handling parameters, and set up
1895 		 * the timers for timeouts.
1896 		 */
1897 		scsi_init_cmd_errh(cmd);
1898 
1899 		/*
1900 		 * Dispatch the command to the low-level driver.
1901 		 */
1902 		cmd->scsi_done = scsi_done;
1903 		rtn = scsi_dispatch_cmd(cmd);
1904 		if (rtn) {
1905 			scsi_queue_insert(cmd, rtn);
1906 			spin_lock_irq(q->queue_lock);
1907 			goto out_delay;
1908 		}
1909 		spin_lock_irq(q->queue_lock);
1910 	}
1911 
1912 	return;
1913 
1914  host_not_ready:
1915 	if (scsi_target(sdev)->can_queue > 0)
1916 		atomic_dec(&scsi_target(sdev)->target_busy);
1917  not_ready:
1918 	/*
1919 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1920 	 * must return with queue_lock held.
1921 	 *
1922 	 * Decrementing device_busy without checking it is OK, as all such
1923 	 * cases (host limits or settings) should run the queue at some
1924 	 * later time.
1925 	 */
1926 	spin_lock_irq(q->queue_lock);
1927 	blk_requeue_request(q, req);
1928 	atomic_dec(&sdev->device_busy);
1929 out_delay:
1930 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1931 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1932 }
1933 
1934 static inline blk_status_t prep_to_mq(int ret)
1935 {
1936 	switch (ret) {
1937 	case BLKPREP_OK:
1938 		return BLK_STS_OK;
1939 	case BLKPREP_DEFER:
1940 		return BLK_STS_RESOURCE;
1941 	default:
1942 		return BLK_STS_IOERR;
1943 	}
1944 }
1945 
1946 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1947 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1948 {
1949 	return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1950 		sizeof(struct scatterlist);
1951 }
1952 
1953 static int scsi_mq_prep_fn(struct request *req)
1954 {
1955 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1956 	struct scsi_device *sdev = req->q->queuedata;
1957 	struct Scsi_Host *shost = sdev->host;
1958 	struct scatterlist *sg;
1959 
1960 	scsi_init_command(sdev, cmd);
1961 
1962 	req->special = cmd;
1963 
1964 	cmd->request = req;
1965 
1966 	cmd->tag = req->tag;
1967 	cmd->prot_op = SCSI_PROT_NORMAL;
1968 
1969 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1970 	cmd->sdb.table.sgl = sg;
1971 
1972 	if (scsi_host_get_prot(shost)) {
1973 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1974 
1975 		cmd->prot_sdb->table.sgl =
1976 			(struct scatterlist *)(cmd->prot_sdb + 1);
1977 	}
1978 
1979 	if (blk_bidi_rq(req)) {
1980 		struct request *next_rq = req->next_rq;
1981 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1982 
1983 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1984 		bidi_sdb->table.sgl =
1985 			(struct scatterlist *)(bidi_sdb + 1);
1986 
1987 		next_rq->special = bidi_sdb;
1988 	}
1989 
1990 	blk_mq_start_request(req);
1991 
1992 	return scsi_setup_cmnd(sdev, req);
1993 }
1994 
1995 static void scsi_mq_done(struct scsi_cmnd *cmd)
1996 {
1997 	trace_scsi_dispatch_cmd_done(cmd);
1998 	blk_mq_complete_request(cmd->request);
1999 }
2000 
2001 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
2002 {
2003 	struct request_queue *q = hctx->queue;
2004 	struct scsi_device *sdev = q->queuedata;
2005 
2006 	atomic_dec(&sdev->device_busy);
2007 	put_device(&sdev->sdev_gendev);
2008 }
2009 
2010 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
2011 {
2012 	struct request_queue *q = hctx->queue;
2013 	struct scsi_device *sdev = q->queuedata;
2014 
2015 	if (!get_device(&sdev->sdev_gendev))
2016 		goto out;
2017 	if (!scsi_dev_queue_ready(q, sdev))
2018 		goto out_put_device;
2019 
2020 	return true;
2021 
2022 out_put_device:
2023 	put_device(&sdev->sdev_gendev);
2024 out:
2025 	if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
2026 		blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2027 	return false;
2028 }
2029 
2030 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
2031 			 const struct blk_mq_queue_data *bd)
2032 {
2033 	struct request *req = bd->rq;
2034 	struct request_queue *q = req->q;
2035 	struct scsi_device *sdev = q->queuedata;
2036 	struct Scsi_Host *shost = sdev->host;
2037 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2038 	blk_status_t ret;
2039 	int reason;
2040 
2041 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2042 	if (ret != BLK_STS_OK)
2043 		goto out_put_budget;
2044 
2045 	ret = BLK_STS_RESOURCE;
2046 	if (!scsi_target_queue_ready(shost, sdev))
2047 		goto out_put_budget;
2048 	if (!scsi_host_queue_ready(q, shost, sdev))
2049 		goto out_dec_target_busy;
2050 
2051 	if (!(req->rq_flags & RQF_DONTPREP)) {
2052 		ret = prep_to_mq(scsi_mq_prep_fn(req));
2053 		if (ret != BLK_STS_OK)
2054 			goto out_dec_host_busy;
2055 		req->rq_flags |= RQF_DONTPREP;
2056 	} else {
2057 		blk_mq_start_request(req);
2058 	}
2059 
2060 	if (sdev->simple_tags)
2061 		cmd->flags |= SCMD_TAGGED;
2062 	else
2063 		cmd->flags &= ~SCMD_TAGGED;
2064 
2065 	scsi_init_cmd_errh(cmd);
2066 	cmd->scsi_done = scsi_mq_done;
2067 
2068 	reason = scsi_dispatch_cmd(cmd);
2069 	if (reason) {
2070 		scsi_set_blocked(cmd, reason);
2071 		ret = BLK_STS_RESOURCE;
2072 		goto out_dec_host_busy;
2073 	}
2074 
2075 	return BLK_STS_OK;
2076 
2077 out_dec_host_busy:
2078 	scsi_dec_host_busy(shost);
2079 out_dec_target_busy:
2080 	if (scsi_target(sdev)->can_queue > 0)
2081 		atomic_dec(&scsi_target(sdev)->target_busy);
2082 out_put_budget:
2083 	scsi_mq_put_budget(hctx);
2084 	switch (ret) {
2085 	case BLK_STS_OK:
2086 		break;
2087 	case BLK_STS_RESOURCE:
2088 		if (atomic_read(&sdev->device_busy) ||
2089 		    scsi_device_blocked(sdev))
2090 			ret = BLK_STS_DEV_RESOURCE;
2091 		break;
2092 	default:
2093 		/*
2094 		 * Make sure to release all allocated ressources when
2095 		 * we hit an error, as we will never see this command
2096 		 * again.
2097 		 */
2098 		if (req->rq_flags & RQF_DONTPREP)
2099 			scsi_mq_uninit_cmd(cmd);
2100 		break;
2101 	}
2102 	return ret;
2103 }
2104 
2105 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2106 		bool reserved)
2107 {
2108 	if (reserved)
2109 		return BLK_EH_RESET_TIMER;
2110 	return scsi_times_out(req);
2111 }
2112 
2113 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2114 				unsigned int hctx_idx, unsigned int numa_node)
2115 {
2116 	struct Scsi_Host *shost = set->driver_data;
2117 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2118 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2119 	struct scatterlist *sg;
2120 
2121 	if (unchecked_isa_dma)
2122 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2123 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2124 						    GFP_KERNEL, numa_node);
2125 	if (!cmd->sense_buffer)
2126 		return -ENOMEM;
2127 	cmd->req.sense = cmd->sense_buffer;
2128 
2129 	if (scsi_host_get_prot(shost)) {
2130 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2131 			shost->hostt->cmd_size;
2132 		cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2133 	}
2134 
2135 	return 0;
2136 }
2137 
2138 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2139 				 unsigned int hctx_idx)
2140 {
2141 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2142 
2143 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2144 			       cmd->sense_buffer);
2145 }
2146 
2147 static int scsi_map_queues(struct blk_mq_tag_set *set)
2148 {
2149 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2150 
2151 	if (shost->hostt->map_queues)
2152 		return shost->hostt->map_queues(shost);
2153 	return blk_mq_map_queues(set);
2154 }
2155 
2156 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2157 {
2158 	struct device *dev = shost->dma_dev;
2159 
2160 	/*
2161 	 * this limit is imposed by hardware restrictions
2162 	 */
2163 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2164 					SG_MAX_SEGMENTS));
2165 
2166 	if (scsi_host_prot_dma(shost)) {
2167 		shost->sg_prot_tablesize =
2168 			min_not_zero(shost->sg_prot_tablesize,
2169 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2170 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2171 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2172 	}
2173 
2174 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2175 	if (shost->unchecked_isa_dma)
2176 		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
2177 	blk_queue_segment_boundary(q, shost->dma_boundary);
2178 	dma_set_seg_boundary(dev, shost->dma_boundary);
2179 
2180 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2181 
2182 	if (!shost->use_clustering)
2183 		q->limits.cluster = 0;
2184 
2185 	/*
2186 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
2187 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
2188 	 * which is set by the platform.
2189 	 *
2190 	 * Devices that require a bigger alignment can increase it later.
2191 	 */
2192 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2193 }
2194 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2195 
2196 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2197 			    gfp_t gfp)
2198 {
2199 	struct Scsi_Host *shost = q->rq_alloc_data;
2200 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2201 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2202 
2203 	memset(cmd, 0, sizeof(*cmd));
2204 
2205 	if (unchecked_isa_dma)
2206 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2207 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2208 						    NUMA_NO_NODE);
2209 	if (!cmd->sense_buffer)
2210 		goto fail;
2211 	cmd->req.sense = cmd->sense_buffer;
2212 
2213 	if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2214 		cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2215 		if (!cmd->prot_sdb)
2216 			goto fail_free_sense;
2217 	}
2218 
2219 	return 0;
2220 
2221 fail_free_sense:
2222 	scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2223 fail:
2224 	return -ENOMEM;
2225 }
2226 
2227 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2228 {
2229 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2230 
2231 	if (cmd->prot_sdb)
2232 		kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2233 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2234 			       cmd->sense_buffer);
2235 }
2236 
2237 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2238 {
2239 	struct Scsi_Host *shost = sdev->host;
2240 	struct request_queue *q;
2241 
2242 	q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL);
2243 	if (!q)
2244 		return NULL;
2245 	q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2246 	q->rq_alloc_data = shost;
2247 	q->request_fn = scsi_request_fn;
2248 	q->init_rq_fn = scsi_old_init_rq;
2249 	q->exit_rq_fn = scsi_old_exit_rq;
2250 	q->initialize_rq_fn = scsi_initialize_rq;
2251 
2252 	if (blk_init_allocated_queue(q) < 0) {
2253 		blk_cleanup_queue(q);
2254 		return NULL;
2255 	}
2256 
2257 	__scsi_init_queue(shost, q);
2258 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2259 	blk_queue_prep_rq(q, scsi_prep_fn);
2260 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2261 	blk_queue_softirq_done(q, scsi_softirq_done);
2262 	blk_queue_rq_timed_out(q, scsi_times_out);
2263 	blk_queue_lld_busy(q, scsi_lld_busy);
2264 	return q;
2265 }
2266 
2267 static const struct blk_mq_ops scsi_mq_ops = {
2268 	.get_budget	= scsi_mq_get_budget,
2269 	.put_budget	= scsi_mq_put_budget,
2270 	.queue_rq	= scsi_queue_rq,
2271 	.complete	= scsi_softirq_done,
2272 	.timeout	= scsi_timeout,
2273 #ifdef CONFIG_BLK_DEBUG_FS
2274 	.show_rq	= scsi_show_rq,
2275 #endif
2276 	.init_request	= scsi_mq_init_request,
2277 	.exit_request	= scsi_mq_exit_request,
2278 	.initialize_rq_fn = scsi_initialize_rq,
2279 	.map_queues	= scsi_map_queues,
2280 };
2281 
2282 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2283 {
2284 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2285 	if (IS_ERR(sdev->request_queue))
2286 		return NULL;
2287 
2288 	sdev->request_queue->queuedata = sdev;
2289 	__scsi_init_queue(sdev->host, sdev->request_queue);
2290 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
2291 	return sdev->request_queue;
2292 }
2293 
2294 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2295 {
2296 	unsigned int cmd_size, sgl_size;
2297 
2298 	sgl_size = scsi_mq_sgl_size(shost);
2299 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2300 	if (scsi_host_get_prot(shost))
2301 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2302 
2303 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2304 	shost->tag_set.ops = &scsi_mq_ops;
2305 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2306 	shost->tag_set.queue_depth = shost->can_queue;
2307 	shost->tag_set.cmd_size = cmd_size;
2308 	shost->tag_set.numa_node = NUMA_NO_NODE;
2309 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2310 	shost->tag_set.flags |=
2311 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2312 	shost->tag_set.driver_data = shost;
2313 
2314 	return blk_mq_alloc_tag_set(&shost->tag_set);
2315 }
2316 
2317 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2318 {
2319 	blk_mq_free_tag_set(&shost->tag_set);
2320 }
2321 
2322 /**
2323  * scsi_device_from_queue - return sdev associated with a request_queue
2324  * @q: The request queue to return the sdev from
2325  *
2326  * Return the sdev associated with a request queue or NULL if the
2327  * request_queue does not reference a SCSI device.
2328  */
2329 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2330 {
2331 	struct scsi_device *sdev = NULL;
2332 
2333 	if (q->mq_ops) {
2334 		if (q->mq_ops == &scsi_mq_ops)
2335 			sdev = q->queuedata;
2336 	} else if (q->request_fn == scsi_request_fn)
2337 		sdev = q->queuedata;
2338 	if (!sdev || !get_device(&sdev->sdev_gendev))
2339 		sdev = NULL;
2340 
2341 	return sdev;
2342 }
2343 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2344 
2345 /*
2346  * Function:    scsi_block_requests()
2347  *
2348  * Purpose:     Utility function used by low-level drivers to prevent further
2349  *		commands from being queued to the device.
2350  *
2351  * Arguments:   shost       - Host in question
2352  *
2353  * Returns:     Nothing
2354  *
2355  * Lock status: No locks are assumed held.
2356  *
2357  * Notes:       There is no timer nor any other means by which the requests
2358  *		get unblocked other than the low-level driver calling
2359  *		scsi_unblock_requests().
2360  */
2361 void scsi_block_requests(struct Scsi_Host *shost)
2362 {
2363 	shost->host_self_blocked = 1;
2364 }
2365 EXPORT_SYMBOL(scsi_block_requests);
2366 
2367 /*
2368  * Function:    scsi_unblock_requests()
2369  *
2370  * Purpose:     Utility function used by low-level drivers to allow further
2371  *		commands from being queued to the device.
2372  *
2373  * Arguments:   shost       - Host in question
2374  *
2375  * Returns:     Nothing
2376  *
2377  * Lock status: No locks are assumed held.
2378  *
2379  * Notes:       There is no timer nor any other means by which the requests
2380  *		get unblocked other than the low-level driver calling
2381  *		scsi_unblock_requests().
2382  *
2383  *		This is done as an API function so that changes to the
2384  *		internals of the scsi mid-layer won't require wholesale
2385  *		changes to drivers that use this feature.
2386  */
2387 void scsi_unblock_requests(struct Scsi_Host *shost)
2388 {
2389 	shost->host_self_blocked = 0;
2390 	scsi_run_host_queues(shost);
2391 }
2392 EXPORT_SYMBOL(scsi_unblock_requests);
2393 
2394 int __init scsi_init_queue(void)
2395 {
2396 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2397 					   sizeof(struct scsi_data_buffer),
2398 					   0, 0, NULL);
2399 	if (!scsi_sdb_cache) {
2400 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2401 		return -ENOMEM;
2402 	}
2403 
2404 	return 0;
2405 }
2406 
2407 void scsi_exit_queue(void)
2408 {
2409 	kmem_cache_destroy(scsi_sense_cache);
2410 	kmem_cache_destroy(scsi_sense_isadma_cache);
2411 	kmem_cache_destroy(scsi_sdb_cache);
2412 }
2413 
2414 /**
2415  *	scsi_mode_select - issue a mode select
2416  *	@sdev:	SCSI device to be queried
2417  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2418  *	@sp:	Save page bit (0 == don't save, 1 == save)
2419  *	@modepage: mode page being requested
2420  *	@buffer: request buffer (may not be smaller than eight bytes)
2421  *	@len:	length of request buffer.
2422  *	@timeout: command timeout
2423  *	@retries: number of retries before failing
2424  *	@data: returns a structure abstracting the mode header data
2425  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2426  *		must be SCSI_SENSE_BUFFERSIZE big.
2427  *
2428  *	Returns zero if successful; negative error number or scsi
2429  *	status on error
2430  *
2431  */
2432 int
2433 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2434 		 unsigned char *buffer, int len, int timeout, int retries,
2435 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2436 {
2437 	unsigned char cmd[10];
2438 	unsigned char *real_buffer;
2439 	int ret;
2440 
2441 	memset(cmd, 0, sizeof(cmd));
2442 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2443 
2444 	if (sdev->use_10_for_ms) {
2445 		if (len > 65535)
2446 			return -EINVAL;
2447 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2448 		if (!real_buffer)
2449 			return -ENOMEM;
2450 		memcpy(real_buffer + 8, buffer, len);
2451 		len += 8;
2452 		real_buffer[0] = 0;
2453 		real_buffer[1] = 0;
2454 		real_buffer[2] = data->medium_type;
2455 		real_buffer[3] = data->device_specific;
2456 		real_buffer[4] = data->longlba ? 0x01 : 0;
2457 		real_buffer[5] = 0;
2458 		real_buffer[6] = data->block_descriptor_length >> 8;
2459 		real_buffer[7] = data->block_descriptor_length;
2460 
2461 		cmd[0] = MODE_SELECT_10;
2462 		cmd[7] = len >> 8;
2463 		cmd[8] = len;
2464 	} else {
2465 		if (len > 255 || data->block_descriptor_length > 255 ||
2466 		    data->longlba)
2467 			return -EINVAL;
2468 
2469 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2470 		if (!real_buffer)
2471 			return -ENOMEM;
2472 		memcpy(real_buffer + 4, buffer, len);
2473 		len += 4;
2474 		real_buffer[0] = 0;
2475 		real_buffer[1] = data->medium_type;
2476 		real_buffer[2] = data->device_specific;
2477 		real_buffer[3] = data->block_descriptor_length;
2478 
2479 
2480 		cmd[0] = MODE_SELECT;
2481 		cmd[4] = len;
2482 	}
2483 
2484 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2485 			       sshdr, timeout, retries, NULL);
2486 	kfree(real_buffer);
2487 	return ret;
2488 }
2489 EXPORT_SYMBOL_GPL(scsi_mode_select);
2490 
2491 /**
2492  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2493  *	@sdev:	SCSI device to be queried
2494  *	@dbd:	set if mode sense will allow block descriptors to be returned
2495  *	@modepage: mode page being requested
2496  *	@buffer: request buffer (may not be smaller than eight bytes)
2497  *	@len:	length of request buffer.
2498  *	@timeout: command timeout
2499  *	@retries: number of retries before failing
2500  *	@data: returns a structure abstracting the mode header data
2501  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2502  *		must be SCSI_SENSE_BUFFERSIZE big.
2503  *
2504  *	Returns zero if unsuccessful, or the header offset (either 4
2505  *	or 8 depending on whether a six or ten byte command was
2506  *	issued) if successful.
2507  */
2508 int
2509 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2510 		  unsigned char *buffer, int len, int timeout, int retries,
2511 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2512 {
2513 	unsigned char cmd[12];
2514 	int use_10_for_ms;
2515 	int header_length;
2516 	int result, retry_count = retries;
2517 	struct scsi_sense_hdr my_sshdr;
2518 
2519 	memset(data, 0, sizeof(*data));
2520 	memset(&cmd[0], 0, 12);
2521 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2522 	cmd[2] = modepage;
2523 
2524 	/* caller might not be interested in sense, but we need it */
2525 	if (!sshdr)
2526 		sshdr = &my_sshdr;
2527 
2528  retry:
2529 	use_10_for_ms = sdev->use_10_for_ms;
2530 
2531 	if (use_10_for_ms) {
2532 		if (len < 8)
2533 			len = 8;
2534 
2535 		cmd[0] = MODE_SENSE_10;
2536 		cmd[8] = len;
2537 		header_length = 8;
2538 	} else {
2539 		if (len < 4)
2540 			len = 4;
2541 
2542 		cmd[0] = MODE_SENSE;
2543 		cmd[4] = len;
2544 		header_length = 4;
2545 	}
2546 
2547 	memset(buffer, 0, len);
2548 
2549 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2550 				  sshdr, timeout, retries, NULL);
2551 
2552 	/* This code looks awful: what it's doing is making sure an
2553 	 * ILLEGAL REQUEST sense return identifies the actual command
2554 	 * byte as the problem.  MODE_SENSE commands can return
2555 	 * ILLEGAL REQUEST if the code page isn't supported */
2556 
2557 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2558 	    (driver_byte(result) & DRIVER_SENSE)) {
2559 		if (scsi_sense_valid(sshdr)) {
2560 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2561 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2562 				/*
2563 				 * Invalid command operation code
2564 				 */
2565 				sdev->use_10_for_ms = 0;
2566 				goto retry;
2567 			}
2568 		}
2569 	}
2570 
2571 	if(scsi_status_is_good(result)) {
2572 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2573 			     (modepage == 6 || modepage == 8))) {
2574 			/* Initio breakage? */
2575 			header_length = 0;
2576 			data->length = 13;
2577 			data->medium_type = 0;
2578 			data->device_specific = 0;
2579 			data->longlba = 0;
2580 			data->block_descriptor_length = 0;
2581 		} else if(use_10_for_ms) {
2582 			data->length = buffer[0]*256 + buffer[1] + 2;
2583 			data->medium_type = buffer[2];
2584 			data->device_specific = buffer[3];
2585 			data->longlba = buffer[4] & 0x01;
2586 			data->block_descriptor_length = buffer[6]*256
2587 				+ buffer[7];
2588 		} else {
2589 			data->length = buffer[0] + 1;
2590 			data->medium_type = buffer[1];
2591 			data->device_specific = buffer[2];
2592 			data->block_descriptor_length = buffer[3];
2593 		}
2594 		data->header_length = header_length;
2595 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2596 		   scsi_sense_valid(sshdr) &&
2597 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2598 		retry_count--;
2599 		goto retry;
2600 	}
2601 
2602 	return result;
2603 }
2604 EXPORT_SYMBOL(scsi_mode_sense);
2605 
2606 /**
2607  *	scsi_test_unit_ready - test if unit is ready
2608  *	@sdev:	scsi device to change the state of.
2609  *	@timeout: command timeout
2610  *	@retries: number of retries before failing
2611  *	@sshdr: outpout pointer for decoded sense information.
2612  *
2613  *	Returns zero if unsuccessful or an error if TUR failed.  For
2614  *	removable media, UNIT_ATTENTION sets ->changed flag.
2615  **/
2616 int
2617 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2618 		     struct scsi_sense_hdr *sshdr)
2619 {
2620 	char cmd[] = {
2621 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2622 	};
2623 	int result;
2624 
2625 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2626 	do {
2627 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2628 					  timeout, 1, NULL);
2629 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2630 		    sshdr->sense_key == UNIT_ATTENTION)
2631 			sdev->changed = 1;
2632 	} while (scsi_sense_valid(sshdr) &&
2633 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2634 
2635 	return result;
2636 }
2637 EXPORT_SYMBOL(scsi_test_unit_ready);
2638 
2639 /**
2640  *	scsi_device_set_state - Take the given device through the device state model.
2641  *	@sdev:	scsi device to change the state of.
2642  *	@state:	state to change to.
2643  *
2644  *	Returns zero if successful or an error if the requested
2645  *	transition is illegal.
2646  */
2647 int
2648 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2649 {
2650 	enum scsi_device_state oldstate = sdev->sdev_state;
2651 
2652 	if (state == oldstate)
2653 		return 0;
2654 
2655 	switch (state) {
2656 	case SDEV_CREATED:
2657 		switch (oldstate) {
2658 		case SDEV_CREATED_BLOCK:
2659 			break;
2660 		default:
2661 			goto illegal;
2662 		}
2663 		break;
2664 
2665 	case SDEV_RUNNING:
2666 		switch (oldstate) {
2667 		case SDEV_CREATED:
2668 		case SDEV_OFFLINE:
2669 		case SDEV_TRANSPORT_OFFLINE:
2670 		case SDEV_QUIESCE:
2671 		case SDEV_BLOCK:
2672 			break;
2673 		default:
2674 			goto illegal;
2675 		}
2676 		break;
2677 
2678 	case SDEV_QUIESCE:
2679 		switch (oldstate) {
2680 		case SDEV_RUNNING:
2681 		case SDEV_OFFLINE:
2682 		case SDEV_TRANSPORT_OFFLINE:
2683 			break;
2684 		default:
2685 			goto illegal;
2686 		}
2687 		break;
2688 
2689 	case SDEV_OFFLINE:
2690 	case SDEV_TRANSPORT_OFFLINE:
2691 		switch (oldstate) {
2692 		case SDEV_CREATED:
2693 		case SDEV_RUNNING:
2694 		case SDEV_QUIESCE:
2695 		case SDEV_BLOCK:
2696 			break;
2697 		default:
2698 			goto illegal;
2699 		}
2700 		break;
2701 
2702 	case SDEV_BLOCK:
2703 		switch (oldstate) {
2704 		case SDEV_RUNNING:
2705 		case SDEV_CREATED_BLOCK:
2706 			break;
2707 		default:
2708 			goto illegal;
2709 		}
2710 		break;
2711 
2712 	case SDEV_CREATED_BLOCK:
2713 		switch (oldstate) {
2714 		case SDEV_CREATED:
2715 			break;
2716 		default:
2717 			goto illegal;
2718 		}
2719 		break;
2720 
2721 	case SDEV_CANCEL:
2722 		switch (oldstate) {
2723 		case SDEV_CREATED:
2724 		case SDEV_RUNNING:
2725 		case SDEV_QUIESCE:
2726 		case SDEV_OFFLINE:
2727 		case SDEV_TRANSPORT_OFFLINE:
2728 			break;
2729 		default:
2730 			goto illegal;
2731 		}
2732 		break;
2733 
2734 	case SDEV_DEL:
2735 		switch (oldstate) {
2736 		case SDEV_CREATED:
2737 		case SDEV_RUNNING:
2738 		case SDEV_OFFLINE:
2739 		case SDEV_TRANSPORT_OFFLINE:
2740 		case SDEV_CANCEL:
2741 		case SDEV_BLOCK:
2742 		case SDEV_CREATED_BLOCK:
2743 			break;
2744 		default:
2745 			goto illegal;
2746 		}
2747 		break;
2748 
2749 	}
2750 	sdev->sdev_state = state;
2751 	return 0;
2752 
2753  illegal:
2754 	SCSI_LOG_ERROR_RECOVERY(1,
2755 				sdev_printk(KERN_ERR, sdev,
2756 					    "Illegal state transition %s->%s",
2757 					    scsi_device_state_name(oldstate),
2758 					    scsi_device_state_name(state))
2759 				);
2760 	return -EINVAL;
2761 }
2762 EXPORT_SYMBOL(scsi_device_set_state);
2763 
2764 /**
2765  * 	sdev_evt_emit - emit a single SCSI device uevent
2766  *	@sdev: associated SCSI device
2767  *	@evt: event to emit
2768  *
2769  *	Send a single uevent (scsi_event) to the associated scsi_device.
2770  */
2771 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2772 {
2773 	int idx = 0;
2774 	char *envp[3];
2775 
2776 	switch (evt->evt_type) {
2777 	case SDEV_EVT_MEDIA_CHANGE:
2778 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2779 		break;
2780 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2781 		scsi_rescan_device(&sdev->sdev_gendev);
2782 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2783 		break;
2784 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2785 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2786 		break;
2787 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2788 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2789 		break;
2790 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2791 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2792 		break;
2793 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2794 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2795 		break;
2796 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2797 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2798 		break;
2799 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2800 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2801 		break;
2802 	default:
2803 		/* do nothing */
2804 		break;
2805 	}
2806 
2807 	envp[idx++] = NULL;
2808 
2809 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2810 }
2811 
2812 /**
2813  * 	sdev_evt_thread - send a uevent for each scsi event
2814  *	@work: work struct for scsi_device
2815  *
2816  *	Dispatch queued events to their associated scsi_device kobjects
2817  *	as uevents.
2818  */
2819 void scsi_evt_thread(struct work_struct *work)
2820 {
2821 	struct scsi_device *sdev;
2822 	enum scsi_device_event evt_type;
2823 	LIST_HEAD(event_list);
2824 
2825 	sdev = container_of(work, struct scsi_device, event_work);
2826 
2827 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2828 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2829 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2830 
2831 	while (1) {
2832 		struct scsi_event *evt;
2833 		struct list_head *this, *tmp;
2834 		unsigned long flags;
2835 
2836 		spin_lock_irqsave(&sdev->list_lock, flags);
2837 		list_splice_init(&sdev->event_list, &event_list);
2838 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2839 
2840 		if (list_empty(&event_list))
2841 			break;
2842 
2843 		list_for_each_safe(this, tmp, &event_list) {
2844 			evt = list_entry(this, struct scsi_event, node);
2845 			list_del(&evt->node);
2846 			scsi_evt_emit(sdev, evt);
2847 			kfree(evt);
2848 		}
2849 	}
2850 }
2851 
2852 /**
2853  * 	sdev_evt_send - send asserted event to uevent thread
2854  *	@sdev: scsi_device event occurred on
2855  *	@evt: event to send
2856  *
2857  *	Assert scsi device event asynchronously.
2858  */
2859 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2860 {
2861 	unsigned long flags;
2862 
2863 #if 0
2864 	/* FIXME: currently this check eliminates all media change events
2865 	 * for polled devices.  Need to update to discriminate between AN
2866 	 * and polled events */
2867 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2868 		kfree(evt);
2869 		return;
2870 	}
2871 #endif
2872 
2873 	spin_lock_irqsave(&sdev->list_lock, flags);
2874 	list_add_tail(&evt->node, &sdev->event_list);
2875 	schedule_work(&sdev->event_work);
2876 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2877 }
2878 EXPORT_SYMBOL_GPL(sdev_evt_send);
2879 
2880 /**
2881  * 	sdev_evt_alloc - allocate a new scsi event
2882  *	@evt_type: type of event to allocate
2883  *	@gfpflags: GFP flags for allocation
2884  *
2885  *	Allocates and returns a new scsi_event.
2886  */
2887 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2888 				  gfp_t gfpflags)
2889 {
2890 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2891 	if (!evt)
2892 		return NULL;
2893 
2894 	evt->evt_type = evt_type;
2895 	INIT_LIST_HEAD(&evt->node);
2896 
2897 	/* evt_type-specific initialization, if any */
2898 	switch (evt_type) {
2899 	case SDEV_EVT_MEDIA_CHANGE:
2900 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2901 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2902 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2903 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2904 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2905 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2906 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2907 	default:
2908 		/* do nothing */
2909 		break;
2910 	}
2911 
2912 	return evt;
2913 }
2914 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2915 
2916 /**
2917  * 	sdev_evt_send_simple - send asserted event to uevent thread
2918  *	@sdev: scsi_device event occurred on
2919  *	@evt_type: type of event to send
2920  *	@gfpflags: GFP flags for allocation
2921  *
2922  *	Assert scsi device event asynchronously, given an event type.
2923  */
2924 void sdev_evt_send_simple(struct scsi_device *sdev,
2925 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2926 {
2927 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2928 	if (!evt) {
2929 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2930 			    evt_type);
2931 		return;
2932 	}
2933 
2934 	sdev_evt_send(sdev, evt);
2935 }
2936 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2937 
2938 /**
2939  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2940  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2941  */
2942 static int scsi_request_fn_active(struct scsi_device *sdev)
2943 {
2944 	struct request_queue *q = sdev->request_queue;
2945 	int request_fn_active;
2946 
2947 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2948 
2949 	spin_lock_irq(q->queue_lock);
2950 	request_fn_active = q->request_fn_active;
2951 	spin_unlock_irq(q->queue_lock);
2952 
2953 	return request_fn_active;
2954 }
2955 
2956 /**
2957  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2958  * @sdev: SCSI device pointer.
2959  *
2960  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2961  * invoked from scsi_request_fn() have finished.
2962  */
2963 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2964 {
2965 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2966 
2967 	while (scsi_request_fn_active(sdev))
2968 		msleep(20);
2969 }
2970 
2971 /**
2972  *	scsi_device_quiesce - Block user issued commands.
2973  *	@sdev:	scsi device to quiesce.
2974  *
2975  *	This works by trying to transition to the SDEV_QUIESCE state
2976  *	(which must be a legal transition).  When the device is in this
2977  *	state, only special requests will be accepted, all others will
2978  *	be deferred.  Since special requests may also be requeued requests,
2979  *	a successful return doesn't guarantee the device will be
2980  *	totally quiescent.
2981  *
2982  *	Must be called with user context, may sleep.
2983  *
2984  *	Returns zero if unsuccessful or an error if not.
2985  */
2986 int
2987 scsi_device_quiesce(struct scsi_device *sdev)
2988 {
2989 	struct request_queue *q = sdev->request_queue;
2990 	int err;
2991 
2992 	/*
2993 	 * It is allowed to call scsi_device_quiesce() multiple times from
2994 	 * the same context but concurrent scsi_device_quiesce() calls are
2995 	 * not allowed.
2996 	 */
2997 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2998 
2999 	blk_set_preempt_only(q);
3000 
3001 	blk_mq_freeze_queue(q);
3002 	/*
3003 	 * Ensure that the effect of blk_set_preempt_only() will be visible
3004 	 * for percpu_ref_tryget() callers that occur after the queue
3005 	 * unfreeze even if the queue was already frozen before this function
3006 	 * was called. See also https://lwn.net/Articles/573497/.
3007 	 */
3008 	synchronize_rcu();
3009 	blk_mq_unfreeze_queue(q);
3010 
3011 	mutex_lock(&sdev->state_mutex);
3012 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
3013 	if (err == 0)
3014 		sdev->quiesced_by = current;
3015 	else
3016 		blk_clear_preempt_only(q);
3017 	mutex_unlock(&sdev->state_mutex);
3018 
3019 	return err;
3020 }
3021 EXPORT_SYMBOL(scsi_device_quiesce);
3022 
3023 /**
3024  *	scsi_device_resume - Restart user issued commands to a quiesced device.
3025  *	@sdev:	scsi device to resume.
3026  *
3027  *	Moves the device from quiesced back to running and restarts the
3028  *	queues.
3029  *
3030  *	Must be called with user context, may sleep.
3031  */
3032 void scsi_device_resume(struct scsi_device *sdev)
3033 {
3034 	/* check if the device state was mutated prior to resume, and if
3035 	 * so assume the state is being managed elsewhere (for example
3036 	 * device deleted during suspend)
3037 	 */
3038 	mutex_lock(&sdev->state_mutex);
3039 	WARN_ON_ONCE(!sdev->quiesced_by);
3040 	sdev->quiesced_by = NULL;
3041 	blk_clear_preempt_only(sdev->request_queue);
3042 	if (sdev->sdev_state == SDEV_QUIESCE)
3043 		scsi_device_set_state(sdev, SDEV_RUNNING);
3044 	mutex_unlock(&sdev->state_mutex);
3045 }
3046 EXPORT_SYMBOL(scsi_device_resume);
3047 
3048 static void
3049 device_quiesce_fn(struct scsi_device *sdev, void *data)
3050 {
3051 	scsi_device_quiesce(sdev);
3052 }
3053 
3054 void
3055 scsi_target_quiesce(struct scsi_target *starget)
3056 {
3057 	starget_for_each_device(starget, NULL, device_quiesce_fn);
3058 }
3059 EXPORT_SYMBOL(scsi_target_quiesce);
3060 
3061 static void
3062 device_resume_fn(struct scsi_device *sdev, void *data)
3063 {
3064 	scsi_device_resume(sdev);
3065 }
3066 
3067 void
3068 scsi_target_resume(struct scsi_target *starget)
3069 {
3070 	starget_for_each_device(starget, NULL, device_resume_fn);
3071 }
3072 EXPORT_SYMBOL(scsi_target_resume);
3073 
3074 /**
3075  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3076  * @sdev: device to block
3077  *
3078  * Pause SCSI command processing on the specified device. Does not sleep.
3079  *
3080  * Returns zero if successful or a negative error code upon failure.
3081  *
3082  * Notes:
3083  * This routine transitions the device to the SDEV_BLOCK state (which must be
3084  * a legal transition). When the device is in this state, command processing
3085  * is paused until the device leaves the SDEV_BLOCK state. See also
3086  * scsi_internal_device_unblock_nowait().
3087  */
3088 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3089 {
3090 	struct request_queue *q = sdev->request_queue;
3091 	unsigned long flags;
3092 	int err = 0;
3093 
3094 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
3095 	if (err) {
3096 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3097 
3098 		if (err)
3099 			return err;
3100 	}
3101 
3102 	/*
3103 	 * The device has transitioned to SDEV_BLOCK.  Stop the
3104 	 * block layer from calling the midlayer with this device's
3105 	 * request queue.
3106 	 */
3107 	if (q->mq_ops) {
3108 		blk_mq_quiesce_queue_nowait(q);
3109 	} else {
3110 		spin_lock_irqsave(q->queue_lock, flags);
3111 		blk_stop_queue(q);
3112 		spin_unlock_irqrestore(q->queue_lock, flags);
3113 	}
3114 
3115 	return 0;
3116 }
3117 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3118 
3119 /**
3120  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3121  * @sdev: device to block
3122  *
3123  * Pause SCSI command processing on the specified device and wait until all
3124  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3125  *
3126  * Returns zero if successful or a negative error code upon failure.
3127  *
3128  * Note:
3129  * This routine transitions the device to the SDEV_BLOCK state (which must be
3130  * a legal transition). When the device is in this state, command processing
3131  * is paused until the device leaves the SDEV_BLOCK state. See also
3132  * scsi_internal_device_unblock().
3133  *
3134  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3135  * scsi_internal_device_block() has blocked a SCSI device and also
3136  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3137  */
3138 static int scsi_internal_device_block(struct scsi_device *sdev)
3139 {
3140 	struct request_queue *q = sdev->request_queue;
3141 	int err;
3142 
3143 	mutex_lock(&sdev->state_mutex);
3144 	err = scsi_internal_device_block_nowait(sdev);
3145 	if (err == 0) {
3146 		if (q->mq_ops)
3147 			blk_mq_quiesce_queue(q);
3148 		else
3149 			scsi_wait_for_queuecommand(sdev);
3150 	}
3151 	mutex_unlock(&sdev->state_mutex);
3152 
3153 	return err;
3154 }
3155 
3156 void scsi_start_queue(struct scsi_device *sdev)
3157 {
3158 	struct request_queue *q = sdev->request_queue;
3159 	unsigned long flags;
3160 
3161 	if (q->mq_ops) {
3162 		blk_mq_unquiesce_queue(q);
3163 	} else {
3164 		spin_lock_irqsave(q->queue_lock, flags);
3165 		blk_start_queue(q);
3166 		spin_unlock_irqrestore(q->queue_lock, flags);
3167 	}
3168 }
3169 
3170 /**
3171  * scsi_internal_device_unblock_nowait - resume a device after a block request
3172  * @sdev:	device to resume
3173  * @new_state:	state to set the device to after unblocking
3174  *
3175  * Restart the device queue for a previously suspended SCSI device. Does not
3176  * sleep.
3177  *
3178  * Returns zero if successful or a negative error code upon failure.
3179  *
3180  * Notes:
3181  * This routine transitions the device to the SDEV_RUNNING state or to one of
3182  * the offline states (which must be a legal transition) allowing the midlayer
3183  * to goose the queue for this device.
3184  */
3185 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3186 					enum scsi_device_state new_state)
3187 {
3188 	/*
3189 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3190 	 * offlined states and goose the device queue if successful.
3191 	 */
3192 	switch (sdev->sdev_state) {
3193 	case SDEV_BLOCK:
3194 	case SDEV_TRANSPORT_OFFLINE:
3195 		sdev->sdev_state = new_state;
3196 		break;
3197 	case SDEV_CREATED_BLOCK:
3198 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3199 		    new_state == SDEV_OFFLINE)
3200 			sdev->sdev_state = new_state;
3201 		else
3202 			sdev->sdev_state = SDEV_CREATED;
3203 		break;
3204 	case SDEV_CANCEL:
3205 	case SDEV_OFFLINE:
3206 		break;
3207 	default:
3208 		return -EINVAL;
3209 	}
3210 	scsi_start_queue(sdev);
3211 
3212 	return 0;
3213 }
3214 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3215 
3216 /**
3217  * scsi_internal_device_unblock - resume a device after a block request
3218  * @sdev:	device to resume
3219  * @new_state:	state to set the device to after unblocking
3220  *
3221  * Restart the device queue for a previously suspended SCSI device. May sleep.
3222  *
3223  * Returns zero if successful or a negative error code upon failure.
3224  *
3225  * Notes:
3226  * This routine transitions the device to the SDEV_RUNNING state or to one of
3227  * the offline states (which must be a legal transition) allowing the midlayer
3228  * to goose the queue for this device.
3229  */
3230 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3231 					enum scsi_device_state new_state)
3232 {
3233 	int ret;
3234 
3235 	mutex_lock(&sdev->state_mutex);
3236 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3237 	mutex_unlock(&sdev->state_mutex);
3238 
3239 	return ret;
3240 }
3241 
3242 static void
3243 device_block(struct scsi_device *sdev, void *data)
3244 {
3245 	scsi_internal_device_block(sdev);
3246 }
3247 
3248 static int
3249 target_block(struct device *dev, void *data)
3250 {
3251 	if (scsi_is_target_device(dev))
3252 		starget_for_each_device(to_scsi_target(dev), NULL,
3253 					device_block);
3254 	return 0;
3255 }
3256 
3257 void
3258 scsi_target_block(struct device *dev)
3259 {
3260 	if (scsi_is_target_device(dev))
3261 		starget_for_each_device(to_scsi_target(dev), NULL,
3262 					device_block);
3263 	else
3264 		device_for_each_child(dev, NULL, target_block);
3265 }
3266 EXPORT_SYMBOL_GPL(scsi_target_block);
3267 
3268 static void
3269 device_unblock(struct scsi_device *sdev, void *data)
3270 {
3271 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3272 }
3273 
3274 static int
3275 target_unblock(struct device *dev, void *data)
3276 {
3277 	if (scsi_is_target_device(dev))
3278 		starget_for_each_device(to_scsi_target(dev), data,
3279 					device_unblock);
3280 	return 0;
3281 }
3282 
3283 void
3284 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3285 {
3286 	if (scsi_is_target_device(dev))
3287 		starget_for_each_device(to_scsi_target(dev), &new_state,
3288 					device_unblock);
3289 	else
3290 		device_for_each_child(dev, &new_state, target_unblock);
3291 }
3292 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3293 
3294 /**
3295  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3296  * @sgl:	scatter-gather list
3297  * @sg_count:	number of segments in sg
3298  * @offset:	offset in bytes into sg, on return offset into the mapped area
3299  * @len:	bytes to map, on return number of bytes mapped
3300  *
3301  * Returns virtual address of the start of the mapped page
3302  */
3303 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3304 			  size_t *offset, size_t *len)
3305 {
3306 	int i;
3307 	size_t sg_len = 0, len_complete = 0;
3308 	struct scatterlist *sg;
3309 	struct page *page;
3310 
3311 	WARN_ON(!irqs_disabled());
3312 
3313 	for_each_sg(sgl, sg, sg_count, i) {
3314 		len_complete = sg_len; /* Complete sg-entries */
3315 		sg_len += sg->length;
3316 		if (sg_len > *offset)
3317 			break;
3318 	}
3319 
3320 	if (unlikely(i == sg_count)) {
3321 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3322 			"elements %d\n",
3323 		       __func__, sg_len, *offset, sg_count);
3324 		WARN_ON(1);
3325 		return NULL;
3326 	}
3327 
3328 	/* Offset starting from the beginning of first page in this sg-entry */
3329 	*offset = *offset - len_complete + sg->offset;
3330 
3331 	/* Assumption: contiguous pages can be accessed as "page + i" */
3332 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3333 	*offset &= ~PAGE_MASK;
3334 
3335 	/* Bytes in this sg-entry from *offset to the end of the page */
3336 	sg_len = PAGE_SIZE - *offset;
3337 	if (*len > sg_len)
3338 		*len = sg_len;
3339 
3340 	return kmap_atomic(page);
3341 }
3342 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3343 
3344 /**
3345  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3346  * @virt:	virtual address to be unmapped
3347  */
3348 void scsi_kunmap_atomic_sg(void *virt)
3349 {
3350 	kunmap_atomic(virt);
3351 }
3352 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3353 
3354 void sdev_disable_disk_events(struct scsi_device *sdev)
3355 {
3356 	atomic_inc(&sdev->disk_events_disable_depth);
3357 }
3358 EXPORT_SYMBOL(sdev_disable_disk_events);
3359 
3360 void sdev_enable_disk_events(struct scsi_device *sdev)
3361 {
3362 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3363 		return;
3364 	atomic_dec(&sdev->disk_events_disable_depth);
3365 }
3366 EXPORT_SYMBOL(sdev_enable_disk_events);
3367 
3368 /**
3369  * scsi_vpd_lun_id - return a unique device identification
3370  * @sdev: SCSI device
3371  * @id:   buffer for the identification
3372  * @id_len:  length of the buffer
3373  *
3374  * Copies a unique device identification into @id based
3375  * on the information in the VPD page 0x83 of the device.
3376  * The string will be formatted as a SCSI name string.
3377  *
3378  * Returns the length of the identification or error on failure.
3379  * If the identifier is longer than the supplied buffer the actual
3380  * identifier length is returned and the buffer is not zero-padded.
3381  */
3382 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3383 {
3384 	u8 cur_id_type = 0xff;
3385 	u8 cur_id_size = 0;
3386 	const unsigned char *d, *cur_id_str;
3387 	const struct scsi_vpd *vpd_pg83;
3388 	int id_size = -EINVAL;
3389 
3390 	rcu_read_lock();
3391 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3392 	if (!vpd_pg83) {
3393 		rcu_read_unlock();
3394 		return -ENXIO;
3395 	}
3396 
3397 	/*
3398 	 * Look for the correct descriptor.
3399 	 * Order of preference for lun descriptor:
3400 	 * - SCSI name string
3401 	 * - NAA IEEE Registered Extended
3402 	 * - EUI-64 based 16-byte
3403 	 * - EUI-64 based 12-byte
3404 	 * - NAA IEEE Registered
3405 	 * - NAA IEEE Extended
3406 	 * - T10 Vendor ID
3407 	 * as longer descriptors reduce the likelyhood
3408 	 * of identification clashes.
3409 	 */
3410 
3411 	/* The id string must be at least 20 bytes + terminating NULL byte */
3412 	if (id_len < 21) {
3413 		rcu_read_unlock();
3414 		return -EINVAL;
3415 	}
3416 
3417 	memset(id, 0, id_len);
3418 	d = vpd_pg83->data + 4;
3419 	while (d < vpd_pg83->data + vpd_pg83->len) {
3420 		/* Skip designators not referring to the LUN */
3421 		if ((d[1] & 0x30) != 0x00)
3422 			goto next_desig;
3423 
3424 		switch (d[1] & 0xf) {
3425 		case 0x1:
3426 			/* T10 Vendor ID */
3427 			if (cur_id_size > d[3])
3428 				break;
3429 			/* Prefer anything */
3430 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3431 				break;
3432 			cur_id_size = d[3];
3433 			if (cur_id_size + 4 > id_len)
3434 				cur_id_size = id_len - 4;
3435 			cur_id_str = d + 4;
3436 			cur_id_type = d[1] & 0xf;
3437 			id_size = snprintf(id, id_len, "t10.%*pE",
3438 					   cur_id_size, cur_id_str);
3439 			break;
3440 		case 0x2:
3441 			/* EUI-64 */
3442 			if (cur_id_size > d[3])
3443 				break;
3444 			/* Prefer NAA IEEE Registered Extended */
3445 			if (cur_id_type == 0x3 &&
3446 			    cur_id_size == d[3])
3447 				break;
3448 			cur_id_size = d[3];
3449 			cur_id_str = d + 4;
3450 			cur_id_type = d[1] & 0xf;
3451 			switch (cur_id_size) {
3452 			case 8:
3453 				id_size = snprintf(id, id_len,
3454 						   "eui.%8phN",
3455 						   cur_id_str);
3456 				break;
3457 			case 12:
3458 				id_size = snprintf(id, id_len,
3459 						   "eui.%12phN",
3460 						   cur_id_str);
3461 				break;
3462 			case 16:
3463 				id_size = snprintf(id, id_len,
3464 						   "eui.%16phN",
3465 						   cur_id_str);
3466 				break;
3467 			default:
3468 				cur_id_size = 0;
3469 				break;
3470 			}
3471 			break;
3472 		case 0x3:
3473 			/* NAA */
3474 			if (cur_id_size > d[3])
3475 				break;
3476 			cur_id_size = d[3];
3477 			cur_id_str = d + 4;
3478 			cur_id_type = d[1] & 0xf;
3479 			switch (cur_id_size) {
3480 			case 8:
3481 				id_size = snprintf(id, id_len,
3482 						   "naa.%8phN",
3483 						   cur_id_str);
3484 				break;
3485 			case 16:
3486 				id_size = snprintf(id, id_len,
3487 						   "naa.%16phN",
3488 						   cur_id_str);
3489 				break;
3490 			default:
3491 				cur_id_size = 0;
3492 				break;
3493 			}
3494 			break;
3495 		case 0x8:
3496 			/* SCSI name string */
3497 			if (cur_id_size + 4 > d[3])
3498 				break;
3499 			/* Prefer others for truncated descriptor */
3500 			if (cur_id_size && d[3] > id_len)
3501 				break;
3502 			cur_id_size = id_size = d[3];
3503 			cur_id_str = d + 4;
3504 			cur_id_type = d[1] & 0xf;
3505 			if (cur_id_size >= id_len)
3506 				cur_id_size = id_len - 1;
3507 			memcpy(id, cur_id_str, cur_id_size);
3508 			/* Decrease priority for truncated descriptor */
3509 			if (cur_id_size != id_size)
3510 				cur_id_size = 6;
3511 			break;
3512 		default:
3513 			break;
3514 		}
3515 next_desig:
3516 		d += d[3] + 4;
3517 	}
3518 	rcu_read_unlock();
3519 
3520 	return id_size;
3521 }
3522 EXPORT_SYMBOL(scsi_vpd_lun_id);
3523 
3524 /*
3525  * scsi_vpd_tpg_id - return a target port group identifier
3526  * @sdev: SCSI device
3527  *
3528  * Returns the Target Port Group identifier from the information
3529  * froom VPD page 0x83 of the device.
3530  *
3531  * Returns the identifier or error on failure.
3532  */
3533 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3534 {
3535 	const unsigned char *d;
3536 	const struct scsi_vpd *vpd_pg83;
3537 	int group_id = -EAGAIN, rel_port = -1;
3538 
3539 	rcu_read_lock();
3540 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3541 	if (!vpd_pg83) {
3542 		rcu_read_unlock();
3543 		return -ENXIO;
3544 	}
3545 
3546 	d = vpd_pg83->data + 4;
3547 	while (d < vpd_pg83->data + vpd_pg83->len) {
3548 		switch (d[1] & 0xf) {
3549 		case 0x4:
3550 			/* Relative target port */
3551 			rel_port = get_unaligned_be16(&d[6]);
3552 			break;
3553 		case 0x5:
3554 			/* Target port group */
3555 			group_id = get_unaligned_be16(&d[6]);
3556 			break;
3557 		default:
3558 			break;
3559 		}
3560 		d += d[3] + 4;
3561 	}
3562 	rcu_read_unlock();
3563 
3564 	if (group_id >= 0 && rel_id && rel_port != -1)
3565 		*rel_id = rel_port;
3566 
3567 	return group_id;
3568 }
3569 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3570